jackkuo commited on
Commit
30dda68
·
verified ·
1 Parent(s): 8e213da

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -tE1T4oBgHgl3EQfCwIW/content/tmp_files/2301.02867v1.pdf.txt +1356 -0
  2. -tE1T4oBgHgl3EQfCwIW/content/tmp_files/load_file.txt +0 -0
  3. .gitattributes +2 -0
  4. 1tAzT4oBgHgl3EQf8_4M/content/2301.01911v1.pdf +3 -0
  5. 2NFAT4oBgHgl3EQfkh06/content/tmp_files/2301.08611v1.pdf.txt +265 -0
  6. 2NFAT4oBgHgl3EQfkh06/content/tmp_files/load_file.txt +126 -0
  7. 3NE1T4oBgHgl3EQfSQNJ/content/tmp_files/2301.03063v1.pdf.txt +0 -0
  8. 3NE1T4oBgHgl3EQfSQNJ/content/tmp_files/load_file.txt +0 -0
  9. 6dAzT4oBgHgl3EQff_zo/content/tmp_files/2301.01463v1.pdf.txt +1606 -0
  10. 6dAzT4oBgHgl3EQff_zo/content/tmp_files/load_file.txt +0 -0
  11. 6tFJT4oBgHgl3EQflyzE/content/tmp_files/2301.11585v1.pdf.txt +577 -0
  12. 6tFJT4oBgHgl3EQflyzE/content/tmp_files/load_file.txt +0 -0
  13. 79AzT4oBgHgl3EQfgfxi/content/tmp_files/2301.01469v1.pdf.txt +1864 -0
  14. 79AzT4oBgHgl3EQfgfxi/content/tmp_files/load_file.txt +0 -0
  15. 8NFQT4oBgHgl3EQfHzW5/content/tmp_files/2301.13250v1.pdf.txt +2346 -0
  16. 8NFQT4oBgHgl3EQfHzW5/content/tmp_files/load_file.txt +0 -0
  17. AdAzT4oBgHgl3EQf_v_f/content/tmp_files/2301.01954v1.pdf.txt +0 -0
  18. AdAzT4oBgHgl3EQf_v_f/content/tmp_files/load_file.txt +0 -0
  19. CdE2T4oBgHgl3EQfoAgi/content/tmp_files/2301.04013v1.pdf.txt +888 -0
  20. CdE2T4oBgHgl3EQfoAgi/content/tmp_files/load_file.txt +0 -0
  21. DdFRT4oBgHgl3EQfxTg4/content/tmp_files/2301.13641v1.pdf.txt +551 -0
  22. DdFRT4oBgHgl3EQfxTg4/content/tmp_files/load_file.txt +500 -0
  23. DtA0T4oBgHgl3EQfAv-e/content/tmp_files/2301.01967v1.pdf.txt +1419 -0
  24. DtA0T4oBgHgl3EQfAv-e/content/tmp_files/load_file.txt +0 -0
  25. FdAzT4oBgHgl3EQfHPsU/content/tmp_files/2301.01040v1.pdf.txt +751 -0
  26. FdAzT4oBgHgl3EQfHPsU/content/tmp_files/load_file.txt +0 -0
  27. GtFJT4oBgHgl3EQfEiwz/content/tmp_files/2301.11437v1.pdf.txt +2537 -0
  28. GtFJT4oBgHgl3EQfEiwz/content/tmp_files/load_file.txt +0 -0
  29. J9AyT4oBgHgl3EQfTffD/content/tmp_files/2301.00108v1.pdf.txt +2194 -0
  30. J9AyT4oBgHgl3EQfTffD/content/tmp_files/load_file.txt +0 -0
  31. JdFLT4oBgHgl3EQfKC80/content/tmp_files/2301.12006v1.pdf.txt +853 -0
  32. JdFLT4oBgHgl3EQfKC80/content/tmp_files/load_file.txt +0 -0
  33. N9E1T4oBgHgl3EQfZwR9/content/tmp_files/2301.03154v1.pdf.txt +1151 -0
  34. N9E1T4oBgHgl3EQfZwR9/content/tmp_files/load_file.txt +0 -0
  35. NdFRT4oBgHgl3EQfGjdL/content/tmp_files/2301.13485v1.pdf.txt +991 -0
  36. NdFRT4oBgHgl3EQfGjdL/content/tmp_files/load_file.txt +0 -0
  37. QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf +0 -0
  38. QNAzT4oBgHgl3EQflf3i/content/tmp_files/2301.01550v1.pdf.txt +977 -0
  39. QNAzT4oBgHgl3EQflf3i/content/tmp_files/load_file.txt +181 -0
  40. StE3T4oBgHgl3EQfDwk0/content/tmp_files/2301.04289v1.pdf.txt +1169 -0
  41. StE3T4oBgHgl3EQfDwk0/content/tmp_files/load_file.txt +0 -0
  42. UNE0T4oBgHgl3EQflQHp/content/tmp_files/2301.02485v1.pdf.txt +2668 -0
  43. UNE0T4oBgHgl3EQflQHp/content/tmp_files/load_file.txt +0 -0
  44. VdE2T4oBgHgl3EQftwjJ/content/tmp_files/2301.04074v1.pdf.txt +1701 -0
  45. VdE2T4oBgHgl3EQftwjJ/content/tmp_files/load_file.txt +0 -0
  46. X9E0T4oBgHgl3EQfmgGg/content/tmp_files/2301.02500v1.pdf.txt +1047 -0
  47. X9E0T4oBgHgl3EQfmgGg/content/tmp_files/load_file.txt +0 -0
  48. XdE1T4oBgHgl3EQfJQP0/content/tmp_files/2301.02951v1.pdf.txt +2133 -0
  49. XdE1T4oBgHgl3EQfJQP0/content/tmp_files/load_file.txt +0 -0
  50. atFJT4oBgHgl3EQf8S2B/content/tmp_files/2301.11683v1.pdf.txt +1373 -0
-tE1T4oBgHgl3EQfCwIW/content/tmp_files/2301.02867v1.pdf.txt ADDED
@@ -0,0 +1,1356 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02867v1 [hep-th] 7 Jan 2023
2
+ Covariant calculation of the partition function
3
+ of the two-dimensional sigma model
4
+ on compact two-surfaces
5
+ O.D. Andreev, R.R. Metsaev, and A.A. Tseytlin
6
+ Department of Theoretical Physics, P.N. Lebedev Physical Institute, Leninski prospect 53,
7
+ Moscow 117924, USSR
8
+ (submitted 17 July 1989)
9
+ Abstract
10
+ Motivated by string theory connection, a covariant procedure for perturbative
11
+ calculation of the partition function Z of the two-dimensional generalized σ-
12
+ model is considered. The importance of a consistent regularization of the measure
13
+ in the path integral is emphasized. The partition function Z is computed for a
14
+ number of specific 2-manifolds: sphere, disk and torus.
15
+ Published in:
16
+ Yad.Fiz. 51 (1990) 564-576 [Sov.J.Nucl.Phys. 51 (1990) 359-366]
17
+ 1
18
+
19
+ Contents
20
+ 1
21
+ Introduction
22
+ 2
23
+ 2
24
+ Calculation of partition function of σ-model on compact 2-surfaces
25
+ 3
26
+ 3
27
+ Partition function on specific 2-surfaces: sphere, disk and torus
28
+ 9
29
+ 4
30
+ Partition function of the N = 1 supersymmetric σ-model
31
+ 13
32
+ 1
33
+ Introduction
34
+ A promising approach to string theory is the so-called σ-model approach. It may help
35
+ elucidate the structure and first principles of string theory (see, e.g., Refs.[1, 2]).
36
+ A central role in the σ-model approach is played by the partition function Z of the
37
+ generalized two-dimensional σ-model. Z is closely related to the generation functional
38
+ for the string S-matrix and to the effective action of the string theory [2].
39
+ The string partition function differs from the usual σ-model partition function by
40
+ a factor of the volume of the M¨obius group. In the theory of closed strings a possible
41
+ implementation of the operation of division by the M¨obius group volume is by taking
42
+ the derivative with respect to the log of the UV cutoff
43
+
44
+ ∂ ln ε of the regularized partition
45
+ function ZR. The reason for this is the presence of a logarithmic divergence [3] in the
46
+ regularized volume ΩR of the M´obius group [4].
47
+ In the theory of open strings the procedure of “division” by the M¨obius volume
48
+ reduces to a renormalization of power divergencies as the regularized volume of the
49
+ M¨obius group SL(2, R) contains only power divergences [5, 3]. The remaining loga-
50
+ rithmic two-dimensional UV divergences can be interpreted as being due to the mass-
51
+ less poles in the scattering amplitudes. As a result, the renormalized string partition
52
+ function coincides with the effective action S for the massless modes of the open string.
53
+ We shall perform the calculation of the partition function of the two-dimensional
54
+ σ-model on compact surfaces emphasizing the role of the measure in the functional
55
+ integral in the procedure of calculating the covariant expression for Z. In Sec.2 we
56
+ consider three possible ways of determining the regularized measure that lead to a
57
+ covariant answer. In Sec.3 we give examples of the calculation of the leading terms in
58
+ Z for some specific cases of 2-manifolds: the sphere, disk (hemisphere), and the torus.
59
+ Taking into account the procedure for dividing by the M¨obius volume, we obtain an
60
+ alternative to the S-matrix method of [6] for calculating the string effective action. In
61
+ Sec.4 we consider a generalization of this approach to the supersymmetric case.
62
+ Let us make a comment on the interpretation of infinities that are present in Z.
63
+ In addition to the already mentioned M¨obius and other two-dimensional UV infinities,
64
+ in the case of 2-surfaces of higher genera there exist the so-called modular infinities
65
+ corresponding to degeneration of the Riemann surfaces [9].1 The “modular’ correction
66
+ to the β-functions corresponds to the infinities associated with the degeneration of
67
+ trivial cycles [10]. The partition function Z should be renormalizable with respect
68
+ 1In the framework of the σ-model approach, in the case of surfaces of higher genera it is necessary
69
+ to use the Schottky [7] or the branch-point type [8] parameterization for the moduli space in which
70
+ the on-shell scattering amplitudes have formal SL(2, C) invariance.
71
+ 2
72
+
73
+ to all infinities (modular and local), i.e. it should be finite after the renormalization
74
+ corresponding to the complete β-function [11].
75
+ 2
76
+ Calculation of partition function of σ-model on
77
+ compact 2-surfaces
78
+ We shall consider the bosonic σ-model (µ, ν = 1, ..., D)
79
+ Z =
80
+
81
+ [Dx] exp
82
+
83
+ − I(x)
84
+
85
+ ,
86
+ (2.1)
87
+ I =
88
+ 1
89
+ 4πα′
90
+
91
+ d2σ√g
92
+ �α′
93
+ ε2ϕ(x) + ∂axµ∂axνGµν(x) + α′R(2)φ(x)
94
+
95
+ ,
96
+ (2.2)
97
+ defined on a compact closed two-dimensional surface. Here Gµν, φ, and ϕ are the bare
98
+ fields that depend on the two-dimensional cutoff ε. The renormalized value of ϕ will
99
+ be chosen to be zero. The theory is defined by the action I and the measure [Dx].
100
+ Imposing the requirement of invariance under the general coordinate transformations
101
+ xµ → x′µ ,
102
+ Gµν → G′
103
+ µν = ∂xα
104
+ ∂x′µ
105
+ ∂xβ
106
+ ∂x′ν Gαβ ,
107
+ (i.e. that upon a transformation of xµ the “coupling constants” Gµν of the theory
108
+ are also transformed), below we shall consider three ways of calculating the partition
109
+ function (2.1) that are consistent with the requirement of this covariance.
110
+ 1. Let us first choose the measure [Dx] to be trivial:
111
+ [Dx] =
112
+
113
+ σ
114
+ dDx(σ) .
115
+ To cancel the power divergences we make use of the bare tachyon field ϕ(x) (with the
116
+ renormalized value of ϕ set to zero). We separate xµ into a constant and a non-constant
117
+ parts, xµ = yµ + ηµ, inserting “one” into (2.1) (cf. [12])
118
+ 1 =
119
+
120
+ dDy
121
+ � �
122
+ dDη δ(D)(x(σ) − y − η) δ(D)(P µ[y, η]) Q[y, η] ,
123
+ Q = det ∂P µ[y − a, η + a]
124
+ ∂aν
125
+ ���
126
+ a=0 ,
127
+ (2.3)
128
+ where P = 0 is a gauge condition and Q is the ghost determinant. One possible choice
129
+ is
130
+ P µ =
131
+
132
+ d2σ√g ηµ ,
133
+ Q = V D ,
134
+ V =
135
+
136
+ d2σ √g .
137
+ (2.4)
138
+ The condition P = 0 implies that η does not contain a zero mode of the Laplace
139
+ operator (a constant). We substitute x = y +η into the action and expand it in powers
140
+ of η:
141
+ I =
142
+ 1
143
+ 4πα′
144
+
145
+ d2σ√g
146
+ �α′
147
+ ε2ϕ + ∂aηµ∂aην�
148
+ Gµν + ∂λGµνηλ + 1
149
+ 2∂λ∂ρGµνηληρ + . . .
150
+
151
+ +α′R(2)(φ + 1
152
+ 2∂µ∂νφηµην + . . .
153
+ ��
154
+ .
155
+ (2.5)
156
+ 3
157
+
158
+ The leading (one-loop) contribution of the integral over η is
159
+ Z0 = [det ′(Gµν∆)]−1/2 = exp
160
+
161
+ − 1
162
+ 2N′ ln G − 1
163
+ 2D ln det ′∆
164
+
165
+ ,
166
+ (2.6)
167
+ where N′ is the regularized number of nonzero eigenmodes of the Laplace operator,
168
+ G = det Gµν and D is the dimensionality of space-time.
169
+ The number N′ can be expressed in terms of the heat kernel in a familiar way
170
+ N′ =
171
+
172
+ d2σ √g Kε − 1 =
173
+ V
174
+ 4πε2 + 1
175
+ 6χ + O(ε2) ,
176
+ (2.7)
177
+ Kε =
178
+
179
+ n
180
+ fn(σ)fn(σ′) exp(−λnε2) ,
181
+ (2.8)
182
+ where fn(σ) and λn are, respectively, the eigenfunctions and eigenvalues of the Laplace
183
+ operator on the two-dimensional surface of Euler number χ =
184
+ 1
185
+
186
+
187
+ d2σ√gR(2).
188
+ Taking (2.7) into account, we obtain for (2.6)
189
+ Z0 = Z0 exp
190
+ ��
191
+
192
+ V
193
+ 4πε2 − 1
194
+ 6χ + 1 + O(ε2)
195
+
196
+ ln G
197
+
198
+ ,
199
+ Z0 = exp
200
+
201
+ − 1
202
+ 2D ln det ′∆
203
+
204
+ .
205
+ (2.9)
206
+ The dependence of Z on the dilaton field (to order α′2) is easily found from (2.5):
207
+ Z =
208
+
209
+ dDy Z0 e−χφ�
210
+ 1 − α′πχ∂µ∂νφ Gµν D(σ, σ) + O(α′2)
211
+
212
+ ,
213
+ (2.10)
214
+ where D is the regularized Green function of the Laplace operator
215
+ D(σ, σ′) =
216
+
217
+ λn̸=0
218
+ fn(σ)fn(σ′)
219
+ λn
220
+ exp
221
+
222
+ − λnε2) .
223
+ (2.11)
224
+ For ε → 0 it has the form [13]
225
+ D(σ, σ) = − 1
226
+ 2π ln ε + O(1) .
227
+ (2.12)
228
+ To determine the dependence of Z on the graviton field Gµν it is necessary to consider
229
+ the two possible one-particle-irreducible two-loop diagrams. Their contribution to Z
230
+ is found to be
231
+ Z =
232
+
233
+ dDy Z0 e−χφ�
234
+ 1 + c1GµνGλρ∂λ∂ρGµν + c2GµαGνβGρλ∂ρGµν∂λGαβ
235
+ +c3GµλGνβGρα∂ρGµν∂λGαβ + O(α′2)
236
+
237
+ ,
238
+ c1 = −1
239
+ 2πα′D(σ, σ)N′ ,
240
+ c2 = 1
241
+ 2πα′
242
+
243
+ d2σ d2σ′√g
244
+
245
+ g′ D(σ, σ′) ∂a∂b′D(σ, σ′) ∂a∂b′ D(σ, σ′) ,
246
+ c3 = πα′
247
+
248
+ d2σ d2σ′ √g
249
+
250
+ g′ ∂aD(σ, σ′) ∂a∂b′D(σ, σ′) ∂b′D(σ, σ′) .
251
+ (2.13)
252
+ 4
253
+
254
+ We ensure the covariance of Z0 by means of the special choice of the bare fields
255
+ φ′ = φ + a ln
256
+
257
+ G(x) ,
258
+ ϕ′ = ϕ + b ln
259
+
260
+ G(x) .
261
+ (2.14)
262
+ Substituting x = y +η and expanding ln
263
+
264
+ G(x) in powers of η we obtain the following
265
+ correction to the action in (2.2)
266
+ ∆I =
267
+ 1
268
+ 4πα′
269
+
270
+ d2σ√g α′ � b
271
+ ε2 + aR(2)��
272
+ ln
273
+
274
+ G + 1
275
+ 4Gµν∂λ∂ρGµνηληρ
276
+ − 1
277
+ 4GµβGνα∂ρGµν∂λGαβηρηλ + . . .
278
+
279
+ . (2.15)
280
+ The values of a and b are calculated from the condition that Z0 has a required covariant
281
+ form (Z0 ∼
282
+
283
+ G)
284
+ a = −1
285
+ 6 ,
286
+ b = −1 .
287
+ (2.16)
288
+ We now find the correction to Z from (2.15) taking into account (2.16) and the final
289
+ expression for Z0
290
+ ∆Z = Z0
291
+
292
+ dDy
293
+
294
+ G e−χφ�
295
+ 1 + 1
296
+ 2πα′�1
297
+ 6χ +
298
+ V
299
+ 4πε2
300
+
301
+ D(σ, σ)
302
+ ×
303
+
304
+ GµνGλρ∂λ∂ρGµν − GµαGνβGρλ∂ρGµν∂λGαβ + O(α′2)
305
+ ��
306
+ (2.17)
307
+ As a result, from (2.9), (2.10), (2.13), and (2.17), we obtain
308
+ Z = Z0
309
+
310
+ dDy
311
+
312
+ Ge−χφ�
313
+ 1 − πα′χD(σ, σ)∂µ∂νφGµν + ˜c1GµνGλρ∂λ∂ρGµν
314
+ + ˜c2GµαGνβGρλ∂ρGµν∂λGαβ + ˜c3GµλGνβGρα∂ρGµν∂λGαβ + O(α′2)
315
+
316
+ ,
317
+ ˜c1 = c1 + 1
318
+ 2πα′(1
319
+ 6χ +
320
+ V
321
+ 4πε2)D(σ, σ) ,
322
+ ˜c2 = c2 − 1
323
+ 2πα′(1
324
+ 6χ +
325
+ V
326
+ 4πε2)D(σ, σ) ,
327
+ ˜c3 = c3 .
328
+ (2.18)
329
+ After the ci’s have been calculated using (2.7) and (2.12), the power divergences cancel
330
+ and the dependence of Z on ε takes the form
331
+ Z = Z0
332
+
333
+ dDy
334
+
335
+ G e−χφ �
336
+ 1 + 1
337
+ 2α′χ(ln ε + O(1))∂µ∂νφ Gµν
338
+ − 1
339
+ 4α′(ln ε + O(1))GµνGλρ∂λ∂ρGµν
340
+ + 1
341
+ 8α′(ln ε + O(1))GµαGνβGρλ∂ρGµν∂λGαβ
342
+ + 1
343
+ 4α′(ln ε + O(1))GµλGνβGρα∂ρGµν∂λGαβ + O(α′2)
344
+
345
+ (2.19)
346
+ Using in (2.19) the expression for the target space scalar curvature R in terms of Gµν
347
+ and integrating by parts we observe that we can rewrite Z in the manifestly covariant
348
+ form
349
+ Z = Z0
350
+
351
+ dDy
352
+
353
+ G e−χφ �
354
+ 1 + 1
355
+ 2α′�
356
+ ln ε + O(1)
357
+ ��
358
+ R + χD2φ
359
+
360
+ + O(α′2)
361
+
362
+ ,
363
+ (2.20)
364
+ 5
365
+
366
+ where Dµ in D2 is the covariant derivative.
367
+ 2. Next, let us consider the manifestly covariant method of calculating Z based on
368
+ the expansion for the action and the measure in normal coordinates. Let us define the
369
+ measure [Dx] by the formal product
370
+ [Dx] =
371
+
372
+ σ
373
+ dDx(σ)
374
+
375
+ G(x(σ)) .
376
+ (2.21)
377
+ To preserve the general covariant invariance in the regularized theory it is necessary to
378
+ regularize the measure and the action in a consistent manner. We choose the regularized
379
+ expression for the measure (2.21) in the form
380
+ [Dx] =
381
+
382
+ σ
383
+ dDx(σ) eM
384
+ (2.22)
385
+ M = 1
386
+ 2
387
+
388
+ d2σ√g ln G(x)Kε(σ, σ) .
389
+ (2.23)
390
+ Now let us set xµ = yµ + ηµ(y, ξ) where ξµ is the tangent vector to the geodesic joining
391
+ the points yµ and yµ + ηµ
392
+ ηµ = ξµ − 1
393
+ 2Γµ
394
+ αβξαξβ − 1
395
+ 6
396
+
397
+ ∂γΓµ
398
+ αβ − 2Γλ
399
+ γαΓµ
400
+ λβ
401
+
402
+ ξαξβξγ + . . .
403
+ (2.24)
404
+ The expansions of the action and measure in powers of ξ have the form [14]
405
+ I =
406
+ 1
407
+ 4πα′
408
+
409
+ d2σ√g
410
+
411
+ ∂aξµ∂aξν�
412
+ Gµν + 1
413
+ 3Rµλρνξλξρ + 2
414
+ 45Rλµρ
415
+ γRανβγξλξρξαξβ + O(ξ5)
416
+
417
+ + α′R(2)�
418
+ φ + Dµφ ξµ + 1
419
+ 2DµDνφ ξµξν + O(ξ3)
420
+ ��
421
+ , (2.25)
422
+ M = 1
423
+ 2
424
+
425
+ d2σ√g Kε(σ, σ)
426
+
427
+ ln G − 1
428
+ 3Rµνξµξν + O(ξ3)
429
+
430
+ .
431
+ (2.26)
432
+ Since the kinetic term is invariant under a constant shift ξ → ξ + a and ξ may contain
433
+ a constant part under the condition (2.4), it is desirable to fix the symmetry y →
434
+ y − a, η → η + a by means of another gauge condition [12]
435
+ P µ =
436
+
437
+ d2σ√g ξµ .
438
+ (2.27)
439
+ In this case the ghost determinant in (2.3) is
440
+ Q = det
441
+ � �
442
+ d2σ√g λµ
443
+ ν
444
+
445
+ ,
446
+ λµ
447
+ ν = ∂ξµ(y, η)
448
+ ∂ην
449
+ − ∂ξν(y, η)
450
+ ∂ηµ
451
+ .
452
+ (2.28)
453
+ Its covariant expression takes the form
454
+ Q = V D exp
455
+
456
+ − 1
457
+ 3V
458
+
459
+ d2σ√g Rµνξµξν + O(ξ3)
460
+
461
+ .
462
+ (2.29)
463
+ To determine the measure in the y integral, i.e.
464
+
465
+ dDy
466
+
467
+ G, it is necessary to take
468
+ into account not only the one-loop contribution (2.6) but also (2.26). Using that the
469
+ regularized number of eigenvalues is
470
+ N =
471
+
472
+ d2σ√g Kε(σ, σ) ,
473
+ (2.30)
474
+ 6
475
+
476
+ and also (2.7), we arrive at the expression for the covariant measure
477
+
478
+ G in the integral
479
+ over y. In fact,
480
+
481
+ G is the contribution of the only (constant) zero mode of the Laplace
482
+ operator on the compact surface. The partition function Z then takes the form
483
+ Z =
484
+
485
+ dDy
486
+
487
+ G e−χφ F(R, DR, Dφ) .
488
+ (2.31)
489
+ It is not difficult to calculate the first terms of the expansion of F in powers of α′.
490
+ From (2.25), (2.26), and (2.29), we obtain
491
+ Z = Z0
492
+
493
+ dDy
494
+
495
+ G e−χφ�
496
+ 1 + α′(a1 + a2 + a3)R + α′b1D2φ + O(α′2)
497
+
498
+ .
499
+ (2.32)
500
+ The coefficients a1 and b1 correspond to contributions from the action (2.25), a2 arises
501
+ from the measure (2.26), and a3 from the ghost determinant (2.29). The expressions for
502
+ these coefficients in terms of the Green functions (2.11) have the following appearance
503
+ a1 = π
504
+ 3
505
+
506
+ d2σ√g ∂a∂′aD(σ, σ′)|σ=σ′D(σ, σ) − ∂aD(σ, σ′)|σ=σ′∂′aD(σ, σ′)|σ=σ′ ,
507
+ a2 = −π
508
+ 3
509
+
510
+ d2σ√gKε(σ, σ)D(σ, σ) ,
511
+ (2.33)
512
+ a3 = − 2π
513
+ 3V
514
+
515
+ d2σ√gD(σ, σ) ,
516
+ b1 = −1
517
+ 4
518
+
519
+ d2σ√gR(2)D(σ, σ) .
520
+ Explicit calculations give
521
+ a1 = −1
522
+ 6N′ ln ε + ¯a1 ,
523
+ a2 = 1
524
+ 6N ln ε + ¯a2 ,
525
+ a3 = 1
526
+ 3 ln ε + ¯a3 ,
527
+ b1 = 1
528
+ 2χ ln ε + ¯b1 ,
529
+ a0 = a1 + a2 + a3 = 1
530
+ 2 ln ε + ¯a0 ,
531
+ (2.34)
532
+ where the ¯ai and ¯bi are finite constants. It is easy to see that the power infinities cancel,
533
+ and the resulting expression for Z in (2.32) coincides with (2.20).
534
+ 3.
535
+ Let us now consider one more method of calculating Z, which is explicitly
536
+ covariant and turns out to be simpler in practice. Here we define the measure [Dx] as
537
+ follows
538
+ [Dx] = J dDy [Dξ] ,
539
+ (2.35)
540
+ where the factor J is fixed from the normalization condition
541
+
542
+ [Dδx] e−||δx||2 =
543
+
544
+ dDδy
545
+
546
+ [Dδξ] J e−||δx||2 = 1 ,
547
+ ||δx||2 =
548
+ 1
549
+ 4πα′
550
+
551
+ d2σ√g δxµδxν Gµν .
552
+ (2.36)
553
+ The expression for ||δx||2 expanded in normal coordinates has the form
554
+ ||δx||2 =
555
+ 1
556
+ 4πα′
557
+
558
+ d2σ√g
559
+
560
+ Gµν + 1
561
+ 3Rµλ1ρ1νξλ1ξρ1
562
+ − 2
563
+ 45Rµλ1ρ1
564
+ γ1Rα1νβ1γ1ξλ1ξρ1ξα1ξβ1 + . . .
565
+ ��
566
+ δyµ + δξµ + 1
567
+ 3Rµ
568
+ λ2ρ2κξλ2ξρ2δyκ
569
+ − 1
570
+ 45Rµ
571
+ λ2ρ2γ2Rγ2α2β2κξλ2ξρ2ξα2ξβ2δyκ + . . .
572
+ ��
573
+ δyν + δξν + 1
574
+ 3Rν
575
+ λ3ρ3σξλ3ξρ3δyσ
576
+ − 1
577
+ 45Rν
578
+ λ3ρ3γ3Rγ3α3β3σξλ3ξρ3ξα3ξβ3δyσ + . . .
579
+
580
+ .
581
+ 7
582
+
583
+ Integrating successively over δy and δξ, we find J. Taking into account the expression
584
+ (2.35) for the action, we have
585
+ Z = Z0
586
+
587
+ dDy
588
+
589
+ Ge−χφ�
590
+ exp
591
+ � �
592
+ d2σ√g
593
+ �πα′
594
+ 3 Rµλνρ∂aξµ∂aξνξλξρ − πα′
595
+ 3 K′
596
+ ε(σ, σ)Rµνξµξν
597
+ − πα′
598
+ V Rµνξµξν − 4π2α′2
599
+ 45
600
+ Rλµρ
601
+ γRανβγ∂aξµ∂aξνξλξρξαξβ
602
+ + π2α′2� 4
603
+ 45K′
604
+ ε(σ, σ) + 2
605
+ 3V
606
+
607
+ Rµλρ
608
+ γRµ
609
+ αβγξλξρξαξβ + . . .
610
+
611
+
612
+
613
+ d2σd2σ′√g
614
+
615
+ g′π2α′2�1
616
+ 9K′
617
+ ε
618
+ 2(σ, σ′) + 2K′
619
+ ε(σ, σ′)
620
+ 9V
621
+ + 1
622
+ V 2
623
+
624
+ (2.37)
625
+ × RµρλνRµ
626
+ αβ
627
+ νξλ(σ)ξρ(σ)ξα(σ′)ξβ(σ′) + O(α′3)
628
+ ��
629
+ .
630
+ We have redefined y → (2πα′)1/2y and ξ → (2πα′)1/2ξ, set φ to be constant for simplic-
631
+ ity, and took the one-loop contribution into account. Starting from (2.37), we easily
632
+ find the expression for the order α′ terms in Z. It is given by the first three terms in
633
+ the exponent in (2.37). The contribution of the second term cancels that of the first
634
+ one so that the coefficient of R turns out to be proportional to D(σ, σ), so that as in
635
+ (2.20) we get
636
+ Z = Z0
637
+
638
+ dDy
639
+
640
+ G e−χφ �
641
+ 1 + 1
642
+ 2α′(ln ε + const)R + O(α′2)
643
+
644
+ .
645
+ (2.38)
646
+ The divergent parts of the coefficients of the R2 and R2
647
+ µν terms are calculated in a
648
+ similar way. One gets for the R2 term
649
+ Z = Z0
650
+
651
+ dDy
652
+
653
+ Ge−χφ�
654
+ 1 + . . . + 1
655
+ 2π2α′2D2(σ, σ)R2 + . . .
656
+
657
+ .
658
+ (2.39)
659
+ The divergent contribution to the coefficient of the R2
660
+ µν term comes effectively only
661
+ from the vertex −π2α′2
662
+ V
663
+ R2ξξξξ, i.e.
664
+ Z = Z0
665
+
666
+ dDy
667
+
668
+ Ge−χφ�
669
+ 1 + . . . − π2α′2D2(σ, σ)RµνRµν + . . .
670
+
671
+ .
672
+ (2.40)
673
+ The methods of computing Z considered above admit a natural generalization to
674
+ the case of 2d surfaces with boundaries (with free open string or Neumann boundary
675
+ conditions). Then the Green function D is replaced by the Neumann function. There
676
+ are new (linear) power divergencies which can be canceled by a redefinition of the
677
+ values of the boundary analogs of the tachyon and dilaton couplings. The σ-model
678
+ action in this case has the form
679
+ I =
680
+ 1
681
+ 4πα′
682
+
683
+ d2σ√g
684
+ �α′ϕ
685
+ ε2 + ∂axµ∂axνGµν + α′R(2)φ
686
+
687
+ + 1
688
+
689
+
690
+ ds
691
+ �ϕ′
692
+ ε + Kφ′�
693
+ ,
694
+ (2.41)
695
+ where K is the extrinsic curvature. It is necessary to set φ = φ′ to ensure that the
696
+ constant part of the dilaton couples to the Euler characteristic.
697
+ It should be emphasized that the above calculation of Z was done for surfaces of any
698
+ genus. However, we did not integrate over the moduli space of the Riemann surfaces
699
+ and, therefore, the logarithmic divergences found are only the ordinary local ones.
700
+ 8
701
+
702
+ The expression Z is renormalizable with respect to these local infinities on a surface
703
+ of an arbitrary genus (ψi = (G, φ))
704
+ dZ
705
+ d ln ε =
706
+ ∂Z
707
+ ∂ ln ε − βi ∂Z
708
+ ∂ψi = 0 ,
709
+ (2.42)
710
+ where βi = −
711
+ d
712
+ d ln εψi are the local β-functions of the σ-model (cf. (2.20))
713
+ βG
714
+ µν = α′Rµν + O(α′2) ,
715
+ βφ = 1
716
+ 6D − 1
717
+ 2α′D2φ + O(α′2) .
718
+ (2.43)
719
+ Assuming that Z is renormalizable also at the next order and using the known
720
+ expressions for the α′2 terms in the β-functions (2.43) [12, 15], we find the following
721
+ expression for the logarithmically divergent term in Z to order α′2
722
+ Z = λ
723
+
724
+ dDy
725
+
726
+ G e−χφ �
727
+ 1 + 1
728
+ 2 ln ε
729
+
730
+ α′R + 1
731
+ 8(4 − χ) α′2RµαβνRµαβν�
732
+ + . . .
733
+
734
+ .
735
+ (2.44)
736
+ We shall also confirm the coefficient of the RµαβνRµαβν term directly in the case of the
737
+ torus (χ = 0) in the next section.
738
+ Let us note also that the (ln ε)2 coefficients of R2 and R2
739
+ µν that we found in (2.39)
740
+ and (2.40) are consistent with the renormalizability of Z.
741
+ 3
742
+ Partition function on specific 2-surfaces: sphere,
743
+ disk and torus
744
+ Let us now consider the calculation of Z for some simplest surfaces: the sphere, disk,
745
+ and torus. In these cases the coefficients of the leading terms in the α′ expansion of Z
746
+ can be found explicitly.
747
+ 1. Let us start with the 2-sphere. In spherical coordinates the eigenfunctions and
748
+ eigenvalues of the Laplace operator have the form
749
+ fn,m = Yn,m(θ, φ) ,
750
+ λn,m = n(n + 1) ,
751
+ (3.1)
752
+ where the Yn,m are the orthonormal spherical functions. The regularized expression for
753
+ the Green’s function has the form
754
+ D(σ, σ′) =
755
+
756
+ n̸=0
757
+ n
758
+
759
+ m=−n
760
+ 1
761
+ n(n + 1)e−n(n+1)ε2 Y ∗
762
+ n,m(θ, ϕ)Yn,m(θ′, ϕ′) .
763
+ (3.2)
764
+ At coincident points, it becomes
765
+ D(σ, σ) = 1
766
+
767
+
768
+ n̸=0
769
+ 2n + 1
770
+ n(n + 1)e−n(n+1)ε2 .
771
+ (3.3)
772
+ The leading terms in expansion in ε → 0 are easily calculated using the Euler-Maclaurin
773
+ resummation formula
774
+ D(σ, σ) = − 1
775
+ 2π ln ε + γ − 1
776
+
777
+ + ε2
778
+ 6π + O(ε4) ,
779
+ (3.4)
780
+ 9
781
+
782
+ where γ is the Euler constant. We note that the ln ε and ε2 terms can be calculated
783
+ from (2.7) using integration over ε. Taking (3.4) into account, we can write (2.20) as
784
+ (here χ = 2)
785
+ Z = Z0
786
+
787
+ dDy
788
+
789
+ Ge−2φ�
790
+ 1 + α′�
791
+ R + 2D2φ)
792
+ �1
793
+ 2ln ε + a + O(ε2)
794
+
795
+ + O(α′2)
796
+
797
+ ,
798
+ (3.5)
799
+ where a = 1
800
+ 4(γ − 1) is a scheme-dependent constant.
801
+ It is easy to see that Z is renormalizable, i.e.
802
+ making the replacement Gµν =
803
+ G(R)
804
+ µν −ln ε βG
805
+ µν and φ = φ(R)−ln ε βφ (cf. (2.43)) we get rid of the logarithmic divergences
806
+ and thus find
807
+ Z = Z0
808
+
809
+ dDy
810
+
811
+ Ge−2φ�
812
+ 1 + aα′�
813
+ R + 2D2φ) + O(α′2)
814
+
815
+ .
816
+ (3.6)
817
+ Note that this expression is not the same as the closed string effective action obtained
818
+ using the S-matrix method. The reason is that the generating functional for the string
819
+ tree-level S-matrix is given by Ω−1Z, i.e Z divided by the volume of the group SL(2, C)
820
+ of M¨obius transformations. The presence of a logarithmic singularity in the regularized
821
+ volume of SL(2, C) suggest that one can think of
822
+
823
+ ∂ ln ε as a possible realization of the
824
+ operation of division by Ω in the case of closed strings [4]. Indeed, as follows from
825
+ (3.5),
826
+ ∂Z
827
+ ∂ ln ε = 1
828
+ 2α′Z0
829
+
830
+ dDy
831
+
832
+ G e−2φ �
833
+ R + 2D2φ + O(α′)
834
+
835
+ ,
836
+ (3.7)
837
+ which agrees with the effective action found from the tree-level closed string S-matrix.
838
+ 2. The calculation of Z for disk topology (with a metric of half-sphere) almost
839
+ analogous to the case of the sphere. A new feature is that in view of the presence
840
+ of the boundary, we impose the Neumann boundary condition at the boundary of
841
+ half-sphere
842
+ ∂θxµ��
843
+ θ= π
844
+ 2 = 0 .
845
+ (3.8)
846
+ The expansion of the fluctuation field η in eigenfunctions of the Laplace operator on
847
+ the disk has the form
848
+ η(θ, φ) =
849
+
850
+ n,m
851
+ an,mYn,m ,
852
+ n + m = 2k ,
853
+ n ̸= 0 .
854
+ (3.9)
855
+ and the expression for the regularized Neumann function at coincident points is (cf.
856
+ (3.3))
857
+ D(σ, σ) =
858
+
859
+
860
+ n=1
861
+ 1
862
+ 2πn e−n(n+1)ε2 .
863
+ (3.10)
864
+ Using the Euler-Maclaurin formula, we obtain (cf. (3.4))
865
+ D(σ, σ) = − 1
866
+ 2π ln ε + γ
867
+ 4π + 1
868
+ 4ε −
869
+ 5
870
+ 12πε2 + O(ε3) .
871
+ (3.11)
872
+ The expression for Z is the same as in (2.18), (2.20) with D(σ, σ) given by (3.11).
873
+ The power divergences ε−2 and ε−1 in Z on the disk are canceled by renormalizing the
874
+ tachyon fields ϕ and ϕ′, respectively (see (2.41)).
875
+ 10
876
+
877
+ 3. In the case of the 2-torus we shall depart from the scheme used above, which
878
+ was based on the heat kernel regularization. This is due to the technical difficulties
879
+ of calculating the sums with the spectral e−λnε2 regularization.2 We shall consider the
880
+ τ-parametrization, in which the torus is represented as a (τ, 1) parallelogram on the
881
+ complex z-plane. The string σ-model partition function on the torus has the form [17]
882
+ Z =
883
+
884
+ F
885
+ d2τ
886
+ 4πτ 2
887
+ 2
888
+ e4πτ2
889
+ (2πτ2)12|f(e2πiτ)|−48
890
+
891
+ Dx e−I ,
892
+ (3.12)
893
+
894
+ Dx e−I0 = 1 ,
895
+ I = I0 + Iint ,
896
+ f(e2πiτ) =
897
+
898
+
899
+ n=1
900
+ (1 − e2πinτ) ,
901
+ where the fundamental region F is specified by the conditions
902
+ −1
903
+ 2 < τ1 ≤ 1
904
+ 2,
905
+ |τ| > 1 ,
906
+ τ = τ1 + iτ2 .
907
+ We shall consider only the dependence of Z on the metric Gµν.
908
+ By studying the
909
+ dependence of Z on G|muν = δµν + hµν using the expansion in powers of hµν, we will
910
+ then restore the coefficients of the R, R2, R2
911
+ µν and R2
912
+ µαβν terms (assuming that the
913
+ scheme used for the regularization and renormalization preserves the covariance of Z).
914
+ Since the metric on the parallelogram is flat, it is possible to use the following
915
+ regularization prescription
916
+ D(z, z) = − 1
917
+ 2π ln ε ,
918
+ δ(2)(z, z) = 0 ,
919
+ corresponding to discarding of power divergences. This prescription ensures the co-
920
+ variance of Z without need for a nontrivial measure factor. The Green function on the
921
+ torus has the form [17]
922
+ D(z, z′) = − 1
923
+ 4π ln |θ(z, z′)|2
924
+ |θ′(0)|2
925
+ + 1
926
+ 2τ2
927
+
928
+ Im(z − z′)
929
+ �2 ,
930
+ (3.13)
931
+ where θ(z, z′) is the theta function ϑ11(z, z′) [18].
932
+ We redefine x → (2πα′)1/2x and expand the σ-model action I in (2.2) in powers of
933
+ η = x − y. Then
934
+ Z = ⟨Z⟩ ,
935
+ Z =
936
+
937
+ Dη exp
938
+
939
+ − 1
940
+ 2
941
+
942
+ d2σ√g∂aηµ∂aην�
943
+ δµν + hµν + (2πα′)1/2∂λhµνηλ
944
+ +πα′∂ρ∂λhµνηρηλ + . . .
945
+ ��
946
+ ,
947
+ ⟨. . .⟩ =
948
+
949
+ dDy
950
+
951
+ [dτ] .
952
+ (3.14)
953
+ The coefficient of R is found from the hµν□hµν term (R =
954
+ 1
955
+ 4hµν□hµν + . . . ). As a
956
+ result,
957
+ Z ∼ 1 + 2πα′c0R + O(α′2) ,
958
+ c0 = 4
959
+
960
+ d2zd2z′�
961
+ ∂z∂z′D∂¯zD∂¯z′D + ∂z∂¯z′D∂¯zD∂z′D
962
+ +∂¯z∂¯z′D∂zD∂z′D + ∂¯z∂z′D∂zD∂¯z′D
963
+
964
+ .
965
+ (3.15)
966
+ 2Note that in [16] the authors used a regularization based on a cutoff on the upper limits of the
967
+ sums over eigenmodes of the Laplace operator on the torus.
968
+ 11
969
+
970
+ Integrating by parts and using the regularization indicated above, we obtain
971
+ c0 = 1
972
+ 4π ln ε + O(1) ,
973
+ Z ∼ 1 + 1
974
+ 2α′�
975
+ ln ε + O(1)
976
+
977
+ R + O(α′2) .
978
+ To calculate the coefficients of the R2, R2
979
+ µν, and R2
980
+ µαβν terms we note that
981
+ aR2 +bR2
982
+ µν +cR2
983
+ µαβν = (a+ 1
984
+ 2b+c)∂µ∂νhµν∂α∂βhαβ +(a+ 1
985
+ 4b)∂2hµ
986
+ µ∂2hα
987
+ α +... (3.16)
988
+ On the other hand, the coefficient a is in fact known (it is related to the coefficient of
989
+ the R term), since R and R2 effectively arise from the expansion of the exponential eR.
990
+ Thus
991
+ a = 1
992
+ 8 ln2 ε + O(ln ε) .
993
+ (3.17)
994
+ We note that like the finite part of the c0 in (3.15), the coefficients of ln ε terms in a
995
+ and b are not unique, i.e. depend on a regularization scheme.3 Finding the coefficient
996
+ λ1 = a + 1
997
+ 2b + c and λ2 = a + 1
998
+ 4b in (3.16) and using (3.17), we can calculate b and c.
999
+ Expanding (3.14) to order ∂4h, we obtain
1000
+ λ1 = 32
1001
+
1002
+ d2zd2z′∂zD∂¯zD∂z′D∂¯z′D ,
1003
+ λ2 = 4
1004
+
1005
+ d2zd2z′∂z∂¯zD
1006
+ ��
1007
+ z=z′∂z′∂¯z′D
1008
+ ��
1009
+ z=z′
1010
+
1011
+ D2(z, z) + D2(z, z′)) .
1012
+ (3.18)
1013
+ From this it follows that
1014
+ λ1 = 1
1015
+ 4 ln ε + O(1) ,
1016
+ λ2 = 1
1017
+ 16 ln2 ε + O(ln ε) ,
1018
+ b = −1
1019
+ 4 ln2 ε + O(ln ε) ,
1020
+ c = 1
1021
+ 4 ln ε + O(1) .
1022
+ (3.19)
1023
+ Thus, the expression for Z has the form
1024
+ Z = Z1
1025
+
1026
+ [dτ]
1027
+
1028
+ dDy
1029
+
1030
+ G
1031
+
1032
+ 1 + 1
1033
+ 2α′ ln εR
1034
+ + 1
1035
+ 8α′2 ln2 εR2 − 1
1036
+ 4α′2 ln2 εR2
1037
+ µν + 1
1038
+ 4α′2 ln εR2
1039
+ µαβν + . . .
1040
+
1041
+ . (3.20)
1042
+ The coefficient of R2
1043
+ µαβν is consistent with the renormalizability of Z (cf. (2.44) with
1044
+ χ = 0 and (2.42)), as it is easily seen from the well known expression [12] for the
1045
+ two-loop βG-function
1046
+ 0 =
1047
+ dZ
1048
+ d ln ε =
1049
+ ∂Z
1050
+ ∂ ln ε − βG
1051
+ µν
1052
+ ∂Z
1053
+ ∂Gµν
1054
+ ,
1055
+ βµν
1056
+ G = α′Rµν + 1
1057
+ 2α′2RµαβγRν
1058
+ αβγ + O(α′3) .
1059
+ Note that, in fact, we have effectively calculated the local βG-function of the σ-model
1060
+ on a torus. It coincides with that on a sphere, as expected. The direct calculation
1061
+ of βG on a torus was also performed in [16]. Compared to [16] where cumbersome
1062
+ expressions arose and cutoff regularization of the sums was applied, our calculation
1063
+ using Z is rather simple. We should stress that the possibility of deriving βG from Z
1064
+ 3Note that the ambiguity of the ln ε terms in a and b does not affect the coefficient c as a+ 1
1065
+ 2b ∼ O(1).
1066
+ 12
1067
+
1068
+ is a distinctive feature of the torus geometry: there is an R2 term in the dilaton βφ as
1069
+ well, but for the torus the e−χφ factor is trivial as χ = 0.
1070
+ The above method of calculating Z illustrated on the example of the torus which
1071
+ is based on the use of the trivial measure for xµ, an expansion in hµν = Gµν − δµν, and
1072
+ a special prescription for subtracting power divergences that ensures the covariance of
1073
+ Z, is closest in spirit to the usual method of calculating string scattering amplitudes
1074
+ as correlators of vertex operators.
1075
+ This approach can be generalized to surfaces of higher genus (where, to ensure
1076
+ invariance it is necessary to discard δ(2)(z, z) altogether, i.e. to discard the ε−2 diver-
1077
+ gence and the finite part 1
1078
+ 6χ term in (2.7)). Integrating by parts in (3.18), one can
1079
+ prove that the prescription δ(2)(z, z) = 0 is sufficient to verify the universality of the
1080
+ coefficients of the ln2 ε terms in a and b in (3.16). Note that though the value of the
1081
+ coefficient of ln ε in λ2 in the general case depends on a choice of regularization, the
1082
+ value of c(4 − χ) ln ε is the same in all regularizations that preserve the covariance (for
1083
+ example, in dimensional and in δ(2)(z, z) = 0 regularizations).
1084
+ 4
1085
+ Partition function of the N = 1 supersymmetric
1086
+ σ-model
1087
+ Let us generalize the results of Sec.2 to the case of the supersymmetric 2d σ-model
1088
+ related to fermionic (NSR) string in curved background. The important difference from
1089
+ the bosonic case is the automatic cancellation of power UV divergences.
1090
+ The action of a fermionic string in flat space is given by (see, e.g., [19])
1091
+ I =
1092
+ 1
1093
+ 2πα′
1094
+
1095
+ d4z E D−ˆxµD+ˆxµ ,
1096
+ (4.1)
1097
+ where d4zE = d2σdθd¯θ sdetEA
1098
+ M, ˆxµ is a scalar superfield, D− and D+ are superderiva-
1099
+ tives, and (σ1, σ2, θ, ¯θ) are the coordinates on the supersurface.
1100
+ For the action of the corresponding supersymmetric σ-model we have
1101
+ I =
1102
+ 1
1103
+ 2πα′
1104
+
1105
+ d4z E D−ˆxµD+ˆxν Gµν(ˆx) + i
1106
+
1107
+
1108
+ d4z E R+− φ(ˆx) .
1109
+ (4.2)
1110
+ Here R+− are the components of the two-dimensional curvature tensor, and Gµν and φ
1111
+ are the graviton and dilaton fields. Note that the Euler characteristic can be written
1112
+ also as
1113
+ χ = i
1114
+
1115
+
1116
+ d4z E R+− .
1117
+ (4.3)
1118
+ The component expansion of ˆxµ is
1119
+ ˆxµ = xµ + θrψµ
1120
+ r + iθ¯θF µ .
1121
+ (4.4)
1122
+ We shall use the antiperiodic boundary conditions for the field ψ
1123
+ ψ(ϕ + 2π) = −ψ(ϕ) .
1124
+ (4.5)
1125
+ Here ϕ is the polar angle in the complex plane or angle of a cylinder. In this case the
1126
+ Dirac operator does not have zero modes (but the scalar Laplace operator has). On
1127
+ 13
1128
+
1129
+ surfaces of higher genera this choice of boundary conditions corresponds to an even
1130
+ spin structure for ψ
1131
+ ψ(z + ai) = −ψ(z) ,
1132
+ ψ(z + bi) = −ψ(z) ,
1133
+ (4.6)
1134
+ where i = 1, . . . , g, and ai and bi are the basis cycles on the Riemann surface.
1135
+ We shall use the supersymmetric generalization of the heat kernel method used in
1136
+ Sec.2. The expressions (2.7) and (2.8) become
1137
+ ˆN′ =
1138
+
1139
+ d4z E ˆKε − 1 = 1
1140
+ 2χ − 1 + O(ε2) ,
1141
+ (4.7)
1142
+ ˆKε = Kε(σ, σ)δ2(θ, θ) = i
1143
+ 4πR+− + O(ε2) .
1144
+ (4.8)
1145
+ Note that −1 in (4.7) corresponds to the bosonic zero mode yµ = const. As already
1146
+ mentioned, in contrast to the bosonic case, here the ε−2 divergence is absent which is a
1147
+ manifestation of the two-dimensional supersymmetry which also forbids the standard
1148
+ tachyon term in the σ-model action (cf. (2.2)).
1149
+ To calculate Z we separate in ˆx the zero mode, ˆx = y + ˆη, Dˆx = dDy Dˆη. The
1150
+ terms in the action (4.2) that contribute in the one-loop approximation have the form
1151
+ I =
1152
+ 1
1153
+ 2πα′
1154
+
1155
+ d4z E D−ˆηµD+ˆηνGµν(y) + i
1156
+
1157
+
1158
+ d4z E R+−φ(y) .
1159
+ (4.9)
1160
+ Analogously to (2.9), we obtain
1161
+ ˆZ0 = ˆ
1162
+ Z0 exp
1163
+ ��
1164
+ 1 − 1
1165
+ 2χ + O(ε2)
1166
+
1167
+ ln G
1168
+
1169
+ ,
1170
+ ˆ
1171
+ Z0 = exp(−1
1172
+ 2D ln det ′ ˆ∆) .
1173
+ (4.10)
1174
+ As in the bosonic case, the factor (
1175
+
1176
+ G)χ can be absorbed into a redefinition of the
1177
+ dilaton field
1178
+ φ′ = φ + a ln
1179
+
1180
+ G(ˆx) .
1181
+ (4.11)
1182
+ The value of a is fixed by the condition that ˆZ should be covariant. As a result, a = −1
1183
+ 2.
1184
+ To find ˆZ in the two-loop approximation, we choose the integration measure as (cf.
1185
+ (2.35))
1186
+ Dˆx = J dDy Dˆξ ,
1187
+ (4.12)
1188
+ where J is determined from the normalization condition
1189
+
1190
+ Dδˆxe−||δˆx||2 = 1 ,
1191
+ ||δˆx||2 =
1192
+
1193
+ d4z E δˆxδˆxν Gµν .
1194
+ (4.13)
1195
+ Performing the calculation analogous to the one in the bosonic case and using the
1196
+ normal coordinates ˆξ, we get
1197
+ ˆZ = ˆ
1198
+ Z0
1199
+
1200
+ dDy
1201
+
1202
+ G e−χφ �
1203
+ exp
1204
+ � �
1205
+ d4z E 1
1206
+ 3πα′RµανβDγ ˆξµDγ ˆξν ˆξαˆξβ
1207
+ −πα′�1
1208
+ 3
1209
+ ˆK′
1210
+ ε(z, z) + 1
1211
+ V
1212
+
1213
+ Rαβ ˆξαˆξβ + O(α′2)
1214
+ ��
1215
+ ,
1216
+ (4.14)
1217
+ 14
1218
+
1219
+ where ⟨...⟩ is computed with the free gaussian action for the normal coordinate fields
1220
+ ˆξα. As in the bosonic case, we have redefined ˆξ → (2πα′)1/2ˆξ, taken the one-loop
1221
+ contribution into account, and have chosen φ=const. As a consequence,
1222
+ ˆZ = ˆ
1223
+ Z0
1224
+
1225
+ dDy
1226
+
1227
+ G e−χφ �
1228
+ 1 − πα′ ˆD(z, z)R + O(α′2)
1229
+
1230
+ .
1231
+ (4.15)
1232
+ Using the regularized expression for ˆD(z, z) (see, e.g., [19])
1233
+ ˆD(z, z) = − 1
1234
+ 2π ln ε + O(1) ,
1235
+ (4.14) becomes
1236
+ ˆZ = ˆ
1237
+ Z0
1238
+
1239
+ dDy
1240
+
1241
+ G e−χφ �
1242
+ 1 + 1
1243
+ 2α′�
1244
+ ln ε + O(1)
1245
+
1246
+ R + O(α′2)
1247
+
1248
+ ,
1249
+ (4.16)
1250
+ which (at this leading oder in α′) coincides with the bosonic string expression in (2.20).
1251
+ For the case of the sphere with a nontrivial dilaton field we get
1252
+ ˆZ = ˆ
1253
+ Z0
1254
+
1255
+ dDy
1256
+
1257
+ G e−2φ �
1258
+ 1 + 1
1259
+ 2α′�
1260
+ ln ε + O(1)
1261
+ ��
1262
+ R + 2GµνDµDνφ
1263
+
1264
+ + O(α′2)
1265
+
1266
+ . (4.17)
1267
+ Applying the
1268
+
1269
+ ∂ ln ε prescription for “dividing” over the volume of the super-M¨obius
1270
+ group we obtain
1271
+ ∂ ˆZ
1272
+ ∂ ln ε = 1
1273
+ 2α′ ˆ
1274
+ Z0
1275
+
1276
+ dDy
1277
+
1278
+ G e−2φ �
1279
+ R + 2D2φ + O(α′)
1280
+
1281
+ ,
1282
+ (4.18)
1283
+ that agrees with the expression for the superstring effective action (same as bosonic
1284
+ action to this order in (3.7)) found using the S-matrix approach.
1285
+ 15
1286
+
1287
+ References
1288
+ [1] C. Lovelace, “Strings in Curved Space,” Phys. Lett. B 135 (1984), 75-77; “Stability
1289
+ of String Vacua. 1. A New Picture of the Renormalization Group,” Nucl. Phys. B 273
1290
+ (1986), 413-467.
1291
+ E. S. Fradkin and A. A. Tseytlin, “Effective Field Theory from Quantized Strings,”
1292
+ Phys. Lett. B 158 (1985), 316-322. Nucl. Phys. B 261 (1985), 1-27 [erratum: Nucl.
1293
+ Phys. B 269 (1986), 745-745].
1294
+ C. G. Callan, Jr., E. J. Martinec, M. J. Perry and D. Friedan, “Strings in Background
1295
+ Fields,” Nucl. Phys. B 262 (1985), 593-609.
1296
+ A. Sen, “The Heterotic String in Arbitrary Background Field,” Phys. Rev. D 32 (1985),
1297
+ 2102
1298
+ [2] A. A. Tseytlin, “Sigma model approach to string theory,” Int. J. Mod. Phys. A 4 (1989),
1299
+ 1257
1300
+ [3] J. Liu and J. Polchinski, “Renormalization of the Mobius Volume,” Phys. Lett. B 203
1301
+ (1988), 39-43
1302
+ [4] A. A. Tseytlin, “Mobius Infinity Subtraction and Effective Action in σ Model Approach
1303
+ to Closed String Theory,” Phys. Lett. B 208 (1988), 221-227
1304
+ [5] A. A. Tseytlin, “Renormalization of Mobius Infinities and Partition Function Represen-
1305
+ tation for String Theory Effective Action,” Phys. Lett. B 202 (1988), 81-88.
1306
+ O. D. Andreev and A. A. Tseytlin, “Generating Functional for Scattering Amplitudes
1307
+ and Effective Action in the Open Superstring Theory,” Phys. Lett. B 207 (1988), 157-
1308
+ 163
1309
+ [6] J. Scherk and J. H. Schwarz, “Dual Models for Nonhadrons,” Nucl. Phys. B 81 (1974),
1310
+ 118-144.
1311
+ T. Yoneya, “Connection of Dual Models to Electrodynamics and Gravidynamics,” Prog.
1312
+ Theor. Phys. 51 (1974), 1907-1920
1313
+ [7] S. Mandelstam, in Unified String Theories, Proceedings of the Santa Barbara Workshop,
1314
+ edited by M. Green and D. Gross (World Scientific, Singapore, 1986), p. 526
1315
+ P. Di Vecchia, M. Frau, A. Lerda and S. Sciuto, “A Simple Expression for the Multiloop
1316
+ Amplitude in the Bosonic String,” Phys. Lett. B 199 (1987), 49-56; “N String Vertex
1317
+ and Loop Calculation in the Bosonic String,” Nucl. Phys. B 298 (1988), 527
1318
+ [8] V. G. Knizhnik, “Analytic Fields on Riemann Surfaces. 2,” Commun. Math. Phys. 112
1319
+ (1987), 567-590
1320
+ [9] V. Alessandrini and D. Amati, “Properties of dual multiloop amplitudes,” Nuovo Cim.
1321
+ A 4 (1971), 793-844.
1322
+ A. A. Belavin and V. G. Knizhnik, “Complex Geometry and the Theory of Quantum
1323
+ Strings,” Sov. Phys. JETP 64 (1986), 214-228.
1324
+ E. Gava, R. Jengo, T. Jayaraman and R. Ramachandran, “Multiloop Divergences in the
1325
+ Closed Bosonic String Theory,” Phys. Lett. B 168 (1986), 207-211
1326
+ [10] W. Fischler and L. Susskind, “Dilaton Tadpoles, String Condensates and Scale Invari-
1327
+ ance,” Phys. Lett. B 171 (1986), 383-389; “Dilaton Tadpoles, String Condensates and
1328
+ Scale Invariance. 2.,” Phys. Lett. B 173 (1986), 262-264.
1329
+ 16
1330
+
1331
+ H. Ooguri and N. Sakai, “String Loop Corrections From Fusion of Handles and Ver-
1332
+ tex Operators,” Phys. Lett. B 197 (1987), 109-114; “String Multiloop Corrections to
1333
+ Equations of Motion,” Nucl. Phys. B 312 (1989), 435
1334
+ [11] A. A. Tseytlin, “Partition Function of String σ Model on a Compact Two Space,” Phys.
1335
+ Lett. B 223 (1989), 165-174
1336
+ [12] D. Friedan, “Nonlinear Models in Two Epsilon Dimensions,” Phys. Rev. Lett. 45 (1980),
1337
+ 1057; “Nonlinear Models in Two + Epsilon Dimensions,” Annals Phys. 163 (1985), 318
1338
+ [13] B.S. DeWitt, in General Relativity: An Einstein Centenary Survey, edited by S. Hawking
1339
+ and S. Israel (Cambridge University Press, 1979).
1340
+ [14] L. Alvarez-Gaume, D. Z. Freedman and S. Mukhi, “The Background Field Method and
1341
+ the Ultraviolet Structure of the Supersymmetric Nonlinear Sigma Model,” Annals Phys.
1342
+ 134 (1981), 85
1343
+ [15] A. A. Tseytlin, “Conditions of Weyl Invariance of Two-dimensional σ Model From Equa-
1344
+ tions of Stationarity of ’Central Charge’ Action,” Phys. Lett. B 194 (1987), 63; Phys.
1345
+ Lett. B 178 (1986), 34.
1346
+ H. Osborn, “Renormalization and Composite Operators in Nonlinear σ Models,” Nucl.
1347
+ Phys. B 294 (1987), 595-620
1348
+ [16] I. G. Koh and H. J. Shin, “World sheet topology and target manifold in string theory,”
1349
+ Phys. Rev. D 36 (1987), 1773
1350
+ [17] J. Polchinski, “Evaluation of the One Loop String Path Integral,” Commun. Math. Phys.
1351
+ 104 (1986), 37
1352
+ [18] D. Mumford, Tata Lectures on Theta, Vols.1, 2 (Birkh¨auser, Basel, 1983).
1353
+ [19] E. D’Hoker and D. H. Phong, “The Geometry of String Perturbation Theory,” Rev.
1354
+ Mod. Phys. 60 (1988), 917
1355
+ 17
1356
+
-tE1T4oBgHgl3EQfCwIW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
.gitattributes CHANGED
@@ -258,3 +258,5 @@ KdAyT4oBgHgl3EQff_ia/content/2301.00351v1.pdf filter=lfs diff=lfs merge=lfs -tex
258
  k9FIT4oBgHgl3EQfriuF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
259
  hNE4T4oBgHgl3EQfrQ2w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
260
  QNAzT4oBgHgl3EQfIvuz/content/2301.01068v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
258
  k9FIT4oBgHgl3EQfriuF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
259
  hNE4T4oBgHgl3EQfrQ2w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
260
  QNAzT4oBgHgl3EQfIvuz/content/2301.01068v1.pdf filter=lfs diff=lfs merge=lfs -text
261
+ ptAzT4oBgHgl3EQf5v4s/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
262
+ 1tAzT4oBgHgl3EQf8_4M/content/2301.01911v1.pdf filter=lfs diff=lfs merge=lfs -text
1tAzT4oBgHgl3EQf8_4M/content/2301.01911v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35e941e24a3835698670a18e4793195f914cfb58826b28e6a5732faf46610fac
3
+ size 1353780
2NFAT4oBgHgl3EQfkh06/content/tmp_files/2301.08611v1.pdf.txt ADDED
@@ -0,0 +1,265 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Verification of crossbar-based lattice through
2
+ modeling technique
3
+ Rajesh Kumar Datta
4
+ Dept. of Electrical and Computer Engineering
5
+ University of Texas at Dallas
6
+ Dallas,Texas, USA
7
8
+ Abstract—The use of Nano crossbar-based switching lattice
9
+ implementation of Boolean functions has been proposed as an
10
+ alternative to traditional CMOS-based implementations [1] in
11
+ digital circuits. As Moore’s law is expected to come to an end soon
12
+ [2], the use of crossbar-based switching lattice implementation
13
+ may be a solution to meet the demands of future electronic
14
+ designs. In recent years, various methods and tools have been
15
+ proposed for implementing boolean functions with crossbar struc-
16
+ tures. In this work, a method for verifying crossbar-based lattice
17
+ has been proposed and implemented. This kind of verification
18
+ will be necessary for any design that utilizes this crossbar-based
19
+ implementation of boolean logic.
20
+ Index Terms—Cross-bar-based lattice, lattice modeling.
21
+ I. INTRODUCTION
22
+ Four-terminal switching networks, also known as crossbar-
23
+ based circuits, are a potential alternative to traditional CMOS-
24
+ based circuits in the semiconductor industry as the latter
25
+ face limits in terms of further miniaturization. Four-terminal
26
+ switching networks have four terminals per switch, rather than
27
+ the two in traditional CMOS switches, and can be used to
28
+ implement the same Boolean functions using fewer switches.
29
+ This technology has the potential to address the end of Moore’s
30
+ Law, which refers to the trend of decreasing CMOS transistor
31
+ dimensions [1] [3]. Two-terminal switches can be used to
32
+ implement Boolean functions through switching networks that
33
+ are arranged in series or parallel configurations. Each switch
34
+ is controlled by a Boolean literal, with a value of ‘1’ turning
35
+ the switch ON and ‘0’ turning it OFF. The computation of the
36
+ Boolean function is performed by taking the product of the
37
+ literals in each valid path through the switching network. In
38
+ contrast, four-terminal switches have four terminals arranged
39
+ in a rectangular lattice and can be either mutually ON or
40
+ mutually OFF. These switches can also be controlled by
41
+ Boolean literals, with a value of ‘1’ turning the switch ON
42
+ and ‘0’ turning it OFF. Four-terminal switches offer more
43
+ flexibility in terms of connections, as they can be made at the
44
+ four sides of the rectangular switch. These networks, known as
45
+ switching lattices, can be used to implement the same Boolean
46
+ functions as two-terminal switches. Different methods ( [4] [5]
47
+ [6] ) show the implementation of the boolean function with
48
+ four terminal switching lattices. In this work, a method has
49
+ been presented for verifying the accuracy of crossbar-based
50
+ (four-terminal) implementations of a given function. This is
51
+ ON
52
+ a
53
+ c
54
+ b
55
+ d
56
+ TOP
57
+ BOTTOM
58
+ OFF
59
+ ON
60
+ OFF
61
+ Function= ab + cd
62
+ a
63
+ c
64
+ b
65
+ d
66
+ TOP
67
+ BOTTOM
68
+ Switching Lattice
69
+ Cross-bar
70
+ based switch
71
+ Two-terminal
72
+ switch
73
+ Fig. 1. Two-terminal switches have two connection points and can be either
74
+ on or off, depending on whether the terminals are closed or open, respectively.
75
+ In contrast, crossbar switches have four terminals and can be used to form a
76
+ switching lattice, which is a network of these switches. The valid connections
77
+ from the top to bottom plates of the switching lattice can be used to implement
78
+ the PRODUCT terms of any function.
79
+ accomplished by modeling the characteristics of the lattice
80
+ and comparing the output with the expected result. By doing
81
+ so, it is possible to determine whether the implementation is
82
+ correct or not.
83
+ II. FOUR TERMINAL-BASED NETWORK
84
+ The idea of using two-dimensional arrays of four-terminal
85
+ switches is not new. Akers introduced the four-terminal switch
86
+ model in a seminal paper in 1972 [7]. In recent years, the
87
+ four-terminal switch model has gained renewed attention due
88
+ to advances in technology [8] [9]. Boolean functions can be
89
+ implemented using crossbar-type switches [10], [11]. Figure 1
90
+ and 2 summarize the basic concept.
91
+ III. VERIFICATION PROCESS THROUGH MODELING OF
92
+ LATTICE NETWORK
93
+ Given a lattice network, the position of the Boolean liter-
94
+ als can be identified. However, as the size of the network
95
+ increases, it becomes more difficult to verify the function
96
+ implemented by the network due to the rapid increase in
97
+ the number of Sum-of-Products (SOP) terms. To simplify the
98
+ process of verifying the Boolean function implemented by a
99
+ given lattice network, we can create a model of the network
100
+ and find the SOPs implemented by it. This can make the
101
+ verification process easier.
102
+ Formation of a Lattice
103
+ arXiv:2301.08611v1 [cs.ET] 20 Jan 2023
104
+
105
+ d
106
+ b
107
+ c
108
+ f
109
+ e
110
+ a
111
+ b
112
+ f
113
+ a
114
+ b
115
+ c
116
+ a
117
+ d
118
+ b
119
+ e
120
+ TOP
121
+ c
122
+ f
123
+ BOTTOM
124
+ 3 by 3 network
125
+ Implemented function:
126
+ g h i + g h e f+ g h e b c +d e f
127
+ +d e b c+d e h i +a b c + a b e f
128
+ +a b e h i
129
+ 3 by 2 network
130
+ a
131
+ d
132
+ b
133
+ e
134
+ TOP
135
+ f
136
+ BOTTOM
137
+ c
138
+ g
139
+ h
140
+ i
141
+ Fig. 2.
142
+ (Left side) The implementation of the function X = abc+ abef+
143
+ debc+ def can be performed using either crossbar-based or two-terminal-based
144
+ circuits. The crossbar-based implementation requires 6 switches, while the
145
+ two-terminal-based implementation requires 11 switches [12]. Lines from Top
146
+ to Bottom shows the path which implements product terms of the function.
147
+ In larger functions, the size of the network can be significantly reduced by
148
+ using crossbar-based circuits. (Right side) A 3 by 3 switching lattice is also
149
+ shown in the figure.
150
+ In a lattice network with 3 rows and 3 columns (as shown
151
+ in Figure 2), there are a total of 9 four-terminal switches.
152
+ The top part of the lattice is referred to as ‘TOP’ and the
153
+ bottom part is referred to as ‘BOTTOM’. Every path that
154
+ connects the TOP to the BOTTOM is considered a Product
155
+ term of the Boolean function being implemented by the lattice
156
+ network. The lattice network can be represented as a graph,
157
+ with each switch being a node. To find the paths through the
158
+ lattice network, a Depth-first search (DFS) algorithm is used.
159
+ However, not all of the paths found by the DFS algorithm are
160
+ valid. Nonvalid paths, called ‘superset paths’, must be removed
161
+ from the design in order to accurately represent the Boolean
162
+ function being implemented.
163
+ Path formation
164
+ To generate paths in a 3 by 3 lattice, we begin by checking
165
+ the adjacent nodes (or ‘children’) of the source four-terminal
166
+ switch. Each four-terminal switch can be connected to a
167
+ maximum of four other switches, so each switch can have
168
+ up to four children. In the 3 by 3 lattice shown in Figure
169
+ 2, the source node has three children: ‘a’, ‘d’, and ‘g’. We
170
+ then choose one of these children, such as ‘a’, and check its
171
+ children. ‘a’ has one child, ‘b’, which has two children: ‘e’
172
+ and ‘c’. If we choose ‘c’, the path reaches the bottom of the
173
+ lattice and the product term becomes ‘a b c’. If we choose ‘e’
174
+ instead, it has two children: ‘h’ and ‘f’. If we choose ‘f’, the
175
+ path reaches the bottom and the product term becomes ‘a b
176
+ e f’. This process is repeated recursively until all nodes and
177
+ their children have been examined. Nodes that have already
178
+ been marked as used in a previous path are not checked again.
179
+ Valid path selection To determine if a generated path is a
180
+ superset of another path, we have two options: we can either
181
+ generate all the paths first and then check for supersets, or we
182
+ can check the path as it is being generated. The latter option
183
+ is faster, especially for large functions with many paths. When
184
+ adding a new node to the path, we can check if it is a child of
185
+ any previous node in the path, except for the one that brought
186
+ us to the new node. This avoids the need to generate all the
187
+ paths and then remove the supersets.
188
+ Repetition of literals
189
+ To generate the maximum number of paths in a lattice
190
+ structure with repeated literals, we can build a basic model
191
+ by treating all the literals as distinct and then replacing the
192
+ basic literals with the original, repeated literals. We can then
193
+ remove any superset paths created by the repetition of literals
194
+ to get the final set of paths. To design a model that behaves
195
+ like a cross-bar or four-terminal lattice, we need to consider
196
+ all these relevant features. Once the model is designed, we
197
+ can obtain the boolean function it implements and verify
198
+ that it is the same as the target function that the lattice
199
+ structure was intended to implement. This will ensure that
200
+ the model accurately represents the intended behavior of the
201
+ lattice structure.
202
+ IV. IMPLEMENTATION
203
+ To implement the design, the approach described in earlier
204
+ sections was followed. The input for this design was the
205
+ positions of the variables (literals) in the lattice network. A
206
+ model of the lattice was then created and used to retrieve
207
+ the implemented function, following the design rules. As an
208
+ example, a 3 by-3 lattice network and its resulting function
209
+ were provided in figure 2. By following the steps outlined in
210
+ previous sections, it is possible to confirm the accuracy of the
211
+ implemented function. It was implemented in ‘C’ language
212
+ and the process was very accurate and faster to verify any
213
+ kind of cross-bar-based implementation of any function.
214
+ V. CONCLUSION
215
+ In this study, we presented a method for verifying any
216
+ switching lattice network by modeling it. This approach can
217
+ be used to verify the implementation of any function with a
218
+ cross-bar lattice network.
219
+ REFERENCES
220
+ [1] Mustafa Altun and Marc D Riedel. Logic synthesis for switching lattices.
221
+ IEEE Transactions on Computers, 61(11):1588–1600, 2012.
222
+ [2] Manek Dubash. Moore’s law is dead, says gordon moore. Techworld.
223
+ com, 13, 2005.
224
+ [3] Serzat Safaltin, Oguz Gencer, M Ceylan Morgul, Levent Aksoy, Seba-
225
+ hattin Gurmen, Csaba Andras Moritz, and Mustafa Altun. Realization
226
+ of four-terminal switching lattices: Technology development and circuit
227
+ modeling. In 2019 Design, Automation & Test in Europe Conference &
228
+ Exhibition (DATE), pages 504–509. IEEE, 2019.
229
+ [4] Levent Aksoy and Mustafa Altun. Novel methods for efficient realization
230
+ of logic functions using switching lattices.
231
+ IEEE Transactions on
232
+ Computers, 69(3):427–440, 2020.
233
+ [5] M Ceylan Morg¨ul and Mustafa Altun. Optimal and heuristic algorithms
234
+ to synthesize lattices of four-terminal switches. Integration, 64:60–70,
235
+ 2019.
236
+ [6] Muhammed Ceylan Morgul and Mustafa Altun.
237
+ Synthesis and opti-
238
+ mization of switching nanoarrays.
239
+ In 2015 IEEE 18th International
240
+ Symposium on Design and Diagnostics of Electronic Circuits & Systems,
241
+ pages 161–164, 2015.
242
+ [7] Sheldon B Akers. A rectangular logic array. In 12th Annual Symposium
243
+ on Switching and Automata Theory (swat 1971), pages 79–90. IEEE,
244
+ 1971.
245
+ [8] Malgorzata Chrzanowska-Jeske, Yang Xu, and Marek Perkowski. Logic
246
+ synthesis for a regular layout. VLSI Design, 10(1):35–55, 1999.
247
+ [9] Malgorzata Chrzanowska-Jeske and Alan Mishchenko.
248
+ Synthesis for
249
+ regularity using decision diagrams [logic ic synthesis and layout]. In
250
+ 2005 IEEE International Symposium on Circuits and Systems, pages
251
+ 4721–4724. IEEE, 2005.
252
+
253
+ [10] Matthew M Ziegler and Mircea R Stan.
254
+ Cmos/nano co-design for
255
+ crossbar-based molecular electronic systems.
256
+ IEEE Transactions on
257
+ Nanotechnology, 2(4):217–230, 2003.
258
+ [11] Mary M Eshaghian-Wilner, Amar H Flood, Alex Khitun, J Fraser
259
+ Stoddart, and Kang Wang.
260
+ Molecular and nanoscale computing and
261
+ technology. In Handbook of nature-inspired and innovative computing,
262
+ pages 477–509. Springer, 2006.
263
+ [12] Rajesh Kumar Datta. Implementing boolean functions with switching
264
+ lattice networks, 2022.
265
+
2NFAT4oBgHgl3EQfkh06/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf,len=125
2
+ page_content='Verification of crossbar-based lattice through modeling technique Rajesh Kumar Datta Dept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
3
+ page_content=' of Electrical and Computer Engineering University of Texas at Dallas Dallas,Texas, USA rajesh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
4
+ page_content='datta@utdallas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
5
+ page_content='edu Abstract—The use of Nano crossbar-based switching lattice implementation of Boolean functions has been proposed as an alternative to traditional CMOS-based implementations [1] in digital circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
6
+ page_content=' As Moore’s law is expected to come to an end soon [2], the use of crossbar-based switching lattice implementation may be a solution to meet the demands of future electronic designs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
7
+ page_content=' In recent years, various methods and tools have been proposed for implementing boolean functions with crossbar struc- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
8
+ page_content=' In this work, a method for verifying crossbar-based lattice has been proposed and implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
9
+ page_content=' This kind of verification will be necessary for any design that utilizes this crossbar-based implementation of boolean logic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
10
+ page_content=' Index Terms—Cross-bar-based lattice, lattice modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
11
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
12
+ page_content=' INTRODUCTION Four-terminal switching networks, also known as crossbar- based circuits, are a potential alternative to traditional CMOS- based circuits in the semiconductor industry as the latter face limits in terms of further miniaturization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
13
+ page_content=' Four-terminal switching networks have four terminals per switch, rather than the two in traditional CMOS switches, and can be used to implement the same Boolean functions using fewer switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
14
+ page_content=' This technology has the potential to address the end of Moore’s Law, which refers to the trend of decreasing CMOS transistor dimensions [1] [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
15
+ page_content=' Two-terminal switches can be used to implement Boolean functions through switching networks that are arranged in series or parallel configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
16
+ page_content=' Each switch is controlled by a Boolean literal, with a value of ‘1’ turning the switch ON and ‘0’ turning it OFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
17
+ page_content=' The computation of the Boolean function is performed by taking the product of the literals in each valid path through the switching network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
18
+ page_content=' In contrast, four-terminal switches have four terminals arranged in a rectangular lattice and can be either mutually ON or mutually OFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
19
+ page_content=' These switches can also be controlled by Boolean literals, with a value of ‘1’ turning the switch ON and ‘0’ turning it OFF.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
20
+ page_content=' Four-terminal switches offer more flexibility in terms of connections, as they can be made at the four sides of the rectangular switch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
21
+ page_content=' These networks, known as switching lattices, can be used to implement the same Boolean functions as two-terminal switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
22
+ page_content=' Different methods ( [4] [5] [6] ) show the implementation of the boolean function with four terminal switching lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
23
+ page_content=' In this work, a method has been presented for verifying the accuracy of crossbar-based (four-terminal) implementations of a given function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
24
+ page_content=' This is ON a c b d TOP BOTTOM OFF ON OFF Function= ab + cd a c b d TOP BOTTOM Switching Lattice Cross-bar based switch Two-terminal switch Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
25
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
26
+ page_content=' Two-terminal switches have two connection points and can be either on or off, depending on whether the terminals are closed or open, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
27
+ page_content=' In contrast, crossbar switches have four terminals and can be used to form a switching lattice, which is a network of these switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
28
+ page_content=' The valid connections from the top to bottom plates of the switching lattice can be used to implement the PRODUCT terms of any function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
29
+ page_content=' accomplished by modeling the characteristics of the lattice and comparing the output with the expected result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
30
+ page_content=' By doing so, it is possible to determine whether the implementation is correct or not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
31
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
32
+ page_content=' FOUR TERMINAL-BASED NETWORK The idea of using two-dimensional arrays of four-terminal switches is not new.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
33
+ page_content=' Akers introduced the four-terminal switch model in a seminal paper in 1972 [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
34
+ page_content=' In recent years, the four-terminal switch model has gained renewed attention due to advances in technology [8] [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
35
+ page_content=' Boolean functions can be implemented using crossbar-type switches [10], [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
36
+ page_content=' Figure 1 and 2 summarize the basic concept.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
37
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
38
+ page_content=' VERIFICATION PROCESS THROUGH MODELING OF LATTICE NETWORK Given a lattice network, the position of the Boolean liter- als can be identified.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
39
+ page_content=' However, as the size of the network increases, it becomes more difficult to verify the function implemented by the network due to the rapid increase in the number of Sum-of-Products (SOP) terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
40
+ page_content=' To simplify the process of verifying the Boolean function implemented by a given lattice network, we can create a model of the network and find the SOPs implemented by it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
41
+ page_content=' This can make the verification process easier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
42
+ page_content=' Formation of a Lattice arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
43
+ page_content='08611v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
44
+ page_content='ET] 20 Jan 2023 d b c f e a b f a b c a d b e TOP c f BOTTOM 3 by 3 network Implemented function: g h i + g h e f+ g h e b c +d e f +d e b c+d e h i +a b c + a b e f +a b e h i 3 by 2 network a d b e TOP f BOTTOM c g h i Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
45
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
46
+ page_content=' (Left side) The implementation of the function X = abc+ abef+ debc+ def can be performed using either crossbar-based or two-terminal-based circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
47
+ page_content=' The crossbar-based implementation requires 6 switches, while the two-terminal-based implementation requires 11 switches [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
48
+ page_content=' Lines from Top to Bottom shows the path which implements product terms of the function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
49
+ page_content=' In larger functions, the size of the network can be significantly reduced by using crossbar-based circuits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
50
+ page_content=' (Right side) A 3 by 3 switching lattice is also shown in the figure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
51
+ page_content=' In a lattice network with 3 rows and 3 columns (as shown in Figure 2), there are a total of 9 four-terminal switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
52
+ page_content=' The top part of the lattice is referred to as ‘TOP’ and the bottom part is referred to as ‘BOTTOM’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
53
+ page_content=' Every path that connects the TOP to the BOTTOM is considered a Product term of the Boolean function being implemented by the lattice network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
54
+ page_content=' The lattice network can be represented as a graph, with each switch being a node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
55
+ page_content=' To find the paths through the lattice network, a Depth-first search (DFS) algorithm is used.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
56
+ page_content=' However, not all of the paths found by the DFS algorithm are valid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
57
+ page_content=' Nonvalid paths, called ‘superset paths’, must be removed from the design in order to accurately represent the Boolean function being implemented.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
58
+ page_content=' Path formation To generate paths in a 3 by 3 lattice, we begin by checking the adjacent nodes (or ‘children’) of the source four-terminal switch.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
59
+ page_content=' Each four-terminal switch can be connected to a maximum of four other switches, so each switch can have up to four children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
60
+ page_content=' In the 3 by 3 lattice shown in Figure 2, the source node has three children: ‘a’, ‘d’, and ‘g’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
61
+ page_content=' We then choose one of these children, such as ‘a’, and check its children.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
62
+ page_content=' ‘a’ has one child, ‘b’, which has two children: ‘e’ and ‘c’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
63
+ page_content=' If we choose ‘c’, the path reaches the bottom of the lattice and the product term becomes ‘a b c’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
64
+ page_content=' If we choose ‘e’ instead, it has two children: ‘h’ and ‘f’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
65
+ page_content=' If we choose ‘f’, the path reaches the bottom and the product term becomes ‘a b e f’.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
66
+ page_content=' This process is repeated recursively until all nodes and their children have been examined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
67
+ page_content=' Nodes that have already been marked as used in a previous path are not checked again.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
68
+ page_content=' Valid path selection To determine if a generated path is a superset of another path, we have two options: we can either generate all the paths first and then check for supersets, or we can check the path as it is being generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
69
+ page_content=' The latter option is faster, especially for large functions with many paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
70
+ page_content=' When adding a new node to the path, we can check if it is a child of any previous node in the path, except for the one that brought us to the new node.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
71
+ page_content=' This avoids the need to generate all the paths and then remove the supersets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
72
+ page_content=' Repetition of literals To generate the maximum number of paths in a lattice structure with repeated literals, we can build a basic model by treating all the literals as distinct and then replacing the basic literals with the original, repeated literals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
73
+ page_content=' We can then remove any superset paths created by the repetition of literals to get the final set of paths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
74
+ page_content=' To design a model that behaves like a cross-bar or four-terminal lattice, we need to consider all these relevant features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
75
+ page_content=' Once the model is designed, we can obtain the boolean function it implements and verify that it is the same as the target function that the lattice structure was intended to implement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
76
+ page_content=' This will ensure that the model accurately represents the intended behavior of the lattice structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
77
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
78
+ page_content=' IMPLEMENTATION To implement the design, the approach described in earlier sections was followed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
79
+ page_content=' The input for this design was the positions of the variables (literals) in the lattice network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
80
+ page_content=' A model of the lattice was then created and used to retrieve the implemented function, following the design rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
81
+ page_content=' As an example, a 3 by-3 lattice network and its resulting function were provided in figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
82
+ page_content=' By following the steps outlined in previous sections, it is possible to confirm the accuracy of the implemented function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
83
+ page_content=' It was implemented in ‘C’ language and the process was very accurate and faster to verify any kind of cross-bar-based implementation of any function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
84
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
85
+ page_content=' CONCLUSION In this study, we presented a method for verifying any switching lattice network by modeling it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
86
+ page_content=' This approach can be used to verify the implementation of any function with a cross-bar lattice network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
87
+ page_content=' REFERENCES [1] Mustafa Altun and Marc D Riedel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
88
+ page_content=' Logic synthesis for switching lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
89
+ page_content=' IEEE Transactions on Computers, 61(11):1588–1600, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
90
+ page_content=' [2] Manek Dubash.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
91
+ page_content=' Moore’s law is dead, says gordon moore.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
92
+ page_content=' Techworld.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
93
+ page_content=' com, 13, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
94
+ page_content=' [3] Serzat Safaltin, Oguz Gencer, M Ceylan Morgul, Levent Aksoy, Seba- hattin Gurmen, Csaba Andras Moritz, and Mustafa Altun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
95
+ page_content=' Realization of four-terminal switching lattices: Technology development and circuit modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
96
+ page_content=' In 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages 504–509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
97
+ page_content=' IEEE, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
98
+ page_content=' [4] Levent Aksoy and Mustafa Altun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
99
+ page_content=' Novel methods for efficient realization of logic functions using switching lattices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
100
+ page_content=' IEEE Transactions on Computers, 69(3):427–440, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
101
+ page_content=' [5] M Ceylan Morg¨ul and Mustafa Altun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
102
+ page_content=' Optimal and heuristic algorithms to synthesize lattices of four-terminal switches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
103
+ page_content=' Integration, 64:60–70, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
104
+ page_content=' [6] Muhammed Ceylan Morgul and Mustafa Altun.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
105
+ page_content=' Synthesis and opti- mization of switching nanoarrays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
106
+ page_content=' In 2015 IEEE 18th International Symposium on Design and Diagnostics of Electronic Circuits & Systems, pages 161–164, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
107
+ page_content=' [7] Sheldon B Akers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
108
+ page_content=' A rectangular logic array.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
109
+ page_content=' In 12th Annual Symposium on Switching and Automata Theory (swat 1971), pages 79–90.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
110
+ page_content=' IEEE, 1971.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
111
+ page_content=' [8] Malgorzata Chrzanowska-Jeske, Yang Xu, and Marek Perkowski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
112
+ page_content=' Logic synthesis for a regular layout.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
113
+ page_content=' VLSI Design, 10(1):35–55, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
114
+ page_content=' [9] Malgorzata Chrzanowska-Jeske and Alan Mishchenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
115
+ page_content=' Synthesis for regularity using decision diagrams [logic ic synthesis and layout].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
116
+ page_content=' In 2005 IEEE International Symposium on Circuits and Systems, pages 4721–4724.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
117
+ page_content=' IEEE, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
118
+ page_content=' [10] Matthew M Ziegler and Mircea R Stan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
119
+ page_content=' Cmos/nano co-design for crossbar-based molecular electronic systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
120
+ page_content=' IEEE Transactions on Nanotechnology, 2(4):217–230, 2003.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
121
+ page_content=' [11] Mary M Eshaghian-Wilner, Amar H Flood, Alex Khitun, J Fraser Stoddart, and Kang Wang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
122
+ page_content=' Molecular and nanoscale computing and technology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
123
+ page_content=' In Handbook of nature-inspired and innovative computing, pages 477–509.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
124
+ page_content=' Springer, 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
125
+ page_content=' [12] Rajesh Kumar Datta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
126
+ page_content=' Implementing boolean functions with switching lattice networks, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/2NFAT4oBgHgl3EQfkh06/content/2301.08611v1.pdf'}
3NE1T4oBgHgl3EQfSQNJ/content/tmp_files/2301.03063v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
3NE1T4oBgHgl3EQfSQNJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6dAzT4oBgHgl3EQff_zo/content/tmp_files/2301.01463v1.pdf.txt ADDED
@@ -0,0 +1,1606 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01463v1 [cond-mat.soft] 4 Jan 2023
2
+ Mechanosensitive bonds induced complex cell motility patterns
3
+ Jen-Yu Lo1, Yuan-Heng Tseng1 and Hsuan-Yi Chen 1,2,3
4
+ 1Department of Physics, National Central University, Jhongli 32001, Taiwan
5
+ 2Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
6
+ 3Physics Division, National Central for Theoretical Sciences, Taipei, 10617, Taiwan
7
+ (Dated: January 5, 2023)
8
+ The one-dimensional crawling movement of a cell is considered in this theoretical study. Our active
9
+ gel model shows that for a cell with weakly mechanosensitive adhesion complexes, as myosin contrac-
10
+ tility increases, a cell starts to move at a constant velocity. As the mechanosensitivity of the adhesion
11
+ complexes increases, a cell can exhibit stick-slip motion. Finally, a cell with highly mechanosensitive
12
+ adhesion complexes exhibits periodic back-and-forth migration. A simplified model which assumes
13
+ that the cell crawling dynamics are controlled by the evolution of the myosin density dipole and
14
+ the asymmetry of adhesion complex distribution captures the motility behaviors of crawling cells
15
+ qualitatively. It suggests that the complex cell crawling behaviors observed in the experiments could
16
+ result from the interplay between the distribution of contractile force and mechanosensitive bonds.
17
+ PACS numbers: 87.17.Jj,87.16.Uv
18
+ Introduction.– The crawling motion of eukaryotic cells
19
+ is ubiquitous in biology as it plays important roles in
20
+ processes such as embryogenesis, wound healing, cancer
21
+ metastasis, and immunology [1].
22
+ Common if not uni-
23
+ versal features of a crawling cell include myosin motors
24
+ distributed mainly behind the center, dominant actin
25
+ polymerization in the leading edge, and higher density
26
+ of adhesion complexes in the leading region [2]. Such po-
27
+ larized molecular distribution enables protrusion in the
28
+ leading edge due to actin polymerization, treadmilling of
29
+ actomyosin cytoskeleton due to contractility, and traction
30
+ force pulling the cell body. These features, therefore, are
31
+ included in many theoretical models for crawling cells [3].
32
+ Interestingly, besides non-motile resting and steady-
33
+ moving behaviors, cells crawling along a one-dimensional
34
+ track either on a substrate or in a three-dimensional en-
35
+ vironment also exhibit moving patterns that are non-
36
+ stationary in time. For example, stick-slip crawling mo-
37
+ tion due to slip between integrin and the extracellular
38
+ matrix in focal adhesions under the contractility provided
39
+ by myosin II has been observed in human osteosarcoma
40
+ cells [4]. Periodic back-and-forth migration has been ob-
41
+ served in crawling zyxin-depleted cells in a collagen ma-
42
+ trix [5] and dendritic cells crawling along microfabricated
43
+ channels [6].
44
+ Several theoretical models have been proposed to ex-
45
+ plain some of these deterministic complex moving pat-
46
+ terns. A model that includes the mechanochemical cou-
47
+ pling of actin promotor dynamics and actin polymer-
48
+ ization to myosin kinetics was shown to produce peri-
49
+ odic back-and-forth migration [7]. On the other hand, a
50
+ purely mechanical model emphasizing the interplay be-
51
+ tween mechanosensitive bonds and membrane tension ex-
52
+ hibited stick-slip motion even for slip bonds [8]. Inter-
53
+ estingly, it has also been shown that stick-slip can re-
54
+ sult from the interplay between mechanosensitive bonds,
55
+ contractility, and a force that tends to restore a cell’s
56
+ preferred length [9].
57
+ In this letter, we present a theoretical study to show
58
+ that the coupling between mechanosensitive adhesion
59
+ complexes and myosin contractility is sufficient to gener-
60
+ ate deterministic complex cell crawling behaviors, includ-
61
+ ing stick-slip, periodic back-and-forth movements, and
62
+ other complex moving patterns. We first construct an
63
+ active gel model with mechanosensitive adhesion com-
64
+ plexes and show that the distribution of myosin motors
65
+ and adhesion complexes computed from our model agree
66
+ with experimentally observed features. By exploring the
67
+ motility behavior with different strengths of contractil-
68
+ ity and mechanosensitivity, we show that this model can
69
+ lead to complex motility behaviors other than rest and
70
+ constant-velocity moving states. Among these complex
71
+ motility patterns, unidirectional stick-slip motion and pe-
72
+ riodic back-and-forth movement are the most common.
73
+ When the adhesion complexes are less mechanosensitive,
74
+ as myosin contractility increases, the cell performs con-
75
+ stant velocity motion. On the other hand, for cells with
76
+ highly mechanosensitive adhesion complexes, as myosin
77
+ contractility becomes sufficiently strong, periodic back-
78
+ and-forth crawling motion can be observed.
79
+ Finally,
80
+ stick-slip and other complex motility patterns can be ob-
81
+ served by increasing the mechanosensitivity of the adhe-
82
+ sion complexes for a cell moving at constant velocity.
83
+ To understand the physical mechanisms that produce
84
+ these complex motility patterns, a simplified model in-
85
+ spired by the active gel model is constructed. The sim-
86
+ plified model assumes that the dynamics of a sufficiently
87
+ slow-moving cell are dominated by the dipole moment
88
+ of myosin density and the difference in the total num-
89
+ ber of adhesion complexes near the two cell ends. Re-
90
+ markably, the motility behavior predicted by this simple
91
+ model agrees qualitatively with the motility behaviors
92
+ predicted by the active gel model.
93
+ These results sug-
94
+ gest that, in general, diverse complex motility behaviors
95
+ can result from the interplay between mechanosensitive
96
+ adhesions and the dynamical organization of contractile
97
+
98
+ 2
99
+ myosin motors.
100
+ Model summary.– To focus on the contribution of cell
101
+ mechanics to motility behaviors, chemical signaling is not
102
+ included in our model. The cytoplasm of the cell is mod-
103
+ eled as an active gel [10, 11] enclosed by the cell mem-
104
+ brane, the adhesion complexes are treated as reversible
105
+ bonds with specific binding-unbinding rates, and actin
106
+ polymerization is assumed to happen only at the cell
107
+ ends.
108
+ The forces acting on the cell include the stress
109
+ in the cytoskeleton, the drag force from the substrate,
110
+ and the force due to the adhesion complexes.
111
+ Our model only considers one spatial direction, i.e., the
112
+ cell’s moving direction, and the stress in the cytoplasm
113
+ obeys the constitutive equation
114
+ σ = η ∂v
115
+ ∂x + χc,
116
+ (1)
117
+ where η is the effective one-dimensional viscosity of the
118
+ cytoplasm, v is the flow field, χ is the strength of contrac-
119
+ tility provided by myosin motors (χ > 0), and c is the
120
+ concentration of myosin attached to the actin network.
121
+ For simplicity, compressibility is not included [11]. Thus
122
+ pressure does not appear in the constitutive relation. The
123
+ force exerted by the substrate is
124
+ Fdrag = −αnbv − ξv,
125
+ (2)
126
+ The first term on the right hand is the drag provided by
127
+ the adhesion complexes [12], α is a constant that char-
128
+ acterizes the resistance of the adhesion complexes to cell
129
+ movement, and nb is the number density of adhesion com-
130
+ plexes. The second term comes from the viscous drag of
131
+ the fluid between the cell and the substrate, and ξ is the
132
+ drag coefficient. Putting Eqs. (1)(2) together, the result-
133
+ ing force balance equation, ∂xσ + Fdrag = 0, takes the
134
+ following form
135
+ η ∂2v
136
+ ∂x2 − (αnb + ξ)v = −χ ∂c
137
+ ∂x.
138
+ (3)
139
+ Myosin motors attached to actin filaments move with
140
+ the cytoplasm, while those detached from actin filaments
141
+ diffuse freely. The attachment/detachment of motors is
142
+ reversible. On long-time scales, the density of the mo-
143
+ tors can be effectively described by an advection-diffusion
144
+ equation [13]
145
+ ∂c
146
+ ∂t = D ∂2c
147
+ ∂x2 − ∂(cv)
148
+ ∂x ,
149
+ (4)
150
+ where D is the effective diffusion coefficient of myosin
151
+ motors.
152
+ Adhesion complexes providing anchorage to the extra-
153
+ cellular matrix are also physically coupled to the con-
154
+ tractile cytoplasm.
155
+ As a result, they are pulled when
156
+ the cytoplasm moves [8]. Once an adhesion complex is
157
+ formed, the adhesion site does not move, but the disso-
158
+ ciation rate of the adhesion complex is affected by the
159
+ motion of the cytoskeleton because the bond is stretched
160
+ or compressed. In our model, the evolution of the density
161
+ of adhesion complexes is assumed to obey
162
+ ∂nb
163
+ ∂t = −k0 e−k1∂xvnb + kon,
164
+ (5)
165
+ where kon is the binding rate, k0 is the unbinding rate at
166
+ ∂xv = 0, and k1 tells us how unbinding rate is affected by
167
+ the cytoplasmic flow. Our model assumes that when the
168
+ strain rate is dilating, giving more space for the adhesion
169
+ complexes, the unbinding rate decreases.
170
+ Actin polymerization at the cell ends depends on the
171
+ distribution of actin activators [15][16]. In the presence
172
+ of environmental cues, a gradient of actin activator con-
173
+ centration within the cell is established, and actin poly-
174
+ merization is polarized due to this concentration gradi-
175
+ ent. In the absence of such external influence, the cell
176
+ can nevertheless polarize itself by spontaneous symmetry
177
+ breaking, and the net actin polymerization rate becomes
178
+ asymmetric. In our model, we consider a homogeneous
179
+ environment, and the net actin polymerization rate v±
180
+ p
181
+ at the ± end of the cell is assumed to be
182
+
183
+ p =
184
+ 2 e−v(1)
185
+ p
186
+ (L−L0)
187
+ 1 + exp[∓ dl±
188
+ dt /v(2)
189
+ p ]
190
+ v(0)
191
+ p ,
192
+ (6)
193
+ where v+
194
+ p (v−
195
+ p ) is the net rate of extension due to actin
196
+ polymerization at the cell end located at x = l+(l−),
197
+ v(0)
198
+ p
199
+ comes from the base polymerization rate, v(1)
200
+ p
201
+ in the
202
+ exponent of the numerator comes from the effect of free
203
+ energy cost for polymerization when the cell length is
204
+ different from its natural length (L0 is the natural length
205
+ of the cell, and L = l+ − l−), and the term with v(2)
206
+ p
207
+ makes the net polymerization rate in a moving cell at
208
+ both ends different, with more polymerization events in
209
+ the leading end than the trailing end.
210
+ It will become
211
+ clear that the qualitative results of cell motility behavior
212
+ do not depend on the specific form we assumed for the
213
+ dissociation rate of the adhesion complexes and v±
214
+ p .
215
+ The evolution of cell-end positions is determined by
216
+ the velocity of cytoplasm and actin polymerization,
217
+ dl±
218
+ dt = v± ± v±
219
+ p ,
220
+ (7)
221
+ where v+ (v−) is the velocity of cytoplasm at the + (−)
222
+ end.
223
+ Experimentally it has been shown that a cell tends to
224
+ restore its length L to a preferred magnitude L0 [17]. We
225
+ model this effect by the following force balance condition
226
+ at cell ends
227
+ σ± =
228
+
229
+ χc + η ∂v
230
+ ∂x
231
+
232
+
233
+ = −γ(L − L0).
234
+ (8)
235
+ Here γ is a constant associated with the restoring force
236
+ that brings the cell length L to L0.
237
+
238
+ 3
239
+ Because no myosin motors can leave or enter the cell,
240
+ the total flux of myosin motors across a cell end should
241
+ vanish. This leads to
242
+ [cv]l± − [c]l±
243
+ dl±
244
+ dt − D
245
+ � ∂c
246
+ ∂x
247
+
248
+
249
+ = 0.
250
+ (9)
251
+ The first two terms on the left-hand side are the advective
252
+ flux relative to the moving cell end, and the last term is
253
+ the diffusive flux at the cell end.
254
+ It is convenient to introduce effective drag coefficient
255
+ ξeff = ξ + αkon/k0 and choose l0 =
256
+
257
+ η/ξeff as the unit
258
+ length, t0 = η/(ξeffD) as the unit time, σ0 = ξeffD as
259
+ the unit stress, n0 = ξ/α as the unit density for adhe-
260
+ sion complexes, and c0 = M/
261
+
262
+ η/ξeff as the unit myosin
263
+ concentration, where M is the total number of myosin
264
+ motors in the cell. Therefore the dimensionless drag co-
265
+ efficient ˜ξ = ξ/(ξ + αkon/k0), contractility ˜χ = c0χ/σ0,
266
+ and cell elastic constant K = γl0/σ0 are used in the fol-
267
+ lowing discussion.
268
+ Simulation of motility behaviors.– From the point of
269
+ view of nonequilibrium thermodynamics, the drag force
270
+ between the cell and the substrate, the viscous force in
271
+ the cytoplasm, and the diffusion of myosin are passive
272
+ processes against cell movement. On the other hand, ac-
273
+ tive processes such as actin polymerization and myosin
274
+ contractility drive the movement of the cell, and the
275
+ binding/unbinding dynamics of the adhesion complexes
276
+ modulate cell movement.
277
+ As the myosin motors pro-
278
+ vide contractility against viscous and substrate drag, the
279
+ contractility-induced cytoplasmic flow drifts the motors
280
+ to aggregate and also affects the distribution of adhesion
281
+ complexes. Once the cell is in motion, the feedback in
282
+ the actin polymerization rate further enhances cell polar-
283
+ ization. The balance between these processes determines
284
+ the state of the cell. In general, there is no analytical so-
285
+ lution when all these effects are included. Therefore we
286
+ numerically integrate the equations of motion by a finite
287
+ difference method. The details of our numerical methods
288
+ and our choice of parameters are discussed in [20].
289
+ Figure 1 shows the motility behaviors for a cell with
290
+ parameters chosen to be compatible with typical cells [20]
291
+ and a range of adhesion complex mechanosensitivity and
292
+ contractility strengths. The following motility behaviors
293
+ are found: rest, moving at a constant velocity, unidirec-
294
+ tional stick-slip movement, back-and-forth motion with
295
+ stick-slip, and periodic back-and-forth movement. For a
296
+ cell with weakly mechanosensitive adhesion complexes, as
297
+ contractility increases, a cell at rest starts to move at con-
298
+ stant velocity. As the adhesion complexes become more
299
+ mechanosensitive, a moving cell shows other complex
300
+ motility behaviors. For example, stick-slip motion and
301
+ (at high contractivity) back-and-forth motion with stick-
302
+ slip, and finally, the cell performs periodic back-and-
303
+ forth motion when the adhesion complexes are highly
304
+ mechanosensitive. Another motility phase diagram in the
305
+ Supplement Materials [20] shows that, within our model,
306
+ a cell with a high actin polymerization rate can exhibit
307
+ other complex motility behaviors between stick-slip and
308
+ periodic back-and-forth movements.
309
+ ��
310
+ ��
311
+ ��
312
+ ��
313
+ ��
314
+ ��
315
+
316
+
317
+ ���
318
+ ���
319
+ ���
320
+ ���
321
+
322
+
323
+ (a)
324
+
325
+
326
+
327
+
328
+
329
+
330
+ ��
331
+
332
+ (b)
333
+
334
+
335
+ ��
336
+
337
+
338
+ ��
339
+ ��
340
+
341
+ (c)
342
+
343
+ ��
344
+ ��
345
+
346
+ ���
347
+ ���
348
+ ����
349
+
350
+ (d)
351
+
352
+
353
+ ��
354
+
355
+ ���
356
+ ���
357
+ ���
358
+
359
+ (e)
360
+ FIG. 1.
361
+ (a) Motility phase diagram for a cell with dimension-
362
+ less parameters K = 100, ˜ξ = 1/3, kon = 6, k0 = 3, v(0)
363
+ p
364
+ = 0.2,
365
+ v(1)
366
+ p
367
+ = 0.5, and v(2)
368
+ p
369
+ = 2.
370
+ Rest state (squares), constant-
371
+ velocity motion (diamonds), stick-slip movement (triangles),
372
+ back-and-forth with stick-slip motion (empty circle), and pe-
373
+ riodic back-and-forth motion (filled circles) are found.
374
+ (b)
375
+ Trajectories of the cell ends for ˜χ = 18, k1 = 0.05, the cell
376
+ performs constant velocity motion. (c) Trajectories of the cell
377
+ ends for ˜χ = 17.5, k1 = 0.1, the cell performs stick-slip mo-
378
+ tion. (d) Trajectories of the cell ends for ˜χ = 19, k1 = 0.15,
379
+ the cell performs complex motility pattern which is periodic
380
+ back-and-forth with stick-slip. (e) Trajectories of the cell ends
381
+ for ˜χ = 18, k1 = 0.25, the cell performs periodic back-and-
382
+ forth motion.
383
+ Figure 2 shows that when the cell is at rest, myosin
384
+ motor distribution is symmetric around the center of the
385
+ cell, and the number of adhesion complexes near both
386
+ cell ends is the same; on the other hand, for a cell mov-
387
+ ing at constant velocity, myosin motors aggregate close
388
+ to the trailing end and adhesion complexes are mainly
389
+ close to the leading end. The distribution of myosin mo-
390
+ tors and adhesion complexes for a cell undergoes stick-
391
+ slip, and periodic back-and-forth movements are shown
392
+ in Fig. S2 of [20]. It is clear that whenever the cell has a
393
+ definite moving direction, myosin motors aggregate in a
394
+ regime behind the center of the cell, and more adhesion
395
+ complexes form near the leading end than the trailing
396
+ end.
397
+ Indeed, the adhesion complex binding/unbinding
398
+ rates Eq.(5) and net actin polymerization at the cell
399
+ ends Eq.(6) in our model lead to reasonable molecular
400
+ distributions in a cell.
401
+ Reduction to the simplified model.– To obtain an in-
402
+
403
+ 4
404
+ ����
405
+ ���
406
+ ���
407
+
408
+ ���
409
+ ���
410
+ ���
411
+
412
+
413
+
414
+ (a)
415
+ ����
416
+ ���
417
+ ���
418
+
419
+ ���
420
+ ���
421
+ ���
422
+ (b)
423
+ FIG. 2.
424
+ Distribution of myosin motors and adhesion com-
425
+ plexes for a cell (a) at rest and (b) undergoes constant velocity
426
+ motion towards +x direction. The parameters are the same
427
+ as those in Fig. 1 and (a) k1 = 0.25, ˜χ = 16, (b) k1 = 0.1,
428
+ ˜χ = 16.
429
+ tuitive physical picture of the complex motility behav-
430
+ iors, especially the transitions from the rest state to the
431
+ constant-velocity movement and periodic back-and-forth
432
+ movement, we construct a simplified model from the ac-
433
+ tive gel model. First, we consider a limiting situation in
434
+ which adhesion complexes only appear in a small region
435
+ close to the cell ends. In this regime, it is convenient to in-
436
+ troduce Nf(Nb), the total number of adhesion complexes
437
+ close to l+(l−), and N = Nf + Nb, ∆N = Nf − Nb to
438
+ describe the distribution of adhesion complexes. We also
439
+ introduce yc, the dipole moment of myosin motors den-
440
+ sity relative to the center of the cell [20], to characterize
441
+ the spatial distribution of myosin motors. The net actin
442
+ polymerization velocity at the cell ends v±
443
+ p ≡ vp±∆vp/2,
444
+ where ∆vp = v+
445
+ p − v−
446
+ p ∝ Vcell in the limit of small cell
447
+ velocity. Therefore we write v±
448
+ p = vp ± βVcell/2. In this
449
+ regime, straightforward calculation shows that the veloc-
450
+ ity of the cell is [20]
451
+ Vcell ≈
452
+ 1
453
+ 1 − β/2(λν1vp∆N − ˜χλν2yc),
454
+ (10)
455
+ where λν1 and λν2 are positivet coefficients that depend
456
+ on N and L. Note that, from the definition, β/2 cannot
457
+ be greater than unity.
458
+ Therefore a cell with ∆N > 0
459
+ and yc < 0 has positive Vcell. This is in agreement with
460
+ experimental observations.
461
+ We further simplify the analysis by considering the
462
+ limit of large K, i.e., L ≈ L0. The following equations
463
+ are constructed to describe the dynamics of N, ∆N, and
464
+ yc. First, the evolution equations for N and ∆N are
465
+ dN
466
+ dt = 2kon − k(0)
467
+ off N − k(1)
468
+ off yc ∆N,
469
+ d∆N
470
+ dt
471
+ = −k(0)
472
+ off ∆N − k(1)
473
+ off Nyc,
474
+ (11)
475
+ where kon, k(0)
476
+ off , and k(1)
477
+ off are positive constants. Next, in
478
+ the spirit of Landau-type approximation, the evolution
479
+ of yc is assumed to obey the following equation,
480
+ dyc
481
+ dt = −Γ
482
+
483
+ −(˜χ − ˜χc)yc − a∆N∆N + a3y3
484
+ c
485
+
486
+ ,
487
+ (12)
488
+ where ˜χc and a∆N are treated as N-independent con-
489
+ stants for simplicity.
490
+ The simple model equations (11)(12) have a solution
491
+ with constant N and ∆N = yc = 0. This corresponds
492
+ to a cell at rest. Solutions with nonzero constant ∆N
493
+ and yc correspond to a cell moving at a constant veloc-
494
+ ity; solutions with time-periodic ∆N and yc are stick-slip
495
+ (periodic back-and-forth) movement if the time-average
496
+ of ∆N and yc are nonzero (zero). The linear stability
497
+ analysis of the rest state shows that as the contractil-
498
+ ity increases, a cell at rest starts to move as the system
499
+ undergoes a bifurcation, the moving state is the constant-
500
+ velocity state when k(1)
501
+ off is small, i.e., the adhesion com-
502
+ plexes are less mechanosensitive. When k(1)
503
+ off is sufficiently
504
+ large, the rest-to-moving transition leads to a periodic
505
+ back-and-forth moving state [20].
506
+ As shown in Fig. S3 [20], the model Eqs. (11) (12)
507
+ exhibit a motility phase diagram qualitatively the same
508
+ as the numerical solutions of our active gel model. The
509
+ minor differences come from those simplifications made
510
+ when constructing the simplified model.
511
+ Furthermore,
512
+ from the simplified model, it is easy to see how the sym-
513
+ metry properties and the couplings of the key driving
514
+ variables lead to the observed cell motion.
515
+ For exam-
516
+ ple, yc(t) and ∆N(t) in Fig. 3(a) for a cell performing
517
+ periodic back-and-forth movement suggests the following
518
+ physical picture about how the coupling terms in the sim-
519
+ plified model lead to this motion. According to Eq. (11),
520
+ a small ∆N tend to increase when yc is sufficiently nega-
521
+ tive, and Eq. (12) states that when a∆N > 0, yc tends to
522
+ move toward the center of the cell when the magnitude of
523
+ ∆N is sufficiently large. The result is that at sufficiently
524
+ large k(1)
525
+ off , the number of adhesion complexes in the lead-
526
+ ing end of a moving cell increases sufficiently fast such
527
+ that at some point, the myosins are pulled to the other
528
+ half of the cell, reversing the sign of yc, then reversing the
529
+ sign of ∆N, and eventually the direction of cell motion
530
+ is reversed. This is how rest/constant-velocity transition
531
+ becomes rest/back-and-forth transition as the adhesion
532
+ complexes are more mechanosensitive. In between the
533
+ constant velocity and periodic back-and-forth movement,
534
+ complex motility patterns with stick-slip can be observed.
535
+ As shown in Fig. 3(b), yc(t) and ∆N(t) in a cell that un-
536
+ dergoes stick-slip movement have nonzero time-average
537
+ values, and they oscillate with similar phase-relations as
538
+ a cell undergoes periodic back-and-forth movement. This
539
+ is because the mechanosensitivity of the adhesion com-
540
+ plexes is sufficiently strong to induce an oscillation of ∆N
541
+ and yc, but not sufficiently strong to change their signs.
542
+ Figure 3(c) and Fig. 3(d) show that yc(t) and ∆N(t)
543
+ (defined as the difference of the total number of adhe-
544
+ sion complexes in the leading and trailing halves of the
545
+ cell) in the numerical simulations of the active gel model
546
+ behave similarly, suggesting that the physical picture ob-
547
+ tained from studying the simplified model can be applied
548
+
549
+ 5
550
+ to more detailed models.
551
+
552
+ ��
553
+ ��
554
+
555
+ ����
556
+ ���
557
+ ���
558
+
559
+
560
+ ��
561
+ (a)
562
+
563
+ ��
564
+ ��
565
+
566
+ ����
567
+ ���
568
+ ���
569
+ (b)
570
+ ���
571
+ ���
572
+ ���
573
+
574
+ ����
575
+ ���
576
+ ���
577
+ (c)
578
+
579
+
580
+ ��
581
+
582
+ ����
583
+ ���
584
+ ���
585
+ (d)
586
+ FIG. 3.
587
+ (a)(b): yc(t) and ∆N(t) in the simplified model with
588
+ kon/k(0)
589
+ off = 1, a∆N = 1, and a3 = 1. In (a), k(1)
590
+ off /k(0)
591
+ off = 0.6,
592
+ Γ(˜χ− ˜χc)/k(0)
593
+ off = 1.2; in (b), k(1)
594
+ off /k(0)
595
+ off = 0.62, Γ(˜χ− ˜χc)/k(0)
596
+ off =
597
+ 5.5. (c)(d): yc(t) and ∆N(t) in the active gel model with K =
598
+ 100, ˜ξ = 1/3, kon = 6, k0 = 3, v(0)
599
+ p
600
+ = 0.2, v(1)
601
+ p
602
+ = 0.5, v(2)
603
+ p
604
+ = 2.
605
+ In (c), k1 = 0.55, ˜χ = 16; in (d), k1 = 0.1, ˜χ = 18. The cell
606
+ in (a)(c) performs oscillatory back-and-forth movement, and
607
+ the cell in (b)(d) performs stick-slip movement.
608
+ Discussion.– Within our active gel model, a cell with
609
+ highly mechanosensitive adhesion complexes can exhibit
610
+ periodic back-and-forth movement similar to what was
611
+ observed in zyxin-depleted cells in a collagen matrix.
612
+ Since zyxin proteins act as mechanosensors in mature
613
+ adhesion complexes [21], our study suggests that the dif-
614
+ ference in the mechanosensitivity of the adhesion com-
615
+ plexes in zyxin-depleted and wild-type cells could be the
616
+ origin of the periodic back-and-forth movement observed
617
+ in [5]. Future experiments can be designed to examine
618
+ this prediction.
619
+ The physical picture suggested by our simplified model
620
+ also implies the possibility that, in general, when some
621
+ of the simplifications are lifted, more complex one-
622
+ dimensional cell motility behaviors can be found. This
623
+ is indeed the case, as we explore the behavior of our ac-
624
+ tive gel model for a broader range of actin polymerization
625
+ rates, complex trajectories which come from further bi-
626
+ furcations are found.
627
+ This is shown in Fig. S1 in [20]
628
+ and Fig. 4. Further study of the physical mechanisms for
629
+ these behaviors will be our future work [22].
630
+ Finally,
631
+ although
632
+ the
633
+ physical
634
+ mechanisms
635
+ for
636
+ symmetry-breaking transitions, such as rest/periodic
637
+ back-and-forth transition and rest/constant velocity
638
+ transition, can be understood from the dynamics of yc
639
+ and ∆N, it is interesting to study how other important
640
+ physical observables, such as the multipoles of the trac-
641
+ tion force [23][24], behave in cells with different moving
642
+ patterns. It is also important to check if the basic fea-
643
+ tures of these physical observables in different moving
644
+ patterns depend on the details of the binding/unbinding
645
+ dynamics of adhesion complexes, as it plays a significant
646
+ role in our understanding of many interesting features of
647
+ cell motility.
648
+
649
+
650
+ ��
651
+
652
+
653
+
654
+
655
+
656
+ (a)
657
+
658
+
659
+ ��
660
+
661
+ ���
662
+ ���
663
+ ���
664
+
665
+ (b)
666
+ FIG. 4.
667
+ Our active gel model predicts that at high actin
668
+ polymerization rates further complex motility behaviors, such
669
+ as (a) zig-zag with stick-slip, and (b) double-period back-and-
670
+ forth movement can be found. These trajectorjes are obtained
671
+ for K = 100, ˜χ = 14, kon = 6.0, k0 = 3.0, v(1)
672
+ p
673
+ = 0.5, v(2)
674
+ p
675
+ =
676
+ 0.2. In (a), v(0)
677
+ p
678
+ = 1.2, k1 = 0.9; in (b), v(0)
679
+ p
680
+ = 1.1, k1 = 0.9.
681
+ The blue curves represent the trajectories of the cell ends.
682
+ Acknowledgments –
683
+ H.-Y. C. thanks Prof.
684
+ Jasnow (University of Pitts-
685
+ burgh) for stimulating discussions and encouragement in
686
+ the early stage of this work. H.-Y. C. is supported by
687
+ the Ministry of Science and Technology, Taiwan (MOST
688
+ 108-2112-M-008-016 ). The authors also acknowledge the
689
+ support from National Center for Theoretical Sciences,
690
+ Taiwan.
691
+ [1] D. Bray, Cell Movements, 2nd ed. (Talyor and Francis,
692
+ New York, 2001).
693
+ [2] P.T. Yam, C.A. Wilson, L. Ji, B. Hebert, E.L. Barnhart,
694
+ N.A. Dye, P.W. Wiseman, G. Danuser, and J.A. Theriot,
695
+ Actin–myosin network reorganization breaks symmetry
696
+ at the cell rear to spontaneously initiate polarized cell
697
+ motility, J. Cell Biol., 178, 1207 (2007).
698
+ [3] I.S. Aranson ed.,
699
+ Physical Models of Cell Motility,
700
+ Springer, 2016.
701
+ [4] Y. Aratyn-Schaus and M. L. Gardel, Transient frictional
702
+ slip between integrin and the ECM in focal adhesions
703
+ under myosin II tension, Curr. Biol. 20, 1145 (2010).
704
+ [5] S. I. Fraley, Y. Feng, A. Giri, G. D. Longmore, and
705
+ D.Wirtz, Dimensional and temporal controls of three-
706
+ dimensional cell migration by zyxin and binding partners,
707
+ Nat. Commun. 3, 719 (2012).
708
+ [6] Chabaud, M. et al. Cell migration and antigen capture
709
+ are antagonistic processes coupled by myosin II in den-
710
+ dritic cells. Nature Commun. 6, 7526 (2015).
711
+ [7] B.A. Camley, Y. Zhao, B. Li, H. Levine, and W.-J. Rap-
712
+ pel, Periodic migration in a physical model of cells on
713
+ micropatterns, Phys. Rev. Lett., 111, 158102 (2013).
714
+
715
+ 6
716
+ [8] P. Sens, Stick-slip model for actin-driven cell protrusions,
717
+ cell protrusions, cell polarization, and crawling, Proc.
718
+ Natl. Acad. Sci. 117, 24670 (2020).
719
+ [9] J.E. Ron, P. Monzo, M.C. Gauthier, R. Voituriez, and
720
+ N.S. Gov, One-dimensional cell motility patterns, Phys.
721
+ Rev. Res., 2, 033237 (2020).
722
+ [10] F. J¨ulicher, K. Kruse, J. Prost, and J.-F. Joanny, Active
723
+ behavior of the Cytoskeleton, Phys. Rep. 449, 3 (2007).
724
+ [11] P. Recho, T. Putelat, and L. Truskinovsky, Contraction-
725
+ driven cell motility, Phys. Rev. Lett. 111, 108102 (2013).
726
+ [12] K. Tawada, K. Sekimoto, Protein friction exerted by
727
+ motor enzymes through a weak-binding interaction’, J.
728
+ Theo. Biol., 150, 193 (1991).
729
+ [13] P. Recho and L. Truskinovsky, “Cell locomotion in one
730
+ dimension,” in Physical Models of Cell Motility, p. 135,
731
+ Springer, 2016.
732
+ [14] T. Putelat, P. Recho, and L. Truskinovsky, Mechanical
733
+ stress as a regulator of cell motility,’ Phys. Rev. E, 97,
734
+ 012410 (2018).
735
+ [15] R. Meili and R.A. Firtel, Two poles and a compass, Cell,
736
+ 114, 153 (2003).
737
+ [16] Y. T. Maeda, J. Inose, M. Y. Matsuo, S. Iwaya, and
738
+ M. Sano, Ordered patterns of cell shape and orientational
739
+ correlation during spontaneous cell migration, PLoS one,
740
+ 3, e3734 (2008).
741
+ [17] T. Y.-C. Tsai, S.R. Collins, C.K. Chan, A. Hadjitheoro-
742
+ rou, P.-Y. Lam, S.S. Lou, H.W. Yang, J. Jorgensen, F.
743
+ Ellett, D. Irimia, M.W. Davidson, R.S. Fischer, A. Hut-
744
+ tenlocher, T. Meyer, J.E. Ferrell Jr, and J.A. Theriot,
745
+ Efficient front-rear coupling in neutrophil chemotaxis by
746
+ dynamic myosin II localization, Dev. Cell 49, 189 (2019).
747
+ [18] M. Nickaeen, I. L. Novak, S. Pulford, A. Rumack,
748
+ J. Brandon, B. M. Slepchenko, and A. Mogilner, A free-
749
+ boundary model of a motile cell explains turning behav-
750
+ ior, PLoS Comp. Biol, 13, e1005862 (2017).
751
+ [19] G. Horton and S. Vandewalle, A space-time multigrid
752
+ method for parabolic partial differential equations, SIAM
753
+ Journal on Scientific Computing, 16, 848 (1995).
754
+ [20] See our Supplementary Material.
755
+ [21] T.P. Lele, J. Pendse, S. Kumar, M. Salanga, J. Karavitis,
756
+ and D.E. Ingber, Mechanical forces alter zyxin unbind-
757
+ ing kinetics within focal adhesions of living cells, J. Cell
758
+ Physiol., 207, 187 (2006).
759
+ [22] J.-Y. Lo and H.-Y. Chen, manuscript in preparation.
760
+ [23] H. Tanimoto and M. Sano, A simple force-motion rela-
761
+ tion for migrating cells revealed by multipole analysis of
762
+ traction stress, Biophys. J., 106, 16 (2014).
763
+ [24] T. Ohta, M. Tarama, and M. SanoA simple model of cell
764
+ crawling, Physica D, 318, 3 (2016).
765
+
766
+ arXiv:2301.01463v1 [cond-mat.soft] 4 Jan 2023
767
+ Supplementary material for
768
+ “ Mechanosensitive bonds induced complex cell motility patterns”
769
+ Jen-Yu Lo1, Yuan-Heng Tseng1 and Hsuan-Yi Chen 1,2,3
770
+ 1Department of Physics, National Central University, Jhongli 32001, Taiwan
771
+ 2Institute of Physics, Academia Sinica, Taipei, 11529, Taiwan
772
+ 3Physics Division, National Central for Theoretical Sciences, Taipei, 10617, Taiwan
773
+ (Dated: January 5, 2023)
774
+ S1.
775
+ DIMENSIONLESS EQUATIONS
776
+ We introduce effective drag coefficient ξeff = ξ + αkon/k0 and choose l0 =
777
+
778
+ η/ξeff as the unit length, t0 =
779
+ η/(ξeffD) as the unit time, σ0 = ξeffD as the unit stress, n0 = ξ/α (notice that, here ξ, not ξeff is used) as the
780
+ unit density for adhesion complexes, and c0 = M/
781
+
782
+ η/ξeff as the unit myosin concentration, where M is the total
783
+ number of myosin motors in the cell. In the dimensionless form, the momentum equation is
784
+ ∂2v
785
+ ∂x2 − ˜ξ(1 + nb)v = −˜χ ∂c
786
+ ∂x,
787
+ (S1)
788
+ myosin density evolution obeys
789
+ ∂c
790
+ ∂t = ∂2c
791
+ ∂x2 − ∂(cv)
792
+ ∂x ,
793
+ (S2)
794
+ evolution of the density of the adhesion complexes is
795
+ ∂nb
796
+ ∂t = −¯k0e−¯k1∂xvnb + ¯kon
797
+ (S3)
798
+ and the positions of the cell ends obey
799
+ dl±
800
+ dt = [v]l± ± v±
801
+ p .
802
+ (S4)
803
+ The boundary condition for myosin current is
804
+
805
+ c(v − dl
806
+ dt) − ∂c
807
+ ∂x
808
+
809
+
810
+ = 0,
811
+ (S5)
812
+ and the stress continuity at the cell ends leads to
813
+ σ± = −K (L − L0) =
814
+ �∂v
815
+ ∂x
816
+
817
+
818
+ + ˜χcl±.
819
+ (S6)
820
+ Here all variables and x, t are dimensionless. The definitions of the parameters and important physical quantities are
821
+ listed in Table S1. The dimensionless parameters in our model are listed in Table S2.
822
+ S2.
823
+ NUMERICAL METHOD AND CHOICE OF PARAMETERS
824
+ In our numerical scheme, each iteration updates all dynamical variables by integrating the evolution equations
825
+ over a small time interval ∆t with a finite difference method. First, [v]l± and v±
826
+ p from the previous iteration were
827
+ substituted into Eq. (S4) to obtain the new positions of the cell ends. The densities of the adhesion complexes and
828
+ myosin motors are updated from the flow field of the previous iteration by integrating the evolution Eq. (S3) of nb
829
+ and the myosin advection-diffusion Eq. (S2). The force balance Eq. (S1) with the updated bond density and myosin
830
+ concentration is then solved to obtain the new flow field.
831
+ The numerics were carried out by dividing the cell into Nx = 100 segments and approximating the spatial derivatives
832
+ by the finite difference method with the size of a time step ∆t = 10−6. The typical material parameters are D ∼
833
+ 0.025 µm2/s [1], l0 ∼ 10 µm and unit time t0 ∼ 103 s [2]. k0 is the rate of dissociation of mature focal adhesion and
834
+
835
+ S2
836
+ Physical meaning
837
+ Symbol
838
+ effective drag coefficient
839
+ ξeff = ξ + αkon/k0
840
+ unit length
841
+ l0 =
842
+
843
+ η/ξeff
844
+ unit time
845
+ t0 = η/ξeffD
846
+ unit stress
847
+ σ0 = ξeffD
848
+ unit myosin motors concentration
849
+ c0 =
850
+ M
851
+
852
+ η/ξeff
853
+ unit density of cell-substrate bonds
854
+ n0 = ξ/α
855
+ TABLE S1. Definitions of physical parameters and characteristic quantities in our model.
856
+ Physical meaning
857
+ Symbol
858
+ unbinding rate
859
+ ¯k0 = t0k0
860
+ coefficient for strain-rate-dependent unbinding
861
+ ¯k1 = k1/t0
862
+ binding rate
863
+ ¯kon = kont0/n0
864
+ base actin polymerization speed
865
+ ¯v(0)
866
+ p
867
+ = v(0)
868
+ p l0/t0
869
+ coefficient for stress-dependent actin polymerization
870
+ ¯v(1)
871
+ p
872
+ = v(1)
873
+ p l0
874
+ coefficient for cell polarization effect on actin polymerization
875
+ ¯v(2)
876
+ p
877
+ = v(2)
878
+ p t0/l0
879
+ contractility
880
+ ˜χ = c0χ/σ0
881
+ cell elastic constant
882
+ K = γl0/σ0
883
+ drag coefficient
884
+ ˜ξ = ξ/(ξ + αkon/k0)
885
+ TABLE S2. Definitions of dimensionless parameters in our model.
886
+ its typical value ∼ 1/min [3], and we chose ¯k0 = 3. ¯kon is chosen to be 6 for most simulations and the dimensionless
887
+ density of bonds in the absence of mechanosensitivity is of order unity. The dimensionless natural length of the cell
888
+ L0 = 1 for a typical cell. This means that in the absence of adhesion complexes, drag and viscous forces are of the
889
+ same order of magnitude. The dimensionless total number of myosin motors in the cell c0L0 = 1.
890
+
891
+ S3
892
+ S3.
893
+ SIMULATION RESULTS
894
+ The motility phase diagrams in the plane spanned by ˜χ and k1 are presented in the main text. Here Fig. S1 shows
895
+ the phase diagram in the plane spanned by v(0)
896
+ p
897
+ and k1. From this figure we can see how the actin polymerization
898
+ rate affects the motility behavior of the cell. It is clear that the moving state of a cell with small k1 is that with
899
+ a constant velocity, while the moving state of a cell with large k1 is periodic back-and-forth. This is in agreement
900
+ with the phase diagrams in the main text. Furthermore, there are several complex motility patterns between these
901
+ two states, including stick-slip motion and behaviors that can be seen as combinations of back-and-forth and stick-
902
+ slip movement. The trajectories for stick-slip movement and periodic back-and-forth movement with stick-slip are
903
+ shown in Fig. 1(c)(d) of the main text.
904
+ The trajectories for zig-zag movement with stick-slip and double-period
905
+ back-and-forth motion are shown in Fig. 4(a)(b) of the main text.
906
+ ���
907
+ ���
908
+ ���
909
+ ���
910
+
911
+ ���
912
+
913
+ ���
914
+ ���
915
+ ���
916
+ ���
917
+ ���
918
+
919
+
920
+ FIG. S1. Phase diagram for the motility behavior predicted by the reduced model. K = 100, ˜ξ = 1/3, kon = 6, k0 = 3, ˜χ = 14,
921
+ v(1)
922
+ p
923
+ = 0.5, v(2)
924
+ p
925
+ = 0.2. The cells show the following motility behaviors: constant velocity motion (green diamonds), periodic
926
+ back-and-forth movement (blue circles), stick-slip movement (orange triangles), periodic back-and-forth movement with stick-
927
+ slip (empty gray circles), zig-zag movement with stick-slip (empty purple diamonds), and double-period back-and-forth motion
928
+ (brown squares).
929
+ Figure S2 shows the distribution of adhesion complexes and myosin motors for a cell that undergoes stick-slip
930
+ movement and periodic back-and-forth movement. Similar to the distributions shown in Fig. 2 of the main text,
931
+ for a moving cell, myosin motors are always located relatively close to the trailing end, and the density of adhesion
932
+ complexes is always higher in a region close to the leading end.
933
+
934
+ S4
935
+
936
+ ��
937
+ ��
938
+
939
+
940
+
941
+ ��
942
+
943
+ ���
944
+ ���
945
+ ���
946
+
947
+ (a)
948
+
949
+ ��
950
+ ��
951
+
952
+
953
+
954
+ ��
955
+
956
+
957
+
958
+
959
+ ��
960
+
961
+
962
+ (b)
963
+ ���
964
+ ���
965
+ ���
966
+
967
+
968
+
969
+ ��
970
+
971
+ ���
972
+ ���
973
+ ���
974
+
975
+ (c)
976
+ ���
977
+ ���
978
+ ���
979
+
980
+
981
+
982
+ ��
983
+
984
+
985
+
986
+
987
+ ��
988
+
989
+
990
+ (d)
991
+ FIG. S2. Distribution of adhesion complexes and myosin motors for K = 100, ˜ξ = 1/3, kon = 6, k0 = 3, v(0)
992
+ p
993
+ = 0.2, v(1)
994
+ p
995
+ = 0.5,
996
+ v(2)
997
+ p
998
+ = 2, and (a)(b) k1 = 0.12, ˜χ = 18, (c)(d) k1 = 0.25, ˜χ = 17.
999
+
1000
+ S5
1001
+ S4.
1002
+ THE SIMPLIFIED MODEL
1003
+ Since the adhesion complexes are concentrated close to the cell ends, to simplify the analysis, we assume
1004
+ nb(x, t) = Nfδ(x − xf) + Nbδ(x − xb),
1005
+ (S7)
1006
+ where xf = l+ − ǫ, xb = l− + ǫ, and ǫ is a very small length.
1007
+ A.
1008
+ Stress field and flow field
1009
+ Because there are no adhesion complexes in xb < x < xf, the dimensionless momentum equation in this region is
1010
+ ∂xσ = ˜ξv,
1011
+ σ = ∂xv + ˜χc,
1012
+ xb < x < xf.
1013
+ (S8)
1014
+ Integrating the full momentum equation from l+(−) to xf(b), we find
1015
+ σf = −K(l − l0) − ˜ξNfvf,
1016
+ σb = −K(l − l0) + ˜ξNbvb.
1017
+ (S9)
1018
+ Here vf = v(xf, t) ≈ dl+/dt − v+
1019
+ p , and vb = v(xb, t) ≈ dl−/dt + v−
1020
+ p . The solution of stress from these equations is [4]
1021
+ σ(x, t) = σf
1022
+ sinh
1023
+
1024
+ ˜ξ1/2(x − xb)
1025
+
1026
+ sinh
1027
+
1028
+ ˜ξ1/2(xf − xb)
1029
+ � + σb
1030
+ sinh
1031
+
1032
+ ˜ξ1/2(xf − x)
1033
+
1034
+ sinh
1035
+
1036
+ ˜ξ1/2(xf − xb)
1037
+ � + ˜χ˜ξ1/2
1038
+ � xf
1039
+ xb
1040
+ G(x, x′)c(x′, t)dx′,
1041
+ (S10)
1042
+ where
1043
+ G(x, x′) =
1044
+ sinh
1045
+
1046
+ ˜ξ1/2(xf − x)
1047
+
1048
+ sinh
1049
+
1050
+ ˜ξ1/2(x′ − xb)
1051
+
1052
+ sinh
1053
+
1054
+ ˜ξ1/2(xf − xb)
1055
+
1056
+ − Θ(x′ − x) sinh
1057
+
1058
+ ˜ξ1/2(x′ − x)
1059
+
1060
+ ,
1061
+ (S11)
1062
+ Θ(x) is the Heaviside step function. This leads to the following expression for the flow field,
1063
+ v(x, t) =
1064
+ 1
1065
+ ˜ξ1/2
1066
+
1067
+
1068
+ σf
1069
+ cosh
1070
+
1071
+ ˜ξ1/2(x − xb)
1072
+
1073
+ sinh
1074
+
1075
+ ˜ξ1/2(xf − xb)
1076
+ � − σb
1077
+ cosh
1078
+
1079
+ ˜ξ1/2(xf − x)
1080
+
1081
+ sinh
1082
+
1083
+ ˜ξ1/2(xf − xb)
1084
+ � + ˜χ
1085
+ � xf
1086
+ xb
1087
+ ∂xG(x, x′)c(x′, t)dx′
1088
+
1089
+
1090
+  .
1091
+ (S12)
1092
+ B.
1093
+ Myosin concentration
1094
+ Substituting Eq. (S12) into the advection-diffusion for myosin concentration, one obtains the following equation
1095
+ which does not have an explicit dependence on the velocity field.
1096
+ ∂tc(x, t) = D∂2
1097
+ xc −
1098
+ 1
1099
+ ˜ξ1/2 ∂x
1100
+
1101
+
1102
+
1103
+
1104
+ σf
1105
+ cosh
1106
+
1107
+ ˜ξ1/2(x − xb)
1108
+
1109
+ sinh
1110
+
1111
+ ˜ξ1/2(xf − xb)
1112
+ � − σb
1113
+ cosh
1114
+
1115
+ ˜ξ1/2(xf − x)
1116
+
1117
+ sinh
1118
+
1119
+ ˜ξ1/2(xf − xb)
1120
+
1121
+
1122
+  c(x, t)
1123
+ +˜χ
1124
+ � xf
1125
+ xb
1126
+ c(x, t)∂xG(x, x′)c(x′, t)dx′
1127
+
1128
+ .
1129
+ (S13)
1130
+
1131
+ S6
1132
+ C.
1133
+ Velocity and length of the cell
1134
+ The velocity of the cell Vcell = 1
1135
+ 2
1136
+
1137
+ dl+
1138
+ dt + dl−
1139
+ dt
1140
+
1141
+ is
1142
+ Vcell =
1143
+ 1
1144
+ 2˜ξ1/2
1145
+ cosh
1146
+
1147
+ ˜ξ1/2L
1148
+
1149
+ + 1
1150
+ sinh
1151
+
1152
+ ˜ξ1/2L
1153
+
1154
+ (σf − σb) + ˜χ
1155
+ 2
1156
+ � xf
1157
+ xb
1158
+ sinh
1159
+
1160
+ ˜ξ1/2(xf − x′)
1161
+
1162
+ − sinh
1163
+
1164
+ ˜ξ1/2(x′ − xb)
1165
+
1166
+ sinh
1167
+
1168
+ ˜ξ1/2L
1169
+
1170
+ c(x′, t)dx′
1171
+ +v+
1172
+ p − v−
1173
+ p
1174
+ 2
1175
+ .
1176
+ (S14)
1177
+ The evolution of the length of the cell dL
1178
+ dt = dl+
1179
+ dt − dl−
1180
+ dt obeys
1181
+ dL
1182
+ dt =
1183
+ 1
1184
+ ˜ξ1/2
1185
+ cosh
1186
+
1187
+ ˜ξ1/2L
1188
+
1189
+ − 1
1190
+ sinh
1191
+
1192
+ ˜ξ1/2L
1193
+
1194
+ (σf + σb) − ˜χ
1195
+ � xf
1196
+ xb
1197
+ sinh
1198
+
1199
+ ˜ξ1/2(xf − x′)
1200
+
1201
+ + sinh
1202
+
1203
+ ˜ξ1/2(x′ − xb)
1204
+
1205
+ sinh
1206
+
1207
+ ˜ξ1/2L
1208
+
1209
+ c(x′, t)dx′
1210
+ +(v+
1211
+ p + v−
1212
+ p ).
1213
+ (S15)
1214
+ D.
1215
+ Symmetries of the system
1216
+ It is helpful to introduce the following variables
1217
+ N = Nf + Nb,
1218
+ ∆N = Nf − Nb,
1219
+ vp = v+
1220
+ p + v−
1221
+ p
1222
+ 2
1223
+ ,
1224
+ ∆vp = v+
1225
+ p − v−
1226
+ p ,
1227
+ σS = σf + σb
1228
+ 2
1229
+ = −K(L − L0) −
1230
+ ˜ξ
1231
+ 2
1232
+
1233
+ N
1234
+ �dL/dt
1235
+ 2
1236
+ − vp
1237
+
1238
+ + ∆N
1239
+
1240
+ Vcell − ∆vp
1241
+ 2
1242
+ ��
1243
+ ,
1244
+ σA = σf − σb
1245
+ 2
1246
+ = −
1247
+ ˜ξ
1248
+ 2
1249
+
1250
+ N
1251
+
1252
+ Vcell − ∆vp
1253
+ 2
1254
+
1255
+ + ∆N
1256
+ �dL/dt
1257
+ 2
1258
+ − vp
1259
+ ��
1260
+ ,
1261
+ (S16)
1262
+ and
1263
+ y = x − l+ + l−
1264
+ 2
1265
+ .
1266
+ (S17)
1267
+ Notice that dL/dt, N, vp, and σS are symmetric under spatial inversion (y → −y), while Vcell, ∆N, ∆vp, and σA are
1268
+ antisymmetric under spatial inversion.
1269
+ The velocity of the cell Vcell can be expressed in terms of these parameters and variables that have clear parity
1270
+ signatures. First, notice that only the part of c(y) that is anti-symmetric under y → −y contribute to the ˜χ-dependent
1271
+ term of Eq. (S14), and for a slow-crawling cell this part should be significant only in the small |y| region. Thus by
1272
+ expanding the ˜χ-dependent term of Vcell to the leading order in y, one finds that
1273
+ Vcell = 1
1274
+ 2
1275
+
1276
+ ∆vp +
1277
+ 2
1278
+ ˜ξ1/2
1279
+ cosh
1280
+
1281
+ ˜ξ1/2L
1282
+
1283
+ + 1
1284
+ sinh
1285
+
1286
+ ˜ξ1/2L
1287
+
1288
+ σA − ˜χ˜ξ1/2 cosh
1289
+
1290
+ 2˜ξ1/2L
1291
+
1292
+ sinh
1293
+
1294
+ ˜ξ1/2L
1295
+ � yc + ...
1296
+
1297
+  ,
1298
+ where
1299
+ yc ≡
1300
+ � L/2
1301
+ −L/2
1302
+ y c(y, t) dy,
1303
+ (S18)
1304
+ and “...” represents terms of higher order in this expansion. The expression for Vcell can be further simplified by
1305
+ taking ∆vp ≈ βVcell (β is independent of Vcell) for a slow crawling cell and substituting Eq. (S16) for σA. Finally, one
1306
+
1307
+ S7
1308
+ obtains
1309
+ Vcell = −
1310
+ ˜ξ1/2
1311
+ 1 − β/2
1312
+
1313
+ 1 +
1314
+ ˜ξ1/2
1315
+ 2
1316
+ cosh
1317
+
1318
+ ˜ξ1/2L
1319
+
1320
+ + 1
1321
+ sinh
1322
+
1323
+ ˜ξ1/2L
1324
+
1325
+ N
1326
+
1327
+
1328
+ −1
1329
+ ×
1330
+
1331
+ 1
1332
+ 2
1333
+ cosh
1334
+
1335
+ ˜ξ1/2L
1336
+
1337
+ + 1
1338
+ sinh
1339
+
1340
+ ˜ξ1/2L
1341
+
1342
+ �1
1343
+ 2
1344
+ dL
1345
+ dt − vp
1346
+
1347
+ ∆N + ˜χ
1348
+ cosh
1349
+
1350
+ ˜ξ1/2L/2
1351
+
1352
+ sinh
1353
+
1354
+ ˜ξ1/2L
1355
+ � yc + ...
1356
+
1357
+  .
1358
+ (S19)
1359
+ This expression tells us that Vcell is nonzero only when ∆N (asymmetry in the distribution of adhesion complexes)
1360
+ or yc (asymmetry in the distribution of myosin motors) is nonzero.
1361
+ Similar calculation leads to the following expression for the evolution of the length of the cell,
1362
+ dL
1363
+ dt = 2vp +
1364
+
1365
+ 1 +
1366
+ ˜ξ1/2
1367
+ 2
1368
+ cosh(˜ξ1/2L) − 1
1369
+ sinh(˜ξ1/2L)
1370
+ N
1371
+ �−1
1372
+ ×
1373
+
1374
+
1375
+
1376
+ ˜ξ−1/2 cosh(˜ξ1/2L) − 1
1377
+ sinh(˜ξ1/2L)
1378
+
1379
+ −2K(L − L0) + ∆N
1380
+
1381
+ 1 − β
1382
+ 2
1383
+
1384
+ Vcell
1385
+
1386
+ − 2˜χ
1387
+ sinh
1388
+
1389
+ ˜ξ1/2L/2
1390
+
1391
+ sinh
1392
+
1393
+ ˜ξ1/2L
1394
+ � Ctot
1395
+
1396
+
1397
+  ,
1398
+ (S20)
1399
+ where
1400
+ Ctot ≡
1401
+ � L/2
1402
+ −L/2
1403
+ c(y, t)dy ≡ 1
1404
+ (S21)
1405
+ is the total amount of myosin motors in the cell, which is unity in our dimensionless expression. Note that all terms
1406
+ on the right-hand side of dL/dt are even under y → −y.
1407
+ E.
1408
+ The simplified model and bifurcations
1409
+ From the previous analysis, it is clear that symmetry under y → −y plays an important role in Vcell and dL/dt.
1410
+ Based on these observations, a simplified model is proposed for slow-crawling cells.
1411
+ First, the evolution equations of Nf and Nb are
1412
+ dNf
1413
+ dt
1414
+ = kon − (k(0)
1415
+ off + k(1)
1416
+ off yc)Nf,
1417
+ dNb
1418
+ dt
1419
+ = kon − (k(0)
1420
+ off − k(1)
1421
+ off yc)Nb.
1422
+ This leads to
1423
+ dN
1424
+ dt = 2kon − k(0)
1425
+ off N − k(1)
1426
+ off yc ∆N,
1427
+ d∆N
1428
+ dt
1429
+ = −k(0)
1430
+ off ∆N − k(1)
1431
+ off Nyc.
1432
+ (S22)
1433
+ We expect k(1)
1434
+ off > 0 because a cell moving at constant velocity in the +x direction should have yc < 0 and ∆N > 0.
1435
+ Next, the following evolution equation for yc is proposed
1436
+ dyc
1437
+ dt = −Γ
1438
+
1439
+ −(˜χ − ˜χc)yc − a∆N∆N + a3y3
1440
+ c
1441
+
1442
+ .
1443
+ (S23)
1444
+ The above equation describes a cell that becomes polarized (yc ̸= 0) when ˜χ is sufficiently large. Furthermore, a∆N
1445
+ tells us how nonzero ∆N affects the evolution of yc. In general, ˜χc, a∆N, and a3 all depend on L and N. a3 > 0 such
1446
+ that yc remains finite.
1447
+ To focus on the physics that are most relevant to the transitions between different motility behaviors, we neglect the
1448
+ N-dependencies in ˜χc and a∆N as they do not change the symmetry properties of the evolution equation of yc. This
1449
+
1450
+ S8
1451
+ approximation is expected to be suitable for slow-moving cells. Furthermore, the L-dependencies of all coefficients in
1452
+ our simplified model can be neglected by considering the large-K regime such that L → L0. In this regime,
1453
+ Vcell =
1454
+ ˜ξ1/2
1455
+ (1 − β
1456
+ 2 )
1457
+
1458
+ 1 +
1459
+ ˜ξ1/2
1460
+ 2
1461
+ cosh(˜ξ1/2L0)+1
1462
+ sinh(˜ξ1/2L0) N
1463
+
1464
+ ��
1465
+ 1
1466
+ 2
1467
+ cosh(˜ξ1/2L0) + 1
1468
+ sinh(˜ξ1/2L0)
1469
+ vp
1470
+
1471
+ ∆N −
1472
+
1473
+ ˜χcosh(˜ξ1/2L0/2)
1474
+ sinh(˜ξ1/2L0)
1475
+
1476
+ yc
1477
+
1478
+
1479
+ 1
1480
+ 1 − β/2(λν1vp∆N − ˜χλν2yc).
1481
+ (S24)
1482
+ Here λν1vp and λν2 are N-dependent parameters.
1483
+ Many interesting features of the system described by Eqs. (S22)(S23) can be studied analytically. First, the steady-
1484
+ state solutions include the rest-state solution
1485
+ ∆N = yc = 0, N = 2kon
1486
+ k(0)
1487
+ off
1488
+ ≡ N0,
1489
+ (S25)
1490
+ and solutions for a cell moving in the ± x-direction with a constant velocity
1491
+ yc = ∓
1492
+
1493
+ p4 + p2
1494
+ 1p2 −
1495
+
1496
+ (p4 + p2
1497
+ 1p2)2 − 4p2
1498
+ 1p4(p2 − p1p3N0)
1499
+ 2p2
1500
+ 1p4
1501
+ ,
1502
+ ∆N = −
1503
+ p1N0
1504
+ 1 + (p1yc)2 yc,
1505
+ N =
1506
+ N0
1507
+ 1 − (p1yc)2 ,
1508
+ (S26)
1509
+ where p1 = k(1)
1510
+ off /k(0)
1511
+ off , p2 = Γ(˜χ− ˜χc)/k(0)
1512
+ off , p3 = Γa∆N/k(0)
1513
+ off , and p4 = Γa3/k(0)
1514
+ off . Further checking the linear stability of
1515
+ the rest state shows that the transition from the rest state to the state with constant velocity is a pitchfork bifurcation.
1516
+ On the other hand, the transition from the rest state to the periodic back-and-forth movement is a Hopf bifurcation:
1517
+ Pitchfork bifurcation (rest/constant-velocity transition) happens when
1518
+ ˜χ = ˜χc + 2a∆N
1519
+ konk(1)
1520
+ off
1521
+ (k(0)
1522
+ off )2
1523
+ (S27)
1524
+ and
1525
+ Γ(˜χ − ˜χc) − k(0)
1526
+ off < 0.
1527
+ (S28)
1528
+ Hopf bifurcation (rest/back-and-forth-motion transition) occurs when
1529
+ ˜χ = ˜χc + k(0)
1530
+ off /Γ
1531
+ (S29)
1532
+ and
1533
+ ˜χ −
1534
+
1535
+ ˜χc + 2a∆N
1536
+ konk(1)
1537
+ off
1538
+ (k(0)
1539
+ off )2
1540
+
1541
+ < 0.
1542
+ (S30)
1543
+ The phase diagram for the motility behavior predicted by this phenomenological model is shown in Fig. S3. It is
1544
+ qualitatively similar to the phase diagrams of the active gel model. The differences are likely due to the approximations
1545
+ we made when constructing the simplified model. For example, assuming a constant cell length and assuming that
1546
+ the dynamics of yc are independent of N and L are likely to have some effects on the detailed shape of the phase
1547
+ boundaries.
1548
+
1549
+ S9
1550
+
1551
+
1552
+
1553
+
1554
+
1555
+
1556
+
1557
+ ��
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+ ���
1565
+ ���
1566
+ ���
1567
+ ���
1568
+ ���
1569
+ ���
1570
+ ���
1571
+ ���
1572
+ ���
1573
+
1574
+ ���
1575
+ ���
1576
+ ��
1577
+ ���
1578
+ ���
1579
+ ����
1580
+ ����������
1581
+ ��������������
1582
+ ����������
1583
+ FIG. S3. Phase diagram for the motility behavior predicted by the simplified model. The following motility patterns are found:
1584
+ a cell at rest (red squares), a cell moving at constant velocity (green diamonds), a cell performs stick-slip movement (orange
1585
+ triangles), a cell performs back-and-forth movement with stick-slip (at k(1)
1586
+ off /k(0)
1587
+ off slightly greater than those orange triangles so
1588
+ that we cannot show), and a cell performs periodic back-and-forth movement (blue circles). The boundary between the rest and
1589
+ constant velocity movement is ˜χ = ˜χc + 2a∆N
1590
+ konk(1)
1591
+ off
1592
+
1593
+ k(0)
1594
+ off
1595
+ �2 . The boundary between the rest and periodic back-and-forth movement
1596
+ states is ˜χ = ˜χc + k(0)
1597
+ off /Γ.
1598
+ [1] T. Luo, K. Mohan, V. Srivastava, Y. Ren, P.A. Iglesias, and D.N. Robinson, Understanding the cooperative interaction
1599
+ between myosin II and actin cross-linkers mediated by actin filaments during mechanosensation, Biophys. J., 102, 238
1600
+ (2012).
1601
+ [2] E.L. Barnhart, K-C Lee, K. Keren, A. Mogilner, and J.A. Theriot, An adhesion-dependent switch between mechanisms that
1602
+ determine motile cell shape, PLoS Biol., 9, e1001059 (2011).
1603
+ [3] Y-L Wang, Reorganization of actin filament bundles in living fibroblasts, J. Cell Biol., 99, 1478 (1984).
1604
+ [4] P. Recho and L. Truskinovsky, “Cell locomotion in one dimension,” in Physical Models of Cell Motility, pp. 135–197,
1605
+ Springer, 2016.
1606
+
6dAzT4oBgHgl3EQff_zo/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
6tFJT4oBgHgl3EQflyzE/content/tmp_files/2301.11585v1.pdf.txt ADDED
@@ -0,0 +1,577 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+
3
+ Solid-state lithium-ion supercapacitor for voltage control of skyrmions
4
+ Maria Ameziane, Joonatan Huhtasalo, Lukáš Flajšman, Rhodri Mansell and Sebastiaan van
5
+ Dijken
6
+ NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box
7
+ 15100, FI-00076 Aalto, Finland
8
+ Abstract
9
+ Ionic control of magnetism gives rise to high magneto-electric coupling efficiencies at low voltages,
10
+ which is essential for low-power magnetism-based non-conventional computing technologies.
11
+ However, for on-chip applications, magneto-ionic devices typically suffer from slow kinetics, poor
12
+ cyclability, impractical liquid architectures or strong ambient effects. As a route to overcoming these
13
+ problems, we demonstrate an LiPON-based solid-state ionic supercapacitor with a magnetic
14
+ Pt/Co40Fe40B20/Pt thin-film electrode which enables voltage control of a magnetic skyrmion state.
15
+ Skyrmion nucleation and annihilation are caused by Li ion accumulation and depletion at the magnetic
16
+ interface under an applied voltage. The skyrmion density can be controlled through dc applied fields
17
+ or through voltage pulses. The skyrmions are nucleated by single 60-µs voltage pulses and devices are
18
+ cycled 750,000 times without loss of electrical performance. Our results demonstrate a simple and
19
+ robust approach to ionic control of magnetism in spin-based devices.
20
+
21
+
22
+ 2
23
+
24
+ Controlling magnetism through applied voltages would allow for the creation of a new class of low-
25
+ energy non-conventional computing devices. For technological applications the voltage-induced
26
+ changes need to be fast, reversible and have a strong impact on the magnetic system. The ability to
27
+ induce large magnetic effects at small voltages has led to an increasing interest in magneto-ionic
28
+ approaches [1-3]. Previous works have shown that magnetism can be altered ionically through redox
29
+ reactions [4-8], ion intercalation [9-14], or the formation of an electronic double layer at solid-ion liquid
30
+ interfaces [15,16]. Devices exploiting magneto-ionics have been shown to be able to control various
31
+ magnetic properties including the saturation magnetization [4-12], magnetic anisotropy [4-7,15], and
32
+ Dzyaloshinskii-Moriya interaction (DMI) [17,18]. The main technological bottleneck for ionically
33
+ controlled magnetism is the need to apply voltages for extended periods to create sizable effects at
34
+ room temperature.
35
+ Here we take a different approach to ionic control of magnetism by creating a solid-state
36
+ supercapacitor [19-21]. The large capacitance of supercapacitors is generated by ion adsorption on
37
+ the electrodes leading to the creation of an electrical double layer, surface redox reactions or ion
38
+ intercalation. Using a Li-enriched LiPON layer as the ion conduction layer we demonstrate fast,
39
+ reversible, and durable voltage control of magnetism. In particular, we control magnetic skyrmions —
40
+ topologically distinct quasiparticles of interest in magnetic data storage and non-conventional
41
+ computing devices [22-27]. Previously, voltage control of skyrmions has been shown through
42
+ interfacial charge modulation [17,28-33], strain transfer from piezoelectrics [34,35], and locally-applied
43
+ electric fields [36]. By integrating a skyrmion-hosting magnetic thin-film structure with a supercapacitor
44
+ we demonstrate nucleation and annihilation of skyrmions through sub-100 s voltage pulses, a
45
+ continuously controllable skyrmion density and the ability to extensively cycle the magnetic state
46
+ without degradation. The significant improvement in the ability to control skyrmions through applied
47
+ voltages demonstrated here is an important step towards technological applications, particularly
48
+ neuromorphic computing [24-27].
49
+ As shown in Figure 1a, the magnetron-sputtered structure consists of an ionically conducting, 100 nm
50
+ thick Li-enriched lithium phosphorous oxynitride (LiPON) layer sandwiched between a 1 nm SiN/4
51
+ nm Pt top gate electrode and a 2 nm Ta/4 nm Pt/0.9 nm CoFeB (40:40:20)/0.2 nm Pt bottom
52
+ electrode. This structure is patterned into 500 µm x 500 µm crossbar junctions shown in Figure 1b (see
53
+ Methods in SI). Magnetic hysteresis loops of one junction recorded under an applied bias voltage using
54
+ polar magneto-optical Kerr effect (MOKE) microscopy are shown in Figure 1c, with corresponding
55
+ MOKE images depicted in Figure 1d. At negative voltage the positively charged Li ions move away
56
+ from the Pt/CoFeB/Pt electrode leading to a square hysteresis loop and a fully saturated film
57
+ magnetization at 0 mT and +0.7 mT. The zero-voltage state shows a slanted hysteresis loop with
58
+
59
+ 3
60
+
61
+ magnetic stripe domains at 0 mT and a sparse skyrmion state at +0.7 mT. The application of a positive
62
+ voltage slants the hysteresis loop further and it increases the density of the stripe domains (0 mT) and
63
+ skyrmions +0.7 mT). At positive voltage the Li ions move towards the magnetic layer.
64
+
65
+ Figure 1. Materials system and voltage control of magnetism. (a) Schematic of the magneto-ionic
66
+ heterostructure. Voltage is applied to the top gate electrode with the bottom electrode grounded. (b)
67
+ Image of the crossbar sample. Both top and bottom electrodes are 500 m wide. (c) Polar MOKE
68
+ hysteresis loops recorded under 0 V, +2 V and −2 V bias voltage. (d) MOKE microscopy images for
69
+ the same bias voltages under 0 mT and +0.7 mT perpendicular field. The scalebar indicates 10 m.
70
+ To investigate control of the skyrmion density, the voltage was stepped from –1.0 V to +2.0 V and
71
+ back to –1.0 V at 0.1 V intervals (Figure 2). MOKE microscopy images of the CoFeB film at selected
72
+ gate voltages recorded in +0.7 mT perpendicular field are shown in Figure 2a. Starting from a saturated
73
+ magnetization state at –1.0 V, inverse stripe domains form at +0.7 V, followed by the nucleation of
74
+ sparse skyrmions at +0.8 V. The density of the mixed stripe and skyrmion state increases with voltage
75
+ before morphing into a dense skyrmion lattice at +1.6 V. Hereafter, the skyrmion density increases
76
+ further up to +2.0 V. Sweeping the voltage in the opposite direction reduces the skyrmion density
77
+ gradually until all skyrmions are annihilated at –0.6 V. Figure 2b summarizes the skyrmion density
78
+ during the voltage sweep. The hysteresis demonstrates the existence of a memory effect in the device,
79
+ enabling access to a continuous range of skyrmion states, which is a requirement for neuromorphic
80
+ devices. Besides control over skyrmion nucleation and annihilation, the gate voltage also tunes the
81
+ skyrmion size (Figure 2c). The first skyrmions appearing at +0.8 V are large (800 nm) but their size
82
+ decreases continuously up to +2.0 V (600 nm) (see Methods in SI). Sweeping the voltage in the
83
+ negative direction only has a small effect on the skyrmion size. Full reversibility between a reproducible
84
+ skyrmion state and no skyrmions upon repeated voltage cycling is demonstrated in Figure 2d.
85
+
86
+ a
87
+ O Li+
88
+ b
89
+ d
90
+ -2 V
91
+ oV
92
+ +2 V
93
+ Pt4nm
94
+ SiNnm
95
+ 0mT
96
+ MOKE signal (a.u.)
97
+ LiPON100nm
98
+ Pt20.2nm
99
+ CoFeB(40:40:20)0.9nm
100
+ +0.7 mT
101
+ Pt4nm
102
+ oV
103
+ +2 V
104
+ Ta2nm
105
+ -2 V
106
+ -2
107
+ 0
108
+ 2
109
+ 4
110
+ Perpendicular magnetic field (mT4
111
+
112
+
113
+ Figure 2. Voltage dependence of the skyrmion state. (a) Polar MOKE microscopy images recorded
114
+ while sweeping the applied voltage from –1.0 V to +2.0 V and back. The perpendicular magnetic field
115
+ is +0.7 mT. The scalebar corresponds to 10 µm. (b) Skyrmion density during the voltage sweep. (c)
116
+ Average skyrmion radius during the voltage sweep. The error bars show the standard error of the mean
117
+ size. (d) Reversible toggling of the skyrmion density by switching the voltage between –1.0 V and +1.5
118
+ V. The voltage is applied for 1 min before data collection.
119
+ For applications, devices are likely to be controlled by voltage pulses, where the response to both the
120
+ application and removal of a voltage is relevant to the device operation. To investigate the decay of
121
+ the skyrmion state over time at zero-bias voltage, we applied +2.0 V for 1 min to a crossbar junction
122
+ followed by setting the voltage to zero. The skyrmion density as a function of time is shown in Figure
123
+ 3a and MOKE microscopy images at different times are depicted in Figure 3b. The decay constant is
124
+ found to be approximately 8 min.
125
+ To assess the dynamic response of our magneto-ionic device under voltage pulsing, we applied 250
126
+ ms long voltage pulses with magnitudes ranging from +1.7 V to +2.0 V at 500 ms intervals and
127
+ monitored the skyrmion density over time (Figure. 3c). The device was reset to a skyrmion-free state
128
+ between each series of pulses by applying –2 V for 5 s. MOKE microscopy images of the CoFeB film
129
+ taken after 3000 pulses are shown in Figure 3d for four different pulse voltages. Two clear features
130
+
131
+ a
132
+ -1.0V
133
+ OV
134
+ +0.7V
135
+ 2
136
+ 3
137
+ 5
138
+ -0.7V
139
+ -0.5V
140
+ 10
141
+ 9
142
+ 8
143
+ 7
144
+ 6
145
+ b
146
+ c
147
+ 0.8
148
+ 900
149
+ Average skyrmion
150
+ tate
151
+ Skyrmion density
152
+ 0.6
153
+ radius (nm)
154
+ 800
155
+ S
156
+ D
157
+ forward
158
+ 0.4
159
+ forward
160
+ 700
161
+ 0.2
162
+ backward
163
+ 10
164
+ 600
165
+ 0.0
166
+ 3
167
+ S
168
+ 1
169
+ 2
170
+ backward
171
+ -1
172
+ 0
173
+ 1
174
+ 2
175
+ -1
176
+ 0
177
+ 1
178
+ 2
179
+ p
180
+ Voltage (V)
181
+ Voltage (V)
182
+ Skyrmion density
183
+ Voltage (V)
184
+ 0.4
185
+ 0.0
186
+ 1
187
+ 2
188
+ 3
189
+ 4
190
+ 5
191
+ 6
192
+ 7
193
+ Cycle5
194
+
195
+ stand out, firstly that the rate of approach to an equilibrium value is much faster at higher applied
196
+ voltage and secondly that the equilibrium skyrmion density is much higher at higher applied voltage.
197
+ The device shown here was cycled over 50,000 times whilst retaining the voltage control of the
198
+ skyrmion state.
199
+
200
+ Figure 3. Control of skyrmions by voltage pulse number, pulse amplitude and pulse duration. (a) Time
201
+ evolution of the skyrmion density at 0 V after skyrmion nucleation at +2.0 V for 1 min. (b) MOKE
202
+ microscopy images recorded during the retention experiment shown in (a). The scalebar indicates 10
203
+ m. (c) Skyrmion density as a function of voltage pulse number using a pulse duration of 250 ms with
204
+ a 50% duty cycle. The pulse amplitude is varied from +1.7 V to +2.0 V. (d) MOKE microscopy images
205
+ recorded after 3000 pulses for each of the applied voltages. The scalebar indicates 10 m. (e) Skyrmion
206
+ density after applying a single voltage pulse and a sequence of 100 voltage pulses to the uniform
207
+ magnetization state. The amplitude of the pulse is fixed at +10.0 V and the duration of the pulse is
208
+ varied. The 100-pulse sequence has a duty cycle of 10%. (f) MOKE microscopy images recorded after
209
+ 60 µs, 80 µs, 100 µs for both single- and 100 pulses. The scalebar corresponds to 20 µm. All experiments
210
+ used a +0.7 mT perpendicular magnetic field.
211
+ We further exploit the dependence of the skyrmion density on voltage to probe the skyrmion
212
+ nucleation kinetics at shorter timescales. By applying a single pulse of +10 V, we show that the pulse
213
+ width required for skyrmion nucleation can be as low as 60 µs (Figure 3e, blue curve). In these
214
+ experiments, the device was reset by applying a –0.8 V gate voltage for 5 s before each voltage pulse
215
+ and the skyrmion density was recorded for a few seconds after the pulse. For a sequence of 100
216
+
217
+ a
218
+ e
219
+ 0.25
220
+ 0.25
221
+ +2 V
222
+ 1 min
223
+ 0.20
224
+ 0.20
225
+ 0.100
226
+ 1 pulse
227
+ 100 pulses
228
+ 0.15
229
+ 0.15
230
+ decay constant
231
+ density
232
+ 2 ~ 8 min
233
+ 0.10
234
+ 0.010
235
+ 0.10
236
+ skyrmion
237
+ 0.05
238
+ 0.05
239
+ +1.7 V
240
+ +1.8 V
241
+ initial state
242
+ +1.9 V
243
+ 0.001
244
+ 0.00
245
+ +2.0 V
246
+ S
247
+ H
248
+ 0.00
249
+ 0
250
+ 60
251
+ 120
252
+ 180
253
+ 0
254
+ 1000
255
+ 2000
256
+ 3000
257
+ 0
258
+ 40
259
+ 80
260
+ 120
261
+ 160
262
+ 200
263
+ b
264
+ Time (min)
265
+ d
266
+ pulse number
267
+ f
268
+ Pulse duration (μs)
269
+ 0min
270
+ min
271
+ 2.0AY
272
+ 30min
273
+ 80min6
274
+
275
+ identical pulses the number of nucleated skyrmions increase and a pulse duration of just 20 µs is
276
+ already sufficient to nucleate skyrmions (Figure 3e, red curve). MOKE microscopy images of the
277
+ crossbar junction after a pulse or pulse sequence are presented in Figure 3f for pulse durations between
278
+ 60 µs and 100 µs. This is to our knowledge the fastest achieved ionically induced response in a voltage-
279
+ controlled magneto-ionic system at room temperature.
280
+
281
+ Figure 4. Electrical characterization of supercapacitor junctions. (a) Cyclic voltammograms recorded
282
+ for different voltage ranges at 10 mV/s scan rate. (b) Junction current at 0 V as a function of voltage
283
+ range, derived from cyclic voltammetry with a 10 mV/s scan rate. The voltage range is symmetric
284
+ around 0 V. (c) Electrical impedance spectroscopy measurements on a junction using a 100 mV ac
285
+ driving voltage with bias voltages of −2 V, 0 V and +2 V. (d) Cyclic voltammograms at 50 mV/s scan
286
+ rate. An initial cyclic voltammogram (blue) was followed by cycling the junction between −2 V and
287
+ +2 V with a period of 250 ms for 750,000 cycles, after which a second cyclic voltammogram (red) was
288
+ recorded.
289
+ To understand the functioning of the devices we turn to electrical characterization. Cyclic
290
+ voltammograms (CVs) of the supercapacitor structure show a largely rectangular shape with no peaks
291
+ indicative of redox processes (Figure 4a). As shown in Figure 4b, for low voltage ranges the current at
292
+ 0 V is a slowly increasing function of the voltage range with the junction current increasing notably for
293
+ larger voltage ranges. This suggests that both electric double layer and electrochemical mechanisms
294
+ are present, with the electrochemical mechanism dominating at higher voltages [8]. Given the material
295
+ system it is expected that the electrochemical mechanism is intercalation of the Li ions. The
296
+ capacitance of the junction is calculated to be 0.18 F at 1 V/s, which is equivalent to a capacity of 72
297
+ F/cm2, showing large storage capability typical of supercapacitors. In Figure 4c electrical impedance
298
+
299
+ a
300
+ b
301
+ 25
302
+ 30
303
+ EDLi
304
+ Intercalation
305
+ 20
306
+ Current (nA)
307
+ Current (nA)
308
+ 15
309
+ 0
310
+ 10
311
+ 30
312
+ ±100 mV
313
+ ±200 mV
314
+ 5
315
+ ±300 mV
316
+ ±400 mV
317
+ -60
318
+ ±500 mV
319
+ ±1 V
320
+ ±1.5 V
321
+ ±2 V
322
+ 0
323
+ -2
324
+ -1
325
+ 0
326
+ 1
327
+ 2
328
+ 0
329
+ 1
330
+ 2
331
+ 3
332
+ 4
333
+ c
334
+ Voltage (V)
335
+ p
336
+ Voltage range (V)
337
+ 10000
338
+ 300
339
+ initial
340
+ after 750,000 cycles
341
+ 7500
342
+ +2 V
343
+ 150
344
+ urrent (nA)
345
+ (0) (z)wl-
346
+ oV
347
+ -2 V
348
+ 5000
349
+ 0
350
+ -150
351
+ 2500
352
+ -300
353
+ 0
354
+ 2500
355
+ 5000
356
+ 7500
357
+ 10000
358
+ -2
359
+ -1
360
+ 0
361
+ 1
362
+ 2
363
+ Re{Z) (2)
364
+ Voltage (V)7
365
+
366
+ spectroscopy is shown, giving a steep line at lower frequencies as expected from a capacitance-
367
+ dominated device. The supercapacitor system is highly cyclable, with Figure 4d showing the CV (at 50
368
+ mV/s, giving squarer loops than in Figure 4a) before and after cycling 750,000 times with 250 ms pulses
369
+ at ±2V. Moreover, our supercapacitor is intrinsically fast with a characteristic charge/discharge time
370
+ of 560 s. Figure S1 in the SI provides additional information on the electrical properties of the
371
+ supercapacitor structure, including leakage current, open circuit voltage and its electrical impedance
372
+ as a function of frequency.
373
+ The combination of magnetic and electrical data shows that the accumulation or depletion of Li ions
374
+ at the CoFeB/Pt interface causes large changes to the magnetic state at low voltages. Values for the
375
+ perpendicular magnetic anisotropy (Ku) and the Dzyaloshinskii-Moriya interaction constant (D), along
376
+ with saturation magnetization (Ms) and exchange constant (Aex) were estimated from a thin film sample
377
+ with a similar structure (Figure S2 in the SI). Ku and D were found to be 9.96  105 J/m3 and 0.74
378
+ mJ/m2, respectively, which is consistent with the creation of bubble-like magnetic skyrmions in this
379
+ sample at around the sizes seen in Figure 1 and Figure 2 (see Figure S3 in the SI). From our previous
380
+ work [14], the insertion of Li ions at the CoFeB/Pt interface is expected to reduce the perpendicular
381
+ magnetic anisotropy without reducing the magnetization [14], which reduces the energy barrier to
382
+ skyrmion nucleation and stabilizes skyrmions relative to the uniform state [28] (see also SI). One
383
+ interesting feature of the data in Figure 2c is the reduction in skyrmion size with increasing voltage. If
384
+ the system was simply undergoing a reduction in anisotropy, then the skyrmion size is expected to
385
+ increase [28,37]. Instead, a decrease in size is seen, which could either indicate that the skyrmions at
386
+ lower densities are preferentially found at defect sites [38] or that the DMI is also reduced by the
387
+ accumulation of Li ions at the CoFeB/Pt interface [17].
388
+ The time-dependent experiments give insight into the timescales of the phenomena. The decay time
389
+ of the skyrmion state in Figure 3a corresponds to an energy barrier of around 0.38 eV, similar to that
390
+ expected for the thermally activated hopping motion of Li ions within LiPON [14]. To minimize the
391
+ internal electric field within the ion conduction layer there is a thermally activated redistribution of Li
392
+ ions within the layer, causing the skyrmions to consequently annihilate over time. This also explains
393
+ the results of the pulsed experiments in Figure 3c. Here the positive voltage pulses cause the
394
+ accumulation of Li ions at the interface, which decreases the skyrmion nucleation barrier, whilst during
395
+ the off state the accumulated ions decay. The concentration of interfacial Li ions increases with the
396
+ number of voltage pulses until the decay in the off state balances a further increase during the on state.
397
+ For the sub-ms pulses used in Fig. 3e, there is a further effect. Now the barrier for skyrmion nucleation
398
+ is lowered rapidly and then increases again as the Li accumulation decays. However, the nucleation of
399
+ skyrmions occurs on a timescale longer than the voltage pulses, leading to a peak in skyrmion density
400
+
401
+ 8
402
+
403
+ around a second after the pulse (Figure S4 in the SI). Therefore, the speed of the devices is also limited
404
+ by the thermally activated nucleation of the skyrmions.
405
+ Fast and durable voltage control of skyrmions in Li-ion supercapacitor structures, as shown here, offers
406
+ attractive pathways to the implementation of neuromorphic devices such as synapse-based neural
407
+ networks [24] and reservoir computers [25-27]. Proof-of-concepts demonstrating the suitability of
408
+ skyrmion dynamics for neuromorphic computing have thus far utilized magnetic fields or electric
409
+ currents to control the skyrmion state. Voltage gating of a skyrmion-hosting magnetic film provides
410
+ good scalability and energy efficiency in combination with deterministic accumulation/dissipation,
411
+ short-term memory, and nonlinearity. For instance, reversible nucleation and annihilation of skyrmions
412
+ through the application of positive and negative voltages (Figure 2) enables the emulation of synaptic
413
+ weights changes during potentiation and depression, while the decay of the skyrmion state after voltage
414
+ pulsing (Figure 3a,b) provides short-term memory to temporarily store information and trigger outputs
415
+ based on the time-dependent history of voltage inputs. Nonlinearity of voltage-driven skyrmion
416
+ dynamics, which is another key requirement for neuromorphic processing, is demonstrated in our
417
+ supercapacitors by varying the amplitude (Figure 3c,d) and duration (Figure 3e,f) of the voltage pulses.
418
+ Finally, we note that the complex interplay between the dynamics of Li ion migration in the solid-state
419
+ LiPON electrolyte and the ensuing nonlinear dynamics of skyrmions in the thin magnetic film offers
420
+ great flexibility in the design of functional responses and further device optimization.
421
+ In summary, we have shown that skyrmions in a Pt/CoFeB/Pt thin-film structure can be created and
422
+ annihilated in a fully voltage-controlled all-solid-state device via reversible Li ion migration at room
423
+ temperature. The hysteretic behavior of the device with respect to the voltage sweep direction, the
424
+ nonlinear effects observed as a function of voltage pulse number and pulse duration, along with the
425
+ decay behavior at zero-voltage constitute properties suitable for neuromorphic device architectures.
426
+ The use of a supercapacitor enables skyrmion nucleation with single voltage pulses down to 60 s,
427
+ combined with extensive cycling of the junctions. Further downscaling of the device from the 100 nm
428
+ thick solid-state electrolyte used here may allow access to sub-s functionality.
429
+
430
+ Supporting Information
431
+ Methods and additional data, including electrical characterization, measurements to extract magnetic
432
+ parameters, micromagnetic simulations of the skyrmion energy and fast voltage pulsing experiments
433
+ (PDF)
434
+ Corresponding Authors
435
+
436
+ 9
437
+
438
439
440
+ Author Contributions
441
+ M.A., R.M. and S.v.D. conceived the research project. M.A. grew the supercapacitor heterostructures
442
+ and fabricated the crossbar junctions. M.A. conducted the electrical characterization and M.A., L.F.
443
+ and R.M. performed the magnetic measurements. J.H. and R.M. conducted the micromagnetic
444
+ simulations. R.M. and S.v.D. supervised the work. All authors discussed the results. M.A., R.M. and
445
+ S.v.D. wrote the manuscript.
446
+ Notes
447
+ The authors declare no competing interest.
448
+ Acknowledgments
449
+ This work was supported by the Academy of Finland (Grant No. 316857). Lithography was performed
450
+ at the OtaNano-Micronova Nanofabrication Centre, supported by Aalto University. Computational
451
+ resources were provided by the Aalto Science-IT project.
452
+
453
+
454
+ 10
455
+
456
+ References
457
+ [1]
458
+ Nichterwitz, M.; Honnali, S.; Kutuzau, M.; Guo, S.; Zehner, J.; Nielsch, K.; Leistner, K. Advances
459
+ in magneto-ionic materials and perspectives for their application. APL Mater. 2021, 9, 030903.
460
+ [2]
461
+ Gu, Y.; Song, C.; Wang, Q.; Hu, W.; Liu, W.; Pan, F.; Zhang, Z. Emerging opportunities for voltage-
462
+ driven magneto-ionic control in ferroic heterostructures. APL Mater. 2021, 9, 040904.
463
+ [3]
464
+ de Rojas, J.; Quintana, A.; Rius, G.; Stefani, C.; Domingo, N.; Costa-Kräamer, J. L.; Menéndez, E.;
465
+ Sort, J. Voltage control of magnetism with magneto-ionic approaches: Beyond voltage-driven oxygen
466
+ ion migration. Appl. Phys. Lett. 2022, 120, 070501.
467
+ [4]
468
+ Bi, C.; Liu, Y.; Newhouse-Illige, T.; Xu, M.; Rosales, M.; Freeland, J. W.; Mryasov, O.; Zhang, S.;
469
+ te Velthuis, S. G. E.; Wang, W. G. Reversible control of Co magnetism by voltage-induced oxidation.
470
+ Phys. Rev. Lett. 2014, 113, 267202.
471
+ [5]
472
+ Bauer, U.; Yao, L.; Tan, A. J.; Agrawal, P.; Emori, S.; Tuller, H. L.; van Dijken, S.; Beach, G. S. D.
473
+ Magneto-ionic control of interfacial magnetism. Nat. Mater. 2015, 14, 174–181.
474
+ [6]
475
+ Tan, A. J.; Huang, M.; Avci, C. O.; Büttner, F.; Mann, M.; Hu, W.; Mazzoli, C.; Wilkins, S.; Tuller,
476
+ H. L.; Beach, G. S. D. Magneto-ionic control of magnetism using a solid-state proton pump. Nat. Mater.
477
+ 2019, 18, 35–41.
478
+ [7]
479
+ Li, H.-B.; Lu, N.; Zhang, Q.; Wang, Y.; Feng, D.; Chen, T.; Yang, S.; Duan, Z.; Li, Z.; Shi, Y.; Wang,
480
+ W.; Wang, W.-H.; Jin, K.; Liu, H.; Ma, J.; Gu, L.; Nan, C.; Yu, P. Electric-field control of ferromagnetism
481
+ through oxygen ion gating. Nat. Commun. 2017, 8, 2156.
482
+ [8]
483
+ Molinari, A.; Leufke, P. M.; Reitz, C.; Dasgupta, S.; Witte, R.; Kruk, R.; Hahn, H. Hybrid
484
+ supercapacitors for reversible control of magnetism. Nat. Commun. 2017, 8, 15339.
485
+ [9]
486
+ Dasgupta, S.; Das, B.; Knapp, M.; Brand, R. A.; Ehrenberg, H.; Kruk, R.; Hahn, H. Intercalation-
487
+ driven reversible control of magnetism in bulk ferromagnets. Adv. Mater. 2014, 26, 4639.
488
+ [10] Zhang, Q.; Luo, X.; Wang, L.; Zhang, L.; Khalid, B.; Gong, J.; Wu, H. Lithium-ion battery cycling
489
+ for magnetism control. Nano Lett. 2016, 16, 583.
490
+ [11] Lu, N.; Zhang, P.; Zhang, Q.; Qiao, R.; He, Q.; Li, H.-B.; Wang, Y.; Guo, J.; Zhang, D.; Duan, Z.;
491
+ Li, Z.; Wang, M.; Yang, S.; Yan, M.; Arenholz, E.; Zhou, S.; Yang, W.; Gu, L.; Nan, C.-W.; Wu, J.; Tokura,
492
+ Y.; Yu, P. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature
493
+ 2017, 546, 124.
494
+
495
+ 11
496
+
497
+ [12] de Rojas, J.; Quintana, A.; Lopeandía, A.; Salguero, J.; Muñiz, B.; Ibrahim, F.; Chshiev, M.;
498
+ Nicolenco, A.; Liedke, M. O.; Butterling, M.; Wagner, A.; Sireus, V.; Abad, L.; Jensen, C. J.; Liu, K.;
499
+ Nogués, J.; Costa-Krämer, J. L.; Menéndez, E.; Sort J. Voltage-driven motion of nitrogen ions: A new
500
+ paradigm for magneto-ionics. Nat. Commun. 2020, 11, 5871.
501
+ [13] Huang, M.; Hasan, M. U.; Klyukin, K.; Zhang, D.; Lyu, D.; Gargiani, P.; Valvidares, M.; Sheffels,
502
+ S.; Churikova, A.; Büttner, F.; Zehner, J.; Caretta, L.; Lee, K.-Y.; Chang, J.; Wang, J.-P.; Leistner, K.;
503
+ Yildiz, B.; Beach, G. S. D. Voltage control of ferrimagnetic order and voltage-assisted writing of
504
+ ferrimagnetic spin textures. Nat. Nanotechnol. 2021, 16, 981.
505
+ [14] Ameziane, M.; Mansell, R.; Havu, V.; Rinke, P.; van Dijken, S. Lithium-ion battery technology for
506
+ voltage control of perpendicular magnetization. Adv. Funct. Mater. 2022, 32, 2113118.
507
+ [15] Weisheit, M.; Fähler, S.; Marty, A.; Souche, Y.; Poinsignon, C.; Givord, D. Electric field-induced
508
+ modification of magnetism in thin-film ferromagnets. Science 2007, 315, 349–351.
509
+ [16] Molinari, A.; Hahn, H.; Kruk, R. Voltage-control of magnetism in all-solid-state and solid/liquid
510
+ magnetoelectric composites. Adv. Mater. 2019, 31, 1806662.
511
+ [17] Srivastava, T.; Schott, M.; Juge, R.; Křižáková, V.; Belmeguenai, M.; Roussigné, Y.; Bernand-
512
+ Mantel, A.; Ranno, L.; Pizzini, S.; Chérif, S.-M.; Stashkevich, A.; Auffret, S.; Boulle, O.; Gaudin, G.;
513
+ Chshiev, M.; Baraduc, C.; Béa, H. Large-voltage tuning of Dzyaloshinskii–Moriya interactions: A route
514
+ toward dynamic control of skyrmion chirality. Nano Lett. 2018, 18, 4871–4877.
515
+ [18] Herrera Diez, L.; Liu, Y. T.; Gilbert, D. A.; Belmeguenai, M.; Vogel, J.; Pizzini, S.; Martinez, E.;
516
+ Lamperti, A.; Mohammedi, J. B.; Laborieux, A.; Roussigné, Y.; Grutter, A. J.; Arenholtz, E.; Quarterman,
517
+ P.; Maranville, B.; Ono, S.; Salah El Hadri, M.; Tolley, R.; Fullerton, E. E.; Sanchez-Tejerina, L.;
518
+ Stashkevich, A.; Chérif, S. M.; Kent, A. D.; Querlioz, D.; Langer, J.; Ocker, B.; Ravelosona, D. Nonvolatile
519
+ ionic modification of the Dzyaloshinskii-Moriya interaction. Phys. Rev. Appl. 2019, 12, 034005.
520
+ [19] Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat.
521
+ Mater. 2020, 19, 1151–1163.
522
+ [20] Sallaz, V.; Oukassi, S.; Voiron, F.; Salot, R.; Berardan, D. Assessing the potential of LiPON-based
523
+ electrical double layer microsupercapacitors for on-chip power storage. J. Power Sources 2020, 451,
524
+ 227786.
525
+ [21] Park, J.; Kim, W. History and perspectives on ultrafast supercapacitors for ac line filtering. Adv.
526
+ Energy Mater. 2021, 11, 2003306.
527
+ [22] Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.
528
+
529
+ 12
530
+
531
+ [23] Zázvorka, J.; Jakobs, F.; Heinze, D.; Keil, N.; Kromin, S.; Jaiswal, S.; Litzius, K.; Jakob, G.; Virnau,
532
+ P.; Pinna, D.; Everschor-Sitte, K.; Rózsa, L.; Donges, A.; Nowak, U.; Kläui, M. Thermal skyrmion
533
+ diffusion used in a reshuffler device. Nat. Nanotechnol. 2019, 14, 658–661.
534
+ [24] Song, K. M.; Jeong, J.-S.; Pan, B.; Zhang, X.; Xia, J.; Cha, S.; Park, T. E.; Kim, K.; Finizio, S.; Raabe,
535
+ J.; Chang, J.; Zhou, Y.; Zhao, W.; Kang, W.; Ju, H.; Woo, S. Skyrmion-based artificial synapses for
536
+ neuromorphic computing. Nat. Electron. 2020, 3, 148–155.
537
+ [25] Pinna, D.; Bourianoff, G.; Everschor-Sitte, K. Reservoir computing with random skyrmion
538
+ textures. Phys. Rev. Appl. 2020, 14, 054020.
539
+ [26] Yokouchi, T.; Sugimoto, S.; 3, Rana, B.; Seki, S.; Ogawa, N.; Shiomi, Y.; Kasai, S.; Otani, Y. Pattern
540
+ recognition with neuromorphic computing using magnetic field-induced dynamics of skyrmions. Sci.
541
+ Adv. 2022, 8, eabq5652.
542
+ [27] Raab, K.; Brems, M. A.; Beneke, G.; Dohi, T.; Rothörl, J.; Kammerbauer, F.; Mentink, J. H.; Kläui,
543
+ M. Brownian reservoir computing realized using geometrically confined skyrmion dynamics. Nat.
544
+ Commun. 2022, 13, 6982.
545
+ [28] Schott, M.; Bernand-Mantel, A.; Ranno, L.; Pizzini, S.; Vogel, J.; Béa, H.; Baraduc, C.; Auffret, S.;
546
+ Gaudin, G.; Givord, D. The skyrmion switch: Turning magnetic skyrmion bubbles on and off with an
547
+ electric field. Nano Lett. 2017, 17, 3006–3012.
548
+ [29] Ma, C.; Zhang, X.; Xia, J.; Ezawa, M.; Jiang, W.; Ono, T.; Piramanayagam, S. N.; Morisako, A.;
549
+ Zhou, Y.; Liu, X. Electric field-induced creation and directional motion of domain walls and skyrmion
550
+ bubbles. Nano Lett. 2019, 19, 353–361.
551
+ [30] Bhattacharya, D.; Razavi, S. A.; Wu, H.; Dai, B.; Wang, K. L.; Atulasimha, J. Creation and
552
+ annihilation of non-volatile fixed magnetic skyrmions using voltage control of magnetic anisotropy.
553
+ Nat. Electron. 2020, 3, 539–545.
554
+ [31] Yang, Q.; Cheng, Y.; Li, Y.; Zhou, Z.; Liang, J.; Zhao, X.; Hu, Z.; Peng, R.; Yang, H.; Liu, M. Voltage
555
+ control of skyrmion bubbles for topological flexible spintronic devices. Adv. Electron. Mater. 2020, 6,
556
+ 2000246.
557
+ [32] Zhou, Y.; Mansell, R.; van Dijken, S. Voltage control of skyrmions: Creation, annihilation, and
558
+ zero-magnetic field stabilization. Appl. Phys. Lett. 2021, 118, 172409.
559
+ [33] Fillion, C.-E.; Fischer, J.; Kumar, R.; Fassatoui, A.; Pizzini, S.; Ranno, L.; Ourdani, D.; Belmeguenai,
560
+ M.; Roussigné, Y.; Chérif, S.-M.; Auffret, S.; Joumard, I.; Boulle, O.; Gaudin, G.; Buda-Prejbeanu, L.;
561
+ Baraduc, C.; Béa, H. Gate-controlled skyrmion and domain wall chirality. Nat. Commun. 2022, 13, 5257.
562
+
563
+ 13
564
+
565
+ [34] Wang, Y.; Wang, L.; Xia, J.; Lai, Z.; Tian, G.; Zhang, X.; Hou, Z.; Gao, X.; Mi, W.; Feng, C.; Zeng,
566
+ M.; Zhou, G.; Yu, G.; Wu, G.; Zhou, Y.; Wang, W.; Zhang, X.-X.; Liu, J. Electric-field-driven non-volatile
567
+ multi-state switching of individual skyrmions in a multiferroic heterostructure. Nat. Commun. 2020, 11,
568
+ 3577.
569
+ [35] Ba, Y.; Zhuang, S.; Zhang, Y.; Wang, Y.; Gao, Y.; Zhou, H.; Chen, M.; Sun, W.; Liu, Q.; Chai, G.;
570
+ Ma, J.; Zhang, Y.; Tian, H.; Du, H.; Jiang, W.; Nan, C.; Hu, J.-M.; Zhao, Y. Electric-field control of
571
+ skyrmions in multiferroic heterostructure via magnetoelectric coupling. Nat. Commun. 2021, 12, 322.
572
+ [36] Hsu, P.-J.; Kubetzka, A.; Finco, A.; Romming, N.; von Bergmann, K.; Wiesendanger, R. Electric-
573
+ field-driven switching of individual magnetic skyrmions. Nat. Nanotechnol. 2017, 12, 123–126.
574
+ [37] Wang, X. S.; Yuan, H. Y; Wang, X. R. A theory on skyrmion size. Commun. Phys. 2018, 1, 31.
575
+ [38] Zhou, Y.; Mansell, R.; Valencia, S.; Kronast, F.; van Dijken, S. Temperature dependence of the
576
+ Dzyaloshinskii-Moriya interaction in ultrathin films. Phys. Rev. B 2020, 101, 054433.
577
+
6tFJT4oBgHgl3EQflyzE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
79AzT4oBgHgl3EQfgfxi/content/tmp_files/2301.01469v1.pdf.txt ADDED
@@ -0,0 +1,1864 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Machine Learning-based Signal Quality Assessment
2
+ for Cardiac Volume Monitoring in Electrical
3
+ Impedance Tomography
4
+ Chang Min Hyun1, Tae Jun Jang1, Jeongchan Nam2,
5
+ Hyeuknam Kwon3, Kiwan Jeon4, and Kyunghun Lee5¶
6
+ 1School of Mathematics and Computing (Computational Science and Engineering),
7
+ Yonsei University, Seoul, Republic of Korea.
8
+ 2BiLab, Pangyo, Republic of Korea.
9
+ 3Division of Software, Yonsei University, Wonju, Republic of Korea.
10
+ 4National Institute for Mathematical Sciences, Daejeon, Republic of Korea.
11
+ 5Kyung Hee University, Seoul, Republic of Korea.
12
+ Abstract.
13
+ Owing to recent advances in thoracic electrical impedance tomography,
14
+ a patient’s hemodynamic function can be noninvasively and continuously estimated
15
+ in real-time by surveilling a cardiac volume signal associated with stroke volume and
16
+ cardiac output. In clinical applications, however, a cardiac volume signal is often of low
17
+ quality, mainly because of the patient’s deliberate movements or inevitable motions
18
+ during clinical interventions.
19
+ This study aims to develop a signal quality indexing
20
+ method that assesses the influence of motion artifacts on transient cardiac volume
21
+ signals. The assessment is performed on each cardiac cycle to take advantage of the
22
+ periodicity and regularity in cardiac volume changes.
23
+ Time intervals are identified
24
+ using the synchronized electrocardiography system.
25
+ We apply divergent machine-
26
+ learning methods, which can be sorted into discriminative-model and manifold-learning
27
+ approaches. The use of machine-learning could be suitable for our real-time monitoring
28
+ application that requires fast inference and automation as well as high accuracy. In
29
+ the clinical environment, the proposed method can be utilized to provide immediate
30
+ warnings so that clinicians can minimize confusion regarding patients’ conditions,
31
+ reduce clinical resource utilization, and improve the confidence level of the monitoring
32
+ system.
33
+ Numerous experiments using actual EIT data validate the capability of
34
+ cardiac volume signals degraded by motion artifacts to be accurately and automatically
35
+ assessed in real-time by machine learning. The best model achieved an accuracy of 0.95,
36
+ positive and negative predictive values of 0.96 and 0.86, sensitivity of 0.98, specificity
37
+ of 0.77, and AUC of 0.96.
38
+ ¶ To whom correspondence should be addressed ([email protected])
39
+ arXiv:2301.01469v1 [eess.SP] 4 Jan 2023
40
+
41
+ 2
42
+ 1. Introduction
43
+ Over several decades, continued advances in electrical impedance tomography (EIT)
44
+ have expanded the clinical capability of real-time cardiopulmonary monitoring systems
45
+ by overcoming the limitations of traditional methods, such as cardiac catheterization
46
+ through blood vessels [3, 8, 18, 19, 28, 29, 37, 41, 57]. Recently, based on thoracic EIT,
47
+ a patient’s hemodynamic function can be noninvasively and continuously estimated
48
+ in real-time by surveilling a signal extracted using EIT, the so-called cardiac volume
49
+ signal (CVS), which has a strong relationship with key hemodynamic factors such
50
+ as stroke volume and cardiac output [4, 27, 51].
51
+ In clinical applications, however, a
52
+ cardiac volume signal is often of low quality, mainly because of the patient’s deliberate
53
+ movements or inevitable motions during clinical interventions such as medical treatment
54
+ and nursing.
55
+ Because postural change causes movement of the chest boundary to
56
+ which existing EIT solvers are highly sensitive owing to time-difference-reconstruction
57
+ characteristics [1, 7, 32, 36, 44], motion-induced artifacts are generated in the CVS, as
58
+ shown in Figure 1.
59
+ Figure 1.
60
+ Motion-induced artifacts in cardiac volume monitoring using electrical
61
+ impedance tomography. Patient’s deliberate movements or inevitable motions during
62
+ clinical intervention cause severe artifacts in a cardiac volume signal.
63
+ CVS extraction is to separate a cardiogenic component from the EIT voltage data,
64
+ resulting from current injections at electrodes attached across a human chest. In recent
65
+ studies [27, 39], effective CVS extraction was successful in motion-free measurements
66
+ where voltage data are mainly influenced by air and blood volume changes in the lungs,
67
+ heart, and blood vessels comprehensively, but not by motions. In contrast, achieving
68
+ the cardiogenic component separation in motion-influenced measurements is still a long-
69
+ term challenge. Postural changes in EIT measurements cause strong distortion of the
70
+ voltage data [1, 56] and easily disturb the extraction of relatively weak cardiogenic
71
+ signals [6,33,40].
72
+ Handling motion interference has been a huge challenge in most EIT-based
73
+ techniques for enhancing clinical capability, but not researched much yet [54]. Adler
74
+ et al. [1] and Zhang et al. [56] investigated the negative motion effect in the EIT.
75
+
76
+ w3
77
+ Soleimani et al. [43] and Dai et al. [17] proposed a motion-induced artifact reduction
78
+ method by reconstructing electrode movements along with conductivity changes. Lee et
79
+ al. [36] analyzed motion artifacts in EIT measurements and proposed a subspace-based
80
+ artifact rejection method. Yang et al. [54] suggested the discrete wavelet transform-
81
+ based approach that reduces motion artifacts of three specific types. However, clinical
82
+ motion artifacts are still not effectively addressed because of practical motion’s immense
83
+ diversity and complexity. Accordingly, for the time being, the EIT-based hemodynamic
84
+ monitoring system attempts to be preferentially developed toward filtering motion-
85
+ influenced CVSs rather than recovering them. In the clinical environment, this filtration
86
+ can provide immediate warnings so that clinicians can minimize confusion regarding the
87
+ patient’s condition, reduce clinical resource utilization, and improve the confidence level
88
+ of the monitoring system [16].
89
+ This study aims to develop a signal quality indexing (SQI) method that assesses
90
+ whether motion artifacts influence transient CVSs.
91
+ To take advantage of the
92
+ periodicity and regularity in cardiac volume changes, the assessment is performed
93
+ on each cardiac cycle, whose time intervals are identified using the synchronized
94
+ electrocardiography (ECG) system.
95
+ We leverage machine learning (ML), which
96
+ has provided effective solutions for various biosignal-related tasks through feature
97
+ disentanglement of complicated signals [5,9,14,25,34,47,48,52]. The use of ML could
98
+ be suitable for our real-time monitoring application that requires fast inference and
99
+ automation as well as high accuracy.
100
+ We apply divergent ML methods, which can be sorted into discriminative-model and
101
+ manifold-learning approaches. The discriminative-model approach is first considered,
102
+ where an SQI map is directly trained using a paired dataset of CVS and its label
103
+ [12, 22, 45]. Although this approach provides a high performance on a fixed dataset,
104
+ owing to the class imbalance problem, there is a risk of overfitting on motion-influenced
105
+ CVS data in the scope of generalization or stability [10, 15, 23, 49]. Motion artifacts
106
+ can vary considerably in real circumstances, whereas collecting CVS data in numerous
107
+ motion-influenced cases is practically limited because of the high cost, intensive labor,
108
+ security, and ambiguity in clinical data acquisition and annotation [13, 46, 50, 58].
109
+ To handle this conceivable difficulty, the manifold-learning approach [2, 24, 26, 30] is
110
+ examined as an alternative.
111
+ It does not learn irregular and capricious patterns of
112
+ motion-influenced CVSs and only takes advantage of the learned features from motion-
113
+ free CVSs.
114
+ Numerous experiments have been conducted using actual EIT data.
115
+ Empirical
116
+ results demonstrate that discriminative and manifold-learning models provide accurate
117
+ and automatic detection of motion-influenced CVS in real-time. The best discriminative
118
+ model achieved an accuracy of 0.95, positive and negative predictive values of 0.96 and
119
+ 0.86, sensitivity of 0.98, specificity of 0.77, and AUC of 0.96. The best manifold-learning
120
+ model achieved accuracy of 0.93, positive and negative predictive values of 0.97 and
121
+ 0.71, sensitivity of 0.95, specificity of 0.80, and AUC of 0.95. The discriminative models
122
+ yielded a more powerful SQI performance; in contrast, the manifold-learning models
123
+
124
+ 4
125
+ provided stable outcomes between the training and test sets. Regarding to practical
126
+ applications, the choice of two models relies on what should be emphasized in the
127
+ monitoring system in terms of performance and stability.
128
+ 2. Methods
129
+ 0
130
+ Figure 2. 16-channel system of thoracic EIT and CVS extraction. The EIT machine
131
+ measures voltage differences by injecting currents via electrodes attached along human
132
+ chest.
133
+ A cardiac volume signal xt is extracted by taking suitable weighting w to
134
+ the time-difference transconductance 9gt, which is defined by measured voltage data.
135
+ Here, w is called as a leadforming vector, which is designed to separate a cardiogenic
136
+ trans-conductance change from superposed data 9gt [39].
137
+ This study considers the 16-channel system of the thoracic EIT, where 16 electrodes
138
+ are attached along the human chest (see Figure 2). The EIT system is assumed to be
139
+ synchronized with the ECG system, which provides the time interval for each cardiac
140
+ cycle. The EIT device measures a set of voltage differences by injecting an alternative
141
+ current of I (mA) through pairs of adjacent electrodes while keeping all other electrodes
142
+ insulated. At sampling time t, the following voltages are acquired:
143
+ tV j,k
144
+ t
145
+ : V j,k
146
+ t
147
+ “ U j,k
148
+ t
149
+ ´ U j,k`1
150
+ t
151
+ , j P I, k P Iztj, j ` 1uu
152
+ (1)
153
+ where I is an index set defined by I “ t1, 2, ¨ ¨ ¨ , 16u, Ek is the k-th electrode, and U j,k
154
+ t
155
+ is the electrical potential on Ek subject to the current injection from Ej to Ej`1. For
156
+ notational convenience, E0 and E17 can be understood as E16 and E1, respectively. Once
157
+ the current is injected from Ej to Ej`1 for some j P I, the voltage is measured at each of
158
+ the 16 adjacent electrode pairs pEk, Ek`1qkPI. Among the 16 voltages, V j,j´1
159
+ t
160
+ , V j,j
161
+ t
162
+ , and
163
+ V j,j`1
164
+ t
165
+ are discarded to reduce the influence of the skin-electrode contact impedance [44].
166
+ Because we perform 16 independent current injections, in total, 208 p“ 16ˆ13q voltages
167
+ are obtained and used to produce the CVS.
168
+
169
+ Electrode
170
+ positionElectrode
171
+ positionElectrode
172
+ positionCardiac
173
+ Volt
174
+ ume
175
+ Sig
176
+ gna
177
+ &t5
178
+ 2.1. CVS Extraction Using EIT and Influence of Motion
179
+ A transconductance (column) vector gt P R208 can be defined using the voltage data (1)
180
+ as follows:
181
+ gt “
182
+
183
+ I
184
+ RpV 1,3
185
+ t
186
+ q
187
+ , ¨ ¨ ¨ ,
188
+ I
189
+ RpV 1,15
190
+ t
191
+ q
192
+ , ¨ ¨ ¨ ,
193
+ I
194
+ RpV 16,2
195
+ t
196
+ q
197
+ , ¨ ¨ ¨
198
+ I
199
+ RpV 16,14
200
+ t
201
+ q
202
+ ȷT
203
+ (2)
204
+ where T represents the vector transpose and R is an operation for extracting the real
205
+ part of a complex number. Here, gt is updated every 10ms.
206
+ A CVS, denoted by xt P R, is obtained by
207
+ xt “ wT 9gt
208
+ (3)
209
+ where w P R208 is a weighting (so-called leadforming) vector and 9gt is time difference
210
+ of gt given by
211
+ 9gt “ gt ´ gt0 for reference time t0
212
+ (4)
213
+ In the absence of motion, the transconductance 9gt can be expressed by
214
+ 9gt “ 9gair
215
+ t
216
+ ` 9gblood
217
+ t
218
+ (5)
219
+ where gair
220
+ t
221
+ and gblood
222
+ t
223
+ are transconductance vectors related to air and blood volume
224
+ changes in the lungs and heart, respectively. The weighting vector w is designed to
225
+ provide
226
+ wT 9gt “ wTp 9gair
227
+ t
228
+ ` 9gblood
229
+ t
230
+ q “ wT 9gblood
231
+ t
232
+ (6)
233
+ See Figure 2.
234
+ Kindly refer to [39] for details on determining w.
235
+ Even though the
236
+ cardiogenic signal gblood
237
+ t
238
+ is weak, it can be accurately decomposed from the data gt.
239
+ In light of the previous analysis in [36], the following explains why the quality of the
240
+ CVS is degraded by motion, as shown in the middle part of Figure 1. In the presence
241
+ of motion, the transconductance 9gt can be approximated by
242
+ 9gt « 9gnormal
243
+ t
244
+ ` 9gmotion
245
+ t
246
+ (7)
247
+ where 9gnormal
248
+ t
249
+ “ 9gair
250
+ t ` 9gblood
251
+ t
252
+ and 9gmotion
253
+ t
254
+ is the motion-induced effect. Appendix Appendix
255
+ A presents details of (7). Determining the vector w itself can be considerably affected
256
+ by motion artifacts [39]. Moreover, even if w satisfies (6), we have
257
+ xt “ wT 9gt « xnormal
258
+ t
259
+ ` xmotion
260
+ t
261
+ (8)
262
+ where xnormal
263
+ t
264
+ “ wT 9gblood
265
+ t
266
+ and xmotion
267
+ t
268
+ “ wT 9gmotion
269
+ t
270
+ . The last term xmotion
271
+ t
272
+ describes
273
+ motion artifacts in the CVS.
274
+ 2.2. CVS Quality Assessment and Data Preprocessing
275
+ This study aims to assess the CVS (xt) for detecting motion-induced signal quality
276
+ degradation.
277
+ See Figure 3.
278
+ This can be accomplished by developing an SQI map
279
+ f : xt ÞÑ yt such that
280
+ fpxtq “ yt “
281
+ #
282
+ 1
283
+ if xmotion
284
+ t
285
+ « 0
286
+ 0
287
+ if xmotion
288
+ t
289
+ ff 0
290
+ (9)
291
+
292
+ 6
293
+ Figure 3. Schematic description of machine learning-based signal quality assessment
294
+ for cardiac volume monitoring in electrical impedance tomography.
295
+ However, it is arduous to achieve (9), where the assessment is conducted on an individual
296
+ CVS at every sampling time. Instead, we take advantage of the periodicity and regularity
297
+ of cardiac volume changes according to the heartbeat. The time interval of each cardiac
298
+ cycle is identified using a synchronized ECG system.
299
+ Our quality assessment is conducted on every cardiac cycle of CVS, where a cardiac
300
+ cycle is defined by the time interval consisting of two consecutive ECG R-wave peaks
301
+ as the end points.
302
+ For a given time tcyc, let the interval rtcyc, tcyc ` ∆tcycs be the
303
+ corresponding cardiac cycle, where ∆tcyc is assumed to be ∆tcycle “ 10ms ˆ pv ´ 1q for
304
+ some v P Nzt1u. Here, N denotes the set of positive integers. A vector gathering all
305
+ CVSs during the cycle, denoted by Xtcyc P Rv, is defined as
306
+ Xtcyc “
307
+
308
+ xtcyc, xtcyc`10ms, ¨ ¨ ¨ , xtcyc`10msˆpv´1q
309
+ ıT
310
+ (10)
311
+ The map f in (9) can be modified into
312
+ fpXtcycq “ yt “
313
+ #
314
+ 1
315
+ for normal Xtcyc
316
+ 0
317
+ for motion-influenced Xtcyc
318
+ (11)
319
+ To find f in (11), we leverage ML, which can learn the domain knowledge of normal
320
+ and motion-influenced CVSs from a training dataset of N data pairs tXpiq, ypiquN
321
+ i“1.
322
+ Prior to ML applications, the following issues need to be addressed in the CVS data.
323
+ First, CVSs have significant inter-subject and intra-subject variability. This is because
324
+ cardiac volume varies depending on various factors, including sex, age, condition,
325
+ time, and body temperature.
326
+ Therefore, scale normalization is required to enhance
327
+ the stability and performance of ML while mitigating the high learning complexity
328
+ associated with scale-invariant feature extraction [20,53]. Second, the dimensions of the
329
+ input CVS data in (11) do not match each other (i.e., v is not constant) owing to heart
330
+ rate variability [11]. Because most existing ML methods are based on an input with
331
+ consistent dimensions, size normalization is required. Figure 4 schematically illustrates
332
+ the overall process.
333
+
334
+ diac
335
+ C
336
+ ar
337
+ ycle+202107.21
338
+ 500M
339
+ 73
340
+ 37
341
+ 5.5
342
+ 2.7
343
+ 13
344
+ 2726
345
+ 75
346
+ 97
347
+ BiLab
348
+ HemoVistaSignal
349
+ Cardiac
350
+ Volume
351
+ CVsHighcycleCVSAcguisitionHigh
352
+ SQ1LoW
353
+ TOScycle7
354
+ Figure 4. From the monitoring system, electrocadiography and cardiac volume signals
355
+ are obtained. By identifying a cardiac cycle through electrocadiography data (R-wave
356
+ peak detection), we extract cardiac volume signals at the corresponding cycle and then
357
+ lastly apply normalization in terms of scale and size.
358
+ 2.2.1. Scale normalization
359
+ A simple method of normalizing the scale is to rescale the
360
+ CVS data for individual cardiac cycles. Specifically, for a given CVS vector Xtcyc P Rv,
361
+ the scaling factor S is obtained using
362
+ S “ max
363
+ iPV |xtcyc`10ˆi(ms)|
364
+ (12)
365
+ where the index set V is given by V “ t0, 1, ¨ ¨ ¨ , v ´ 1u. Normalized CVS data, denoted
366
+ by Xtcyc, are obtained by
367
+ Xtcyc “ Xtcyc
368
+ S
369
+ (13)
370
+ However, this scaling may not be appropriate to our application for the following reason.
371
+ Abnormalities in CVS data include sudden increases or decreases in signal amplitude
372
+ as well as irregular deformations of the shape profile. The normalization in (13) can
373
+ contribute to ignoring rapid amplitude changes.
374
+ This study uses the following subject-specific scale normalization strategy. When
375
+ the EIT device is used to monitor a certain subject, it is supposed that during the initial
376
+ 20s calibration process, the device measures the normal CVS data available for scale
377
+ normalization. Let X subject be a set of corresponding CVSs given by
378
+ X subject “ tx10ˆi(ms) : i “ ´1999, ´1998, ¨ ¨ ¨ , ´1u
379
+ (14)
380
+ Using the set X subject, a subject-specific scaling factor Ssubject is obtained by
381
+ Ssubject “
382
+ max
383
+ xPXsubject|x|
384
+ (15)
385
+ This scale factor Ssubject is used for the normalization in (13) instead of the naive factor
386
+ S in (12).
387
+
388
+ C
389
+ Vol
390
+ Si
391
+ ardiac
392
+ ume
393
+ gnalectrocardiography
394
+ Si
395
+ gnaardiac
396
+ CycleAt
397
+ ycle1.00
398
+ 0.75
399
+ 0.50
400
+ 0.25
401
+ 0.00
402
+ 0.25
403
+ 0.50
404
+ 0.75
405
+ 0
406
+ 50
407
+ 100
408
+ 150tX
409
+ 1f
410
+ cyc202107.21
411
+ 500M
412
+ 73
413
+ 37
414
+ 5.5
415
+ 2.7
416
+ 13
417
+ 2726
418
+ 75
419
+ 97
420
+ BiLab
421
+ HemoVista8
422
+ 2.2.2. Size normalization
423
+ To make the dimensions of the CVS data consistent, a CVS
424
+ vector Xtcyc is embedded into Rν for a fixed constant ν. In the empirical experiment,
425
+ the embedding space dimension was to be larger than any dimension of the CVS data
426
+ in our dataset (ν “ 150).
427
+ Two normalization methods are considered. The first approach is to resample ν
428
+ points using linear interpolation with v data points in Xt. For the stationary interval
429
+ r0, 1s, the following linear interpolation function L is constructed:
430
+ Lp
431
+ i
432
+ v ´ 1q “ xtcyc`10(ms)ˆpi´1q for i “ 0, ¨ ¨ ¨ , v ´ 1
433
+ (16)
434
+ Subsequently, we obtain the normalized vector Xtcyc P Rν using
435
+ Xtcyc “
436
+
437
+ Lp0q, Lp
438
+ 1
439
+ ν ´ 1q, Lp
440
+ 2
441
+ ν ´ 1q, ¨ ¨ ¨ , Lp1q
442
+ ȷT
443
+ (17)
444
+ This method normalizes the signal profile of CVS data into the desired length (ν)
445
+ with no significant loss, but loses sampling time information. Second, the last value in
446
+ Xtcyc (i.e., xtcyc`10(ms)ˆpv´1q) is padded up to the desired length. This constant padding
447
+ provides a vector Xtcyc P Rν, expressed by
448
+ Xtcyc “r xtcyc, ¨ ¨ ¨ , xtcyc`10(ms)ˆpv´2q, xtcyc`10(ms)ˆpv´1q,
449
+ (18)
450
+ xtcyc`10(ms)ˆpv´1q, ¨ ¨ ¨ , xtcyc`10(ms)ˆpv´1q sT
451
+ (19)
452
+ where the part (19) corresponds to the padding. In contrast to the first method, this
453
+ normalization can preserve time information regarding sampling frequency, whereas the
454
+ core profile of the CVS is supported at different time intervals.
455
+ 2.3. Machine Learning Application
456
+ At this point, we are ready to apply ML for determining the SQI function (11). Collected
457
+ from various subjects and cardiac cycles, the following dataset is used:
458
+ tX
459
+ piq, ypiquN
460
+ i“1
461
+ (20)
462
+ where ypiq is the SQI label corresponding to X
463
+ piq. We note that X is the CVS data for
464
+ a cardiac cycle of some subjects and is normalized for both scale and size. In practice,
465
+ the available training dataset (20) was highly imbalanced, where there were relatively
466
+ few negative samples (motion-influenced CVSs).
467
+ 2.3.1. Discriminative-model approach
468
+ The discriminative-model approach trains the
469
+ SQI map f : X ÞÑ y in the following sense:
470
+ f “ argmin
471
+ fPF
472
+ 1
473
+ N
474
+ N
475
+ ÿ
476
+ i“1
477
+ distpfpX
478
+ piqq, ypiqq
479
+ (21)
480
+
481
+ 9
482
+ (b) Manifold-learning Approach
483
+ (a) Discriminative-model Approach
484
+ Figure 5. (a) Discriminative-model approach learns a signal quality indexing map
485
+ f by using CVS and label data. (b) Manifold-learning approach first learns common
486
+ features of normal CVS data by finding a low dimensional manifold Mnormal. Signal
487
+ quality assessment is based on computing the residual between original CVS data and
488
+ projected one onto or near the learned manifold.
489
+ where F is a set of learnable functions for a given ML model and dist is a metric that
490
+ measures the difference between the ML output fpXq and label y. See Figure 5 (a). In
491
+ our application with high class-imbalance, the following weighted cross-entropy can be
492
+ used:
493
+ distpfpXq, yq “ ´ζposylogpfpXqq ´ ζnegp1 ´ yqlogp1 ´ fpXqq
494
+ (22)
495
+ where ζpos and ζneg are the relative ratios of the positive and negative samples,
496
+ respectively. Various classification models can be used, such as the logistic regression
497
+ model (LR) [12], multi-layer perceptron (MLP) [22], and convolutional neural networks
498
+ (CNN) [45]. Detailed models used in this study are explained in Appendix Appendix
499
+ B.1.
500
+ The discriminative model approach is a powerful method to guarantee high
501
+ performance in a fixed dataset. However, it might suffer from providing stable SQI
502
+ results in clinical practice because of highly variable negative samples. This is because
503
+ these methods take advantage of learned information using only a few negative samples
504
+ [10, 15, 23, 49].
505
+ To achieve stable prediction, the manifold-learning approach can be
506
+ alternatively used [13,50,58].
507
+ 2.3.2.
508
+ Manifold-learning approach The manifold-learning approach learns common
509
+ features from positive samples (i.e., normal CVS) and uses them to develop an SQI
510
+ map. The remaining negative samples are utilized as auxiliary means for selecting a
511
+ hyperparameter. Figure 5 (b) shows a schematic description of this process.
512
+
513
+ Not
514
+ uisectrainingP
515
+ rojectionCITraininganifoldmrma.R.
516
+ eso
517
+ ta10
518
+ A set of positive samples is denoted by tX
519
+ piq
520
+ posu
521
+ Npos
522
+ i“1 , where Npos denotes the number
523
+ of positive samples. In the first step, we learn a low-dimensional representation of Xpos
524
+ by training an encoder E : Xpos ÞÑ z and decoder D : z ÞÑ Xpos in the following
525
+ sense [21,26]:
526
+ pD, Eq “ argmin
527
+ pD,Eq
528
+ 1
529
+ Npos
530
+ Npos
531
+ ÿ
532
+ i“1
533
+ }D ˝ EpX
534
+ piq
535
+ posq ´ X
536
+ piq
537
+ pos}2
538
+ 2
539
+ (23)
540
+ where z is a low dimensional latent vector and } ¨ }2 is the standard Euclidean norm.
541
+ The architectures D and E can be used in PCA [26], VAE [30], and β-VAE [24]. See
542
+ more details in Appendix Appendix B.2.
543
+ Borrowing the idea from [2], an SQI map f is constructed as follows: For a given
544
+ CVS data X in any class, a residual r is computed by
545
+ r “ }X ´ D ˝ EpXq}2
546
+ (24)
547
+ The decoder D is trained to generate normal CVS-like output. In other words, operation
548
+ D˝E transforms X to lie in or near the learned manifold using normal CVS data [44,55].
549
+ Therefore, the residual r can be viewed as an anomaly score, where r is small if X is
550
+ normal CVS data, and large if X is motion-influenced CVS data. For some non-negative
551
+ constant d, an SQI map f can be constructed using
552
+ fpXtq “
553
+ #
554
+ 1
555
+ if r ď d
556
+ 0
557
+ if r ą d
558
+ (25)
559
+ The remainder of this subsection explains how the thresholding value d is
560
+ determined by utilizing negative samples as well as positive.
561
+ By varying d from 0
562
+ to 8, a receiver operating characteristic (ROC) curve is calculated, where a point in the
563
+ ROC curve is obtained using a fixed d. We choose d such that maximizing Youden’s J
564
+ statistics, which is known as an unbiased metric in the class imbalance case [42]. The
565
+ value J is given by
566
+ J d “ Sensitivityd ` Specificityd ´ 1
567
+ (26)
568
+ where
569
+ Sensitivityd “
570
+ N d
571
+ TP
572
+ N d
573
+ TP ` N d
574
+ FN
575
+ and Specificityd “
576
+ N d
577
+ TN
578
+ N d
579
+ TN ` N d
580
+ FP
581
+ (27)
582
+ Here, N d
583
+ TP, N d
584
+ TN, N d
585
+ FP, and N d
586
+ FN respectively represent the number of true positives, true
587
+ negatives, false positives, and false negatives for predictions depending on a selected
588
+ threshold value d.
589
+ 3. Results
590
+ 3.1. Data Acquisition and Experimental Setting
591
+ Our dataset was obtained from healthy volunteers using an EIT-based hemodynamic
592
+ monitoring device (HemoVista, BiLab, South Korea). Synchronized ECG data were
593
+
594
+ 11
595
+ obtained with EIT and used to identify the cardiac cycles. While lying in a hospital
596
+ bed, each subject was requested to make intentional motions mimicking postural changes
597
+ in the clinical ward. A total of 16140 CVS data were obtained regarding the cardiac
598
+ cycle.
599
+ Manual labeling was individually performed by two- and ten- years bio-signal
600
+ experts (Nam and Lee). Subsequently, they reviewed the results and made the final
601
+ decision about CVS abnormality through an agreement between them. The final labels
602
+ were annotated into three classes: normal, ambiguous, and motion-influenced. When
603
+ classified as normal or abnormal by both experts with an agreement, CVS data were
604
+ annotated as normal or motion-influenced classes. The ambiguous class stands for CVS
605
+ data in which motion artifacts were included with high possibility, but the experts did
606
+ not reach an explicit agreement about motion influence. The assigned label is y “ 1
607
+ for the normal class and y “ 0 for the other classes. As a result, 12928 (80.09%), 1526
608
+ (9.45%), and 1686 (10.45%) samples were labeled as normal, ambiguous, and motion-
609
+ influenced classes, respectively.
610
+ For ML applications, a total of 16372 CVS data were divided into 13100 (80%),
611
+ 1520 (10%), and 1520 (10%), which were used for training, validation, and testing,
612
+ respectively. The data split was performed such that CVS data obtained from a common
613
+ subject did not exist between the three sets. For the training dataset, labels for the
614
+ ambiguous class were reassigned to y “ 0.25.
615
+ This was done to prevent the over-
616
+ classification of ambiguous classes.
617
+ ML experiments were conducted in a computer system with GeForce RTX 3080
618
+ Ti, Intel® Core™ X-series Processors i9-10900X, and 128GB DDR4 RAM. Python with
619
+ scikit-learn and Pytorch packages were used for the ML implementation. When training
620
+ the ML models, the Adam optimizer was consistently employed, which is an effective
621
+ adaptive stochastic gradient descent method [31]. Hyperparameters such as epoch and
622
+ learning rate were heuristically chosen based on the validation results.
623
+ 3.2. Results of CVS Quality Assessment
624
+ We compared the performance of the ML-based CVS quality assessment results by
625
+ using six metrics: accuracy, positive and negative predictive values (PPV and NPV),
626
+ sensitivity, specificity, and AUC. Accuracy, PPV, and NPV were defined by
627
+ Accuracy “
628
+ NTP ` NTN
629
+ NTP ` NTN ` NFP ` NFN
630
+ , PPV “
631
+ NTP
632
+ NTP ` NFP
633
+ , and NPV “
634
+ NTN
635
+ NTN ` NFN
636
+ (28)
637
+ and AUC was the area under the ROC curve. NPV, specificity, and AUC should be
638
+ emphasized in our evaluation owing to the high-class imbalance (small negative samples).
639
+ 3.2.1. Discriminative Models
640
+ The first and second rows of Tables 1 (a) and (b) show
641
+ the quantitative evaluations of CVS quality assessment using various discriminative
642
+ models: LR, MLPs, and CNNs.
643
+ The results in Tables 1 (a) and (b) differ in size
644
+ normalization: (a) linear interpolation and (b) constant padding.
645
+
646
+ 12
647
+ (a) SQI with scale and size normalization using linear interpolation.
648
+ Discriminative Model
649
+ LR
650
+ MLP1
651
+ MLP2
652
+ VGG16-3
653
+ VGG16-4
654
+ VGG16-5
655
+ Test
656
+ Accuracy
657
+ 0.8665
658
+ 0.9323
659
+ 0.9348
660
+ 0.9468
661
+ 0.9468
662
+ 0.9437
663
+ PPV
664
+ 1.0000
665
+ 0.9790
666
+ 0.9747
667
+ 0.9525
668
+ 0.9605
669
+ 0.9679
670
+ NPV
671
+ 0.1097
672
+ 0.7241
673
+ 0.7445
674
+ 0.9047
675
+ 0.8591
676
+ 0.8083
677
+ Sensitivity
678
+ 0.8643
679
+ 0.9404
680
+ 0.9479
681
+ 0.9866
682
+ 0.9776
683
+ 0.9657
684
+ Specificity
685
+ 1.0000
686
+ 0.8860
687
+ 0.8607
688
+ 0.7215
689
+ 0.7721
690
+ 0.8185
691
+ AUC
692
+ 0.6615
693
+ 0.9506
694
+ 0.9558
695
+ 0.9709
696
+ 0.9645
697
+ 0.9653
698
+ Manifold-learning Model
699
+ PCA
700
+ VAE
701
+ β-VAE
702
+ CVAE
703
+ β-CVAE
704
+ -
705
+ Test
706
+ Accuracy
707
+ 0.8468
708
+ 0.9066
709
+ 0.9221
710
+ 0.9292
711
+ 0.9298
712
+ PPV
713
+ 0.9510
714
+ 0.9687
715
+ 0.9672
716
+ 0.9688
717
+ 0.9739
718
+ NPV
719
+ 0.4573
720
+ 0.6181
721
+ 0.6900
722
+ 0.7100
723
+ 0.7011
724
+ Sensitivity
725
+ 0.8675
726
+ 0.9218
727
+ 0.9439
728
+ 0.9486
729
+ 0.9441
730
+ -
731
+ Specificity
732
+ 0.7142
733
+ 0.8095
734
+ 0.7952
735
+ 0.8047
736
+ 0.8380
737
+ AUC
738
+ 0.8735
739
+ 0.9513
740
+ 0.9489
741
+ 0.9528
742
+ 0.9603
743
+ (b) SQI with scale and size normalization using constant padding.
744
+ Discriminative Model
745
+ LR
746
+ MLP1
747
+ MLP2
748
+ VGG16-3
749
+ VGG16-4
750
+ VGG16-5
751
+ Test
752
+ Accuracy
753
+ 0.8664
754
+ 0.9487
755
+ 0.9518
756
+ 0.9455
757
+ 0.9487
758
+ 0.9500
759
+ PPV
760
+ 1.0000
761
+ 0.9745
762
+ 0.9767
763
+ 0.9533
764
+ 0.9655
765
+ 0.9731
766
+ NPV
767
+ 0.0826
768
+ 0.7851
769
+ 0.8065
770
+ 0.8870
771
+ 0.8433
772
+ 0.8185
773
+ Sensitivity
774
+ 0.8648
775
+ 0.9651
776
+ 0.9666
777
+ 0.9844
778
+ 0.9748
779
+ 0.9681
780
+ Specificity
781
+ 1.0000
782
+ 0.8521
783
+ 0.8652
784
+ 0.7173
785
+ 0.7956
786
+ 0.8434
787
+ AUC
788
+ 0.6628
789
+ 0.9725
790
+ 0.9669
791
+ 0.9782
792
+ 0.9683
793
+ 0.9757
794
+ Manifold-learning Model
795
+ PCA
796
+ VAE
797
+ β-VAE
798
+ CVAE
799
+ β-CVAE
800
+ -
801
+ Test
802
+ Accuracy
803
+ 0.8809
804
+ 0.8918
805
+ 0.9214
806
+ 0.9015
807
+ 0.8861
808
+ PPV
809
+ 0.9590
810
+ 0.9660
811
+ 0.9679
812
+ 0.9731
813
+ 0.9636
814
+ NPV
815
+ 0.5333
816
+ 0.5629
817
+ 0.6694
818
+ 0.5882
819
+ 0.5467
820
+ Sensitivity
821
+ 0.9014
822
+ 0.9074
823
+ 0.9407
824
+ 0.9118
825
+ 0.9029
826
+ -
827
+ Specificity
828
+ 0.7450
829
+ 0.7892
830
+ 0.7941
831
+ 0.8333
832
+ 0.7745
833
+ AUC
834
+ 0.9150
835
+ 0.9206
836
+ 0.9412
837
+ 0.9170
838
+ 0.9041
839
+ Table 1. Machine learning-based CVS quality assessment results
840
+ MLPs and CNNs performed better than LR, which provided miserable NPV and
841
+ AUC. MLPs and CNNs outperformed each other in specificity and NVP respectively,
842
+ while achieving comparable levels for the other metrics.
843
+ There was no significant
844
+ performance gap depending on the size normalization.
845
+ One interesting observation was as follows: In our experiments, there seems to be
846
+ a compensation between specificity and NPV, depending on the emphasis on locality
847
+ and globality. Enriching global information on CVS data positively affected specificity;
848
+ in contrast, local information helped improve NPV. As the receptive field size in
849
+ VGG16 increased (see Appendix Appendix B.1), specificity tended to increase and NPV
850
+ decrease. In MLP, which is more flexible for catching global information than CNNs,
851
+ specificity was highest, and NPV lowest. In other words, the local information of CVS
852
+ data is likely to play a crucial role in reducing false negatives rather than false positives.
853
+ From a practical point of view, reducing false negatives is more desirable; therefore, using
854
+ VGG16-3 or VGG16-4, which have the powerful ability to take advantage of locality,
855
+ can be an excellent option.
856
+ 3.2.2. Manifold-learning Models
857
+ Positive samples in the validation set were used for
858
+ hyperparameter selection in training the encoder and decoder. A threshold value was
859
+ determined by using data from all the training and validation sets.
860
+ Figure 6 shows manifold projection results of test samples in normal and motion-
861
+
862
+ 13
863
+ Figure 6. Test samples and VAE-based projection results for (a) normal and (b)
864
+ motion-influenced CVS data, where the red line is original CVS data and the blue line
865
+ is the correspondent CVS data projected by VAE. By the way, ROC curves for (c)
866
+ VGG 16-4 and (d) β-VAE are provided, where the blue and red lines correspond to
867
+ the curves calculated using training and test sets, respectively.
868
+ influenced classes. An input CVS is projected onto or near a manifold learned by positive
869
+ samples. As desired, the residual (24) tends to be small for normal samples and high
870
+ for motion-influenced samples.
871
+ The third and fourth rows of Tables 1 (a) and (b) show the final assessment
872
+ results using manifold-learning models.
873
+ The performance was comparable to that
874
+ of discriminative models.
875
+ We note that the manifold-learning models never learned
876
+ negative samples for classifier development. As shown in Figure 6 (d), the manifold-
877
+ learning model’s performance gap between training and test sets was very small.
878
+ There was a slight difference in performance for the manifold-learning models
879
+ depending on the size normalization. Linear interpolation promised a slightly better
880
+ assessment of accuracy, NPV, and AUC than the other. For the case of constant padding,
881
+ because core profiles of CVS data are supported at different intervals, the learning
882
+ complexity can be increased, which is associated with invariant feature extraction to
883
+ the intervals. This may cause a slight drop in performance.
884
+ In our dataset, both discriminative and manifold learning models provided accurate
885
+ detection of motion-influenced CVS. The discriminative model yielded a more powerful
886
+ SQI performance; in contrast, the manifold-learning model provided stable outcomes
887
+ between the training and test sets.
888
+ Regarding practical applications, the choice of
889
+ two models relies on what should be emphasized in the monitoring system in terms of
890
+ performance and stability. Their ensemble is also worth considering.
891
+ 3.2.3.
892
+ Impact of Scale Normalization Table 2 shows the worst case when scale
893
+ normalization was not applied.
894
+ In CNNs, network training was very unstable, and
895
+ assessment performance was considerably degraded, especially regarding accuracy, NPV,
896
+ sensitivity, and AUC. In VAEs, large-scale variability of CVS data highly affected
897
+ the loss of accuracy in manifold projection; therefore, the performance significantly
898
+ deteriorated in terms of accuracy, NPV, sensitivity, and AUC. This verifies the impact
899
+ of scale normalization.
900
+
901
+ 3 -
902
+ Real Cycle
903
+ Projected Cycle
904
+ 2
905
+ 1
906
+ 0-
907
+ -1
908
+ 0
909
+ 20
910
+ 40
911
+ 60
912
+ 80
913
+ 100
914
+ 120
915
+ 1401.0
916
+ 0.8
917
+ True Positive Rate
918
+ 0.6
919
+ 0.4
920
+ 0.2
921
+ 0.0
922
+ 0.0
923
+ 0.2
924
+ 0.4
925
+ 0.6
926
+ 0.8
927
+ 1.0
928
+ False PositiveRate1.0
929
+ 0.8
930
+ True Positive Rate
931
+ 0.6
932
+ 0.4
933
+ 0.2
934
+ 0.0
935
+ 0.0
936
+ 0.2
937
+ 0.4
938
+ 0.6
939
+ 0.8
940
+ 1.0
941
+ False PositiveRate0.8
942
+ 0.6
943
+ 0.4
944
+ 0.2
945
+ 0.0
946
+ 0.2
947
+ -0.4
948
+ Real Cycle
949
+ -0.6
950
+ Projected Cycle
951
+ 0
952
+ 20
953
+ 40
954
+ 60
955
+ 80
956
+ 100
957
+ 120
958
+ 140Real Cycle
959
+ Projected Cycle14
960
+ With Scaling
961
+ Without Scaling
962
+ Model
963
+ VGG16-3
964
+ VAE
965
+ VGG16-3
966
+ VAE
967
+ Accuracy
968
+ 0.9468
969
+ 0.9066
970
+ 0.7862
971
+ 0.7509
972
+ PPV
973
+ 0.9525
974
+ 0.9687
975
+ 0.9763
976
+ 0.9668
977
+ NPV
978
+ 0.9047
979
+ 0.6181
980
+ 0.4038
981
+ 0.3327
982
+ Sensitivity
983
+ 0.9886
984
+ 0.9218
985
+ 0.7671
986
+ 0.7373
987
+ Specificity
988
+ 0.7215
989
+ 0.8095
990
+ 0.8945
991
+ 0.8380
992
+ AUC
993
+ 0.9709
994
+ 0.9513
995
+ 0.9067
996
+ 0.8906
997
+ Table 2. Results of machine learning-based CVS quality assessment with and without
998
+ scale normalization.
999
+ Model
1000
+ LR
1001
+ MLP1
1002
+ MLP2
1003
+ VGG16-3
1004
+ VGG16-4
1005
+ Time
1006
+ 0.633µs
1007
+ 1.265µs
1008
+ 0.700µs
1009
+ 1.897µs
1010
+ 3.162µs
1011
+ Model
1012
+ VGG16-5
1013
+ PCA
1014
+ VAE
1015
+ CVAE
1016
+ -
1017
+ Time
1018
+ 3.562µs
1019
+ 48.412µs
1020
+ 3.703µs
1021
+ 15.192µs
1022
+ -
1023
+ Table 3.
1024
+ Test inference time of machine learning-based CVS quality assessment
1025
+ methods.
1026
+ 3.2.4.
1027
+ Inference Time In real-time monitoring, assessment should be performed
1028
+ quickly. The input for the proposed method was updated for every heartbeat in the
1029
+ EIT system. Assuming a subject with a constant 80bpm, the CVS input is updated
1030
+ every 0.75s. Roughly, the assessment should be faster than approximately 10´2s. Table
1031
+ 3 shows the inference time for the test data, calculated by taking the average over the
1032
+ entire test data. The ML models provided a test outcome with inference times between
1033
+ 100µs (10´4s) and 0.1µs (10´7s). This confirms that the proposed method meets the
1034
+ speed requirements for real-time monitoring.
1035
+ 4. Conclusion and Discussion
1036
+ We developed a novel automated SQI method using two machine learning techniques, the
1037
+ discriminative model and manifold learning, to detect abnormal CVS caused by motion-
1038
+ induced artifacts. We discussed how body movement influences the transconductance
1039
+ data and how the resulting CVS is degraded by movement.
1040
+ Numerous experiments
1041
+ support the idea that the proposed method can successfuly filter motion-induced
1042
+ unrealistic variations in CVS data.
1043
+ To the best of our knowledge, this is the first attempt to assess CVS quality to
1044
+ enhance the clinical capability of an EIT-based cardiopulmonary monitoring system.
1045
+ From a practical point of view, the proposed method can alert clinicians about CVS
1046
+ corruption to minimize misinformation about patient safety and facilitate adequate
1047
+ management of patients and medical resources. The proposed method can be combined
1048
+ with a software system for existing EIT devices.
1049
+ The use of only healthy subject data in the training process did not fully consider
1050
+ possible influence of the subject’s illness on CVS. SQI performance might be degraded
1051
+ in patients with illnesses such as arrhythmias, in which irregular deformation may occur
1052
+
1053
+ 15
1054
+ in CVS due to premature ventricular contraction and lead to be classified as low signal
1055
+ quality.
1056
+ However, when ill patient data are available and appended in the training
1057
+ process, a slightly modified SQI can detect the illness and motion by adding another
1058
+ label class. Meanwhile, arrhythmia can be easily detected using ECG signals.
1059
+ A further collection of CVS data could be a strategy for enhancing model
1060
+ generalization or stability toward being equipped with an actual monitoring system.
1061
+ In discriminative models, even with additional data collection, generalization or
1062
+ stability might not be meaningfully improved because the class imbalance problem
1063
+ remains or increases. In contrast, the manifold-learning models can accurately infer
1064
+ common features (i.e., data manifolds) as the total number of normal CVS data grows
1065
+ regardless of class imbalance. In addition, it can be extended into a semi-supervised
1066
+ or unsupervised learning framework [2, 46], which reduces the requirement for labeled
1067
+ datasets. Thus, manifold-learning models might be favorable.
1068
+ Data Availability
1069
+ The data that support the findings of this study are available from the corresponding
1070
+ author, K. Lee, upon reasonable request.
1071
+ Acknowledgements
1072
+ This work was supported by the Ministry of Trade, Industry and Energy (MOTIE) in
1073
+ Korea through the Industrial Strategic Technology Development Program under Grant
1074
+ 20006024. Hyun was supported by Samsung Science & Technology Foundation (No.
1075
+ SRFC-IT1902-09). We are deeply grateful to BiLab (Pangyo, South Korea) for their
1076
+ help and collaboration.
1077
+ Conflict of Interest
1078
+ The authors have no conflicts to disclose.
1079
+ Appendix A. Motion-induced Effect on Trans-conductance
1080
+ In the 16 channel EIT system, the voltage data tV j,k
1081
+ t
1082
+ uj,k in (1) are governed by the
1083
+ following complete electrode model [44]: At time t, the electric potential distribution
1084
+
1085
+ 16
1086
+ (uj
1087
+ t) and electric potential on an electrode (U j,k
1088
+ t ) satisfy
1089
+ $
1090
+
1091
+
1092
+
1093
+
1094
+
1095
+
1096
+
1097
+
1098
+ &
1099
+
1100
+
1101
+
1102
+
1103
+
1104
+
1105
+
1106
+
1107
+ %
1108
+ ∇ ¨ pγt∇uj
1109
+ tq
1110
+ “ 0
1111
+ in Ω Ă R3
1112
+ γt∇uj
1113
+ t ¨ n
1114
+ “ 0
1115
+ on BΩz Ť16
1116
+ i Ek
1117
+ ˆ
1118
+ Ek γt∇uj
1119
+ t ¨ n
1120
+ “ 0
1121
+ for k P Iztj, j ` 1u
1122
+ uj
1123
+ t ` zkpγt∇uj
1124
+ t ¨ nq
1125
+ “ U j,k
1126
+ t
1127
+ on Ek for k P I
1128
+ ˆ
1129
+ Ej γt∇uj
1130
+ t ¨ nds
1131
+ “ ´
1132
+ ˆ
1133
+ Ej`1 γt∇uj
1134
+ t ¨ nds “ I
1135
+ (A.1)
1136
+ where γt is a conductivity distribution in a human chest Ω at t, n is an unit normal
1137
+ vector outward BΩ, ds is a surface element, and zk is a skin-electrode contact impedance
1138
+ on Ek. The amount of electric current I, which is injected to the domain Ω, can be scaled
1139
+ and, thus, assumed to be I “ 1.
1140
+ In the case that the human chest Ω is time-varying owing to motions, Reynolds
1141
+ transport theorem yields the following approximation [39]:
1142
+ 9V j,k
1143
+ t
1144
+ « 9V j,k,normal
1145
+ t
1146
+ ` 9V j,k,motion
1147
+ t
1148
+ (A.2)
1149
+ where
1150
+ 9V j,k,normal
1151
+ t
1152
+ “ ´
1153
+ ˆ
1154
+
1155
+ 9γtprq∇uj
1156
+ tprq ¨ ∇uk
1157
+ t prqdr
1158
+ (A.3)
1159
+ 9V j,k,motion
1160
+ t
1161
+ “ ´
1162
+ ˆ
1163
+ BΩ
1164
+ vnpr, tqγtprq∇uj
1165
+ tprq ¨ ∇uk
1166
+ t prqds
1167
+ (A.4)
1168
+ Here, vn is an outward-normal directional velocity of BΩ and r P Ω is a position vector
1169
+ in Ω. The term 9V j,k,normal
1170
+ t
1171
+ and 9V j,k,motion
1172
+ t
1173
+ can be viewed as voltage data acquirable in
1174
+ normal EIT measurement and motion-induced inference, respectively.
1175
+ A similar relation to (A.2) for trans-conductance can be derived as follows: Let us
1176
+ define a trans-conductance-related value gj,k
1177
+ t
1178
+ by
1179
+ gj,k
1180
+ t
1181
+
1182
+ I
1183
+ RpV j,k
1184
+ t
1185
+ q
1186
+ (A.5)
1187
+ By differentiating gj,k
1188
+ t
1189
+ with respect to t, we obtain
1190
+ 9gj,k
1191
+ t
1192
+ “ ´IRp 9V j,k
1193
+ t
1194
+ q
1195
+ ´
1196
+ RpV j,k
1197
+ t
1198
+ q
1199
+ ¯2 « ´IpRp 9V j,k,normal
1200
+ t
1201
+ q ` Rp 9V j,k,motion
1202
+ t
1203
+ qq
1204
+ ´
1205
+ RpV j,k
1206
+ t
1207
+ q
1208
+ ¯2
1209
+ (A.6)
1210
+ The approximation (A.6) can be expressed as
1211
+ 9gj,k
1212
+ t
1213
+ « 9gj,k,normal
1214
+ t
1215
+ ` 9gj,k,motion
1216
+ t
1217
+ (A.7)
1218
+ where
1219
+ 9gj,k,normal
1220
+ t
1221
+ “ ´IRp 9V j,k,normal
1222
+ t
1223
+ q
1224
+ pRpV j,k
1225
+ t
1226
+ qq2
1227
+ and 9gj,k,motion
1228
+ t
1229
+ “ ´IRp 9V j,k,motion
1230
+ t
1231
+ q
1232
+ pRpV j,k
1233
+ t
1234
+ qq2
1235
+ (A.8)
1236
+
1237
+ 17
1238
+ We note that, in the case of vn “ 0 in (A.4) (i.e., EIT measurement is not affected by
1239
+ motions), the relation (A.6) becomes 9gj,k
1240
+ t
1241
+ “ 9gj,k,normal
1242
+ t
1243
+ by the reason of V j,k,motion
1244
+ t
1245
+ “ 0.
1246
+ In the form of trans-conductance vector, the following approximation holds:
1247
+ 9gt « 9gnormal
1248
+ t
1249
+ ` 9gmotion
1250
+ t
1251
+ (A.9)
1252
+ where
1253
+ 9gnormal
1254
+ t
1255
+
1256
+
1257
+ 9g1,3,normal
1258
+ t
1259
+ , ¨ ¨ ¨ , 9g16,14,normal
1260
+ t
1261
+ ı
1262
+ and 9gmotion
1263
+ t
1264
+
1265
+
1266
+ 9g1,3,motion
1267
+ t
1268
+ , ¨ ¨ ¨ , 9g16,14,motion
1269
+ t
1270
+ ı
1271
+ (A.10)
1272
+ If 9gnormal
1273
+ t
1274
+ satisfies the relation (5), we consequently obtain
1275
+ 9gt « 9gair
1276
+ t
1277
+ ` 9gblood
1278
+ t
1279
+ ` 9gmotion
1280
+ t
1281
+ (A.11)
1282
+ Here, we note that 9gmotion
1283
+ t
1284
+ becomes more significant as motion (i.e., |vn| in (A.4)) is
1285
+ large.
1286
+ Appendix B. Machine Learning Models
1287
+ Appendix B.1. Discriminative Models
1288
+ Logistic Regression (LR)
1289
+ A LR model fLR consists of linear transformation and sigmoid
1290
+ as follows:
1291
+ fLRpXq “ σpwTX ` bq
1292
+ (B.1)
1293
+ where w P R150 and b P R are learnable weight and bias, and σ is a sigmoid function
1294
+ given by σpxq “ p1 ` exppxqq´1.
1295
+ Multilayer Perceptron (MLP)
1296
+ A MLP model fMLP has a hierarchical structure with
1297
+ nonlinearity compared to LR. Each layer consists of linear transformation and nonlinear
1298
+ activation. In our MLP models, ReLU is used in all layers except the last to avoid
1299
+ gradient vanishing [20]. Table B1 shows the architectures of the MLPs used in this
1300
+ study.
1301
+ Convolutional Neural Network (CNN)
1302
+ A CNN model fCNN consists of two paths; 1)
1303
+ feature extraction and 2) classification paths. In this study, the feature extraction path
1304
+ is based on VGG16 [45], as shown in Table B1. The resultant feature map is flattened
1305
+ and then forwarded to the classification path, which is a MLP.
1306
+ The feature extraction path is a series of two convolutional and maxpooling (or
1307
+ flatten) layers, whose depth is associated with receptive field (RF) size of a unit in the
1308
+ last convolutional layer [35]. According to the length of this series, VGG16-3, -4, and -5
1309
+ are defined, where 3, 4, and 5 represent the iteration number of the layers in the series.
1310
+ Here, RFs are given by 32, 68, and 140, respectively.
1311
+
1312
+ 18
1313
+ (a) MLP1 (MLP2)
1314
+ Layer
1315
+ Input Dim
1316
+ Output Dim
1317
+ Activation
1318
+ Linear
1319
+ 150 (150)
1320
+ 150 (150)
1321
+ ReLU
1322
+ Linear
1323
+ 150 (150)
1324
+ 300 (150)
1325
+ ReLU
1326
+ Linear
1327
+ 300 (150)
1328
+ 300 (100)
1329
+ ReLU
1330
+ Linear
1331
+ 300 (100)
1332
+ 150 (50)
1333
+ ReLU
1334
+ Linear
1335
+ 150 (50)
1336
+ 150 (25)
1337
+ ReLU
1338
+ Linear
1339
+ 150 (25)
1340
+ 150 (10)
1341
+ ReLU
1342
+ Linear
1343
+ 150 (10)
1344
+ 1 (1)
1345
+ Sigmoid
1346
+ (b) VGG16-5; [1] Feature extraction and [2] Classification networks
1347
+ Layer
1348
+ Input Dim
1349
+ Output Dim
1350
+ Kernel
1351
+ Activation
1352
+ RF
1353
+ [1]
1354
+ Conv1D
1355
+ 150ˆ1
1356
+ 150ˆ4
1357
+ 3ˆ4
1358
+ ReLU
1359
+ 3
1360
+ Conv1D
1361
+ 150ˆ4
1362
+ 150ˆ4
1363
+ 3ˆ4
1364
+ ReLU
1365
+ 5
1366
+ MaxPool1D
1367
+ 150ˆ4
1368
+ 75ˆ4
1369
+ 2
1370
+ ReLU
1371
+ 6
1372
+ Conv1D
1373
+ 75ˆ4
1374
+ 75ˆ8
1375
+ 3ˆ8
1376
+ ReLU
1377
+ 10
1378
+ Conv1D
1379
+ 75ˆ8
1380
+ 75ˆ8
1381
+ 3ˆ8
1382
+ ReLU
1383
+ 14
1384
+ MaxPool1D
1385
+ 75ˆ8
1386
+ 37ˆ8
1387
+ 2
1388
+ ReLU
1389
+ 16
1390
+ Conv1D
1391
+ 37ˆ8
1392
+ 37ˆ16
1393
+ 3ˆ16
1394
+ ReLU
1395
+ 24
1396
+ Conv1D
1397
+ 37ˆ16
1398
+ 37ˆ16
1399
+ 3ˆ16
1400
+ ReLU
1401
+ 32
1402
+ MaxPool1D
1403
+ 37ˆ16
1404
+ 18ˆ16
1405
+ 2
1406
+ ReLU
1407
+ 36
1408
+ Conv1D
1409
+ 18ˆ16
1410
+ 18ˆ32
1411
+ 3ˆ32
1412
+ ReLU
1413
+ 52
1414
+ Conv1D
1415
+ 18ˆ32
1416
+ 18ˆ32
1417
+ 3ˆ32
1418
+ ReLU
1419
+ 68
1420
+ MaxPool1D
1421
+ 18ˆ32
1422
+ 9ˆ32
1423
+ 2
1424
+ ReLU
1425
+ 76
1426
+ Conv1D
1427
+ 9ˆ32
1428
+ 9ˆ64
1429
+ 3ˆ64
1430
+ ReLU
1431
+ 108
1432
+ Conv1D
1433
+ 9ˆ64
1434
+ 9ˆ64
1435
+ 3ˆ64
1436
+ ReLU
1437
+ 140
1438
+ Flatten
1439
+ 9ˆ64
1440
+ 576ˆ1
1441
+ -
1442
+ -
1443
+ -
1444
+ [2]
1445
+ Linear
1446
+ 576ˆ1
1447
+ 576ˆ1
1448
+ -
1449
+ ReLU
1450
+ -
1451
+ Linear
1452
+ 576ˆ1
1453
+ 1ˆ1
1454
+ -
1455
+ Sigmoid
1456
+ -
1457
+ Table B1. Network architectures; MLP and VGG16-6.
1458
+ Appendix B.2. Manifold-learning Models
1459
+ This subsection explains structures of an encoder E and a decoder D in (23), which were
1460
+ used for the manifold-learning approach described in Section 2.3.2. The dimension of
1461
+ the latent vector z was constantly set as 10 in our experiments.
1462
+ Principal Component Analysis (PCA)
1463
+ PCA learns principal vectors tvi P R150u10
1464
+ i“1 in
1465
+ the following sense: For i “ 1, ¨ ¨ ¨ , 10,
1466
+ vi “ argmax
1467
+ }v}“1
1468
+ }Xiv}2
1469
+ 2 and Xi “ Xi´1 ´ vi´1vT
1470
+ i´1
1471
+ (B.2)
1472
+ where X1 :“ rX
1473
+ p1q
1474
+ pos, X
1475
+ p2q
1476
+ pos, ¨ ¨ ¨ , X
1477
+ pNposq
1478
+ pos
1479
+ sT. For ease of explanation, X1 is assumed to be
1480
+ zero-mean. An encoder Epca and a decoder Dpca are given by
1481
+ EpcapXq “ z :“
1482
+
1483
+ xX, v1y, ¨ ¨ ¨ , xX, v10y
1484
+ ı
1485
+ and Dpcapzq “
1486
+ 10
1487
+ ÿ
1488
+ j“1
1489
+ zivi
1490
+ (B.3)
1491
+ where zi is i-th component of z.
1492
+ Variational Auto-encoder (VAE)
1493
+ Table B2 shows encoder-decoder models for VAE,
1494
+ whose network architecture is based on either MLP or CNN. In VAE, z is given by the
1495
+ following sampling procedure: z “ µ ` σ d znoise and znoise „ Np0, Iq, where µ and σ
1496
+ are substantial outputs generated by a neural network, d is the element-wise product,
1497
+
1498
+ 19
1499
+ (a) VAE
1500
+ Encoder
1501
+ Layer
1502
+ Input Dim
1503
+ Output Dim
1504
+ Activation
1505
+ Linear
1506
+ 150
1507
+ 125
1508
+ ReLU
1509
+ Linear
1510
+ 125
1511
+ 75
1512
+ ReLU
1513
+ Linear
1514
+ 75
1515
+ 50
1516
+ ReLU
1517
+ Linear
1518
+ 50
1519
+ 10ˆ2
1520
+ -
1521
+ Sampling
1522
+ 10ˆ2
1523
+ 10
1524
+ -
1525
+ Decoder
1526
+ Linear
1527
+ 10
1528
+ 50
1529
+ ReLU
1530
+ Linear
1531
+ 50
1532
+ 75
1533
+ ReLU
1534
+ Linear
1535
+ 75
1536
+ 125
1537
+ ReLU
1538
+ Linear
1539
+ 125
1540
+ 150
1541
+ -
1542
+ (b) Convolutional VAE
1543
+ Encoder
1544
+ Layer
1545
+ Input Dim
1546
+ Output Dim
1547
+ Kernel
1548
+ Activation
1549
+ Conv1D
1550
+ 150ˆ1
1551
+ 75ˆ8
1552
+ 3ˆ8
1553
+ ReLU
1554
+ Conv1D
1555
+ 75ˆ8
1556
+ 38ˆ16
1557
+ 3ˆ16
1558
+ ReLU
1559
+ Conv1D
1560
+ 38ˆ16
1561
+ 19ˆ24
1562
+ 3ˆ24
1563
+ ReLU
1564
+ Conv1D
1565
+ 19ˆ24
1566
+ 10ˆ32
1567
+ 3ˆ32
1568
+ ReLU
1569
+ Flattening
1570
+ 10ˆ32
1571
+ 320ˆ1
1572
+ -
1573
+ -
1574
+ Linear
1575
+ 320ˆ1
1576
+ 10ˆ2
1577
+ -
1578
+ -
1579
+ Sampling
1580
+ 10ˆ2
1581
+ 10ˆ1
1582
+ -
1583
+ -
1584
+ Decoder
1585
+ Linear
1586
+ 10ˆ1
1587
+ 320ˆ1
1588
+ -
1589
+ -
1590
+ Reshaping
1591
+ 320ˆ1
1592
+ 10ˆ32
1593
+ -
1594
+ -
1595
+ DeConv1D
1596
+ 10ˆ32
1597
+ 19ˆ24
1598
+ 3ˆ24
1599
+ ReLU
1600
+ DeConv1D
1601
+ 19ˆ24
1602
+ 38ˆ16
1603
+ 3ˆ16
1604
+ ReLU
1605
+ DeConv1D
1606
+ 38ˆ16
1607
+ 75ˆ8
1608
+ 3ˆ8
1609
+ ReLU
1610
+ DeConv1D
1611
+ 75ˆ8
1612
+ 150ˆ8
1613
+ 3ˆ8
1614
+ ReLU
1615
+ Conv1D
1616
+ 150ˆ8
1617
+ 150ˆ1
1618
+ 1ˆ1
1619
+ ReLU
1620
+ Linear
1621
+ 150ˆ1
1622
+ 150ˆ1
1623
+ -
1624
+ Table B2. VAE network architectures.
1625
+ and Np0, Iq is the normal distribution of mean 0 and covariance I. Here, 0 is the zero
1626
+ vector and I is the identity matrix of 10 ˆ 10.
1627
+ For VAE training, the following term is added to the loss function (23):
1628
+ KLpNpµ, Σq}Np0, Iqq “ 1
1629
+ 2
1630
+ 10
1631
+ ÿ
1632
+ i“1
1633
+ pµ2
1634
+ i ` σ2
1635
+ i ´ log σi ´ 1q
1636
+ (B.4)
1637
+ where KL is Kullback-Leibler divergence and Σ is a 10ˆ10 diagonal matrix whose pi, iq
1638
+ entry is σi. This term enables VAE to learn dense and smooth latent space embedding
1639
+ in or near Np0, Iq [30,47,55].
1640
+ β-Variational Auto-encoder (β-VAE)
1641
+ β-VAE differs with VAE in terms of loss function
1642
+ while sharing a model architecture. For some β P R, β ˆ KL is added to the loss (23)
1643
+ instead of (B.4) (i.e., VAE is the case of β “ 1). This simple weighting is known to
1644
+ be advantageous on disentangled representation learning of underlying factors [24]. We
1645
+ determined an optimal β as the empirical best.
1646
+ Table B3 showed SQI performance
1647
+ variation about β in the dataset where the scale and size normalization using linear
1648
+ interpolation were applied.
1649
+ [1] A. Adler, R. Guardo, Y. Berthiaume, “Impedance imaging of lung ventilation: Do we need to
1650
+ account for chest expansion?” IEEE Trans. Biomed. Eng, 43, 414-20, 1996.
1651
+
1652
+ 20
1653
+ β-VAE
1654
+ β-CVAE
1655
+ β “ 1
1656
+ 3
1657
+ β “ 1
1658
+ 2
1659
+ β “ 1
1660
+ β “ 2
1661
+ β “ 3
1662
+ β “ 1
1663
+ 3
1664
+ β “ 1
1665
+ 2
1666
+ β “ 1
1667
+ β “ 2
1668
+ β “ 3
1669
+ Test
1670
+ Accuracy
1671
+ 0.9060
1672
+ 0.9092
1673
+ 0.9066
1674
+ 0.8951
1675
+ 0.9221
1676
+ 0.9208
1677
+ 0.9298
1678
+ 0.9292
1679
+ 0.9195
1680
+ 0.9189
1681
+ PPV
1682
+ 0.9694
1683
+ 0.9680
1684
+ 0.9687
1685
+ 0.9682
1686
+ 0.9672
1687
+ 0.9750
1688
+ 0.9739
1689
+ 0.9688
1690
+ 0.9663
1691
+ 0.9663
1692
+ NPV
1693
+ 0.6151
1694
+ 0.6282
1695
+ 0.6181
1696
+ 0.5802
1697
+ 0.6900
1698
+ 0.6617
1699
+ 0.7011
1700
+ 0.7100
1701
+ 0.6720
1702
+ 0.6693
1703
+ Sensitivity
1704
+ 0.9203
1705
+ 0.9255
1706
+ 0.9218
1707
+ 0.9084
1708
+ 0.9441
1709
+ 0.9322
1710
+ 0.9441
1711
+ 0.9486
1712
+ 0.9397
1713
+ 0.9389
1714
+ Specificity
1715
+ 0.8142
1716
+ 0.8047
1717
+ 0.8095
1718
+ 0.8095
1719
+ 0.7952
1720
+ 0.8476
1721
+ 0.8380
1722
+ 0.8047
1723
+ 0.7904
1724
+ 0.7904
1725
+ AUC
1726
+ 0.9503
1727
+ 0.9439
1728
+ 0.9513
1729
+ 0.9426
1730
+ 0.9489
1731
+ 0.9531
1732
+ 0.9603
1733
+ 0.9528
1734
+ 0.9528
1735
+ 0.9471
1736
+ Table B3. β-VAE performance comparison about varying β.
1737
+ [2] J. An, and S. Cho, “Variational autoencoder based anomaly detection using reconstruction
1738
+ probability,” Special Lecture on IE, 2(1), 1-18, 2015.
1739
+ [3] A. Adler and A. Boyle “Electrical impedance tomography: Tissue properties to image measures,”
1740
+ IEEE Transactions on Biomedical Engineering, 64(11), 2494-2504, 2017.
1741
+ [4] A. T. Askari and A. W. Messerli, “Cardiovascular Hemodynamics”, 2nd ed., Cham, Switzerland:
1742
+ Humana Press, 2019.
1743
+ [5] M. Alfaras, M. C. Soriano, and S. Ortin, “A fast machine learning model for ECG-based heartbeat
1744
+ classification and arrhythmia detection,” Frontiers in Physics, 7, 103, 2019.
1745
+ [6] B. H. Brown et al., “Blood flow imaging using electrical impedance tomography,” Clin. Phys.
1746
+ Physiol. Meas., vol. 13, pp. 175–179, 1992.
1747
+ [7] A. Boyle and A. Adler, “Electrode models under shape deformation in electrical impedance
1748
+ tomography,” Journal of Physics: Conference Series, Vol. 224, No. 1, 2010.
1749
+ [8] J. B. Borges et al., “Regional lung perfusion estimated by electrical impedance tomography in a
1750
+ piglet model of lung collapse,” J. Appl. Physiol., vol. 112, pp. 225-236, 2012.
1751
+ [9] D. Belo, J. Rodrigues, J. R. Vaz, P. Pezarat-Correia, and H. Gamboa, “Biosignals learning and
1752
+ synthesis using deep neural networks,” Biomedical engineering online, 16(1), 1-17, 2017.
1753
+ [10] M. Buda, A. Maki, and M. A. Mazurowski, “A systematic study of the class imbalance problem
1754
+ in convolutional neural networks,” Neural networks, 106, 249-259, 2018.
1755
+ [11] Van Ravenswaaij-Arts, Conny MA, et al., “Heart rate variability”, Annals of internal medicine,
1756
+ 118(6), 436-447, 1993.
1757
+ [12] J. S. Cramer, “The origins of logistic regression,” Tinbergen Institute Working, 4, 2002.
1758
+ [13] O. Chapelle, B. Scholkopf, and A. Zien, “Semi-supervised learning,” (chapelle, o. et al., eds.;
1759
+ 2006)[book reviews]. IEEE Transactions on Neural Networks, 20(3), 542-542, 2009.
1760
+ [14] S. Celin, and K. Vasanth, “ECG signal classification using various machine learning techniques,”
1761
+ Journal of medical systems, 42(12), 1-11, 2018.
1762
+ [15] K. Cao, C. Wei, A. Gaidon, N. Arechiga, and T. Ma, “Learning imbalanced datasets with label-
1763
+ distribution-aware margin loss,” Advances in neural information processing systems, 2, 2019.
1764
+ [16] P. H. Charlton et al., “An impedance pneumography signal quality index: Design, assessment and
1765
+ application to respiratory rate monitoring,” Biomed. Sig. Proc. Cont., vol. 65, 2021, Art. no.
1766
+ 102339.
1767
+ [17] T. Dai, C. G´omez-Laberge, and A. Adler, “Reconstruction of conductivity changes and electrode
1768
+ movements based on EIT temporal sequences”, Physiol. Meas., 29(6), S77-S88, 2008.
1769
+ [18] J. M. Deibele, H. Luepschen, and S. L. Leonhardt, “Dynamic separation of pulmonary and cardiac
1770
+ changes in electrical impedance tomography,” Physiol. Meas., vol. 29, pp. S1-S14, 2008.
1771
+ [19] I. Frerichs, T. Becher, and N. Weiler, “Electrical impedance tomography imaging of the
1772
+ cardiopulmonary system,” Curr. Opin. Crit. Care, vol. 20, pp. 323-332, 2014.
1773
+ [20] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,” MIT Press, 2016.
1774
+ [21] G. E. Hinton, and R. R. Salakhutdinov, “Reducing the dimensionality of data with neural
1775
+ networks,” science, 313(5786), 504-507, 2006.
1776
+ [22] G. E. Hinton, “Learning multiple layers of representation,” Trends in cognitive sciences, 11(10),
1777
+ 428-434, 2007.
1778
+
1779
+ 21
1780
+ [23] H. He, and E. A. Garcia, “Learning from imbalanced data,” IEEE Transactions on knowledge and
1781
+ data engineering, 21(9), 1263-1284, 2009.
1782
+ [24] I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick et al., “beta-vae: Learning
1783
+ basic visual concepts with a constrained variational framework,” 2016.
1784
+ [25] C. M. Hyun, S. H. Baek, M. Lee, S. M. Lee, and J. K. Seo, “Deep learning-based solvability
1785
+ of underdetermined inverse problems in medical imaging,” Medical Image Analysis, 69, 101967,
1786
+ 2021.
1787
+ [26] I. T. Jolliffe, and J. Cadima, “Principal component analysis: a review and recent developments,”
1788
+ Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
1789
+ Sciences, 374(2065), 20150202, 2016.
1790
+ [27] G. Y. Jang et al., “Noninvasive, simultaneous, and continuous measurements of stroke volume and
1791
+ tidal volume using EIT: Feasibility study of animal experiments,” Sci. Rep., vol. 10, 2020.
1792
+ [28] W. G. Kubicek, R. P. Patterson, and D. A. Witsoe, “Impedance cardiography as a noninvasive
1793
+ method of monitoring cardiac function and other parameters of the cardiovascular system,” Ann.
1794
+ New York Acad. Sci., vol. 170, pp. 724-732, 1970.
1795
+ [29] N. Kerrouche, C. N. McLeod, and W. R. B. Lionheart, “Time series of EIT chest images using
1796
+ singular value decomposition and fourier transform,” Physiol. Meas., vol. 22, pp. 147-157, 2001.
1797
+ [30] D. P. Kingma, and M. Welling, “Auto-encoding variational bayes,” arXiv preprint arXiv:1312.6114,
1798
+ 2013.
1799
+ [31] D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,” arXiv:1412.6980. 2014.
1800
+ [32] WRB Lionheart, “Boundary Shape and Electrical Impedance Tomography,” Inverse Problems, 14
1801
+ 139-47, 1998.
1802
+ [33] S. Leonhardt and B. Lachmann, “Electrical impedance tomography: The holy grail of ventilation
1803
+ and perfusion monitoring,” Intensive Care Med., vol. 38, pp. 1917–1929, 2012.
1804
+ [34] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, 521(7553), 436-444, 2015.
1805
+ [35] W. Luo, Y. Li, R. Urtasun, R. Zemel, “Understanding the Effective Receptive Field in Deep
1806
+ Convolutional Neural Networks,” arXiv:170.04128, 2017.
1807
+ [36] K. Lee, E. J. Woo, and J. K. Seo, “A fidelity-embedded regularization method for robust electrical
1808
+ impedance tomography,” IEEE transactions on medical imaging, 37(9), 1970-1977, 2017.
1809
+ [37] J. H. Lee, Y. R. Park, S. Kweon, S. Kim, W. Ji, and C. M Choi, “A Cardiopulmonary Monitoring
1810
+ System for Patient Transport Within Hospitals Using Mobile Internet of Things Technology:
1811
+ Observational Validation Study,” JMIR mHealth and uHealth, 6(11), 2018.
1812
+ [38] M. H. Lee, G. Y. Jang, Y. E. Kim, P. J. Yoo, H. Wi, T. I. Oh, and E. J. Woo, “Portable multi-
1813
+ parameter electrical impedance tomography for sleep apnea and hypoventilation monitoring:
1814
+ feasibility study,” Physiological Measurement, 2018.
1815
+ [39] K. Lee, G. Y. Jang, Y. Kim, and E. J. Woo, “Multi-Channel Trans-Impedance Leadforming for
1816
+ Cardiopulmonary Monitoring: Algorithm Development and Feasibility Assessment Using In Vivo
1817
+ Animal Data,” IEEE Transactions on Biomedical Engineering, 69(6), 1964-1974, 2021.
1818
+ [40] R. Pikkemaat et al., “Recent advances in and limitations of cardiac output monitoring by means
1819
+ of electrical impedance tomography,” Anesth.Analg., vol. 119, pp. 76–83, 2014.
1820
+ [41] C. Putensen et al., “Electrical impedance tomography for cardiopulmonary monitoring,” J. Clin.
1821
+ Med., vol. 8, 2019.
1822
+ [42] M. D. Ruopp, N. J. Perkins, B. W. Whitcomb, and E. F. Schisterman, “Youden Index and optimal
1823
+ cut-point estimated from observations affected by a lower limit of detection,” Biometrical Journal:
1824
+ Journal of Mathematical Methods in Biosciences, 50(3), 419-430, 2008.
1825
+ [43] M. Soleimani, C. G´omez-Laberge, and A. Adler, “Imaging of conductivity changes and electrode
1826
+ movement in EIT”, Physiol. Meas., 27(5), S103-S113, 2006.
1827
+ [44] J. K. Seo and E. J. Woo, Nonlinear Inverse Problems in Imaging, Chichester, U.K.:Wiley, 2013.
1828
+ [45] K. Simonyan, and A. Zisserman, “Very deep convolutional networks for large-scale image
1829
+ recognition,” arXiv preprint arXiv:1409.1556, 2014.
1830
+ [46] T. Schlegl, P. Seeb¨ock, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Unsupervised
1831
+
1832
+ 22
1833
+ anomaly detection with generative adversarial networks to guide marker discovery,” In
1834
+ International conference on information processing in medical imaging, pp. 146-157, Springer,
1835
+ Cham, 2017.
1836
+ [47] J. K. Seo, K. C. Kim, A. Jargal, K. Lee, and B. Harrach, “A learning-based method for solving
1837
+ ill-posed nonlinear inverse problems: a simulation study of lung EIT,” SIAM journal on Imaging
1838
+ Sciences, 12(3), 1275-1295, 2019.
1839
+ [48] S. Sahoo, M. Dash, S. Behera, and S. Sabut, “Machine learning approach to detect cardiac
1840
+ arrhythmias in ECG signals: a survey,” Irbm, 41(4), 185-194, 2020
1841
+ [49] G. Van Horn, and P. Perona, “The devil is in the tails: Fine-grained classification in the wild,”
1842
+ arXiv preprint arXiv:1709.01450, 2017.
1843
+ [50] J. E. Van Engelen, and H. H. Hoos, “A survey on semi-supervised learning,” Machine Learning,
1844
+ 109(2), 373-440, 2020.
1845
+ [51] N. Westterhof et al., “Snapshots of Hemodynamics”, 3rd ed., Cham, Switzerland: Springer, 2019.
1846
+ [52] M. Wasimuddin, K. Elleithy, A. S. Abuzneid, M. Faezipour, and O. Abuzaghleh, “Stages-based
1847
+ ECG signal analysis from traditional signal processing to machine learning approaches: A survey,”
1848
+ IEEE Access, 8, 177782-177803, 2020.
1849
+ [53] Y. Xu, T. Xiao, J. Zhang, K. Yang, and Z. Zhang, “Scale-invariant convolutional neural networks,”
1850
+ arXiv preprint arXiv:1411.6369, 2014.
1851
+ [54] L. Yang et al, “Removing Clinical Motion Artifacts During Ventilation Monitoring With Electrical
1852
+ Impedance Tomography:
1853
+ Introduction of Methodology and Validation With Simulation and
1854
+ Patient Data,” Frontiers in medicine, 2022.
1855
+ [55] H. S. Yun, C. M. Hyun, S. H. Baek, S.-H. Lee, J. K. Seo, “A semi-supervised learning approach for
1856
+ automated 3D cephalometric landmark identification using computed tomography,” PLoS ONE,
1857
+ 17(9), e0275114, 2022.
1858
+ [56] J. Zhang and R. P. Patterson, “EIT images of ventilation: What contributes to the resistivity
1859
+ changes?”, Physiol. Meas., 26(2), S81-S92, 2005
1860
+ [57] S. Zlochiver et al., “Parametric EIT for monitoring cardiac stroke volume,” Physiol. Meas., vol.
1861
+ 27, pp. S139-S146, 2006.
1862
+ [58] X. Zhu and A. B. Goldberg, “Introduction to semi-supervised learning,” Synthesis lectures on
1863
+ artificial intelligence and machine learning, 3(1), 1-130, 2009.
1864
+
79AzT4oBgHgl3EQfgfxi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NFQT4oBgHgl3EQfHzW5/content/tmp_files/2301.13250v1.pdf.txt ADDED
@@ -0,0 +1,2346 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .Draft version February 1, 2023
2
+ Typeset using LATEX twocolumn style in AASTeX63
3
+ Molecular gas and star formation in nearby starburst galaxy mergers
4
+ Hao He,1 Connor Bottrell,2 Christine Wilson,1 Jorge Moreno,3 Blakesley Burkhart,4, 5
5
+ Christopher C. Hayward,5 Lars Hernquist,6 and Angela Twum3
6
+ 1McMaster University
7
+ 1280 Main St W, Hamilton, ON L8S 4L8, CAN
8
+ 2Kavli Institute for the Physics and Mathematics of the Universe (WPI), UTIAS, University of Tokyo
9
+ Kashiwa, Chiba 277-8583, Japan
10
+ 3Department of Physics and Astronomy, Pomona College,
11
+ Claremont, CA 91711, USA
12
+ 4Department of Physics and Astronomy, Rutgers University,
13
+ 136 Frelinghuysen Rd., Piscataway, NJ 08854, USA
14
+ 5Center for Computational Astrophysics, Flatiron Institute,
15
+ 162 Fifth Avenue, New York, NY 10010, USA
16
+ 6Center for Astrophysics, Harvard & Smithsonian,
17
+ 60 Garden Street, Cambridge, MA 02138, USA
18
+ (Received February 1, 2023; Revised xxx; Accepted xxx)
19
+ Submitted to ApJ Letter
20
+ ABSTRACT
21
+ We employ the Feedback In Realistic Environments (FIRE-2) physics model to study how the prop-
22
+ erties of giant molecular clouds (GMCs) evolve during galaxy mergers. We conduct a pixel-by-pixel
23
+ analysis of molecular gas properties in both the simulated control galaxies and galaxy major mergers.
24
+ The simulated GMC-pixels in the control galaxies follow a similar trend in a diagram of velocity disper-
25
+ sion (σv) versus gas surface density (Σmol) to the one observed in local spiral galaxies in the Physics at
26
+ High Angular resolution in Nearby GalaxieS (PHANGS) survey. For GMC-pixels in simulated mergers,
27
+ we see a significant increase of factor of 5 – 10 in both Σmol and σv, which puts these pixels above the
28
+ trend of PHANGS galaxies in the σv vs Σmol diagram. This deviation may indicate that GMCs in the
29
+ simulated mergers are much less gravitationally bound compared with simulated control galaxies with
30
+ virial parameter (αvir) reaching 10 – 100. Furthermore, we find that the increase in αvir happens at
31
+ the same time as the increase in global star formation rate (SFR), which suggests stellar feedback is
32
+ responsible for dispersing the gas. We also find that the gas depletion time is significantly lower for
33
+ high αvir GMCs during a starburst event. This is in contrast to the simple physical picture that low
34
+ αvir GMCs are easier to collapse and form stars on shorter depletion times. This might suggest that
35
+ some other physical mechanisms besides self-gravity are helping the GMCs in starbursting mergers
36
+ collapse and form stars.
37
+ Keywords: ISM: clouds, ISM: kinematics and dynamics, ISM: structure, galaxies: interactions, galaxies:
38
+ starburst, galaxies: star formation
39
+ 1. INTRODUCTION
40
+ Corresponding author: Hao He
41
42
+ Despite the diversity of galaxy morphology and envi-
43
+ ronment, giant molecular clouds (GMCs) are the sites of
44
+ star formation across cosmic time (Krumholz et al. 2019;
45
+ Chevance et al. 2020). As one of the most promising
46
+ star formation model, the turbulence model (Krumholz
47
+ & McKee 2005; Hennebelle & Chabrier 2011) suggest a
48
+ arXiv:2301.13250v1 [astro-ph.GA] 30 Jan 2023
49
+
50
+ 2
51
+ He et al.
52
+ relatively uniform star formation efficiency per freefall
53
+ time (ϵff) for individual GMCs. They predict that the
54
+ observed scatter in ϵff could be account for by the diver-
55
+ sity in GMC properties (e.g.virial parameter αvir and
56
+ Mach number). However, Lee et al. (2016) show that
57
+ the observed scatter is larger than these early theoret-
58
+ ical predictions expected and updated models suggest
59
+ that cloud evolution, in addition to initial conditions
60
+ such as Mach number and αvir, should be accounted for
61
+ (see Burkhart 2018; Mocz & Burkhart 2018; Burkhart
62
+ & Mocz 2019). Furthermore, Grudi´c et al. (2018) show
63
+ in their simulation that GMCs in starburst galaxies can
64
+ have different ϵff in normal spiral galaxies. Hence, to un-
65
+ derstand the links between GMCs and star formation in
66
+ galaxies, it is essential to study various GMC properties
67
+ in a broad range of environments.
68
+ However, modeling of GMCs starting from the scales
69
+ of galaxies and cosmological zoom-ins is complicated by
70
+ challenges in capturing the structure of the coldest and
71
+ densest gas, which is heavily affected by various numeri-
72
+ cal choices, such as resolution (e.g. Bournaud et al. 2008;
73
+ Teyssier et al. 2010) and the treatment of feedback (Fall
74
+ et al. 2010; Murray et al. 2010; Dale et al. 2014; My-
75
+ ers et al. 2014; Raskutti et al. 2016; Kim et al. 2017;
76
+ Grudi´c et al. 2018; Smith et al. 2021). Most resolved
77
+ GMC simulations focus on the evolution of individual
78
+ GMCs (e.g. Burkhart et al. 2015; Howard et al. 2018;
79
+ Li et al. 2019; Decataldo et al. 2020; Burkhart et al.
80
+ 2020) and ignore the wider environment. Only a hand-
81
+ ful of galaxy simulations have the ability to model GMC
82
+ populations inside Milky-Way-like galaxies (Jeffreson &
83
+ Kruijssen 2018; Benincasa et al. 2020) and mergers (Re-
84
+ naud et al. 2019a; Li et al. 2022).
85
+ High-resolution CO observations have successfully
86
+ characterized GMCs in the Milky Way (e.g. Rice et al.
87
+ 2016; Rico-Villas et al. 2020; Miville-Deschˆenes et al.
88
+ 2017; Colombo et al. 2019; Lada & Dame 2020) and
89
+ nearby galaxies (e.g. Donovan Meyer et al. 2013; Hughes
90
+ et al. 2013; Colombo et al. 2014; Leroy et al. 2016;
91
+ Schruba et al. 2019). In particular, the recently com-
92
+ pleted PHANGS-ALMA survey (Leroy et al. 2021) has
93
+ expanded these observations across a complete sample
94
+ of nearby spiral galaxies, providing direct measurements
95
+ of molecular gas surface density Σmol, velocity disper-
96
+ sion σv and size of GMCs, which are key quantities for
97
+ determining the physical state of GMCs (Larson 1981).
98
+ Observations show that the correlation between σ2
99
+ v/R
100
+ and Σmol is nearly linear (e.g., Heyer & Dame 2015; Sun
101
+ et al. 2018, 2020), which is consistent with the theoreti-
102
+ cal prediction that most clouds follows the Larson’s sec-
103
+ ond law (Larson 1981), which indicates a constant ratio
104
+ between clouds’ kinetic energy and gravitational poten-
105
+ tial energy. This universal correlation provides us with
106
+ a starting point to study how other galactic environ-
107
+ mental factors (e.g., external pressure, stellar potential)
108
+ influence the dynamical state of GMCs.
109
+ Unlike studies targeting isolated galaxies, GMCs in
110
+ starburst galaxy mergers are less well studied. On the
111
+ observational side, the scarcity of nearby mergers means
112
+ that we have only a handful of systems with GMC res-
113
+ olution data (Wei et al. 2012; Ueda et al. 2012; Whit-
114
+ more et al. 2014; Elmegreen et al. 2017; Brunetti et al.
115
+ 2020; Brunetti 2022; S´anchez-Garc´ıa et al. 2022; Bel-
116
+ locchi et al. 2022). These studies show that GMCs in
117
+ mergers have significantly higher gas surface densities
118
+ and are less gravitationally bound compared to GMCs
119
+ in normal spirals. However, it is difficult to draw sta-
120
+ tistically robust conclusions on how GMC properties
121
+ evolve across various merging stages based on these lim-
122
+ ited number of local galaxy mergers. On the simulation
123
+ front, only a handful of studies (e.g., Teyssier et al. 2010;
124
+ Renaud et al. 2014; Fensch et al. 2017) have the ability
125
+ to probe the cold gas at ∼pc scale starting from cosmo-
126
+ logical scales. Using a comprehensive library of idealized
127
+ galaxy merger simulations based on the FIRE-2 physics
128
+ model, Moreno et al. (2019) show that SFR enhance-
129
+ ment is accompanied by an increase in the cold dense
130
+ gas reservoir.
131
+ This simulation suite thus provides us
132
+ with the ideal tool to properly examine GMC evolution
133
+ along the entire merging sequence.
134
+ This paper explores how GMC properties evolve dur-
135
+ ing the starburst merging event using the FIRE-2 merger
136
+ suite from Moreno et al. (2019) and performs compar-
137
+ isons with observations to test the simulation model.
138
+ In Section 2, we describe this simulation suite and the
139
+ observational data used for comparison. Section 3 com-
140
+ pares the σv −Σmol relation between control simulated
141
+ galaxies and normal spirals in the PHANGS-ALMA
142
+ sample. Section 4 examines the σv −Σmol relation for
143
+ mergers in both observations and simulations. In Sec-
144
+ tion 5, we discuss and interpret various aspects of the
145
+ comparison between observations and simulations.
146
+ 2. DATA PROCESSING
147
+ 2.1. Simulated data
148
+ 2.1.1. The FIRE-2 Model
149
+ We use the FIRE-2 model (Hopkins et al. 2018), which
150
+ employs the hydrodynamic code GIZMO (Hopkins 2015,
151
+ 2017).
152
+ Compared with the previous version, FIRE-2
153
+ adopts the updated meshless finite-mass (MFM) mag-
154
+ netohydrodynamics (MHD) solver, which is designed to
155
+ capture the advantages of both grid-based and particle-
156
+ based methods. We refer the reader to Hopkins (2015)
157
+ and Hopkins et al. (2018) for details. The model includes
158
+
159
+ GMCs in Galaxy Mergers
160
+ 3
161
+ treatment of radiative heating and cooling from free-
162
+ free, photo-ionization/recombination, Compton, photo-
163
+ electric, dust-collisional, cosmic ray, molecular, metal
164
+ line, and fine-structure processes. Star formation occurs
165
+ in gas that is self-gravitating (3D αvir < 1 at the reso-
166
+ lution scale), self-shielded, and denser than 1000 cm−3
167
+ (see Appendix C of Hopkins et al. 2018). Stellar feed-
168
+ back mechanisms include (i) mass, metal, energy, and
169
+ momentum flux from supernovae type Ia & II; (ii) con-
170
+ tinuous stellar mass-loss through OB/AGB winds; (iii)
171
+ photoionization and photoelectric heating; and (iv) radi-
172
+ ation pressure. Each stellar particle is treated as a single
173
+ stellar population.
174
+ Mass, age, metallicity, luminosity,
175
+ energy, mass-loss rate, and stellar feedback event rate
176
+ for each stellar particle are calculated using the STAR-
177
+ BURST99 stellar population synthesis model (Leitherer
178
+ et al. 1999). The model does not account for feedback
179
+ generated via accretion of gas onto a supermassive black
180
+ hole (SMBH).
181
+ 2.1.2. Our FIRE-2 galaxy suite
182
+ Moreno et al. (2019) present a suite of idealized galaxy
183
+ merger simulations (Initial conditions are manually set
184
+ instead of from cosmological simulations; see also Bot-
185
+ trell et al. 2019; Moreno et al. 2021; McElroy et al. 2022)
186
+ covering a range of orbital parameters and mass ratios
187
+ between 4 disc galaxies (G1, G2, G3 and G4, in or-
188
+ der of increasing total stellar mass of (0.21, 1.24, 2.97
189
+ and 5.5×1010 M⊙), along with separate runs for each
190
+ disk galaxy in isolation (the control runs). Their orbit
191
+ settings contain 3 orbital spin directions, 3 impact pa-
192
+ rameters and 3 impact velocities (see Fig. 3 in Moreno
193
+ et al. 2019). For these simulations, the highest gas den-
194
+ sity and spatial resolution are 5.8 × 105 cm−3 and 1.1
195
+ pc, respectively. The gravitational softening lengths are
196
+ 10 pc for the dark matter and stellar components and 1
197
+ pc for the gaseous component. The mass resolution for
198
+ a gas particle is 1.4 ×104 M⊙. The time resolution of a
199
+ typical snapshot is 5 Myr (See further details in Moreno
200
+ et al. 2019).
201
+ Table 1. Orbital Parameter of ‘e1’ and ‘e2’ orbit
202
+ e1
203
+ e2
204
+ Apo. Dist. (kpc)a
205
+ 60
206
+ 120
207
+ Peri. Dist. (kpc)a
208
+ 15.5
209
+ 9.3
210
+ a First apocentric distance between the
211
+ centers of two galaxies.
212
+ b Second pericentric distance between
213
+ the centers of two galaxies.
214
+ For our analysis, we focus on the simulation run of
215
+ isolated G2 and G3 galaxies along with one of G2&G3
216
+ merger suites. The detailed information of G2 and G3
217
+ galaxies is in Moreno et al. (2019, Table 2). The G2&G3
218
+ merger suites have a mass ratio of 1:2.5 and hence are
219
+ similar to major mergers such as the Antennae and NGC
220
+ 3256 for which we have observational data. In addition,
221
+ G2 and G3 have stellar masses within the range of the
222
+ PHANGS sample (1010–1011 M⊙; Leroy et al. 2021).
223
+ We choose the ‘e’ orbit (Robertson et al. 2006, roughly
224
+ prograde), which is expected to maximally enhance the
225
+ star formation rate. In most of our analyses, we focus
226
+ on the ‘e2’ orbit since this is the fiducial run in Moreno
227
+ et al. (2019).
228
+ We use the ‘e1’ orbit as a comparison
229
+ in some cases as it has smaller impact parameter and is
230
+ more similar to the orbit of the Antennae merger (Privon
231
+ et al. 2013), for which we have GMC observational data.
232
+ The pericentric distance of ‘e1’ and ‘e2’ orbit is listed in
233
+ Table 1.
234
+ 2.1.3. Molecular gas
235
+ We follow the scheme in Moreno et al. (2019) to sepa-
236
+ rate the ISM of our simulated galaxy mergers into 4 com-
237
+ ponents based on temperature and density: hot, warm,
238
+ cool, and cold-dense gas, which roughly correspond to
239
+ the hot, ionized, atomic, and molecular gas in observa-
240
+ tions (see Table 4 in Moreno et al. 2019).
241
+ The com-
242
+ ponents that are most important for this work are the
243
+ cool (temperatures below 8000 K and densities above
244
+ 0.1 cm−3) and the cold-dense gas (temperatures below
245
+ 300 K and densities above 10 cm−3), which corresponds
246
+ to H I and H2.
247
+ This choice captures HI and H2 gas
248
+ reasonably well (Orr et al. 2018). Orr et al. (2018) also
249
+ demonstrate that using this threshold to separate H2
250
+ and HI yields reasonable agreement with the observed
251
+ Kennicutt-Schmidt law (Kennicutt 1998; Kennicutt &
252
+ Evans 2012). In the following, we refer to total gas as
253
+ the sum of the gas in the cool and cold-dense phases
254
+ (simulations) or in the atomic and molecular phases (ob-
255
+ servations).
256
+ We adopt the same definition of molecular gas as in
257
+ Moreno et al. (2019) (temperature below 300 K and den-
258
+ sity above 10 cm−3). Guszejnov et al. (2017) demon-
259
+ strate that the model successfully reproduces the GMC
260
+ mass function in the Milky Way (Rice et al. 2016) and
261
+ the size-linewidth relation (e.g., the Larson scaling re-
262
+ lationship, Larson 1981) in our Galaxy (Heyer et al.
263
+ 2009; Heyer & Dame 2015) and in nearby galaxies (Bo-
264
+ latto et al. 2008; Fukui et al. 2008; Muraoka et al. 2009;
265
+ Roman-Duval et al. 2010; Colombo et al. 2014; Tosaki
266
+ et al. 2017). Given the density cut of 10 cm−3 and mass
267
+ resolution of 1.4 ×104 M⊙, the lower limit of our spa-
268
+ tial resolution ( 3�
269
+ M/ρ, where M is the mass resolution
270
+ and ρ is the mass volume density) is ∼ 40 pc, which
271
+
272
+ 4
273
+ He et al.
274
+ is smaller than the typical scale of observed GMCs (40
275
+ – 100 pc, Rosolowsky et al. 2021). In addition, GMC
276
+ mass function peaks at 105 – 106 M⊙ in Milky Way (Rice
277
+ et al. 2016), which is significantly larger than our mass
278
+ resolution. Therefore, we would generally expect more
279
+ than 1 gas particle is included for molecular gas in each
280
+ GMC-scale pixel.
281
+ For generating different components of the ISM, the
282
+ simulations start with a homogeneous ISM with a tem-
283
+ perature of 104 K and solar metallicity. The multi-phase
284
+ ISM then emerges quickly as a result of cooling and feed-
285
+ back from star formation. The initial gas mass for the
286
+ simulation is set to match the median HI mass from the
287
+ xCOLDGASS survey (Catinella et al. 2018).
288
+ 2.1.4. Data cubes
289
+ We first convert the FIRE-2 molecular gas data into
290
+ mass-weighted position-position-velocity (p-p-v) data
291
+ cubes to match the format of the CO data from radio
292
+ observations (McMullin et al. 2007). We adopt the cube
293
+ construction method created for Bottrell et al. (2022)
294
+ and Bottrell & Hani (2022) and then adapted to the
295
+ FIRE-2 merger suite by McElroy et al. (2022). Kine-
296
+ matic cubes are produced along four lines-of-sight (la-
297
+ beled as ‘v0’, ‘v1’, ‘v2’, ‘v3’), defined by the vertices of a
298
+ tetrahedron centered at the primary galaxy (G3 in this
299
+ work). For the isolated galaxy simulations, we generate
300
+ p-p-v data cubes at different inclination angles (10 – 80
301
+ degrees). We adopt a pixel size of 100 pc and velocity
302
+ resolution of 2 km s−1, which is similar to PHANGS
303
+ choice (Sun et al. 2020). The field of view (FOV) for
304
+ the data cube is set to be 25 kpc.
305
+ Then we create zeroth-moment maps of the gas surface
306
+ density Σmol and second-moment maps of the velocity
307
+ dispersion σv. We do not set any thresholds on these
308
+ moment maps since we argue that every gas particle in
309
+ the simulated cube should be treated as a real signal,
310
+ rather than observational noise. However, in later anal-
311
+ yses, when we display σv versus Σmol for the simulated
312
+ data, we select pixels with Σmol greater than 1 M⊙ pc−2,
313
+ which approximates the lower limit of the molecular gas
314
+ detection threshold in the observational data (Sun et al.
315
+ 2018).
316
+ We also exclude pixels detected in fewer than
317
+ two velocity channels in the simulated cube to exclude
318
+ inaccurate measurements of σv.
319
+ To characterize clouds, we use a pixel-based analy-
320
+ sis (Leroy et al. 2016), which treats each pixel as an
321
+ individual GMC, rather than identifying each individ-
322
+ ual cloud from the data cube. This approach has been
323
+ widely applied to GMC analyses for PHANGS galax-
324
+ ies (Sun et al. 2018, 2020).
325
+ Compared to the tradi-
326
+ tional cube-based approach, this new method requires
327
+ minimal assumptions and can be easily applied to many
328
+ datasets in a uniform way, while still giving us the essen-
329
+ tial GMC properties (e.g., molecular gas surface density
330
+ Σmol, gas velocity dispersion σv). On the other hand,
331
+ the pixel-based method has a major disadvantage of not
332
+ able to decompose different cloud components along the
333
+ same line of sight.
334
+ Several observational studies (e.g.
335
+ Brunetti & Wilson 2022; Sun et al. 2022) have compared
336
+ this new approach with the traditional approach and
337
+ found good agreement on cloud properties between two
338
+ methods for both normal spiral galaxies and starburst
339
+ mergers, especially for clouds in galaxy disks.
340
+ These
341
+ comparisons show pixel-based analysis should be valid
342
+ for capturing individual cloud properties, especially for
343
+ galaxy disks which generally have single-layer of GMCs
344
+ (see Section 5.1 for detailed discussion about the pro-
345
+ jection effect). In this work, we adopt this approach to
346
+ match the method in Brunetti et al. (2020) and Brunetti
347
+ (2022). We also note that since we treat each pixel as
348
+ a GMC, these GMCs do not necessarily represent inde-
349
+ pendent ISM structures. In fact, given the mass resolu-
350
+ tion of 1.4 ×104 M⊙, we can barely resolve the internal
351
+ structure of most massive GMCs of ∼ 106 M⊙ (100 ele-
352
+ ments). We refer to them as GMCs in this paper to be
353
+ consistent with similar observational analyses (e.g. Sun
354
+ et al. 2018, 2020).
355
+ 2.2. Star Formation Rate Maps
356
+ To further explore how the GMC properties at 100 pc
357
+ scale affect the star formation, we also make SFR maps
358
+ with the same resolution of 100 pc for the simulated
359
+ mergers at different times. We create these maps using
360
+ a method similar to the one used to create the gas cubes.
361
+ We include all the stellar particles with age younger than
362
+ 10 Myr and create p-p-v data cubes for these stellar
363
+ particles. The mass-weighted cubes are integrated along
364
+ the velocity axis to produce 2D maps of stellar mass
365
+ formed within the last 10 Myr. These surface-density
366
+ mass maps are subsequently divided by 10 Myr to obtain
367
+ the average star-formation rates over the last 10 Myr.
368
+ 2.3. Observational Data
369
+ We use several sets of observations for comparison
370
+ with our simulations.
371
+ 2.3.1. Spiral galaxies: PHANGS data
372
+ For isolated galaxies, we mainly use the PHANGS
373
+ data from Sun et al. (2020) with resolution of 90 pc,
374
+ which is comparable to our pixel size choice of 100 pc.
375
+ Sun et al. (2020) apply the pixel-based method for sta-
376
+ tistical analyses of GMC properties for 70 galaxies in
377
+ the PHANGS sample. We also include GMC data for
378
+
379
+ GMCs in Galaxy Mergers
380
+ 5
381
+ M31 from Sun et al. (2018) at resolution of 120 pc. M31
382
+ is identified as a green-valley galaxy, similar to our own
383
+ Milky Way, and hence has a lower total gas fraction
384
+ than normal spiral galaxies (Mutch et al. 2011). Both
385
+ M31 and the Milky Way seem to be in a transition from
386
+ blue spiral galaxies to quenched galaxies via depletion of
387
+ their cold gas (Bland-Hawthorn & Gerhard 2016). M31
388
+ has stellar mass of 1011 M⊙ (Sick et al. 2015), H2 mass
389
+ of 3.6 × 108 M⊙ and HI mass of 4.8 × 109 M⊙ (Nieten
390
+ et al. 2006).
391
+ 2.3.2. Galaxy mergers: the Antennae and NGC 3256
392
+ Table 2. Information about the observed mergers in this
393
+ work
394
+ Antennae
395
+ NGC 3256
396
+ #References
397
+ M⋆ (1010 M⊙)a
398
+ 4.5
399
+ 11.4
400
+ (1); (2)
401
+ Mmol (1010 M⊙)b
402
+ 1.2
403
+ 0.8
404
+ (3); this work
405
+ SFR (M⊙yr−1)
406
+ 8.5
407
+ 50
408
+ (1); (4)
409
+ Sep. (kpc)c
410
+ 7.3
411
+ 1.1
412
+ (5); (4)
413
+ tnow (Myr)d
414
+ 40
415
+ · · ·
416
+ (6)
417
+ mass ratiof
418
+ 1:1
419
+ · · ·
420
+ (6)
421
+ Peri. Sep (kpc)g
422
+ 10.4
423
+ · · ·
424
+ (6)
425
+ Notes: a. Stellar mass. b. Molecular gas mass. c. Current
426
+ separation between two nuclei. d. Current time since the sec-
427
+ ond passage. e. Mass ratio of the two progenitor galaxies. g.
428
+ Pericentric distance of two nuclei from the simulation model.
429
+ References: (1) Seill´e et al. (2022) (2) Howell et al. (2010)
430
+ (3) Wilson et al. (2000) (4) Sakamoto et al. (2014) (5) Zhang
431
+ et al. (2001) (6) Karl et al. (2010)
432
+ We use the CO 2-1 data for NGC 3256 (Brunetti et al.
433
+ 2020) and the Antennae (Brunetti (2022,
434
+ Brunetti et
435
+ al. in prep)) at resolutions of 90 and 80 pc, respectively.
436
+ The GMC measurements use the same pixel-based ap-
437
+ proach as in Sun et al. (2018, 2020). Both NGC 3256 and
438
+ the Antennae are identified as late-stage major mergers
439
+ that have been through their second perigalactic pas-
440
+ sage (Privon et al. 2013). NGC 3256 has stellar mass
441
+ of 1.1 × 1011 M⊙, total molecular gas of 8 × 1019 M⊙
442
+ (calculated based on CO 2-1 map in Brunetti & Wil-
443
+ son (2022), assuming αCO of 1.1 M⊙ (K km s−1 pc2)−1
444
+ and CO 2-1/1-0 ratio of 0.8) and SFR of 50 M⊙yr−1
445
+ (Sakamoto et al. 2014). In contrast, the Antennae has a
446
+ stellar mass of 4.5 × 1010 M⊙ and SFR of 8.5 M⊙yr−1
447
+ (Seill´e et al. 2022).
448
+ NGC 3256 currently has a more
449
+ intense starburst, perhaps because it is at different evo-
450
+ lutionary stage in the merging process.
451
+ The detailed
452
+ information is in Table 2.
453
+ To convert the CO 2-1 emission to molecular gas mass
454
+ requires the assumption of a CO-to-H2 conversion factor
455
+ (αCO). The exact value of αCO has large uncertainties
456
+ and varies significantly among different types of galax-
457
+ ies, especially for starburst galaxies. Downes & Solomon
458
+ (1998) find that for starburst U/LIRGs, the αCO value
459
+ is generally 4 times smaller than that in our Milky Way.
460
+ The major method for direct measurement of αCO is
461
+ through large velocity gradient (LVG) radiative trans-
462
+ fer modeling of multiple CO and its isotope lines. For
463
+ αCO in the Antennae, various LVG modeling (e.g. Zhu
464
+ et al. 2003; Schirm et al. 2014) suggests that the An-
465
+ tennae has αCO close to the Milky Way value of 4.3
466
+ M⊙ (K km s−1 pc2)−1. This is also supported by the
467
+ galaxy simulation that specifically matches the Anten-
468
+ nae (Renaud et al. 2019a). For NGC 3256, we do not
469
+ have a direct measurement of αCO. We therefore adopt
470
+ the treatment from Sargent et al. (2014) to determine
471
+ the αCO for an individual galaxy as
472
+ αCO = (1 − fSB) × αCO,MS + fSB × αCO,SB,
473
+ (1)
474
+ where αCO,MS and αCO,SB are the conversion fac-
475
+ tors for the Milky Way (4.3 M⊙ (K km s−1 pc2)−1)
476
+ and U/LIRGs (1.1 M⊙ (K km s−1 pc2)−1, including he-
477
+ lium), and fSB is the probability for a galaxy to be a
478
+ starburst galaxy, which is determined by its deviation
479
+ from the star-forming main sequence.
480
+ We adopt the
481
+ star-forming main sequence relation from Catinella et al.
482
+ (2018),
483
+ log sSFRMS = −0.344(log M⋆ − 9) − 9.822,
484
+ (2)
485
+ where sSFR = SFR / M⋆
486
+ is the specific star forma-
487
+ tion rate.
488
+ NGC 3256 has an sSFR/sSFRMS ratio of
489
+ 15 (Brunetti et al. 2020), which suggests NGC 3256
490
+ should have αCO close to the U/LIRG value of 1.1
491
+ M⊙ (K km s−1 pc2)−1. Therefore, in the following anal-
492
+ yses, we will adopt αCO of 4.3 M⊙ (K km s−1 pc2)−1 for
493
+ the Antennae and 1.1 M⊙ (K km s−1 pc2)−1 for NGC
494
+ 3256.
495
+ 3. CONTROL (ISOLATED) GALAXIES
496
+ To test if the simulation successfully reproduces ob-
497
+ served GMCs, Figure 1 shows the well-known correla-
498
+ tion between σv and Σmol for isolated simulated galaxies
499
+ and PHANGS-ALMA spiral galaxies. We show σv ver-
500
+ sus Σmol contours for G2 and G3 galaxies at an inclina-
501
+ tion angle of 30 degrees, compared with that of observed
502
+ galaxies.
503
+ The two simulated galaxies exhibit similar
504
+ properties (black and dark red solid contours) and gener-
505
+ ally lie on the trend followed by the PHANGS galaxies.
506
+ We also plot a red dashed line indicating GMCs with
507
+ constant virial parameter αvir of 3.1. For the pixel-based
508
+
509
+ 6
510
+ He et al.
511
+ 100
512
+ 101
513
+ 102
514
+ 103
515
+ 104
516
+ mol (M pc
517
+ 2)
518
+ 10
519
+ 1
520
+ 100
521
+ 101
522
+ 102
523
+ v (km s
524
+ 1)
525
+ t: 0.625 Gyr
526
+ FIRE G2
527
+ FIRE G3
528
+ PHANGS disks
529
+ PHANGS barred galaxy centers
530
+ PHANGS unbarred galaxy centers
531
+ M31
532
+ Figure 1. Velocity dispersion versus gas surface density for
533
+ the G2 (black solid contour) and G3 (brown solid contour)
534
+ simulated galaxies at 0.625 Gyr with inclination angle of 30
535
+ degrees compared to the PHANGS galaxy sample. The con-
536
+ tours are mass-weighted and set to include 20%, 50% and
537
+ 80% of the data. The density contours of PHANGS galaxies
538
+ (Sun et al. 2020) show the distribution of measurements in
539
+ galaxy disks (blue shaded contours), the centers of barred
540
+ galaxies (salmon shaded contours) and the centers of un-
541
+ barred galaxies (brown dashed contours) with a resolution
542
+ of 90 pc. The red dashed line marks the position of the me-
543
+ dian values of αvir for PHANGS galaxies of 3.1 (Sun et al.
544
+ 2020). We also show the data for M31 (green solid contour)
545
+ at 120 pc resolution from Sun et al. (2018). We can see that
546
+ the FIRE-2 spiral galaxies follow the same σv- Σmol relation
547
+ as the PHANGS galaxies.
548
+ analysis, αvir is calculated as (Sun et al. 2018)
549
+ αvir = 9 ln 2
550
+ 2πG
551
+ σ2
552
+ v
553
+ ΣmolR
554
+ = 5.77
555
+
556
+ σv
557
+ km s−1
558
+ �2 �Σmol
559
+ M⊙
560
+ �−1 � R
561
+ 40pc
562
+ �−1
563
+ ,
564
+ (3)
565
+ where R is the GMC radius. In Sun et al. (2018), R is set
566
+ to be the radius of the beam in the image, as each beam
567
+ is treated as an independent GMC. We can see both
568
+ our simulated galaxies and observed PHANGS galaxies
569
+ follow the trend of the constant αvir, which yields the
570
+ relation of σ2
571
+ v ∝ Σmol that suggests the simulations re-
572
+ produce GMCs similar to the observations.
573
+ However,
574
+ we can see that the two galaxies lie at the low surface-
575
+ density end of the PHANGS distribution and thus their
576
+ gas properties are more similar to those of M31 than a
577
+ typical PHANGS galaxy. Indeed, the molecular and to-
578
+ tal gas properties of the simulated galaxies are similar
579
+ to those of M 31, perhaps due to the choice of initial gas
580
+ mass in the simulations (see Appendix B).
581
+ 4. MERGING GALAXIES
582
+ 4.1. GMC linewidth and surface density
583
+ We performed a similar σv versus Σmol analysis for
584
+ our suite of galaxy merger simulations.
585
+ Since we are
586
+ particularly interested in how the starburst activity in-
587
+ fluences GMC properties, we focus on the period right
588
+ before and after the second passage where we can see
589
+ the largest contrast in SFR. In Fig. 2 we show some ex-
590
+ ample snapshots of σv versus Σmol for different merger
591
+ stages during the second passage, along with Σmol and
592
+ αvir maps at each snapshot.
593
+ Note that the datacube
594
+ is centered on the primary galaxy G3. At the time of
595
+ first snapshot (2.54 Gyr), right before the start of the
596
+ second perigalactic passage, the simulated mergers still
597
+ have Σmol and σv that are similar the isolated galaxies.
598
+ Then the molecular gas quickly transitions to a more
599
+ turbulent state with much higher σv after the second
600
+ passage along with a dramatic increase in global SFR,
601
+ as shown in the snapshot for 2.66 Gyr (middle panel of
602
+ Fig. 2). The merger at this time still shows two sep-
603
+ arate nuclei in the zeroth moment map; this is similar
604
+ to our observed mergers, the Antennae and NGC 3256.
605
+ At this time, the σv versus Σmol contours for the simu-
606
+ lated merger lie above the trend seen for the PHANGS
607
+ galaxies, similar to NGC 3256, but in contrast to the An-
608
+ tennae, which still lies along the trend of the PHANGS
609
+ galaxies. The larger deviation above the PHANGS trend
610
+ implies higher αvir. We note that different αCO choices
611
+ will affect the position of the contours. If we choose the
612
+ ULIRG αCO instead of the Milky Way value, the An-
613
+ tennae would have αvir similar to that of NGC 3256 and
614
+ our G2&G3 merger. The uncertainty in the correct αCO
615
+ value to use makes it difficult to interpret the data for
616
+ the Antennae in this context.
617
+ The bottom panel of Fig. 2 shows the snapshot at
618
+ 2.87 Gyr, which marks the post-merger stage after the
619
+ final coalescence of two nuclei (defined here as the time
620
+ at which the two central supermassive black holes are
621
+ at a distance of 500 pc for the last time). This is the
622
+ time when both Σmol and σv reach their highest values.
623
+ We can see that most of the molecular gas is concen-
624
+ trated in the central 1 kpc region, with Σmol reaching
625
+ 1000 M⊙ pc−2. σv reaches 200 km s−1, which is even
626
+ higher than the σv observed in NGC 3256, which is in
627
+ an earlier merging stage when the two nuclei have not
628
+ yet coalesced.
629
+ To better quantify the variation of Σmol and σv during
630
+ the second passage, we plot the 16th, 50th and 84th per-
631
+ centile of the mass-weighted values for all pixels of each
632
+ snapshot during the second passage in Fig. 3. We also
633
+ normalize both the median Σmol and σv to the median
634
+
635
+ GMCs in Galaxy Mergers
636
+ 7
637
+ 0.0
638
+ 0.5
639
+ 1.0
640
+ 1.5
641
+ 2.0
642
+ 2.5
643
+ 3.0
644
+ 3.5
645
+ Time (Gyr)
646
+ 100
647
+ 101
648
+ SFR (M yr
649
+ 1
650
+ 100
651
+ 101
652
+ 102
653
+ 103
654
+ 10
655
+ 1
656
+ 100
657
+ 101
658
+ 102
659
+ v (km s
660
+ 1)
661
+ t: 2.54 Gyr
662
+ SFR: 1.65 M yr
663
+ 1
664
+ FIRE G2&G3
665
+ PHANGS galaxies
666
+ Antennae,
667
+ CO = 4.3
668
+ NGC 3256,
669
+ CO = 1.1
670
+ M31
671
+ 4
672
+ 2
673
+ 0
674
+ 2
675
+ 4
676
+ 4
677
+ 2
678
+ 0
679
+ 2
680
+ 4
681
+ kpc
682
+ mol
683
+ (M pc
684
+ 2)
685
+ 100
686
+ 101
687
+ 4
688
+ 2
689
+ 0
690
+ 2
691
+ 4
692
+ vir
693
+ 100
694
+ 101
695
+ 102
696
+ 100
697
+ 101
698
+ 102
699
+ 103
700
+ 10
701
+ 1
702
+ 100
703
+ 101
704
+ 102
705
+ v (km s
706
+ 1)
707
+ t: 2.66 Gyr
708
+ SFR: 6.04 M yr
709
+ 1
710
+ FIRE G2&G3
711
+ PHANGS galaxies
712
+ Antennae,
713
+ CO = 4.3
714
+ NGC 3256,
715
+ CO = 1.1
716
+ M31
717
+ 4
718
+ 2
719
+ 0
720
+ 2
721
+ 4
722
+ 4
723
+ 2
724
+ 0
725
+ 2
726
+ 4
727
+ kpc
728
+ mol
729
+ (M pc
730
+ 2)
731
+ 101
732
+ 102
733
+ 4
734
+ 2
735
+ 0
736
+ 2
737
+ 4
738
+ vir
739
+ 100
740
+ 101
741
+ 102
742
+ 100
743
+ 101
744
+ 102
745
+ 103
746
+ mol (M pc
747
+ 2)
748
+ 10
749
+ 1
750
+ 100
751
+ 101
752
+ 102
753
+ v (km s
754
+ 1)
755
+ t: 2.87 Gyr
756
+ SFR: 28.22 M yr
757
+ 1
758
+ FIRE G2&G3
759
+ PHANGS galaxies
760
+ Antennae,
761
+ CO = 4.3
762
+ NGC 3256,
763
+ CO = 1.1
764
+ M31
765
+ 4
766
+ 2
767
+ 0
768
+ 2
769
+ 4
770
+ kpc
771
+ 4
772
+ 2
773
+ 0
774
+ 2
775
+ 4
776
+ kpc
777
+ mol
778
+ (M pc
779
+ 2)
780
+ 101
781
+ 102
782
+ 4
783
+ 2
784
+ 0
785
+ 2
786
+ 4
787
+ kpc
788
+ vir
789
+ 100
790
+ 101
791
+ 102
792
+ Figure 2. (Top) SFR history for the G2&G3 merger with ‘e2’ orbit with viewing angle of ‘v0’. The 3 solid black vertical lines
793
+ indicate the time for each snapshot displayed below. The two dashed lines indicate the times at the start of second merging
794
+ and the final coalesce of two nuclei. (Bottom) Three snapshots. For each snapshot, the left panel shows the σv versus Σmol
795
+ mass-weighted contour with the same setting as Fig. 1. We also show the density contours for the PHANGS galaxies (filled
796
+ blue region), NGC 3256 (blue contours) and the Antennae (orange shaded region). For NGC 3256, Σmol is calculated using
797
+ the ULIRG αCO of 1.1 M⊙ (K km s−1 pc2)−1. For the Antennae, the gas surface density is calculated using the Milky Way
798
+ αCO of 4.3 M⊙ (K km s−1 pc2)−1. The red dashed line indicate the line of constant αvir of 3.1. The right two panels show the
799
+ Σmol and αvir maps of inner 5 kpc regions where we have most of our detected pixels. The interactive version of the animation
800
+ is available at https://htmlpreview.github.io/?https://github.com/heh15/merger animations/blob/main/G2G3 e2 v0.html. We
801
+ can see that the properties of the GMCs right before the second passage still resemble those of normal spiral galaxies, while
802
+ GMCs after the second passage lie above the PHANGS trend in the σv vs Σmol plot and show significantly higher αvir.
803
+
804
+ 8
805
+ He et al.
806
+ 2.6
807
+ 2.8
808
+ 3.0
809
+ 3.2
810
+ 3.4
811
+ 101
812
+ 102
813
+ Σmol(t) (M⊙ pc−2)
814
+ 2.6
815
+ 2.8
816
+ 3.0
817
+ 3.2
818
+ 3.4
819
+ 100
820
+ 101
821
+ Σmol(t) / Σmol,0
822
+ 2.6
823
+ 2.8
824
+ 3.0
825
+ 3.2
826
+ 3.4
827
+ Time (Gyr)
828
+ 101
829
+ 102
830
+ σv (km s−1)
831
+ 2.6
832
+ 2.8
833
+ 3.0
834
+ 3.2
835
+ 3.4
836
+ Time (Gyr)
837
+ 100
838
+ 101
839
+ σv(t) / σv,0
840
+ Figure 3. The Σmol and σv variation across the second passage and final coalescence of the G2&G3 merger at ‘e2’ orbit with
841
+ viewing angle of ‘v0’. The two dashed vertical lines indicate the times when the simulated merger begin the second passage and
842
+ experience final coalescence. The three solid vertical lines correspond to the 3 snapshots shown in Fig, 2. The horizontal dashed
843
+ lines indicate the median value of the isolated G3 galaxy at time of 0.625 Gyr (Fig. 1) as a baseline for comparison. (Upper
844
+ left) Σmol vs time. Blue lines shows the mass weighted median Σmol of the entire merger while the orange filled area indicates
845
+ Σmol range between 16th and 84th percentile. The two dashed lines indicate the time for the start of the second passage and
846
+ the final coalesce of the two nuclei. (Upper right) The ratio between median Σmol at given time and the median value Σmol,0 for
847
+ the isolated G3 galaxy at 0.625 Gyr. (Lower left) The mass-weighted median σv versus time. (Lower right) The ratio between
848
+ the median σv and the value σv,0 for isolated G3 galaxies at 0.625 Gyr. We can see both Σmol and σv increase dramatically
849
+ during the second passage when the extreme starburst happens.
850
+ values of the isolated G3 galaxy at 0.625 Gyr (Fig. 1)
851
+ to show how the merging event affects the GMC prop-
852
+ erties during the second passage. Both Σmol and σv in-
853
+ crease significantly during the merger, with a maximum
854
+ increase of a factor of 10. The increase in σv and Σmol
855
+ is roughly of the same order. Eq. 3 shows that a con-
856
+ stant αvir requires σ2
857
+ v ∝ Σmol. These results imply that
858
+ our simulated merger will have higher αvir compared to
859
+ PHANGS galaxies.
860
+ 4.2. The virial parameters of GMCs
861
+ During the second passage, we see that the σv vs
862
+ Σmol distribution for our simulated merger lies above
863
+ the trend observed for the PHANGS galaxies. A higher
864
+ σv for a given Σmol means the GMCs in these mergers
865
+ are more turbulent and less gravitationally bound than
866
+ in normal spiral galaxies.
867
+ We adopt the same approach as in observations to
868
+ calculate αvir for pixel-based GMC pixels using Eq.
869
+ 3.
870
+ Since the simulation data do not have a telescope
871
+ “beam” and each pixel in this analysis is treated as
872
+ an independent GMC, we set R to be half the size of
873
+ each pixel (50 pc). With constant R, αvir depends only
874
+ on σv and Σmol. Higher σv at a similar Σmol thus im-
875
+ plies that αvir values for GMCs in simulated mergers
876
+ are higher than the values for PHANGS or simulated
877
+ isolated galaxies. Higher values for αvir are also found
878
+ for NGC 3256 (Brunetti et al. 2020; Brunetti & Wilson
879
+ 2022) and the Antennae (Brunetti 2022).
880
+ Fig. 4 shows αvir as a function of time during the pe-
881
+ riod near the second pericentric passage for the merger
882
+ simulations with “e2” and “e1” orbits and viewed from
883
+ “v0” angle. αvir stays low before the second passage and
884
+ suddenly rises after the passage along with a sudden in-
885
+ crease in SFR. The peak of median αvir can reach ∼100.
886
+ After the second passage, αvir gradually dies down as
887
+ the SFR also decreases. During the entire merging pro-
888
+ cess, we generally see a good correspondence between
889
+ the SFR and αvir peaks, which suggests that the αvir
890
+ value is either regulated by feedback from star forma-
891
+ tion or that both SFR and αvir increase together as a
892
+ result of the merger.
893
+ αvir for our fiducial ‘e2’ orbit is generally higher than
894
+ that of the ‘e1’ orbit and stays at higher values for a
895
+ significantly longer time.
896
+ The ‘e2’ orbit has a higher
897
+ impact parameter than the ‘e1’ orbit (Section 2.1.2).
898
+ Therefore, we would expect more gravitational poten-
899
+ tial energy transferred to the kinetic energy of individual
900
+ GMCs, potentially making these GMCs less gravitation-
901
+ ally bound. The αvir values for the ‘e1’ orbit are more
902
+
903
+ GMCs in Galaxy Mergers
904
+ 9
905
+ 100
906
+ 101
907
+ SFR (M⊙ yr−1)
908
+ 2.6
909
+ 2.8
910
+ 3.0
911
+ 3.2
912
+ 3.4
913
+ Time (Gyr)
914
+ 101
915
+ 102
916
+ 103
917
+ αvir
918
+ e2 orbit
919
+ PHANGS
920
+ NGC 3256
921
+ Antennae
922
+ 101
923
+ SFR (M⊙ yr−1)
924
+ 1.2
925
+ 1.4
926
+ 1.6
927
+ 1.8
928
+ 2.0
929
+ Time (Gyr)
930
+ 101
931
+ 102
932
+ 103
933
+ αvir
934
+ e1 orbit
935
+ PHANGS
936
+ NGC 3256
937
+ Antennae
938
+ Figure 4. αvir versus time for the G2&G3 mergers in (left) the e2 orbit and (right) the e1 orbit viewed from ‘v0’ angle during
939
+ the final coalescence. (Left) The red line is the mass-weighted median for αvir from the simulation. The orange shaded region
940
+ includes data within the 16th and 84th quantile of αvir values. The dashed lines correspond to the start of the second passage
941
+ and the final coalescence of the two nuclei. The three solid lines correspond to the merger times shown in Fig. 2. The horizontal
942
+ dashed line indicates the median αvir for the isolated G3 galaxy at 0.625 Gyr (Fig . 1) as a baseline for comparison. The upper
943
+ panel shows SFR versus time for the second coalescence and the right panel shows the 16th, 50th and 84th quantile of αvir for
944
+ PHANGS, NGC 3256 and the Antennae from the observations. In calculating αvir, we use the U/LIRG αCO for NGC 3256 and
945
+ the Milky Way value for PHANGS and the Antennae. (Right) Same plot for G2&G3 merger in the ‘e1’ orbit during the final
946
+ coalescence. The 3 solid lines correspond to 3 snapshots in Fig. C1. The ‘e1’ orbit has a smaller impact parameter than the
947
+ ‘e2’ orbit. We can see the global αvir increases dramatically right after the second passage as SFR rises. The peak SFR also
948
+ roughly corresponds with the peak αvir, which suggests the high αvir might be caused by the feedback from the starburst.
949
+ similar to the αvir of NGC 3256 and the Antennae and
950
+ the ‘e1’ orbit is more similar to the orbit of the Anten-
951
+ nae. We note that both the Antennae and NGC 3256 are
952
+ at the very start of their second passages (Privon et al.
953
+ 2013; Renaud et al. 2019a).
954
+ At this stage, there are
955
+ significant variations in αvir, which makes it difficult to
956
+ pick the exact snapshot that matches the observation.
957
+ If we use the U/LIRG αCO instead of the Milky Way
958
+ value, αvir for the Antennae would be similar to that of
959
+ NGC 3256. We will discuss our αCO choices further in
960
+ Section 5.2.
961
+ 4.3. Molecular Gas in the central 1 kpc region
962
+ From the moment 0 maps in Fig. 2, we can see that
963
+ most molecular gas is concentrated in the center during
964
+ the post-merger phase after 2.83 Gyr. This is consis-
965
+ tent with the traditional scenario that the central star-
966
+ burst activity is caused by the inflow of molecular gas
967
+ due to the loss of angular momentum (Hernquist 1989;
968
+ Barnes & Hernquist 1991; Mihos & Hernquist 1994,
969
+ 1996; Barnes & Hernquist 1996; Moreno et al. 2015).
970
+ To quantify how much of the molecular gas is concen-
971
+ trated in the center, Fig. 5 shows the molecular gas mass
972
+ within the central 1 kpc, and the ratio between this value
973
+ and total molecular gas mass. The fraction of molecular
974
+ 2.6
975
+ 2.8
976
+ 3.0
977
+ 3.2
978
+ 3.4
979
+ Time (Gyr)
980
+ 0%
981
+ 20%
982
+ 40%
983
+ 60%
984
+ 80%
985
+ 100%
986
+ Mmol, central / Mmol, total
987
+ Figure 5.
988
+ The ratio between molecular gas mass within
989
+ the central 1 kpc radius circle of the G3 galaxy and total
990
+ molecular gas inside our FOV of 25 kpc. During the second
991
+ coalescence between 2.7 Gyr and 3.2 Gyr, more than 50% of
992
+ molecular gas is concentrated within the central 1 kpc region,
993
+ which indicates the Σmol increase we see in the simulated
994
+ merger during the second passage is probably due to this gas
995
+ concentration.
996
+ gas concentrated in the center reaches as high as 80% for
997
+ a significant period of time (∼ 500 Myr) around the final
998
+ coalescence. On the other hand, Moreno et al. (2019)
999
+ shows that the total molecular gas mass decreases dur-
1000
+ ing the second passage. Therefore, the overall high Σmol
1001
+
1002
+ 10
1003
+ He et al.
1004
+ values of GMCs across our simulated merger compared
1005
+ to isolated galaxies are mostly due to the central gas
1006
+ concentration.
1007
+ Fig. 6 shows the σv versus Σmol distribution for pix-
1008
+ els in the central kpc region of the G2&G3 merger at
1009
+ 2.87 Gyr (red aperture in Fig.
1010
+ 2), along with pix-
1011
+ els in the center of PHANGS galaxies, the Antennae
1012
+ and NGC 3256.
1013
+ We can see the pixels in the center
1014
+ of the G2&G3 merger have a larger deviation from the
1015
+ PHANGS trend than NGC 3256, which indicates that
1016
+ the G2&G3 merger has GMCs with larger αvir in the
1017
+ center. We also show the mass weighted median αvir for
1018
+ the entire and central region of G2&G3 merger as a func-
1019
+ tion of time (Fig. 6 right). αvir in the center is generally
1020
+ higher than for the entire region, which indicates that
1021
+ GMCs in the center are more perturbed and less grav-
1022
+ itationally bound. At the time right after the second
1023
+ passage, we see dramatic fluctuations of αvir for both
1024
+ the center and the entire galaxy, which is probably due
1025
+ to the complex and constantly varying gas morphology
1026
+ during this period. Moreover, we might see two GMCs
1027
+ that are far apart in 3D space but lie along the same
1028
+ line of sight, which cause large measured αvir value, but
1029
+ in a short time they no longer lie along the same line of
1030
+ sight, which causes a sudden drop of αvir. At the post-
1031
+ merger phase, αvir values are more stable. However, we
1032
+ see that αvir of the disk region gradually settles down
1033
+ while the central αvir keeps increasing. This might indi-
1034
+ cate that GMCs in the central region take more time to
1035
+ settle down to their normal states, which may be due to
1036
+ the starburst activity in the center. We also see high αvir
1037
+ for the center at the very start (2.54 Gyr), which prob-
1038
+ ably means GMCs in the center at this time have not
1039
+ recovered from the starburst event that occured during
1040
+ the first peri-galactic passage.
1041
+ 4.4. Correlation between the central SFR and GMC
1042
+ Properties
1043
+ The driving mechanism behind the SFR enhancement
1044
+ in mergers is of great interest to the study of star forma-
1045
+ tion and galaxy evolution. One approach to tackle this
1046
+ problem is to decompose the SFR into the following 2
1047
+ terms
1048
+ SFR = Mmol
1049
+ tdep
1050
+ ,
1051
+ (4)
1052
+ where tdep is the depletion time, defined as the time
1053
+ for star formation to consume the available molecular
1054
+ gas.
1055
+ This approach makes it clearer that the rise in
1056
+ SFR could be either due to a larger amount of molecular
1057
+ gas “fuel driven”) or shorter depletion time (“efficiency
1058
+ driven”). The simulations (e.g. Moreno et al. 2021) and
1059
+ observations (e.g. Thorp et al. 2022) indicate that both
1060
+ terms contribute to the SFR enhancement at kpc scales.
1061
+ Moreover, many studies of the Kennicutt-Schmidt rela-
1062
+ tion in U/LIRGs at kpc scales show that these starburst
1063
+ mergers have relatively short tdep of ∼ 108 yr compared
1064
+ to normal spiral galaxies of ∼ 109 yr (e.g. Daddi et al.
1065
+ 2010), which confirms the role of efficiency driving in
1066
+ mergers. With our simulations being able to probe the
1067
+ molecular gas at GMC scales, we can explore how tdep
1068
+ is correlated with GMC populations in different regions.
1069
+ For this analysis, we focus on the molecular gas and
1070
+ star formation in the central 1 kpc region since most gas
1071
+ is concentrated here during the second passage (see Sec-
1072
+ tion 4.3). We measure the mass-weighted median αvir in
1073
+ this central region as a metric for GMC dynamical state
1074
+ in the center. Fig. 7 shows Σmol and ΣSFR color-coded
1075
+ by αvir for the central region as a function of time. We
1076
+ calculate the average Σmol and ΣSFR by dividing the to-
1077
+ tal Mmol or SFR in the central region by the aperture
1078
+ size. We show the data points within the period of 2.54 –
1079
+ 2.61 Gyr (before the second passage) and 2.73 – 3.47 Gyr
1080
+ (after the second passage) for comparison. We exclude
1081
+ the data points between the start of the second passage
1082
+ (2.62 Gyr) and the time when the central/total gas frac-
1083
+ tion starts to reach 50% (2.73 Gyr) because data points
1084
+ from this period show a large deviation from the major
1085
+ trend in ΣSFR vs Σmol diagram. The large deviation is
1086
+ probably because the limited amount of molecular gas
1087
+ is highly perturbed in the central region. Gas is either
1088
+ quickly consumed without being replenished in time, or
1089
+ just concentrated and has not formed stars yet, which
1090
+ causes the large scatter in the ΣSFR vs Σmol relation. On
1091
+ the other hand, before and after this period, the central
1092
+ region is in a relatively stable state when the molecu-
1093
+ lar gas is constantly replenished to fuel star formation
1094
+ activity.
1095
+ In the left panel of Fig. 7, we can see that tdep be-
1096
+ comes shorter as Σmol and ΣSFR increase. The points at
1097
+ the lower left end of the Σmol correspond to the times be-
1098
+ fore the second passage, which also have relatively low
1099
+ αvir. In contrast, the αvir after the second passage is
1100
+ significantly higher. We also note that tdep even before
1101
+ the second passage (∼ 108 yr) is quite shorter than that
1102
+ of normal spiral galaxies (109 yr). The difference could
1103
+ be due to different dynamical timescales of simulated
1104
+ and observed galaxies.
1105
+ At this time, we can see αvir
1106
+ for the central region is already ∼ 10 which indicates
1107
+ the molecular gas in the central region has already been
1108
+ disturbed.
1109
+ There is no significant correlation between tdep and
1110
+ αvir, with Spearman coefficient of -0.08 for all data
1111
+ points and of 0.18 for data after the second passage,
1112
+ which is against our expectation that low αvir gas form
1113
+
1114
+ GMCs in Galaxy Mergers
1115
+ 11
1116
+ 101
1117
+ 102
1118
+ 103
1119
+ 104
1120
+ mol (M pc
1121
+ 2)
1122
+ 100
1123
+ 101
1124
+ 102
1125
+ v (km s
1126
+ 1)
1127
+ t: 2.87 Gyr
1128
+ FIRE G2&G3
1129
+ FIRE G2&G3 Center
1130
+ PHANGS galaxy center
1131
+ Antennae nucleus
1132
+ NGC 3256 nucleus
1133
+ 2.6
1134
+ 2.8
1135
+ 3.0
1136
+ 3.2
1137
+ 3.4
1138
+ Time (Gyr)
1139
+ 101
1140
+ 102
1141
+ vir
1142
+ G2&G3
1143
+ G2&G3 center
1144
+ Figure 6.
1145
+ (Left) The σv versus Σmol contour for the entire (dashed contour) and central 1 kpc region (solid contour) of the
1146
+ G2&G3 merger at 2.87 Gyr viewed from the ‘v0’ angle. We also show contours for the centers of PHANGS galaxies (brown
1147
+ dashed contours), the Antennae (orange shaded contours) and NGC 3256 (blue contours). We can see the central region in our
1148
+ simulated merger generally has the highest σv and αvir. (Right) The mass weighted median αvir for molecular gas in the entire
1149
+ (blue) and central (orange) region of G2&G3 merger viewed from ‘v0’ angle. We see that αvir for the entire disk gradually
1150
+ settles back to the original low value, while that for the central region keeps a high value until the end of the simulation.
1151
+ 101
1152
+ mol (M pc
1153
+ 2)
1154
+ 10
1155
+ 1
1156
+ 100
1157
+ SFR (M yr
1158
+ 1 kpc
1159
+ 2)
1160
+ tdep = 107 yr
1161
+ tdep = 108 yr
1162
+ 101
1163
+ 102
1164
+ vir
1165
+ 101
1166
+ 102
1167
+ vir
1168
+ 107
1169
+ 108
1170
+ tdep (yr)
1171
+ rs all: -0.08
1172
+ rs after: 0.18
1173
+ 2.6
1174
+ 2.8
1175
+ 3.0
1176
+ 3.2
1177
+ 3.4
1178
+ Time (Gyr)
1179
+ 101
1180
+ mol (M yr
1181
+ 1 pc
1182
+ 2)
1183
+ 107
1184
+ 108
1185
+ tdep (yr)
1186
+ rs all: -0.47
1187
+ rs after: -0.32
1188
+ 2.6
1189
+ 2.8
1190
+ 3.0
1191
+ 3.2
1192
+ 3.4
1193
+ Time (Gyr)
1194
+ Figure 7. (Left) SFR surface density ΣSFR versus Σmol color coded by the mass-weighted median αvir for the central 1 kpc
1195
+ region of the the G2&G3 merger during the second passage of the ‘e2’ orbit viewed from ‘v0’ orientation. We include simulated
1196
+ data points within 2.54 – 2.61 Gyr (before the second passage; trangle) and 2.73 – 3.47 Gyr (after the second passage; circle).
1197
+ Both ΣSFR and Σmol are calculated as total central SFR or Mmol within 1 kpc radius divided by the aperture size, while αvir is the
1198
+ mass weighted median of pixels inside the aperture. The two dashed line indicate constant depletion times (tdep = Σmol/ΣSFR)
1199
+ of 107 and 108 years. (Middle) tdep versus αvir for the central 1 kpc. (Right) tdep versus Σmol for the central region. The label
1200
+ “rs all” shows the Spearman coefficient between tdep and αvir and Σmol for all data points while “rs after” shows the Spearman
1201
+ coefficient only for data after the second passage. We can see there is no significant correlation between αvir and tdep, which is
1202
+ against our expectation that low αvir clouds will consume molecular gas at faster rate.
1203
+ stars more quickly. We can also clearly see a distinc-
1204
+ tion between αvir before and after the second passage.
1205
+ The αvir before the second passage is relatively small
1206
+ and corresponds to larger tdep while the αvir after the
1207
+ second passage is significantly larger but corresponds to
1208
+ shorter tdep. This again is inconsistent with our expecta-
1209
+ tion that low αvir GMCs should form stars more easily.
1210
+ Other physical mechanisms rather than self-gravity of
1211
+ individual GMCs may be needed to help the molecular
1212
+ gas to collapse (see detailed discussion in Section 5.1).
1213
+ On the other hand, we see an anti-correlation between
1214
+ tdep and Σmol.
1215
+ This relation is similar to the global
1216
+ Kennicutt-Schmidt relation where the gas rich U/LIRGs
1217
+ have the shorter tdep (Daddi et al. 2010). One expla-
1218
+
1219
+ 12
1220
+ He et al.
1221
+ nation for this trend is that the fraction of dense gas
1222
+ (traced by HCN) that are actually forming stars (i.e.
1223
+ traces the self-gravitating gas fraction) is increasing as
1224
+ Σmol increases (e.g.
1225
+ Gao & Solomon 2004; Bemis &
1226
+ Wilson 2023). If we assume Σmol is proportional to the
1227
+ mean volume density of molecular gas in the central re-
1228
+ gion, we would expect larger fraction of molecular gas
1229
+ above the dense gas threshold (n > 104 cm−3) in FIRE-
1230
+ 2 simulation (Hopkins 2015), which leads to faster star
1231
+ formation and shorter tdep.
1232
+ 5. DISCUSSION
1233
+ 5.1. How can high αvir gas form stars in simulated
1234
+ mergers?
1235
+ As shown in Section 4.2, αvir generally stays above 10
1236
+ during the second passage for the G2&G3 merger. If we
1237
+ assume star formation occurs in individual GMCs and is
1238
+ driven by the collapse of the clouds due to self-gravity ,
1239
+ we would expect star forming GMCs to have αvir below
1240
+ 1. The combination of high αvir values and starburst
1241
+ activity is inconsistent with this expectation, unless the
1242
+ velocity dispersion is being driven to higher values by
1243
+ infall motion. Furthermore, we find no correlation be-
1244
+ tween αvir and tdep (Section 4.4), which suggests low αvir
1245
+ values do not strongly affect the depletion time in our
1246
+ simulations. However, we need to note that our mea-
1247
+ surement of αvir from pixel-based method might not re-
1248
+ flect the real αvir of individual GMC components, espe-
1249
+ cially for the post-second-passage phase when molecular
1250
+ gas is concentrated in the center. Although observations
1251
+ (Brunetti & Wilson 2022; Sun et al. 2020) show that
1252
+ cloud properties extracted from a pixel-based approach
1253
+ is generally consistent with the traditional cloud-based
1254
+ approach, they also show the pixel-based approach gives
1255
+ higher σv and αvir for molecular gas in galaxy centers.
1256
+ This is likely due to the superimposition of different
1257
+ GMC components along the same line of sight in gas-
1258
+ concentrated galaxy centers. Sun et al. (2022) find that
1259
+ αvir from pixel-based approach is ∼ 3 times higher than
1260
+ the cloud-based approach for galaxy centers. If we as-
1261
+ sume the same degree of overestimate in our simulation
1262
+ data for the merger center, we would expect the real αvir
1263
+ to be ∼ 10 during the second passage, still significantly
1264
+ higher than the critical value of 1 when clouds reach the
1265
+ self-collapsing criterion. We also note that even the ob-
1266
+ servational cloud-based approach by extracting different
1267
+ GMC components from p-p-v data cube might still suf-
1268
+ fer from the projection effects. Beaumont et al. (2013)
1269
+ find that αvir from p-p-p and p-p-v cubes have a factor
1270
+ of 2 difference for substructures in their cloud simulation
1271
+ due to a mismatch of substructures from these two data
1272
+ cubes. Therefore, one of our next steps is to perform
1273
+ cloud-finding algorithm (Burkhart et al. 2013) on both
1274
+ p-p-p and p-p-v simulation data cubes to fully under-
1275
+ stand how GMCs evolve during the merging events.
1276
+ A possible explanation for large αvir is that GMCs
1277
+ that satisfy the self-collapsing criterion have already
1278
+ formed stars and become unbound or destroyed due to
1279
+ the stellar feedback.
1280
+ However, if this is the case, we
1281
+ would expect αvir to fluctuate around the critical value
1282
+ of 1. Furthermore, according to Benincasa et al. (2020),
1283
+ GMCs with high αvir (>10) have significantly shorter
1284
+ lifetimes (∼2 Myr) than GMCs with low αvir (∼1; life-
1285
+ time of ∼10 Myr). If we assume all GMCs are of the
1286
+ same population but at different evolutionary stages, we
1287
+ would expect GMCs to stay at low αvir state for a longer
1288
+ time and hence we should be more likely to catch these
1289
+ low αvir GMCs in our simulation snapshots. Instead,
1290
+ we see αvir constantly higher than 10 during the star-
1291
+ burst activity (Fig. 4), which is inconsistent with this
1292
+ scenario.
1293
+ It is perhaps likely that the explanation is that these
1294
+ GMCs are experiencing compression from the large-scale
1295
+ gravitational potential. This compression could add ad-
1296
+ ditional potential energy to balance the kinetic energy.
1297
+ Furthermore, they can trigger inflow of gas into GMCs
1298
+ and bring radial velocity (Vr) component into our σv
1299
+ measurement. Ganguly et al. (2022) find in their simu-
1300
+ lation that vr could be an important factor to produce
1301
+ high measured αvir clouds. For GMCs in normal spi-
1302
+ ral galaxies and galaxy pairs (e.g., M 51), Meidt et al.
1303
+ (2018) show that the large-scale stellar potential could
1304
+ be responsible for holding individual GMCs in energy
1305
+ equipartition state. Compared to galaxies in their study,
1306
+ the starburst mergers in our study undergo more dra-
1307
+ matic morphological changes, which could generate com-
1308
+ plicated gravitational tidal fields. Renaud et al. (2009)
1309
+ show in their simulation that major mergers can produce
1310
+ fully compressive tidal fields that concentrate molecular
1311
+ gas and trigger starburst activities. These compressive
1312
+ tidal fields are believed to be responsible for creating the
1313
+ off-nuclei gas concentration region in the ULIRG, Arp
1314
+ 220 (Downes & Solomon 1998). In our next step to test
1315
+ this scenario, we will need to calculate tidal deformation
1316
+ timescale (as in Ganguly et al. 2022) for each individual
1317
+ GMC and compare it with GMC free-fall and crossing
1318
+ timescales to see how important the external tidal field
1319
+ is compared to GMC self-gravity.
1320
+ Another possible explanation is that molecular gas
1321
+ is smoothly distributed rather than clumped into in-
1322
+ dividual GMCs during the starburst activities. If this
1323
+ is the case, the star formation is regulated by the en-
1324
+ tire molecular disk rather than individual GMC compo-
1325
+ nents (Krumholz et al. 2018). Wilson et al. (2019) pro-
1326
+
1327
+ GMCs in Galaxy Mergers
1328
+ 13
1329
+ pose that the star formation in U/LIRGs is regulated by
1330
+ the hydrodynamic pressure of the molecular disk with a
1331
+ constant scale height. In observation, one way to test
1332
+ the smoothness of gas distribution is by comparing av-
1333
+ erage gas surface density at different observing resolu-
1334
+ tions (Leroy et al. 2017). Brunetti et al. (2020) show
1335
+ that molecular gas in the LIRG, NGC 3256, is smoothly
1336
+ distributed based on this method.
1337
+ For our simulated
1338
+ merger, gas might be smoothly distributed during the
1339
+ second passage when most gas is concentrated in the
1340
+ center (e.g. at 2.87 Gyr, Fig. 2. We could test this sce-
1341
+ nario by changing the pixel size in our p-p-v cubes and
1342
+ compare the average gas surface densities in the central
1343
+ region at different pixel resolutions.
1344
+ 5.2. Comparison with observations
1345
+ As shown in Section 4, our simulated merger gener-
1346
+ ally has lower Σmol and higher σv and αvir compared to
1347
+ the two observed mergers, the Antennae and NGC 3256.
1348
+ We note that this simulation is not set to match the ex-
1349
+ act condition of the observed mergers, so some discrep-
1350
+ ancy between observations and simulations would be ex-
1351
+ pected.
1352
+ From the observational side, the biggest un-
1353
+ certainty that comes into the measurement is the value
1354
+ of αCO. As mentioned in Section 4.1, if we adopt the
1355
+ ULIRG αCO instead of the Milky Way value for the
1356
+ Antennae, we would find the Antennae to have similar
1357
+ Σmol and αvir as NGC 3256. In contrast, if we assume
1358
+ an even smaller αCO for NGC 3256, that might bring
1359
+ the contours of the observations further away from the
1360
+ PHANGS trend and hence more similar to the simu-
1361
+ lation contours. However, various LVG modelings (Pa-
1362
+ padopoulos et al. 2012; Harrington et al. 2021) show that
1363
+ local U/LIRGs and high-z starburst galaxies generally
1364
+ have αCO above 0.8 M⊙ (K km s−1 pc2)−1. In fact, a
1365
+ recent study by Dunne et al. (2022) concludes that these
1366
+ starburst galaxies might actually have αCO equal to the
1367
+ Milky Way value by cross-correlating the CO luminos-
1368
+ ity with dust and CI luminosity. Therefore, a factor of 3
1369
+ discrepancy in αvir between simulated mergers and NGC
1370
+ 3256 is probably real rather than due to measurement
1371
+ uncertainties.
1372
+ For the comparison between observations and simula-
1373
+ tions, we also note that the two observed mergers are
1374
+ both in an early stage after the second passage since we
1375
+ can still identify two separate nuclei. In this stage, αvir
1376
+ is quite time-sensitive and it is difficult to match the
1377
+ exact same stage between the simulated and observed
1378
+ galaxies. Therefore, it is possible that both NGC 3256
1379
+ and Antennae are caught at a specific merger stage with
1380
+ a lower αvir (although in the case of NGC 3256, still
1381
+ enhanced relative to PHANGS galaxies). In compari-
1382
+ son, αvir in the simulations is relatively stable in the
1383
+ post-merger stage. This stability suggests that a com-
1384
+ parison between simulations and observations of post-
1385
+ merger galaxies could be a useful next step. Moreover,
1386
+ post-mergers have a rather simple morphology, which
1387
+ simplifies the task of making quantitative comparisons.
1388
+ It would also be interesting to compare the simula-
1389
+ tion results with starburst galaxies at high redshift. Re-
1390
+ cent works (e.g. Dessauges-Zavadsky et al. 2019; Meˇstri´c
1391
+ et al. 2022) show that we can probe GMC-scale star-
1392
+ forming clumps in gravitationally lensed objects at high
1393
+ redshift.
1394
+ These star-forming clumps generally show a
1395
+ similar αvir to GMCs of normal spiral galaxies in our lo-
1396
+ cal Universe despite using different αCO, and therefore
1397
+ lower than what we see in the simulations. However,
1398
+ these high-z targets likely live in a completely different
1399
+ environment than our idealized mergers.
1400
+ Specifically,
1401
+ high-z galaxies tend to have a much higher gas fraction,
1402
+ and thus can form self-gravitating clumps with low αvir
1403
+ more easily (Fensch & Bournaud 2021).
1404
+ 5.3. Comparison with other simulations
1405
+ In this work, we use the non-cosmological simulations
1406
+ from Moreno et al. (2019) to compare GMC properties in
1407
+ mergers and normal spiral galaxies. Two major advan-
1408
+ tages of this simulation suite are that it has a resolution
1409
+ of 1.1 pc (which is much smaller than typical GMC sizes)
1410
+ and it can model the ISM down to low temperatures (∼
1411
+ 10 K), both of which allow us to match the molecular
1412
+ gas in simulations with CO observations. Various cos-
1413
+ mological simulations show that mergers are responsible
1414
+ for enhancing gas fractions and triggering starburst ac-
1415
+ tivity (Scudder et al. 2015; Knapen et al. 2015; Patton
1416
+ et al. 2013; Martin et al. 2017; Rodr´ıguez Montero et al.
1417
+ 2019; Patton et al. 2020, e.g.,). However, these simu-
1418
+ lations can only model gas with temperatures down to
1419
+ 104 K and hence are incapable of capturing the turbu-
1420
+ lent multi-phase structure of the ISM. An alternative
1421
+ approach is to compare observations with cosmological
1422
+ zoom-in simulations, which allows for higher resolution,
1423
+ more realistic feedback star formation thresholds, and
1424
+ more realistic modeling of the multi-phase ISM. Vari-
1425
+ ous authors have explored GMC properties, mostly in
1426
+ Milky-Way-like galaxies (e.g. Guedes et al. 2011; Cev-
1427
+ erino et al. 2014; Sawala et al. 2014; Benincasa et al.
1428
+ 2020; Orr et al. 2021), and they generally reproduce the
1429
+ GMC mass function in our Milky Way. However, only a
1430
+ handful of work (e.g. Rey et al. 2022) has been done for
1431
+ GMCs in mergers. Also, the Milky Way is identified as a
1432
+ green-valley galaxy (Mutch et al. 2011) with lower SFR
1433
+ than typical spiral galaxies in the local universe. There-
1434
+ fore, due to the lack of zoom-in cosmological simulations
1435
+
1436
+ 14
1437
+ He et al.
1438
+ on local mergers, we have adopted idealized simulations
1439
+ for this study.
1440
+ Furthermore, idealized simulations al-
1441
+ low us to compare GMCs of control galaxies with those
1442
+ of mergers to directly study the impact of the merging
1443
+ event.
1444
+ Several idealized simulations have been performed to
1445
+ study molecular gas and GMC properties in mergers.
1446
+ Karl et al. (2013) perform a merger simulation closely
1447
+ matched to the Antennae and find a great match on
1448
+ CO distributions between simulation and observations,
1449
+ which suggests insufficient stellar feedback efficiencies in
1450
+ the Antennae. Li et al. (2022) perform a study of GMCs
1451
+ and young massive star clusters (YMCs) in Antennae-
1452
+ like mergers. They find that GMC mass functions for
1453
+ mergers have similar power-law slopes to normal spi-
1454
+ rals during the second coalescence but with much higher
1455
+ mass values. Narayanan et al. (2011) compare the αCO
1456
+ in mergers and normal spiral galaxies and find that the
1457
+ low αCO in mergers is mostly due to the high temper-
1458
+ ature and αvir of GMCs in the merger. They predict
1459
+ there is a transition stage with αCO between U/LIRG
1460
+ and Milky Way values and that αvir is tightly anti-
1461
+ correlated with αCO. In contrast, Renaud et al. (2019b)
1462
+ show that αCO values drop quickly during each coales-
1463
+ cence between two galaxies. We find similar behavior for
1464
+ αvir during the second coalescence, which might imply
1465
+ a similar drop in αCO (Narayanan et al. 2011).
1466
+ 6. CONCLUSIONS
1467
+ We summarize our main conclusions below:
1468
+ • Our pixel-by-pixel analysis shows that the FIRE-
1469
+ 2 simulation by Moreno et al. (2019) successfully
1470
+ reproduces the σv vs Σmol relation for GMC-scale
1471
+ pixels measured for galaxies in the PHANGS sur-
1472
+ vey.
1473
+ • The simulated mergers show a significant increase
1474
+ in both Σmol and σv for GMC-pixels by a factor of
1475
+ 5 – 10 during the second passage when SFR peaks,
1476
+ which brings these pixels above PHANGS-trend in
1477
+ the σv vs Σmol diagram. This may indicate GMCs
1478
+ in these mergers are less gravitationally bound.
1479
+ We quantify this deviation by the virial param-
1480
+ eter αvir and find that our simulated mergers have
1481
+ αvir of 10 − 100, which is even higher than the
1482
+ observed αvir in NGC 3256.
1483
+ However, this dis-
1484
+ crepancy could be partly due to the high impact
1485
+ parameter in the initial set-up of the simulated
1486
+ mergers. Furthermore, we see a good correspon-
1487
+ dence between the increase in SFR and αvir, which
1488
+ suggest either the starburst feedback is responsi-
1489
+ ble for dispersing the gas or the correlation is in
1490
+ response to gas compression.
1491
+ • Our simulated mergers show a clear gas concentra-
1492
+ tion in the center during the second passage, with
1493
+ up to 80% of molecular gas in the central 1 kpc
1494
+ region. Therefore, the GMC-pixels in the central
1495
+ region tend to have the highest Σmol. We also find
1496
+ these pixels tend to have the highest σv and αvir,
1497
+ which could be caused by the starburst feedback
1498
+ and the inflow of gas.
1499
+ • We explore if αvir at GMC scales is responsible
1500
+ for the varying depletion time (tdep) in observed
1501
+ mergers. While we do not find a significant corre-
1502
+ lation between tdep and αvir, we see a clear distinc-
1503
+ tion before (small αvir, long tdep) and after (large
1504
+ αvir, short tdep) the second passage. This could
1505
+ be due to projection effects (multiple GMCs along
1506
+ the same line of sight) during the second passage
1507
+ when most of the molecular gas is concentrated in
1508
+ the central 1 kpc region. The next step is to run a
1509
+ cloud-identification algorithm on the data to dis-
1510
+ entangle this factor. We also suspect there might
1511
+ be some other mechanism, such as the stellar po-
1512
+ tential and inflow of gas, that helps the GMCs in
1513
+ starburst mergers to collapse and form stars. We
1514
+ also find that tdep has a significant anti-correlation
1515
+ with Σmol for the central region. This may be due
1516
+ to higher Σmol leading to a higher fraction of dense
1517
+ gas, which shortens tdep.
1518
+ In the future, we would like to expand our compar-
1519
+ ison to more observed and simulated mergers.
1520
+ From
1521
+ the observational side, we need larger samples of galaxy
1522
+ mergers spanning different evolutionary stages in order
1523
+ to understand how GMCs evolve throughout the merg-
1524
+ ing. In addition, it is easier to compare the observations
1525
+ with simulations in the post-merger stage since the mor-
1526
+ phology is simpler and easier to quantify. The ALMA
1527
+ archive contains ∼ 40 U/LIRGs with GMC resolution
1528
+ CO 2-1 observations that can be used to build a more
1529
+ complete sample of GMCs in mergers at different stages.
1530
+ From the simulation side, it would be helpful to have
1531
+ simulations that better match the observed galaxies.
1532
+ The Antennae has been widely studied and matched by
1533
+ non-cosmological simulations (e.g. Renaud et al. 2019a;
1534
+ Li et al. 2022) but NGC 3256 is less well studied. Besides
1535
+ comparing with these non-cosmological simulations, we
1536
+ could also compare observation with cosmological sim-
1537
+ ulations, such as FIREBox (Feldmann et al. 2022), that
1538
+ include local mergers.
1539
+
1540
+ GMCs in Galaxy Mergers
1541
+ 15
1542
+ We thank Dr.
1543
+ Jiayi Sun for his help to access to
1544
+ PHANGS data and insightful discussions about the com-
1545
+ parison between simulation and observation. We thank
1546
+ Dr. Nathan Brunetti for access to CO 2-1 image and
1547
+ GMC catalogs of the observed mergers in his paper.
1548
+ This work was carried out as part of the FIRE collab-
1549
+ oration. The research of C.D.W. is supported by grants
1550
+ from the Natural Sciences and Engineering Research
1551
+ Council of Canada and the Canada Research Chairs
1552
+ program. The research of H.H. is partially supported
1553
+ by the New Technologies for Canadian Observatories,
1554
+ an NSERC-CREATE training program. The computa-
1555
+ tions in this paper were run on the Odyssey cluster sup-
1556
+ ported by the FAS Division of Science, Research Com-
1557
+ puting Group at Harvard University. Support for JM is
1558
+ provided by the Hirsch Foundation, by the NSF (AST
1559
+ Award Number 1516374), and by the Harvard Insti-
1560
+ tute for Theory and Computation, through their Visit-
1561
+ ing Scholars Program. B.B. acknowledges support from
1562
+ NSF grant AST-2009679. B.B. is grateful for the gener-
1563
+ ous support of the David and Lucile Packard Foundation
1564
+ and Alfred P. Sloan Foundation. The Flatiron Institute
1565
+ is supported by the Simons Foundation.
1566
+ This
1567
+ paper
1568
+ makes
1569
+ use
1570
+ of
1571
+ the
1572
+ following
1573
+ ALMA
1574
+ data:
1575
+ ADS/JAO.ALMA
1576
+ #2015.1.00714.S
1577
+ and
1578
+ ADS/JAO.ALMA #2018.1.00272.S. ALMA is a part-
1579
+ nership of ESO (representing its member states),
1580
+ NSF (USA), and NINS (Japan), together with NRC
1581
+ (Canada), MOST and ASIAA (Taiwan), and KASI
1582
+ (Republic of Korea), in cooperation with the Republic
1583
+ of Chile. The Joint ALMA Observatory is operated by
1584
+ ESO, AUI/ NRAO, and NAOJ. The National Radio
1585
+ Astronomy Observatory is a facility of the National Sci-
1586
+ ence Foundation operated under cooperative agreement
1587
+ by Associated Universities, Inc.
1588
+ Facilities: ALMA
1589
+ Software:
1590
+ astropy (Collaboration et al. 2013),
1591
+ Spectral-Cube (Ginsburg et al. 2019)
1592
+ REFERENCES
1593
+ Barnes, J. E., & Hernquist, L. 1996, The Astrophysical
1594
+ Journal, 471, 115, doi: 10.1086/177957
1595
+ Barnes, J. E., & Hernquist, L. E. 1991, The Astrophysical
1596
+ Journal, 370, L65, doi: 10.1086/185978
1597
+ Beaumont, C. N., Offner, S. S. R., Shetty, R., Glover, S.
1598
+ C. O., & Goodman, A. A. 2013, The Astrophysical
1599
+ Journal, 777, 173, doi: 10.1088/0004-637X/777/2/173
1600
+ Bellocchi, E., Pereira-Santaella, M., Colina, L., et al. 2022,
1601
+ A&A, 664, A60, doi: 10.1051/0004-6361/202142802
1602
+ Bemis, A. R., & Wilson, C. D. 2023, arXiv e-prints,
1603
+ arXiv:2301.06478. https://arxiv.org/abs/2301.06478
1604
+ Benincasa, S. M., Loebman, S. R., Wetzel, A., et al. 2020,
1605
+ Monthly Notices of the Royal Astronomical Society, 497,
1606
+ 3993, doi: 10.1093/mnras/staa2116
1607
+ Bolatto, A. D., Leroy, A. K., Rosolowsky, E., Walter, F., &
1608
+ Blitz, L. 2008, The Astrophysical Journal, 686, 948,
1609
+ doi: 10.1086/591513
1610
+ Bottrell, C., & Hani, M. H. 2022, Monthly Notices of the
1611
+ Royal Astronomical Society, 514, 2821,
1612
+ doi: 10.1093/mnras/stac1532
1613
+ Bottrell, C., Hani, M. H., Teimoorinia, H., Patton, D. R., &
1614
+ Ellison, S. L. 2022, Monthly Notices of the Royal
1615
+ Astronomical Society, 511, 100,
1616
+ doi: 10.1093/mnras/stab3717
1617
+ Bottrell, C., Hani, M. H., Teimoorinia, H., et al. 2019,
1618
+ Monthly Notices of the Royal Astronomical Society, 490,
1619
+ 5390, doi: 10.1093/mnras/stz2934
1620
+ Bournaud, F., Duc, P. A., & Emsellem, E. 2008, Monthly
1621
+ Notices of the Royal Astronomical Society, 389, L8,
1622
+ doi: 10.1111/j.1745-3933.2008.00511.x
1623
+ Brunetti, N. 2022, Thesis
1624
+ Brunetti, N., & Wilson, C. D. 2022, Monthly Notices of the
1625
+ Royal Astronomical Society, 515, 2928,
1626
+ doi: 10.1093/mnras/stac1975
1627
+ Brunetti, N., Wilson, C. D., Sliwa, K., et al. 2020, Monthly
1628
+ Notices of the Royal Astronomical Society, 500, 4730,
1629
+ doi: 10.1093/mnras/staa3425
1630
+ Burkhart, B. 2018, ApJ, 863, 118,
1631
+ doi: 10.3847/1538-4357/aad002
1632
+ Burkhart, B., Collins, D. C., & Lazarian, A. 2015, The
1633
+ Astrophysical Journal, 808, 48,
1634
+ doi: 10.1088/0004-637X/808/1/48
1635
+ Burkhart, B., Lazarian, A., Goodman, A., & Rosolowsky,
1636
+ E. 2013, ApJ, 770, 141,
1637
+ doi: 10.1088/0004-637X/770/2/141
1638
+ Burkhart, B., & Mocz, P. 2019, ApJ, 879, 129,
1639
+ doi: 10.3847/1538-4357/ab25ed
1640
+ Burkhart, B., Appel, S. M., Bialy, S., et al. 2020, The
1641
+ Astrophysical Journal, 905, 14,
1642
+ doi: 10.3847/1538-4357/abc484
1643
+ Catinella, B., Saintonge, A., Janowiecki, S., et al. 2018,
1644
+ Monthly Notices of the Royal Astronomical Society, 476,
1645
+ 875, doi: 10.1093/mnras/sty089
1646
+
1647
+ 16
1648
+ He et al.
1649
+ Ceverino, D., Klypin, A., Klimek, E. S., et al. 2014,
1650
+ Monthly Notices of the Royal Astronomical Society, 442,
1651
+ 1545, doi: 10.1093/mnras/stu956
1652
+ Chevance, M., Kruijssen, J. M. D., Hygate, A. P. S., et al.
1653
+ 2020, Monthly Notices of the Royal Astronomical
1654
+ Society, 493, 2872, doi: 10.1093/mnras/stz3525
1655
+ Collaboration, T. A., Robitaille, T. P., Tollerud, E. J., et al.
1656
+ 2013, A&A, 558, A33, doi: 10.1051/0004-6361/201322068
1657
+ Colombo, D., Hughes, A., Schinnerer, E., et al. 2014, The
1658
+ Astrophysical Journal, 784, 3,
1659
+ doi: 10.1088/0004-637X/784/1/3
1660
+ Colombo, D., Rosolowsky, E., Duarte-Cabral, A., et al.
1661
+ 2019, Monthly Notices of the Royal Astronomical
1662
+ Society, 483, 4291, doi: 10.1093/mnras/sty3283
1663
+ Daddi, E., Elbaz, D., Walter, F., et al. 2010, The
1664
+ Astrophysical Journal, 714, L118,
1665
+ doi: 10.1088/2041-8205/714/1/L118
1666
+ Dale, J. E., Ngoumou, J., Ercolano, B., & Bonnell, I. A.
1667
+ 2014, Monthly Notices of the Royal Astronomical
1668
+ Society, 442, 694, doi: 10.1093/mnras/stu816
1669
+ Decataldo, D., Lupi, A., Ferrara, A., Pallottini, A., &
1670
+ Fumagalli, M. 2020, Monthly Notices of the Royal
1671
+ Astronomical Society, 497, 4718,
1672
+ doi: 10.1093/mnras/staa2326
1673
+ Dessauges-Zavadsky, M., Richard, J., Combes, F., et al.
1674
+ 2019, Nat Astron, 3, 1115,
1675
+ doi: 10.1038/s41550-019-0874-0
1676
+ Donovan Meyer, J., Koda, J., Momose, R., et al. 2013, The
1677
+ Astrophysical Journal, 772, 107,
1678
+ doi: 10.1088/0004-637X/772/2/107
1679
+ Downes, D., & Solomon, P. M. 1998, ApJ, 507, 615,
1680
+ doi: 10.1086/306339
1681
+ Dunne, L., Maddox, S. J., Papadopoulos, P. P., Ivison,
1682
+ R. J., & Gomez, H. L. 2022, Monthly Notices of the
1683
+ Royal Astronomical Society, 517, 962,
1684
+ doi: 10.1093/mnras/stac2098
1685
+ Elmegreen, D. M., Elmegreen, B. G., Kaufman, M., et al.
1686
+ 2017, The Astrophysical Journal, 841, 43,
1687
+ doi: 10.3847/1538-4357/aa6ba5
1688
+ Fall, S. M., Krumholz, M. R., & Matzner, C. D. 2010,
1689
+ Astrophysical Journal Letters, 710, 142,
1690
+ doi: 10.1088/2041-8205/710/2/L142
1691
+ Feldmann, R., Quataert, E., Faucher-Gigu`ere, C.-A., et al.
1692
+ 2022, FIREbox: Simulating Galaxies at High Dynamic
1693
+ Range in a Cosmological Volume
1694
+ Fensch, J., & Bournaud, F. 2021, Monthly Notices of the
1695
+ Royal Astronomical Society, 505, 3579,
1696
+ doi: 10.1093/mnras/stab1489
1697
+ Fensch, J., Renaud, F., Bournaud, F., et al. 2017, Monthly
1698
+ Notices of the Royal Astronomical Society, 465, 1934,
1699
+ doi: 10.1093/mnras/stw2920
1700
+ Fukui, Y., Kawamura, A., Minamidani, T., et al. 2008, The
1701
+ Astrophysical Journal Supplement Series, 178, 56,
1702
+ doi: 10.1086/589833
1703
+ Ganguly, S., Walch, S., Clarke, S. D., & Seifried, D. 2022,
1704
+ SILCC-Zoom: The Dynamic Balance in Molecular Cloud
1705
+ Substructures
1706
+ Gao, Y., & Solomon, P. M. 2004, The Astrophysical
1707
+ Journal, 606, 271, doi: 10.1086/382999
1708
+ Ginsburg, A., Koch, E., Robitaille, T., et al. 2019, Zenodo,
1709
+ doi: 10.5281/zenodo.2573901
1710
+ Grudi´c, M. Y., Hopkins, P. F., Faucher-Gigu`ere, C. A.,
1711
+ et al. 2018, Monthly Notices of the Royal Astronomical
1712
+ Society, 475, 3511, doi: 10.1093/MNRAS/STY035
1713
+ Guedes, J., Callegari, S., Madau, P., & Mayer, L. 2011, The
1714
+ Astrophysical Journal, 742, 76,
1715
+ doi: 10.1088/0004-637X/742/2/76
1716
+ Guszejnov, D., Hopkins, P. F., & Ma, X. 2017, Monthly
1717
+ Notices of the Royal Astronomical Society, 472, 2107,
1718
+ doi: 10.1093/mnras/stx2067
1719
+ Harrington, K. C., Weiss, A., Yun, M. S., et al. 2021, The
1720
+ Astrophysical Journal, 908, 95,
1721
+ doi: 10.3847/1538-4357/abcc01
1722
+ Hennebelle, P., & Chabrier, G. 2011, The Astrophysical
1723
+ Journal, 743, L29, doi: 10.1088/2041-8205/743/2/L29
1724
+ Hernquist, L. 1989, Nature, 340, 687, doi: 10.1038/340687a0
1725
+ Heyer, M., & Dame, T. M. 2015, Annual Review of
1726
+ Astronomy and Astrophysics, vol. 53, p.583-629, 53, 583,
1727
+ doi: 10.1146/annurev-astro-082214-122324
1728
+ Heyer, M., Krawczyk, C., Duval, J., & Jackson, J. M. 2009,
1729
+ The Astrophysical Journal, 699, 1092,
1730
+ doi: 10.1088/0004-637X/699/2/1092
1731
+ Hopkins, P. F. 2015, Monthly Notices of the Royal
1732
+ Astronomical Society, 450, 53, doi: 10.1093/mnras/stv195
1733
+ —. 2017, A New Public Release of the GIZMO Code
1734
+ Hopkins, P. F., Wetzel, A., Kereˇs, D., et al. 2018, Monthly
1735
+ Notices of the Royal Astronomical Society, 480, 800,
1736
+ doi: 10.1093/mnras/sty1690
1737
+ Howard, C. S., Pudritz, R. E., & Harris, W. E. 2018, Nature
1738
+ Astronomy, 2, 725, doi: 10.1038/s41550-018-0506-0
1739
+ Howell, J. H., Armus, L., Mazzarella, J. M., et al. 2010,
1740
+ The Astrophysical Journal, 715, 572,
1741
+ doi: 10.1088/0004-637X/715/1/572
1742
+ Hughes, A., Meidt, S. E., Colombo, D., et al. 2013, The
1743
+ Astrophysical Journal, 779, 46,
1744
+ doi: 10.1088/0004-637X/779/1/46
1745
+
1746
+ GMCs in Galaxy Mergers
1747
+ 17
1748
+ Jeffreson, S. M. R., & Kruijssen, J. M. D. 2018, Monthly
1749
+ Notices of the Royal Astronomical Society, 28, 1,
1750
+ doi: 10.1093/mnras/sty594
1751
+ Karl, S. J., Lunttila, T., Naab, T., et al. 2013, Monthly
1752
+ Notices of the Royal Astronomical Society, 434, 696,
1753
+ doi: 10.1093/mnras/stt1063
1754
+ Karl, S. J., Naab, T., Johansson, P. H., et al. 2010, The
1755
+ Astrophysical Journal, 715, L88,
1756
+ doi: 10.1088/2041-8205/715/2/L88
1757
+ Kennicutt, R. C., & Evans, N. J. 2012, Annual Review of
1758
+ Astronomy and Astrophysics, 50, 531,
1759
+ doi: 10.1146/annurev-astro-081811-125610
1760
+ Kennicutt, Jr., R. C. 1998, The Astrophysical Journal, 498,
1761
+ 541, doi: 10.1086/305588
1762
+ Kim, C.-G., Ostriker, E. C., & Raileanu, R. 2017, The
1763
+ Astrophysical Journal, 834, 25,
1764
+ doi: 10.3847/1538-4357/834/1/25
1765
+ Knapen, J. H., Cisternas, M., & Querejeta, M. 2015,
1766
+ Monthly Notices of the Royal Astronomical Society, 454,
1767
+ 1742, doi: 10.1093/mnras/stv2135
1768
+ Krumholz, M. R., Burkhart, B., Forbes, J. C., & Crocker,
1769
+ R. M. 2018, MNRAS, 477, 2716,
1770
+ doi: 10.1093/mnras/sty852
1771
+ Krumholz, M. R., & McKee, C. F. 2005, The Astrophysical
1772
+ Journal, 630, 250, doi: 10.1086/431734
1773
+ Krumholz, M. R., McKee, C. F., & Bland-Hawthorn, J.
1774
+ 2019, Annual Review of Astronomy and Astrophysics,
1775
+ vol. 57, p.227-303, 57, 227,
1776
+ doi: 10.1146/annurev-astro-091918-104430
1777
+ Lada, C. J., & Dame, T. M. 2020, The Astrophysical
1778
+ Journal, 898, 3, doi: 10.3847/1538-4357/ab9bfb
1779
+ Larson, R. B. 1981, Monthly Notices of the Royal
1780
+ Astronomical Society, 194, 809,
1781
+ doi: 10.1093/mnras/194.4.809
1782
+ Lee, E. J., Miville-Deschˆenes, M.-A., & Murray, N. W.
1783
+ 2016, The Astrophysical Journal, 833, 229,
1784
+ doi: 10.3847/1538-4357/833/2/229
1785
+ Leitherer, C., Schaerer, D., Goldader, J. D., et al. 1999,
1786
+ The Astrophysical Journal Supplement Series, 123, 3,
1787
+ doi: 10.1086/313233
1788
+ Leroy, A. K., Hughes, A., Schruba, A., et al. 2016, The
1789
+ Astrophysical Journal, 831, 16,
1790
+ doi: 10.3847/0004-637X/831/1/16
1791
+ Leroy, A. K., Usero, A., Schruba, A., et al. 2017, The
1792
+ Astrophysical Journal, 835, 217,
1793
+ doi: 10.3847/1538-4357/835/2/217
1794
+ Leroy, A. K., Schinnerer, E., Hughes, A., et al. 2021, ApJS,
1795
+ 257, 43, doi: 10.3847/1538-4365/ac17f3
1796
+ Li, H., Vogelsberger, M., Bryan, G. L., et al. 2022, Monthly
1797
+ Notices of the Royal Astronomical Society, 514, 265,
1798
+ doi: 10.1093/mnras/stac1136
1799
+ Li, H., Vogelsberger, M., Marinacci, F., & Gnedin, O. Y.
1800
+ 2019, Monthly Notices of the Royal Astronomical
1801
+ Society, 487, 364, doi: 10.1093/mnras/stz1271
1802
+ Martin, G., Kaviraj, S., Devriendt, J. E. G., et al. 2017,
1803
+ Monthly Notices of the Royal Astronomical Society, 472,
1804
+ L50, doi: 10.1093/mnrasl/slx136
1805
+ McElroy, R., Bottrell, C., Hani, M. H., et al. 2022, Monthly
1806
+ Notices of the Royal Astronomical Society, 515, 3406,
1807
+ doi: 10.1093/mnras/stac1715
1808
+ McMullin, J. P., Waters, B., Schiebel, D., Young, W., &
1809
+ Golap, K. 2007, 376, 127
1810
+ Meidt, S. E., Leroy, A. K., Rosolowsky, E., et al. 2018, The
1811
+ Astrophysical Journal, 854, 100,
1812
+ doi: 10.3847/1538-4357/aaa290
1813
+ Meˇstri´c, U., Vanzella, E., Zanella, A., et al. 2022, Monthly
1814
+ Notices of the Royal Astronomical Society, 516, 3532,
1815
+ doi: 10.1093/mnras/stac230910.48550/arXiv.2202.09377
1816
+ Mihos, J. C., & Hernquist, L. 1994, The Astrophysical
1817
+ Journal, 431, L9, doi: 10.1086/187460
1818
+ —. 1996, The Astrophysical Journal, 464, 641,
1819
+ doi: 10.1086/177353
1820
+ Miville-Deschˆenes, M.-A., Murray, N., & Lee, E. J. 2017,
1821
+ The Astrophysical Journal, 834, 57,
1822
+ doi: 10.3847/1538-4357/834/1/57
1823
+ Mocz, P., & Burkhart, B. 2018, MNRAS, 480, 3916,
1824
+ doi: 10.1093/mnras/sty1976
1825
+ Moreno, J., Torrey, P., Ellison, S. L., et al. 2015, Monthly
1826
+ Notices of the Royal Astronomical Society, 448, 1107,
1827
+ doi: 10.1093/mnras/stv094
1828
+ —. 2019, Monthly Notices of the Royal Astronomical
1829
+ Society, 485, 1320, doi: 10.1093/mnras/stz417
1830
+ —. 2021, Monthly Notices of the Royal Astronomical
1831
+ Society, 503, 3113, doi: 10.1093/mnras/staa2952
1832
+ Muraoka, K., Kohno, K., Tosaki, T., et al. 2009, The
1833
+ Astrophysical Journal, 706, 1213,
1834
+ doi: 10.1088/0004-637X/706/2/1213
1835
+ Murray, N., Quataert, E., & Thompson, T. A. 2010, The
1836
+ Astrophysical Journal, 709, 191,
1837
+ doi: 10.1088/0004-637X/709/1/191
1838
+ Mutch, S. J., Croton, D. J., & Poole, G. B. 2011, The
1839
+ Astrophysical Journal, 736, 84,
1840
+ doi: 10.1088/0004-637X/736/2/84
1841
+ Myers, A. T., Klein, R. I., Krumholz, M. R., & McKee,
1842
+ C. F. 2014, Monthly Notices of the Royal Astronomical
1843
+ Society, 439, 3420, doi: 10.1093/mnras/stu190
1844
+
1845
+ 18
1846
+ He et al.
1847
+ Narayanan, D., Krumholz, M., Ostriker, E. C., & Hernquist,
1848
+ L. 2011, Monthly Notices of the Royal Astronomical
1849
+ Society, 418, 664, doi: 10.1111/j.1365-2966.2011.19516.x
1850
+ Nieten, C., Neininger, N., Gu´elin, M., et al. 2006,
1851
+ Astronomy and Astrophysics, Volume 453, Issue 2, July
1852
+ II 2006, pp.459-475, 453, 459,
1853
+ doi: 10.1051/0004-6361:20035672
1854
+ Orr, M. E., Hayward, C. C., Hopkins, P. F., et al. 2018,
1855
+ Monthly Notices of the Royal Astronomical Society, 478,
1856
+ 3653, doi: 10.1093/mnras/sty1241
1857
+ Orr, M. E., Hatchfield, H. P., Battersby, C., et al. 2021,
1858
+ The Astrophysical Journal, 908, L31,
1859
+ doi: 10.3847/2041-8213/abdebd
1860
+ Papadopoulos, P. P., van der Werf, P. P., Xilouris, E. M.,
1861
+ et al. 2012, Monthly Notices of the Royal Astronomical
1862
+ Society, 426, 2601, doi: 10.1111/j.1365-2966.2012.21001.x
1863
+ Patton, D. R., Torrey, P., Ellison, S. L., Mendel, J. T., &
1864
+ Scudder, J. M. 2013, Monthly Notices of the Royal
1865
+ Astronomical Society, 433, L59,
1866
+ doi: 10.1093/mnrasl/slt058
1867
+ Patton, D. R., Wilson, K. D., Metrow, C. J., et al. 2020,
1868
+ Monthly Notices of the Royal Astronomical Society, 494,
1869
+ 4969, doi: 10.1093/mnras/staa913
1870
+ Privon, G. C., Barnes, J. E., Evans, A. S., et al. 2013,
1871
+ Astrophysical Journal, 771,
1872
+ doi: 10.1088/0004-637X/771/2/120
1873
+ Raskutti, S., Ostriker, E. C., & Skinner, M. A. 2016, The
1874
+ Astrophysical Journal, 829, 130,
1875
+ doi: 10.3847/0004-637X/829/2/130
1876
+ Renaud, F., Boily, C. M., Naab, T., & Theis, C. 2009,
1877
+ Astrophysical Journal, 706, 67,
1878
+ doi: 10.1088/0004-637X/706/1/67
1879
+ Renaud, F., Bournaud, F., Agertz, O., et al. 2019a,
1880
+ Astronomy & Astrophysics, 625, A65,
1881
+ doi: 10.1051/0004-6361/201935222
1882
+ Renaud, F., Bournaud, F., Daddi, E., & Weiß, A. 2019b,
1883
+ Astronomy &amp; Astrophysics, Volume 621, id.A104,
1884
+ <NUMPAGES>5</NUMPAGES> pp., 621, A104,
1885
+ doi: 10.1051/0004-6361/201834397
1886
+ Renaud, F., Bournaud, F., Kraljic, K., & Duc, P. A. 2014,
1887
+ Monthly Notices of the Royal Astronomical Society:
1888
+ Letters, 442, doi: 10.1093/mnrasl/slu050
1889
+ Rey, M. P., Agertz, O., Starkenburg, T. K., et al. 2022,
1890
+ VINTERGATAN-GM: The Cosmological Imprints of
1891
+ Early Mergers on Milky-Way-mass Galaxies
1892
+ Rice, T. S., Goodman, A. A., Bergin, E. A., Beaumont, C.,
1893
+ & Dame, T. M. 2016, The Astrophysical Journal, 822, 52,
1894
+ doi: 10.3847/0004-637X/822/1/52
1895
+ Rico-Villas, F., Martin-Pintado, J., Gonzalez-Alfonso, E.,
1896
+ Martin, S., & Rivilla, V. M. 2020, Monthly Notices of the
1897
+ Royal Astronomical Society, 491, 4573,
1898
+ doi: 10.1093/mnras/stz3347
1899
+ Robertson, B., Bullock, J. S., Cox, T. J., et al. 2006, The
1900
+ Astrophysical Journal, 645, 986, doi: 10.1086/504412
1901
+ Rodr´ıguez Montero, F., Dav´e, R., Wild, V., Angl´es-Alc´azar,
1902
+ D., & Narayanan, D. 2019, Monthly Notices of the Royal
1903
+ Astronomical Society, 490, 2139,
1904
+ doi: 10.1093/mnras/stz2580
1905
+ Roman-Duval, J., Jackson, J. M., Heyer, M., Rathborne, J.,
1906
+ & Simon, R. 2010, The Astrophysical Journal, 723, 492,
1907
+ doi: 10.1088/0004-637X/723/1/492
1908
+ Rosolowsky, E., Hughes, A., Leroy, A. K., et al. 2021,
1909
+ Monthly Notices of the Royal Astronomical Society, 502,
1910
+ 1218, doi: 10.1093/mnras/stab085
1911
+ Saintonge, A., Catinella, B., Tacconi, L. J., et al. 2017, The
1912
+ Astrophysical Journal Supplement Series, 233, 22,
1913
+ doi: 10.3847/1538-4365/aa97e0
1914
+ Sakamoto, K., Aalto, S., Combes, F., Evans, A., & Peck, A.
1915
+ 2014, The Astrophysical Journal, 797, 90,
1916
+ doi: 10.1088/0004-637X/797/2/90
1917
+ S´anchez-Garc´ıa, M., Pereira-Santaella, M., Garc´ıa-Burillo,
1918
+ S., et al. 2022, Astronomy &amp; Astrophysics, Volume
1919
+ 659, id.A102, <NUMPAGES>20</NUMPAGES> pp.,
1920
+ 659, A102, doi: 10.1051/0004-6361/202141963
1921
+ Sargent, M. T., Daddi, E., B´ethermin, M., et al. 2014,
1922
+ Astrophysical Journal, 793,
1923
+ doi: 10.1088/0004-637X/793/1/19
1924
+ Sawala, T., Frenk, C. S., Fattahi, A., et al. 2014, Local
1925
+ Group Galaxies Emerge from the Dark
1926
+ Schirm, M. R. P., Wilson, C. D., Parkin, T. J., et al. 2014,
1927
+ The Astrophysical Journal, 781, 101,
1928
+ doi: 10.1088/0004-637X/781/2/101
1929
+ Schruba, A., Kruijssen, J. M. D., & Leroy, A. K. 2019, The
1930
+ Astrophysical Journal, 883, 2,
1931
+ doi: 10.3847/1538-4357/ab3a43
1932
+ Scudder, J. M., Ellison, S. L., Momjian, E., et al. 2015,
1933
+ Monthly Notices of the Royal Astronomical Society, 449,
1934
+ 3719, doi: 10.1093/mnras/stv588
1935
+ Seill´e, L. M., Buat, V., Haddad, W., et al. 2022, Spatial
1936
+ Disconnection between Stellar and Dust Emissions: The
1937
+ Test of the Antennae Galaxies (Arp 244)
1938
+ Sick, J., Courteau, S., Cuillandre, J.-C., et al. 2015, 311, 82,
1939
+ doi: 10.1017/S1743921315003440
1940
+ Smith, M. C., Bryan, G. L., Somerville, R. S., et al. 2021,
1941
+ Monthly Notices of the Royal Astronomical Society, 506,
1942
+ 3882, doi: 10.1093/mnras/stab1896
1943
+
1944
+ GMCs in Galaxy Mergers
1945
+ 19
1946
+ Sun, J., Leroy, A. K., Schruba, A., et al. 2018, The
1947
+ Astrophysical Journal, 860, 172,
1948
+ doi: 10.3847/1538-4357/aac326
1949
+ Sun, J., Leroy, A. K., Schinnerer, E., et al. 2020, ApJL,
1950
+ 901, L8, doi: 10.3847/2041-8213/abb3be
1951
+ Sun, J., Leroy, A. K., Rosolowsky, E., et al. 2022, The
1952
+ Astronomical Journal, 164, 43,
1953
+ doi: 10.3847/1538-3881/ac74bd
1954
+ Teyssier, R., Chapon, D., & Bournaud, F. 2010,
1955
+ Astrophysical Journal Letters, 720, 149,
1956
+ doi: 10.1088/2041-8205/720/2/L149
1957
+ Thorp, M. D., Ellison, S. L., Pan, H.-A., et al. 2022,
1958
+ Monthly Notices of the Royal Astronomical Society, 516,
1959
+ 1462, doi: 10.1093/mnras/stac2288
1960
+ Tosaki, T., Kohno, K., Harada, N., et al. 2017, Publications
1961
+ of the Astronomical Society of Japan, 69, 18,
1962
+ doi: 10.1093/pasj/psw122
1963
+ Ueda, J., Iono, D., Petitpas, G., et al. 2012, The
1964
+ Astrophysical Journal, 745, 65,
1965
+ doi: 10.1088/0004-637X/745/1/65
1966
+ Wei, L. H., Keto, E., & Ho, L. C. 2012, The Astrophysical
1967
+ Journal, 750, 136, doi: 10.1088/0004-637X/750/2/136
1968
+ Whitmore, B. C., Brogan, C., Chandar, R., et al. 2014,
1969
+ ApJ, 795, 156, doi: 10.1088/0004-637X/795/2/156
1970
+ Wilson, C. D., Elmegreen, B. G., Bemis, A., & Brunetti, N.
1971
+ 2019, The Astrophysical Journal, 882, 5,
1972
+ doi: 10.3847/1538-4357/ab31f3
1973
+ Wilson, C. D., Scoville, N., Madden, S. C., &
1974
+ Charmandaris, V. 2000, The Astrophysical Journal, 542,
1975
+ 120, doi: 10.1086/309504
1976
+ Zhang, Q., Fall, S. M., & Whitmore, B. C. 2001,
1977
+ Observatory, 10
1978
+ Zhu, M., Seaquist, E. R., & Kuno, N. 2003, The
1979
+ Astrophysical Journal, 588, 243, doi: 10.1086/368353
1980
+
1981
+ 20
1982
+ He et al.
1983
+ APPENDIX
1984
+ A. INFLUENCE FROM DIFFERENT VIEWING
1985
+ ANGLES
1986
+ One important factor that might influence Σmol mea-
1987
+ sured from the simulations is the inclination angle at
1988
+ which the galaxy is viewed. For the simulated control
1989
+ galaxies, we pick the inclination angle of 30 degrees in
1990
+ Fig.
1991
+ 1.
1992
+ By increasing inclination angle we might see
1993
+ significant increase in Σmol. Fig. A1 shows the data for
1994
+ the G3 galaxy viewed with inclination angles of 30, 60
1995
+ and 80 degrees. We see little increase in Σmol even for
1996
+ an inclination of 80 degrees. This is consistent with our
1997
+ expectation that individual clouds are resolved in the
1998
+ simulated data. For resolved spherical clouds, the ob-
1999
+ served surface density should always be the same despite
2000
+ different viewing angles.
2001
+ 100
2002
+ 101
2003
+ 102
2004
+ 103
2005
+ 104
2006
+ mol (M pc
2007
+ 2)
2008
+ 10
2009
+ 1
2010
+ 100
2011
+ 101
2012
+ 102
2013
+ v (km s
2014
+ 1)
2015
+ FIRE G3, 30 deg
2016
+ FIRE G3, 60 deg
2017
+ FIRE G3, 80 deg
2018
+ PHANGS disks
2019
+ PHANGS barred galaxy centers
2020
+ PHANGS unbarred galaxy centers
2021
+ M31
2022
+ Figure A1. Similar to Fig. 1 but with the simulated G3
2023
+ galaxy viewed at different inclination angles (30, 60 and 80
2024
+ degrees).
2025
+ For the simulated mergers, the molecular gas structure
2026
+ is more complicated than a single layer of gas disk. In
2027
+ this case, we might pick a specific angle where multiple
2028
+ clouds happen to lie along the same line of sight, which
2029
+ gives us large σv values. To test if this is the actual case,
2030
+ we examine a snapshot at 2.87 when we reach maximal
2031
+ Σmol and σv from a different angle (’v1’). As shown in
2032
+ Fig. A2, we see similar gas distribution contour in σv vs
2033
+ Σmol contour. This along with the velocity spectrum in
2034
+ Fig. 6 suggests that the large σv and αvir we measured
2035
+ is intrinsic properties of individual GMCs.
2036
+ B. GLOBAL GAS FRACTION
2037
+ On global scales, we compare the molecular gas mass
2038
+ and total gas mass (including HI) of the FIRE-2 galax-
2039
+ 100
2040
+ 101
2041
+ 102
2042
+ 103
2043
+ mol (M pc
2044
+ 2)
2045
+ 10
2046
+ 1
2047
+ 100
2048
+ 101
2049
+ 102
2050
+ v (km s
2051
+ 1)
2052
+ 2.87 Gyr
2053
+ FIRE G2&G3
2054
+ PHANGS galaxies
2055
+ Antennae,
2056
+ CO = 4.3
2057
+ NGC 3256,
2058
+ CO = 1.1
2059
+ M31
2060
+ 4
2061
+ 2
2062
+ 0
2063
+ 2
2064
+ 4
2065
+ kpc
2066
+ 4
2067
+ 2
2068
+ 0
2069
+ 2
2070
+ 4
2071
+ kpc
2072
+ mol
2073
+ (M pc
2074
+ 2)
2075
+ 101
2076
+ 102
2077
+ 4
2078
+ 2
2079
+ 0
2080
+ 2
2081
+ 4
2082
+ kpc
2083
+ vir
2084
+ 100
2085
+ 101
2086
+ 102
2087
+ Figure A2. The snapshot of FIRE-2 merger at a time of
2088
+ 2.87 Gyr with viewing angles of ’v1’, which is roughly per-
2089
+ pendicular (with an angle of 109 degree) to the ’v0’ angle.
2090
+ (Upper) the σv vs Σmol distribution of GMCs. (Lower) The
2091
+ Σmol map of the snapshot. We can see that viewing from dif-
2092
+ ferent angles still give us high σv measurement, which also
2093
+ suggests that σv we measure is not the velocity dispersion
2094
+ among GMCs along the line of sight. (lower) The Σmol and
2095
+ σv for this snapshot from ’v1’ angle.
2096
+ ies with observed values for normal spiral galaxies. We
2097
+ compare to both the PHANGS galaxies (Leroy et al.
2098
+ 2021) as well as to the global gas properties from the
2099
+ xCOLDGASS survey, to confirm that the PHANGS
2100
+ galaxies are representative of star forming main se-
2101
+ quence galaxies in our local universe. For xCOLDGASS,
2102
+ the molecular gas mass is extracted from Saintonge et al.
2103
+ (2017) and the total gas mass is from Catinella et al.
2104
+ (2018).
2105
+ In interpreting the lower Σmol values seen in Fig.
2106
+ 1,
2107
+ one possibility is that there may not be as much gas
2108
+ available to form high surface density clouds in the two
2109
+ simulated galaxies compared to the PHANGS galax-
2110
+ ies. Fig. B1 compares the global molecular gas masses,
2111
+ Mmol, and molecular gas fractions, fmol = Mmol / M⋆,
2112
+ for the FIRE-2 mergers with those of the PHANGS
2113
+
2114
+ GMCs in Galaxy Mergers
2115
+ 21
2116
+ 1010
2117
+ 1011
2118
+ M⋆ (M⊙)
2119
+ 108
2120
+ 109
2121
+ 1010
2122
+ Mmol (M⊙)
2123
+ PHANGS median
2124
+ xCOLDGASS median
2125
+ FIRE G3
2126
+ FIRE G2
2127
+ M31
2128
+ PHANGS
2129
+ 1010
2130
+ 1011
2131
+ M⋆ (M⊙)
2132
+ 10−2
2133
+ 10−1
2134
+ Mmol / M⋆
2135
+ 1010
2136
+ 1011
2137
+ M⋆ (M⊙)
2138
+ 109
2139
+ 1010
2140
+ Mgas (M⊙)
2141
+ 1010
2142
+ 1011
2143
+ M⋆ (M⊙)
2144
+ 10−1
2145
+ 100
2146
+ Mgas / M⋆
2147
+ Figure B1. (Upper Left) Mmol versus M⋆ for PHANGS galaxies (salmon dots; Leroy et al. 2021), M 31 (green filled circle;
2148
+ Nieten et al. 2006) and the G2 (red points) and G3 (blue points) simulated galaxies at different times in their evolution. Note
2149
+ that the G2 and G3 simulated galaxies lie significantly below the star-forming main sequence defined by the xCOLDGASS
2150
+ sample. (Upper Right) fmol versus M⋆ for the same galaxies. The molecular gas fractions of G2 and G3 are significantly lower
2151
+ than most of the PHANGS spiral galaxies. (Lower left) total gas versus M⋆. (Lower right) total gas fraction versus M⋆. These
2152
+ comparisons suggest that the low Σmol measured for the simulated galaxies might be due to the low total and molecular gas
2153
+ fraction in the initial set-up.
2154
+ galaxies from Sun et al. (2020). We also show the me-
2155
+ dian value of Mmol and fgas in each M⋆ bin for the
2156
+ PHANGS galaxies, as well as the weighted median of
2157
+ M⋆ and fmol for galaxies in xCOLDGASS sample (Sain-
2158
+ tonge et al. 2017).
2159
+ The two median values are quite
2160
+ close to each other for galaxies with M⋆ of 109.5 – 1011
2161
+ M⊙, although the PHANGS galaxies seem to deviate
2162
+ somewhat from the xCOLDGASS sample in the high-
2163
+ est and lowest mass bins. In contrast, the G2 and G3
2164
+ galaxies both have fmol ∼ 3 times lower than typical
2165
+ PHANGS or xCOLDGASS galaxies of the same stellar
2166
+ mass. Therefore, the small global fmol may be respon-
2167
+ sible for producing the low Σmol values seen in the sim-
2168
+ ulated galaxies.
2169
+ The low values of fmol could be produced either by the
2170
+ initial set-up of the simulations or by physical mecha-
2171
+ nisms in the simulation that lead to inefficient conversion
2172
+ of gas into the cold phase. We can distinguish between
2173
+ these two options by calculating the total gas fraction
2174
+ fgas including both HI and H2. The lower panel of Fig.
2175
+ B1 shows the median of Mgas and fgas for the PHANGS
2176
+ galaxies and xGASS-CO samples (Catinella et al. 2018)
2177
+ compared to the two simulated galaxies. The values of
2178
+ fgas for both simulated galaxies are still ∼ 3 times lower
2179
+ than those of typical spiral galaxies with similar M⋆.
2180
+ Therefore, it seems most likely that the low cold gas frac-
2181
+ tion, fmol, is produced by a low total (cold+warm+hot)
2182
+ gas mass in the initial set-up of the simulations.
2183
+ C. SNAPSHOTS FOR ‘E1’ ORBIT
2184
+ Here we show the SFR history and 3 example snap-
2185
+ shots for G2&G3 ‘e1’ orbit in Fig. C1.
2186
+
2187
+ 22
2188
+ He et al.
2189
+ 0.0
2190
+ 0.5
2191
+ 1.0
2192
+ 1.5
2193
+ 2.0
2194
+ 2.5
2195
+ 3.0
2196
+ Time (Gyr)
2197
+ 100
2198
+ 101
2199
+ SFR (M yr
2200
+ 1
2201
+ 100
2202
+ 101
2203
+ 102
2204
+ 103
2205
+ 10
2206
+ 1
2207
+ 100
2208
+ 101
2209
+ 102
2210
+ v (km s
2211
+ 1)
2212
+ t: 1.22 Gyr
2213
+ SFR: 4.81 M yr
2214
+ 1
2215
+ FIRE G2&G3
2216
+ PHANGS galaxies
2217
+ Antennae,
2218
+ CO = 4.3
2219
+ NGC 3256,
2220
+ CO = 1.1
2221
+ M31
2222
+ 4
2223
+ 2
2224
+ 0
2225
+ 2
2226
+ 4
2227
+ 4
2228
+ 2
2229
+ 0
2230
+ 2
2231
+ 4
2232
+ kpc
2233
+ mol
2234
+ (M pc
2235
+ 2)
2236
+ 100
2237
+ 101
2238
+ 4
2239
+ 2
2240
+ 0
2241
+ 2
2242
+ 4
2243
+ vir
2244
+ 100
2245
+ 101
2246
+ 102
2247
+ 100
2248
+ 101
2249
+ 102
2250
+ 103
2251
+ 10
2252
+ 1
2253
+ 100
2254
+ 101
2255
+ 102
2256
+ v (km s
2257
+ 1)
2258
+ t: 1.46 Gyr
2259
+ SFR: 23.59 M yr
2260
+ 1
2261
+ FIRE G2&G3
2262
+ PHANGS galaxies
2263
+ Antennae,
2264
+ CO = 4.3
2265
+ NGC 3256,
2266
+ CO = 1.1
2267
+ M31
2268
+ 4
2269
+ 2
2270
+ 0
2271
+ 2
2272
+ 4
2273
+ 4
2274
+ 2
2275
+ 0
2276
+ 2
2277
+ 4
2278
+ kpc
2279
+ mol
2280
+ (M pc
2281
+ 2)
2282
+ 101
2283
+ 102
2284
+ 4
2285
+ 2
2286
+ 0
2287
+ 2
2288
+ 4
2289
+ vir
2290
+ 100
2291
+ 101
2292
+ 102
2293
+ 100
2294
+ 101
2295
+ 102
2296
+ 103
2297
+ mol (M pc
2298
+ 2)
2299
+ 10
2300
+ 1
2301
+ 100
2302
+ 101
2303
+ 102
2304
+ v (km s
2305
+ 1)
2306
+ t: 1.56 Gyr
2307
+ SFR: 25.37 M yr
2308
+ 1
2309
+ FIRE G2&G3
2310
+ PHANGS galaxies
2311
+ Antennae,
2312
+ CO = 4.3
2313
+ NGC 3256,
2314
+ CO = 1.1
2315
+ M31
2316
+ 4
2317
+ 2
2318
+ 0
2319
+ 2
2320
+ 4
2321
+ kpc
2322
+ 4
2323
+ 2
2324
+ 0
2325
+ 2
2326
+ 4
2327
+ kpc
2328
+ mol
2329
+ (M pc
2330
+ 2)
2331
+ 101
2332
+ 102
2333
+ 4
2334
+ 2
2335
+ 0
2336
+ 2
2337
+ 4
2338
+ kpc
2339
+ vir
2340
+ 100
2341
+ 101
2342
+ 102
2343
+ Figure C1. Similar plot as Figure 2 but with SFR history and 3 snapshots from ‘e1’ orbit. The interactive version of the
2344
+ animation is available at https://htmlpreview.github.io/?https://github.com/heh15/merger animations/blob/main/G2G3 e1
2345
+ v0.html
2346
+
8NFQT4oBgHgl3EQfHzW5/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAzT4oBgHgl3EQf_v_f/content/tmp_files/2301.01954v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAzT4oBgHgl3EQf_v_f/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdE2T4oBgHgl3EQfoAgi/content/tmp_files/2301.04013v1.pdf.txt ADDED
@@ -0,0 +1,888 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ There is No Big Brother or Small Brother: Knowledge Infusion in
2
+ Language Models for Link Prediction and Question Answering
3
+ Ankush Agarwal1∗, Sakharam Gawade1∗,
4
+ Sachin Channabasavarajendra2, Pushpak Bhattacharyya1
5
+ 1IIT Bombay,
6
+ 2Honeywell Technology Solutions Pvt Ltd
7
+ {ankushagrawal, sakharamg, pb}@cse.iitb.ac.in,
8
9
+ Abstract
10
+ The integration of knowledge graphs with
11
+ deep learning is thriving in improving the per-
12
+ formance of various natural language process-
13
+ ing (NLP) tasks. In this paper, we focus on
14
+ knowledge-infused link prediction and ques-
15
+ tion answering using language models, T5,
16
+ and BLOOM across three domains: Aviation,
17
+ Movie, and Web. In this context, we infuse
18
+ knowledge in large and small language models
19
+ and study their performance, and find the per-
20
+ formance to be similar. For the link prediction
21
+ task on the Aviation Knowledge Graph, we ob-
22
+ tain a 0.2 hits@1 score using T5-small, T5-
23
+ base, T5-large, and BLOOM. Using template-
24
+ based scripts, we create a set of 1 million syn-
25
+ thetic factoid QA pairs in the aviation domain
26
+ from National Transportation Safety Board
27
+ (NTSB) reports. On our curated QA pairs, the
28
+ three models of T5 achieve a 0.7 hits@1 score.
29
+ We validate our findings with the paired stu-
30
+ dent t-test and Cohen’s kappa scores. For link
31
+ prediction on Aviation Knowledge Graph us-
32
+ ing T5-small and T5-large, we obtain a Co-
33
+ hen’s kappa score of 0.76, showing substantial
34
+ agreement between the models. Thus, we in-
35
+ fer that small language models perform similar
36
+ to large language models with the infusion of
37
+ knowledge.
38
+ 1
39
+ Introduction
40
+ A large number of pre-trained language models
41
+ (LMs) are used for downstream tasks, such as Ques-
42
+ tion Answering (QA). Generally, these language
43
+ models are trained on generic domain data, such
44
+ as Web data and News Forums. Recently, LMs
45
+ are used for downstream tasks in domain-specific
46
+ fields, namely, healthcare (Michalopoulos et al.,
47
+ 2021), radiology (Kale et al., 2022), and aviation
48
+ (Agarwal et al., 2022). For tasks such as Informa-
49
+ tion Extraction (IE) and Question Answering (QA),
50
+ Knowledge Graphs (KGs) are used as a source of
51
+ *Equal contribution
52
+ external knowledge to boost the performance of
53
+ models. To a great extent, researchers focus on the
54
+ synergy of Knowledge Graph and Deep Learning
55
+ (Miller et al., 2016a; Saxena et al., 2020, 2022).
56
+ With the increase in data, it is observed that larger
57
+ models are preferred for different tasks across vari-
58
+ ous domains.
59
+ The Large Language Models (LLMs) are pre-
60
+ ferred to obtain better results than small or non-
61
+ pre-trained models as they have a vast number of
62
+ parameters and have been trained on a large amount
63
+ of data. But, the larger model increases the need
64
+ for computation power and training time. In this
65
+ paper, we show that small and large models per-
66
+ form likewise with the infusion of knowledge. We
67
+ can use non-pre-trained models for different tasks
68
+ across domains that require less computation power
69
+ and time and still attain the same performance as
70
+ pre-trained models.
71
+ We validate our hypothesis with the LLMs, i.e.,
72
+ T5 (Raffel et al., 2020) & BLOOM1. We perform
73
+ two tasks: a) Link Prediction, and b) Question An-
74
+ swering on different datasets: a) Aviation Knowl-
75
+ edge Graph (AviationKG) (Agarwal et al., 2022),
76
+ and Aviation QA pairs (section 4.4), b) Movie
77
+ Knowledge Base (MovieKB) & MetaQA (a set
78
+ of QA pairs), both present in the MetaQA dataset
79
+ (Zhang et al., 2018), and c) Complex Web Ques-
80
+ tions (CWQ) (Talmor and Berant, 2018), which
81
+ uses subsets of Freebase (Chah, 2017). We perform
82
+ hypothesis testing to validate our hypothesis. We
83
+ use paired Student T-test and attempt to reject our
84
+ hypothesis that models have a negligible difference
85
+ in performance. But, we were not able to repudi-
86
+ ate our hypothesis. To strengthen our findings, we
87
+ use Cohen’s kappa measure and show significant
88
+ agreement between models.
89
+ Our contributions are as follows:
90
+ 1https://huggingface.co/bigscience/
91
+ bloom
92
+ arXiv:2301.04013v1 [cs.CL] 10 Jan 2023
93
+
94
+ 1. We create a synthetic dataset, AviationQA 2, a
95
+ set of 1 million factoid QA pairs from 12,000
96
+ National Transportation Safety Board (NTSB)
97
+ reports using templates explained in section
98
+ 4.4. These QA pairs contain questions such
99
+ that answers to them are entities occurring in
100
+ the AviationKG (Agarwal et al., 2022). Avia-
101
+ tionQA will be helpful to researchers in find-
102
+ ing insights into aircraft accidents and their
103
+ prevention.
104
+ 2. We show that the size of a language model
105
+ is inconsequential when knowledge is in-
106
+ fused from the knowledge graphs. With Avia-
107
+ tionKG, we obtain 0.22, 0.23, and 0.23 hits@1
108
+ scores for link prediction using T5-small, T5-
109
+ base, and T5-large, respectively. On Avia-
110
+ tionQA, we get a 0.70 hits@1 score on the
111
+ three sizes of the T5 model. We validate our
112
+ hypothesis with paired student t-test, and Co-
113
+ hen’s kappa explained in section 6. We obtain
114
+ a substantial Cohen’s kappa score of 0.76 for
115
+ link prediction on AviationKG using T5-small
116
+ and T5-large. For Question Answering us-
117
+ ing T5-small and T5-large, we get a Cohen’s
118
+ kappa score of 0.53 on the MetaQA dataset.
119
+ Hence, we provide evidence that we can sub-
120
+ stitute larger models with smaller ones and
121
+ achieve the same performance with less com-
122
+ putational cost and power.
123
+ 2
124
+ Motivation
125
+ As stated earlier, in Section 1, LMs are trained
126
+ on generic datasets. So, knowledge from differ-
127
+ ent sources, i.e., KGs, are used to perform down-
128
+ stream tasks in specific domain areas. LLMs in-
129
+ fused with knowledge are required to perform such
130
+ tasks, namely, QA and link prediction, which in-
131
+ creases the need for computation power and time.
132
+ We show that computational resources can be saved
133
+ by using smaller language models for tasks.
134
+ It is rare to obtain datasets related to the aviation
135
+ domain, which is in increased demand. We scrape
136
+ NTSB reports from NTSB’s website 3 and create
137
+ QA pairs that can be used by the aviation industry
138
+ and researchers for Information Retrieval (IR) and
139
+ QA purposes. The created dataset will help find in-
140
+ sights into aircraft accidents and develop solutions
141
+ 2https://github.com/ankush9812/
142
+ Aviation-Question-Answer-Pairs
143
+ 3https://www.ntsb.gov/Pages/
144
+ AviationQuery.aspx
145
+ to prevent accidents.
146
+ 3
147
+ Background & Related Work
148
+ A Knowledge Graph is a collection of entities and
149
+ relations represented in the form of triplets (sub-
150
+ ject, relation, object). Querying KG in Natural
151
+ Language (NL) is a long-standing work. Early
152
+ work focused on rule-based and pattern-based sys-
153
+ tems (Affolter et al., 2019). Recently, the work is
154
+ shifted to seq2seq architecture (Zhong et al., 2017)
155
+ and pre-trained models with the advent of neural
156
+ networks. Querying KGs remains a challenge be-
157
+ cause of the conversion of NL to the graph query
158
+ language, namely, SPARQL, Cypher, etc.
159
+ With the value increase of knowledge in the
160
+ world, the popularity of the KG has escalated. Re-
161
+ searchers are keenly interested in the synergy of
162
+ knowledge graphs and deep learning. Several meth-
163
+ ods are exploited considering synergy: a) Integrat-
164
+ ing triplets of KG into the neural network (Liu
165
+ et al., 2020; Saxena et al., 2022), b) Computing the
166
+ relevance of entity and relations in a KG using a
167
+ neural network (Sun et al., 2019; Yasunaga et al.,
168
+ 2021).
169
+ Deep Learning models use representations of
170
+ entities and relations to integrate triplets of KG.
171
+ Knowledge Graph Embeddings are widely used
172
+ to obtain representations (Dai et al., 2020). The
173
+ KG embedding models are trained on link predic-
174
+ tion over triplets to obtain representations (Wang
175
+ et al., 2021). Recent work has focused on using
176
+ fine-tuned language models over KGE models for
177
+ link prediction to reduce the number of parameters
178
+ required to obtain the representations (Saxena et al.,
179
+ 2022).
180
+ LMs and KGs are extensively used to improve
181
+ task-specific performance. Still, no study has been
182
+ done to understand the characteristics of a language
183
+ model during the synergy of KG and DL. In this
184
+ paper, we observe the behavior of language models
185
+ after knowledge infusion with different domain
186
+ datasets.
187
+ 4
188
+ Methodology and Experimental Design
189
+ This section presents our approach (flow diagram
190
+ in figure 1), discusses the experiment datasets, cre-
191
+ ation of AviationQA, describes the model configu-
192
+ rations, and explains the evaluation technique.
193
+
194
+ 4.1
195
+ Approach
196
+ We observe the performance of small and large
197
+ language models with the infusion of knowledge
198
+ for link prediction and QA. Experiments are per-
199
+ formed with the following models (detailed in sec-
200
+ tion 4.6): a) T5-small non-pre-trained, b) T5-base
201
+ pre-trained, c) T5-large pre-trained, and SOTA d)
202
+ BLOOM 1b7. We make use of different domain
203
+ datasets for our approach, explained in section 4.2.
204
+ Figure 1 demonstrates link prediction and question
205
+ answering on the data after pre-processing.
206
+ We inject knowledge into the LMs. The knowl-
207
+ edge is injected by the process of fine-tuning the
208
+ pre-trained LM. Fine-tuning requires a learning
209
+ objective and training data. In our case, the train-
210
+ ing data is triplets from the KG (table 1), and the
211
+ learning objective is triple completion. Triple com-
212
+ pletion involves getting tail entity given head entity
213
+ and relation. Triple completion is also called link
214
+ prediction. Thus, the LM absorbs the knowledge.
215
+ The link prediction results with triplets are shown
216
+ in table 3.
217
+ After fine-tuning on triplets for link prediction,
218
+ the language model learns representations of en-
219
+ tities and relations. The checkpoint with the best
220
+ result on link prediction is used for the question-
221
+ answering task. We again fine-tune the selected
222
+ checkpoint with QA pairs (table 2) and obtain the
223
+ QA results shown in table 4.
224
+ 4.2
225
+ Experiment Data
226
+ We are using three datasets: a) Aviation Knowledge
227
+ Graph (AviationKG) (Agarwal et al., 2022) & Avi-
228
+ ation QA pairs (section 4.4), b) MetaQA (Zhang
229
+ et al., 2018), which consists of a KB constructed
230
+ from WikiMovies dataset (Miller et al., 2016b) and
231
+ question-answer pairs, and c) Complex Web Ques-
232
+ tions (CWQ) (Talmor and Berant, 2018), which
233
+ uses subsets of Freebase (Chah, 2017). The statis-
234
+ tic of these datasets is shown in table 1 & 2. We
235
+ chose these datasets because they belong to differ-
236
+ ent domains and vary in size.
237
+ MetaQA KB & AviationKG are from the movie
238
+ and aviation domains, respectively, which is useful
239
+ to represent the diversity of datasets and validate
240
+ our hypothesis. CWQ is based on Freebase, a huge
241
+ KG, which is crowd-sourced. We require a knowl-
242
+ edge base and the corresponding QA pairs for our
243
+ experimentation, described in section 4.5. MetaQA
244
+ and CWQ are openly available datasets. But, there
245
+ is no available QA pairs dataset for the aviation
246
+ domain. We create a set of QA pairs in the aviation
247
+ domain and contribute to the research community,
248
+ detailed in section 4.4. The datasets used in the
249
+ paper are pre-processed and split before running
250
+ experiments, as explained in section 4.3 and 4.5.
251
+ Dataset
252
+ Train
253
+ Validation
254
+ Test
255
+ AviationKG
256
+ 173,372
257
+ 10,000
258
+ 10,000
259
+ MovieKB
260
+ 249,482
261
+ 10,000
262
+ 10,000
263
+ CWQ
264
+ 27,590,648
265
+ 10,000
266
+ 10,000
267
+ Table 1: Statistics of triplets (subject, relation, object)
268
+ for three knowledge bases: AviationKG (Agarwal et al.,
269
+ 2022), MetaKB (Zhang et al., 2018), and Complex Web
270
+ Question (CWQ) (Talmor and Berant, 2018). Subsets
271
+ of Freebase (Chah, 2017) are used for CWQ.
272
+ Dataset
273
+ Train
274
+ Validation
275
+ Test
276
+ AviationQA
277
+ 367,304
278
+ 10,000
279
+ 10,000
280
+ MetaQA
281
+ 184,230
282
+ 10,000
283
+ 10,000
284
+ CWQ
285
+ 61,619
286
+ 3,519
287
+ 3,531
288
+ Table 2: Statistics of Question Answer pairs from three
289
+ domains: Aviation, Movie, and Web. For MetaQA, we
290
+ use 1-hop questions. For more details, refer to section
291
+ 4.5.
292
+ 4.3
293
+ Data Pre-processing
294
+ We make use of KG and QA pairs (section 4.2)
295
+ from 3 domains, Aviation, Movie, and General do-
296
+ main. These datasets are cleaned and structured for
297
+ our experiments. For the link prediction task, the
298
+ dataset is created similar to Saxena et al. (2022),
299
+ described below:
300
+ predict head: subject | relation | object
301
+ predict tail: object | relation | subject
302
+ The triplets {subject, relation, object} are extracted
303
+ from the AviationKG, MovieKB, and Freebase in-
304
+ dividually.
305
+ All these knowledge bases are associated with
306
+ the corresponding QA pairs. As explained in sec-
307
+ tion 4.4, we construct the AviationQA pairs and
308
+ use MetaQA 1-hop and CWQ for question answer-
309
+ ing. For QA fine-tuning, the dataset is in the given
310
+ format:
311
+ predict answer: question | answer.
312
+ E.g., predict answer: What is the capital of India?
313
+ | New Delhi.
314
+ Multiple answers exist for a question in Avia-
315
+ tionQA, MetaQA, and CWQ. These collective in-
316
+ stances are separated as individual QA pairs.
317
+
318
+ Figure 1: Flow diagram of the approach adopted in our paper. The model is first fine-tuned on KG triplets for Link
319
+ Prediction. Next, the fine-tuned model is again fine-tuned on question answering. Because of the link-prediction
320
+ task, the model learns KG completion and can answer multi-hop questions. E.g., If the model knows India’s capital
321
+ is New Delhi and New Delhi’s area size, then the model should predict the area of India’s capital correctly without
322
+ explicitly mentioning New Delhi in the question
323
+ E.g., What countries did Narendra Modi visit in the
324
+ year 2021? Answers: United States, Italy. Every
325
+ QA pair is segregated in the current layout: a) What
326
+ countries did Narendra Modi visit in the year 2021?
327
+ | United States. b) What countries did Narendra
328
+ Modi visit in the year 2021? | Italy.
329
+ With
330
+ small
331
+ KGs,
332
+ i.e.,
333
+ AviationKG,
334
+ and
335
+ MovieKB, triplet samples are added during QA
336
+ fine-tuning to avoid overfitting. The added triplets
337
+ are in the same format as mentioned for the link
338
+ prediction task. The pre-processing of triplets and
339
+ QA pairs is shown in figure 1.
340
+ 4.4
341
+ Creation of AviationQA
342
+ We web scrape the National Transportation Safety
343
+ Board (NTSB) website and download 12k reports
344
+ from 2009-2022. A set of 90 question templates is
345
+ prepared using the common structure of documents
346
+ in the format:
347
+ • Where did the accident [ ] take place?
348
+ • What is the model/series of the aircraft bear-
349
+ ing accident number [ ]?
350
+ • Was there fire on the aircraft of the accident
351
+ number [ ]?
352
+ The template of questions is created, and answers
353
+ to those questions are extracted from every NTSB
354
+ report. Because every report is associated with an
355
+ accident number, we place [ ] in the template to
356
+ indicate which report the question pertains to, e.g.,
357
+ CHI07LA273, LAX07LA148. NTSB reports are
358
+ semi-structured, containing unstructured data in
359
+ paragraphs and structured data in tabular format.
360
+ We extract answers from each report w.r.t the tem-
361
+ plate using the regular expression method. Later,
362
+ QA pairs are scrutinized. As some reports’ struc-
363
+ ture varies, different scripts are written to fetch
364
+ answers for those reports.
365
+ We successfully created 1 million factoid QA
366
+ pairs in the aviation domain using the template-
367
+ based method. The dataset will contribute to re-
368
+ search and development in the aviation industry.
369
+ 4.5
370
+ Dataset Description
371
+ After pre-processing the data (section 4.3), we split
372
+ it to train, validate, and test for link prediction and
373
+ question answering. Table 1 shows the split of
374
+ triplets from AviationKG, MovieKB, and subsets
375
+ of Freebase. CWQ uses subsets of Freebase, which
376
+ is of size 27 million. AviationKG and MovieKB are
377
+ domain-specific datasets of sizes 170k and 250k.
378
+ Valid and test splits are equal in size to 10k each.
379
+ Our motive for considering different sizes and
380
+ domain datasets is to strengthen our intuition that
381
+ the performance of varying size models remains
382
+ the same with an infusion of knowledge in lan-
383
+ guage models. Table 3 shows the correctness of
384
+ our intuition with the link prediction task.
385
+ Table 2 shows the split of QA pairs for question-
386
+ answering. We use 387,304 instances for Avia-
387
+ tionQA from 1 million QA pairs (section 4.4). The
388
+ scrutinization is based on reports used to create Avi-
389
+ ationKG (Agarwal et al., 2022) from 1962 to 2015.
390
+ We use QA pairs that have information available
391
+ in the AviationKG. Moreover, we ensured that an
392
+ answer to a question is an entity in the AviationKG.
393
+ For comparison between the movie and the avia-
394
+ tion data, the split of valid and test set is the same
395
+ in both, i.e., 10k. CWQ dataset is smaller than
396
+ AviationQA and MetaQA, so we use the same vali-
397
+ dation and test split, as mentioned in Saxena et al.
398
+ (2022).
399
+
400
+ < Narendra Modi, PrimeMinisterOf, India >
401
+ predict tail: Narendra Modi
402
+ I PrimeMinisterOf
403
+ I India
404
+ predict tail: New Delhi
405
+ I CapitalOf
406
+ i India
407
+ What is the area of
408
+ < New Delhi, CapitalOf, India >
409
+ India's capital city?
410
+ < New Delhi, hasArea, 42.7 sq km >
411
+ predict tail: New Delhi
412
+ hasArea
413
+ i 42.7 sq km
414
+ Pre-process
415
+ Triplets
416
+ Triplets from KG
417
+ Preprocessed Triplets
418
+ Fine-tuned on
419
+ Fine-tuned on
420
+ Language
421
+ Link
422
+ Model
423
+ Question
424
+ Fine-tune on
425
+ Prediction
426
+ Fine-tune on
427
+ Answering
428
+ Link Prediction
429
+ Question Answering
430
+ Who is the prime minister of India?
431
+ Narendra Modi
432
+ predict answer: Who is the prime minister of India? I Narendra Modi
433
+ Q
434
+ What is the area of New Delhi?
435
+ 42.7 sq km
436
+ predict answer: What is the area of New Delhi?
437
+ I 42.7 sq km
438
+ 42.7 sq km
439
+ What is the capital of India?
440
+ New Delhi
441
+ predict answer: What is the capital of india?
442
+ i New Delhi
443
+ Pre-process QA
444
+ A
445
+ QA Pairs
446
+ Pairs
447
+ Preprocessed QA Pairs4.6
448
+ Model Configuration
449
+ In this paper, we are using four models: T5-small
450
+ non-pretrained (60 million parameters), T5-base
451
+ pre-trained (220 million parameters), T5-large pre-
452
+ trained (770 million parameters), and BLOOM
453
+ (1.72 billion parameters). These models are consid-
454
+ ered to validate our statement that with the injection
455
+ of knowledge, small and large model performs the
456
+ same. Both tasks, link prediction and question an-
457
+ swering, are performed using these models. The
458
+ T5 model is considered in our experiment as it
459
+ is trained to perform multiple downstream tasks,
460
+ i.e., translation, classification, and question answer-
461
+ ing. We use BLOOM as it is similar to the SOTA
462
+ model GPT-3 (Brown et al., 2020), which has out-
463
+ performed other language models on tasks such as
464
+ QA and summarization.
465
+ 4.7
466
+ Evaluation Technique
467
+ We evaluate the performance of our models using
468
+ the hits@1 score for link prediction and question
469
+ answering. Table 3 and 4 show the hits@1 score
470
+ for link prediction and question answering, respec-
471
+ tively, on different datasets. We choose the hits@1
472
+ score for evaluation as it is more precise than other
473
+ hits@k scores. If the first predicted value matches
474
+ the actual answer, then the score is 1; otherwise,
475
+ 0. We are using the hits@1 metric and not other
476
+ metrics such as BLEU score (Papineni et al., 2002)
477
+ and semantic similarity (Miller and Charles, 1991)
478
+ to validate the correctness of our hypothesis (in-
479
+ troduced in section 1). BLEU score is generally
480
+ used for comparing sentences, whereas, for link
481
+ prediction and QA tasks, the answer is a compound
482
+ noun, i.e., an entity in the knowledge graph. Since
483
+ the entities are ranked for tasks, the hits@1 score is
484
+ the best metric. As the answers to link prediction
485
+ and QA are entities of KG, the semantic similarity
486
+ would not be able to distinguish between 2 differ-
487
+ ent entities with semantically the same meaning.
488
+ After considering all drawbacks of other metrics,
489
+ we adapted the hits@1 score for the evaluation.
490
+ 5
491
+ Results and Analysis
492
+ This section analyzes the performance of two mod-
493
+ els: T5 and BLOOM. Table 3 & 4 show the hits@1
494
+ score for link prediction and QA tasks, respec-
495
+ tively. With table 3, we can clearly observe that the
496
+ hits@1 score for three variations of the T5 model
497
+ & BLOOM is proximate for three different datasets
498
+ (section 4.5). The three T5 models score 0.22 &
499
+ Model
500
+ AviationKG
501
+ MetaKB
502
+ CWQ
503
+ T5-small
504
+ 0.2258
505
+ 0.0257
506
+ 0.2153
507
+ T5-base
508
+ 0.2387
509
+ 0.0286
510
+ 0.2273
511
+ T5-large
512
+ 0.2323
513
+ 0.0301
514
+ 0.2207
515
+ BLOOM 1b7
516
+ 0.2163
517
+ 0.0365
518
+ 0.2155
519
+ Table 3: Link Prediction results on three knowledge
520
+ bases:
521
+ Aviation Knowledge Graph (KG) (Agarwal
522
+ et al., 2022), Meta Knowledge Base (Zhang et al.,
523
+ 2018), and subsets of Freebase (Chah, 2017) for
524
+ Complex Web Questions (CWQ) (Talmor and Berant,
525
+ 2018).
526
+ Model
527
+ AviationQA
528
+ MetaQA
529
+ CWQ
530
+ T5-small
531
+ 0.7031
532
+ 0.2144
533
+ 0.2225
534
+ T5-base
535
+ 0.7093
536
+ 0.2158
537
+ 0.2736
538
+ T5-large
539
+ 0.7013
540
+ 0.2371
541
+ 0.2632
542
+ BLOOM 1b7
543
+ 0.5507
544
+ 0.2386
545
+ 0.1517
546
+ Table 4: Question Answering (QA) results in three
547
+ QA datasets: AviationQA (4.4), MetaQA (Zhang et al.,
548
+ 2018), and Complex Web Questions (CWQ) (Talmor
549
+ and Berant, 2018).
550
+ 0.23 hits@1 for link prediction on AviationKG.
551
+ Similarly, scores with MetaKB and CWQ have very
552
+ less differences among models. LMs on MetaKB
553
+ perform poorly for link prediction compared to
554
+ other datasets; 0.02 & 0.03 are the hits@1 scores
555
+ on the T5 model & BLOOM. The reason is the
556
+ extensiveness of triplets in the MetaKB and the
557
+ presence of noise in the dataset. We chose MetaKB
558
+ to have a diversity of datasets and justify our claim
559
+ (explained in section 1).
560
+ The main observation with the link prediction
561
+ task is that the T5-small non-pre-trained model per-
562
+ forms alike to pre-trained models. The T5-base
563
+ with 220 million parameters shows results like T5-
564
+ large & BLOOM, which comprises 770 million &
565
+ 1.7 billion parameters, respectively. Link predic-
566
+ tion results (in table 3) infers our claim that small
567
+ and large models perform the same with the infu-
568
+ sion of knowledge.
569
+ To support our claim, we also performed QA
570
+ with the same set of models as used for the link
571
+ prediction task. With the AviationQA dataset, we
572
+ achieved 0.7 hits@1 scores on T5-small, T5-base,
573
+ and T5-large. LLMs such as T5-large & BLOOM
574
+ are expected to perform better for QA than small
575
+ models as they are trained with a large amount of
576
+ data and vice-versa, T5-small non-pre-trained, and
577
+ T5-base are expected to perform direly. But, we
578
+
579
+ Hypothesis Testing
580
+ AviationKG
581
+ MetaQA
582
+ T5-small
583
+ T5-large
584
+ T5-base
585
+ T5-large
586
+ T5-large
587
+ Bloom
588
+ T5-small
589
+ T5-large
590
+ T5-base
591
+ T5-large
592
+ T5-large
593
+ Bloom
594
+ Paired Student T-test
595
+ Cannot
596
+ Reject
597
+ Cannot
598
+ Reject
599
+ Cannot
600
+ Reject
601
+ Cannot
602
+ Reject
603
+ Cannot
604
+ Reject
605
+ Cannot
606
+ Reject
607
+ Cohen’s kappa Score
608
+ 0.76
609
+ 0.75
610
+ 0.68
611
+ 0.49
612
+ 0.53
613
+ 0.33
614
+ Agreement (%)
615
+ 91.77
616
+ 91.36
617
+ 89.16
618
+ 82.50
619
+ 83.62
620
+ 75.73
621
+ Table 5: Hypothesis Testing on link prediction with ‘AviationKG’ and question-answering with ‘MetaQA’ datasets.
622
+ We choose two measures for the test: a) paired Student T-test (Hsu and Lachenbruch, 2014), and b) Cohen’s kappa
623
+ Score (Cohen, 1968), to prove our hypothesis- after injection of knowledge, small and large models perform the
624
+ same. Student T-test with 0.1 significance value is done on 2000 instances of the test set selected randomly, and
625
+ our hypothesis is not rejected 7 out of 10 times. We use the entire test set of 10,000 instances for the kappa score.
626
+ Cohen’s kappa scores on link prediction for AviationKG are between 0.6 and 0.8, and on question-answering for
627
+ MetaQA, between 0.4 and 0.6. With these scores, we are able to prove that our claim is correct.
628
+ observe that the performance of all three T5 models
629
+ is the same for QA with the AviationQA dataset.
630
+ Similarly, we observe that MetaQA achieves 0.2
631
+ hits@1 scores for non-pre-trained T5, pre-trained
632
+ T5-base, T5-large, and BLOOM.
633
+ Through our experiments, we have shown how
634
+ different model sizes perform on QA after infusion
635
+ of knowledge using link prediction. Pre-trained
636
+ and non-pre-trained models of different sizes have
637
+ shown similar results on different domain datasets
638
+ for link prediction and QA tasks. This contribu-
639
+ tion to the research community is pivotal as high
640
+ accuracy can be achieved efficiently with less com-
641
+ putation power, time, and cost.
642
+ The source code for our paper is publicly avail-
643
+ able on GitHub4.
644
+ 6
645
+ Hypothesis Testing
646
+ We attempt to contradict our hypothesis (1) that
647
+ the difference in scores for the two models is neg-
648
+ ligible. We choose paired student t-test (Hsu and
649
+ Lachenbruch, 2014) to refute our hypothesis. In
650
+ our testing, the significance level (p-value) is 0.1,
651
+ and the sample size is 20% of the test set selected
652
+ randomly. In comparing the pair of models (section
653
+ 4.6), we predicted T5-large to perform better than
654
+ T5-base & T5-small and Bloom to perform better
655
+ than all three models of T5 because of its large
656
+ size. But, 7 out of 10 times student t-test was un-
657
+ able to reject our hypothesis, and the significance
658
+ level among the pair of models was greater than
659
+ 0.1. Table 5 clearly shows the paired student t-test
660
+ on AviationKG (table 1) and MetaQA (table 2) for
661
+ 4https://github.com/ankush9812/
662
+ Knowledge-Infusion-in-LM-for-QA
663
+ different pairs of models, and the result is the same,
664
+ our hypothesis cannot be rejected.
665
+ After not being able to reject the hypothesis, our
666
+ next step was to strengthen it, so, we calculate
667
+ Cohen’s kappa (Cohen, 1968) score of the pair of
668
+ models with different datasets (table 1 & 2). We
669
+ consider a pair of models as two annotators and the
670
+ hits@1 score corresponding to each sample in the
671
+ test set as their annotations. Since our evaluation
672
+ technique (section 4.7) uses hits@1 score and the
673
+ score is binary for each sample, Cohen’s kappa
674
+ score is used to measure the reliability between the
675
+ two models. The kappa score is calculated for all
676
+ instances of the test set. Table 5 shows the Cohen’s
677
+ kappa score and % agreement for AviationKG and
678
+ MetaQA datasets between pair of models. For link
679
+ prediction on AviationKG, the kappa score is be-
680
+ tween 0.6 and 0.8, and agreement is near 90%.
681
+ These results clearly denote the substantiality of
682
+ our claim with high scores. We extend the test
683
+ for question-answering with MetaQA. The pair of
684
+ T5 models score 0.4-0.6, denoting moderate agree-
685
+ ment as more than 80% of agreement. T5-large
686
+ and Bloom pair scores 0.33 with 75.7% agreement,
687
+ which is fair.
688
+ Thus, the testing supports our hypothesis, and
689
+ we prove that the level of performance of different
690
+ models with the infusion of knowledge remains the
691
+ same.
692
+ 7
693
+ Conclusion and Future Work
694
+ We have successfully created a million factoid QA
695
+ pairs from the NTSB aircraft accident reports. The
696
+ QA pairs are used in our experiments with Avia-
697
+ tionKG. We have validated our claim that with the
698
+
699
+ infusion of knowledge to language models, the per-
700
+ formance of the small language model is similar to
701
+ the large language model. We substantiate with dif-
702
+ ferent language models and a diversity of datasets.
703
+ Our investigation will benefit researchers in select-
704
+ ing the appropriate language model when working
705
+ with knowledge and save computation power and
706
+ time.
707
+ The future line of work is to investigate the per-
708
+ formance of models with incomplete and noisy
709
+ knowledge graphs and study the extent to which
710
+ the models can outright the domain knowledge.
711
+ Acknowledgements
712
+ This research is supported by the Science and Edu-
713
+ cation Research Board (SERB), Ministry of Educa-
714
+ tion, India, under the Imprint-2 project. We thank
715
+ our Industry partner, Honeywell Technology Solu-
716
+ tions Pvt Ltd, who provided insight and expertise
717
+ that greatly assisted this research.
718
+ References
719
+ Katrin Affolter, Kurt Stockinger, and Abraham Bern-
720
+ stein. 2019. A comparative survey of recent natural
721
+ language interfaces for databases. The VLDB Jour-
722
+ nal, 28(5):793–819.
723
+ Ankush Agarwal, Raj Gite, Shreya Laddha, Pushpak
724
+ Bhattacharyya, Satyanarayan Kar, Asif Ekbal, Prab-
725
+ hjit Thind, Rajesh Zele, and Ravi Shankar. 2022.
726
+ Knowledge graph–deep learning: A case study in
727
+ question answering in aviation safety domain. arXiv
728
+ preprint arXiv:2205.15952.
729
+ Tom Brown, Benjamin Mann, Nick Ryder, Melanie
730
+ Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
731
+ Neelakantan, Pranav Shyam, Girish Sastry, Amanda
732
+ Askell, et al. 2020. Language models are few-shot
733
+ learners. Advances in neural information processing
734
+ systems, 33:1877–1901.
735
+ Niel Chah. 2017. Freebase-triples: A methodology for
736
+ processing the freebase data dumps. arXiv preprint
737
+ arXiv:1712.08707.
738
+ Jacob Cohen. 1968. Weighted kappa: nominal scale
739
+ agreement provision for scaled disagreement or par-
740
+ tial credit. Psychological bulletin, 70(4):213.
741
+ Yuanfei Dai, Shiping Wang, Neal N. Xiong, and Wen-
742
+ zhong Guo. 2020. A survey on knowledge graph em-
743
+ bedding: Approaches, applications and benchmarks.
744
+ Electronics, 9(5).
745
+ Henry Hsu and Peter A Lachenbruch. 2014. Paired t
746
+ test. Wiley StatsRef: statistics reference online.
747
+ Kaveri Kale, Pushpak Bhattacharyya, Aditya Shetty,
748
+ Milind Gune, Kush Shrivastava, Rustom Lawyer,
749
+ and Spriha Biswas. 2022.
750
+ Knowledge graph con-
751
+ struction and its application in automatic radiology
752
+ report generation from radiologist’s dictation.
753
+ Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju,
754
+ Haotang Deng, and Ping Wang. 2020.
755
+ K-bert:
756
+ Enabling language representation with knowledge
757
+ graph. In AAAI.
758
+ George Michalopoulos, Yuanxin Wang, Hussam Kaka,
759
+ Helen Chen, and Alexander Wong. 2021.
760
+ Umls-
761
+ BERT: Clinical domain knowledge augmentation of
762
+ contextual embeddings using the Unified Medical
763
+ Language System Metathesaurus. In Proceedings of
764
+ the 2021 Conference of the North American Chap-
765
+ ter of the Association for Computational Linguistics:
766
+ Human Language Technologies, pages 1744–1753,
767
+ Online. Association for Computational Linguistics.
768
+ Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
769
+ Hossein Karimi, Antoine Bordes, and Jason Weston.
770
+ 2016a.
771
+ Key-value memory networks for directly
772
+ reading documents. In Proceedings of the 2016 Con-
773
+ ference on Empirical Methods in Natural Language
774
+ Processing, pages 1400–1409, Austin, Texas. Asso-
775
+ ciation for Computational Linguistics.
776
+ Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
777
+ Hossein Karimi, Antoine Bordes, and Jason Weston.
778
+ 2016b.
779
+ Key-value memory networks for directly
780
+ reading documents. In Proceedings of the 2016 Con-
781
+ ference on Empirical Methods in Natural Language
782
+ Processing, pages 1400–1409, Austin, Texas. Asso-
783
+ ciation for Computational Linguistics.
784
+ George A Miller and Walter G Charles. 1991. Contex-
785
+ tual correlates of semantic similarity. Language and
786
+ cognitive processes, 6(1):1–28.
787
+ Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
788
+ Jing Zhu. 2002. Bleu: a method for automatic eval-
789
+ uation of machine translation. In Proceedings of the
790
+ 40th annual meeting of the Association for Compu-
791
+ tational Linguistics, pages 311–318.
792
+ Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
793
+ Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
794
+ Wei Li, Peter J Liu, et al. 2020. Exploring the limits
795
+ of transfer learning with a unified text-to-text trans-
796
+ former. J. Mach. Learn. Res., 21(140):1–67.
797
+ Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.
798
+ How much knowledge can you pack into the param-
799
+ eters of a language model?
800
+ In Proceedings of the
801
+ 2020 Conference on Empirical Methods in Natural
802
+ Language Processing (EMNLP), pages 5418–5426,
803
+ Online. Association for Computational Linguistics.
804
+ Apoorv Saxena, Adrian Kochsiek, and Rainer Gemulla.
805
+ 2022. Sequence-to-sequence knowledge graph com-
806
+ pletion and question answering.
807
+ In Proceedings
808
+ of the 60th Annual Meeting of the Association for
809
+ Computational Linguistics (Volume 1: Long Papers),
810
+ pages 2814–2828.
811
+
812
+ Apoorv Saxena, Aditay Tripathi, and Partha Taluk-
813
+ dar. 2020. Improving multi-hop question answering
814
+ over knowledge graphs using knowledge base em-
815
+ beddings. In Proceedings of the 58th Annual Meet-
816
+ ing of the Association for Computational Linguistics,
817
+ pages 4498–4507, Online. Association for Computa-
818
+ tional Linguistics.
819
+ Haitian Sun, Tania Bedrax-Weiss, and William Cohen.
820
+ 2019.
821
+ PullNet: Open domain question answering
822
+ with iterative retrieval on knowledge bases and text.
823
+ In Proceedings of the 2019 Conference on Empirical
824
+ Methods in Natural Language Processing and the
825
+ 9th International Joint Conference on Natural Lan-
826
+ guage Processing (EMNLP-IJCNLP), pages 2380–
827
+ 2390, Hong Kong, China. Association for Computa-
828
+ tional Linguistics.
829
+ Alon Talmor and Jonathan Berant. 2018.
830
+ The web
831
+ as a knowledge-base for answering complex ques-
832
+ tions. In Proceedings of the 2018 Conference of the
833
+ North American Chapter of the Association for Com-
834
+ putational Linguistics: Human Language Technolo-
835
+ gies, Volume 1 (Long Papers), pages 641–651, New
836
+ Orleans, Louisiana. Association for Computational
837
+ Linguistics.
838
+ Meihong Wang, Linling Qiu, and Xiaoli Wang. 2021.
839
+ A survey on knowledge graph embeddings for link
840
+ prediction. Symmetry, 13(3).
841
+ Quan Wang, Zhendong Mao, Bin Wang, and Li Guo.
842
+ 2017. Knowledge graph embedding: A survey of
843
+ approaches and applications.
844
+ IEEE Transactions
845
+ on Knowledge and Data Engineering, 29(12):2724–
846
+ 2743.
847
+ Michihiro Yasunaga, Hongyu Ren, Antoine Bosselut,
848
+ Percy Liang, and Jure Leskovec. 2021. QA-GNN:
849
+ Reasoning with language models and knowledge
850
+ graphs for question answering. In Proceedings of
851
+ the 2021 Conference of the North American Chap-
852
+ ter of the Association for Computational Linguistics:
853
+ Human Language Technologies, pages 535–546, On-
854
+ line. Association for Computational Linguistics.
855
+ Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexan-
856
+ der J Smola, and Le Song. 2018. Variational reason-
857
+ ing for question answering with knowledge graph.
858
+ In Thirty-second AAAI conference on artificial intel-
859
+ ligence.
860
+ Victor Zhong, Caiming Xiong, and Richard Socher.
861
+ 2017.
862
+ Seq2sql:
863
+ Generating structured queries
864
+ from natural language using reinforcement learning.
865
+ arXiv preprint arXiv:1709.00103.
866
+ A
867
+ Appendix
868
+ A.1
869
+ Examples of AviationQA
870
+ Below, we mention some examples from our cre-
871
+ ated Aviation question-answering dataset (section
872
+ 4.4):
873
+ • Q: Which seat was occupied by the pilot re-
874
+ sponsible for accident no. CEN18LA272?
875
+ A: Left
876
+ • Q: Are there other Aircraft Rating(s) for the
877
+ pilot of accident no. GAA18CA489?
878
+ A: None
879
+ • Q: What is the make of the aircraft bearing
880
+ accident no. CEN18LA272?
881
+ A: Cessna
882
+ • Q: What is the category of the aircraft in-
883
+ volved in accident no. GAA18CA489?
884
+ A: Gyroplane
885
+ • Q: What is the Airworthiness Certificate of
886
+ accident no. GAA18CA297?
887
+ A: Normal
888
+
CdE2T4oBgHgl3EQfoAgi/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdFRT4oBgHgl3EQfxTg4/content/tmp_files/2301.13641v1.pdf.txt ADDED
@@ -0,0 +1,551 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13641v1 [math.AC] 31 Jan 2023
2
+ GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL
3
+ CONDITIONS
4
+ ASHUTOSH PANDEY, BALCHAND PRAJAPATI
5
+ Abstract. Let R be a prime ring of characteristic different from 2, U be
6
+ the Utumi quotient ring of R and C be the extended centroid of R.
7
+ Let
8
+ F be a generalized skew derivation on R, I be a non-zero ideal of R and
9
+ m, n1, n2, . . . , nk ≥ 1 are fixed integers such that [F (um), un1, un2, . . . , unk] =
10
+ 0 for all u ∈ I then there exists λ ∈ C such that F (x) = λx for all x ∈ R.
11
+ 1. Introduction
12
+ Throughout the article R denotes a prime ring with center Z(R). The Utumi
13
+ quotient ring of R is denoted by U. The center of U is called the extended centroid
14
+ of R and it is denoted by C. The definition and construction of U can be found
15
+ in [5]. The commutator ab − ba of two elements a and b of R is denoted by [a, b].
16
+ Define [a, b]0 = a and for k ≥ 1 the kth commutator of a and b is defined as [a, b]k =
17
+ [[a, b], b]k−1 = �k
18
+ i=0(−1)i�k
19
+ i
20
+
21
+ biabk−i. Also [a1, a2, . . . , ak] = [[a1, a2, . . . , ak−1], ak]
22
+ for all a1, a2, . . . , ak ∈ R, and for k ≥ 2. An additive mapping d : R → R is said
23
+ to be a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping
24
+ F : R → R is said to be a generalized derivation if there exists a derivation d on
25
+ R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R. In [13] Posner proved that
26
+ if d is derivation of a prime ring R such that [d(x), x] ∈ Z(R) for all x ∈ R then
27
+ either d = 0 or R is a commutative ring. In [25] Lanski generalized the Posner’s
28
+ result by proving it on Lie ideal L of R. More precisely, Lanski proved that if
29
+ [d(x), x]k ∈ Z(R) for all x ∈ L and k ≥ 1 then char(R) = 2 and R ⊆ M2(F), for a
30
+ field F, equivalently R satisfies standard identity s4. In 2008, Arga¸c et al. in [6],
31
+ generalized Lanski’s result by replacing derivation d by generalized derivation F.
32
+ More precisely they proved that [F(x), x]k = 0, for all x ∈ L, then either F(x) = ax
33
+ with a ∈ C or R satisfies the standard identity s4. The study of generalized deriva-
34
+ tions on Lie ideals and on left ideals are given in [2, 5, 4, 6] where further references
35
+ can be found out. More recently in [9] Dhara¸c et al. proved the following:
36
+ Let R be a prime ring with its Utumi ring of quotients U, G a nonzero generalized
37
+ derivation of R and L a noncentral Lie ideal of R. Suppose that [G(xm), xn2, . . . , xnk] =
38
+ 0 for all x ∈ L,where m, n1, n2, . . . , nk ≥ 1 are fixed integers. Then one of the fol-
39
+ lowing holds:
40
+ (1) there exists β ∈ C such that G(x) = βx for all x ∈ R.
41
+ (2) R satisfies the standard identity s4.
42
+ In this article we continue this line of investigation concerning the identity
43
+ [F(um), un1, un2, . . . , unk] = 0 for all u ∈ R, where m, n1, n2, . . . , nk ≥ 1 are fixed
44
+ 2010 Mathematics Subject Classification. 16N60, 16W25 .
45
+ Key Words and Phrases. Lie ideals, generalized skew derivations, extended centroid, Utumi
46
+ quotient ring.
47
+ 1
48
+
49
+ 2
50
+ A. PANDEY, B. PRAJAPATI
51
+ integers and F is a generalized skew derivation. More precisely we shall prove the
52
+ following:
53
+ Main Theorem: Let R be a prime ring of characteristic different from 2, U be
54
+ the Utumi quotient ring of R and C be the extended centroid of R. Let F be a
55
+ generalized skew derivation on R, I be a two sided ideal of R and m, n1, n2, . . . , nk ≥
56
+ 1 are fixed integers such that [F(um), un1, un2, . . . , unk] = 0 for all u ∈ I then there
57
+ exists λ ∈ C such that F(x) = λx for all x ∈ R.
58
+ We recall the following facts that are useful to prove our main theorem:
59
+ Fact 1.1. Let f(xi, d(xi), α(xi)) is a generalized polynomial identity for a prime
60
+ ring R, d is a outer skew derivation and α is outer automorphism of R then R also
61
+ satisfies the generalized polynomial identity f(xi, yi, zi), where xi, yi, zi are distinct
62
+ indeterminates. ([33, Theorem 1])
63
+ Fact 1.2. ([32, Theorem 6.5.9]) Let R be a prime ring satisfies polynomial identity
64
+ of the type f(xαi△k
65
+ j
66
+ ) = 0, where f(z(i,k)
67
+ j
68
+ ) is generalized polynomial identity with
69
+ coefficient from U, △1, . . . , △n are mutually different correct words from a reduced
70
+ set of skew derivations commuting with all the corresponding automorphisms and
71
+ α1, . . . , αm are mutually outer automorphisms. In this case the identity f(z(i,k)
72
+ j
73
+ ) =
74
+ 0 is valid for U.
75
+ Fact 1.3. Let K be an infinite field and m ≥ 2 an integer. If P1, . . . , Pk are non-
76
+ scalar matrices in Mm(K) then there exists some invertible matrix P ∈ Mm(K)
77
+ such that each matrix PP1P −1, . . . , PPkP −1 has all non-zero entries. [4]
78
+ Fact 1.4. Let K be any field and R = Mm(K) be the algebra of all m × m
79
+ matrices over K with m ≥ 2. Then the matrix unit eij is an element of [R, R] for
80
+ all 1 ≤ i ̸= j ≤ m.
81
+ Fact 1.5. Every generalized skew derivation F of R can be uniquely extended to
82
+ a generalized derivation of U and its assume the form F(x) = ax + d(x), for some
83
+ a ∈ U and a skew derivation d on U [31].
84
+ Fact 1.6. If I is a two-sided ideal of R, then R, I and U satisfy the same differential
85
+ identities [23].
86
+ Fact 1.7. If I is a two-sided ideal of R, then R, I and U satisfies the same general-
87
+ ized polynomial identities with coefficients in U ([10]). Further R, I and U satisfy
88
+ the same generalized polynomial identities with automorphism in U [31].
89
+ Fact 1.8. (Kharchenko [Theorem 2,[8]] Let R be a prime ring, d a non zero deriva-
90
+ tion on R and I a non zero ideal of R. If I satisfies the differential identity
91
+ f(r1, . . . , rn, d(r1), . . . , d(rn)) = 0
92
+ for all r1, . . . , rn ∈ I, then either
93
+ (i) I satisfies the generalized polynomial identity f(r1, . . . , rn, x1, . . . , xn) = 0
94
+ or
95
+ (ii) d is U-inner i.e., for some q ∈ U, d(x) = [q, x] and I satisfies the generalized
96
+ polynomial identity f(r1, . . . , rn, [q, r1], . . . , [q, rn]) = 0.
97
+ Fact 1.9.
98
+
99
+ Theorem 4.2.1 (Jacobson density theorem)[5]
100
+
101
+ Let R be a primitive ring
102
+ with VR a faithful irreducible R-module and D = End(VR), then for any positive
103
+
104
+ GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS
105
+ 3
106
+ integer n if v1, v2, . . . , vn are D-independent in V and w1, w2, . . . , wn are arbitrary
107
+ in V then there exists r ∈ R such that vir = wi for i = 1, 2, . . ., n.
108
+ Fact 1.10. Let X = {x1, x2, . . .} be a countable set consisting of noncommuting
109
+ indeterminates x1, x2, . . ..
110
+ Let C{X} be the free algebra over C on the set X.
111
+ We denote T = U ∗C C{X}, the free product of the C-algebras U and C{X}.
112
+ The elements of T are called the generalized polynomials with coefficients in U.
113
+ Let B be a set of C-independent vectors of U. Then any element f ∈ T can be
114
+ represented in the form f = �
115
+ i aini, where ai ∈ C and ni are B-monomials of
116
+ the form p0u1p1u2p2 · unpn, with p0, p1, . . . , pn ∈ B and u1, u2, . . . , un ∈ X. Any
117
+ generalized polynomial f = �
118
+ i aini is trivial, i.e., zero element in T if and only if
119
+ ai = 0 for each i. For further details we refer the reader to [11].
120
+ We begin with the following Proposition:
121
+ Proposition 1.11. Let R be a prime ring of characteristic different from 2, U be
122
+ the Utumi quotient ring of R, C be the extended centroid of R and β ∈ Aut(U).
123
+ Let a, b ∈ U and m, n1, n2, . . . , nk ≥ 1 are fixed integers such that
124
+ (1)
125
+ [aum + β(um)b, un1, un2, . . . , unk] = 0
126
+ for all u ∈ R then either β is identity map on R and a, b ∈ C or there exists an
127
+ invertible element p such that β(x) = pxp−1, for all x ∈ R with p−1b ∈ C and
128
+ a + b ∈ C.
129
+ We need to prove the following lemmas to prove Proposition (1.11):
130
+ Lemma 1.12. Let R be a prime ring of characteristic different from 2, U be the
131
+ Utumi quotient ring of R and C be the extended centroid of R. Let a, b ∈ U and
132
+ m, n1, n2, . . . , nk ≥ 1 are fixed integers such that
133
+ (2)
134
+ [aum + pump−1b, un1, un2, . . . , unk] = 0
135
+ for all u ∈ R then p−1b ∈ C and a + b ∈ C.
136
+ Proof. First assume that R does not satisfy any non-trivial generalized polynomial
137
+ identity. Let T = U ∗ C{u}, the free product of U and C{u}, C-algebra in single
138
+ indeterminate u. Then equation (2) is a GPI in T . If p−1b /∈ C then p−1b and 1
139
+ are linearly independent over C. Thus from Fact (1.10), equation (2) implies
140
+ un1+n2+...+nkpump−1b = 0
141
+ in T implying p−1b = 0, a contradiction. Therefore we conclude that p−1b ∈ C and
142
+ hence equation (2) reduces to :
143
+ (3)
144
+ [aum + bum, un1, un2, . . . , unk] = 0
145
+ again by [9], equation (3) implies that a + b ∈ C.
146
+ Now we consider the case when equation (2) is a nontrivial polynomial identity for
147
+ R. Since R and U satisfy the same generalized polynomial identities (see Fact 1.7).
148
+ Therefore U satisfies equation (2). In case C is infinite the generalized polynomial
149
+ identity (2) is also satisfied by U⊗C ¯C where ¯C is the algebraic closure of C. Since
150
+ both U and U⊗C ¯C are prime and centrally closed [15], we may replace R by
151
+ U or U⊗C ¯C according as C is infinite or finite.
152
+ Thus we may assume that R
153
+ is centrally closed over C which is either finite or algebraically closed such that
154
+ [aum + pump−1b, un1, un2, . . . , unk] = 0 for all u ∈ R. By Martindale’s result [14],
155
+ R is a primitive ring with non-zero socle H and eHe is a simple central algebra finite
156
+
157
+ 4
158
+ A. PANDEY, B. PRAJAPATI
159
+ dimensional over C, for any minimal idempotent element e ∈ R. Thus there exists
160
+ a vector space V over a division ring D such that R is isomorphic to a dense subring
161
+ of ring of D-linear transformations of V . Since C is either finite or algebraically
162
+ closed, D must coincide with C.
163
+ Assume first that dimCV ≥ 3. If p−1b /∈ C then there exists v ∈ V such that
164
+ {p−1bv, v} is linearly C-independent. Since dimCV ≥ 3 there exists w ∈ V such
165
+ that {p−1bv, v, w} is linearly C-independent. By Jacobson’s theorem (see Fact 1.9)
166
+ there exists x ∈ R such that :
167
+ xv = 0, xp−1bv = p−1bv
168
+ Then, 0 = [axm + pxmp−1b, xn1, xn2, . . . , xnk]v = bv, a contradiction, because if
169
+ bv = 0, then {p−1bv, v, w} will be C-dependent. Thus {p−1bv, v} is linearly C-
170
+ dependent therefore p−1b ∈ C and hence equation (2) reduces to
171
+ [aum + bum, un1, un2, . . . , unk] = 0
172
+ which implies a + b ∈ C by [9].
173
+ Now if dimCV
174
+ = 2, then U ∼= M2(C).
175
+ Denote p = �
176
+ ij eijpij, q = p−1b =
177
+
178
+ ij eijqij ∈ M2(C), for pij, qij ∈ C and 1 ≤ i, j ≤ 2, where eij is the usual
179
+ matrix unit with 1 at (i, j)th place and zero elsewhere. Assume q /∈ C then by Fact
180
+ (1.3), all the entries in q is non-zero i.e. qij ̸= 0 for 1 ≤ i, j ≤ 2.
181
+ Choosing u = e11 in equation (2) and right multiplying by e22 we get:
182
+ (4)
183
+ p11q12 = 0
184
+ implying p11 = 0. Let φ be an automorphism of U then
185
+ (5)
186
+ [φ(a)um + φ(p)umφ(p−1b), un1, un2, . . . , unk] = 0
187
+ is also an identity of U. Thus φ(p), φ(q)and φ(a) must satisfy equation (4). Denote
188
+ φ(p) = �
189
+ ij eijp′
190
+ ij, φ(q) = �
191
+ ij eijq′
192
+ ij, for p′
193
+ ij, q′
194
+ ij ∈ C and 1 ≤ i, j ≤ 2, then from
195
+ equation (4), we have p′
196
+ 11q′
197
+ 12 = 0. In particular chossing φ(u) = (1 + e21)u(1 − e21)
198
+ we get p12q12 = 0, which implies p12 = 0. Thus 1st row of p is zero, which is a
199
+ contradiction because p is invertible. Thus q12 = 0, a contradiction. Therefore
200
+ q = p−1b ∈ C. Since q ∈ C therefore equation (2) reduces to
201
+ (6)
202
+ [aum + bum, un1, un2, . . . , unk] = 0
203
+ Denote c = a + b = �
204
+ ij cijeij, for cij ∈ C and 1 ≤ i, j ≤ 2. Suppose c /∈ C then by
205
+ Fact (1.3), all the entries of c is non-zero i.e. cij ̸= 0. Choosing u = e22 in equation
206
+ (6) and right multiply by e11 we get:
207
+ c12e12 = 0
208
+ which implies c12 = 0, a contradiction. Therefore c = a + b ∈ C.
209
+
210
+ Lemma 1.13. Let R be a prime ring of characteristic different from 2, U be the
211
+ Utumi quotient ring of R and C be the extended centroid of R. Let a, b ∈ U, β be
212
+ an outer automorphism on U, and m, n1, n2, . . . , nk ≥ 1 are fixed integers such that
213
+ (7)
214
+ [aum + β(um)b, un1, un2, . . . , unk] = 0
215
+ for all u ∈ R then β is the identity map on R and a + b ∈ C unless b = 0 and
216
+ a ∈ C.
217
+
218
+ GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS
219
+ 5
220
+ Proof. Since R and U satisfy the same generalized polynomial identity with auto-
221
+ morphisms (see Fact 1.7), it follows that U satisfies
222
+ (8)
223
+ [aum + β(um)b, un1, un2, . . . , unk] = 0
224
+ We may assume a /∈ C and b ̸= 0 then U satisfies non-trivial generalized polyno-
225
+ mial identity. Therefore by ([14],theorem 3), U is dense subring of the ring of linear
226
+ transformtion of a vector space V over a division ring D. If β is not Frobenius then
227
+ from Fact (1.2), U satisfies
228
+ (9)
229
+ [aum + zmb, un1, un2, . . . , unk] = 0
230
+ then by [9], we get, a, b ∈ C. In particular from equation (9), U satisfies
231
+ (10)
232
+ b[zm, un1, un2, . . . , unk] = 0
233
+ then by posner’s theorem [21] there exists a suitable filed F and a positive integer
234
+ n such that U and Mn(F) satisfies the same polynomial identity. For i ̸= j, choose
235
+ z = eii + eij and u = eii in equation (10), we get,
236
+ 0 = [eii + eij, eii]k = (−1)keij
237
+ a contradiction, where eij is the usual matrix unit with 1 at the (i, j)th entry and
238
+ zero elsewhere.
239
+ Now we assume that β is Frobenius and dimDV ≥ 2 (because if dimDV = 1 then
240
+ U will be commutative). If char(R) = 0 then β(x) = x because β is Frobenius.
241
+ This implies that β is inner which is a contradiction. Thus we may assume that
242
+ char(R) = p ̸= 0 and β(λ) = λps for all λ ∈ C and for some fixed integer s ≥ 0.
243
+ Now replace u by λu in equation (8) then U satisfies
244
+ (11)
245
+ λm+n1+...+nk[aum + λm(ps−1)β(um)b, un1, un2, . . . , unk] = 0.
246
+ In particular choose λm = γ then U satisfies
247
+ (12)
248
+ [aum + γ(ps−1)β(um)b, un1, un2, . . . , unk] = 0.
249
+ From equation (8) and (12) we get
250
+ (13)
251
+ (γ(ps−1) − 1)[β(um)b, un1, un2, . . . , unk] = 0
252
+ that is U satisfies
253
+ (14)
254
+ [β(um)b, un1, un2, . . . , unk] = 0.
255
+ Again from equation (8) and (14) we have that [aum, un1, un2, . . . , unk] = 0 for all
256
+ u ∈ U, this implies that a ∈ C ( see [9]). Thus we may consider b ̸= 0.
257
+ Now let e2 = e ∈ soc(R) then by equation (14),
258
+ (15)
259
+ [β(e)b, e]k = 0.
260
+ Right multiply above relation by (1 − e) gives
261
+ (16)
262
+ eβ(e)b(1 − e) = 0.
263
+ In particular choosing the idempotent (1 − e) − (1 − e)xe for all x ∈ U in equation
264
+ (16), we have that U satisfies:
265
+ (17)
266
+ (1 − e)β(1 − e)b(1 − e)xe + (1 − e)β(1 − e)β(x)β(e)b(e + (1 − e)xe)
267
+ −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)β(x)β(e)b(e + (1 − e)xe).
268
+ Since β is outer then from Fact (1.2), U satisfies :
269
+ (18)
270
+ (1 − e)β(1 − e)b(1 − e)xe + (1 − e)β(1 − e)zβ(e)b(e + (1 − e)xe)
271
+
272
+ 6
273
+ A. PANDEY, B. PRAJAPATI
274
+ −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).
275
+ In particular for x = 0, we get (1 − e)β(1 − e)zβ(e)be = 0, for all z ∈ U. Hence
276
+ by primeness of U, we have either (1 − e)β(1 − e) = 0 or β(e)be = 0 for any
277
+ e2 = e ∈ Soc(U).
278
+ If we consider the case (1 − e)β(1 − e) = 0, then equation (17) reduces to:
279
+ −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).
280
+ In particular U satisfies
281
+ (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).
282
+ Now replace z by ze in above relation we get that
283
+ (19)
284
+ (1 − e)xeβ(1 − e)zeβ(e)be.
285
+ Now since eβ(1−e) ̸= 0, otherwise from (1−e)β(1−e) = 0 and we get β(1−e) = 0,
286
+ which is a contradiction. Thus from equation (19), we get eβ(e)be = 0, then by
287
+ equation (16) we get that eβ(e)b = 0. Thus, in any case equation (15) implies that
288
+ (20)
289
+ β(e)be = 0.
290
+ for any idempotent element e ∈ U. If we choose the idempotent element ex(1−e)+e,
291
+ for all x ∈ U then from equation (20), U satisfies:
292
+
293
+ β
294
+
295
+ ex(1 − e) + β(e)
296
+
297
+ b(ex(1 − e) + e).
298
+ Since β(e)be = 0, U satisfies
299
+ β(e)β(x)b(ex(1 − e) + e).
300
+ Since β is outer then from Fact (1.2), U satisfies:
301
+ β(e)yb(ex(1 − e) + e)
302
+ for all x, y ∈ U. In particular for x = 0, β(e)ybe = 0 i.e. be = 0 (by primness of U)
303
+ for all e2 = e ∈ U. Let M denotes the additive subgroup of U, which is generated
304
+ by all the idempotent elements of U, then bM = 0. Moreover, by [18](page 18,
305
+ corollary), [U, U] ⊆ M, i.e. b[U, U] = 0 implying b = 0, a contradiction.
306
+
307
+ Remark: Lemma 1.12 and Lemma 1.13 cover all the cases to prove Proposition
308
+ 1.11.
309
+ Proof of main theorem: From the given hypothesis we have:
310
+ (21)
311
+ [F(um), un1, un2, . . . , unk] = 0
312
+ for all u ∈ I. Since R, I and U satisfy the same generalized polynomial identities
313
+ as well as the same differential identities with automorphism (see Fact 1.6, 1.7).
314
+ Hence,
315
+ (22)
316
+ [F(um), un1, un2, . . . , unk] = 0
317
+ for all u ∈ U, where F(u) = cu + d(u) for some c ∈ U and d is skew derivation
318
+ of U with associated automorphism β (see Fact 1.5). We divide the proof into the
319
+ following cases:
320
+
321
+ GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS
322
+ 7
323
+ Case 1: If d is inner derivation then d(u) = pu − β(u)p for all u ∈ U and for
324
+ some p ∈ U. Then U satisfies
325
+ (23)
326
+ [(c + p)um − β(um)p, un1, un2, . . . , unk] = 0.
327
+ Then by Proposition 1.11 we get the required result.
328
+ Case2: If d is outer then U satisfies
329
+ (24)
330
+
331
+ cum +
332
+ m−1
333
+
334
+ i=0
335
+ β(ui)d(u)um−i−1, un1, un2, . . . , unk
336
+
337
+ = 0.
338
+ by [33], we have:
339
+ (25)
340
+
341
+ cum +
342
+ m−1
343
+
344
+ i=0
345
+ β(ui)yum−i−1, un1, un2, . . . , unk
346
+
347
+ = 0.
348
+ In particular U satisfies
349
+ (26)
350
+ � m−1
351
+
352
+ i=0
353
+ β(ui)yum−i−1, un1, un2, . . . , unk
354
+
355
+ = 0
356
+ Subcase 1: If β is outer derivation then from Fact (1.2), U satisfies:
357
+ (27)
358
+
359
+ cum +
360
+ m−1
361
+
362
+ i=0
363
+ ziyum−i−1, un1, un2, . . . , unk
364
+
365
+ = 0
366
+ for all u, y, z ∈ U. In particular for z = 0, we have that
367
+ (28)
368
+ [yum−1, un1, un2, . . . , unk] = 0.
369
+ Then by Posner’s theorem, there exists a suitable field F and a positive integer
370
+ n such that U and Mn(F) satisfy the same generalized polynomial identity. For
371
+ i ̸= j, choose y = eii + eji and u = eii in equation (28), we get
372
+ 0 = [eii + eji, eii]k = eji
373
+ which is a contradiction.
374
+ Subcase 2: If β is inner then β(x) = pxp−1, for all x ∈ U and for some p ∈ U.
375
+ Hence from equation (26), U satisfies:
376
+ (29)
377
+ � m−1
378
+
379
+ i=0
380
+ puip−1yum−i−1, un1, un2, . . . , unk
381
+
382
+ = 0.
383
+ Since β is not identity, hence p /∈ C, therefore equation (29) is a non-trivial polyno-
384
+ mial identity for R. By [14], U is isomorphic to a dense ring of linear transformation
385
+ on some vector space V over C. Firstly, we consider the case when dimCV ≥ 3.
386
+ Since p /∈ C therefore there exists some v ∈ V such that {p−1v, v} is linearly C-
387
+ independent. Since dimCV ≥ 3, there must exists w1 ∈ V such that {p−1v, v, w1}
388
+ is linearly C- independent. Since U is dense, therefore by Jacobson density theorem
389
+ ( see Fact 1.9), there exists y1, y2 ∈ U such that
390
+ y1w1 = 0, y2w1 = v, y1p−1v = p−1v, y1v = v.
391
+ Therefore by equation (29) we get that
392
+ 0 =
393
+ � m−1
394
+
395
+ i=0
396
+ pyi
397
+ 1p−1y2ym−i−1
398
+ 1
399
+ , yn1
400
+ 1 , yn2
401
+ 1 , . . . , ynk
402
+ 1
403
+
404
+ w1 = (−1)kv ̸= 0
405
+
406
+ 8
407
+ A. PANDEY, B. PRAJAPATI
408
+ which is a contradiction. Now if dimCV = 2, i.e. U ∼= M2(C), ring of 2-order
409
+ matrix over field C.
410
+ p =
411
+ �p11
412
+ p12
413
+ p21
414
+ p22
415
+
416
+ , p−1 =
417
+ 1
418
+ det(p)
419
+ � p22
420
+ −p12
421
+ −p21
422
+ p11
423
+
424
+ choosing u = e22, y = e21 in equation (29), we get that
425
+ (30)
426
+ p11p22 = 0
427
+ Similarly, by choosing u = e11, y = e22 in equation (29), we get that
428
+ (31)
429
+ p11p12 = 0
430
+ Since p is invertible therefore p22 and p12 can not be zero simultaneously, thus from
431
+ equation (30) and (31), it follows p11 = 0. This implies p12 ̸= 0, otherwise p will
432
+ be singular matrix.
433
+ Choose φ(u) = (1 − e12)u(1 + e12) ∈ Aut(U), then
434
+ φ
435
+ �� m−1
436
+
437
+ i=0
438
+ puip−1yum−i−1, un1, un2, . . . , unk
439
+ ��
440
+ = 0
441
+ i.e. U satisfies:
442
+ (32)
443
+ � m−1
444
+
445
+ i=0
446
+ φ(p)uiφ(p−1)yum−i−1, un1, un2, . . . , unk
447
+
448
+ = 0.
449
+ Denote φ(p)11 as the (1, 1)th-entry of φ(p), then by the same argument as above
450
+ we get 0 = φ(p)11 = p21, which is a contradiction (because p is invertible.).
451
+ For the case dimCV = 1, R will be commutative and we have nothing to prove in
452
+ this case.
453
+ Following is the very natural consequence of our main theorem:
454
+ Corollary 1.14. Let R be a prime ring with its Utumi ring of quotients U, F
455
+ a nonzero generalized derivation of R and I a non-zero ideal of R. Suppose that
456
+ [F(xm), xn]k = 0 for all x ∈ I,where n, k ��� 1 are fixed integers. Then there exists
457
+ β ∈ C such that F(x) = βx for all x ∈ R.
458
+ Proof. Choosing n1 = n2 = . . . = nk = n in our main theorem we get the required
459
+ result.
460
+
461
+ Future research: Recently, C.K. Liu in [24] investigated the structure of F and
462
+ G if they satisfy the identity [F(xn)xm + xmG(xn), xr]k = 0 for all x ∈ I, where
463
+ F, G are non-zero generalized derivation on a prime ring R, I is the non-zero ideal
464
+ of R and m, n, k ≥ 1 are fixed integers. In the light of [24] with this article one
465
+ can try to find the structure of F and G if they satisfy the identity [F(xn)xm +
466
+ xmG(xn), xn1, xn2, . . . , xnk] = 0 for all x ∈ I, where m, n, n1, n2, . . . , nk ≥ 1 are
467
+ fixed integers.
468
+ Acknowledgement
469
+ The authors is highly thankful to the referee(s) for valuable suggestions and
470
+ comments. This research is not funded.
471
+
472
+ GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS
473
+ 9
474
+ References
475
+ [1] Dhara, Basudeb and De Filippis, Vincenzo, Engel conditions of generalized derivations on
476
+ left ideals and Lie ideals in prime rings, Communications in Algebra, 48 (1), 154–167, 2020.
477
+ [2] Dhara, Basudeb, Annihilator condition on power values of derivations, Indian Journal of Pure
478
+ and Applied Mathematics, 42 (4), 357–369, 2011.
479
+ [3] Alba¸s, Emine and Arga¸c, Nurcan and Filippis, Vincenzo De, Generalized derivations with
480
+ Engel conditions on one-sided ideals, 36 (6), 2063–2071, 2008.
481
+ [4] De Filippis, Vincenzo and Di Vincenzo, Onofrio Mario, Vanishing derivations and centralizers
482
+ of generalized derivations on multilinear polynomials, Communications in Algebra, 40 (6),
483
+ 1918–1932, (2012).
484
+ [5] Beidar, Konstant I and Martindale, Wallace S and Mikhalev, Alexander V, Rings with gen-
485
+ eralized identities, CRC Press, 1995.
486
+ [6] Argac, Nurc and Carini, Luisa and De Filippis, V, An Engel condition with generalized
487
+ derivations on Lie ideals, Taiwanese Journal of Mathematics, 419–433, 2008.
488
+ [7] Alahmadi, Adel and Ali, Shakir and Khan, Abdul Nadim and Khan, Mohammad Salahuddin,
489
+ A characterization of generalized derivations on prime rings, Communications in Algebra, 44
490
+ (8) 3201–3210, 2016.
491
+ [8] Kharchenko, Vladislav Kirillovich, Differential identities of prime rings, Algebra and Logic,
492
+ 17 (2), 155–168, 1978.
493
+ [9] Dhara, Basudeb and Ali, Asma and Das, Deepankar, Engel conditions of generalized deriva-
494
+ tions on Lie ideals and left sided ideals in prime rings and Banach Algebras, Afrika Matem-
495
+ atika, 27 (7), 1391–1401, 2016.
496
+ [10] Beidar, KI, Rings with generalized identities. 3., Vestnik Moskovskogo Universiteta Seriya i
497
+ Matematika, Mekhanika, 4, 66–73, 1978.
498
+ [11] Chuang, Chen Lian, GPIs having coefficients in Utumi quotient rings, Proceedings of the
499
+ American Mathematical Society, 103 (3), 723–728, 1988.
500
+ [12] Demir, C¸agri and Arga¸c, Nurcan, A result on generalized derivations with Engel conditions
501
+ on one-sided ideals, Journal of the Korean Mathematical Society, 47 (3), 483–494, 2010.
502
+ [13] Posner, Edward C, Derivations in prime rings, Proceedings of the American Mathematical
503
+ Society, 8 (6), 1093–1100, 1957.
504
+ [14] Martindale 3rd, Wallace S, Prime rings satisfying a generalized polynomial identity, Journal
505
+ of Algebra, 12 (4), 576–584, 1969.
506
+ [15] Erickson, Theodore and Martindale, Wallace and Osborn, James, Prime nonassociative alge-
507
+ bras, Pacific Journal of Mathematics, 60 (1), 49–63 1975.
508
+ [16] Faith, C and Utumi, Y, On a new proof of Litoff’s theorem, Acta Mathematica Academiae
509
+ Scientiarum Hungarica, 14 (3-4), 369–371, 1963.
510
+ [17] Lee, Tsiu Kwen, Generalized derivations of left faithful rings, Communications in Algebra,
511
+ 27 (8), 4057–4073, 1999.
512
+ [18] Herstein, Israel Nathan, Topics in ring theory, University of Chicago press, 1969.
513
+ [19] Di Vincenzo, OM, On the n-th centralizer of a Lie ideal, Boll. UMI, 7 (3-A), 77–85, 1989.
514
+ [20] Lanski, Charles and Montgomery, M Susan, Lie structure of prime rings of characteristic 2,
515
+ Pacific Journal of Mathematics, 42 (1), 117–136, 1972.
516
+ [21] Posner, Edward C, Prime rings satisfying a polynomial identity, Proceedings of the American
517
+ Mathematical Society, 11 (2), 180–183, 1960.
518
+ [22] Lee, Tsiu-Kwen and Shiue, Wen-Kwei, A result on derivations with Engel condition in prime
519
+ rings, Southeast Asian Bulletin of Mathematics, 23 (3), 437–446, 1999.
520
+ [23] Lee, Tsiu Kwen, Semiprime rings with differential identities, Bulletin of the Institute of
521
+ Mathematics, 20 (1), 27–38, 1992.
522
+ [24] Liu, Cheng-Kai, An Engel condition with two generalized derivations in prime rings, Com-
523
+ munications in Algebra, 49 (2), 836–849, 2021.
524
+ [25] Lanski, Charles, An Engel condition with derivation, Proceedings of the American Mathe-
525
+ matical Society, 118 (3), 1993.
526
+ [26] Breˇsar, Matej, Centralizing mappings and derivations in prime rings, Journal of Algebra, 156
527
+ (2), 385–394, 1993.
528
+ [27] Tiwari, SK, Identities with generalized derivations in prime rings, Rendiconti del Circolo
529
+ Matematico di Palermo Series 2, 1–17, 2021.
530
+ [28] Jacobson, Nathan, American Mathematical Society, 37, 1956. Structure of rings,
531
+
532
+ 10
533
+ A. PANDEY, B. PRAJAPATI
534
+ [29] Carini, Luisa and De Filippis, Vincenzo and Scudo, Giovanni, Identities with product of
535
+ generalized skew derivations on multilinear polynomials, Communications in Algebra, 44 (7),
536
+ 3122–3138, 2016.
537
+ [30] De Filippis, Vincenzo and Di Vincenzo, Onofrio Mario, Generalized Skew Derivations and
538
+ Nilpotent Values on Lie Ideals, Algebra Colloquium, 26 (04), 2019.
539
+ [31] C. L. Chuang. Differential identities with automorphisms and antiautomorphisms, ii. Journal
540
+ of Algebra,160(1):130–171, 1993.
541
+ [32] V. Kharchenko.Automorphisms and Derivations of Associative Rings, volume 69. Springer
542
+ Science and Business Media, 1991.
543
+ [33] C.-L. Chuang and T.-K.Identities with a single skew derivation,Journal of Algebra, 288(1):59
544
+ – 77, 2005.
545
+ A. Pandey, School of Liberal Studies, Ambedkar University Delhi, Delhi-110006,
546
+ INDIA.
547
+ Email address: [email protected]
548
+ B. Prajapati, School of Liberal Studies, Ambedkar University Delhi, Delhi-110006,
549
+ INDIA.
550
+ Email address: [email protected]
551
+
DdFRT4oBgHgl3EQfxTg4/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,500 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf,len=499
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
3
+ page_content='13641v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
4
+ page_content='AC] 31 Jan 2023 GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS ASHUTOSH PANDEY, BALCHAND PRAJAPATI Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
5
+ page_content=' Let R be a prime ring of characteristic different from 2, U be the Utumi quotient ring of R and C be the extended centroid of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
6
+ page_content=' Let F be a generalized skew derivation on R, I be a non-zero ideal of R and m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
7
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
8
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
9
+ page_content=' , nk ≥ 1 are fixed integers such that [F (um), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
10
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
11
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
12
+ page_content=' , unk] = 0 for all u ∈ I then there exists λ ∈ C such that F (x) = λx for all x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
13
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
14
+ page_content=' Introduction Throughout the article R denotes a prime ring with center Z(R).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
15
+ page_content=' The Utumi quotient ring of R is denoted by U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
16
+ page_content=' The center of U is called the extended centroid of R and it is denoted by C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
17
+ page_content=' The definition and construction of U can be found in [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
18
+ page_content=' The commutator ab − ba of two elements a and b of R is denoted by [a, b].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
19
+ page_content=' Define [a, b]0 = a and for k ≥ 1 the kth commutator of a and b is defined as [a, b]k = [[a, b], b]k−1 = �k i=0(−1)i�k i � biabk−i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
20
+ page_content=' Also [a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
21
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
22
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
23
+ page_content=' , ak] = [[a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
24
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
25
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
26
+ page_content=' , ak−1], ak] for all a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
27
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
28
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
29
+ page_content=' , ak ∈ R, and for k ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
30
+ page_content=' An additive mapping d : R → R is said to be a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
31
+ page_content=' An additive mapping F : R → R is said to be a generalized derivation if there exists a derivation d on R such that F(xy) = F(x)y + xd(y) for all x, y ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
32
+ page_content=' In [13] Posner proved that if d is derivation of a prime ring R such that [d(x), x] ∈ Z(R) for all x ∈ R then either d = 0 or R is a commutative ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
33
+ page_content=' In [25] Lanski generalized the Posner’s result by proving it on Lie ideal L of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
34
+ page_content=' More precisely, Lanski proved that if [d(x), x]k ∈ Z(R) for all x ∈ L and k ≥ 1 then char(R) = 2 and R ⊆ M2(F), for a field F, equivalently R satisfies standard identity s4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
35
+ page_content=' In 2008, Arga¸c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
36
+ page_content=' in [6], generalized Lanski’s result by replacing derivation d by generalized derivation F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
37
+ page_content=' More precisely they proved that [F(x), x]k = 0, for all x ∈ L, then either F(x) = ax with a ∈ C or R satisfies the standard identity s4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
38
+ page_content=' The study of generalized deriva- tions on Lie ideals and on left ideals are given in [2, 5, 4, 6] where further references can be found out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
39
+ page_content=' More recently in [9] Dhara¸c et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
40
+ page_content=' proved the following: Let R be a prime ring with its Utumi ring of quotients U, G a nonzero generalized derivation of R and L a noncentral Lie ideal of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
41
+ page_content=' Suppose that [G(xm), xn2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
42
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
43
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
44
+ page_content=' , xnk] = 0 for all x ∈ L,where m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
45
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
46
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
47
+ page_content=' , nk ≥ 1 are fixed integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
48
+ page_content=' Then one of the fol- lowing holds: (1) there exists β ∈ C such that G(x) = βx for all x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
49
+ page_content=' (2) R satisfies the standard identity s4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
50
+ page_content=' In this article we continue this line of investigation concerning the identity [F(um), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
51
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
52
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
53
+ page_content=' , unk] = 0 for all u ∈ R, where m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
54
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
55
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
56
+ page_content=' , nk ≥ 1 are fixed 2010 Mathematics Subject Classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
57
+ page_content=' 16N60, 16W25 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
58
+ page_content=' Key Words and Phrases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
59
+ page_content=' Lie ideals, generalized skew derivations, extended centroid, Utumi quotient ring.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
60
+ page_content=' 1 2 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
61
+ page_content=' PANDEY, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
62
+ page_content=' PRAJAPATI integers and F is a generalized skew derivation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
63
+ page_content=' More precisely we shall prove the following: Main Theorem: Let R be a prime ring of characteristic different from 2, U be the Utumi quotient ring of R and C be the extended centroid of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
64
+ page_content=' Let F be a generalized skew derivation on R, I be a two sided ideal of R and m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
65
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
66
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
67
+ page_content=' , nk ≥ 1 are fixed integers such that [F(um), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
68
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
69
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
70
+ page_content=' , unk] = 0 for all u ∈ I then there exists λ ∈ C such that F(x) = λx for all x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
71
+ page_content=' We recall the following facts that are useful to prove our main theorem: Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
72
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
73
+ page_content=' Let f(xi, d(xi), α(xi)) is a generalized polynomial identity for a prime ring R, d is a outer skew derivation and α is outer automorphism of R then R also satisfies the generalized polynomial identity f(xi, yi, zi), where xi, yi, zi are distinct indeterminates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
74
+ page_content=' ([33, Theorem 1]) Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
75
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
76
+ page_content=' ([32, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
77
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
78
+ page_content='9]) Let R be a prime ring satisfies polynomial identity of the type f(xαi△k j ) = 0, where f(z(i,k) j ) is generalized polynomial identity with coefficient from U, △1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
79
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
80
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
81
+ page_content=' , △n are mutually different correct words from a reduced set of skew derivations commuting with all the corresponding automorphisms and α1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
82
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
83
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
84
+ page_content=' , αm are mutually outer automorphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
85
+ page_content=' In this case the identity f(z(i,k) j ) = 0 is valid for U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
86
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
87
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
88
+ page_content=' Let K be an infinite field and m ≥ 2 an integer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
89
+ page_content=' If P1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
90
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
91
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
92
+ page_content=' , Pk are non- scalar matrices in Mm(K) then there exists some invertible matrix P ∈ Mm(K) such that each matrix PP1P −1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
93
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
94
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
95
+ page_content=' , PPkP −1 has all non-zero entries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
96
+ page_content=' [4] Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
97
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
98
+ page_content=' Let K be any field and R = Mm(K) be the algebra of all m × m matrices over K with m ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
99
+ page_content=' Then the matrix unit eij is an element of [R, R] for all 1 ≤ i ̸= j ≤ m.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
100
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
101
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
102
+ page_content=' Every generalized skew derivation F of R can be uniquely extended to a generalized derivation of U and its assume the form F(x) = ax + d(x), for some a ∈ U and a skew derivation d on U [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
103
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
104
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
105
+ page_content=' If I is a two-sided ideal of R, then R, I and U satisfy the same differential identities [23].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
106
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
107
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
108
+ page_content=' If I is a two-sided ideal of R, then R, I and U satisfies the same general- ized polynomial identities with coefficients in U ([10]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
109
+ page_content=' Further R, I and U satisfy the same generalized polynomial identities with automorphism in U [31].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
110
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
111
+ page_content='8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
112
+ page_content=' (Kharchenko [Theorem 2,[8]] Let R be a prime ring, d a non zero deriva- tion on R and I a non zero ideal of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
113
+ page_content=' If I satisfies the differential identity f(r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
114
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
115
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
116
+ page_content=' , rn, d(r1), .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
117
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
118
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
119
+ page_content=' , d(rn)) = 0 for all r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
120
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
122
+ page_content=' , rn ∈ I, then either (i) I satisfies the generalized polynomial identity f(r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
123
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
124
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
125
+ page_content=' , rn, x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
126
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
127
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
128
+ page_content=' , xn) = 0 or (ii) d is U-inner i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
129
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
130
+ page_content=', for some q ∈ U, d(x) = [q, x] and I satisfies the generalized polynomial identity f(r1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
131
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
132
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
133
+ page_content=' , rn, [q, r1], .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
134
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
135
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
136
+ page_content=' , [q, rn]) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
137
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
138
+ page_content='9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
139
+ page_content=' � Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
140
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
141
+ page_content='1 (Jacobson density theorem)[5] � Let R be a primitive ring with VR a faithful irreducible R-module and D = End(VR), then for any positive GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS 3 integer n if v1, v2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
142
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
144
+ page_content=' , vn are D-independent in V and w1, w2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
147
+ page_content=' , wn are arbitrary in V then there exists r ∈ R such that vir = wi for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
149
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
150
+ page_content=', n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
151
+ page_content=' Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
152
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
153
+ page_content=' Let X = {x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
154
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
156
+ page_content='} be a countable set consisting of noncommuting indeterminates x1, x2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
157
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
158
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
159
+ page_content='. Let C{X} be the free algebra over C on the set X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
160
+ page_content=' We denote T = U ∗C C{X}, the free product of the C-algebras U and C{X}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
161
+ page_content=' The elements of T are called the generalized polynomials with coefficients in U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
162
+ page_content=' Let B be a set of C-independent vectors of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
163
+ page_content=' Then any element f ∈ T can be represented in the form f = � i aini, where ai ∈ C and ni are B-monomials of the form p0u1p1u2p2 · unpn, with p0, p1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
164
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
165
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
166
+ page_content=' , pn ∈ B and u1, u2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
167
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
168
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
169
+ page_content=' , un ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
170
+ page_content=' Any generalized polynomial f = � i aini is trivial, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
171
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
172
+ page_content=', zero element in T if and only if ai = 0 for each i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
173
+ page_content=' For further details we refer the reader to [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
174
+ page_content=' We begin with the following Proposition: Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
175
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
176
+ page_content=' Let R be a prime ring of characteristic different from 2, U be the Utumi quotient ring of R, C be the extended centroid of R and β ∈ Aut(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
177
+ page_content=' Let a, b ∈ U and m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
178
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
179
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
180
+ page_content=' , nk ≥ 1 are fixed integers such that (1) [aum + β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
181
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
182
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
183
+ page_content=' , unk] = 0 for all u ∈ R then either β is identity map on R and a, b ∈ C or there exists an invertible element p such that β(x) = pxp−1, for all x ∈ R with p−1b ∈ C and a + b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
184
+ page_content=' We need to prove the following lemmas to prove Proposition (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
185
+ page_content='11): Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
186
+ page_content='12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
187
+ page_content=' Let R be a prime ring of characteristic different from 2, U be the Utumi quotient ring of R and C be the extended centroid of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
188
+ page_content=' Let a, b ∈ U and m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
189
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
190
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
191
+ page_content=' , nk ≥ 1 are fixed integers such that (2) [aum + pump−1b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
192
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
193
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
194
+ page_content=' , unk] = 0 for all u ∈ R then p−1b ∈ C and a + b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
195
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
196
+ page_content=' First assume that R does not satisfy any non-trivial generalized polynomial identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
197
+ page_content=' Let T = U ∗ C{u}, the free product of U and C{u}, C-algebra in single indeterminate u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
198
+ page_content=' Then equation (2) is a GPI in T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
199
+ page_content=' If p−1b /∈ C then p−1b and 1 are linearly independent over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
200
+ page_content=' Thus from Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
201
+ page_content='10), equation (2) implies un1+n2+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
202
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
203
+ page_content='+nkpump−1b = 0 in T implying p−1b = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
204
+ page_content=' Therefore we conclude that p−1b ∈ C and hence equation (2) reduces to : (3) [aum + bum, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
205
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
206
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
207
+ page_content=' , unk] = 0 again by [9], equation (3) implies that a + b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
208
+ page_content=' Now we consider the case when equation (2) is a nontrivial polynomial identity for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
209
+ page_content=' Since R and U satisfy the same generalized polynomial identities (see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
210
+ page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
211
+ page_content=' Therefore U satisfies equation (2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
212
+ page_content=' In case C is infinite the generalized polynomial identity (2) is also satisfied by U⊗C ¯C where ¯C is the algebraic closure of C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
213
+ page_content=' Since both U and U⊗C ¯C are prime and centrally closed [15], we may replace R by U or U⊗C ¯C according as C is infinite or finite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
214
+ page_content=' Thus we may assume that R is centrally closed over C which is either finite or algebraically closed such that [aum + pump−1b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
215
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
216
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
217
+ page_content=' , unk] = 0 for all u ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
218
+ page_content=' By Martindale’s result [14], R is a primitive ring with non-zero socle H and eHe is a simple central algebra finite 4 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
219
+ page_content=' PANDEY, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
220
+ page_content=' PRAJAPATI dimensional over C, for any minimal idempotent element e ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
221
+ page_content=' Thus there exists a vector space V over a division ring D such that R is isomorphic to a dense subring of ring of D-linear transformations of V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
222
+ page_content=' Since C is either finite or algebraically closed, D must coincide with C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
223
+ page_content=' Assume first that dimCV ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
224
+ page_content=' If p−1b /∈ C then there exists v ∈ V such that {p−1bv, v} is linearly C-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
225
+ page_content=' Since dimCV ≥ 3 there exists w ∈ V such that {p−1bv, v, w} is linearly C-independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
226
+ page_content=' By Jacobson’s theorem (see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
227
+ page_content='9) there exists x ∈ R such that : xv = 0, xp−1bv = p−1bv Then, 0 = [axm + pxmp−1b, xn1, xn2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
228
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
229
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
230
+ page_content=' , xnk]v = bv, a contradiction, because if bv = 0, then {p−1bv, v, w} will be C-dependent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
231
+ page_content=' Thus {p−1bv, v} is linearly C- dependent therefore p−1b ∈ C and hence equation (2) reduces to [aum + bum, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
232
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
233
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
234
+ page_content=' , unk] = 0 which implies a + b ∈ C by [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
235
+ page_content=' Now if dimCV = 2, then U ∼= M2(C).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
236
+ page_content=' Denote p = � ij eijpij, q = p−1b = � ij eijqij ∈ M2(C), for pij, qij ∈ C and 1 ≤ i, j ≤ 2, where eij is the usual matrix unit with 1 at (i, j)th place and zero elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
237
+ page_content=' Assume q /∈ C then by Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
238
+ page_content='3), all the entries in q is non-zero i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
239
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
240
+ page_content=' qij ̸= 0 for 1 ≤ i, j ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
241
+ page_content=' Choosing u = e11 in equation (2) and right multiplying by e22 we get: (4) p11q12 = 0 implying p11 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
242
+ page_content=' Let φ be an automorphism of U then (5) [φ(a)um + φ(p)umφ(p−1b), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
243
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
244
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
245
+ page_content=' , unk] = 0 is also an identity of U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
246
+ page_content=' Thus φ(p), φ(q)and φ(a) must satisfy equation (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
247
+ page_content=' Denote φ(p) = � ij eijp′ ij, φ(q) = � ij eijq′ ij, for p′ ij, q′ ij ∈ C and 1 ≤ i, j ≤ 2, then from equation (4), we have p′ 11q′ 12 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
248
+ page_content=' In particular chossing φ(u) = (1 + e21)u(1 − e21) we get p12q12 = 0, which implies p12 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
249
+ page_content=' Thus 1st row of p is zero, which is a contradiction because p is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
250
+ page_content=' Thus q12 = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
251
+ page_content=' Therefore q = p−1b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
252
+ page_content=' Since q ∈ C therefore equation (2) reduces to (6) [aum + bum, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
253
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
254
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
255
+ page_content=' , unk] = 0 Denote c = a + b = � ij cijeij, for cij ∈ C and 1 ≤ i, j ≤ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
256
+ page_content=' Suppose c /∈ C then by Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
257
+ page_content='3), all the entries of c is non-zero i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
258
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
259
+ page_content=' cij ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
260
+ page_content=' Choosing u = e22 in equation (6) and right multiply by e11 we get: c12e12 = 0 which implies c12 = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
261
+ page_content=' Therefore c = a + b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
262
+ page_content=' □ Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
263
+ page_content='13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
264
+ page_content=' Let R be a prime ring of characteristic different from 2, U be the Utumi quotient ring of R and C be the extended centroid of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
265
+ page_content=' Let a, b ∈ U, β be an outer automorphism on U, and m, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
266
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
267
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
268
+ page_content=' , nk ≥ 1 are fixed integers such that (7) [aum + β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
269
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
270
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
271
+ page_content=' , unk] = 0 for all u ∈ R then β is the identity map on R and a + b ∈ C unless b = 0 and a ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
272
+ page_content=' GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS 5 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
273
+ page_content=' Since R and U satisfy the same generalized polynomial identity with auto- morphisms (see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
274
+ page_content='7), it follows that U satisfies (8) [aum + β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
275
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
276
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
277
+ page_content=' , unk] = 0 We may assume a /∈ C and b ̸= 0 then U satisfies non-trivial generalized polyno- mial identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
278
+ page_content=' Therefore by ([14],theorem 3), U is dense subring of the ring of linear transformtion of a vector space V over a division ring D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
279
+ page_content=' If β is not Frobenius then from Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
280
+ page_content='2), U satisfies (9) [aum + zmb, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
281
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
282
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
283
+ page_content=' , unk] = 0 then by [9], we get, a, b ∈ C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
284
+ page_content=' In particular from equation (9), U satisfies (10) b[zm, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
285
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
286
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
287
+ page_content=' , unk] = 0 then by posner’s theorem [21] there exists a suitable filed F and a positive integer n such that U and Mn(F) satisfies the same polynomial identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
288
+ page_content=' For i ̸= j, choose z = eii + eij and u = eii in equation (10), we get, 0 = [eii + eij, eii]k = (−1)keij a contradiction, where eij is the usual matrix unit with 1 at the (i, j)th entry and zero elsewhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
289
+ page_content=' Now we assume that β is Frobenius and dimDV ≥ 2 (because if dimDV = 1 then U will be commutative).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
290
+ page_content=' If char(R) = 0 then β(x) = x because β is Frobenius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
291
+ page_content=' This implies that β is inner which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
292
+ page_content=' Thus we may assume that char(R) = p ̸= 0 and β(λ) = λps for all λ ∈ C and for some fixed integer s ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
293
+ page_content=' Now replace u by λu in equation (8) then U satisfies (11) λm+n1+.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
294
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
295
+ page_content='+nk[aum + λm(ps−1)β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
296
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
297
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
298
+ page_content=' , unk] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
299
+ page_content=' In particular choose λm = γ then U satisfies (12) [aum + γ(ps−1)β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
300
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
301
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
302
+ page_content=' , unk] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
303
+ page_content=' From equation (8) and (12) we get (13) (γ(ps−1) − 1)[β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
304
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
305
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
306
+ page_content=' , unk] = 0 that is U satisfies (14) [β(um)b, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
307
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
308
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
309
+ page_content=' , unk] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
310
+ page_content=' Again from equation (8) and (14) we have that [aum, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
311
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
312
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
313
+ page_content=' , unk] = 0 for all u ∈ U, this implies that a ∈ C ( see [9]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
314
+ page_content=' Thus we may consider b ̸= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
315
+ page_content=' Now let e2 = e ∈ soc(R) then by equation (14), (15) [β(e)b, e]k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
316
+ page_content=' Right multiply above relation by (1 − e) gives (16) eβ(e)b(1 − e) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
317
+ page_content=' In particular choosing the idempotent (1 − e) − (1 − e)xe for all x ∈ U in equation (16), we have that U satisfies: (17) (1 − e)β(1 − e)b(1 − e)xe + (1 − e)β(1 − e)β(x)β(e)b(e + (1 − e)xe) −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)β(x)β(e)b(e + (1 − e)xe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
318
+ page_content=' Since β is outer then from Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
319
+ page_content='2), U satisfies : (18) (1 − e)β(1 − e)b(1 − e)xe + (1 − e)β(1 − e)zβ(e)b(e + (1 − e)xe) 6 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
320
+ page_content=' PANDEY, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
321
+ page_content=' PRAJAPATI −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
322
+ page_content=' In particular for x = 0, we get (1 − e)β(1 − e)zβ(e)be = 0, for all z ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
323
+ page_content=' Hence by primeness of U, we have either (1 − e)β(1 − e) = 0 or β(e)be = 0 for any e2 = e ∈ Soc(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
324
+ page_content=' If we consider the case (1 − e)β(1 − e) = 0, then equation (17) reduces to: −(1 − e)xeβ(1 − e)b(e + (1 − e)xe) + (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
325
+ page_content=' In particular U satisfies (1 − e)xeβ(1 − e)zβ(e)b(e + (1 − e)xe).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
326
+ page_content=' Now replace z by ze in above relation we get that (19) (1 − e)xeβ(1 − e)zeβ(e)be.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
327
+ page_content=' Now since eβ(1−e) ̸= 0, otherwise from (1−e)β(1−e) = 0 and we get β(1−e) = 0, which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
328
+ page_content=' Thus from equation (19), we get eβ(e)be = 0, then by equation (16) we get that eβ(e)b = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
329
+ page_content=' Thus, in any case equation (15) implies that (20) β(e)be = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
330
+ page_content=' for any idempotent element e ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
331
+ page_content=' If we choose the idempotent element ex(1−e)+e, for all x ∈ U then from equation (20), U satisfies: � β � ex(1 − e) + β(e) � b(ex(1 − e) + e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
332
+ page_content=' Since β(e)be = 0, U satisfies β(e)β(x)b(ex(1 − e) + e).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
333
+ page_content=' Since β is outer then from Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
334
+ page_content='2), U satisfies: β(e)yb(ex(1 − e) + e) for all x, y ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
335
+ page_content=' In particular for x = 0, β(e)ybe = 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
336
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
337
+ page_content=' be = 0 (by primness of U) for all e2 = e ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
338
+ page_content=' Let M denotes the additive subgroup of U, which is generated by all the idempotent elements of U, then bM = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
339
+ page_content=' Moreover, by [18](page 18, corollary), [U, U] ⊆ M, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
340
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
341
+ page_content=' b[U, U] = 0 implying b = 0, a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
342
+ page_content=' □ Remark: Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
343
+ page_content='12 and Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
344
+ page_content='13 cover all the cases to prove Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
345
+ page_content='11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
346
+ page_content=' Proof of main theorem: From the given hypothesis we have: (21) [F(um), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
347
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
348
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
349
+ page_content=' , unk] = 0 for all u ∈ I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
350
+ page_content=' Since R, I and U satisfy the same generalized polynomial identities as well as the same differential identities with automorphism (see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
351
+ page_content='6, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
352
+ page_content='7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
353
+ page_content=' Hence, (22) [F(um), un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
354
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
355
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
356
+ page_content=' , unk] = 0 for all u ∈ U, where F(u) = cu + d(u) for some c ∈ U and d is skew derivation of U with associated automorphism β (see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
357
+ page_content='5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
358
+ page_content=' We divide the proof into the following cases: GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS 7 Case 1: If d is inner derivation then d(u) = pu − β(u)p for all u ∈ U and for some p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
359
+ page_content=' Then U satisfies (23) [(c + p)um − β(um)p, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
360
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
361
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
362
+ page_content=' , unk] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
363
+ page_content=' Then by Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
364
+ page_content='11 we get the required result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
365
+ page_content=' Case2: If d is outer then U satisfies (24) � cum + m−1 � i=0 β(ui)d(u)um−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
366
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
367
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
368
+ page_content=' , unk � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
369
+ page_content=' by [33], we have: (25) � cum + m−1 � i=0 β(ui)yum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
370
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
371
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
372
+ page_content=' , unk � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
373
+ page_content=' In particular U satisfies (26) � m−1 � i=0 β(ui)yum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
374
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
375
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
376
+ page_content=' , unk � = 0 Subcase 1: If β is outer derivation then from Fact (1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
377
+ page_content='2), U satisfies: (27) � cum + m−1 � i=0 ziyum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
378
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
379
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
380
+ page_content=' , unk � = 0 for all u, y, z ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
381
+ page_content=' In particular for z = 0, we have that (28) [yum−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
382
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
383
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
384
+ page_content=' , unk] = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
385
+ page_content=' Then by Posner’s theorem, there exists a suitable field F and a positive integer n such that U and Mn(F) satisfy the same generalized polynomial identity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
386
+ page_content=' For i ̸= j, choose y = eii + eji and u = eii in equation (28), we get 0 = [eii + eji, eii]k = eji which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
387
+ page_content=' Subcase 2: If β is inner then β(x) = pxp−1, for all x ∈ U and for some p ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
388
+ page_content=' Hence from equation (26), U satisfies: (29) � m−1 � i=0 puip−1yum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
389
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
390
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
391
+ page_content=' , unk � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
392
+ page_content=' Since β is not identity, hence p /∈ C, therefore equation (29) is a non-trivial polyno- mial identity for R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
393
+ page_content=' By [14], U is isomorphic to a dense ring of linear transformation on some vector space V over C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
394
+ page_content=' Firstly, we consider the case when dimCV ≥ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
395
+ page_content=' Since p /∈ C therefore there exists some v ∈ V such that {p−1v, v} is linearly C- independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
396
+ page_content=' Since dimCV ≥ 3, there must exists w1 ∈ V such that {p���1v, v, w1} is linearly C- independent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
397
+ page_content=' Since U is dense, therefore by Jacobson density theorem ( see Fact 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
398
+ page_content='9), there exists y1, y2 ∈ U such that y1w1 = 0, y2w1 = v, y1p−1v = p−1v, y1v = v.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
399
+ page_content=' Therefore by equation (29) we get that 0 = � m−1 � i=0 pyi 1p−1y2ym−i−1 1 , yn1 1 , yn2 1 , .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
400
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
401
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
402
+ page_content=' , ynk 1 � w1 = (−1)kv ̸= 0 8 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
403
+ page_content=' PANDEY, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
404
+ page_content=' PRAJAPATI which is a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
405
+ page_content=' Now if dimCV = 2, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
406
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
407
+ page_content=' U ∼= M2(C), ring of 2-order matrix over field C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
408
+ page_content=' p = �p11 p12 p21 p22 � , p−1 = 1 det(p) � p22 −p12 −p21 p11 � choosing u = e22, y = e21 in equation (29), we get that (30) p11p22 = 0 Similarly, by choosing u = e11, y = e22 in equation (29), we get that (31) p11p12 = 0 Since p is invertible therefore p22 and p12 can not be zero simultaneously, thus from equation (30) and (31), it follows p11 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
409
+ page_content=' This implies p12 ̸= 0, otherwise p will be singular matrix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
410
+ page_content=' Choose φ(u) = (1 − e12)u(1 + e12) ∈ Aut(U), then φ �� m−1 � i=0 puip−1yum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
411
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
412
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
413
+ page_content=' , unk �� = 0 i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
414
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
415
+ page_content=' U satisfies: (32) � m−1 � i=0 φ(p)uiφ(p−1)yum−i−1, un1, un2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
416
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
417
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
418
+ page_content=' , unk � = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
419
+ page_content=' Denote φ(p)11 as the (1, 1)th-entry of φ(p), then by the same argument as above we get 0 = φ(p)11 = p21, which is a contradiction (because p is invertible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
420
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
421
+ page_content=' For the case dimCV = 1, R will be commutative and we have nothing to prove in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
422
+ page_content=' Following is the very natural consequence of our main theorem: Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
423
+ page_content='14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
424
+ page_content=' Let R be a prime ring with its Utumi ring of quotients U, F a nonzero generalized derivation of R and I a non-zero ideal of R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
425
+ page_content=' Suppose that [F(xm), xn]k = 0 for all x ∈ I,where n, k ≥ 1 are fixed integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
426
+ page_content=' Then there exists β ∈ C such that F(x) = βx for all x ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
427
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
428
+ page_content=' Choosing n1 = n2 = .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
429
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
430
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
431
+ page_content=' = nk = n in our main theorem we get the required result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
432
+ page_content=' □ Future research: Recently, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
433
+ page_content='K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
434
+ page_content=' Liu in [24] investigated the structure of F and G if they satisfy the identity [F(xn)xm + xmG(xn), xr]k = 0 for all x ∈ I, where F, G are non-zero generalized derivation on a prime ring R, I is the non-zero ideal of R and m, n, k ≥ 1 are fixed integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
435
+ page_content=' In the light of [24] with this article one can try to find the structure of F and G if they satisfy the identity [F(xn)xm + xmG(xn), xn1, xn2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
436
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
437
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
438
+ page_content=' , xnk] = 0 for all x ∈ I, where m, n, n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
439
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
440
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
441
+ page_content=' , nk ≥ 1 are fixed integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
442
+ page_content=' Acknowledgement The authors is highly thankful to the referee(s) for valuable suggestions and comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
443
+ page_content=' This research is not funded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
444
+ page_content=' GENERALIZED SKEW DERIVATION ON IDEAL WITH ENGEL CONDITIONS 9 References [1] Dhara, Basudeb and De Filippis, Vincenzo, Engel conditions of generalized derivations on left ideals and Lie ideals in prime rings, Communications in Algebra, 48 (1), 154–167, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
445
+ page_content=' [2] Dhara, Basudeb, Annihilator condition on power values of derivations, Indian Journal of Pure and Applied Mathematics, 42 (4), 357–369, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
446
+ page_content=' [3] Alba¸s, Emine and Arga¸c, Nurcan and Filippis, Vincenzo De, Generalized derivations with Engel conditions on one-sided ideals, 36 (6), 2063–2071, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
447
+ page_content=' [4] De Filippis, Vincenzo and Di Vincenzo, Onofrio Mario, Vanishing derivations and centralizers of generalized derivations on multilinear polynomials, Communications in Algebra, 40 (6), 1918–1932, (2012).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
448
+ page_content=' [5] Beidar, Konstant I and Martindale, Wallace S and Mikhalev, Alexander V, Rings with gen- eralized identities, CRC Press, 1995.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
449
+ page_content=' [6] Argac, Nurc and Carini, Luisa and De Filippis, V, An Engel condition with generalized derivations on Lie ideals, Taiwanese Journal of Mathematics, 419–433, 2008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
450
+ page_content=' [7] Alahmadi, Adel and Ali, Shakir and Khan, Abdul Nadim and Khan, Mohammad Salahuddin, A characterization of generalized derivations on prime rings, Communications in Algebra, 44 (8) 3201–3210, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
451
+ page_content=' [8] Kharchenko, Vladislav Kirillovich, Differential identities of prime rings, Algebra and Logic, 17 (2), 155–168, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
452
+ page_content=' [9] Dhara, Basudeb and Ali, Asma and Das, Deepankar, Engel conditions of generalized deriva- tions on Lie ideals and left sided ideals in prime rings and Banach Algebras, Afrika Matem- atika, 27 (7), 1391–1401, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
453
+ page_content=' [10] Beidar, KI, Rings with generalized identities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
454
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
455
+ page_content=', Vestnik Moskovskogo Universiteta Seriya i Matematika, Mekhanika, 4, 66–73, 1978.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
456
+ page_content=' [11] Chuang, Chen Lian, GPIs having coefficients in Utumi quotient rings, Proceedings of the American Mathematical Society, 103 (3), 723–728, 1988.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
457
+ page_content=' [12] Demir, C¸agri and Arga¸c, Nurcan, A result on generalized derivations with Engel conditions on one-sided ideals, Journal of the Korean Mathematical Society, 47 (3), 483–494, 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
458
+ page_content=' [13] Posner, Edward C, Derivations in prime rings, Proceedings of the American Mathematical Society, 8 (6), 1093–1100, 1957.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
459
+ page_content=' [14] Martindale 3rd, Wallace S, Prime rings satisfying a generalized polynomial identity, Journal of Algebra, 12 (4), 576–584, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
460
+ page_content=' [15] Erickson, Theodore and Martindale, Wallace and Osborn, James, Prime nonassociative alge- bras, Pacific Journal of Mathematics, 60 (1), 49–63 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
461
+ page_content=' [16] Faith, C and Utumi, Y, On a new proof of Litoff’s theorem, Acta Mathematica Academiae Scientiarum Hungarica, 14 (3-4), 369–371, 1963.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
462
+ page_content=' [17] Lee, Tsiu Kwen, Generalized derivations of left faithful rings, Communications in Algebra, 27 (8), 4057–4073, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
463
+ page_content=' [18] Herstein, Israel Nathan, Topics in ring theory, University of Chicago press, 1969.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
464
+ page_content=' [19] Di Vincenzo, OM, On the n-th centralizer of a Lie ideal, Boll.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
465
+ page_content=' UMI, 7 (3-A), 77–85, 1989.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
466
+ page_content=' [20] Lanski, Charles and Montgomery, M Susan, Lie structure of prime rings of characteristic 2, Pacific Journal of Mathematics, 42 (1), 117–136, 1972.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
467
+ page_content=' [21] Posner, Edward C, Prime rings satisfying a polynomial identity, Proceedings of the American Mathematical Society, 11 (2), 180–183, 1960.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
468
+ page_content=' [22] Lee, Tsiu-Kwen and Shiue, Wen-Kwei, A result on derivations with Engel condition in prime rings, Southeast Asian Bulletin of Mathematics, 23 (3), 437–446, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
469
+ page_content=' [23] Lee, Tsiu Kwen, Semiprime rings with differential identities, Bulletin of the Institute of Mathematics, 20 (1), 27–38, 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
470
+ page_content=' [24] Liu, Cheng-Kai, An Engel condition with two generalized derivations in prime rings, Com- munications in Algebra, 49 (2), 836–849, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
471
+ page_content=' [25] Lanski, Charles, An Engel condition with derivation, Proceedings of the American Mathe- matical Society, 118 (3), 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
472
+ page_content=' [26] Breˇsar, Matej, Centralizing mappings and derivations in prime rings, Journal of Algebra, 156 (2), 385–394, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
473
+ page_content=' [27] Tiwari, SK, Identities with generalized derivations in prime rings, Rendiconti del Circolo Matematico di Palermo Series 2, 1–17, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
474
+ page_content=' [28] Jacobson, Nathan, American Mathematical Society, 37, 1956.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
475
+ page_content=' Structure of rings, 10 A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
476
+ page_content=' PANDEY, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
477
+ page_content=' PRAJAPATI [29] Carini, Luisa and De Filippis, Vincenzo and Scudo, Giovanni, Identities with product of generalized skew derivations on multilinear polynomials, Communications in Algebra, 44 (7), 3122–3138, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
478
+ page_content=' [30] De Filippis, Vincenzo and Di Vincenzo, Onofrio Mario, Generalized Skew Derivations and Nilpotent Values on Lie Ideals, Algebra Colloquium, 26 (04), 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
479
+ page_content=' [31] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
480
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
481
+ page_content=' Chuang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
482
+ page_content=' Differential identities with automorphisms and antiautomorphisms, ii.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
483
+ page_content=' Journal of Algebra,160(1):130–171, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
484
+ page_content=' [32] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
485
+ page_content=' Kharchenko.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
486
+ page_content='Automorphisms and Derivations of Associative Rings, volume 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
487
+ page_content=' Springer Science and Business Media, 1991.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
488
+ page_content=' [33] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
489
+ page_content='-L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
490
+ page_content=' Chuang and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
491
+ page_content='-K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
492
+ page_content='Identities with a single skew derivation,Journal of Algebra, 288(1):59 – 77, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
493
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
494
+ page_content=' Pandey, School of Liberal Studies, Ambedkar University Delhi, Delhi-110006, INDIA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
495
+ page_content=' Email address: ashutoshpandey064@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
496
+ page_content='com B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
497
+ page_content=' Prajapati, School of Liberal Studies, Ambedkar University Delhi, Delhi-110006, INDIA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
498
+ page_content=' Email address: balchand@aud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
499
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
500
+ page_content='in' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DdFRT4oBgHgl3EQfxTg4/content/2301.13641v1.pdf'}
DtA0T4oBgHgl3EQfAv-e/content/tmp_files/2301.01967v1.pdf.txt ADDED
@@ -0,0 +1,1419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01967v1 [cs.CL] 5 Jan 2023
2
+ A Survey of Code-switching: Linguistic and Social Perspectives for
3
+ Language Technologies
4
+ A. Seza Do˘gru¨oz
5
+ Ghent University, Gent, Belgium
6
7
+ Sunayana Sitaram
8
+ Microsoft Research India, Bangalore, India
9
10
+ Barbara E. Bullock
11
+ UT at Austin, Austin, USA
12
13
+ Almeida Jacqueline Toribio
14
+ UT at Austin, Austin, USA
15
16
+ Abstract
17
+ The analysis of data in which multiple lan-
18
+ guages are represented has gained popularity
19
+ among computational linguists in recent years.
20
+ So far, much of this research focuses mainly
21
+ on the improvement of computational meth-
22
+ ods and largely ignores linguistic and social
23
+ aspects of C-S discussed across a wide range
24
+ of languages within the long-established liter-
25
+ ature in linguistics. To fill this gap, we offer
26
+ a survey of code-switching (C-S) covering the
27
+ literature in linguistics with a reflection on the
28
+ key issues in language technologies. From the
29
+ linguistic perspective, we provide an overview
30
+ of structural and functional patterns of C-S
31
+ focusing on the literature from European and
32
+ Indian contexts as highly multilingual areas.
33
+ From the language technologies perspective,
34
+ we discuss how massive language models fail
35
+ to represent diverse C-S types due to lack of
36
+ appropriate training data, lack of robust evalu-
37
+ ation benchmarks for C-S (across multilingual
38
+ situations and types of C-S) and lack of end-to-
39
+ end systems that cover sociolinguistic aspects
40
+ of C-S as well. Our survey will be a step to-
41
+ wards an outcome of mutual benefit for com-
42
+ putational scientists and linguists with a shared
43
+ interest in multilingualism and C-S.
44
+ 1
45
+ Introduction
46
+ It is common for individuals in multilingual com-
47
+ munities to switch between languages in various
48
+ ways, in speech and in writing.
49
+ In example 1,
50
+ a bilingual child alternates between German and
51
+ Turkish (in bold) to describe her teacher at school.
52
+ Note that the Turkish possessive case marker (-
53
+ si) is attached to a German noun (Karakoc¸ and
54
+ Herkenrath, 2019).
55
+ 1. Frau Kummer. Echte Name-si Christa.
56
+ Ms. Kummer. Real Name-Poss.3sg Christa.
57
+ ‘Ms. Kummer. (Her) real name is Christa’
58
+ The goal of this paper is to inform researchers in
59
+ computational linguistics (CL) and language tech-
60
+ nologies about the linguistic and social aspects of
61
+ code-switching (C-S) found in multilingual con-
62
+ texts (e.g. Europe and India) and how linguists
63
+ describe and model them. Our intent is to increase
64
+ clarity and depth in computational investigations
65
+ of C-S and to bridge the fields so that they might
66
+ be mutually reinforcing.
67
+ It is our hope that in-
68
+ terested readers can profit from the insights pro-
69
+ vided by the studies reported in this survey, for in-
70
+ stance, in understanding the factors that guide C-S
71
+ outcomes or in making use of existing annotation
72
+ schema across multilingual contexts.
73
+ 2
74
+ Competing models of C-S
75
+ For linguists, the specific ways in which languages
76
+ are switched matters. The use of a single Spanish
77
+ word in an English tweet (ex. 2) is not as syn-
78
+ tactically complicated as the integration in ex. 1.
79
+ In fact, it may not signal multilingualism at all,
80
+ simply borrowing. Many words, particularly an-
81
+ glicisms, circulate globally: marketing, feedback,
82
+ gay.
83
+ 2. This is a good baile!
84
+ ‘This is a good dance party!’ (Solorio and Liu,
85
+ 2008)
86
+ To produce example (2), the speaker needs to
87
+ know only one Spanish word. But, to produce ex-
88
+ ample (1), the speaker has to know what word or-
89
+ der and case marker to use, and which languages
90
+ they should be drawn from.
91
+ NLP scholars are
92
+ not always concerned with the difference between
93
+ examples (1) and (2) so that, with some excep-
94
+ tions (Bhat et al., 2016), grammatical work in
95
+ NLP tends to rely heavily on the notion of a ma-
96
+ trix language model advanced by Joshi (1982) and
97
+ later adapted by Myers-Scotton (1997) as the Ma-
98
+ trix Language Frame (MLF) model.
99
+ The MLF
100
+
101
+ holds that one language provides the grammati-
102
+ cal frame into which words or phrases from an-
103
+ other are embedded and its scope of application
104
+ is a clause. Thus, it would not apply to the al-
105
+ ternational English-Afrikaans C-S in example (3)
106
+ as each clause is in a separate language (Dulm,
107
+ 2007).
108
+ 3. I love Horlicks maar hier´s niks
109
+ ‘I love Horlicks but there’s nothing there ’
110
+ Although it dominates computational approaches
111
+ to C-S, the MLF is contested on empirical and the-
112
+ oretical grounds. The consistent identification of a
113
+ matrix language is not always possible, the criteria
114
+ for defining it are ambiguous, and its scope is lim-
115
+ ited (Meakins, 2012; Bhat et al., 2016; Adamou,
116
+ 2016; MacSwan, 2000; Auer and Muhamedova,
117
+ 2005). Bullock et al. (2018) computationally show
118
+ that different ways of determining the matrix lan-
119
+ guage only reliably converge over sentences with
120
+ simple insertions as in example (2).
121
+ For many linguists, the MLF is not the only way,
122
+ or even an adequate way, to theorize C-S. The
123
+ Equivalence Constraint (Poplack, 1980) captures
124
+ the fact that C-S tends to occur at points where the
125
+ linear structures of the contributing languages co-
126
+ incide, as when the languages involved share word
127
+ order. Other syntactic theories are built on the dif-
128
+ ferences between lexical and functional elements,
129
+ including the Government Constraint (DiSciullo
130
+ et al., 1986) and the Functional Head Constraint
131
+ (Belazi et al., 1994). Incorporating the latter in
132
+ NLP experiments has been shown to improve the
133
+ accuracy of computational and speech models (Li
134
+ and Fung, 2014; Bhat et al., 2016). Functional el-
135
+ ements include negative particles and auxiliaries,
136
+ which are respectively classified as Adverbs and
137
+ Verbs (lexical classes), in some NLP tag sets (Al-
138
+ Ghamdi et al., 2016). This means that NLP exper-
139
+ iments often use annotations that are too coarse
140
+ to be linguistically informative with regard to C-
141
+ S. Constraint-free theories (Mahootian and San-
142
+ torini, 1996; MacSwan, 2000) hold that nothing
143
+ restricts switching apart from the grammatical re-
144
+ quirements of the contributing languages.
145
+ Test-
146
+ ing such theories in NLP experiments would re-
147
+ quire syntactically parsed corpora that are rare for
148
+ mixed language data (Partanen et al., 2018). In
149
+ sum, working together, theoretical and computa-
150
+ tional linguists could create better tools for pro-
151
+ cessing C-S than those currently available.
152
+ 3
153
+ Why do speakers code-switch?
154
+ In addition to focusing on the linguistic aspects
155
+ and constraints on C-S, linguists are also inter-
156
+ ested in the social and cognitive motivations for
157
+ switching across languages.
158
+ What a (multilin-
159
+ gual) speaker is trying to achieve by switching
160
+ languages can affect its structural outcome. Lin-
161
+ guists recognize that pragmatic, interactional, and
162
+ socio-indexical functions may condition C-S pat-
163
+ terns.
164
+ For instance, Mysl´ın and Levy (2015)
165
+ demonstrate that Czech-English speakers switch
166
+ to English for high-information content words
167
+ in prominent prosodic positions when speaking
168
+ Czech. Other uses of C-S with structural traces
169
+ include signalling an in-group identity through
170
+ backflagging (Muysken, 1995) or emblematic tag-
171
+ switching (Poplack, 1980).
172
+ These are words or
173
+ phrases that are used at the edge of clauses (e.g.,
174
+ Spanish ojal´a or English so).
175
+ Other functions,
176
+ among these, quoting a speaker, getting the atten-
177
+ tion of an interlocutor, or reiterating an utterance
178
+ to soften or intensify a message will also be in-
179
+ dicated via C-S in predictable linguistic construc-
180
+ tions, such as with verbs of ‘saying’, vocative ex-
181
+ pressions, and sequential translation equivalents
182
+ (Gumperz, 1982; Zentella, 1997).
183
+ According to Clyne (1991), there are eight fac-
184
+ tors (e.g.
185
+ topic, type of interaction, interlocu-
186
+ tors, role relationship, communication channel)
187
+ that can influence C-S choices.
188
+ Lavric (2007)
189
+ explains C-S choices in line with politeness the-
190
+ ory, focusing on prestige and face-saving moves in
191
+ multilingual conversations. Heller (1992) takes a
192
+ macro-social view, arguing that French-English C-
193
+ S in Quebec may signal a political choice among
194
+ both dominant and subordinate groups.
195
+ Gardner-Chloros and Edwards (2004) suggest
196
+ that social factors influence language choice, with
197
+ different generations of speakers from the same
198
+ community exhibiting very different C-S patterns.
199
+ Similarly Sebba (1998) argues that as speakers
200
+ cognitively construct equivalence between mor-
201
+ phemes, words, and phrases across their lan-
202
+ guages, communities of the same languages may
203
+ do this differently. Evidence from computational
204
+ studies suggests that C-S is speaker-dependent (Vu
205
+ et al., 2013). Gender and identity also play a role
206
+ for C-S practices in English and Greek Cypriot
207
+ community in London (Finnis, 2014).
208
+ From
209
+ a computational perspective, Papalexakis et al.
210
+ (2014) investigated the factors that influence C-S
211
+
212
+ choices (Turkish-Dutch) in computer mediated in-
213
+ teraction and how to predict them automatically.
214
+ 4
215
+ Code-switching, Borrowing, Transfer,
216
+ Loan Translation
217
+ While C-S implies active alternation between
218
+ grammatical systems, borrowing does not. It is dif-
219
+ ficult to know if a lone word insertion (e.g. exam-
220
+ ple (2)) constitutes a borrowing or a C-S without
221
+ considering how the items are integrated into the
222
+ grammar of the receiving language (Poplack et al.,
223
+ 1988). When such analyses are done, most lone-
224
+ item insertions are analyzable as one-time bor-
225
+ rowings, called nonce borrowings (Sankoff et al.,
226
+ 1990).
227
+ Similarly, what looks like complex C-S
228
+ may not be perceived as switching at all. Auer
229
+ (1999) distinguishes a continuum of mixing types:
230
+ prototypical C-S is pragmatic and intentional, Lan-
231
+ guage Mixing serves no pragmatic purpose, and
232
+ Mixed Languages are the single code of a com-
233
+ munity. These can look structurally identical, but
234
+ the latter can be modeled as a single language
235
+ (e.g. languages like Michif Cree (Bakker, 1997)
236
+ or Gurinji Kriol (Meakins, 2012)) rather than the
237
+ intertwining of two. Bilaniuk (2004) describes the
238
+ Surzhyk spoken by urban Russian-Ukrainian bilin-
239
+ guals (in Ukraine) as ‘between C-S and Mixed
240
+ Language’ since speakers are highly bilingual and
241
+ the direction of switching is indeterminate.
242
+ Loan translation and transfer involve the words
243
+ from only one language but the semantics and
244
+ grammatical constructions from the other. In ex-
245
+ ample 4, the Turkish verb yapmak,‘ to do’, takes
246
+ on the Dutch meaning of doen in Turkish spoken
247
+ in the Netherlands (Do˘gru¨oz and Backus, 2009).
248
+ 4. ˙Ilkokul-u ˙Istanbul-da yap-tı-m.
249
+ primary.school-ACC ˙Istanbul-LOC do-past-
250
+ 1sg.
251
+ ‘I finished primary school in Istanbul.’
252
+ In transfer, grammatical constructions can be
253
+ borrowed from one language to another without
254
+ the words being borrowed. Treffers-Daller (2012)
255
+ demonstrates the transfer of verb particles from
256
+ Germanic languages into French.
257
+ In Brussels
258
+ French (Belgium), the construction chercher apr`es
259
+ ‘look after’ (for ‘look for’) is a translation of the
260
+ Dutch equivalent and, in Ontario French (Canada),
261
+ chercher pour is the translation equivalent of En-
262
+ glish ‘look for’.
263
+ In reference French (France),
264
+ there is normally no particle following the verb.
265
+ The degree to which linguistic features like loan
266
+ translation and transfer can be found alongside C-
267
+ S is unknown.
268
+ 5
269
+ C-S across Languages: European
270
+ Context
271
+ The contexts in which people acquire and use mul-
272
+ tiple languages in Europe are diverse. Some ac-
273
+ quire their languages simultaneously from birth,
274
+ while others acquire them sequentially, either natu-
275
+ rally or via explicit instruction. Multilingualism is
276
+ the norm in many zones where local residents may
277
+ speak different languages to accommodate their
278
+ interlocutors. Speakers who use local dialects or
279
+ minoritized varieties may also be engaged in C-S
280
+ when switching between their variety and a domi-
281
+ nant one (Mills and Washington, 2015; Blom and
282
+ Gumperz, 1972).
283
+ C-S in bilingual language acquisition of chil-
284
+ dren has been studied across language contact con-
285
+ texts in Europe. In Germany, Herkenrath (2012)
286
+ and Pfaff (1999) focused on Turkish-German C-S
287
+ and Meisel (1994) on German-French C-S of bilin-
288
+ gual children.
289
+ From a comparative perspective,
290
+ Poeste et al. (2019) analyzed C-S among bilingual,
291
+ trilingual, and multilingual children growing up in
292
+ Spain and Germany. In the Netherlands, Bosma
293
+ and Blom (2019) focused on C-S among bilingual
294
+ Frisian-Dutch children. In addition to analyzing
295
+ C-S in children’s speech, Juan-Garau and Perez-
296
+ Vidal (2001) and Lanza (1998) investigated C-S
297
+ in the interaction patterns between bilingual chil-
298
+ dren and their parents (i.e. Spanish-Catalan and
299
+ English-Norwegian respectively).
300
+ Within an educational setting, Kleeman (2012)
301
+ observed C-S among bilingual (North Sami-
302
+ Norwegian) kindergarten children in the North of
303
+ Norway. Similarly, Jørgensen (1998) and Crom-
304
+ dal (2004) report the use of C-S for resolving dis-
305
+ putes among bilingual (Turkish-Danish) children
306
+ in Denmark and multilingual (Swedish-English
307
+ and/or a Non-Scandinavian Language) children in
308
+ Sweden respectively.
309
+ C-S does not only take place between standard
310
+ languages but between minority languages and
311
+ dialects as well.
312
+ For example, Themistocleous
313
+ (2013) studied C-S between Greek and Cypriot
314
+ Greek and Deuchar (2006) focused on the C-S
315
+ between Welsh and English in the UK. Berruto
316
+ (2005) reports cases of language mixing between
317
+ standard Italian and Italoromance dialects in Italy.
318
+
319
+ In the Balkans, Kyuchukov (2006) analyzed C-S
320
+ between Turkish-Bulgarian and Romani in Bul-
321
+ garia.
322
+ C-S between dialects and/or standard vs.
323
+ minority languages in computer mediated interac-
324
+ tion was analyzed by Siebenhaar (2006) among
325
+ Swiss-German dialects and by Robert-Tissot and
326
+ Morel (2017) through SMS corpora collected
327
+ across Germanic (i.e. English and German) and
328
+ Romance languages (French, Spanish, Italian) in
329
+ Switzerland.
330
+ C-S is commonly observable across immigrant
331
+ contexts in Europe. In the UK, Georgakopoulou
332
+ and Finnis (2009) described the C-S patterns
333
+ between English and Cypriot Greek while Issa
334
+ (2006) focused on the C-S between English and
335
+ Cypriot Turkish communities in London.
336
+ Wei
337
+ and Milroy (1995) analyzed the C-S between En-
338
+ glish and Chinese from a conversational analysis
339
+ point of view based on the interactions of bilin-
340
+ gual (Chinese-English) families in Northeastern
341
+ England. In addition, O˙za´nska-Ponikwia (2016)
342
+ investigated the Polish-English C-S in the UK as
343
+ well.
344
+ C-S among immigrant community mem-
345
+ bers have also been widely studied in Germany
346
+ (e.g. Turkish-German C-S by Keim (2008) and
347
+ C¸ etino˘glu (2017), Russian-German C-S by Khaki-
348
+ mov (2016)). In the Netherlands, C-S studies in-
349
+ clude Turkish-Dutch C-S by Backus (2010) and
350
+ Dutch-Morroccan C-S by Nortier (1990).
351
+ In
352
+ Belgium, Meeuws and Blommaert (1998) stud-
353
+ ied the French-Lingala-Swahili C-S among immi-
354
+ grants of Zaire and Treffers-Daller (1994) stud-
355
+ ied French-Dutch C-S in Brussels.
356
+ In Spain,
357
+ Jieanu (2013) describes the Romanian-Spanish C-
358
+ S among the Romanian immigrants. In addition
359
+ to the C-S analyses within spoken interactions of
360
+ immigrant communities across Europe, there are
361
+ also studies about C-S within computer mediated
362
+ communication as well.
363
+ These studies include
364
+ Greek-German C-S by Androutsopoulos (2015)
365
+ in Germany, Turkish-Dutch C-S by Papalexakis
366
+ et al. (2014), Papalexakis and Do˘gru¨oz (2015) and
367
+ a comparison of Turkish-Dutch and Moroccan-
368
+ Dutch C-S by Dorleijn and Nortier (2009) in the
369
+ Netherlands. Similarly, Marley (2011) compared
370
+ French-Arabic C-S within computer mediated in-
371
+ teraction across Moroccan communities in France
372
+ and the UK.
373
+ In addition to daily communication, some lin-
374
+ guists are also interested in the C-S observed in
375
+ historical documents.
376
+ While Swain (2002) ex-
377
+ plored Latin-Greek C-S by Cicero (Roman States-
378
+ man), Dunkel (2000) analyzed C-S in his com-
379
+ munication with Atticus (Roman philosopher who
380
+ studied in Athens) in the Roman Empire. Argenter
381
+ (2001) reports cases of language mixing within the
382
+ Catalan Jewish community (in Spain) in the 14th
383
+ and 15th centuries and Rothman (2011) highlights
384
+ the C-S between Italian, Slavic and Turkish in
385
+ the historical documents about Ottoman-Venetian
386
+ relations.
387
+ In Switzerland, Volk and Clematide
388
+ (2014) worked on detecting and annotating C-S
389
+ patterns in diachronic and multilingual (English,
390
+ French, German, Italian, Romansh and Swiss Ger-
391
+ man) Alpine Heritage corpus.
392
+ Within the media context, Martin (1998) inves-
393
+ tigated English C-S in written French advertising,
394
+ and Onysko (2007) investigated the English C-S
395
+ in German written media through corpus analyses.
396
+ Zhiganova (2016) indicates that German speakers
397
+ perceive C-S into English for advertising purposes
398
+ with both positive and negative consequences.
399
+ Similar to humans, institutions and/or organiza-
400
+ tions could also have multilingual communication
401
+ with their members and/or audience. For exam-
402
+ ple, Wodak et al. (2012) analyzed the C-S and lan-
403
+ guage choice at the institutional level for European
404
+ Union institutions.
405
+ 6
406
+ C-S across Languages: Indian Context
407
+ According to the 2011 Census (Chandramouli,
408
+ 2011), 26% of the population of India is bilin-
409
+ gual, while 7% is trilingual. There are 121 ma-
410
+ jor languages and 1599 other languages in India,
411
+ out of which 22 (Assamese, Bangla, Bodo, Do-
412
+ gri, Gujarati, Hindi, Kashmiri, Kannada, Konkani,
413
+ Maithili, Malayalam, Manipuri, Marathi, Nepali,
414
+ Oriya, Punjabi, Tamil, Telugu, Sanskrit, Santali,
415
+ Sindhi, Urdu) are scheduled languages with an of-
416
+ ficial recognition (almost 97% of the population
417
+ speaks one of the scheduled languages).
418
+ Most
419
+ of the population ( 93%) speak languages from
420
+ the Indo-Aryan (Hindi, Bengali, Marathi, Urdu,
421
+ Gujarati, Punjabi, Kashmiri, Rajasthani, Sindhi,
422
+ Assamese, Maithili, Odia) and Dravidian (Kan-
423
+ nada, Malayalam, Telugu, Tamil) language fami-
424
+ lies. The census excludes languages with a popu-
425
+ lation lower than 10,000 speakers. Given this, it is
426
+ probably difficult to find monolingual speakers in
427
+ India considering the linguistic diversity and wide-
428
+ spread multilingualism.
429
+
430
+ Kachru (1978) provides one of the early stud-
431
+ ies on the types and functions of C-S in India with
432
+ a historical understanding of the multilingual con-
433
+ text. In addition to the mutual influences and con-
434
+ vergence of Indo-Aryan and Dravidian languages
435
+ internally, he mentions Persian and English as out-
436
+ side influences on Indian languages.
437
+ Similarly,
438
+ Sridhar (1978) provides an excellent comparative
439
+ overview about the functions of C-S in Kannada
440
+ in relation to the Perso-Arabic vs. English influ-
441
+ ences.
442
+ Kumar (1986) gives examples about the
443
+ formal (e.g. within NPs, PPs, VPs) and functional
444
+ (i.e. social and stylistic) aspects of Hindi-English
445
+ C-S from a theoretical point of view.
446
+ More re-
447
+ cently, Doley (2013) explains how fish mongers
448
+ in a local fish market in Assam adjust and switch
449
+ between Assamese, English and local languages
450
+ strategically to sell their products to multilingual
451
+ clientele. Another observation about C-S in daily
452
+ life comes from Boro (2020) who provides exam-
453
+ ples of English, Assamese and Bodo (another lan-
454
+ guage spoken in the Assam region) C-S and bor-
455
+ rowings. In addition to English, Portuguese was
456
+ also in contact with the local languages as a result
457
+ colonization in South India. For example, Kapp
458
+ (1997) explains the Portuguese influence through
459
+ borrowings in Dravidian languages (i.e. Kannada
460
+ and Telugu) spoken in India.
461
+ Instead of automatic data collection and meth-
462
+ ods of analyses, the C-S examples for the above-
463
+ mentioned studies are (probably) encountered and
464
+ collected by the authors themselves in daily life in-
465
+ teractions over a period of time with limited means.
466
+ Nowadays, these small sets of data would be re-
467
+ garded as insignificant in computational areas of
468
+ research.
469
+ However, ignoring these studies and
470
+ data could have serious consequences since cru-
471
+ cial information about the social and cultural dy-
472
+ namics in a multilingual setting would also be lost.
473
+ For example, Nadkarni (1975) proves this point
474
+ by explaining how social factors influence the C-
475
+ S between Saraswat Brahmin dialect of Konkani
476
+ (Indo-Aryan language) and Kannada (Dravidian
477
+ language) in the South of India. Both languages
478
+ have been in contact with each other for over
479
+ four hundred years. Saraswat Brahmins are flu-
480
+ ent in both Konkani and Kannada but they do not
481
+ speak Konkani with Kannada speakers and they
482
+ also do not C-S between Konkani and Kannada.
483
+ Nadkarni (1975) attributes this preference to the
484
+ high prestige associated with Konkani within the
485
+ given social context. Since Kannada (perceived
486
+ as less prestigious) is widely spoken in that re-
487
+ gion, Konkani speakers learn and speak Kannada
488
+ for functional purposes in daily life which does not
489
+ involve C-S. However, it is not common for Kan-
490
+ nada speakers to learn and speak Konkani (Nad-
491
+ karni, 1975).
492
+ C-S in India has been investigated through
493
+ written media, advertising and film industry as
494
+ well.
495
+ Si (2011) analyzed Hindi-English C-S in
496
+ the scripts of seven Bollywood movies which were
497
+ filmed between 1982 and 2004.
498
+ Her results in-
499
+ dicate a change of direction C-S over the years.
500
+ More specifically, Hindi was the dominant lan-
501
+ guage with occasional switches to English for the
502
+ early productions but English became the domi-
503
+ nant language especially for younger generations
504
+ in the later productions.
505
+ A similar trend has
506
+ been observed for Bengali movie scripts as well.
507
+ Through analyzing movie scripts (between 1970s
508
+ and 2010s), Chatterjee (2016) finds a drastic in-
509
+ crease in the use of bilingual verbs (e.g.
510
+ reno-
511
+ vate koreche “renovation do”) over time and at-
512
+ tributes this rise to the increasing popularity of
513
+ English in Indian society. Within the immigrant
514
+ context, Gardner-Chloros and Charles (2007) fo-
515
+ cused on the types and functions of C-S between
516
+ Hindi and English across the TV programs (e.g.
517
+ highly scripted vs.
518
+ loosely scripted programs)
519
+ of a British/Asian cable channel in the UK. Al-
520
+ though they have come across C-S in a variety
521
+ of TV shows, the least amount of C-S was en-
522
+ countered in the news broadcasts (i.e.
523
+ highly
524
+ scripted). In general, they have encountered less
525
+ C-S on TV broadcasts in comparison to the natu-
526
+ ral speech and attribute this factor to the conscious-
527
+ ness of TV personalities about pure language use
528
+ (instead of C-S). Similarly, Zipp (2017) analyzed
529
+ Gujarati-English C-S within a radio show target-
530
+ ing British South Asians living in the US and con-
531
+ cluded that C-S was part of identity construction
532
+ among youngsters (group identity). Pratapa and
533
+ Choudhury (2017) perform a quantitative study of
534
+ 18 recent Bollywood (Hindi) movies and find that
535
+ C-S is used for establishing identity, social dynam-
536
+ ics between characters and the socio-cultural con-
537
+ text of the movie.
538
+ From an advertising point of view, Kathpalia
539
+ and Wee Ong (2015) analyzed C-S in Hinglish
540
+ (i.e. Hindi, English, Urdu, Sanskrit according to
541
+ their definition) billboards about the Amul brand
542
+
543
+ in India. After compiling the advertisements on
544
+ billboards (1191), they classified the structures
545
+ and functions of C-S. Their results indicate more
546
+ intrasentential C-S than intersentential ones on
547
+ the billboards.
548
+ In terms of function, the ad-
549
+ vertisers used C-S to indicate figures of speech
550
+ (e.g.
551
+ puns, associations, contradictory associa-
552
+ tions, word-creation and repetitions) to attract the
553
+ attention of the target group.
554
+ Mohanty (2006) provides an extended overview
555
+ of the multilingual education system in India ex-
556
+ ploring the types and quality of schools across
557
+ a wide spectrum.
558
+ In general, high-cost English
559
+ Medium (EM) education is valued by upper-class
560
+ and affluent families. Although low-cost EM edu-
561
+ cation is also available for lower income families,
562
+ he questions its impact in comparison to education
563
+ in the local languages.
564
+ Sridhar (2002) explains
565
+ that C-S is commonly practiced among students
566
+ in schools across India. In addition, she finds it
567
+ unrealistic to ask the students to separate the two
568
+ languages harshly.
569
+ In immigrant contexts, Mar-
570
+ tin et al. (2006) investigates how Gujarati-English
571
+ C-S is used among the South Asian students in
572
+ educational settings in the UK. Another analy-
573
+ sis reveals a shift from Bengali toward English
574
+ among the younger generations of the immigrant
575
+ Bengali community in the UK (Al-Azami, 2006).
576
+ In terms of the C-S patterns, first generation im-
577
+ migrants integrate English words while speaking
578
+ Bengali whereas English dominates the conver-
579
+ sations of younger generations with occasional
580
+ switches to Bengali. There are also studies about
581
+ Bengali-English C-S in the UK school settings
582
+ (Pagett, 2006) and Bangladesh (Obaidullah, 2016)
583
+ as well.
584
+ However, a systematic comparison be-
585
+ tween Bengali-English C-S in India, Bangladesh
586
+ and immigrant settings are lacking.
587
+ In their study about aphasic patients, Shya-
588
+ mala Chengappa and Bhat (2004) report increased
589
+ frequency of C-S between Malayalam and English
590
+ for aphasic patients in comparison to the control
591
+ group. However, there were less differences be-
592
+ tween the groups in terms of functions of C-S.
593
+ Deepa and Shyamala (2019) find that amount and
594
+ types of C-S could be used to differentiate between
595
+ healthy and mild dementia patients who are bilin-
596
+ gual in Kannada and English. Although both stud-
597
+ ies are carried out with limited subjects, they offer
598
+ insights about the use of C-S in health settings as
599
+ well.
600
+ 7
601
+ Computational Approaches to C-S
602
+ There has been significant interest in building lan-
603
+ guage technologies for code-switched languages
604
+ over the last few years, spanning a diverse range
605
+ of tasks such as Language Identification, Part
606
+ of Speech Tagging, Sentiment Analysis and Au-
607
+ tomatic Speech Recognition.
608
+ In the European
609
+ language context, work has mainly focused on
610
+ Turkish-Dutch, Frisian-Dutch, Turkish-German
611
+ and Ukranian-Russian with some initial attempts
612
+ being made in parsing Russian-Komi text.
613
+ In
614
+ the Indian language context, Hindi-English is the
615
+ most widely studied language pair for compu-
616
+ tational processing, with some recent work on
617
+ Telugu-English, Tamil-English, Bengali-English
618
+ and Gujarati-English. Sitaram et al. (2019) pro-
619
+ vide a comprehensive survey of research in com-
620
+ putational processing of C-S text and speech and
621
+ Jose et al. (2020) present a list of datasets available
622
+ for C-S research. However, despite significant ef-
623
+ forts, language technologies are not yet capable
624
+ of processing C-S as seamlessly as monolingual
625
+ data. We identify three main limitations of the cur-
626
+ rent state of computational processing of C-S: data,
627
+ evaluation and user-facing applications.
628
+ 7.1
629
+ Data
630
+ The use of Deep Neural Networks, which require
631
+ large amounts of labeled and unlabeled training
632
+ data have become the de facto standard for build-
633
+ ing speech and NLP systems. Since C-S languages
634
+ tend to be low resourced, building Deep Learning-
635
+ based models is challenging due to the lack of
636
+ large C-S datasets.
637
+ Massive multilingual Lan-
638
+ guage Models (LMs) such as multilingual BERT
639
+ (Devlin et al., 2019) and XLM-R (Conneau et al.,
640
+ 2020) have shown promise in enabling the cover-
641
+ age of low-resource languages without any labeled
642
+ data by using the zero-shot framework.
643
+ These
644
+ LMs are typically trained in two phases: a “pre-
645
+ training” phase, in which unlabeled data from one
646
+ or multiple languages may be used and a “fine-
647
+ tuning” phase, in which task-specific labeled data
648
+ is used to build a system capable of solving the
649
+ task.
650
+ Since multilingual LMs are trained on multiple
651
+ languages at the same time, it has been suggested
652
+ that these models may be capable of processing
653
+ C-S text (Johnson et al., 2017), with promising re-
654
+ sults initially reported on POS tagging (Pires et al.,
655
+ 2019). Khanuja et al. (2020) found that multilin-
656
+
657
+ gual BERT outperforms older task-specific mod-
658
+ els on C-S tasks, however, the performance on
659
+ C-S is much worse than the performance on the
660
+ same tasks in a monolingual setting. Further, these
661
+ LMs are either trained primarily on monolingual
662
+ datasets such as Wikipedia in the case of mBERT,
663
+ or Common Crawl 1 in the case of XLM-R. So,
664
+ they are either not exposed to C-S data at all dur-
665
+ ing training, or they miss out on several language
666
+ pairs, types and functions of C-S that are encoun-
667
+ tered in daily life but not available on the web.
668
+ Since massive multilingual LMs are now replac-
669
+ ing traditional models across many NLP applica-
670
+ tions, it is crucial to consider how they can be
671
+ trained on C-S data, or made to work for C-S by
672
+ incorporating other sources of knowledge.
673
+ 7.2
674
+ Evaluation
675
+ Much of speech and NLP research is now driven
676
+ by standard benchmarks that evaluate models
677
+ across multiple tasks and languages.
678
+ Due to
679
+ the shortage of standardized datasets for C-S, un-
680
+ til recently, the evaluation of C-S models was
681
+ performed over individual tasks and language
682
+ pairs.
683
+ Khanuja et al. (2020) and Aguilar et al.
684
+ (2020) proposed the first evaluation benchmarks
685
+ for C-S that span multiple tasks in multiple lan-
686
+ guage pairs. The GLUECoS benchmark (Khanuja
687
+ et al., 2020) consists of the following C-S tasks
688
+ in Spanish-English and Hindi-English: Language
689
+ Identification (LID), Part of Speech (POS) tag-
690
+ ging, Named Entity Recognition (NER), Senti-
691
+ ment Analysis, Question Answering and Natural
692
+ Language Inference (NLI). The LINCE bench-
693
+ mark (Aguilar et al., 2020) covers Language
694
+ Identification, Named Entity Recognition, Part-
695
+ of-Speech Tagging, and Sentiment Analysis in
696
+ four language pairs:
697
+ Spanish-English, Nepali-
698
+ English, Hindi-English, and Modern Standard
699
+ Arabic-Egyptian Arabic.
700
+ Although these benchmarks are important start-
701
+ ing points for C-S, it is clear that they do not
702
+ represent the entire spectrum of C-S, both from
703
+ the point of view of potential applications and
704
+ language pairs.
705
+ Further, it is important to note
706
+ that while state-of-the-art models perform well on
707
+ tasks such as LID, POS tagging and NER, they are
708
+ only slightly better than chance when it comes to
709
+ harder tasks like NLI, showing that current models
710
+ are not capable of processing C-S language. More-
711
+ 1http://www.commoncrawl.org
712
+ over, many of the C-S tasks in the benchmarks
713
+ above consist of annotated tweets, which only rep-
714
+ resent a certain type of C-S. Due to these limita-
715
+ tions, we currently do not have an accurate picture
716
+ of how well models are able to handle C-S.
717
+ 7.3
718
+ User-facing applications
719
+ Although speech and NLP models for C-S have
720
+ been built for various applications, a major limi-
721
+ tation of the work done so far in computational
722
+ processing of C-S is the lack of end-to-end user-
723
+ facing applications that interact directly with users
724
+ in multilingual communities. For example, there
725
+ is no widely-used spoken dialogue system that
726
+ can understand as well as produce code-switched
727
+ speech, although some voice assistants may recog-
728
+ nize and produce C-S in limited scenarios in some
729
+ locales. Although computational implementations
730
+ of grammatical models of C-S exist (Bhat et al.,
731
+ 2016), they do not necessarily generate natural C-
732
+ S utterances that a bilingual speaker would pro-
733
+ duce (Pratapa et al., 2018). Most crucially, current
734
+ computational approaches to C-S language tech-
735
+ nologies do not usually take into account the lin-
736
+ guistic and social factors that influence why and
737
+ when speakers/users choose to code-switch.
738
+ Bawa et al. (2020) conducted a Wizard-of-Oz
739
+ study using a Hindi-English chatbot and found that
740
+ not only did bilingual users prefer chatbots that
741
+ could code-switch, they also showed a preference
742
+ towards bots that mimicked their own C-S patterns.
743
+ Rudra et al. (2016) report a study on 430k tweets
744
+ from Hindi-English bilingual users and find that
745
+ Hindi is preferred for the expression of negative
746
+ sentiment.
747
+ In a follow-up study, Agarwal et al.
748
+ (2017) find that Hindi is the preferred language for
749
+ swearing in Hindi-English C-S tweets, and swear-
750
+ ing may be a motivating factor for users to switch
751
+ to Hindi. The study also finds a gender difference,
752
+ with women preferring to swear in English more
753
+ often than Hindi. Such studies indicate that mul-
754
+ tilingual chatbots and intelligent agents need to
755
+ be able to adapt to users’ linguistic styles, while
756
+ also being capable of determining when and how
757
+ to code-switch.
758
+ Due to the paucity of user-facing systems and
759
+ standard benchmarks covering only a handful of
760
+ simpler NLP tasks, it is likely that we overesti-
761
+ mate how well computational models are able to
762
+ handle C-S. In sum, language technologies for C-
763
+ S seem to be constrained by the lack of availabil-
764
+
765
+ ity of diverse C-S training data, evaluation bench-
766
+ marks and the absence of user-facing applications.
767
+ They need to go beyond pattern recognition and
768
+ grammatical constraints of C-S in order to process
769
+ and produce C-S the way humans do. Hence, it
770
+ is important for the CL community to be aware of
771
+ the vast literature around C-S in linguistics, partic-
772
+ ularly as we proceed to solving more challenging
773
+ tasks.
774
+ 8
775
+ Conclusion
776
+ The goal of this paper was to inform computa-
777
+ tional linguists and language technologists about
778
+ the linguistic and social aspects C-S studies focus-
779
+ ing on the European and Indian multilingual con-
780
+ texts. There are some similarities (e.g. themes for
781
+ linguistic research in C-S) but also differences be-
782
+ tween the two contexts in terms of the social, cul-
783
+ tural and historical characteristics. For example,
784
+ C-S in immigrant communities has been a com-
785
+ mon theme for both multilingual contexts. In Eu-
786
+ rope, C-S has been widely studied within the im-
787
+ migrant communities who have come through la-
788
+ bor immigration in the 1960s. However, there is
789
+ a need for more research about the C-S in immi-
790
+ grant languages with a more recent history as well
791
+ as minority languages and regional dialects. An-
792
+ alyzing C-S in the immigration context is even
793
+ more complex for Indian languages.
794
+ There are
795
+ hardly any systematic linguistic comparisons be-
796
+ tween the C-S within the same language pairs in
797
+ India and immigrant contexts (e.g. C-S between
798
+ Hindi-English in India vs. Hindi-English in the
799
+ US/UK). There is also a need for more research
800
+ about C-S between less known language pairs in
801
+ India. However, some of these languages are not
802
+ even officially listed (e.g. in census results) since
803
+ they have less than 10,000 speakers. In these cases,
804
+ collecting and analyzing the multilingual and C-S
805
+ data becomes more difficult.
806
+ A common flaw that is shared both by linguis-
807
+ tics and computational areas of research is to focus
808
+ only on the positive evidence and assume that C-S
809
+ will occur in all multilingual contexts. However,
810
+ there is also a need for negative evidence to fal-
811
+ sify this assumption. As illustrated through an ex-
812
+ ample from Konkani-Kannada language contact in
813
+ India (see section 6), bilingual speakers may pre-
814
+ fer not to C-S due to historical, social and cultural
815
+ factors operating in that setting. Therefore, devel-
816
+ oping an automatic C-S system for a random pair
817
+ of languages without an in-depth and systematic
818
+ analysis of linguistic and social aspects of C-S in
819
+ a particular context would not be very useful for
820
+ the targeted users and/or language technologists.
821
+ To date, the literature focusing on the social and
822
+ linguistic aspects of C-S is less visible for CL re-
823
+ searchers. This lack of visibility leads to misunder-
824
+ standings and/or incomplete citations of earlier re-
825
+ search which would have saved time and resources
826
+ for CL research if resolved. One of the reasons
827
+ is perhaps the differences in publishing traditions
828
+ between humanities and computational areas of re-
829
+ search. Conference and workshop proceedings are
830
+ commonly accepted means of publication in com-
831
+ putational linguistics. Whereas, journal publica-
832
+ tions, books and/or chapters are the publication
833
+ forms in humanities. However, guidelines about
834
+ how to cite publications in humanities are often
835
+ missing in computational venues. There are also
836
+ differences in terms of length, review cycles and
837
+ open access policies between the two fields which
838
+ may influence the visibility of research output for
839
+ each other. It is perhaps useful to remember that
840
+ science advances by standing on the shoulders of
841
+ giants (i.e. building upon earlier research). With
842
+ our contribution to the conference, we hope to con-
843
+ nect the two fields and start a scientific dialogue to
844
+ enhance the advancement in both fields.
845
+ References
846
+ Evangelia Adamou. 2016. A corpus-driven approach
847
+ to language contact: Endangered languages in a
848
+ comparative perspective, volume 12.
849
+ Walter de
850
+ Gruyter GmbH & Co KG.
851
+ Prabhat Agarwal,
852
+ Ashish Sharma,
853
+ Jeenu Grover,
854
+ Mayank Sikka, Koustav Rudra, and Monojit Choud-
855
+ hury. 2017.
856
+ I may talk in English but gaali
857
+ toh Hindi mein hi denge: A study of English-
858
+ Hindi code-switching and swearing pattern on so-
859
+ cial networks. In 2017 9th International Conference
860
+ on Communication Systems and Networks (COM-
861
+ SNETS), pages 554–557. IEEE.
862
+ Gustavo Aguilar, Sudipta Kar, and Thamar Solorio.
863
+ 2020. Lince: A centralized benchmark for linguis-
864
+ tic code-switching evaluation.
865
+ In Proceedings of
866
+ The 12th Language Resources and Evaluation Con-
867
+ ference, pages 1803–1813.
868
+ Salman Al-Azami. 2006. Linguistic manipulations in
869
+ the Bengali language by the Bangladeshis in Manch-
870
+ ester. South Asian Cultural Studies, 1(1):53–59.
871
+ Fahad AlGhamdi,
872
+ Giovanni Molina,
873
+ Mona Diab,
874
+ Thamar Solorio, Abdelati Hawwari, Victor Soto, and
875
+
876
+ Julia Hirschberg. 2016. Part of speech tagging for
877
+ code switched data.
878
+ Proceedings of the Second
879
+ Workshop on Computational Approaches to Code-
880
+ Switching.
881
+ Jannis Androutsopoulos. 2015.
882
+ Networked multilin-
883
+ gualism: Some language practices on facebook and
884
+ their implications.
885
+ International Journal of Bilin-
886
+ gualism, 19:185–205.
887
+ Joan A. Argenter. 2001.
888
+ Code-switching and dialo-
889
+ gism: Verbal practices in among Catalan Jews in the
890
+ middle ages. Language in Society, 30:377–402.
891
+ Peter Auer. 1999. From codeswitching via language
892
+ mixing to fused lects: Toward a dynamic typology
893
+ of bilingual speech. International journal of bilin-
894
+ gualism, 3(4):309–332.
895
+ Peter Auer and Raihan Muhamedova. 2005. Embed-
896
+ ded language’and ‘matrix language’in insertional
897
+ language mixing: Some problematic cases. Rivista
898
+ di linguistica, 17(1):35–54.
899
+ Ad Backus. 2010.
900
+ The role of codeswitching, loan
901
+ translation and interference in the emergence of an
902
+ immigrant variety of Turkish.
903
+ Working Papers in
904
+ Corpus-based Linguistics and Language Education,
905
+ 5:225–241.
906
+ Peter Bakker. 1997. A language of our own: The gene-
907
+ sis of Michif, the mixed Cree-French language of the
908
+ Canadian M´etis. Oxford University Press.
909
+ Anshul Bawa, Pranav Khadpe, Pratik Joshi, Kalika
910
+ Bali, and Monojit Choudhury. 2020. Do multilin-
911
+ gual users prefer chat-bots that code-mix?
912
+ let’s
913
+ nudge and find out!
914
+ Proceedings of the ACM on
915
+ Human-Computer Interaction, 4(CSCW1):1–23.
916
+ Hedi M. Belazi, Edward J Rubin, and Almeida Jacque-
917
+ line Toribio. 1994. Code switching and x-bar theory:
918
+ The functional head constraint. Linguistic inquiry,
919
+ pages 221–237.
920
+ Gaetano Berruto. 2005. Dialect/standard convergence,
921
+ mixing, and models of language contact: The case
922
+ of Italy. In Peter Auer, Franz Hinskens, and Paul
923
+ Kerswill, editors, Dialect Change: Convergence and
924
+ Divergence in European Languages, pages 81–95.
925
+ Cambridge University Press, Cambridge.
926
+ Gayatri Bhat, Monojit Choudhury, and Kalika Bali.
927
+ 2016. Grammatical constraints on intra-sentential
928
+ code-switching: From theories to working models.
929
+ arXiv preprint arXiv:1612.04538.
930
+ Laada Bilaniuk. 2004. A typology of Surzhyk: Mixed
931
+ Ukrainian-Russian language. International Journal
932
+ of Bilingualism, 8(4):409–425.
933
+ Jan-Petter Blom and John Gumperz. 1972.
934
+ Social
935
+ meaning in linguistic structures: Code switching in
936
+ Northern Norway. In John Gumperz and Del Hymes,
937
+ editors, Directions in Sociolinguistics: The Ethnog-
938
+ raphy of Communication. Holt, Rinehart and Win-
939
+ ston, New York.
940
+ Jupitara Boro. 2020.
941
+ Borrowing or code-switching:
942
+ Some observations in Bodo.
943
+ Language in India,
944
+ 20(7):87–94.
945
+ Evelyn Bosma and Elma Blom. 2019. A code-switch-
946
+ ing asymmetry in bilingual children: Code-switch-
947
+ ing from Dutch to Frisian requires more cognitive
948
+ control than code-switching from Frisian to Dutch.
949
+ International Journal of Bilingualism, 23:1431–
950
+ 1447.
951
+ Barbara Bullock, Wally Guzm´an, Jacqueline Serigos,
952
+ Vivek Sharath, and Almeida Jacqueline Toribio.
953
+ 2018.
954
+ Predicting the presence of a matrix lan-
955
+ guage in code-switching. In Proceedings of the third
956
+ workshop on computational approaches to linguistic
957
+ code-switching, pages 68–75.
958
+ ¨Ozlem C¸ etino˘glu. 2017. A code-switching corpus of
959
+ Turkish-German conversations. In Proceedings of
960
+ the 11th Linguistic Annotation Workshop, pages 34–
961
+ 40, Valencia, Spain. Association for Computational
962
+ Linguistics.
963
+ C Chandramouli. 2011. Census of India 2011. Provi-
964
+ sional Population Totals, Office of Registrar General
965
+ and Census Commissioner, New Delhi: Government
966
+ of India, pages 409–413.
967
+ Tridha Chatterjee. 2016. Structural changes in Bengal-
968
+ i-English bilingual verbs through the exploration of
969
+ Bengali films. Languages, 1(5):2–17.
970
+ Michael Clyne. 1991.
971
+ Community Languages: The
972
+ Australian experience. Cambridge University Press,
973
+ Cambridge.
974
+ Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
975
+ Vishrav Chaudhary, Guillaume Wenzek, Francisco
976
+ Guzm´an, ´Edouard Grave, Myle Ott, Luke Zettle-
977
+ moyer, and Veselin Stoyanov. 2020. Unsupervised
978
+ cross-lingual representation learning at scale.
979
+ In
980
+ Proceedings of the 58th Annual Meeting of the Asso-
981
+ ciation for Computational Linguistics, pages 8440–
982
+ 8451.
983
+ Jakob Cromdal. 2004. Building bilingual oppositions:
984
+ Code-switching in children’s disputes. Language in
985
+ Society, 33:33–58.
986
+ M.S. Deepa and K.C. Shyamala. 2019.
987
+ Analysis of
988
+ verb expressions in the conversational speech of
989
+ Kannada-English speaking bilingual persons with
990
+ mild dementia. Studies in Linguistics and Literature,
991
+ 3:182–194.
992
+ Margaret Deuchar. 2006. Welsh-English code-switch-
993
+ ing and the Matrix Language Frame model. Lingua,
994
+ 116:1986–2011.
995
+ Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
996
+ Kristina Toutanova. 2019.
997
+ Bert: Pre-training of
998
+ deep bidirectional transformers for language under-
999
+ standing. In Proceedings of the 2019 Conference of
1000
+ the North American Chapter of the Association for
1001
+
1002
+ Computational Linguistics: Human Language Tech-
1003
+ nologies, Volume 1 (Long and Short Papers), pages
1004
+ 4171–4186.
1005
+ Anne-Marie DiSciullo, Pieter Muysken, and Rajendra
1006
+ Singh. 1986. Code-mixing and government. Jour-
1007
+ nal of Linguistics, 22(1):1–24.
1008
+ Rajeev K. Doley. 2013. Code-switching at the market
1009
+ place: The trader’s tool.
1010
+ Asian Journal of Social
1011
+ Sciences and Humanities, 2(2):483–489.
1012
+ Margreet
1013
+ Dorleijn
1014
+ and
1015
+ Jacomine
1016
+ Nortier.
1017
+ 2009.
1018
+ Codeswitching and the internet. In Barbara Bullock
1019
+ and Almeida Jacqueline Toribio,
1020
+ editors,
1021
+ The
1022
+ Cambridge Handbook of Linguistic Code-switching,
1023
+ pages
1024
+ 127–141.
1025
+ Cambridge
1026
+ University
1027
+ Press,
1028
+ Cambridge.
1029
+ A. Seza Do˘gru¨oz and Ad Backus. 2009.
1030
+ Innova-
1031
+ tive constructions in Dutch Turkish: An assessment
1032
+ of on-going contact-induced change. Bilingualism:
1033
+ Language and Cognition, 12(1):41–63.
1034
+ Ondene Van Dulm. 2007.
1035
+ The grammar of English-
1036
+ Afrikaans code switching: A feature checking ac-
1037
+ count.
1038
+ Ph.D. thesis, Radboud Universiteit, Ni-
1039
+ jmegen.
1040
+ George E. Dunkel. 2000. Remarks on code-switching
1041
+ in Cicero’s letters to Atticus. Museum Helveticum,
1042
+ 57:122–129.
1043
+ Katerina A. Finnis. 2014.
1044
+ Variation within a
1045
+ Greek-Cypriot community of practice in London:
1046
+ Code-switching, gender, and identity. Language in
1047
+ Society, 43:287–310.
1048
+ Penelope Gardner-Chloros and Reeva Charles. 2007.
1049
+ Subiko welcome (welcome to everyone) Hindi-
1050
+ English code-switching in the British-Asian media.
1051
+ BISAL, 2:89–122.
1052
+ Penelope Gardner-Chloros and Malcolm Edwards.
1053
+ 2004. Assumptions behind grammatical approaches
1054
+ to code-switching:
1055
+ When the blueprint is a red
1056
+ herring.
1057
+ Transactions of the Philological Society,
1058
+ 102:103–129.
1059
+ Alexandra Georgakopoulou and Katerina Finnis. 2009.
1060
+ Code-switching in site for fantasizing identities a
1061
+ case study of conventional uses of London Greek
1062
+ Cypriot. Pragmatics, 19:467–488.
1063
+ John J. Gumperz. 1982.
1064
+ Discourse strategies, vol-
1065
+ ume 1. Cambridge University Press.
1066
+ Monica Heller. 1992. The politics of codeswitching
1067
+ and language choice.
1068
+ In Carol Eastman, editor,
1069
+ Codeswitching, pages 108–118. Multilingual Mat-
1070
+ ters, Clevendon.
1071
+ Annette Herkenrath. 2012.
1072
+ Receptive multilingual-
1073
+ ism in an immigrant constellation: Examples from
1074
+ Turkish–German children’s language. International
1075
+ Journal of Bilingualism, 16:287–314.
1076
+ T¨oz¨un Issa. 2006. An ethnographic case study of code
1077
+ switching and language choice: The uses of Cypriot
1078
+ Turkish in London. International Journal of Sociol-
1079
+ ogy of Language, 181:1–9.
1080
+ Ioana Jieanu. 2013.
1081
+ Aspects of code-switching con-
1082
+ cerning Spanish-Romanian virtual communication.
1083
+ Journal for Foreign Languages, 5:21–33.
1084
+ Melvin Johnson, Mike Schuster, Quoc V Le, Maxim
1085
+ Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
1086
+ Fernanda Vi´egas, Martin Wattenberg, Greg Corrado,
1087
+ et al. 2017. Google’s multilingual neural machine
1088
+ translation system: Enabling zero-shot translation.
1089
+ Transactions of the Association for Computational
1090
+ Linguistics, 5:339–351.
1091
+ Navya Jose, Bharathi Raja Chakravarthi, Shardul
1092
+ Suryawanshi, Elizabeth Sherly, and John P McCrae.
1093
+ 2020. A survey of current datasets for code-switch-
1094
+ ing research. In 2020 6th International Conference
1095
+ on Advanced Computing and Communication Sys-
1096
+ tems (ICACCS), pages 136–141. IEEE.
1097
+ Aravind Joshi. 1982.
1098
+ Processing of sentences with
1099
+ intra-sentential code-switching.
1100
+ In Coling 1982:
1101
+ Proceedings of the Ninth International Conference
1102
+ on Computational Linguistics.
1103
+ Maria Juan-Garau and Carmen Perez-Vidal. 2001.
1104
+ Mixing and pragmatic parental strategies in early
1105
+ bilingual acquisition.
1106
+ Journal of Child Language,
1107
+ 28:59–86.
1108
+ Normann J. Jørgensen. 1998. Children’s acquisition of
1109
+ code-switching for power-wielding. In Peter Auer,
1110
+ editor, Code-switching in conversation: Language,
1111
+ interaction and identity, pages 97–113. Routledge,
1112
+ London.
1113
+ Braj B. Kachru. 1978.
1114
+ Toward structuring code-
1115
+ mixing: An Indian perspective. International Jour-
1116
+ nal of the Sociology of Language, 1978(16):27–46.
1117
+ Dieter B. Kapp. 1997.
1118
+ Dravidian borrowings from
1119
+ Portuegese (Kannada and Telugu).
1120
+ In Charles J.
1121
+ Borges and Helmut Feldmann, editors, Goa and Por-
1122
+ tugal: Their Cultural Links, pages 280–301. Ashok
1123
+ Kumar Mottar, New Delhi.
1124
+ Birsel Karakoc¸ and Annette Herkenrath. 2019.
1125
+ Re-
1126
+ ceptive multilingualism in an immigrant constella-
1127
+ tion:
1128
+ Examples from Turkish–German children’s
1129
+ language. Turkic Languages, 23:81–122.
1130
+ Sujata S. Kathpalia and Kenneth Keng Wee Ong. 2015.
1131
+ The use of code-mixing in Indian billboard advertis-
1132
+ ing. World Englishes, 34(4):557–575.
1133
+ Inken Keim. 2008.
1134
+ Die ”T¨urkischen Powergirls”
1135
+ - Lebenswelt und kommunikativer Stil einer Mi-
1136
+ grantinnengruppe in Mannheim. Narr, Tubingen.
1137
+ Nikolay Khakimov. 2016.
1138
+ Effects of frequency and
1139
+ word repetition on switch placement: Evidence from
1140
+
1141
+ Russian-German code-mixing.
1142
+ In Justyina Robin-
1143
+ son and Monica Heller, editors, Cognitive Perspec-
1144
+ tives on Bilingualism, pages 91–125. De Gruyter,
1145
+ Berlin, Boston.
1146
+ Simran Khanuja, Sandipan Dandapat, Anirudh Srini-
1147
+ vasan, Sunayana Sitaram, and Monojit Choudhury.
1148
+ 2020.
1149
+ Gluecos:
1150
+ An evaluation benchmark for
1151
+ code-switched nlp. In Proceedings of the 58th An-
1152
+ nual Meeting of the Association for Computational
1153
+ Linguistics, pages 3575–3585.
1154
+ Carola Kleeman. 2012. Play in two languages. Lan-
1155
+ guage alternation and code-switching role-play in
1156
+ North S´ami and Norwegian. Nordlyd, 39:47–69.
1157
+ Ashok Kumar. 1986. Certain aspects of the form and
1158
+ functions of Hindi-English code-switching. Anthro-
1159
+ pological Linguistics, 28(2):195–205.
1160
+ Hristo Kyuchukov. 2006. Code-switching among Mus-
1161
+ lim Romas in Bulgaria. International Journal of So-
1162
+ ciology of Language, 179:41–51.
1163
+ Elizabeth Lanza. 1998. Raising children bilingually in
1164
+ Norway. International Journal of Sociology of Lan-
1165
+ guage, 133:73–88.
1166
+ Eva Lavric. 2007. Code choice and face. Lodz Papers
1167
+ in Pragmatics, 3:23–35.
1168
+ Ying Li and Pascale Fung. 2014. Language modeling
1169
+ with functional head constraint for code switching
1170
+ speech recognition. In Proceedings of the 2014 Con-
1171
+ ference on Empirical Methods in Natural Language
1172
+ Processing (EMNLP), pages 907–916.
1173
+ Jeff MacSwan. 2000.
1174
+ The architecture of the bilin-
1175
+ gual language faculty: Evidence from codeswitch-
1176
+ ing. Bilingualism: Language and Cognition, 3:37–
1177
+ 54.
1178
+ Shahrzad Mahootian and Beatrice Santorini. 1996.
1179
+ Code switching and the complement/adjunct distinc-
1180
+ tion. Linguistic Inquiry, pages 464–479.
1181
+ Dawn Marley. 2011. Code-switching in websites for
1182
+ the Moroccan diaspora. In Foued Laroussi, editor,
1183
+ Code-Switching, Languages in Contact and Elec-
1184
+ tronic Writings. Peter Lang, Frankfurt.
1185
+ Elizabeth Martin. 1998. The use of English in writ-
1186
+ ten French advertising: A study of code-switching,
1187
+ code-mixing and borrowing in a commercial context.
1188
+ Studies in Linguistic Sciences, 28:159–184.
1189
+ Peter Martin, Arvind Bhatt, Nirmala Bhojani, and An-
1190
+ gela Creese. 2006. Managing bilingual interaction
1191
+ in a Gujarati complementary school in Leicester.
1192
+ Language and Education, 20(1):5–22.
1193
+ Felicity Meakins. 2012. Which mix—code-switching
1194
+ or a mixed language? Gurindji Kriol. Journal of
1195
+ Pidgin and Creole languages, 27(1):105–140.
1196
+ Michael Meeuws and Jan Blommaert. 1998.
1197
+ A
1198
+ monolectal view of code-switching: Layered code-
1199
+ switching among Zairians in Belgium.
1200
+ In Peter
1201
+ Auer, editor, Code-Switching in Conversation: Lan-
1202
+ guage, Interaction and Identity, pages 76–101. Rout-
1203
+ ledge, New York.
1204
+ Jurgen Meisel. 1994.
1205
+ Children: The acquisition of
1206
+ grammatical constraints.
1207
+ Studies in Second Lan-
1208
+ guage Acquisition, 16:413–419.
1209
+ Monique T. Mills and Julie A. Washington. 2015. Man-
1210
+ aging two varieties: Code-switching in the educa-
1211
+ tional context. In Lisa J.Green Jennifer Bloomquist
1212
+ and Sonja L. Lanehart, editors, Oxford handbook of
1213
+ African American language, pages 566–581. Oxford
1214
+ University Press New York, New York.
1215
+ Ajit K. Mohanty. 2006.
1216
+ Multilingualism of the un-
1217
+ equals and predicaments of education in india:
1218
+ Mother tongue or other tongue?: Languages in ed-
1219
+ ucation and glocalization. In Ofelia Garc´ıa, Tove
1220
+ Skutnabb-Kangas, and Mar´ıa E. Torres-Guzm´an, ed-
1221
+ itors, Imagining Multilingual Schools: Languages in
1222
+ Education and Glocalization, pages 262–279. Multi-
1223
+ lingual Matters, Bristol.
1224
+ Pieter Muysken. 1995. Code-switching and grammat-
1225
+ ical theory. In Lesley Milroy and Pieter Muysken,
1226
+ editors, One Speaker, Two Languages:
1227
+ Cross-
1228
+ disciplinary Perspectives on Code-switching, pages
1229
+ 177–98. Cambridge University Press, Cambridge.
1230
+ Carol Myers-Scotton. 1997.
1231
+ Duelling languages:
1232
+ Grammatical structure in codeswitching.
1233
+ Oxford
1234
+ University Press.
1235
+ Mark Mysl´ın and Roger Levy. 2015. Code-switching
1236
+ and predictability of meaning in discourse.
1237
+ Lan-
1238
+ guage, 91(4):871–905.
1239
+ Mangesh V. Nadkarni. 1975. Bilingualism and syntac-
1240
+ tic change in Konkani. Language, 51(3):672–683.
1241
+ Jacomine Nortier. 1990.
1242
+ Dutch-Moroccan Code
1243
+ Switching among Moroccans in the Netherlands.
1244
+ Foris Publications, Dordrecht.
1245
+ Md. Obaidullah. 2016. Code switching in EFL class-
1246
+ rooms: A Bangladeshi perspective.
1247
+ Theory and
1248
+ Practice in Language Studies, 6(5):924–934.
1249
+ Alexander Onysko. 2007.
1250
+ Anglicism in German:
1251
+ Borrowing, Lexical Productivity and Written Code-
1252
+ switching. Walter de Gruyter, Berlin, New York.
1253
+ Katarzyna O˙za´nska-Ponikwia. 2016. Code-switching
1254
+ practices among immigrant Polish L2 users of En-
1255
+ glish. Theory and Practice of Second Language Ac-
1256
+ quisition, 1:87–102.
1257
+ Linda Pagett. 2006.
1258
+ Mum and Dad prefer me to
1259
+ speak Bengali at home: Code switching and paral-
1260
+ lel speech in a primary school setting. Literacy, 40.
1261
+
1262
+ Evangelos E. Papalexakis and A. Seza Do˘gru¨oz. 2015.
1263
+ Understanding multilingual social networks in on-
1264
+ line immigrant communities. In WWW’15 Compan-
1265
+ ion: Proceedings of the 24th International Confer-
1266
+ ence on World Wide Web, pages 865–870. Associa-
1267
+ tion for Computational Linguistics.
1268
+ Evangelos E. Papalexakis, Dong Nguyen, and A. Seza
1269
+ Do˘gru¨oz. 2014. Predicting code-switching in multi-
1270
+ lingual communication for immigrant communities.
1271
+ In Proceedings of The First Workshop on Computa-
1272
+ tional Approaches to Code Switching, pages 42–50.
1273
+ Association for Computational Linguistics.
1274
+ Niko Partanen, KyungTae Lim, Michael Rießler, and
1275
+ Thierry Poibeau. 2018.
1276
+ Dependency parsing of
1277
+ code-switching data with cross-lingual feature repre-
1278
+ sentations. In International Workshop on Computa-
1279
+ tional Linguistics for Uralic Languages, pages 1–17.
1280
+ ACL.
1281
+ Carol W. Pfaff. 1999. Changing patterns of language
1282
+ mixing in a bilingual child.
1283
+ In Guus Extra and
1284
+ Ludo Verhoeven, editors, Bilingualism and Migra-
1285
+ tion, page 97–121. Mouton de Gruyter, Berlin.
1286
+ Telmo Pires, Eva Schlinger, and Dan Garrette. 2019.
1287
+ How multilingual is multilingual BERT?
1288
+ In Pro-
1289
+ ceedings of the 57th Annual Meeting of the Asso-
1290
+ ciation for Computational Linguistics, pages 4996–
1291
+ 5001.
1292
+ Meike Poeste, Natascha M¨uller, and Laia Arnaus Gil.
1293
+ 2019. Code-mixing and language dominance: Bilin-
1294
+ gual, trilingual and multilingual children compared.
1295
+ International Journal of Bilingualism, 16:459–491.
1296
+ Shana Poplack. 1980. Sometimes I’ll start a sentence
1297
+ in Spanish y termino en Espanol: Toward a typology
1298
+ of code-switching. Linguistics, 18:233–234.
1299
+ Shana Poplack, David Sankoff, and Christopher Miller.
1300
+ 1988. The social correlates and linguistic processes
1301
+ of lexical borrowing and assimilation. Linguistics,
1302
+ 26:47–104.
1303
+ Adithya Pratapa, Gayatri Bhat, Monojit Choudhury,
1304
+ Sunayana Sitaram, Sandipan Dandapat, and Kalika
1305
+ Bali. 2018.
1306
+ Language modeling for code-mixing:
1307
+ The role of linguistic theory based synthetic data. In
1308
+ Proceedings of the 56th Annual Meeting of the As-
1309
+ sociation for Computational Linguistics (Volume 1:
1310
+ Long Papers), pages 1543–1553.
1311
+ Adithya Pratapa and Monojit Choudhury. 2017. Quan-
1312
+ titative characterization of code switching patterns
1313
+ in complex multi-party conversations: A case study
1314
+ on Hindi movie scripts. In Proceedings of the 14th
1315
+ International Conference on Natural Language Pro-
1316
+ cessing (ICON-2017), pages 75–84.
1317
+ Aur´elia Robert-Tissot and Etienne Morel. 2017. The
1318
+ role of functional heads in code-switching evidence
1319
+ from Swiss text messages. Languages, 2:282–297.
1320
+ E. Natalie Rothman. 2011.
1321
+ Conversion and con-
1322
+ vergence in the Venetian-Ottoman borderlands.
1323
+ Journal of Medieval and Early Modern Studies,
1324
+ 41:601–633.
1325
+ Koustav Rudra, Shruti Rijhwani, Rafiya Begum, Kalika
1326
+ Bali, Monojit Choudhury, and Niloy Ganguly. 2016.
1327
+ Understanding language preference for expression
1328
+ of opinion and sentiment: What do Hindi-English
1329
+ speakers do on Twitter?
1330
+ In Proceedings of the
1331
+ 2016 conference on empirical methods in natural
1332
+ language processing, pages 1131–1141.
1333
+ David Sankoff, Shana Poplack, and Swathi Vanniara-
1334
+ jan. 1990. The case of the nonce loan in Tamil. Lan-
1335
+ guage variation and change, 2(1):71–101.
1336
+ Mark Sebba. 1998. A congruence approach to the syn-
1337
+ tax of codeswitching. International Journal of Bilin-
1338
+ gualism, 2(1):1–19.
1339
+ Krupa Elizabeth Daniel Shyamala Chengappa and
1340
+ Sapna Bhat. 2004. Language mixing and switching
1341
+ in Malayalam-English bilingual Aphasics. Asia Pa-
1342
+ cific Disability Rehabilitation Journal, 15:68–76.
1343
+ Aung Si. 2011.
1344
+ A diachronic investigation of
1345
+ Hindi-English code-switching, using Bollywood
1346
+ film scripts. International Journal of Bilingualism,
1347
+ 15(4):388–407.
1348
+ Beat Siebenhaar. 2006. Code choice and code-switch-
1349
+ ing in Swiss-German Internet Relay Chat rooms.
1350
+ Journal of Sociolinguistics, 10:481–506.
1351
+ Sunayana Sitaram, Khyathi Raghavi Chandu, Sai Kr-
1352
+ ishna Rallabandi, and Alan W Black. 2019. A sur-
1353
+ vey of code-switched speech and language process-
1354
+ ing. arXiv preprint arXiv:1904.00784.
1355
+ Thamar Solorio and Yang Liu. 2008. Part-of-speech
1356
+ tagging for English-Spanish code-switched text. In
1357
+ Proceedings of the 2008 Conference on Empirical
1358
+ Methods in Natural Language Processing, pages
1359
+ 1051–1060.
1360
+ Kamal Sridhar. 2002. Societal multilingualism, world
1361
+ Englishes: Their implications for TESOL. Indian
1362
+ Journal of Applied Linguistics, 28(2):83–100.
1363
+ S. N. Sridhar. 1978. On the functions of code-mixing
1364
+ in Kannada. International Journal of the Sociology
1365
+ of Language, 1978(16):109–118.
1366
+ Simon Swain. 2002. Bilingualism in Cicero? Evidence
1367
+ of code-switching.
1368
+ In James Noel Adams, Mark
1369
+ Janse, and Simon Swain, editors, Bilingualism in An-
1370
+ cient Society: Language contact and Written Text,
1371
+ pages 128–168. Oxford University Press, New York.
1372
+ Christiana Themistocleous. 2013. Digital code-switch-
1373
+ ing between Cypriot and standard Greek: Perfor-
1374
+ mance and identity play online. International Jour-
1375
+ nal of Bilingualism, 19:282–297.
1376
+
1377
+ Jeanine Treffers-Daller. 1994. Mixing two languages:
1378
+ French-Dutch contact in a comparative perspective.
1379
+ Mouton de Gruyter, Berlin.
1380
+ Jeanine Treffers-Daller. 2012.
1381
+ Grammatical colloca-
1382
+ tions and verb-particle constructions in Brussels
1383
+ French: A corpus-linguistic approach to transfer. In-
1384
+ ternational Journal of Bilingualism, 16(1):53–82.
1385
+ Martin Volk and Simon Clematide. 2014. Detecting
1386
+ code-switching in a multilingual Alpine Heritage
1387
+ Corpus. Proceedings of the First Workshop on Com-
1388
+ putational Approaches to Code Switching.
1389
+ Ngoc Thang Vu, Heike Adel, and Tanja Schultz. 2013.
1390
+ An investigation of code-switching attitude depen-
1391
+ dent language modeling.
1392
+ In International Confer-
1393
+ ence on Statistical Language and Speech Processing,
1394
+ pages 297–308. Springer.
1395
+ Li Wei and Lesley Milroy. 1995.
1396
+ Conversational
1397
+ code-switching in a Chinese community in Britain:
1398
+ A sequential analysis. Journal of Pragmatics, 23.
1399
+ Ruth Wodak, Michał Krzy˙zanowski, and Bernhard
1400
+ Forchtner. 2012. The interplay of language ideolo-
1401
+ gies and contextual cues in multilingual interactions:
1402
+ Language choice and code-switching in European
1403
+ Union institutions.
1404
+ Language in Society, 41:157–
1405
+ 186.
1406
+ Ana Celia Zentella. 1997.
1407
+ Growing up bilingual :
1408
+ Puerto Rican children in New York.
1409
+ Blackwell,
1410
+ Malden, MA.
1411
+ Anna Zhiganova. 2016. The study of the perception
1412
+ of code-switching to English in German advertising.
1413
+ Procedia: Social and Behavioral Sciences, 236:225–
1414
+ 229.
1415
+ Lena Zipp. 2017. Code-switching in the media: Iden-
1416
+ tity negotiations in a Gujarati diaspora radio pro-
1417
+ gram. International Journal of the Sociology of Lan-
1418
+ guage, 2017(247):33 – 48.
1419
+
DtA0T4oBgHgl3EQfAv-e/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
FdAzT4oBgHgl3EQfHPsU/content/tmp_files/2301.01040v1.pdf.txt ADDED
@@ -0,0 +1,751 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Theory and experiments of spiral unpinning in the Belousov-Zhabotinsky reaction
2
+ using a circularly polarized electric field
3
+ Amrutha S V,∗ Anupama Sebastian, Puthiyapurayil Sibeesh, Shreyas Punacha, and T K Shajahan†
4
+ Department of Physics
5
+ National Institute of Technology Karnataka
6
+ (Dated: January 4, 2023)
7
+ We present the first experimental study of unpinning a spiral wave of excitation using a circularly
8
+ polarized electric field. The experiments are conducted in the Belousov-Zhabotinsky(BZ) reaction,
9
+ and the system is modeled using the Oregenator model. The mechanism of unpinning in the BZ
10
+ reaction differs from that in the physiological medium. We show that the wave unpins when the
11
+ electric force opposes the propagation of the spiral wave. We developed an analytical relation of
12
+ the unpinning phase with the initial phase, the pacing ratio, and the field strength and verified the
13
+ same.
14
+ The Belousov-Zhabotinsky (BZ) reaction has served as
15
+ the prototype of a large class of systems that display ex-
16
+ citation waves, including the waves of action potentials
17
+ seen in the heart [1], brain [2], retina [3], and waves of
18
+ communication in the social amoeba dictyostelium dis-
19
+ coideum [4, 5].
20
+ Excitation waves in these systems ex-
21
+ hibit strikingly similar spatio-temporal patterns such as
22
+ expanding target waves or rotating spiral waves [6–8].
23
+ Recently there has been a renewed interest in the pat-
24
+ tern formation in the BZ reaction because of the active
25
+ nature of the chemical waves: their wavefronts are electri-
26
+ cally charged [9, 10] and resultant changes in the surface
27
+ tension on the droplets of BZ reagents in an oily medium
28
+ can propel the droplets [11, 12].
29
+ A characteristic feature of excitation waves is their ten-
30
+ dency to pin to heterogeneities in the medium [13–16].
31
+ A pinned rotating wave requires a carefully administered
32
+ stimulus to remove it from the heterogeneity [17]. This is
33
+ especially pertinent in cardiac tissue since stable pinned
34
+ rotating waves can be life-threatening [17, 18].
35
+ Several groups have proposed methods for controlling
36
+ such pinned waves using either pulsed electric field [1, 19]
37
+ or, more recently, circularly polarized electric field [20–
38
+ 22]. Numerical studies have shown that circularly polar-
39
+ ized electric fields (CPEF) are more efficient in control-
40
+ ling cardiac excitation waves [20, 22, 23]. In particular,
41
+ CPEF requires less energy and is more efficient in con-
42
+ trolling pinned rotating waves [20, 21]. Our systematic
43
+ investigations on the mechanism of CPEF indicated that
44
+ the spiral wave could be unpinned if the frequency of the
45
+ CPEF is more than a cut-off frequency [23].
46
+ It is observed that chemical waves are also prone to
47
+ pinning [13], and they can also be unpinned using elec-
48
+ tric field [9, 24]. However, there is an essential distinction
49
+ between the chemical wave and the waves in physiological
50
+ tissue. In the latter, the electric force does not affect the
51
+ excitation wave directly, instead, they unpin by inducing
52
+ secondary excitations from the heterogeneities [25]. In
53
+ ∗ Copyrights Reserved
54
55
+ the chemical medium, on the other hand, the wavefront
56
+ contains charged ions such as Br− and Fe3+, which can
57
+ be moved by the applied electric field, , i.e., the elec-
58
+ tric field in a chemical medium exerts an advective force
59
+ directly on the wavefront [9, 26, 27].
60
+ Such an electric
61
+ force on the wave is not reported in the physiological tis-
62
+ sue. It is also observed that the chemical wave unpins
63
+ as it moves away from the anode, and not when moving
64
+ towards it [9].
65
+ So far, there have not been any experimental reports of
66
+ unpinning spiral waves using CPEF, either in the chem-
67
+ ical medium or the cardiac tissue. However, CPEF is re-
68
+ alized in BZ medium to control spiral turbulence [28]. In
69
+ this paper, we report the first experimental studies of spi-
70
+ ral wave unpinning using CPEF in an excitable medium.
71
+ However, the mechanism of how CPEF acts on a chemical
72
+ wave is different from that of the cardiac excitation wave.
73
+ In particular, we find no cut-off frequency for CPEF to
74
+ unpin a chemical wave. We vary the pacing ratio, ini-
75
+ tial spiral phase, and field strength. We deduced that
76
+ the wave unpins when the component of the electric field
77
+ vector along the direction of the spiral equals or exceeds
78
+ a critical field strength. Based on this, we predict the
79
+ unpinning angle as a function of the initial position of
80
+ the spiral wave, the frequency, and the strength of the
81
+ electric field. We show that our analytical formulation
82
+ agrees with experimental data and numerical results.
83
+ In this paper, we focus on the unpinning of an anti-
84
+ clockwise (ACW) rotating spiral using a CPEF rotating
85
+ in the same direction. We conducted our studies in the
86
+ ferroin-catalyzed BZ reaction in a petri-dish, as described
87
+ in detail in Ref. [9]. Briefly, we start with the following
88
+ initial reagents: [H2SO4] = 0.16 M, [NaBrO3] = 40 mM,
89
+ [Malonic acid] = 40 mM, and [Ferroin] = 0.5 mM. The
90
+ reaction mixture is embedded in 1.4 % w/v of agar gel
91
+ to avoid any hydrodynamic perturbations.
92
+ The single
93
+ reaction layer of thickness 3 × 10−3 m is taken in a glass
94
+ petri dish of diameter 0.1 m. A circular excitation wave is
95
+ created at the center of the reaction medium by inserting
96
+ a silver wire. By disrupting the motion of the circular
97
+ wavefront, a pair of counter-rotating spirals are created.
98
+ To generate a pinned spiral wave, a glass bead of diameter
99
+ 1.2 mm is carefully placed at the tip of one of the spirals.
100
+ arXiv:2301.01040v1 [nlin.PS] 3 Jan 2023
101
+
102
+ 2
103
+ FIG. 1. (a) Schematic diagram of the experimental system: The positions of two pairs of field electrodes with respect
104
+ to the glass bead are shown schematically (not to scale). Unpinning of an anti-clockwise rotating spiral using CPEF:
105
+ (b) An ACW rotating spiral pinned to a spherical bead of diameter 1.2 mm in the experiment. The natural period of pinned
106
+ spiral tip Ts = 297 s. (c) An applied CPEF of strength E0 ≃ 1.38 V/cm, and period TE = 125 s unpins the spiral tip from
107
+ the obstacle. (d) An ACW rotating spiral pinned to an obstacle of diameter 1.0 s.u in the simulation with Ts = 1.77 t.u is
108
+ subjected to a CPEF of strength E0 ≃ 0.6 and period TE = 1.18 t.u. The unpinned spiral tip drifts away from the obstacle at
109
+ t = 1.27 t.u. The arrows show the direction of the applied CPEF.
110
+ The pinning of the spiral tip to the obstacle is confirmed
111
+ after 1-2 rotations. An anticlockwise circularly polarized
112
+ electric field (CPEF) is applied using two pairs of copper
113
+ electrodes as in Fig. 1(a). Images of the reaction medium
114
+ are recorded using a CCD camera at every 30s interval
115
+ for 1 − 2 hours.
116
+ To model this experiment, we use a two-dimensional
117
+ Oregonator model. The model equations are given by
118
+ ∂u
119
+ ∂t = 1
120
+ ϵ (u(1−u)−fv(u − q)
121
+ u + q
122
+ )+Du∇2u+Mu( ⃗E·∇u) (1)
123
+ ∂v
124
+ ∂t = u − v + Dv∇2v + Mv( ⃗E · ∇v).
125
+ (2)
126
+ Here, u is the activator variable, and v is the in-
127
+ hibitor variable (corresponding to the rescaled concen-
128
+ trations of [HBrO2] and the catalyst, respectively). ⃗E =
129
+ E0cos( 2πt
130
+ T )ˆx + E0sin( 2πt
131
+ T )ˆy is the circularly polarized
132
+ electric field.
133
+ The electric field is added as an advec-
134
+ tion term for the variables u and v. An obstacle is added
135
+ to this domain by setting the diffusion coefficient of the
136
+ activator to a very low value. Details of the model and
137
+ the simulations are given in Ref. [9].
138
+ The rotating chemical wave in the BZ reaction medium
139
+ can get anchored into the boundary of the glass bead and
140
+ form a very stable pinned wave, as shown in Fig. 1(b). A
141
+ similar situation occurs in the numerical simulation of the
142
+ model equations, where the spiral wave can get anchored
143
+ to the obstacle in the domain. It is known that this wave
144
+ can be unpinned with an electric field [9, 24]. Here we
145
+ employ the circularly polarized electric field (CPEF) us-
146
+ ing two cross-electrodes (see Fig 1.(a)). The CPEF can
147
+ unpin the wave if the amplitude of the electric field equals
148
+ or exceeds a certain threshold value (Eth), as shown in
149
+ Fig. 1(c). An arrow indicates the instantaneous direc-
150
+ tion of the electric field. Similar unpinning is also seen
151
+ in the simulations [Fig. 1(d)]. To understand the unpin-
152
+ ning process, we measure the location at which the wave
153
+ unpins from the obstacle.
154
+ We can quantify the spiral
155
+ location by the phase of the spiral tip on the obstacle
156
+ boundary. The phase is the angle of the spiral tip, mea-
157
+ sured in degrees from the +x-axis along the anticlock-
158
+ wise direction with the obstacle center as the origin. The
159
+ phase of the spiral when we start the CPEF is denoted
160
+ by φ0 and the phase when the spiral unpins from the
161
+ boundary is denoted by φu [Fig. 2]. The instantaneous
162
+ direction of the electric field is denoted by the angle θE.
163
+ The direction of the spiral is along the tangent at the
164
+ obstacle, and this direction is denoted by ˆrt. We define
165
+ the pacing ratio, p, as the ratio of the frequency of the
166
+ CPEF (ωcp) to that of the spiral (ωs), i.e., p = ωcp/ωs.
167
+ We have varied p from 0.25 to 3.
168
+
169
+ t=0s
170
+ t=78.5s
171
+ t=178.5s
172
+ t=300s
173
+ (a)
174
+ (b)
175
+ (c)
176
+ t=0s
177
+ t=110s
178
+ t=176s
179
+ t=375s
180
+ t=0
181
+ t=0.57
182
+ (p)
183
+ t=0.3
184
+ FIG. 2. Schematic diagram showing the phase measurements:
185
+ φ0 and φu are the phase of the spiral tip at t = 0 and at the
186
+ time of unpinning respectively. θE denotes the phase of the
187
+ electric field ⃗E and ˆrt is the tangential vector of spiral rotation
188
+ on the obstacle boundary.
189
+ All phases are measured in the
190
+ anticlockwise direction from the +x axis, with the obstacle
191
+ center as the origin. The tail of the resultant field vector ⃗E
192
+ marked with a + sign is mentioned as the anode and the head
193
+ with a − sign is the cathode.
194
+ Our observations can be summarised as follows: (1)
195
+ The chemical wave can be unpinned with CPEF for all
196
+ pacing ratios (between 0.25 to 3), provided the strength
197
+ of the electric field is equal or above a threshold.
198
+ 0
199
+ 1
200
+ 2
201
+ 3
202
+ 0
203
+ 100
204
+ 200
205
+ 300
206
+ 400
207
+ 500
208
+ 600
209
+ 700
210
+ 800
211
+ 900
212
+ 1000
213
+ 1100
214
+ 1200
215
+ 1300
216
+ theory
217
+ 0
218
+ 1
219
+ 2
220
+ 3
221
+ (a) Experiment
222
+ (b) Simulation
223
+ Pacing Ratio (p)
224
+ (
225
+ u-
226
+ 0) in degrees
227
+ 0 = 45
228
+ 0 = 135
229
+ 0 = 225
230
+ 0 = 315
231
+ FIG. 3. Unpinning at E = Eth: For spirals with different
232
+ φ0, the phase difference (φu- φ0) is plotted (solid curve) with
233
+ the pacing ratio, p in (a) experiments and (b) simulations.
234
+ The solid theory lines represent the phases where the unpin-
235
+ ning condition is satisfied for the first time (Eq.4). The dashed
236
+ lines at the top correspond to the phases where the spiral un-
237
+ pins when the unpinning condition is met a second time in its
238
+ subsequent rotations. Most of the cases with φ0 = 3150 show
239
+ a delayed unpinning.
240
+ There is no cut-off frequency and both overdrive pac-
241
+ ing (p > 1) and underdrive pacing (p < 1) are equally
242
+ effective. (2) The spiral unpinning phase φu varies lin-
243
+ early with φ0. It increases for overdrive pacing and de-
244
+ creases for underdrive pacing (Fig. 4). (3) (φu- φ0) varies
245
+ with the pacing ratio, p, as in Fig. 3. (4) Unpinning is
246
+ not guaranteed within one rotation of the spiral. In a
247
+ few cases, where either the relative rotation of the spiral-
248
+ field pair varies quickly (extremely overdrive or under-
249
+ drive pacing), or φ0 lies close to the expected φu (i.e.,
250
+ (φu - φ0) ≈ 0), the spiral misses unpinning at the first
251
+ expected phase. Here, the unpinning may happen later at
252
+ a phase where the unpinning condition is satisfied again
253
+ (dashed lines in Fig. 3).
254
+ (5) It takes several rotations
255
+ for the chemical wave to unpin as p approaches 1 (when
256
+ the spiral and the CPEF are rotating with the same fre-
257
+ quency). For resonant pacing (p = 1), the wave cannot
258
+ be unpinned except for a small range of initial conditions
259
+ (φ0). This range increases with the strength of the elec-
260
+ tric field (Fig. 5).
261
+ 0
262
+ 100
263
+ 200
264
+ 300
265
+ 0
266
+ 200
267
+ 400
268
+ 600
269
+ 800
270
+ 1000
271
+ 0
272
+ 100
273
+ 200
274
+ 300
275
+ 0
276
+ 200
277
+ 400
278
+ 600
279
+ 800
280
+ 1000
281
+ (a) p=0.5
282
+ (b) p=1.5
283
+ (
284
+ u-
285
+ 0) in degrees
286
+ Initial Phase (
287
+ 0)
288
+ experiment
289
+ simulation
290
+ theory
291
+ FIG. 4. Unpinning at E = Eth: (a) The spiral phase differ-
292
+ ence (φu − φ0) is plotted against φ0 for p = 0.5 (underdrive
293
+ pacing). (b) same as (a) but for p = 1.5 (overdrive pacing).
294
+ In both cases (φu − φ0) varies linearly with φ0. The dashed
295
+ line indicates the unpinning during the subsequent rotations
296
+ of the electric field. To plot the theory line for φ0 ≥ 2700, we
297
+ have added ∓2π to Eq.3 and Eq.4 respectively. Otherwise,
298
+ the lines keep on decreasing or increasing linearly for under-
299
+ drive and overdrive pacing respectively. Circles and triangles
300
+ represent the experiment and simulation data respectively.
301
+ These results can be analyzed in light of our recent
302
+ work with the DC electric fields [9].
303
+ We found that
304
+ the electric field exerts a retarding force on the chemical
305
+ wavefront, which is maximum when the field direction is
306
+ along the direction of the wavefront. For a CPEF with
307
+ field strength E = Eth this condition is satisfied when
308
+ ⃗E. ˆrt = 0.
309
+ From this, we can estimate the unpinning
310
+ angle as,
311
+ φu = pφ0 + 90
312
+ p − 1
313
+ ; p > 1
314
+ (3)
315
+ φu = 270 − pφ0
316
+ 1 − p
317
+ ; p < 1
318
+ (4)
319
+ When E = Eth, the wave can be unpinned only when
320
+ θE − φ0 = 90. The theoretical solid curves in Figs. 4 and
321
+
322
+ E(t = tunpinning
323
+ E(t = 0)
324
+ +4
325
+ 3 are based on the above equation.
326
+ For a field strength greater than Eth, the wave must
327
+ unpin when the component of ⃗E along ˆrt reaches the crit-
328
+ ical threshold, i.e., ⃗E. ˆrt ≥ Eth. This condition gives an
329
+ upper-bound and lower-bound for possible spiral unpin-
330
+ ning phases φu.
331
+ For overdrive pacing with p > 1, the unpinning phase
332
+ window is given by
333
+ pφ0 + sin−1( Eth
334
+ E )
335
+ p − 1
336
+ ≤ φu ≤ pφ0 + π − sin−1( Eth
337
+ E )
338
+ p − 1
339
+ (5)
340
+ with a width ∆φu = π−2 sin−1(
341
+ Eth
342
+ E )
343
+ p−1
344
+ . In most of the cases,
345
+ the unpinning condition (Eq. 5) is satisfied at the lower
346
+ bound of this range. However, unpinning is possible at
347
+ any point inside the window (refer Fig.1 in the supple-
348
+ mentary material).
349
+ For underdrive pacing i.e, for p < 1, the unpinning
350
+ phase window is
351
+ π + sin−1( Eth
352
+ E ) − pφ0
353
+ 1 − p
354
+ ≤ φu ≤ 2π − pφ0 − sin−1( Eth
355
+ E )
356
+ 1 − p
357
+ (6)
358
+ The width of this window is ∆φu = π−2 sin−1(
359
+ Eth
360
+ E )
361
+ 1−p
362
+ . De-
363
+ pending on the strength of the electric field, the width
364
+ of the window increases. The window reduces to a point
365
+ when E = Eth.
366
+ For p = 1, unpinning happens only if the following
367
+ condition is satisfied.
368
+ π + sin−1(Eth
369
+ E ) ≤ φ0 ≤ 2π − sin−1(Eth
370
+ E )
371
+ (7)
372
+ Thus for p = 1 the range of initial phases that lead to un-
373
+ pinning increases with the field strength, E. Figure. 5(a)
374
+ shows the initial spiral phases that lead to successful un-
375
+ pinning as a function of Eth
376
+ E .
377
+ FIG. 5. Unpinning of spiral wave with pacing ratio, p = 1 for
378
+ different field strength: π + sin−1( Eth
379
+ E ) and 2π − sin−1( Eth
380
+ E )
381
+ are the lower and upper limit of the range of possible φ0-values
382
+ which gives successful unpinning for p = 1. The shaded re-
383
+ gion corresponds to the cases of successful unpinning. Circles
384
+ and diamonds represent the experiment and simulation data
385
+ respectively.
386
+ In summary, we have presented the first experimen-
387
+ tal studies using a circularly polarized electric field to
388
+ unpin an excitation wave. We observed unpinning with
389
+ overdrive, underdrive and resonant pacing. Because of
390
+ the charge on the chemical wavefront, the mechanism of
391
+ chemical wave unpinning differs from that in other ex-
392
+ citable media. The wave unpins when the electric field
393
+ component along the tangential direction of spiral prop-
394
+ agation is equal or more than the critical threshold; i.e.,
395
+ when the electric force opposite to the instantaneous
396
+ spiral propagation is above the threshold value. Based
397
+ on this condition, we are able to predict the unpinning
398
+ phase, and the same has been verified in simulations and
399
+ in experiments.
400
+ The unpinning of a rotating chemical wave presents a
401
+ unique physical situation. In our studies, the unpinning
402
+ happens when the anode ‘catches’ the spiral from behind
403
+ while chasing it. If it fails to halt the wave and overtakes
404
+ it, it has to come back again to act on it. i.e., the wave
405
+ can only be unpinned while propagating away from the
406
+ anode. A similar kind of asymmetry in the chemical wave
407
+ behavior in an external electric field has been observed
408
+ in previous studies. The speed of chemical wave propa-
409
+ gation decreases as it propagates towards the anode and
410
+ it decreases as it rotates away from it. Depending on the
411
+ velocity, the size of a free spiral core varies; as the spiral
412
+ accelerates, the core-size decreases, and as it decelerates
413
+ the core-size increases [27]. As a result, a drift of the
414
+ spiral tip occurs in the medium. The drift occurs with a
415
+ parallel component which is always directed towards the
416
+ anode and a chirality-dependent perpendicular compo-
417
+ nent [29]. The phenomenon of spiral drift is addressed in
418
+ numerous experimental and computational studies with
419
+
420
+ experiment
421
+ simulation
422
+ 360
423
+ 2π - sin
424
+ No unpinning
425
+ E
426
+ 270
427
+ Eth
428
+ π + sin
429
+ 180
430
+ E
431
+ No unpinning
432
+ 90
433
+ 0
434
+ 0.6
435
+ 0.7
436
+ 0.8
437
+ 0.9
438
+ 1.0
439
+ Eth
440
+ E5
441
+ dc, ac, and polarized electric fields [29–31]. Most of the
442
+ important field effects in the BZ reaction could be ex-
443
+ plained with the electromigration of Br− and Fe3+ ions.
444
+ Only a few studies investigated the effect of an electric
445
+ field on a pinned spiral wave in the BZ reaction. In a
446
+ unidirectional field, the spiral always unpins as it rotates
447
+ away from the anode [9, 24]. In light of previous results,
448
+ we can assume that the wave can only be unpinned when
449
+ it is retarded by the electric field, and not when it is accel-
450
+ erated by it. During retardation, the core size increases,
451
+ and the spiral can only pin weakly to obstacles smaller
452
+ than the spiral core [14, 32]. This could be the reason
453
+ for the asymmetric nature of the unpinning. As a proto-
454
+ type model, the BZ reaction is expected to show all the
455
+ qualitative features observed in other excitable systems.
456
+ On the contrary, our studies show that the chemical ex-
457
+ citation waves interact uniquely with an external electric
458
+ field.
459
+ ACKNOWLEDGMENTS
460
+ We thank Beneesh P B, Deepu Vijayasenan, Ajith K
461
+ M, K V Gangadharan, and Muhammed Mansoor C B
462
+ for discussions.
463
+ Experiments were conducted using a
464
+ grant (ECR/2016/000983) from Science and Engineering
465
+ Research Board, Department of Science and Technology
466
+ (SERB-DST), India.
467
+ AUTHOR CONTRIBUTIONS
468
+ S.V.A and T.K.S conceived the study.
469
+ S.V.A per-
470
+ formed the experiments, and P.S. built the experimen-
471
+ tal setup. S.P and A.S performed numerical simulations.
472
+ S.V.A, A.S, and T.K.S analysed the data. A.S and T.K.S
473
+ developed the theory. S.V.A and T.K.S wrote the paper.
474
+ All authors helped to edit the paper.
475
+ [1] S. Luther, F. H. Fenton, B. G. Kornreich, A. Squires,
476
+ P.
477
+ Bittihn,
478
+ D.
479
+ Hornung,
480
+ M.
481
+ Zabel,
482
+ J.
483
+ Flanders,
484
+ A. Gladuli, L. Campoy, and et al., Nature 475, 235
485
+ (2011).
486
+ [2] X. Huang, W. C. Troy, Q. Yang, H. Ma, C. R. Laing,
487
+ S. J. Schiff, and J.-Y. Wu, J. Neurosci. 24, 9897 (2004).
488
+ [3] Y. Yu, L. M. Santos, L. A. Mattiace, M. L. Costa, L. i. C.
489
+ Ferreira, K. Benabou, A. H. Kim, J. Abrahams, M. V.
490
+ Bennett, and R. Rozental, Proc. Natl. Acad. Sci. U.S.A.
491
+ 109, 2585 (2012).
492
+ [4] J. Noorbakhsh, D. J. Schwab, A. E. Sgro, T. Gregor, and
493
+ P. Mehta, Phys. Rev. E 91, 062711 (2015).
494
+ [5] K. Kamino,
495
+ Y. Kondo,
496
+ A. Nakajima,
497
+ M. Honda-
498
+ Kitahara, K. Kaneko, and S. Sawai, Proc. Natl. Acad.
499
+ Sci. U.S.A. 114, E4149 (2017).
500
+ [6] Y. Zhang, F. Wu, C. Wang, and J. Ma, Phys. A: Stat.
501
+ Mech. Appl. 521, 519 (2019).
502
+ [7] V. S. Zykov, Philos. Trans. Royal Soc. A 376, 20170379
503
+ (2018).
504
+ [8] S.
505
+ Sinha
506
+ and
507
+ S.
508
+ Sridhar,
509
+ Patterns in excitable media: Genesis, dynamics, and control
510
+ (CRC Press, 2014).
511
+ [9] S.
512
+ V.
513
+ Amrutha,
514
+ A.
515
+ Sebastian,
516
+ P.
517
+ Sibeesh,
518
+ S. Punacha, and T. K. Shajahan, J. Phys. Chem.
519
+ C 10.1021/acs.jpcc.2c01452 (2022).
520
+ [10] O. Steinbock, J. Sch¨utze, and S. M¨uller, Phys. Rev. Lett.
521
+ 68, 248 (1992).
522
+ [11] C. Jin, C. Kr¨uger, and C. C. Maass, Proc. Natl. Acad.
523
+ Sci. U.S.A. 114, 5089 (2017).
524
+ [12] A. Ryabchun, D. Babu, J. Movilli, R. Plamont, M. C.
525
+ Stuart, and N. Katsonis, Chem 8, 2290 (2022).
526
+ [13] M. Sutthiopad, J. Luengviriya, P. Porjai, M. Phantu,
527
+ J. Kanchanawarin, S. C. M¨uller, and C. Luengviriya,
528
+ Phys. Rev. E 91, 052912 (2015).
529
+ [14] Z. Y. Lim, B. Maskara, F. Aguel, R. Emokpae Jr, and
530
+ L. Tung, Circulation 114, 2113 (2006).
531
+ [15] C. W. Zemlin and A. M. Pertsov, Phys. Rev. Lett. 109,
532
+ 038303 (2012).
533
+ [16] T. K. Shajahan, S. Sinha, and R. Pandit, Phys. Rev. E
534
+ 75, 11929 (2007).
535
+ [17] P. Bittihn, A. Squires, G. Luther, E. Bodenschatz, V. I.
536
+ Krinsky, U. Parlitz, and S. Luther, Philos. Trans. A.
537
+ Math. Phys. Eng. Sci. 368, 2221 (2010).
538
+ [18] R. Gray and J. Wikswo, Nature 475, 181 (2011).
539
+ [19] S. Punacha,
540
+ S. Berg,
541
+ A. Sebastian,
542
+ V. I. Krinski,
543
+ S. Luther, and T. Shajahan, Proc. R. Soc. A 475,
544
+ 20190420 (2019).
545
+ [20] X. Feng, X. Gao, D.-B. Pan, B.-W. Li, and H. Zhang,
546
+ Sci. Rep. 4, 4831 (2014).
547
+ [21] D.-B. Pan, X. Gao, X. Feng, J.-T. Pan, and H. Zhang,
548
+ Sci. Rep. 6, 1 (2016).
549
+ [22] X. Feng, X. Yin, J. Wen, H. Wu, and X. Gao, Chaos 32,
550
+ 093145 (2022).
551
+ [23] S. Punacha, A. N K, and T. K. Shajahan, Phys. Rev. E
552
+ 102, 032411 (2020).
553
+ [24] M. Sutthiopad, J. Luengviriya, P. Porjai, B. Tomapatan-
554
+ aget, S. C. M¨uller, and C. Luengviriya, Phys. Rev. E 89,
555
+ 052902 (2014).
556
+ [25] A.
557
+ Pumir,
558
+ V.
559
+ Nikolski,
560
+ M.
561
+ H¨orning,
562
+ A.
563
+ Isomura,
564
+ K. Agladze, K. Yoshikawa, R. Gilmour, E. Bodenschatz,
565
+ and V. Krinsky, Phys. Rev. Lett. 99, 208101 (2007).
566
+ [26] Z. A. Jim´enez, Z. Zhang, and O. Steinbock, Phys. Rev.
567
+ E 88, 052918 (2013).
568
+ [27] K. Agladze and P. De Kepper, J. Phys. Chem. 96, 5239
569
+ (1992).
570
+ [28] L. Ji, Y. Zhou, Q. Li, C. Qiao, and Q. Ouyang, Phys.
571
+ Rev. E 88, 042919 (2013).
572
+ [29] B. Schmidt and S. C. M¨uller, Phys. Rev. E 55, 4390
573
+ (1997).
574
+ [30] J.-X. Chen, H. Zhang, and Y.-Q. Li, J. Chem. Phys. 124,
575
+ 014505 (2006).
576
+ [31] T.-C. Li, X. Gao, F.-F. Zheng, D.-B. Pan, B. Zheng, and
577
+ H. Zhang, Sci. Rep. 7, 1 (2017).
578
+ [32] A.
579
+ Pumir,
580
+ S.
581
+ Sinha,
582
+ S.
583
+ Sridhar,
584
+ M.
585
+ Argentina,
586
+ M. H¨orning, S. Filippi, C. Cherubini, S. Luther, and
587
+ V. Krinsky, Phys. Rev. E 81, 010901 (2010).
588
+
589
+ SUPPLEMENTARY MATERIALS
590
+ I.
591
+ UNPINNING FOR E > Eth
592
+ FIG. 1. Unpinning at E > Eth (sin−1( Eth
593
+ E ) = 48.950): Spiral waves with different φ0 are unpinned
594
+ in a CPEF with both under-drive (p < 1) and over-drive pacing (p > 1). The solid bottom line
595
+ represents the lower limit of the range of possible φu-values given by the relation φu = (pφ0 +
596
+ 48.95)/(p−1) for over-drive pacing and φu = (π −pφ0 +48.59)/(1−p) for under-drive pacing. The
597
+ upper limit of the range of possible φu-values, given by the relation φu = (pφ0 + π − 48.95)/(p − 1)
598
+ for over-drive pacing and φu = (2π−pφ0−48.59)/(1−p) for under-drive pacing, are represented by
599
+ the top dashed line. For φ0 = 3150, the above equations must be added with 2π to get the positive
600
+ phase values. Circles and triangles represent the experiment and simulation data respectively.
601
+ 1
602
+ arXiv:2301.01040v1 [nlin.PS] 3 Jan 2023
603
+
604
+ experiment
605
+ simulation
606
+ LowerLimit
607
+ 800
608
+ Φo=45
609
+ =135
610
+ Upper Limit
611
+ 700
612
+ 009
613
+ 600
614
+ 500
615
+ 500
616
+ 400
617
+ 400
618
+ 300
619
+ 300
620
+ degrees
621
+ 200
622
+ 200
623
+ 100
624
+ 100
625
+ 0
626
+ .s
627
+ 0.5
628
+ 0.0
629
+ 0.5
630
+ 1.0
631
+ ¥3.0
632
+ 0.0
633
+ 1.0
634
+ 1.5
635
+ 1.5
636
+ 2.0
637
+ 2.5
638
+ ¥2.02.5
639
+ 3.0
640
+ (o
641
+ 700
642
+ 700
643
+ )=225
644
+ d)Φo=315
645
+
646
+ 600
647
+ 600
648
+ nd)
649
+ 500
650
+ 500
651
+ 400
652
+ 400
653
+ 300
654
+ 300
655
+ 200
656
+ 200
657
+ 100
658
+ 100
659
+ 0
660
+ 0
661
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
662
+ 0.0 0.5 1.0 1.5 2.0 2.5 3.0
663
+ Pacing Ratio(P)Fig.1 shows the unpinning phase window at E > Eth for different initial phases of the
664
+ spiral. Here, the solid lines correspond to the lower limit, and the dashed lines correspond
665
+ to the upper limit of the window according to the equations ?? and ??. The unpinning
666
+ always happens at a phase within this range. The width of the window varies with the field
667
+ strength.
668
+ II.
669
+ COMPARISON BETWEEN PINNING OBSTACLES OF DIFFERENT GEOM-
670
+ ETRY
671
+ The results of spiral unpinning from spherical beads are presented in the paper. For
672
+ comparison, we have performed similar experiments using cylindrical rods. The experimental
673
+ setup is the same as in figue.??a. A cylindrical glass rod of length ≈ 4 mm is inserted
674
+ vertically into the medium.
675
+ FIG. 2. Comparison of unpinning of spiral pinned to spherical bead and cylindrical rod: φu is
676
+ plotted against the pacing ratio,p where p > 1. φ0 = 450 and E = 1.38 V/cm. The diameter of
677
+ the obstacles are same and equals 1.2 mm.
678
+ Figure.3 shows the variation of unpinning phase with the pacing ratio for a cylindrical
679
+ obstacle of radius 1.2 mm.
680
+ The unpinning phases for a spherical bead have also been
681
+ shown, and in both cases, unpinning occurs at phases that are consistent with the theoretical
682
+ predictions.
683
+ 2
684
+
685
+ bead
686
+ 350
687
+ rod
688
+ Equation
689
+ 300
690
+ 250
691
+ 200
692
+ 150
693
+ 100
694
+ 1.50
695
+ 1.75
696
+ 2.00
697
+ 2.25
698
+ 2.50
699
+ 2.75
700
+ 3.00
701
+ Pacing Ratio (p)III.
702
+ COMPARISON BETWEEN NUMERICAL MODELS
703
+ In this letter, we have used a two-variable reduction of the original three-variable Oreg-
704
+ onator model. Here we compare the unpinning studies using both two and three-variable
705
+ models.
706
+ The three-variable Oregonator model consists of the following equations [? ].
707
+ ∂u
708
+ ∂t = 1
709
+ ϵ(qw − uw + u(1 − u)) + Du∇2u
710
+ (1)
711
+ ∂v
712
+ ∂t = u − v + Dv∇2v + Mv( ⃗E · ∇v)
713
+ (2)
714
+ ∂w
715
+ ∂t = 1
716
+ ϵ′(−qw − uw + fv) + Dw∇2w + Mw( ⃗E · ∇w)
717
+ (3)
718
+ The variables u, v and w represent the re-scaled dimensionless concentrations of HBrO2,
719
+ Fe3+, and Br− respectively. The model parameters are q = 0.002, f = 1.4, ϵ = 0.01 as in
720
+ Numerical methods in the manuscript along with an additional parameter, ϵ′ = 0.0001. For
721
+ both variables v and w, the electric field ⃗E is added as an advection term. However, the
722
+ variable u is unaffected in the presence of an electric field as it corresponds to the charge-less
723
+ species HBrO2. The values of the ionic mobilities are Mu = 0, Mv = -2, and Mv = 1. The
724
+ simulation details can be obtained from our recent paper [? ].
725
+ FIG. 3. Comparison of spiral unpinning obtained in two and three-variable Oregonator models: φu
726
+ is plotted against the pacing ratio,p where p > 1. φ0 = 450 and E = 0.6. The obstacle diameter is
727
+ 1.0 s.u.
728
+ 3
729
+
730
+ 2-variable
731
+ 350
732
+ 3-variable
733
+ Equation
734
+ 300
735
+ 250
736
+ 200
737
+ 150
738
+ 100
739
+ 1.50
740
+ 1.75
741
+ 2.00
742
+ 2.25
743
+ 2.50
744
+ 2.75
745
+ 3.00
746
+ Pacing Ratio (p)Using the three-variable model, we measured the unpinning phase of an ACW spiral
747
+ pinned to an obstacle of radius, r=1.0 s.u in an electric field of strength Eth = 0.6. The
748
+ unpinning is done for a fixed initial phase with overdrive pacing. The results are in good
749
+ agreement with those obtained from the two-variable Oregonator model and from the theory.
750
+ 4
751
+
FdAzT4oBgHgl3EQfHPsU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GtFJT4oBgHgl3EQfEiwz/content/tmp_files/2301.11437v1.pdf.txt ADDED
@@ -0,0 +1,2537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11437v1 [math.NT] 26 Jan 2023
2
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION
3
+ FIELDS
4
+ ANDREW YAO
5
+ Abstract. Let K be a global function field. Using Haar measures, we compute the
6
+ densities of the Kodiara types and Tamagawa numbers of elliptic curves over a completion
7
+ of K. Also, we prove results about the number of iterations of Tate’s algorithm that are
8
+ completed when the algorithm is used on elliptic curves over a completion of K.
9
+ 1. Introduction
10
+ Let p be a prime and q = pn for a positive integer n. Let K be a finite extension
11
+ of Fq(t). Define MK to be the set of places of K. Suppose P ∈ MK. Let KP be the
12
+ completion of K at P and RP be the valuation ring of KP. Suppose E is an elliptic curve
13
+ over K with equation
14
+ E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
15
+ such that a1, a2, a3, a4, and a6 are elements of K. E has a long Weierstrass form, and if
16
+ a1 = a2 = a3 = 0, E has a short Weierstrass form. We study densities for elliptic curves
17
+ over K that have a long Weierstrass form.
18
+ As an elliptic curve over KP, E has a Kodaira type, which describes its geometry.
19
+ Particularly, E has a Tamagawa number cP = [E(KP) : E0(KP)] over KP. A method
20
+ to determine the Kodaira type and Tamagawa number of an elliptic curve over KP is
21
+ Tate’s algorithm ([6], [7]). The description of Tate’s algorithm in [6] is used in this paper
22
+ to compute local densities. Often, steps from this description of Tate’s algorithm are
23
+ referred to.
24
+ The papers [2] and [3] discuss densities of Kodaira types and Tamagawa products for
25
+ elliptic curves over Q. In these papers, the densities at the nonarchimedean places of
26
+ Q are considered. In [2] and [3], the densities are for elliptic curves in long and short
27
+ Weierstrass form, respectively.
28
+ Moreover, [1] discusses densities of Kodaira types and
29
+ Tamagawa products for elliptic curves over number fields in short Weierstrass form. Note
30
+ that some of the methods for computing local densities with Tate’s algorithm used in
31
+ Section 4, Section 5, and Section 6 of this paper are similar to methods used in [1], [2],
32
+ and [3].
33
+ Local densities over KP can be obtained using the Haar measure. Let N be a positive
34
+ integer. Note that KN
35
+ P as an additive group is locally compact, and because of this, Haar’s
36
+ theorem can be used on KN
37
+ P . Particularly, suppose µP is the Haar measure on KN
38
+ P such
39
+ that µP(RN
40
+ P ) = 1.
41
+ Let GP be the set of curves y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 over KP such that
42
+ a1, a2, a3, a4, a6 ∈ RP. Because the discriminant of an elliptic curve must be nonzero, not
43
+ 1
44
+
45
+ 2
46
+ ANDREW YAO
47
+ all elements of GP are elliptic curves. Also, note that GP can be considered to be R5
48
+ P.
49
+ The local densities for GP are obtained from the Haar measure on R5
50
+ P.
51
+ Definition 1.1. For an elliptic curve E ∈ GP, let NP(E) be the number of iterations of
52
+ Tate’s algorithm that are completed when the algorithm is used on E.
53
+ Suppose T is the set of Kodaira types. Let r be an element of T and n be a positive
54
+ integer. Define δK(r, n; P) to be the Haar measure of the set of elliptic curves E over KP
55
+ with coefficients in RP such that E has Kodaira type r and the Tamagawa number of E
56
+ is n. For k ≥ 0, define δK(r, n, k; P) to be the Haar measure of the set of elliptic curves E
57
+ over KP with coefficients in RP such that E has Kodaira type r, the Tamagawa number
58
+ of E is n, and NP(E) = k.
59
+ In this paper, we often consider the number of iterations that Tate’s algorithm completes
60
+ when the algorithm is used on an elliptic curve over KP. Note that in order to study this
61
+ topic, Proposition 2.4 is useful. Next, we give an important result of the paper.
62
+ Theorem 1.2. For a Kodaira type r, positive integer n, and nonnegative integer k,
63
+ δK(r, n, k; P) =
64
+ 1
65
+ Q10k
66
+ P
67
+ δK(r, n, 0; P).
68
+ We prove Theorem 1.2 by considering the cases p ≥ 5, p = 3, and p = 2. Note that the
69
+ general method used to prove the theorem is to use translations. The proof of this result
70
+ is given in Section 7.1.
71
+ Organization. The paper is organized as follows. In Section 2, we introduce elliptic
72
+ curves and Tate’s algorithm. Next, in Section 3, for a nonempty finite subset S of MK
73
+ and a positive integer N, we discuss how to obtain global densities for ON
74
+ K,S. Afterwards,
75
+ in Section 4, Section 5, and Section 6, we compute the local densities if the characteristic
76
+ p of K is at least 5, equal to 2, and equal to 3, respectively. Finally, in Section 7, we
77
+ prove additional results about local and global densities.
78
+ Notation. Suppose P is a place of K. Let the degree of P be [RP/πPRP : Fq]. Also,
79
+ let QP = |RP/πPRP|. Moreover, let πP be a uniformizer of P in K. Denote vP to be
80
+ the valuation vπP over KP; note that vP is also a valuation over K because K ⊂ KP.
81
+ Additionally, for a nonnegative integer k, let LP,k be a set of representatives of the cosets
82
+ of RP/πk
83
+ PRP such that 0 ∈ LP,k.
84
+ Suppose S is a finite nonempty subset of MK. We let OK,S be the set of x ∈ K such
85
+ that if P ∈ SC = MK\S, vP(x) ≥ 0. Also, let WS be the set of curves y2 + a1xy + a3y =
86
+ x3 + a2x2 + a4x + a6 such that a1, a2, a3, a4, a6 ∈ OK,S.
87
+ For d ≥ 1, let Td be the number of places of P with degree d. The zeta function of K is
88
+ ζK(s) =
89
+
90
+
91
+ d=1
92
+
93
+ 1 − 1
94
+ qds
95
+ �−Td
96
+ .
97
+ Suppose D is a divisor of K. Define L(D) as the set of x ∈ K such that x = 0 or x ̸= 0
98
+ and (x) + D ≥ 0.
99
+ Acknowledgements. This research was done in MIT SPUR. The author would like
100
+ to thank Hao Peng for providing useful guidance. Also, the author would like to thank
101
+ Zhiyu Zhang for suggesting the problem. Additionally, the author would like to thank
102
+ David Jerison and Ankur Moitra for giving advice about the project.
103
+
104
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
105
+ 3
106
+ 2. Elliptic Curves and Global Densities
107
+ Suppose P is a place of K. Let E be an elliptic curve over KP. There exist a1, a2, a3, a4, a6 ∈
108
+ KP such that E has equation
109
+ E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6.
110
+ Suppose a1, a2, a3, a4, a6 ∈ KP satisfy this condition. Additionally, define
111
+ b2(E) = a2
112
+ 1 + 4a2, b4(E) = a1a3 + 2a4, b6(E) = a2
113
+ 3 + 4a6,
114
+ b8(E) = a2
115
+ 1a6 + 4a2a6 − a1a3a4 + a2a2
116
+ 3 − a2
117
+ 4.
118
+ Also, the discriminant of E is
119
+ ∆(E) = −b2(E)2b8(E) − 8b4(E)3 − 27b6(E)2 + 9b2(E)b4(E)b6(E).
120
+ Definition 2.1 ([7]). Elliptic curves E and F over KP are equivalent if there exists
121
+ l, m, n, u ∈ KP such that u ̸= 0 and the equation for F can be obtained from the equation
122
+ for E by first replacing x with u2x + n and y with u3y + lu2x + m and then dividing by
123
+ u6.
124
+ Definition 2.2 ([7]). An elliptic curve E over KP is minimal if the equation for E has
125
+ coefficients in RP and if there does not exist an elliptic curve F over KP such that the
126
+ equation for F has coefficients in RP, F is equivalent to E, and vP(∆(F)) < vP(∆(E)).
127
+ The following proposition generalizes Theorem 3.2 of [7] to nonminimal equivalent el-
128
+ liptic curves.
129
+ Note that this proposition is used later in the paper to compute local
130
+ densities.
131
+ Proposition 2.3. Let E and F be elliptic curves over KP that have equations with co-
132
+ efficients in RP. Assume that E and F are equivalent and satisfy vP(∆(E)) = vP(∆(F)).
133
+ Then, there exists l, m, n, u ∈ RP such that vP(u) = 0 and the equation of F can be ob-
134
+ tained from the equation of E by first replacing x with u2x+n and y with u3y +lu2x+m
135
+ and then dividing by u6.
136
+ Proof. The proof of Theorem 3.2 of [7] can be used to prove this proposition.
137
+
138
+ Proposition 2.4. Let k be a nonnegative integer. Suppose E is an elliptic curve over
139
+ KP with equation
140
+ E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6
141
+ and assume that a1, a2, a3, a4, a6 ∈ RP. For l, m, n ∈ KP, let E′(l, m, n) be the elliptic
142
+ curve that is E with x replaced by x + n and y replaced by y + lx + m. NP(E) ≥ k if and
143
+ only if there exists l, m, n ∈ RP such that if E′(l, m, n) has equation
144
+ E′(l, m, n) : y2 + a′
145
+ 1xy + a′
146
+ 3y = x3 + a′
147
+ 2x2 + a′
148
+ 4x + a′
149
+ 6,
150
+ a′
151
+ i ∈ πki
152
+ P RP for i ∈ {1, 2, 3, 4, 6}.
153
+ Proof. Suppose l, m, n exist. Let l, m, n satisfy the condition. From Tate’s algorithm, we
154
+ have that NP(E) = NP(E′(l, m, n)) ≥ k.
155
+ Next, we prove that if NP(E) ≥ k, l, m, and n exist using induction on k. The base
156
+ case k = 0 is clear. Let a be a nonnegative integer and assume the result is true for k = a.
157
+ We prove the result is true for k = a + 1. Assume NP(E) ≥ a + 1. Because NP(E) ≥ a,
158
+
159
+ 4
160
+ ANDREW YAO
161
+ l, m, n ∈ RP exist such that if x is replaced with x + n and y is replaced with y + lx + m,
162
+ the resulting curve E′(l, m, n) : y2+a′
163
+ 1xy+a′
164
+ 3y = x3+a′
165
+ 2x2+a′
166
+ 4x+a′
167
+ 6 has a′
168
+ i ≡ 0 (mod πia
169
+ P )
170
+ for i ∈ {1, 2, 3, 4, 6}. Suppose l, m, n ∈ RP satisfy this condition. Suppose that the curve
171
+ that is obtained after Tate’s algorithm is used for a iterations on E′(l, m, n) is
172
+ F : y2 + a′
173
+ 1
174
+ πa
175
+ P
176
+ xy + a′
177
+ 3
178
+ π3a
179
+ P
180
+ y = x3 + a′
181
+ 2
182
+ π2a
183
+ P
184
+ x2 + a′
185
+ 4
186
+ π4a
187
+ P
188
+ x + a′
189
+ 6
190
+ π6a
191
+ P
192
+ .
193
+ We have that F is E with x replaced with π2a
194
+ P x + n and y replaced with π3a
195
+ P y + lπ2a
196
+ P x + m
197
+ divided by π6a
198
+ P .
199
+ Because NP(E′(l, m, n)) = NP(E) ≥ a+ 1, F will complete at least one more iteration.
200
+ During this iteration, suppose x is replaced with x+n′ and y is replaced with y +l′x+m′.
201
+ We have that the resulting elliptic curve
202
+ F ′ : y2 + a′′
203
+ 1xy + a′′
204
+ 3y = x3 + a′′
205
+ 2x2 + a′′
206
+ 4x + a′′
207
+ 6
208
+ has a′′
209
+ i ≡ 0 (mod πi
210
+ P) for i ∈ {1, 2, 3, 4, 6}. Moreover, F ′ is E with x replaced with
211
+ π2a
212
+ P x + n + n′π2a
213
+ P
214
+ and y replaced with
215
+ π3a
216
+ P y + (l + l′πa
217
+ P)π2a
218
+ P x + m + m′π3a
219
+ P + ln′π2a
220
+ P
221
+ divided by π6a
222
+ P . The equation of
223
+ E′(l + l′πa
224
+ P, m + m′π3a
225
+ P + ln′π2a
226
+ P , n + n′π2a
227
+ P )
228
+ is
229
+ y2 + πa
230
+ Pa′′
231
+ 1xy + π3a
232
+ P a′′
233
+ 3y = x3 + π2a
234
+ P a′′
235
+ 2x2 + π4a
236
+ P a′′
237
+ 4x + π6a
238
+ P a′′
239
+ 6,
240
+ and πai
241
+ P a′′
242
+ i ∈ π(a+1)i
243
+ P
244
+ RP for i ∈ {1, 2, 3, 4, 6}.
245
+ This completes the induction.
246
+ We are
247
+ done.
248
+
249
+ Note that Tate’s algorithm cannot be used on a curve in GP with discriminant 0.
250
+ However, this is not considered in the calculations of local densities later in the paper.
251
+ Suppose r �� T, n is a positive integer, and k is a nonnegative integer. The set U of
252
+ elliptic curves E ∈ GP with Kodaira type r, Tamagawa number n, and M(E) = k is an
253
+ open subset of GP, because if E ∈ U, if multiples of πM
254
+ P are added to the coefficients of
255
+ E for sufficiently positive large integers M, the resulting curve will be an element of U.
256
+ Particularly, the set of elliptic curves is an open subset of GP. In the next proposition, we
257
+ prove that the Haar measure of this set is 1; note that it follows that the Haar measure
258
+ of the set of curves in GP with discriminant 0 is 0.
259
+ Proposition 2.5. The Haar measure of the set of elliptic curves is 1.
260
+ Proof. Let M be a positive integer. For E : y2 +a1xy +a3y = x3 +a2x2 +a4x+a6, we see
261
+ that the number of solutions for ai, i ∈ {1, 2, 3, 4, 6} modulo πM
262
+ P to ∆(E) ≡ 0 (mod πM
263
+ P )
264
+ is O(Q4M
265
+ P ). Therefore, the Haar measure of the set of elliptic curves with discriminant
266
+ equal to 0 is at most O(Q4M
267
+ P
268
+ )
269
+ Q5M
270
+ P
271
+ = O(
272
+ 1
273
+ QM
274
+ P ). The result follows from taking M → ∞.
275
+
276
+
277
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
278
+ 5
279
+ 3. Global Densities
280
+ Next, global densities are established. Definitions and theorems from [4] are used in
281
+ this section.
282
+ Let S be a finite nonempty subset of MK. Also, suppose N is a positive integer. Let
283
+ Div(S) be the set of divisors
284
+
285
+ P ∈S
286
+ nPP
287
+ such that for P ∈ S, nP is a nonnegative integer, and there exists P ∈ S such that nP > 0.
288
+ Suppose U ⊂ ON
289
+ K,S. The upper density of U at S is
290
+ dS(U) = lim sup
291
+ D∈Div(S)
292
+ |U ∩ L(D)N|
293
+ |L(D)|N
294
+ ,
295
+ and the lower density of U at S is
296
+ dS(U) = lim inf
297
+ D∈Div(S)
298
+ |U ∩ L(D)N|
299
+ |L(D)|N
300
+ .
301
+ If dS(U) = dS(U), the density dS(U) of U at S exists, and equals dS(U) = dS(U).
302
+ Theorem 3.1 ([4], Theorem 2.1). For P ∈ SC, let UP ⊂ KN
303
+ P be a measurable set such
304
+ that µP(∂UP ) = 0. For a positive integer M, let VM be the set of x ∈ ON
305
+ K,S such that
306
+ x ∈ UP for some P ∈ SC with degree at least M. Suppose limM→∞ dS(VM) = 0. Let
307
+ P : ON
308
+ K,S → 2SC, P(a) = {P ∈ SC : a ∈ UP}. Then:
309
+ (1) �
310
+ P ∈SC µP(UP) is convergent.
311
+ (2) For T ⊂ 2SC, ν(T) := dS(P−1(T)) exists. Also, ν defines a measure on 2SC.
312
+ (3) ν is concentrated at finite subsets of SC, and for a finite set T of places in SC,
313
+ ν(T) =
314
+
315
+ P ∈T
316
+ µP(UP)
317
+
318
+ P ∈SC\T
319
+ (1 − µP(UP)).
320
+ Theorem 3.2 ([4], Theorem 2.2). Let f and g be polynomials in OK,S[x1, . . . , xd] that
321
+ are relatively prime. For M ≥ 1, let VM be the set of x ∈ ON
322
+ K,S such that f(x) ≡ g(x) ≡ 0
323
+ (mod πP) for some P ∈ SC with degree at least M. Then, limM→∞ dS(VM) = 0.
324
+ In this paper, we consider global densities for elliptic curves over K with coefficients
325
+ in OK,S in long Weierstrass form. We see that WS can be considered to be O5
326
+ K,S, and
327
+ particularly, the global density definitions from above for O5
328
+ K,S can be used on WS. Similar
329
+ methods are used in [2] for elliptic curves over Q with coefficients in Z. Note that an elliptic
330
+ curve must have a nonzero discriminant, meaning that not all curves in WS are elliptic
331
+ curves. However, for D ∈ Div(S), the number of curves in WS with discriminant 0 that
332
+ are elements of L(D)5, where WS is considered to be O5
333
+ K,S, is O(|L(D)|4). Particularly, if
334
+ proportions over elliptic curves in WS is considered rather than the proportions over WS,
335
+ the density is not changed.
336
+ Proposition 3.3 is about the global density of nonminimal elliptic curves. Note that the
337
+ lemma is used to prove Theorem 7.2.
338
+
339
+ 6
340
+ ANDREW YAO
341
+ Proposition 3.3. For a positive integer M, let VM be the set of elliptic curves E ∈ WS
342
+ such that there exists P ∈ SC with degree at least M such that NP(E) ≥ 1. Then,
343
+ limM→∞ dS(VM) = 0.
344
+ Proof. We prove this with casework on the characteristic p of K.
345
+ Suppose that E is
346
+ an elliptic curve in GP with equation E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 for
347
+ a1, a2, a3, a4, a6 ∈ RP such that NP(E) ≥ 1.
348
+ Assume p ≥ 5. We have that E can be translated to the curve
349
+ y2 = x3 +
350
+
351
+ −b2(E)2
352
+ 48
353
+ + b4(E)
354
+ 2
355
+
356
+ x − b2(E)3
357
+ 864
358
+ − b2(E)b4(E)
359
+ 24
360
+ + b6(E)
361
+ 4
362
+ .
363
+ Because NP(E) ≥ 1, using Proposition 2.4, −b2(E)2
364
+ 48
365
+ + b4(E)
366
+ 2
367
+ ≡ 0 (mod πP) and −b2(E)3
368
+ 864
369
+
370
+ b2(E)b4(E)
371
+ 24
372
+ + b6(E)
373
+ 4
374
+ ≡ 0 (mod πP). Then, Theorem 3.2 with
375
+ f(x1, x2, x3, x4, x6) = −(x2
376
+ 1 + 4x2)2
377
+ 48
378
+ + x1x3 + 2x4
379
+ 2
380
+ and
381
+ g(x1, x2, x3, x4, x6) = −(x2
382
+ 1 + 4x2)3
383
+ 864
384
+ − (x2
385
+ 1 + 4x2)(x1x3 + 2x4)
386
+ 24
387
+ + x2
388
+ 3 + 4x6
389
+ 4
390
+ proves this proposition for p ≥ 5.
391
+ Next, assume p = 3. We have that E can be translated to the curve
392
+ y2 = x3 + b2(E)
393
+ 4
394
+ x2 + b4(E)
395
+ 2
396
+ x + b6(E)
397
+ 4
398
+ Using Proposition 2.4,
399
+ b2(E)
400
+ 4
401
+ ≡ 0 (mod πP) from the coefficient of x2.
402
+ Additionally,
403
+ ∆(E) ≡ 0 (mod πP). Next, Theorem 3.2 with
404
+ f(x1, x2, x3, x4, x6) = −(x2
405
+ 1 + x2)2(x2
406
+ 1x6 + x2x6 − x1x3x4 + x2x2
407
+ 3 − x2
408
+ 4) + (x1x3 + 2x4)3
409
+ and
410
+ g(x1, x2, x3, x4, x6) = x2
411
+ 1 + x2
412
+ proves this proposition for p = 3.
413
+ Suppose p = 2. Using Proposition 2.4, a1 ≡ 0 (mod πP) from the coefficient of xy.
414
+ Also, ∆(E) ≡ 0 (mod πP). Therefore, Theorem 3.2 with
415
+ f(x1, x2, x3, x4, x6) = x4
416
+ 1(x2
417
+ 1x6 + x1x3x4 + x2x2
418
+ 3 + x2
419
+ 4) + x4
420
+ 3 + x3
421
+ 1x3
422
+ 3
423
+ and
424
+ g(x1, x2, x3, x4, x6) = x1
425
+ proves this proposition for p = 2.
426
+
427
+ 4. Local Densities for p ≥ 5
428
+ 4.1. Setup. Suppose that the characteristic of K is p ≥ 5. Let P be a place of K. We
429
+ compute the local densities over KP of Kodaira types r and Tamagawa numbers n for
430
+ elliptic curves in GP. Let G(1)
431
+ P
432
+ be the set of curves
433
+ y2 = x3 + a4x + a6
434
+
435
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
436
+ 7
437
+ over KP such that a4, a6 ∈ RP. Note that G(1)
438
+ P
439
+ can be considered to be R2
440
+ P. Define
441
+ ϕ : GP → G(1)
442
+ P
443
+ as the function such that if E is a curve in GP, ϕ(E) is the curve in G(1)
444
+ P
445
+ with equation
446
+ ϕ(E) : y2 = x3 +
447
+
448
+ −b2(E)2
449
+ 48
450
+ + b4(E)
451
+ 2
452
+
453
+ x − b2(E)3
454
+ 864
455
+ − b2(E)b4(E)
456
+ 24
457
+ + b6(E)
458
+ 4
459
+ .
460
+ If E is an elliptic curve, ϕ(E) is an elliptic curve equivalent to E.
461
+ Lemma 4.1. If U is an open subset of G(1)
462
+ P , µP(ϕ−1(U)) = µP(U).
463
+ Proof. Let V be the set of y2 = x3 + a′
464
+ 4x + a′
465
+ 6 with a′
466
+ 4 ∈ r4 + πn4
467
+ P RP and a′
468
+ 6 ∈ r6 + πn6
469
+ P RP.
470
+ It suffices to prove that µP(ϕ−1(V )) = µP(V ) =
471
+ 1
472
+ Qn4+n6 because all open subsets of
473
+ G(1)
474
+ P
475
+ can be written as a disjoint countable union of sets with the form of V . Suppose
476
+ E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6 ∈ GP. ϕ(E) ∈ V if and only if
477
+ −b2(E)2
478
+ 48
479
+ + b4(E)
480
+ 2
481
+ ∈ r4 + πn4
482
+ P RP
483
+ and
484
+ −b2(E)3
485
+ 864
486
+ − b2(E)b4(E)
487
+ 24
488
+ + b6(E)
489
+ 4
490
+ ∈ r6 + πn6
491
+ P RP.
492
+ Assume that ϕ(E) ∈ V . Let M = max(n4, n6). First, select a1, a2, and a3 modulo
493
+ πM
494
+ P . Each has QM
495
+ P possible residues. Afterwards, a4 will have QM−n4
496
+ P
497
+ residues modulo
498
+ πM
499
+ P ; select the residue for a4.
500
+ Finally, a6 has QM−n6
501
+ P
502
+ residues modulo πM
503
+ P ; select the
504
+ residue for a6. We see that if each of a1, a2, a3, a4, a6 are taken modulo πM
505
+ P , the number of
506
+ combinations of residues is Q5M−n4−n6
507
+ P
508
+ . Also, because ai is modulo πM
509
+ P for i ∈ {1, 2, 3, 4, 6},
510
+ each combination of residues has a Haar measure of
511
+ 1
512
+ Q5M
513
+ P . We are done.
514
+
515
+ 4.2. Multiple Iterations. Let k be a nonnegative integer.
516
+ Suppose Sk is the set of
517
+ elliptic curves E ∈ G(1)
518
+ P
519
+ such that NP(E) ≥ k.
520
+ Suppose E is an elliptic curve in G(1)
521
+ P
522
+ with equation E : y2 = x3 + a4x + a6. Assume
523
+ E ∈ Sk. Then, using Proposition 2.4, l, m, n ∈ RP exist such that
524
+
525
+ y + l
526
+ πk
527
+ P
528
+ x + m
529
+ π3k
530
+ P
531
+ �2
532
+
533
+
534
+ x + n
535
+ π2k
536
+ P
537
+ �3
538
+ − a4
539
+ π4k
540
+ P
541
+
542
+ x + n
543
+ π2k
544
+ P
545
+
546
+ − a6
547
+ π6k
548
+ P
549
+ ∈ RP[x, y].
550
+ The coefficient of xy is
551
+ 2l
552
+ πk
553
+ P , giving that vP(l) ≥ k, and the coefficient of y is
554
+ 2m
555
+ π3k
556
+ P , giving
557
+ that vP(m) ≥ 3k. Also, the coefficient of x2 is 3n−l2
558
+ π2k
559
+ P
560
+ , giving that vP(n) ≥ 2k. From this,
561
+ we have that vP(a4) ≥ 4k and vP(a6) ≥ 6k.
562
+ Define the function φk : Sk → S0, y2 = x3 + a4x + a6 �→ y2 = x3 +
563
+ a4
564
+ π4k
565
+ P x +
566
+ a6
567
+ π6k
568
+ P . Note
569
+ that Sk ⊂ S0 ⊂ G(1)
570
+ P . From Proposition 2.5 and Lemma 4.1, µP(S0) = 1. Next, we show
571
+ how we can use φk to compute densities for Sk.
572
+ Lemma 4.2. If U is an open subset of G(1)
573
+ P , µP(φ−1
574
+ k (U)) =
575
+ 1
576
+ Q10k
577
+ P µP(U).
578
+
579
+ 8
580
+ ANDREW YAO
581
+ Proof. Suppose r4, r6 ∈ RP. Also, suppose n4 and n6 are nonnegative integers. Let V be
582
+ the set of elliptic curves y2 = x3 + a′
583
+ 4x + a′
584
+ 6 with a′
585
+ 4 ∈ r4 + πn4
586
+ P RP and a′
587
+ 6 ∈ r6 + πn6
588
+ P RP.
589
+ Because µP(S0) = 1, µP(V ) =
590
+ 1
591
+ Qn4+n6
592
+ P
593
+ . To prove the lemma, it suffices to prove that
594
+ µP(φ−1
595
+ k (V )) =
596
+ 1
597
+ Q10k
598
+ P
599
+ µP(V ) =
600
+ 1
601
+ Qn4+n6+10k
602
+ P
603
+ .
604
+ Suppose E : y2 = x3 + a4x + a6 ∈ G(1)
605
+ P
606
+ is an elliptic curve. We prove that E ∈ Sk
607
+ and φk(E) ∈ V if and only if
608
+ a4
609
+ π4k
610
+ P
611
+ ∈ r4 + πn4
612
+ P RP and
613
+ a6
614
+ π6k
615
+ P
616
+ ∈ r6 + πn6
617
+ P RP. If φk(E) ∈ V ,
618
+ then
619
+ a4
620
+ π4k
621
+ P
622
+ ∈ r4 + πn4
623
+ P RP and
624
+ a6
625
+ π6k
626
+ P
627
+ ∈ r6 + πn6
628
+ P RP.
629
+ Assume that
630
+ a4
631
+ π4k
632
+ P
633
+ ∈ r4 + πn4
634
+ P RP and
635
+ a6
636
+ π6k
637
+ P ∈ r6 + πn6
638
+ P RP. From Tate’s algorithm, we have that E ∈ Sk. Then, it is true that
639
+ φk(E) ∈ V .
640
+ Assume that E ∈ Sk and φk(E) ∈ V . This is true if and only if a4 ∈ π4k
641
+ P r4 + πn4+4k
642
+ P
643
+ R
644
+ and a6 ∈ π6k
645
+ P r6 + πn6+6k
646
+ P
647
+ R. Moreover, because µP(S0) = 1, the density of curves y2 =
648
+ x3 + a4x + a6 with discriminant 0 such that a4 ∈ π4k
649
+ P r4 + πn4+4k
650
+ P
651
+ and a6 ∈ π6k
652
+ P r6 + πn6+6k
653
+ P
654
+ is 0. Because of this, µP(φ−1
655
+ k (V )) =
656
+ 1
657
+ Qn4+n6+10k
658
+ P
659
+ , completing the proof.
660
+
661
+ 4.3. Density Calculations. Note that the density of a set of curves in G(1)
662
+ P
663
+ is the Haar
664
+ measure of the set. In this subsection, we compute the density of the set of minimal
665
+ elliptic curves with a given Kodaira type and Tamagawa number over G(1)
666
+ P . This can be
667
+ extended to nonminimal elliptic curves using Theorem 1.2. Moreover, in this subsection,
668
+ we use that the set of curves in G(1)
669
+ P
670
+ that have a discriminant equal to 0 has a Haar
671
+ measure of 0.
672
+ Suppose the discriminant is not divisible by πP. We compute the density for this set
673
+ by considering a4 and a6 modulo πP. Suppose a4 ∈ r4 + πPRP and a6 ∈ r6 + πPRP. We
674
+ find the number of pairs (r4, r6) in L2
675
+ P,1 such that
676
+ � r4
677
+ 3
678
+ �3 +
679
+ � r6
680
+ 2
681
+ �2 ≡ 0 (mod πP). If r4 = 0,
682
+ r6 has 1 choice, and if −r4
683
+ 3 is a square modulo πP, r6 has 2 choices. Otherwise, r6 has 0
684
+ choices. We see that the number of pairs (r4, r6) is QP. Therefore, where each pair (r4, r6)
685
+ has a density of
686
+ 1
687
+ Q2
688
+ P , the density of the discriminant not being divisible by πP is QP −1
689
+ QP .
690
+ For this case, Tate’s algorithm ends in step 1 and we get that δK(I0, 1, 0; P) = QP −1
691
+ QP .
692
+ Next, assume that the discriminant is divisible by πP.
693
+ Furthermore, assume that
694
+ a4, a6 ̸≡ 0 (mod πP). Because there are QP − 1 pairs (r4, r6) in L2
695
+ P,1 for this case, the
696
+ total density is QP −1
697
+ Q2
698
+ P . Let α be the element of LP,1 such that a4 ≡ −3α2 (mod πP) and
699
+ a6 ≡ 2α3 (mod πP). The singular point is (α, 0) and in step 2, x is replaced with x + n
700
+ where n = α. Because α ̸≡ 0 (mod πP), Tate’s algorithm ends in step 2. The quadratic
701
+ considered in step 2 is T 2 − 3α. We see that for QP −1
702
+ 2
703
+ values of α, this quadratic has
704
+ roots in RP/πPRP and c = vP(∆(E)). Otherwise, c = 1 if vP(∆(E)) is odd and c = 2 if
705
+ vP(∆(E)) is even.
706
+ Let N be a positive integer. Suppose a4 ∈ r4 + πN
707
+ P RP and a6 ∈ r6 + πN
708
+ P RP. We find
709
+ the number of pairs (r4, r6) in L2
710
+ P,1 such that
711
+ � r4
712
+ 3
713
+ �3 +
714
+ �r6
715
+ 2
716
+ �2 ≡ 0 (mod πN
717
+ P ) and r4, r6 ̸= 0.
718
+ Because there are
719
+ QN
720
+ P −QN−1
721
+ P
722
+ 2
723
+ nonzero residues that are squares modulo πM
724
+ P , we have that
725
+
726
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
727
+ 9
728
+ the number of pairs (r4, r6) is QN
729
+ P − QN−1
730
+ P
731
+ . Therefore, the density of vP(∆(E)) ≥ N for
732
+ a4, a6 ̸≡ 0 (mod πP) is QP −1
733
+ QN+1
734
+ P
735
+ .
736
+ Suppose N is a positive integer. The density of vP(∆(E)) = N is
737
+ QP −1
738
+ QN+1
739
+ P
740
+ − QP −1
741
+ QN+2
742
+ P
743
+ =
744
+ (QP −1)2
745
+ QN+2
746
+ P
747
+ . We therefore have that δK(I1, 1, 0; P) = (QP −1)2
748
+ Q3
749
+ P
750
+ , δK(I2, 2, 0; P) = (QP −1)2
751
+ Q4
752
+ P
753
+ , and
754
+ δK(IN, N, 0; P) = δK
755
+
756
+ IN, 2
757
+ �N
758
+ 2
759
+
760
+ − N + 2, 0; P
761
+
762
+ = (QP − 1)2
763
+ 2QN+2
764
+ P
765
+ for N ≥ 3.
766
+ If vP(a4), vP(a6) ≥ 1, the singular point modulo πP from step 2 of Tate’s algorithm is
767
+ (0, 0). The total density for this case is
768
+ 1
769
+ Q2
770
+ P . If vP(a6) = 1, the algorithm ends in step 3.
771
+ For this, we get δK(II, 1, 0; P) = QP −1
772
+ Q3
773
+ P .
774
+ Assume that vP(a6) ≥ 2. The total density for this case is
775
+ 1
776
+ Q3
777
+ P . If vP(a4) = 1, the
778
+ algorithm ends in step 4, and we get that δK(III, 2, 0; P) = QP −1
779
+ Q4
780
+ P .
781
+ Next, suppose vP(a4) ≥ 2. The total density for this case is
782
+ 1
783
+ Q4
784
+ P . If vP(a6) = 2, the
785
+ algorithm ends in step 5. From this, we have that δK(IV, 1, 0; P) = δK(IV, 3, 0; P) = QP −1
786
+ 2Q5
787
+ P .
788
+ Suppose vP(a6) ≥ 3. The total density for this case is
789
+ 1
790
+ Q5
791
+ P . In step 6, the polynomial
792
+ P(T) ∈ (RP/πPRP)[T] has coefficient of T 2 equal to 0. From adding multiples of π2
793
+ P
794
+ to a4, the choices for the coefficient of T are LP,1. Also, from adding multiples of π3
795
+ P
796
+ to a6, the choices for the constant term are LP,1. Then, we have that each polynomial
797
+ P(T) ∈ (RP/πPRP)[T] with coefficient of T 2 equal to 0 corresponds to a density of
798
+ 1
799
+ Q7
800
+ P in
801
+ G(1)
802
+ P .
803
+ Assume P(T) has distinct roots in RP/πPRP. The total number of P(T) for this case is
804
+ Q2
805
+ P −QP; therefore, the total density for this case is QP −1
806
+ Q6
807
+ P . We have that Tate’s algorithm
808
+ ends in step 6 here. The number of P(T) with 0, 1, and 3 roots in RP/πPRP is Q2
809
+ P −1
810
+ 3
811
+ ,
812
+ Q2
813
+ P −QP
814
+ 2
815
+ , and Q2
816
+ P −3QP +2
817
+ 6
818
+ , respectively. With this, δK(I∗
819
+ 0, 1, 0; P) = Q2
820
+ P −1
821
+ 3Q7
822
+ P , δK(I∗
823
+ 0, 2, 0; P) =
824
+ QP −1
825
+ 2Q6
826
+ P , and δK(I∗
827
+ 0, 4, 0; P) = Q2
828
+ P −3QP +2
829
+ 6Q7
830
+ P
831
+ .
832
+ Next, assume that P(T) has a double root and a simple root in RP/πPRP. Then,
833
+ Tate’s algorithm enters the subprocedure in step 7. For this case, the total number of
834
+ P(T) is QP − 1 and the total density is therefore QP −1
835
+ Q7
836
+ P . In Section 4.4, we compute that
837
+ δK(I∗
838
+ N, 2, 0; P) = δK(I∗
839
+ N, 4, 0; P) = (QP −1)2
840
+ 2QN+7
841
+ P
842
+ for all positive integers N.
843
+ Assume P(T) has a triple root in RP/πPRP. For this case, the total number of P(T)
844
+ is 1 and the total density is therefore
845
+ 1
846
+ Q7
847
+ P .
848
+ Because the coefficient of T 2 in P(T) is
849
+ 0, the triple root is 0.
850
+ If vP(a6) = 4, the algorithm ends in step 8.
851
+ For this case,
852
+ δK(IV ∗, 1, 0; P) = δK(IV ∗, 3, 0; P) = QP −1
853
+ 2Q8
854
+ P .
855
+ Next, assume that vP(a6) ≥ 5. The total density for this case is
856
+ 1
857
+ Q8
858
+ P . If vP(a4) = 3, the
859
+ algorithm ends in step 9. We then have that δK(III∗, 2, 0; P) = QP −1
860
+ Q9
861
+ P .
862
+
863
+ 10
864
+ ANDREW YAO
865
+ Suppose vP(a4) ≥ 4. The total density for this case is
866
+ 1
867
+ Q9
868
+ P . If vP(a6) = 5, the algorithm
869
+ ends in step 10. Therefore, δK(II∗, 1, 0; P) = QP −1
870
+ Q10
871
+ P .
872
+ With density
873
+ 1
874
+ Q10
875
+ P , we have that vP(a4) ≥ 4 and vP(a6) ≥ 6, meaning that the curve is
876
+ not minimal. That is, the curve will complete iteration 1 and continue iteration 2. Note
877
+ that the density of nonminimal curves calculated from the algorithm matches Lemma 4.2.
878
+ 4.4. Subprocedure Density Calculations. Next, we study the densities for the sub-
879
+ procedure in step 7 of Tate’s algorithm.
880
+ We compute the subprocedure densities by
881
+ studying the translation of x in Tate’s algorithm. In the step 7 subprocedure, because
882
+ the coefficient of y is initially 0, there will be no translations of y.
883
+ Let X be the set of elliptic curves E ∈ G(1)
884
+ P
885
+ such that NP(E) = 0 and Tate’s algorithm
886
+ enters the step 7 subprocedure when used on E. For E ∈ X, let L(E) be the number of
887
+ iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used
888
+ on E. For a nonnegative integer N, let XN be the set of E ∈ X such that L(E) ≥ N.
889
+ Suppose N is an even nonnegative integer. Iteration N of the step 7 subprocedure is
890
+ completed if and only if n ∈ RP exists such that vP(n) = 1, vP(a4 + 3n2) ≥ N+6
891
+ 2 , and
892
+ vP(n3 + 3na4 + a6) ≥ N + 4. Suppose n = n1 satisfies this condition. Suppose n = n2
893
+ also satisfies this condition. We then have that n2
894
+ 1 ≡ n2
895
+ 2 (mod π
896
+ N+6
897
+ 2
898
+ P
899
+ ). This gives that
900
+ n1 is equivalent to n2 or −n2 modulo π
901
+ N+4
902
+ 2
903
+ P
904
+ . However, because n3
905
+ 1 + n1a4 ≡ n3
906
+ 2 + n2a4
907
+ (mod πN+4
908
+ P
909
+ ), we have that vP(n1 − n2) ≥ N+4
910
+ 2 . Moreover, if vP(n1 − n2) ≥ N+4
911
+ 2 , n = n2
912
+ also satisfies the condition.
913
+ Next, suppose N is an odd nonnegative integer. Iteration N of the subprocedure is
914
+ completed if and only if n ∈ RP exists such that vP(n) = 1, vP(a4 + 3n2
915
+ 1) ≥ N+5
916
+ 2 , and
917
+ vP(n3 + na4 + a6) ≥ N + 4. Similarly, we have that if n = n1 satisfies the condition,
918
+ n = n2 satisfies the condition if and only if vP(n1 − n2) ≥ N+3
919
+ 2 .
920
+ Suppose N is a nonnegative integer. Suppose n is an element of LP,⌊ N+4
921
+ 2 ⌋ such that
922
+ vP(n) = 1. Let Yn,N be the set of curves x3 + 3nx2 + a′
923
+ 4x + a′
924
+ 6 such that vP(a′
925
+ 4) ≥
926
+ � N+6
927
+ 2
928
+
929
+ and vP(a′
930
+ 6) ≥ N + 4. Note that Yn,N can be considered to be an open subset of R2
931
+ P.
932
+ For E ∈ XN, let nN(E) be the unique value of n ∈ LP,⌊ N+4
933
+ 2 ⌋ such that vP(n) = 1,
934
+ vP(a4 + 3n2) ≥
935
+ � N+6
936
+ 2
937
+
938
+ , and vP(n3 + na4 + a6) ≥ N + 4. Let θN be the function such that
939
+ if E : y2 = x3 + a4x + a6 is an element of XN,
940
+ θN(E) : y2 = (x + nN(E))3 + a4(x + nN(E)) + a6
941
+ = x3 + 3nN(E)x2 + (a4 + 3nN(E)2)x + nN(E)a4 + a6 + nN(E)3.
942
+ Lemma 4.3. If U is an open subset of Yn,N, µP(θ−1
943
+ N (U)) = µP(U).
944
+ Proof. Suppose r4, r6 ∈ RP. Also, suppose n4 and n6 are nonnegative integers. Assume
945
+ that vP(r4), n4 ≥ ⌊N+4
946
+ 2 ⌋ and vP(r6), n6 ≥ N + 4. Let V ⊂ Yn,N be the set of E′ : y2 =
947
+ x3 + 3nx2 + a′
948
+ 4x + a′
949
+ 6 such that a′
950
+ 4 ∈ r4 + πn4
951
+ P RP and a′
952
+ 6 ∈ r6 + πn6
953
+ P RP. It suffices to prove
954
+ that µP(θ−1
955
+ N (V )) = µP(V ). Suppose E : y2 = x3 + a4x + a6 is an elliptic curve.
956
+ We prove that that E ∈ XN and θN(E) ∈ V if and only if
957
+ a4 + 3n2 ∈ r4 + πn4
958
+ P RP, na4 + a6 + n3 ∈ r6 + πn6
959
+ P RP.
960
+
961
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
962
+ 11
963
+ Assume that E ∈ XN and θN(E) ∈ V . Because θN(E) ∈ V , we have that nN(E) = n.
964
+ Therefore, a4 + 3n2 ∈ r4 + πn4
965
+ P RP and na4 + a6 + n3 ∈ r6 + πn6
966
+ P RP. Next, assume that
967
+ a4 + 3n2 ∈ r4 + πn4
968
+ P and na4 + a6 + n3 ∈ r6 + πn6
969
+ P RP. Because vP(a4 + 3n2) ≥
970
+ � N+6
971
+ 2
972
+
973
+ and
974
+ vP(na4 + a6 + n3) ≥ N + 4, E ∈ XN. We then have that θN(E) ∈ V .
975
+ Let M = max(n4, n6). Modulo πM
976
+ P , there are QM−n4
977
+ P
978
+ choices for the residue of a4. After
979
+ choosing a4 modulo πM
980
+ P , there are QM−n6
981
+ P
982
+ choices for the residue of a6 modulo πM
983
+ P . Each
984
+ of these combinations of residues modulo πM
985
+ P for a4 and a6 has a density of
986
+ 1
987
+ Q2M
988
+ P
989
+ in G(1)
990
+ P .
991
+ The Haar measure of the Q2M−n4−n6
992
+ P
993
+ combinations is
994
+ 1
995
+ Qn4+n6
996
+ P
997
+ . Because the set of curves in
998
+ G(1)
999
+ P
1000
+ with discriminant 0 has a Haar measure of 0,
1001
+ µP(θ−1
1002
+ N (V )) =
1003
+ 1
1004
+ Qn4+n6
1005
+ P
1006
+ = µP(V ).
1007
+ This finishes the proof.
1008
+
1009
+ Let N be a positive integer. We compute the density of I∗
1010
+ N. Let n be an element of
1011
+ LP,⌊ N+3
1012
+ 2 ⌋ such that vP(n) = 1. We have that the Haar measure of the set of E ∈ Yn,N−1
1013
+ that do not complete iteration N is
1014
+ QP −1
1015
+ Q⌊ N+5
1016
+ 2 ⌋+N+4
1017
+ P
1018
+ . With Lemma 4.3, because there are
1019
+ (QP − 1)Q⌊ N−1
1020
+ 2 ⌋
1021
+ P
1022
+ values of n, the density of I∗
1023
+ N is (QP −1)2
1024
+ QN+7
1025
+ P
1026
+ . From adding multiples of πN+4
1027
+ P
1028
+ to a6, c = 2 and c = 4 have equal density. Therefore,
1029
+ δK(I∗
1030
+ N, 2, 0; P) = δK(I∗
1031
+ N, 4, 0; P) = (QP − 1)2
1032
+ 2QN+7
1033
+ P
1034
+ .
1035
+ 5. Local Densities for p = 3
1036
+ 5.1. Setup. Suppose that the characteristic of K is p = 3. Let P be a place of K and
1037
+ G(2)
1038
+ P
1039
+ be the set of curves
1040
+ y2 = x3 + a2x2 + a4x + a6
1041
+ over KP such that a2, a4, a6 ∈ RP. Note that G(2)
1042
+ P
1043
+ can be considered to be R3
1044
+ P. Define
1045
+ ϕ : GP → G(2)
1046
+ P
1047
+ as the function such that if E is a curve in GP, ϕ(E) is the curve in G(2)
1048
+ P
1049
+ with equation
1050
+ y2 = x3 + b2(E)
1051
+ 4
1052
+ x2 + b4(E)
1053
+ 2
1054
+ x + b6(E)
1055
+ 4
1056
+ .
1057
+ Note that if E is an elliptic curve, E and ϕ(E) are equivalent.
1058
+ Lemma 5.1. If U is an open subset of G(2)
1059
+ P , µP(ϕ−1(U)) = µP(U).
1060
+ Proof. This can be proved using a method similar to the proof of Lemma 4.1.
1061
+
1062
+ 5.2. Multiple Iterations. Let k be a nonnegative integer.
1063
+ Suppose Sk is the set of
1064
+ elliptic curves E ∈ G(2)
1065
+ P
1066
+ such that NP(E) ≥ k.
1067
+ Suppose E ∈ Sk has equation E : y2 = x3 + a2x2 + a4x + a6. From Proposition 2.4,
1068
+ l, m, n ∈ RP exist such that
1069
+
1070
+ y + l
1071
+ πk
1072
+ P
1073
+ x + m
1074
+ π3k
1075
+ P
1076
+ �2
1077
+ =
1078
+
1079
+ x + n
1080
+ π2k
1081
+ P
1082
+ �3
1083
+ + a2
1084
+ π2k
1085
+ P
1086
+
1087
+ x + n
1088
+ π2k
1089
+ P
1090
+ �2
1091
+ + a4
1092
+ π4k
1093
+ P
1094
+
1095
+ x + n
1096
+ π2k
1097
+ P
1098
+
1099
+ + a6
1100
+ π6k
1101
+ P
1102
+
1103
+ 12
1104
+ ANDREW YAO
1105
+ has coefficients in RP. From the coefficient of xy, vP(l) ≥ k, and from the coefficient of
1106
+ y, vP(m) ≥ 3k. Therefore, we have that
1107
+ y2 =
1108
+
1109
+ x + n
1110
+ π2k
1111
+ P
1112
+ �3
1113
+ + a2
1114
+ π2k
1115
+ P
1116
+
1117
+ x + n
1118
+ π2k
1119
+ P
1120
+ �2
1121
+ + a4
1122
+ π4k
1123
+ P
1124
+
1125
+ x + n
1126
+ π2k
1127
+ P
1128
+
1129
+ + a6
1130
+ π6k
1131
+ P
1132
+ has coefficients in RP. Note that vP(a2) ≥ 2k also.
1133
+ For an elliptic curve E ∈ G(2)
1134
+ P
1135
+ with equation E : y2 = x3 + a2x2 + a4x + a6, let Ak(E)
1136
+ be the set of n ∈ RP such that
1137
+ y2 = x3 + a2
1138
+ π2k
1139
+ P
1140
+ x2 + 2na2 + a4
1141
+ π4k
1142
+ P
1143
+ x + n2a2 + na4 + a6 + n3
1144
+ π6k
1145
+ P
1146
+ has coefficients in RP. The next proposition is useful for computing local densities for
1147
+ multiple iterations.
1148
+ Proposition 5.2. Let E be an elliptic curve in G(2)
1149
+ P . E ∈ Sk if and only if a unique
1150
+ element n ∈ LP,k exists such that n ∈ Ak(E).
1151
+ Proof. Assume a unique element n ∈ LP,k exists such that n ∈ Ak(E). Then, Ak(E) is
1152
+ nonempty, and using Proposition 2.4, E ∈ Sk.
1153
+ Next, assume E ∈ Sk. From Proposition 2.4, we have that Ak(E) is nonempty. Let the
1154
+ equation of E be E : y2 = x3 + a2x2 + a4x + a6 for a2, a4, a6 ∈ RP.
1155
+ Suppose n ∈ Ak(E). From replacing x with x+n′ for n′ ∈ RP, we have that n+n′π2k
1156
+ P ∈
1157
+ Ak(E). Therefore, n ∈ LP,k exists such that n ∈ Ak(E).
1158
+ Next, we prove uniqueness. Assume n1, n2 ∈ Ak(E) ∩ LP,k. Let
1159
+ F : y2 = x3 + a2
1160
+ π2k
1161
+ P
1162
+ x2 + a4
1163
+ π4k
1164
+ P
1165
+ x + a6
1166
+ π6k
1167
+ P
1168
+ .
1169
+ For 1 ≤ i ≤ 2, let Fi be F with x replaced by x +
1170
+ ni
1171
+ π2k
1172
+ P . Note that F1, F2 ∈ G(2)
1173
+ P .
1174
+ From the coefficients of x in F1 and F2,
1175
+ 2n1a2 + a4 ≡ 2n2a2 + a4 ≡ 0
1176
+ (mod π4k
1177
+ P ).
1178
+ Also, from the constant terms of F1 and F2,
1179
+ n2
1180
+ 1a2 + n1a4 + n3
1181
+ 1 ≡ n2
1182
+ 2a2 + n2a4 + n3
1183
+ 2
1184
+ (mod π6k
1185
+ P ).
1186
+ For the sake of contradiction, assume that vP(n1 − n2) < 2k. Let a = vP(n1 − n2). Note
1187
+ that
1188
+ vP(n3
1189
+ 1 − n3
1190
+ 2) = vP((n1 − n2)3) = 3a.
1191
+ We have that
1192
+ n2
1193
+ 1a2 + n1a4 − n2
1194
+ 2a2 − n2a4 = (n1 − n2)(n1a2 + n2a2 + a4).
1195
+ Because a4 ≡ n1a2 ≡ n2a2 (mod π4k
1196
+ P ),
1197
+ n1a2 + n2a2 + a4 ≡ 3a4 ≡ 0
1198
+ (mod π4k
1199
+ P ).
1200
+ From this,
1201
+ vP(n2
1202
+ 1a2 + n1a4 − n2
1203
+ 2a2 − n2a4) = vP((n1 − n2)(n1a2 + n2a2 + a4))
1204
+ ≥ a + 4k
1205
+ > 3a.
1206
+
1207
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1208
+ 13
1209
+ Since vP(n3
1210
+ 1 − n3
1211
+ 2) = 3a,
1212
+ vP(n2
1213
+ 1a2 + n1a4 + n3
1214
+ 1 − n2
1215
+ 2a2 − n2a4 − n3
1216
+ 2) = 3a < 6k,
1217
+ which is a contradiction. Therefore, vP(n1 − n2) ≥ 2k and n1 = n2.
1218
+
1219
+ Using Proposition 5.2, for E ∈ Sk, let n(E) be the unique n ∈ LP,2k such that the
1220
+ n ∈ Ak(E). Define φk : Sk → S0 to be the function such that if E ∈ Sk has equation
1221
+ E : y2 = x3 + a2x2 + a4x + a6, φk(E) ∈ S0 has equation
1222
+ φk(E) : y2 = x3 + a2
1223
+ π2k
1224
+ P
1225
+ x2 + 2n(E)a2 + a4
1226
+ π4k
1227
+ P
1228
+ x + n(E)2a2 + n(E)a4 + a6 + n(E)3
1229
+ π6k
1230
+ P
1231
+ .
1232
+ Note that Sk ⊂ S0 ⊂ G(2)
1233
+ P . Also, using Proposition 2.5 and Lemma 5.1, µP(S0) = 1.
1234
+ For n ∈ LP,2k, suppose Sk,n is the set of E ∈ Sk such that n(E) = n, and let φk,n be φk
1235
+ restricted to Sk,n.
1236
+ Lemma 5.3. Suppose n ∈ LP,k. If U is an open subset of G(2)
1237
+ P , µP(φ−1
1238
+ k,n(U)) =
1239
+ 1
1240
+ Q12k
1241
+ P µP(U).
1242
+ Proof. Suppose r2, r4, r6 ∈ RP. Also, suppose n2, n4, and n6 are nonnegative integers.
1243
+ Let V be the set of y2 = x3 + a′
1244
+ 2x2 + a′
1245
+ 4x+ a′
1246
+ 6 such that a′
1247
+ 2 ∈ r2 + πn2
1248
+ P RP, a′
1249
+ 4 ∈ r4 + πn4
1250
+ P RP,
1251
+ and a′
1252
+ 6 ∈ r6 + πn6
1253
+ P RP. Suppose E : y2 = x3 + a2x2 + a4x + a6 ∈ G(2)
1254
+ P . E ∈ Sk,n and
1255
+ φk,n(E) ∈ V if and only if
1256
+ a2
1257
+ π2k
1258
+ P
1259
+ ∈ r2 + πn2
1260
+ P RP, 2na2 + a4
1261
+ π4k
1262
+ P
1263
+ ∈ r4 + πn4
1264
+ P RP, n2a2 + na4 + a6 + n3
1265
+ π6k
1266
+ P
1267
+ ∈ r6 + πn6
1268
+ P RP.
1269
+ Assume that E ∈ Sk,n and φk,n(E) ∈ V . Let M = max(n2+2k, n4+4k, n6+6k). There
1270
+ are QM−n2−2k
1271
+ P
1272
+ ways to pick a2 modulo πM
1273
+ P . Afterwards, a4 will have QM−n4−4k
1274
+ P
1275
+ choices
1276
+ for the residue modulo πM
1277
+ P ; pick a4 modulo πM
1278
+ P . Next, a6 has QM−n6−6k
1279
+ P
1280
+ choices for the
1281
+ residue modulo πM
1282
+ P . Select the residue for a6. The number of combinations of residues is
1283
+ Q3M−n2−n4−n6−12k
1284
+ P
1285
+ and each combination of residues has a Haar measure of Q−3M
1286
+ P
1287
+ . Also,
1288
+ because µP(S0) = 1, the set of curves with discriminant 0 counted in these combinations
1289
+ of residues has a Haar measure 0. Therefore, µP(φ−1
1290
+ k,n(V )) =
1291
+ 1
1292
+ Qn2+n4+n6+12k
1293
+ P
1294
+ . With this,
1295
+ µP(φ−1
1296
+ k,n(U)) =
1297
+ 1
1298
+ Q12k
1299
+ P µP(U) for all open subsets U of G(2)
1300
+ P .
1301
+
1302
+ Lemma 5.4. If U is an open subset of G(2)
1303
+ P , µP(φ−1
1304
+ k (U)) =
1305
+ 1
1306
+ Q10k
1307
+ P µP(U).
1308
+ Proof. Let U be an open subset of G(2)
1309
+ P
1310
+ We have that φ−1
1311
+ k (U) = �
1312
+ n∈LP,2k φ−1
1313
+ k,n(U). Using
1314
+ Lemma 5.3,
1315
+ µP(φ−1
1316
+ k (U)) =
1317
+
1318
+ n∈LP,2k
1319
+ µP(φ−1
1320
+ k,n(U)) =
1321
+
1322
+ n∈LP,2k
1323
+ 1
1324
+ Q12k
1325
+ P
1326
+ µP(U) =
1327
+ 1
1328
+ Q10k
1329
+ P
1330
+ µP(U),
1331
+ completing the proof.
1332
+
1333
+
1334
+ 14
1335
+ ANDREW YAO
1336
+ 5.3. Density Calculations for vP(a2) = 0. Suppose vP(a2) = 0. The density for this
1337
+ case over G(2)
1338
+ P
1339
+ is QP −1
1340
+ QP . The discriminant is −a3
1341
+ 2a6 + a2
1342
+ 2a2
1343
+ 4 − a3
1344
+ 4.
1345
+ From adding multiples of πP to a6, the set of curves with discriminant not divisible by
1346
+ πP has density (QP −1)2
1347
+ Q2
1348
+ P
1349
+ . Then, we add (QP −1)2
1350
+ Q2
1351
+ P
1352
+ to δK(I0, 1, 0; P).
1353
+ Assume the discriminant is divisible by πP . The algorithm ends in step 2. Because
1354
+ vP(a2) = 0, the coefficient of a6 in the discriminant is not divisible by πP. Then, we see
1355
+ that for N ≥ 0, the density over G(2)
1356
+ P
1357
+ of curves such that vP(a2) = 0 and vP(∆(E)) = N
1358
+ is (QP −1)2
1359
+ QN+2
1360
+ P
1361
+ . If a2 ≡ r2 (mod πP) for r2 ∈ LP,1 such that r2 ̸= 0, T 2 + a2 is irreducible
1362
+ over RP/πPRP for QP −1
1363
+ 2
1364
+ values of r2. Using step 2 of Tate’s algorithm, we have that
1365
+ δK(I1, 1, 0; P) = (QP −1)2
1366
+ Q3
1367
+ P
1368
+ , δK(I2, 2, 0; P) = (QP −1)2
1369
+ Q4
1370
+ P
1371
+ , and
1372
+ δK(IN, N, 0; P) = δK
1373
+
1374
+ IN, 2
1375
+ �N
1376
+ 2
1377
+
1378
+ − N + 2, 0; P
1379
+
1380
+ = (QP − 1)2
1381
+ 2QN+2
1382
+ P
1383
+ for N ≥ 3.
1384
+ 5.4. Density Calculations for vP(a2) ≥ 1. Next, suppose vP(a2) ≥ 1. The density for
1385
+ this is
1386
+ 1
1387
+ QP and modulo πP, the discriminant is −a3
1388
+ 4.
1389
+ Assume the discriminant is not divisible by πP. This occurs if and only if a4 is not
1390
+ divisible by πP, and the density of this case is QP −1
1391
+ Q2
1392
+ P . Adding this density to δK(I0, 1, 0; P)
1393
+ gives that δK(I0, 1, 0; P) = QP −1
1394
+ QP .
1395
+ Next, assume the discriminant is divisible by πP. The total density for these cases will
1396
+ be
1397
+ 1
1398
+ Q2
1399
+ P . Suppose α1 is an element of LP,1 such that a6 + α3
1400
+ 1 ≡ 0 (mod πP). A singular
1401
+ point is (α1, 0). We have that x is replaced with x + n where n = α1. The resulting curve
1402
+ has equation
1403
+ y2 = (x + n)3 + a2(x + n)2 + a4(x + n) + a6.
1404
+ We have that n2a2 + na4 + a6 + n3 is not divisible by π2
1405
+ P with density QP −1
1406
+ Q3
1407
+ P
1408
+ by adding
1409
+ multiples of πP to a6. For this case, δK(II, 1, 0; P) = QP −1
1410
+ Q3
1411
+ P .
1412
+ Assume n2a2 + na4 + a6 + n3 is divisible by π2
1413
+ P. The total density for this case is
1414
+ 1
1415
+ Q3
1416
+ P .
1417
+ The density of vP(2na2 + a4) = 1 is QP −1
1418
+ Q4
1419
+ P
1420
+ from replacing a4 with a4 + πPd and a6 with
1421
+ a6 − α1πPd for d ∈ LP,1. If vP(2na2 + a4) = 1, the algorithm ends in step 4. We then
1422
+ have that δK(III, 2, 0; P) = QP −1
1423
+ Q4
1424
+ P .
1425
+ Assume 2na2 + a4 is divisible by π2
1426
+ P. The total density for this case is
1427
+ 1
1428
+ Q4
1429
+ P . We have
1430
+ that vP(n2a2 + na4 + a6 + n3) = 2 with density QP −1
1431
+ Q5
1432
+ P
1433
+ from adding multiples of π2
1434
+ P to a6.
1435
+ If this is true, the algorithm ends in step 5. Afterwards, we have that δK(IV, 1, 0; P) =
1436
+ δK(IV, 3, 0; P) = QP −1
1437
+ 2Q5
1438
+ P .
1439
+ Suppose vP(n2a2 + na4 + a6 + n3) ≥ 3.
1440
+ The total density for this case is
1441
+ 1
1442
+ Q5
1443
+ P .
1444
+ In
1445
+ step 6, there is no translation. Suppose a2 is replaced by a2 + d1πP, a4 is replaced with
1446
+ a4 − 2α1d1πP, and a6 is replaced with a6 + α2
1447
+ 1d1πP for d1 ∈ LP,1. Note that the previous
1448
+ parts of the algorithm will not be changed. However, this changes the coefficient of x2
1449
+ from a2 to a2 + d1πP , which changes the coefficient of T 2 of P(T) in step 6. Next, replace
1450
+
1451
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1452
+ 15
1453
+ a4 with a4 + d2π2
1454
+ P and a6 with a6 − α1d2π2
1455
+ P for d2 ∈ πP. Similarly, this does not change
1456
+ the previous parts of the algorithm. However, d2π2
1457
+ P will be added to the coefficient of x,
1458
+ which adds d2 to the coefficient of T of P(T). Afterwards, replace a6 with a6 + d3π3
1459
+ P for
1460
+ d3 ∈ LP,1. This adds d3 to the constant term P(T). With this, the choices for P(T) are
1461
+ the monic polynomials with degree 3 in (RP/πPRP)[T]; each choice for P(T) corresponds
1462
+ to a density of
1463
+ 1
1464
+ Q8
1465
+ P . Moreover, the number of P(T) with a double root and triple root are
1466
+ QP(QP − 1) and QP, respectively.
1467
+ Assume P(T) has distinct roots. We have that the algorithm ends in step 6, with
1468
+ δK(I∗
1469
+ 0, 1, 0; P) =
1470
+ Q2
1471
+ P −1
1472
+ 3Q7
1473
+ P , δK(I∗
1474
+ 0, 2, 0; P) = QP −1
1475
+ 2Q6
1476
+ P , and δK(I∗
1477
+ 0, 4, 0; P) =
1478
+ Q2
1479
+ P −3QP +2
1480
+ 6Q7
1481
+ P
1482
+ .
1483
+ Assume P(T) has a double root. For this case, Tate’s algorithm ends in step 7 and the
1484
+ total density is QP −1
1485
+ Q7
1486
+ P . In Section 5.5, we compute that δK(I∗
1487
+ N, 2, 0; P) = δK(I∗
1488
+ N, 4, 0; P) =
1489
+ (QP −1)2
1490
+ 2QN+7
1491
+ P
1492
+ for all positive integers N.
1493
+ Next, assume P(T) has a triple root. The density for this case is
1494
+ 1
1495
+ Q7
1496
+ P . Let α2 be the
1497
+ element of LP,1 such that
1498
+ n2a2 + na4 + a6 + n3 ≡ −π3
1499
+ P α3
1500
+ 2
1501
+ (mod π4
1502
+ P).
1503
+ Then, for the translation in step 8, we let n = α1+α2πP. Suppose vP(n2a2+na4+a6+n3) =
1504
+ 4. This occurs with density QP −1
1505
+ Q8
1506
+ P
1507
+ by adding multiples of π4
1508
+ P to a6. In this case, Tate’s
1509
+ algorithm ends in step 8, and δK(IV ∗, 1, 0; P) = δK(IV ∗, 3, 0; P) = QP −1
1510
+ 2Q8
1511
+ P .
1512
+ Assume vP(n2a2 + na4 + a6 + n3) ≥ 5. The total density for this case is
1513
+ 1
1514
+ Q8
1515
+ P . Consider
1516
+ replacing a4 with a4 + dπ3
1517
+ P and a6 with a6 − (α1 + α2πP)dπ3
1518
+ P for d ∈ LP,1. This does not
1519
+ change previous parts of the algorithm but adds dπ3
1520
+ P to the coefficient of x. Therefore,
1521
+ vP(2na2 + a4) = 3 with density QP −1
1522
+ Q9
1523
+ P . For this, we have that Tate’s algorithm ends in
1524
+ step 9 and δK(III∗, 2, 0; P) = QP −1
1525
+ Q9
1526
+ P .
1527
+ Suppose vP(2na2+a4) ≥ 4. The total density of this case is
1528
+ 1
1529
+ Q9
1530
+ P . From adding multiples
1531
+ of π6
1532
+ P to a6, vP(n3 +a2n2 +a4n+a6) = 5 with density QP −1
1533
+ Q10
1534
+ P . Also, if vP(n3 +a2n2 +a4n+
1535
+ a6) = 5, the algorithm ends in step 10. This gives that δK(II∗, 1, 0; P) = QP −1
1536
+ Q10
1537
+ P .
1538
+ 5.5. Subprocedure Density Calculations. Let X be the set of elliptic curves E ∈ G(2)
1539
+ P
1540
+ such that NP(E) = 0 and Tate’s algorithm enters the step 7 subprocedure when used on
1541
+ E. For E ∈ X, let L(E) be the number of iterations of the step 7 subprocedure that are
1542
+ completed when Tate’s algorithm is used on E. For a nonnegative integer N, let XN be
1543
+ the set of E ∈ X such that L(E) ≥ N.
1544
+ Suppose N is an even nonnegative integer. Iteration N of the step 7 subprocedure is
1545
+ completed if and only if n ∈ RP exists such that vP(a2) = 1, vP(2na2 + a4) ≥ N+6
1546
+ 2 , and
1547
+ vP(n3 + n2a2 + na4 + a6) ≥ N + 4. Assume n = n1 satisfies the condition. Suppose
1548
+ n = n2 satisfies the condition also. Because vP(a2) = 1, vP(n1 − n2) ≥
1549
+ N+4
1550
+ 2 . Next,
1551
+ assume vP(n1 − n2) ≥ N+4
1552
+ 2 . We show that n = n2 also satisfies the condition. Clearly,
1553
+ vP(2n2a2 + a4) ≥ N+6
1554
+ 2 . Moreover, we have that
1555
+ n2
1556
+ 2a2 + n2a4 = n2
1557
+ 1a2 + n1a4 + 1
1558
+ 2(n2 − n1)((2n1a2 + a4) + (2n2a2 + a4)).
1559
+
1560
+ 16
1561
+ ANDREW YAO
1562
+ Therefore, vP(n3
1563
+ 2 +n2
1564
+ 2a2 +n2a4 +a6) ≥ N +4. We have that n = n2 satisfies the condition
1565
+ if and only if vP(n1 − n2) ≥ N+4
1566
+ 2 .
1567
+ Next, suppose N is an odd nonnegative integer. Iteration N of the step 7 subprocedure
1568
+ is completed if and only if n ∈ RP exists such that vP(n2a2 + na4 + a6 + n3) ≥ N + 4
1569
+ and vP(2na2 + a4) ≥ N+5
1570
+ 2 . Assume n = n1 satisfies the condition. Similarly to when N is
1571
+ even, we have that n = n2 also satisfies the condition if and only if vP(n1 − n2) ≥ N+3
1572
+ 2 .
1573
+ Suppose N is a nonnegative integer. Let YN be the set of curves y2 = x3+a′
1574
+ 2x2+a′
1575
+ 4x+a′
1576
+ 6
1577
+ with vP(a′
1578
+ 2) = 1, vP(a′
1579
+ 4) ≥
1580
+ � N+6
1581
+ 2
1582
+
1583
+ , and vP(a′
1584
+ 6) ≥ N + 4. For E ∈ XN, let nN(E) be the
1585
+ unique value of n in LP,⌊ N+4
1586
+ 2 ⌋ from above. Suppose θN(E), with θN : XN → YN, is the
1587
+ curve
1588
+ θN(E) : y2 = (x + nN(E))3 + a2(x + nN(E))2 + a4(x + nN(E)) + a6
1589
+ = x3 + a2x2 + (2nN(E)a2 + a4)x + nN(E)2a2 + nN(E)a4 + a6.
1590
+ Lemma 5.5. If U is an open subset of YN, µP(θ−1
1591
+ N (U)) = Q⌊ N+4
1592
+ 2 ⌋
1593
+ P
1594
+ µP(U).
1595
+ Proof. Suppose n ∈ LP,⌊ N+4
1596
+ 2 ⌋. Let XN,n be the set of E ∈ XN with nN(E) = n and θN,n
1597
+ be θN restricted to XN,n. Suppose U is an open subset of YN. Using a method similar to
1598
+ the proof of Lemma 4.3, we have that
1599
+ µP(θ−1
1600
+ N,n(U)) = µP(U).
1601
+ Because there are Q⌊ N+4
1602
+ 2 ⌋
1603
+ P
1604
+ values of n, the result follows.
1605
+
1606
+ Suppose N is a positive integer. Using Lemma 5.5, we can compute the density of the
1607
+ curves E with NP(E) = 0 that have type I∗
1608
+ N and Tamagawa number 2 or 4. The Haar
1609
+ measure of the curves in YN−1 that end in iteration N is
1610
+ (QP −1)2
1611
+ Q
1612
+ N+6+⌊ N+5
1613
+ 2 ⌋
1614
+ P
1615
+ . With Lemma 4.1,
1616
+ we have that δK(I∗
1617
+ N, 2, 0; P) = δK(I∗
1618
+ N, 4, 0; P) = (QP −1)2
1619
+ 2QN+7
1620
+ P
1621
+ .
1622
+ 6. Local Densities for p = 2
1623
+ 6.1. Setup. Assume that the characteristic of K is p = 2. Let P be a place of K and
1624
+ G(3)
1625
+ P
1626
+ be the set of curves
1627
+ y2 + a1xy + a3y = x3 + a4x + a6
1628
+ over KP such that a1, a3, a4, a6 ∈ RP.
1629
+ Note that G(3)
1630
+ P
1631
+ can be considered to be R4
1632
+ P.
1633
+ Define ϕ : GP → G(3)
1634
+ P
1635
+ as the function such that if E is the curve in GP with equation
1636
+ E : y2 + a1xy + a3y = x3 + a2x2 + a4x + a6, ϕ(E) is the curve in G(3)
1637
+ P
1638
+ with equation
1639
+ ϕ(E) : y2 + a1xy +
1640
+
1641
+ a3 − a1a2
1642
+ 3
1643
+
1644
+ y = x3 +
1645
+
1646
+ a4 − a2
1647
+ 2
1648
+ 3
1649
+
1650
+ x + 2a3
1651
+ 2
1652
+ 27 − a2a4
1653
+ 3
1654
+ + a6.
1655
+ Note that if E is an elliptic curve, E and ϕ(E) are equivalent.
1656
+ Lemma 6.1. If U is an open subset of G(3)
1657
+ P , µP(ϕ−1(U)) = µP(U).
1658
+ Proof. This can be proved using a method similar to the proof of Lemma 4.1.
1659
+
1660
+
1661
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1662
+ 17
1663
+ 6.2. Multiple Iterations. Let k be a nonnegative integer.
1664
+ Suppose Sk is the set of
1665
+ elliptic curves E ∈ G(3)
1666
+ P
1667
+ such that NP(E) ≥ k.
1668
+ For an elliptic curve E ∈ G(3)
1669
+ P
1670
+ with equation E : y2 + a1xy + a3y = x3 + a4x + a6, let
1671
+ Ak(E) be the set of (l, m, n) ∈ R3
1672
+ P such that if X = x +
1673
+ n
1674
+ π2k
1675
+ P and Y = y +
1676
+ l
1677
+ πk
1678
+ P x +
1679
+ m
1680
+ π3k
1681
+ P ,
1682
+
1683
+ y + l
1684
+ πk
1685
+ P
1686
+ x + m
1687
+ π3k
1688
+ P
1689
+ �2
1690
+ + a1
1691
+ πk
1692
+ P
1693
+
1694
+ x + l2 + a1l
1695
+ π2k
1696
+ P
1697
+ � �
1698
+ y + l
1699
+ πk
1700
+ P
1701
+ x + m
1702
+ π3k
1703
+ P
1704
+
1705
+ + a3
1706
+ π3k
1707
+ P
1708
+
1709
+ y + l
1710
+ πk
1711
+ P
1712
+ x + m
1713
+ π3k
1714
+ P
1715
+
1716
+
1717
+
1718
+ x + l2 + a1l
1719
+ π2k
1720
+ P
1721
+ �3
1722
+ − a4
1723
+ π4k
1724
+ P
1725
+
1726
+ x + l2 + a1l
1727
+ π2k
1728
+ P
1729
+
1730
+ − a6
1731
+ π6k
1732
+ P
1733
+ ∈ RP[x, y].
1734
+ Proposition 6.2. Let E be an elliptic curve in G(3)
1735
+ P . E ∈ Sk if and only if a unique pair
1736
+ (l, m) ∈ LP,k × LP,3k exists such that (l, m, l2 + a1l) ∈ Ak(E).
1737
+ Proof. Suppose a unique pair (l, m) satisfying the conditions exists. Because Ak(E) is
1738
+ nonempty, E ∈ Sk from Proposition 2.4.
1739
+ Assume E ∈ Sk. Then, using Proposition 2.4, Ak(E) is nonempty. Let the equation of
1740
+ E be E : y2 + a1xy + a3y = x3 + a4x + a6 for a1, a3, a4, a6 ∈ RP.
1741
+ From replacing y with y + l′x for l′ ∈ RP, if (l, m, n) ∈ Ak(E), (l + l′πk
1742
+ P , m, n) ∈ Ak(E).
1743
+ Therefore, there exist l ∈ LP,k and m, n ∈ RP such that (l, m, n) ∈ Ak(E). Moreover,
1744
+ if (l, m, n) ∈ Ak(E), l2 + a1l + n ≡ 0 (mod π2k
1745
+ P ).
1746
+ With this, from replacing x with
1747
+ x+ l2+a1l+n
1748
+ π2k
1749
+ P
1750
+ , if (l, m, n) ∈ Ak(E), (l, m+l(l2 +a1l +n), l2 +a1l) ∈ Ak(E). Therefore, there
1751
+ exist l ∈ LP,k and m ∈ RP such that (l, m, l2 + a1l) ∈ Ak(E). Next, from replacing y with
1752
+ y + m′ for m′ ∈ RP, there exists l ∈ LP,k and m ∈ LP,3k such that (l, m, l2 + a1l) ∈ Ak(E).
1753
+ Next, we prove that (l, m) is unique. Assume that (l1, m1), (l2, m2) ∈ LP,k × LP,3k and
1754
+ (l1, m1, l2
1755
+ 1 + a1l1), (l2, m2, l2
1756
+ 2 + a1l2) ∈ Ak(E). We prove that (l1, m1) = (l2, m2).
1757
+ Let F be the curve
1758
+ F : y2 + a1
1759
+ πk
1760
+ P
1761
+ xy + a3
1762
+ π3k
1763
+ P
1764
+ y = x3 + a4
1765
+ πk
1766
+ P
1767
+ x + a6
1768
+ π6k
1769
+ P
1770
+ .
1771
+ For 1 ≤ i ≤ 2, let Fi be F with x replaced by x + l2
1772
+ i +a1li
1773
+ π2k
1774
+ P
1775
+ and y replaced by y + li
1776
+ πk
1777
+ P x + mi
1778
+ π3k
1779
+ P .
1780
+ Note that Fi ∈ G(3)
1781
+ P
1782
+ because (li, mi, l2
1783
+ i + aili) ∈ Ak(E) for 1 ≤ i ≤ 2. From this, a1 ≡ 0
1784
+ (mod πk
1785
+ P).
1786
+ Suppose a1 ̸= 0. We have that F1 and F2 are equivalent and vP(∆(F1)) = vP(∆(F2)).
1787
+ Then, using Proposition 2.3, let τ be a translation from the equation of F1 to the equation
1788
+ of F2 that replaces x with u2x + n′ and y with u3y + l′u2x + m′, where u, l′, m′, n′ ∈ RP
1789
+ and vP(u) = 0.
1790
+ The coefficient of xy after τ is applied to the equation of F1 is
1791
+ a1
1792
+ uπk
1793
+ P . However, the
1794
+ coefficient of xy in F2 is a1
1795
+ πk
1796
+ P . Therefore, u = 1 and a1 ≡ 0 (mod πk
1797
+ P).
1798
+ Next, the coefficient of y after τ is applied to the equation of F1
1799
+ a1l2
1800
+ 1 + a2
1801
+ 1l1 + a3 + π2k
1802
+ P a1n′
1803
+ π3k
1804
+ P
1805
+ .
1806
+ However, the coefficient of y in F2 is
1807
+ a1l2
1808
+ 2 + a2
1809
+ 1l2 + a3
1810
+ π3k
1811
+ P
1812
+ .
1813
+
1814
+ 18
1815
+ ANDREW YAO
1816
+ Therefore,
1817
+ l2
1818
+ 1 + a1l1 + π2k
1819
+ P n′ = l2
1820
+ 2 + a1l2.
1821
+ Because a1 ≡ 0 (mod πk
1822
+ P), we have that l1 ≡ l2 (mod πk
1823
+ P). Therefore, l1 = l2. From this,
1824
+ n′ = 0.
1825
+ The coefficient of x2 after τ is applied to the equation of F1 is
1826
+ n′ + (l′)2 + a1l′
1827
+ πk
1828
+ P
1829
+ .
1830
+ This equals the coefficient of x2 in F2, which is 0. Because n′ = 0, we have that l′ = 0 or
1831
+ l′ = a1
1832
+ πk
1833
+ P .
1834
+ From setting the coefficient of x after τ is applied to the equation of F1 equal to the
1835
+ coefficient of x in F2,
1836
+ a1
1837
+ πk
1838
+ P
1839
+ ·
1840
+ � m1
1841
+ π3k
1842
+ P
1843
+ + m′
1844
+
1845
+ + a1(l2
1846
+ 1 + a1l1) + a3
1847
+ π3k
1848
+ P
1849
+ · l′ = a1
1850
+ πk
1851
+ P
1852
+ · m2
1853
+ π3k
1854
+ P
1855
+ .
1856
+ Suppose l′ = 0. Then m1
1857
+ π3k
1858
+ P + m′ = m2
1859
+ π3k
1860
+ P . It follows that m1 ≡ m2 (mod π3k
1861
+ P ) and m1 = m2.
1862
+ Suppose l′ = a1
1863
+ πk
1864
+ P . We have that
1865
+ m1
1866
+ π3k
1867
+ P
1868
+ + m′ + a1(l2
1869
+ 1 + a1l1) + a3
1870
+ π3k
1871
+ P
1872
+ = m2
1873
+ π3k
1874
+ P
1875
+ .
1876
+ However, using that the coefficient of y in F2 is an element of RP,
1877
+ a1(l2
1878
+ 1 + a1l1) + a3 ≡ a1(l2
1879
+ 2 + a1l2) + a3 ≡ 0
1880
+ (mod π3k
1881
+ P ).
1882
+ Therefore, m1 ≡ m2 (mod π3k
1883
+ P ) and m1 = m2.
1884
+ Assume a1 = 0. From the coefficient of y in F2, we have that a3 ≡ 0 (mod π3k
1885
+ P ). Also,
1886
+ from the coefficients of x in F1 and F2, l4
1887
+ 1 + a3l1 ≡ l4
1888
+ 2 + a3l2 (mod π4k
1889
+ P ). This gives that
1890
+ l1 = l2. Afterwards, from the constant terms of F1 and F2, m2
1891
+ 1 + a3m1 ≡ m2
1892
+ 2 + a3m2
1893
+ (mod π6
1894
+ P). From this, we obtain that m1 = m2.
1895
+
1896
+ Using Proposition 6.2, for E ∈ Sk, let the unique pair (l, m) ∈ LP,k × LP,3k such that
1897
+ (l, m, l2 +a1l) ∈ Ak(E) be (l(E), m(E)). Define φk : Sk → S0 to be the function such that
1898
+ if E ∈ Sk has equation E : y2 + a1xy + a3y = x3 + a4x + a6, φk(E) has equation
1899
+ φk(E) : y2 + a1
1900
+ πk
1901
+ P
1902
+ xy + a1(l(E)2 + a1l(E)) + a3
1903
+ π3k
1904
+ P
1905
+ = x3+
1906
+ l(E)2(l(E)2 + a1l(E)) + a1m(E) + a3l(E) + a4
1907
+ π4k
1908
+ P
1909
+ x+
1910
+ (a1m(E) + a4 + a2
1911
+ 1l(E)2 + l(E)4)(l(E)2 + a1l(E)) + a3m(E) + a6 + m(E)2
1912
+ π6k
1913
+ P
1914
+ .
1915
+
1916
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
1917
+ 19
1918
+ The equation for φk(E) is equivalent to
1919
+
1920
+ y + l(E)
1921
+ πk
1922
+ P
1923
+ x + m(E)
1924
+ π3k
1925
+ P
1926
+ �2
1927
+ + a1
1928
+ πk
1929
+ P
1930
+
1931
+ x + l(E)2 + a1l(E)
1932
+ π2k
1933
+ P
1934
+ � �
1935
+ y + l(E)
1936
+ πk
1937
+ P
1938
+ x + m(E)
1939
+ π3k
1940
+ P
1941
+
1942
+ +
1943
+ a3
1944
+ π3k
1945
+ P
1946
+
1947
+ y + l(E)
1948
+ πk
1949
+ P
1950
+ x + m(E)
1951
+ π3k
1952
+ P
1953
+
1954
+ =
1955
+
1956
+ x + l(E)2 + a1l(E)
1957
+ π2k
1958
+ P
1959
+ �3
1960
+ + a4
1961
+ π4k
1962
+ P
1963
+
1964
+ x + l(E)2 + a1l(E)
1965
+ π2k
1966
+ P
1967
+
1968
+ + a6
1969
+ π6k
1970
+ P
1971
+ .
1972
+ Note that S0 ⊂ G(3)
1973
+ P , and from Proposition 2.5 and Lemma 6.1, µP(S0) = 1. For l ∈ LP,k
1974
+ and m ∈ LP,3k, let Sk,l,m be the set of E ∈ Sk such that l(E) = l and m(E) = m. Assume
1975
+ that φk,l,m is φk restricted to Sk,l,m.
1976
+ Lemma 6.3. Suppose l ∈ LP,k and m ∈ LP,3k. If U is an open subset of G(3)
1977
+ P , µP(φ−1
1978
+ k,l,m(U)) =
1979
+ 1
1980
+ Q14k
1981
+ P µP(U).
1982
+ Proof. This can be proved with a method that is similar to the proof of Lemma 5.3.
1983
+
1984
+ Lemma 6.4. If U is an open subset of G(3)
1985
+ P , µP(φ−1
1986
+ k (U)) =
1987
+ 1
1988
+ Q10k
1989
+ P µP(U).
1990
+ Proof. Let U be an open subset of G(3)
1991
+ P . We have that φ−1
1992
+ k (U) = �
1993
+ l∈LP,k,m∈LP,3k φ−1
1994
+ k,l,m(U).
1995
+ Using Lemma 6.3,
1996
+ µP(φ−1
1997
+ k (U)) =
1998
+
1999
+ l∈LP,k
2000
+
2001
+ m∈LP,3k
2002
+ µP(φ−1
2003
+ k,l,m(U)) =
2004
+
2005
+ l∈LP,k
2006
+
2007
+ m∈LP,3k
2008
+ 1
2009
+ Q14k
2010
+ P
2011
+ µP(U) =
2012
+ 1
2013
+ Q10k
2014
+ P
2015
+ µP(U),
2016
+ completing the proof.
2017
+
2018
+ 6.3. Density Calculations for vP(a1) = 0. Suppose that vP(a1) = 0. This case has
2019
+ density QP −1
2020
+ QP . The discriminant is
2021
+ a4
2022
+ 1(a2
2023
+ 1a6 + a1a3a4 + a2
2024
+ 4) + a4
2025
+ 3 + a3
2026
+ 1a3
2027
+ 3.
2028
+ Note that by considering a6 modulo πP, the discriminant is not divisible by πP with
2029
+ density (QP −1)2
2030
+ Q2
2031
+ P
2032
+ . For this case, the algorithm ends in step 1. Then, we add (QP −1)2
2033
+ Q2
2034
+ P
2035
+ to
2036
+ δK(I0, 1, 0; P).
2037
+ Assume the discriminant is divisible by πP. Let (α1, α2) be the singular point modulo
2038
+ πP; it can be proven that α1, α2 ∈ RP. Also, α1 ≡ −a3
2039
+ a1 (mod πP). In step 2, replace x
2040
+ by x + n and y by y + m with n = α1 and m = α2. Afterwards, the coefficient of xy is a1,
2041
+ which is not divisible by πP. The algorithm then ends in step 2.
2042
+ We see that the discriminant is linear in a6. Therefore, we have that vP(a1) = 0 and
2043
+ vP(∆(E)) = N with density (QP −1)2
2044
+ QN+2
2045
+ P
2046
+ for N ≥ 0. Note that the polynomial considered
2047
+ in step 2 is T 2 + a1T + α1.
2048
+ Suppose a1 ≡ r1 (mod πP) and a3 ≡ r3 (mod πP) for
2049
+ r1, r3 ∈ LP,1 such that r1 ̸= 0. Given r1, T 2 + a1T + α1 is irreducible over RP/πPRP for
2050
+ QP
2051
+ 2
2052
+ values of r3. Afterwards, using step 2 of Tate’s algorithm, we get that in this case,
2053
+
2054
+ 20
2055
+ ANDREW YAO
2056
+ δK(I1, 1, 0; P) = (QP −1)2
2057
+ Q3
2058
+ P
2059
+ , δK(I2, 2, 0; P) = (QP −1)2
2060
+ Q4
2061
+ P
2062
+ , and
2063
+ δK(IN, N, 0; P) = δK
2064
+
2065
+ IN, 2
2066
+ �N
2067
+ 2
2068
+
2069
+ − N + 2, 0; P
2070
+
2071
+ = (QP − 1)2
2072
+ 2QN+2
2073
+ P
2074
+ for N ≥ 3.
2075
+ 6.4. Density Calculations for vP(a1) ≥ 1. In this subsection, we assume that vP(a1) ≥
2076
+ 1. The density for this is
2077
+ 1
2078
+ QP , and the discriminant modulo πP is a4
2079
+ 3.
2080
+ Suppose vP(a3) = 0. The density for this case is QP −1
2081
+ Q2
2082
+ P . Here, the discriminant is not
2083
+ divisible by πP. Tate’s algorithm then ends in step 1, and we add QP −1
2084
+ Q2
2085
+ P
2086
+ to δK(I0, 1, 0; P).
2087
+ Following this, we obtain that δK(I0, 1, 0; P) = QP −1
2088
+ QP .
2089
+ Next, assume vP(a3) ≥ 1. The total density for this is
2090
+ 1
2091
+ Q2
2092
+ P . The singular point modulo
2093
+ πP is (x, y) = (α1, α2) for α1, α2 ∈ LP,1 such that a4 ≡ α2
2094
+ 1 (mod πP) and a6 ≡ α2
2095
+ 2
2096
+ (mod πP). We replace x with x + n and y with y + m, where n = α1 and m = α2. The
2097
+ curve is
2098
+ (y + m)2 + a1(x + n)(y + m) + a3(y + m) = (x + n)3 + a4(x + n) + a6.
2099
+ If π2
2100
+ P does not divide mna1 +ma3 +na4+a6+m2 +n3, the algorithm ends in step 3. By
2101
+ adding multiples of πP to a6, this occurs with density QP −1
2102
+ Q3
2103
+ P . We have that δK(II, 1, 0; P) =
2104
+ QP −1
2105
+ Q3
2106
+ P .
2107
+ Assume π2
2108
+ P divides mna1 + ma3 + na4 + a6 + m2 + n3. The total density for this case
2109
+ is
2110
+ 1
2111
+ Q3
2112
+ P . We have that
2113
+ b8 = n(na1 + a3)2 + (ma1 + a4 + n2)2.
2114
+ If b8 is not divisible by π3
2115
+ P, the algorithm ends in step 4. By adding multiples of πP to a4,
2116
+ we have that δK(III, 2, 0; P) = QP −1
2117
+ Q4
2118
+ P .
2119
+ Assume b8 is divisible by π3
2120
+ P. The total density for this case is
2121
+ 1
2122
+ Q4
2123
+ P . If vP(na1 + a3) = 1,
2124
+ the algorithm ends in step 5. Assume a4 ≡ 0 (mod πP). Then, replace a3 with a3 + dπP
2125
+ and a4 with a4 + βdπP for β, d ∈ LP,1 such that β2 ≡ α1 (mod πP). This will not affect
2126
+ previous parts of the algorithm; particularly, this will not change b8 modulo π3
2127
+ P. However,
2128
+ na1 + a3 will be increased by dπP. Therefore, we have that vP(na1 + a3) = 1 with density
2129
+ QP −1
2130
+ Q5
2131
+ P . From this, δK(IV, 1, 0; P) = δK(IV, 3, 0; P) = QP −1
2132
+ 2Q5
2133
+ P .
2134
+ Assume vP(na1 + a3) ≥ 2.
2135
+ The total density for this case is
2136
+ 1
2137
+ Q5
2138
+ P .
2139
+ Let α3 be the
2140
+ element of LP,1 such that n ≡ α2
2141
+ 3 (mod πP). Also, let α4 be the element of LP,1 such that
2142
+ mna1 + ma3 + na4 + a6 + m2 + n3 ≡ α2
2143
+ 4π2
2144
+ P (mod π3
2145
+ P). After the transformation in step 6,
2146
+ the equation of the curve is
2147
+ (y + lx + m)2 + a1(x + n)(y + lx + m) + a3(y + lx + m)
2148
+ = (x + n)3 + a4(x + n) + a6,
2149
+ where n = α1, l = α3, and m = α2 + α4πP. Suppose that in step 6, the polynomial
2150
+ P(T) ∈ (RP/πPRP)[T] is P(T) = T 3 + w2T 2 + w1T + w0.
2151
+ Suppose a4 ≡ 0 (mod πP). Because 0 ∈ LP,1, we have that n = l = 0. This means
2152
+ that w2 = 0. Then, we can replace a4 with a4 + d1π2
2153
+ P for d1 ∈ LP,1, and the previous
2154
+
2155
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
2156
+ 21
2157
+ parts of the algorithm will not be changed. With this, the choices for w1 modulo πP are
2158
+ the elements of LP,1. Following this, from replacing a6 with a6 + d2π3
2159
+ P for d2 ∈ LP,1, the
2160
+ choices for w0 modulo πP are the elements of LP,1. We have that the number of P(T)
2161
+ with a double root and no roots in RP/πPRP are QP − 1 and 1, respectively. Moreover,
2162
+ we have that the number of P(T) with 3 distinct roots in RP/πPRP and 0 roots, 1 root,
2163
+ and 3 roots in RP/πPRP are Q2
2164
+ P −1
2165
+ 3
2166
+ , Q2
2167
+ P −QP
2168
+ 2
2169
+ , and Q2
2170
+ P −3QP +2
2171
+ 6
2172
+ , respectively.
2173
+ Suppose a4 ̸≡ 0 (mod πP). Consider the translation of replacing a1 with a1 + d1πP, a3
2174
+ with a3 + α1d1πP, a4 with a4 + (α2 + α4πP)d1πP, and a6 with a6 + α1(α2 + α4πP)d1πP for
2175
+ d1 ∈ LP,1. After this, the parts of the algorithm before step 6 do not change. In step 6,
2176
+ w0 and w1 do not change. However, w2 increases by α3d1. Because α3 ̸= 0, the choices for
2177
+ w2 are the elements of LP,1. Next, replace a6 with a6 + d2π3
2178
+ P for d2 ∈ LP,1. With this, the
2179
+ choices for w0 are also the elements of LP,1. The number of P(T) with a double root and
2180
+ no roots in RP/πPRP are the same as above. Also, the number of P(T) with 3 distinct
2181
+ roots in RP/πPRP and 0 roots, 1 root, and 3 roots in RP/πPRP are the same as above.
2182
+ Suppose P(T) has distinct roots. For this case, the total density is QP −1
2183
+ Q6
2184
+ P
2185
+ and Tate’s
2186
+ algorithm ends in step 6. We see that δK(I∗
2187
+ 0, 1, 0; P) = Q2
2188
+ P −1
2189
+ 3Q7
2190
+ P , δK(I∗
2191
+ 0, 2, 0; P) = QP −1
2192
+ 2Q6
2193
+ P , and
2194
+ δK(I∗
2195
+ 0, 4, 0; P) =
2196
+ Q2
2197
+ P −3QP +2
2198
+ 6Q7
2199
+ P
2200
+ .
2201
+ Assume that P(T) has a double root and a simple root.
2202
+ For this case, the total
2203
+ density is QP −1
2204
+ Q7
2205
+ P
2206
+ and Tate’s algorithm ends in step 7. In Section 6.5, we compute that
2207
+ δK(I∗
2208
+ N, 2, 0; P) = δK(I∗
2209
+ N, 4, 0; P) = (QP −1)2
2210
+ 2QN+7
2211
+ P
2212
+ for all positive integers N.
2213
+ Next, suppose P(T) has a triple root. For this case, the density is
2214
+ 1
2215
+ Q7
2216
+ P , and the root of
2217
+ P(T) is √w1 modulo πP. If a4 ≡ 0 (mod πP), the triple root is 0 modulo πP. Let α5 be
2218
+ an element of LP,1 such that
2219
+ (m + ln)a1 + la3 + a4 + n2 ≡ α2
2220
+ 5π2
2221
+ P
2222
+ (mod π3
2223
+ P).
2224
+ Then, the translation in step 8 sets n to be n = α1 + α5πP.
2225
+ Suppose a4 ≡ 0 (mod πP). Replace a3 with a3 + dπ2
2226
+ P and a6 with a6 + (α2 + α4πP)dπ2
2227
+ P
2228
+ for some d ∈ LP,1. Then, note that the previous parts of the algorithm, including P(T),
2229
+ are unchanged. However, the coefficient of y increases by dπ2
2230
+ P. We have that for one value
2231
+ of d, the coefficient of y is divisible by π3
2232
+ P. Next, suppose a4 ̸≡ 0 (mod πP). Replace a1
2233
+ with a1 + dπ2
2234
+ P and a4 with a4 + (α2 + α4πP)dπ2
2235
+ P for some d ∈ LP,1. The previous parts of
2236
+ the algorithm, including P(T), are unchanged. However, the coefficient of y increases by
2237
+ (α1 + α5πP)dπ2
2238
+ P. Similarly, we have that for one value of d, the coefficient of y is divisible
2239
+ by π3
2240
+ P. From this, we get that the coefficient of y is not divisible by π3
2241
+ P and the algorithm
2242
+ ends in step 8 with density QP −1
2243
+ Q8
2244
+ P . We then have that δK(IV ∗, 1, 0; P) = δK(IV ∗, 3, 0; P) =
2245
+ QP −1
2246
+ 2Q8
2247
+ P .
2248
+ Assume the coefficient of y is divisible by π3
2249
+ P. The total density of this case is
2250
+ 1
2251
+ Q8
2252
+ P . Let
2253
+ α6 be the element of LP,1 such that
2254
+ mna1 + ma3 + na4 + a6 + m2 + n3 ≡ α2
2255
+ 6π4
2256
+ P
2257
+ (mod π5
2258
+ P).
2259
+ Then, m is set to m = α2 + α4πP + α6π2
2260
+ P in step 9. If π4
2261
+ P does not divide the x coefficient
2262
+ of this curve, the algorithm ends in step 9. Consider the translation of replacing a4 with
2263
+
2264
+ 22
2265
+ ANDREW YAO
2266
+ a4+dπ3
2267
+ P and a6 with a6+(α1+α5πP)dπ3
2268
+ P for d ∈ LP,1. The previous parts of the algorithm
2269
+ do not change, but the coefficient of x is increased by dπ3
2270
+ P. Therefore, π4
2271
+ P does not divide
2272
+ the x coefficient with density QP −1
2273
+ Q9
2274
+ P . We have that δK(III∗, 2, 0; P) = QP −1
2275
+ Q9
2276
+ P
2277
+ Assume π4
2278
+ P divides the coefficient of x of the curve. The total density for this case is
2279
+ 1
2280
+ Q9
2281
+ P . If π6
2282
+ P does not divide mna1 + ma3 + na4 + a6 + m2 + n3, Tate’s algorithm ends in
2283
+ step 10. This occurs with density QP −1
2284
+ Q10
2285
+ P
2286
+ from adding multiples of π6
2287
+ P to a6. We then have
2288
+ that δK(II∗, 1, 0; P) = QP −1
2289
+ Q10
2290
+ P .
2291
+ 6.5. Subprocedure Density Calculations. We calculate the density of Kodaira types
2292
+ r = I∗
2293
+ N for N ≥ 1 and Tamagawa numbers n = 2, 4. Note that previously, the curve was
2294
+ reduced by removing a2 with a translation on x to obtain G(3)
2295
+ P . However, here the density
2296
+ is calculated in GP without the reduction. That is, the density is calculated for curves in
2297
+ long Weierstrass form.
2298
+ Let X be the set of elliptic curves E ∈ GP such that NP(E) = 0 and Tate’s algorithm
2299
+ enters the step 7 subprocedure when used on E. For E ∈ X, let L(E) be the number of
2300
+ iterations of the step 7 subprocedure that are completed when Tate’s algorithm is used
2301
+ on E. For a nonnegative integer N, let XN be the set of E ∈ X such that L(E) ≥ N.
2302
+ Suppose N is an even nonnegative integer. Assume that N = 0. In iteration N = 0,
2303
+ there is a translation. Note that the double root of P(T) is the squareroot of w1. Because
2304
+ of this, in step 7, we add γ0πP to n and lγ0πP to m for some γ0 ∈ LP,1 such that
2305
+ (m + ln)a1 + la3 + a4 + n2 ≡ γ2
2306
+ 0π2
2307
+ P
2308
+ (mod π3
2309
+ P)
2310
+ Next, assume N ≥ 2. Suppose iteration N of the step 7 subprocedure is reached and the
2311
+ quadratic has a double root. Then,
2312
+ vP((m + ln)a1 + la3 + a4 + n2) ≥ N + 6
2313
+ 2
2314
+ .
2315
+ Also, we add γNπ
2316
+ N+2
2317
+ 2
2318
+ P
2319
+ to n and lγNπ
2320
+ N+2
2321
+ 2
2322
+ P
2323
+ to m for some γN ∈ LP,1 such that
2324
+ mna1 + ma3 + na4 + a6 + m2 + n3 ≡ (la1 + a2 + n + l2)γ2
2325
+ NπN+2
2326
+ P
2327
+ (mod πN+4
2328
+ P
2329
+ ).
2330
+ Note that vP(la1 + a2 + n + l2) = 1.
2331
+ Suppose N is an odd nonnegative integer. Suppose iteration N of the step 7 subpro-
2332
+ cedure is reached and the quadratic has a double root. Then, vP(na1 + a3) ≥ N+5
2333
+ 2 . Also,
2334
+ γNπ
2335
+ N+3
2336
+ 2
2337
+ P
2338
+ is added to m for some γN ∈ LP,1 such that
2339
+ mna1 + ma3 + na4 + a6 + m2 + n3 ≡ γ2
2340
+ NπN+3
2341
+ P
2342
+ (mod πN+4
2343
+ P
2344
+ )
2345
+ Let N be a nonnegative integer.
2346
+ Let YN be the set of curves y2 + a′
2347
+ 1xy + a′
2348
+ 3y =
2349
+ x3 + a′
2350
+ 2x2 + a′
2351
+ 4x + a′
2352
+ 6 with vP(a′
2353
+ 1) ≥ 1, vP(a′
2354
+ 2) = 1, vP(a′
2355
+ 3) ≥ ⌊N+5
2356
+ 2 ⌋, vP(a′
2357
+ 4) ≥ ⌊N+6
2358
+ 2 ⌋, and
2359
+ vP(a′
2360
+ 6) ≥ N + 4.
2361
+ Suppose E ∈ XN and that the translations of Tate’s algorithm when it is used on E
2362
+ are α1, α2, α3, α4, γ0, γ1, . . ., γN. Let TN(E) = (α1, α2, α3, α4, γ0, γ1, . . . , γN). Note that
2363
+ because the characteristic of K is p = 2, TN(E) is well defined. Also, let θN(E) : XN → YN
2364
+
2365
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
2366
+ 23
2367
+ be E with x replaced by x + n and y replaced by y + lx + m, where
2368
+ n = α1 +
2369
+ ⌊ N
2370
+ 2 ⌋
2371
+
2372
+ i=0
2373
+ γ2iπi+1
2374
+ P , l = α3, m = α2 + α4πP + α3
2375
+ ⌊ N
2376
+ 2 ⌋
2377
+
2378
+ i=0
2379
+ γ2iπi+1
2380
+ P
2381
+ +
2382
+ ⌊ N−1
2383
+ 2 ⌋
2384
+
2385
+ i=0
2386
+ γ2i+1πi+2
2387
+ P .
2388
+ Lemma 6.5. If U is an open subset of YN, µP(θ−1
2389
+ N (U)) = QN+5
2390
+ P
2391
+ µP(U).
2392
+ Proof. Let a = (α1, α2, α3, α4, γ0, γ1, . . . , γN)0≤i≤N be an element of LN+5
2393
+ P,1 . Suppose that
2394
+ XN,a is the set of E ∈ XN such that TN(E) = a. Suppose that θN,a is θN restricted to
2395
+ XN,a. Let U be an open subset of YN. Using a method similar to the proof of Lemma 4.3,
2396
+ we have that
2397
+ µP(θ−1
2398
+ N,a(U)) = µP(U).
2399
+ Because there are QN+5
2400
+ P
2401
+ choices of a, the result follows.
2402
+
2403
+ Suppose N is a positive integer. With Lemma 6.5, we can compute the density for curves
2404
+ that enter step 7 in the first iteration and have type I∗
2405
+ N. We have that µP(YN−1) =
2406
+ QP −1
2407
+ Q2N+10
2408
+ P
2409
+ ,
2410
+ and the Haar measure in G(3)
2411
+ P
2412
+ of curves that have type I∗
2413
+ N is then (QP −1)2
2414
+ QN+7
2415
+ P
2416
+ . Particularly,
2417
+ δK(I∗
2418
+ N, 2, 0; P) = δK(I∗
2419
+ N, 4, 0; P) = (QP −1)2
2420
+ 2QN+7
2421
+ P
2422
+ .
2423
+ 7. Local and Global Density Results
2424
+ In Section 4, Section 5, and Section 6, we compute the local densities of Koidara types
2425
+ and Tamagawa numbers for p ≥ 5, p = 3, and p = 2, respectively. The methods we use
2426
+ involved first removing some terms from the equations of elliptic curves with translations,
2427
+ and then using translations to compute the local densities. Let r be a Koidara type and n
2428
+ be a positive integer. Note that δK(r, n; P) only depends on QP. Additionally, in [3], the
2429
+ local densities of r and the Tamagawa number n for elliptic curves in short Weierstrass
2430
+ form over Qr for primes r ≥ 5 have the same form as δK(r, n; P) for global function
2431
+ fields K and P ∈ MK. In [1], the local densities of r and the Tamagawa number n for
2432
+ elliptic curves in short Weierstrass form over completions of number fields at places that
2433
+ lie above primes r ≥ 5 also have the same form as δK(r, n; P) for global function fields K
2434
+ and P ∈ MK.
2435
+ Next, we discuss some results about local and global densities, including a proof of
2436
+ Theorem 1.2. Particularly, we compute the density of completing at most k ≥ 0 iterations
2437
+ of Tate’s algorithm.
2438
+ 7.1. Proof of Theorem 1.2. Let U and V be the sets of elliptic curves E ∈ GP with
2439
+ Kodaira type r and Tamagawa number n such that NP(E) = 0 and NP(E) = k, respec-
2440
+ tively. Note that ϕ(U) and ϕ(V ) are the sets of curves E ∈ S0 with Kodaira type r and
2441
+ Tamagawa number n such that NP(E) = 0 and NP(E) = k, respectively.
2442
+ Suppose E ∈ GP and ϕ(E) ∈ ϕ(U). Then, E has Kodaira type r, Tamagawa number
2443
+ n, and NP(E) = 0. This means that E ∈ U. From this, ϕ−1(ϕ(U)) ⊂ U. Moreover,
2444
+ U ⊂ ϕ−1(ϕ(U)). It follows that ϕ−1(ϕ(U)) = U. Similarly, ϕ−1(ϕ(V )) = V .
2445
+ We have that U and V are open sets. Moreover, ϕ(U) and ϕ(V ) are open sets. With
2446
+ this, we have that µP(U) = µP(ϕ(U)) and µP(V ) = µP(ϕ(V )) for all characteristics p
2447
+
2448
+ 24
2449
+ ANDREW YAO
2450
+ from Lemma 4.1, Lemma 5.1, and Lemma 6.1. Therefore, it suffices to prove that
2451
+ µP(ϕ(V )) =
2452
+ 1
2453
+ Q10k
2454
+ P
2455
+ µP(ϕ(U)).
2456
+ Suppose E ∈ ϕ(V ). We have that φk(E) has Kodaira type r, Tamagawa number n,
2457
+ and NP(φk(E)) = 0.
2458
+ Therefore, φk(E) ⊂ ϕ(U).
2459
+ It follows that ϕ(V ) ⊂ φ−1
2460
+ k (ϕ(U)).
2461
+ Next, suppose E ∈ Sk and φk(E) ∈ ϕ(U). Then, the Koidara type of E is r and the
2462
+ Tamagawa number of E is n. Moreover, because NP(φk(E)) = 0, NP(E) = k. It follows
2463
+ that E ∈ ϕ(V ). Therefore, φ−1
2464
+ k (ϕ(U)) ⊂ ϕ(V ). From this, φ−1
2465
+ k (ϕ(U)) = ϕ(V ). The result
2466
+ then follows from Lemma 4.2, Lemma 5.4, and Lemma 6.4.
2467
+ 7.2. Density for Multiple Iterations. Let k be a nonnegative integer. For P ∈ MK,
2468
+ let Uk
2469
+ P denote the set of elliptic curves E in GP such that NP(E) ≥ k + 1. The following
2470
+ proposition is important for the proof of Theorem 7.2.
2471
+ Proposition 7.1. For P ∈ MK, µP(Uk
2472
+ P) =
2473
+ 1
2474
+ Q10(k+1)
2475
+ P
2476
+ .
2477
+ Proof. Suppose P ∈ Mk. From Lemma 4.2, Lemma 5.4, and Lemma 6.4 with k + 1 as k
2478
+ and GP as U, we have that
2479
+ µP(Uk
2480
+ P) =
2481
+ 1
2482
+ Q10(k+1)
2483
+ P
2484
+ · µP(GP) =
2485
+ 1
2486
+ Q10(k+1)
2487
+ P
2488
+ .
2489
+ This finishes the proof.
2490
+
2491
+ Theorem 7.2. Let S be a finite nonempty subset of MK. Suppose U is the set of elliptic
2492
+ curves in WS such that NP(E) ≤ k for all P ∈ SC. Then,
2493
+ dS(U) =
2494
+ 1
2495
+ ζK(10(k + 1)) ·
2496
+
2497
+ P ∈S
2498
+
2499
+ Q10(k+1)
2500
+ P
2501
+ Q10(k+1)
2502
+ P
2503
+ − 1
2504
+
2505
+ .
2506
+ Proof. For a positive integer M, let VM be the set of elliptic curves E ∈ WS such that
2507
+ there exists P ∈ SC with degree at least M such that E ∈ Uk
2508
+ P. From Proposition 3.3, we
2509
+ have that limM→∞ dS(VM) = 0. Therefore, we can use Theorem 3.1 with Uk
2510
+ P as UP for
2511
+ P ∈ SC and T = {}. The result follows from Proposition 7.1.
2512
+
2513
+ Example 7.3. We give an example of Theorem 7.2. Let K = Fq(t). Suppose P∞ is the
2514
+ infinite place of Fq(t) and let S = {P∞}. Let k be a nonnegative integer and U be the set
2515
+ of elliptic curves in WS such that NP(E) ≤ k for all P ∈ SC. From Theorem 5.9 of [5],
2516
+ because the genus of K is 0, we have that ζK(10(k + 1)) =
2517
+ q20k+19
2518
+ (q10k+9−1)(q10k+10−1). Because
2519
+ P∞ has degree 1, from Theorem 7.2, dS(U) = 1 −
2520
+ 1
2521
+ q10k+9.
2522
+
2523
+ DENSITIES FOR ELLIPTIC CURVES OVER GLOBAL FUNCTION FIELDS
2524
+ 25
2525
+ References
2526
+ [1] Yunseo Choi, Sean Li, Apoorva Panidapu, and Casia Siegel, Tamagawa products for elliptic curves
2527
+ over number fields, arXiv, 2021.
2528
+ [2] John Cremona and Mohammad Sadek, Local and global densities for Weierstrass models of elliptic
2529
+ curves, arXiv, 2020.
2530
+ [3] Michael Griffin, Ken Ono, and Wei-Lun Tsai, Tamagawa products of elliptic curves over Q, The
2531
+ Quarterly Journal of Mathematics 72 (2021), no. 4, 1517–1543.
2532
+ [4] Giacomo Micheli, A local to global principle for densities over function fields, arXiv, 2017.
2533
+ [5] Michael Rosen, Number theory in function fields, 1st ed., Springer, 2002.
2534
+ [6] Joseph H. Silverman, Advanced topics in the arithmetic of elliptic curves, 1st ed., Springer, 1994.
2535
+ [7] John Tate, Algorithm for determining the type of a singular fiber in an elliptic pencil, Modular Func-
2536
+ tions of One Variable IV, 1975, pp. 33–52.
2537
+
GtFJT4oBgHgl3EQfEiwz/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
J9AyT4oBgHgl3EQfTffD/content/tmp_files/2301.00108v1.pdf.txt ADDED
@@ -0,0 +1,2194 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Targeted 𝑘-node Collapse Problem: Towards Understanding the
2
+ Robustness of Local 𝑘-core Structure
3
+ Yuqian Lv
4
+ Zhejiang University of Technology
5
6
+ Bo Zhou
7
+ Zhejiang University of Technology
8
9
+ Jinhuan Wang
10
+ Zhejiang University of Technology
11
12
+ Qi Xuan
13
+ Zhejiang University of Technology
14
15
+ ABSTRACT
16
+ The concept of𝑘-core, which indicates the largest induced subgraph
17
+ where each node has 𝑘 or more neighbors, plays a significant role
18
+ in measuring the cohesiveness and the engagement of a network,
19
+ and it is exploited in diverse applications, e.g., network analysis,
20
+ anomaly detection, community detection, etc. Recent works have
21
+ demonstrated the vulnerability of 𝑘-core under malicious pertur-
22
+ bations which focuses on removing the minimal number of edges
23
+ to make a whole 𝑘-core structure collapse. However, to the best of
24
+ our knowledge, there is no existing research concentrating on how
25
+ many edges should be removed at least to make an arbitrary node
26
+ in 𝑘-core collapse. Therefore, in this paper, we make the first at-
27
+ tempt to study the Targeted 𝑘-node Collapse Problem (TNCP) with
28
+ four novel contributions. Firstly, we offer the general definition of
29
+ TNCP problem with the proof of its NP-hardness. Secondly, in order
30
+ to address the TNCP problem, we propose a heuristic algorithm
31
+ named TNC and its improved version named ATNC for implemen-
32
+ tations on large-scale networks. After that, the experiments on 16
33
+ real-world networks across various domains verify the superiority
34
+ of our proposed algorithms over 4 baseline methods along with de-
35
+ tailed comparisons and analyses. Finally, the significance of TNCP
36
+ problem for precisely evaluating the resilience of 𝑘-core structures
37
+ in networks is validated.
38
+ PVLDB Reference Format:
39
+ Yuqian Lv, Bo Zhou, Jinhuan Wang, and Qi Xuan. Targeted 𝑘-node
40
+ Collapse Problem: Towards Understanding the Robustness of Local 𝑘-core
41
+ Structure. PVLDB, 16(1): XXX-XXX, 2022.
42
+ doi:XX.XX/XXX.XX
43
+ PVLDB Artifact Availability:
44
+ The source code, data, and/or other artifacts have been made available at
45
+ https://github.com/Yocenly/TNCP.
46
+ 1
47
+ INTRODUCTION
48
+ Networks or graphs play significant roles in describing various
49
+ complex systems from numerous domains, e.g., social networks[11,
50
+ 27, 31, 43], citation networks[16, 26], biological networks[11, 22, 47]
51
+ This work is licensed under the Creative Commons BY-NC-ND 4.0 International
52
+ License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
53
+ this license. For any use beyond those covered by this license, obtain permission by
54
+ emailing [email protected]. Copyright is held by the owner/author(s). Publication rights
55
+ licensed to the VLDB Endowment.
56
+ Proceedings of the VLDB Endowment, Vol. 16, No. 1 ISSN 2150-8097.
57
+ doi:XX.XX/XXX.XX
58
+ 1
59
+ 3
60
+ 2
61
+ 6
62
+ 8
63
+ 4
64
+ 5
65
+ 7
66
+ 9
67
+ b
68
+ a
69
+ c
70
+ d
71
+ 1
72
+ 3
73
+ 4
74
+ 6
75
+ 7
76
+ 10
77
+ 9
78
+ 2
79
+ 5
80
+ 8
81
+ 11
82
+ 12
83
+ 13
84
+ 14
85
+ 3-core
86
+ 2-core
87
+ 15
88
+ 16
89
+ 18
90
+ 17
91
+ 1-core
92
+ 2-node
93
+ 3-node
94
+ 1-node
95
+ Figure 1: An example of 𝑘-core distribution in a graph. Each
96
+ subgraph in the dotted box with a certain color represents
97
+ the 𝑘-core and the color of each node represents its core
98
+ value.
99
+ and power networks[2, 36]. Therefore, understanding the topolog-
100
+ ical information of graphs is what matters in the study of graph
101
+ theory. Due to the advantages of simplicity and efficiency [20], the
102
+ concept of 𝑘-core, which denotes the maximal induced subgraph
103
+ where each node within it occupies at least 𝑘 neighbors [9], has
104
+ stood out as an important metric for describing the global struc-
105
+ tural engagement of networks from massive evaluation metrics.
106
+ As shown in Figure 1, an example graph with 18 nodes and 28
107
+ edges is given where 3 cores exist, i.e., 1-core, 2-core and 3-core
108
+ which are surrounded by dotted boxes with different colors. As
109
+ more and more researchers devoted themselves to the study of
110
+ 𝑘-core, 𝑘-core has been used in a broad variety of important ap-
111
+ plications [32]. For example, in ecological networks, Morone et al.
112
+ [35] exploited the 𝑘-core as a predictor to estimate the structural
113
+ collapse in mutualistic ecosystems, and Burleson-Lesser et al. [7]
114
+ presented a new approach for characterizing the stability and ro-
115
+ bustness of networks with all-positive interactions by studying the
116
+ distribution of the 𝑘-core of the underlying network. Besides, in
117
+ social networks, Wang et al. [44] considered the pruning process of
118
+ 𝑘-core to measure the vulnerability and resilience of social engage-
119
+ ment and further studied its equilibrium statistical mechanics. And
120
+ in biological networks, Luo et al. [30] studied the core structure of
121
+ protein-protein interactions networks with an interesting discovery
122
+ that core structures help to reveal the existence of multiple levels of
123
+ protein expression dynamics, and Isaac et al. [17] discovered that
124
+ arXiv:2301.00108v1 [cs.SI] 31 Dec 2022
125
+
126
+ residues belonging to inner cores are more conserved than those at
127
+ the periphery of the network with the evidence that these groups
128
+ are functionally and structurally critical.
129
+ With the rapidly increasing number of applications based on
130
+ 𝑘-core structures, the robustness (or also called resilience) of 𝑘-core
131
+ have gradually attracted the attention of researchers. For instance,
132
+ Zhou et al.[51] studied the robustness of 𝑘-shell, a subset of 𝑘-core,
133
+ and demonstrated that 𝑘-shell is vulnerable under the disturbance
134
+ of edge rewiring. Their optimal-based experimental results showed
135
+ that the 𝑘-core distributions of graphs can be drastically changed
136
+ even a small proportion of edges are rewired. Zhou et al.[52] also
137
+ studied the minimal budgets of removed edges for the collapse of
138
+ the innermost 𝑘-core. They provided a proof of its NP-hardness
139
+ and offered effective heuristic algorithms to cover this problem.
140
+ Furthermore, Chen et al.[8] focused on the 𝑘-core minimization
141
+ problem and suggested three sub-problems, i.e., KNM, KEM and
142
+ KCM. They further proposed several heuristic algorithms through
143
+ edge removal to cover these sub-problems respectively. Medya et
144
+ al. [34] also concentrated on the 𝑘-core minimization problem and
145
+ proposed a novel algorithm inspired by shapley value, a cooperative
146
+ game-theoretic concept. Their algorithm could leverage the strong
147
+ interdependencies in the effects of edges removal in the search
148
+ space. Besides, Zhang et al.[49] studied the collapsed𝑘-core problem
149
+ which aims to find a set of nodes whose detachment will lead to
150
+ the minimal size of the resulting collapsed 𝑘-core.
151
+ However, as we can see, throughout the previous works, all of
152
+ them considered the 𝑘-core as a whole to evaluate its robustness,
153
+ while none of them focused on the robustness of an individual node
154
+ within 𝑘-core. Thus it brings us a question that how many edges
155
+ should we disconnect at least to make an arbitrary node contained
156
+ in 𝑘-core collapse? As far as we know, there is no existing work
157
+ dedicating to the study of this problem. In this paper, we make
158
+ the first attempt to study this problem and name it as Targeted
159
+ 𝑘-node Collapse Problem (TNCP). Our main contributions can be
160
+ summarized as below.
161
+ • We offer a general definition of TNCP problem with a proof
162
+ of its NP-hardness. We demonstrate that the naive exhaustive
163
+ method will lead to the exponential explosion of the time com-
164
+ plexity. Therefore, a series of theorems are provided to narrow
165
+ down the search space of candidates.
166
+ • Combined with the theorems, we propose a heuristic algorithm
167
+ named TNC to cover the TNCP problem. However, we find that
168
+ TNC algorithm is not suitable for large-scale networks. Thus,
169
+ an improved algorithm named ATNC with less time complexity
170
+ is proposed based on TNC algorithm.
171
+ • We verify the superiority of our proposed algorithms over 4
172
+ baseline methods through experiments on 16 real-world net-
173
+ works collected from different public platforms along with
174
+ detailed comparisons and analyses.
175
+ • We demonstrate that the research of TNCP problem is helpful
176
+ for precisely evaluating the resilience of the 𝑘-core structures
177
+ in networks.
178
+ The remaining sections of this paper are structured as follows.
179
+ In Section 2, a brief review on the previous works about 𝑘-core is
180
+ illustrated. In Section 3, the statement of TNCP problem and basic
181
+ definitions, which will be used in the rest of this paper, are intro-
182
+ duced along with the theorems for candidate reduction. In Section
183
+ 4, we introduce our proposed methods TNC and ATNC with their
184
+ time complexity analyses. In Section 5, we give the introductions
185
+ about the datasets being used, the baseline methods for compar-
186
+ isons and the metrics for evaluations. In Section 6, experimental
187
+ results on all mentioned datasets are shown along with detailed
188
+ comparisons and analyses between our proposed algorithms and
189
+ the baseline methods. In Section 7, the significance of TNCP prob-
190
+ lem for precisely evaluating the resilience of 𝑘-core in networks is
191
+ validated. Finally, our work is concluded in Section 8.
192
+ 2
193
+ RELATED WORKS
194
+ The researches on the 𝑘-core structure of networks have been
195
+ enduring, and those most related to our work are introduced as
196
+ below, including core decomposition, core robustness/resilience,
197
+ and core percolation.
198
+ Core Decomposition. Hajnal et al. [14] gave the first 𝑘-core
199
+ related concept and defined the degeneracy of a graph as the maxi-
200
+ mum core number of a node. Then, Seidman [40], as well as Matula
201
+ and Beck [33], defined the 𝑘-core subgraph as the maximal con-
202
+ nected subgraph where each node has at least 𝑘 neighbors. Khaouid
203
+ et al. [18] explored whether𝑘-core decomposition of large networks
204
+ can be computed using a consumer-grade PC. Sariyüce et al. [39]
205
+ proposed the first incremental 𝑘-core decomposition algorithms
206
+ for streaming graph data. Hébert-Dufresne et al. [15] proposed
207
+ onion decomposition which is derived from 𝑘-core decomposition.
208
+ Eidsaa and Almaas [10] presented 𝑠-core analysis, a generalization
209
+ of 𝑘-core analysis, for weighted networks.
210
+ Core Robustness/Resilience. In addition to works mentioned
211
+ in the last section, Adiga and Vullikanti [1] examined the robustness
212
+ of the top core sets in perturbed/sampled graphs. Zdeborová et
213
+ al. [48] used 𝑘-core as a heuristic tool in the process of graph
214
+ decycling and dismantling. Laishram et al. [23] proposed metrics
215
+ for measuring the core resilience of a network under the situations
216
+ of node/edge removals.
217
+ Core Percolation. Azimi-Tafreshi et al. [3] generalized the the-
218
+ ory of 𝑘-core percolation on complex networks to k-core percola-
219
+ tion on multiplex networks, where k = (𝑘𝑎,𝑘𝑏, ...). Whi et al. [46]
220
+ revealed the hierarchical structure of functional connectivity on
221
+ resting-state fMRI (rsfMRI) through the method of 𝑘-core perco-
222
+ lation. Wang et al. [45] proposed a generalized 𝑘-core percolation
223
+ model to investigate the robustness of the higher-order dependent
224
+ networks. Zheng et al. [50] studied the robustness of multiplex net-
225
+ works with interdependent and interconnected links under 𝑘-core
226
+ percolation. Guo et al. [13] applied 𝑘-core percolation analysis on
227
+ brain structural network, suggesting that the brain networks are
228
+ mostly reliable against random or 𝑘-core-based percolation with
229
+ their structure design.
230
+ 3
231
+ PROBLEM STATEMENT
232
+ In this section, the descriptions of commonly used definitions and
233
+ fundamental concepts will be discussed in the following contents
234
+ along with the statement of TNCP problem and the proofs of our
235
+ proposed theorems.
236
+ 2
237
+
238
+ 3.1
239
+ Preliminaries
240
+ In this paper, a network or a graph (these two concepts will be
241
+ used indiscriminately) is indicated as 𝐺 = (𝑉, 𝐸), where 𝑉 and
242
+ 𝐸 ⊆ (𝑉 × 𝑉 ) represent the sets of nodes and edges respectively,
243
+ which are extracted from real-world entities and the relationships
244
+ between any pair of entities. As a prerequisite, we only focus on
245
+ those unweighted and undirected graphs without self-loops or
246
+ isolated nodes. Here, we present some fundamental definitions and
247
+ related concepts which are relevant to the subsequent discussions.
248
+ In Table 1, we compile a list of principal symbols and notations for
249
+ convenient query.
250
+ Table 1: Summary of notations.
251
+ Notation
252
+ Definition
253
+ 𝐺𝑘
254
+ the 𝑘-core subgraph of 𝐺
255
+ 𝑑(𝑖,𝐺𝑘)
256
+ the degree of node 𝑖 in 𝐺𝑘
257
+ 𝐶(𝑖,𝐺)
258
+ the core value of node 𝑖
259
+ 𝑆𝑁(𝑖,𝑘,𝐺)
260
+ the supportive neighbors of the node 𝑖 in 𝐺𝑘
261
+ 𝑆𝑁(𝑖,𝐺)
262
+ the simplification of 𝑆𝑁(𝑖,𝐶(𝑖,𝐺),𝐺)
263
+ N(𝑖,𝐺𝑘)
264
+ the one-hop neighbors of node 𝑖 in 𝐺𝑘
265
+ 𝐶𝑆(𝑖,𝐺)
266
+ core strength of node 𝑖
267
+ 𝑁𝑅(𝑖,𝐺)
268
+ node robustness of node 𝑖
269
+ 𝑃(𝑖,𝐺)
270
+ the corona pedigree of node 𝑖
271
+ 𝐸𝑃
272
+ (𝑖,𝐺)
273
+ those edges connected with nodes in 𝑃(𝑖,𝐺)
274
+ Definition 1. 𝑘-core. For a given graph 𝐺, its 𝑘-core, denoted
275
+ as 𝐺𝑘 = (𝑉𝑘, 𝐸𝑘) where 𝑉𝑘 ⊆ 𝑉 and 𝐸𝑘 ⊆ 𝐸, means the maximal
276
+ induced subgraph whose nodes occupy at least 𝑘 neighbors within 𝐺𝑘,
277
+ i.e., ∀𝑖 ∈ 𝑉𝑘,𝑑(𝑖,𝐺𝑘) ≥ 𝑘, where 𝑑(𝑖,𝐺𝑘) is the degree of 𝑖 in 𝐺𝑘.
278
+ Definition 2. Core Value of Node. With the concept of 𝑘-core,
279
+ we can also describe the core value of a given node 𝑖 within 𝐺 by
280
+ 𝐶(𝑖,𝐺), which represents the maximum core value of the 𝑘-core where
281
+ node 𝑖 exists, i.e., 𝐶(𝑖,𝐺) satisfies that 𝑖 ∈ 𝐺𝐶(𝑖,𝐺) but 𝑖 ∉ 𝐺𝐶(𝑖,𝐺)+1.
282
+ The nodes whose core values are equal to 𝑘 are named as 𝑘-nodes.
283
+ In accordance with Definition 1, the existence of a given node 𝑖
284
+ within 𝐺𝑘 relies on its neighbor nodes who overlap with 𝐺𝑘. We
285
+ can also realize that those neighbors with core values less than 𝑘
286
+ are not included in 𝐺𝑘. Be a result, those neighbors helping support
287
+ the existence of 𝑖 in 𝐺𝑘 are referred to as Supportive Neighbors of 𝑖
288
+ which is recorded as 𝑆𝑁(𝑖,𝑘,𝐺) = {𝑗|𝑗 ∈ N(𝑖,𝐺),𝐶(𝑗,𝐺) ≥ 𝑘}, where
289
+ N(𝑖,𝐺) represents the one-hop neighbors of 𝑖 within 𝐺. In this way,
290
+ the following theorem could be deduced.
291
+ Theorem 1. Core Support Condition. Node 𝑖 can remain in 𝐺𝑘
292
+ if and only if it satisfies |𝑆𝑁(𝑖,𝑘,𝐺) | ≥ 𝑘; otherwise, it will be squeezed
293
+ out of 𝐺𝑘.
294
+ Proof. According to the definition of supportive neighbors of
295
+ node 𝑖, 𝑆𝑁(𝑖,𝑘,𝐺) actually denotes the intersection of N(𝑖,𝐺) and
296
+ 𝑉𝑘. Based on Definition 1, it is clear that only the satisfaction of
297
+ 𝑑(𝑖,𝐺𝑘) ≥ 𝑘 can remain the existence of 𝑖 in 𝐺𝑘. In this way, if node
298
+ 𝑖 ∈ 𝐺𝑘, there is |𝑆𝑁(𝑖,𝑘,𝐺) | = |N(𝑖,𝐺) ∩𝑉𝑘 | = |N(𝑖,𝐺𝑘) | = 𝑑(𝑖,𝐺𝑘) ≥ 𝑘,
299
+ which shows that node 𝑖 could be contained in 𝐺𝑘 if and only if
300
+ Delete
301
+ edge (5, 7)
302
+ 1
303
+ 3
304
+ 5
305
+ 6
306
+ 9
307
+ 8
308
+ 2
309
+ 4
310
+ 7
311
+ 1
312
+ 3
313
+ 5
314
+ 6
315
+ 9
316
+ 8
317
+ 2
318
+ 4
319
+ 7
320
+ 1
321
+ 3
322
+ 5
323
+ 6
324
+ 9
325
+ 8
326
+ 2
327
+ 4
328
+ 7
329
+ 1
330
+ 3
331
+ 5
332
+ 6
333
+ 9
334
+ 8
335
+ 2
336
+ 4
337
+ 7
338
+ 1
339
+ 3
340
+ 5
341
+ 6
342
+ 9
343
+ 8
344
+ 2
345
+ 4
346
+ 7
347
+ 1
348
+ 3
349
+ 5
350
+ 6
351
+ 9
352
+ 8
353
+ 2
354
+ 4
355
+ 7
356
+ 1
357
+ 3
358
+ 5
359
+ 6
360
+ 9
361
+ 8
362
+ 2
363
+ 4
364
+ 7
365
+ Delete
366
+ edge (4, 8)
367
+ Delete
368
+ edge (1, 3)
369
+ 2-node
370
+ 3-node
371
+ Figure 2: Given a graph with 9 nodes and 17 edges, we can
372
+ find that all nodes stay in 3-core. Take node 5 as our target
373
+ node, (i) the removal of edge (5, 7) does not make any ef-
374
+ fect to the 𝑘-core distribution; (ii) the removal of edge (4, 8)
375
+ makes node 4 being squeezed out of 3-core while makes no
376
+ effect to node 5; (iii) the removal of edge (1, 3) makes the tar-
377
+ get node 5 being squeezed out of 3-core.
378
+ at least 𝑘 neighbors whose core values are not less than 𝑘 are
379
+ connected with it.
380
+
381
+ Example 1. As illustrated in Figure 1, for node 13 who lives in 𝐺2,
382
+ it has 𝑆𝑁(13,2,𝐺) = 2 which allows it to satisfy Theorem 1, while it
383
+ has 𝑆𝑁(13,3,𝐺) = 1 < 3 so that it cannot exist in 𝐺3.
384
+ Theorem 1 provides us with a sufficient and necessary condition
385
+ to determine whether a certain node exists in 𝐺𝑘. Derived from this,
386
+ Laishram et al.[23] exploited a naive and easily-computed metric
387
+ called Core Strength to measure the most conservative number
388
+ of disconnected neighbors of node 𝑖 for squeezing 𝑖 out of 𝐺𝐶(𝑖,𝐺) ,
389
+ which is formulated as
390
+ 𝐶𝑆(𝑖,𝐺) = |𝑆𝑁(𝑖,𝐶(𝑖,𝐺),𝐺) | − 𝐶(𝑖,𝐺) + 1.
391
+ (1)
392
+ This metric describes that if any 𝐶𝑆(𝑖,𝐺) of supportive neighbors
393
+ are disconnected with the target node 𝑖, it will absolutely be in
394
+ violation of Theorem 1 and be squeezed out of 𝐺𝐶(𝑖,𝐺) . For instance,
395
+ as shown in Figure 2, we set node 5 ∈ 𝐺3 as the target node. That
396
+ is easy to find that the target node has 5 supportive neighbors
397
+ 𝑆𝑁(5,3,𝐺) = {1, 2, 4, 6, 7} and core strength 𝐶𝑆(5,𝐺) = 3. We arbitrar-
398
+ ily select 3 supportive neighbors to disconnect, e.g. {4, 6, 7}, then
399
+ the number of its supportive neighbors will be reduced to 2 which
400
+ is against what Theorem 1 restricts. Please notice that in the rest
401
+ of this paper, if 𝑘 = 𝐶(𝑖,𝐺), we will use 𝑆𝑁(𝑖,𝐺) instead of 𝑆𝑁(𝑖,𝑘,𝐺)
402
+ for the sake of simplicity.
403
+ 3
404
+
405
+ 3.2
406
+ Problem Definition
407
+ As mentioned in the aforementioned contents, the core strength
408
+ metric describes the most conservative number of edges we should
409
+ disconnect for target-node collapse. Because of so-called cascade
410
+ phenomenon or domino phenomenon of 𝑘-core collapse [12], how-
411
+ ever, this metric cannot estimate the exact number of edges that
412
+ must be deleted which may be less than that quantified by core
413
+ strength. As an illustration, let us turn our sights back to Figure
414
+ 2, the deletion of edge (1, 3) will practically make node 5 with
415
+ 𝐶𝑆(5,𝐺) = 3 collapse from 𝐺3 to 𝐺2. From here, we can derive the
416
+ problem named Targeted 𝑘-node Collapse Problem (TNCP) aiming
417
+ to quantify the minimal number of edges to remove for downgrad-
418
+ ing the core value of a target node.
419
+ Proposition 1. For a given 𝐺 and a target node 𝑖 ∈ 𝑉 with
420
+ 𝐶(𝑖,𝐺) = 𝑘, TNCP problem aims to find a set 𝑒 ⊆ 𝐸 containing the
421
+ least number of edges such that𝐶(𝑖,𝐺′) < 𝐶(𝑖,𝐺), where𝐺′ = (𝑉, 𝐸\𝑒),
422
+ and can be formulated as:
423
+ 𝑒∗ = arg min
424
+ 𝑒
425
+ |𝑒| ,
426
+ 𝑠.𝑡.𝐶(𝑖,𝐺′) < 𝐶(𝑖,𝐺).
427
+ (2)
428
+ The minimal size of 𝑒 is named as Node Robustness which dis-
429
+ plays the fewest number of removed edges for the collapse of
430
+ the target node under elaborate perturbations and is recorded as
431
+ 𝑁𝑅(𝑖,𝐺) = 𝑒∗. Furthermore, those nodes whose core strengths are
432
+ larger than their node robustness are referred to as Bubble Nodes
433
+ which are recorded as 𝐵𝑁 = {𝑖|𝑖 ∈ 𝑉,𝐶𝑆(𝑖,𝐺) > 𝑁𝑅(𝑖,𝐺)}.
434
+ Theorem 2. The TNCP problem is NP-hard for 𝐶(𝑖,𝐺) ≥ 2.
435
+ Proof. First, when 𝐶(𝑖,𝐺) = 1, according to Definition 1, it is
436
+ easy to realize that some node will always remain in 𝐺1 as long as
437
+ at least one neighbor is connected with it. In this way, if we want
438
+ a node to collapse from 𝐺1 to 𝐺0, we have to disconnect all of its
439
+ adjacent neighbors and make it isolated from 𝐺, where the cost of
440
+ operations is in polynomial time.
441
+ Then, when 𝐶(𝑖,𝐺) ≥ 2, considering the cascade phenomenon of
442
+ 𝑘-core collapse, a slight disturbance is able to lead a huge variation
443
+ to the target node on weakening the number of its supportive
444
+ neighbors. Therefore, in such a situation, the Set Cover Problem
445
+ (SCP) which has been proved to be NP-hard [21] can be reduced
446
+ to TNCP problem. Given a universe collection 𝑆𝑁(𝑖,𝐺) and a set of
447
+ candidates 𝐸 which contains all edges within 𝐺 under the condition
448
+ of target node𝑖. In order to cover the TNCP problem, we have to find
449
+ out a minimal-size set of edges 𝑒 ⊆ 𝐸 such that |𝑆𝑁(𝑖,𝐺) \ Φ(𝑒)| <
450
+ 𝐶(𝑖,𝐺), where Φ(𝑒) represents those collapsed nodes whose core
451
+ values will be changed after the removal of 𝑒 from 𝐺.
452
+ Additionally, paying attention to the complexity of TNCP prob-
453
+ lem, without any prior information, we have to traverse all pos-
454
+ sible combinations of the already existing edges, whose mathe-
455
+ matical expression can be formulated as 𝑓 = �𝛿
456
+ 𝑚=1
457
+ �|𝐸 |
458
+ 𝑚
459
+ �, where
460
+ 𝛿 = 𝐶𝑆(𝑖,𝐺). Based on the induction formulas of �𝑛
461
+ 𝑚
462
+ � = �𝑛−1
463
+ 𝑚
464
+ � + �𝑛−1
465
+ 𝑚−1
466
+
467
+ and �𝑀
468
+ 𝑚=0
469
+ �𝑀
470
+ 𝑚
471
+ � = 2𝑀, the above equation could be written as
472
+ 𝑓 = O(|𝐸|𝛿−1)
473
+ �𝛿
474
+ 0
475
+
476
+ + O(|𝐸|𝛿−2)
477
+ �𝛿
478
+ 1
479
+
480
+ + · · · +
481
+ �𝛿
482
+ 𝛿
483
+
484
+ = O(|𝐸|𝛿−1) + O(|𝐸|𝛿−2) · 21 + · · · + 2𝛿
485
+ = 2𝛿 +
486
+ 𝛿
487
+ ∑︁
488
+ 𝑚=1
489
+ O(|𝐸|𝑚−1) · 2𝛿−𝑚
490
+ (3)
491
+ With the complexity in the amount of the exponential increase,
492
+ it is evident that traversing all combinations takes non-polynomial
493
+ time. Combining the aforementioned approaches, the TNCP prob-
494
+ lem cannot be addressed in polynomial time when 𝐶(𝑖,𝐺) ≥ 2.
495
+
496
+ Example 2. As seen in Figure 1 covering 18 nodes and 28 edges,
497
+ node 6 is chosen to be the target node for𝑘-node collapse. As mentioned
498
+ before, there is just one edge, like (1, 2), should be removed in order
499
+ to achieve the collapse of node 6. However, without the omniscient
500
+ knowledge, it is difficult to locate which edge or edges are necessar-
501
+ ily deleted. From the descriptions above, it is naturally realized that
502
+ 𝑁𝑅(6,𝐺) ≤ 𝐶𝑆(6,𝐺), thus we need to visit all �2
503
+ 𝑚=1
504
+ �28
505
+ 𝑚
506
+ � combinations
507
+ to identify the key edge or edges useful for 𝑘-node collapse under the
508
+ worst situation. Fortunately, in this scenario, the computational com-
509
+ plexity is not high because of the previous information of 𝑁𝑅(6,𝐺) = 1
510
+ with the removal of edge (4, 6).
511
+ However, the robustness of the target node will always be equal
512
+ to 1, like 𝑁𝑅(7,𝐺) = 2 under the removal of (1, 2) and (7, 8) as well
513
+ as 𝑁𝑅(8,𝐺) = 2 under the removal of (4, 8) and (7, 8) in Figure 2.
514
+ In real-world networks, the robustness of some nodes may reach
515
+ tens or even hundreds, which can probably lead to an exponential
516
+ increase in time consumption. Additionally, real-world networks
517
+ often contain thousands or even millions of edges, making it chal-
518
+ lenging to find a feasible solution within a reasonable amount of
519
+ time. Therefore, it is important to design an effective heuristic
520
+ algorithm to solve the TNCP problem.
521
+ 3.3
522
+ Candidate Reduction
523
+ As mentioned above, the naive exhaustive method for solving the
524
+ TNCP problem is highly complex, making it difficult to implement
525
+ in practice. In order to obtain a feasible solution within a reasonable
526
+ amount of time, we need to reduce the number of candidate edges.
527
+ In this section, we will introduce and prove some theorems that
528
+ can be used to achieve this reduction in candidates.
529
+ Theorem 3. ∀(𝑖, 𝑗) ∈ 𝐸, when 𝐶(𝑖,𝐺) > 𝐶(𝑗,𝐺), it satisfies that
530
+ 𝑖 ∈ 𝑆𝑁(𝑗,𝐺) ∧ 𝑗 ∉ 𝑆𝑁(𝑖,𝐺), and when 𝐶(𝑖,𝐺) = 𝐶(𝑗,𝐺), it satisfies that
531
+ 𝑖 ∈ 𝑆𝑁(𝑗,𝐺) ∧ 𝑗 ∈ 𝑆𝑁(𝑖,𝐺).
532
+ Proof. Based on the definition of supportive neighbors, it is
533
+ evident that only those neighbors with core values greater than or
534
+ equal to 𝐶(𝑖,𝐺) can be contained within the supportive neighbors
535
+ of node 𝑖, i.e., {𝑗|𝑗 ∈ 𝐺,𝐶(𝑗,𝐺) < 𝐶(𝑖,𝐺)} ∩ 𝑆𝑁(𝑖,𝐺) = ∅. For the
536
+ same reason, considering 𝐶(𝑖,𝐺) = 𝐶(𝑗,𝐺), there exists that {𝑖, 𝑗} ∈
537
+ 𝑆𝑁(𝑖,𝐺) ∩ 𝑆𝑁(𝑗,𝐺).
538
+
539
+ In other words, nodes with low core values could never establish
540
+ relationships that would be supportive to nodes with high core val-
541
+ ues, while nodes with high core values establish one-way relation-
542
+ ships that would be supportive of their connected nodes with low
543
+ 4
544
+
545
+ core values. Additionally, connected nodes with the same core value
546
+ become supportive neighbors to each other. This suggests that the
547
+ removal of edges bridging node pairs with different core values may
548
+ only affect the side holding a low core value, while the removal of
549
+ edges bridging node pairs with the same core values may affect both
550
+ sides. Combining the description of Theorem 3, those relationships
551
+ bridging nodes with higher core values and lower core values are
552
+ named as one-way supportive relationships, and those relationships
553
+ bridging nodes with the same core value are named as bidirectional
554
+ supportive relationships. In this way, the neighbors who control
555
+ the bidirectional supportive relationships with an arbitrary node 𝑖
556
+ are recorded as �
557
+ 𝑆𝑁 (𝑖,𝐺) = {𝑗|𝑗 ∈ 𝑁(𝑖,𝐺),𝐶(𝑗,𝐺) = 𝐶(𝑖,𝐺)}.
558
+ Theorem 4. If an edge (𝑖, 𝑗) ∈ 𝐸 is removed, for all nodes in 𝐺,
559
+ only those with core values equal to min(𝐶(𝑖,𝐺),𝐶(𝑗,𝐺)) may have
560
+ their core values changed.
561
+ Proof. It might be assumed that 𝐶(𝑖,𝐺) ≥ 𝐶(𝑗,𝐺) = 𝑘𝑚𝑖𝑛 and
562
+ be marked that 𝐺′ = 𝐺 \ {(𝑖, 𝑗)}. In accordance with Theorem
563
+ 1, the removal of edge (𝑖, 𝑗) will surely make node 𝑗 collapse if
564
+ and only if 𝑆𝑁(𝑗,𝑘𝑚𝑖𝑛,𝐺) = 𝑘𝑚𝑖𝑛. After the elimination of (𝑖, 𝑗),
565
+ there exists that 𝑆𝑁(𝑗,𝑘𝑚𝑖𝑛,𝐺′) ≤ 𝑘𝑚𝑖𝑛 − 1 which is absolutely in
566
+ violation with Theorem 1 and makes node 𝑗 excluded from 𝐺𝑘𝑚𝑖𝑛.
567
+ In addition, Sariyüce et al. [39] and Li et al. [25] have proved that
568
+ the core value of some node can decrease at most 1 when one of
569
+ its supportive neighbors is lost. Benefiting from this, node 𝑗 will
570
+ still remain in 𝐺′
571
+ 𝑘𝑚𝑖𝑛−1 and satisfy that 𝑆𝑁(𝑗,𝑘𝑚𝑖𝑛−1,𝐺′) ≥ 𝑘𝑚𝑖𝑛 − 1.
572
+ According to Theorem 3, the collapse of node 𝑗 from 𝐺𝑘𝑚𝑖𝑛 to
573
+ 𝐺′
574
+ 𝑘𝑚𝑖𝑛−1 probably leads to the collapse of those nodes contained in
575
+
576
+ 𝑆𝑁 (𝑗,𝐺𝑘𝑚𝑖𝑛 ). Following like this, based on the cascade phenomenon,
577
+ it is easy to find that only nodes whose core values equal to𝑘𝑚𝑖𝑛 will
578
+ probably collapse from 𝐺𝑘𝑚𝑖𝑛 to 𝐺′
579
+ 𝑘𝑚𝑖𝑛−1 in the case of eliminating
580
+ edge (𝑖, 𝑗). Besides, for those nodes with core values larger than
581
+ 𝑘𝑚𝑖𝑛, according to Theorem 3,𝑘𝑚𝑖𝑛-nodes make no contributions to
582
+ supporting their presence in 𝐺𝑘𝑚𝑖𝑛+1 so that no effect will work on
583
+ them after edge (𝑖, 𝑗) is removed. Meanwhile, due to the existence
584
+ of those collapsed nodes in 𝐺′
585
+ 𝑘𝑚𝑖𝑛−1, on the basis of Theorem 3,
586
+ they still establish supportive relationships with those nodes with
587
+ core values less than 𝑘𝑚𝑖𝑛 whose number of supportive neighbors
588
+ remains the same so that no change happens to their core values
589
+ after edge (𝑖, 𝑗) is removed.
590
+
591
+ Benefiting from Theorem 4, only the removal of edges contained
592
+ in 𝐸𝑘\𝑘+1 = 𝐸𝑘 \𝐸𝑘+1 = {(𝑢, 𝑣)|(𝑢, 𝑣) ∈ 𝐸,𝑚𝑖𝑛(𝐶(𝑢,𝐺),𝐶(𝑣,𝐺)) = 𝑘}
593
+ will have the probability to make the target node 𝑖 with 𝐶(𝑖,𝐺) =
594
+ 𝑘 collapse, which allows us to reduce the candidates from 𝐸 to
595
+ 𝐸𝑘\𝑘+1. As illustrated in Figure 2 where only a 3-core exists, in
596
+ order to make node 5 with 𝐶(5,𝐺) = 3 collapse, we should take
597
+ 𝐸3\4 = 𝐸3 = 𝐸 into consideration. However, we may notice that
598
+ the removal of edge (1, 3) leads to the collapse of node 5 while
599
+ none of nodes contained in this graph collapse after the removal
600
+ of edge (5, 7), which shows a substantial difference. Therefore, the
601
+ following theorem is presented to further narrow down the search
602
+ space of candidate edges.
603
+ Theorem 5. A given edge (𝑖, 𝑗) ∈ 𝐸 whose elimination could make
604
+ nodes within 𝐺 collapse requires both of the following two conditions
605
+ to be satisfied: (i)𝑚𝑖𝑛{𝐶𝑆(𝑖,𝐺),𝐶𝑆(𝑗,𝐺)} = 1; (ii) (𝐶𝑆(𝑖,𝐺) −𝐶𝑆(𝑗,𝐺)) ·
606
+ (𝐶(𝑖,𝐺) − 𝐶(𝑗,𝐺)) ≥ 0.
607
+ Proof. Firstly, the condition (i) will not be satisfied if and only
608
+ if neither 𝐶𝑆(𝑖,𝐺) nor 𝐶𝑆(𝑗,𝐺) is equal to 1, i.e., 𝐶𝑆(𝑖,𝐺) ≥ 2 and
609
+ 𝐶𝑆(𝑗,𝐺) ≥ 2. In such a case, node𝑖 and node 𝑗 satisfy that |𝑆𝑁(𝑖,𝐺) | ≥
610
+ 𝐶(𝑖,𝐺) +1 and |𝑆𝑁(𝑗,𝐺) | ≥ 𝐶(𝑗,𝐺) +1. The removal of edge (𝑖, 𝑗) will
611
+ absolutely not make node 𝑖 or node 𝑗 to violate Theorem 1.
612
+ Next, assume that the first condition has been satisfied, it might
613
+ be supposed that 𝐶𝑆(𝑖,𝐺) ≥ 𝐶𝑆(𝑗,𝐺) = 1 since edge (𝑖, 𝑗) is equiva-
614
+ lent to edge (𝑗,𝑖) in𝐺. For the core values of node𝑖 and node 𝑗, there
615
+ are three cases to consider, i.e., 𝐶(𝑖,𝐺) > 𝐶(𝑗,𝐺), 𝐶(𝑖,𝐺) < 𝐶(𝑗,𝐺)
616
+ and 𝐶(𝑖,𝐺) = 𝐶(𝑗,𝐺). According to Theorem 3, the removal of edge
617
+ (𝑖, 𝑗) will surely make node 𝑗 collapse because of the violation of
618
+ Theorem 1 in the cases of𝐶(𝑖,𝐺) > 𝐶(𝑗,𝐺) and𝐶(𝑖,𝐺) = 𝐶(𝑗,𝐺) while
619
+ no node will collapse in the case of 𝐶𝑖,𝐺 < 𝐶(𝑗,𝐺).
620
+
621
+ Combining the findings derived by Theorem 4 and Theorem 5,
622
+ for the targeted collapse mission of a given node 𝑖 with 𝐶(𝑖,𝐺) = 𝑘,
623
+ those edges existing in 𝐸𝑘\𝑘+1 and connecting to 𝑉𝐶
624
+ (𝑘,𝐺) = {𝑢|𝑢 ∈
625
+ 𝑉,𝐶(𝑢,𝐺) = 𝑘 ∧𝐶𝑆(𝑢,𝐺) = 1} are what we should focus on and take
626
+ into candidates. Actually, nodes contained in 𝑉𝐶
627
+ (𝑘,𝐺) are so-called
628
+ corona nodes of 𝐺𝑘 [4, 5, 52], which denotes that these nodes have
629
+ exactly 𝑘 one-hop neighbors in 𝐺𝑘. However, the subgraph con-
630
+ structed by corona nodes may not be connected and will probably
631
+ be divided into several disconnected components. As shown in Fig-
632
+ ure 1 where six corona nodes {1, 3, 4, 5, 9, 10} exist, the component
633
+ constructed by nodes {1, 3, 4} is disconnected with that constructed
634
+ by nodes {9, 10}, and so does that constructed by node {5}. There-
635
+ fore, for simplicity of representation, we provide the following
636
+ definition to represent the corona component in which a particular
637
+ corona node 𝑖 exists.
638
+ Definition 3. Corona Pedigree. For a corona node 𝑖 ∈ 𝐺 with
639
+ 𝐶(𝑖,𝐺) = 𝑘, the corona pedigree of 𝑖, denoted as 𝑃(𝑖,𝐺), represents the
640
+ largest-connected subgraph containing 𝑖 as its component and satisfies
641
+ that ∀𝑗 ∈ 𝑃(𝑖,𝐺),𝐶(𝑗,𝐺) = 𝑘 ∧ 𝐶𝑆(𝑗,𝐺) = 1.
642
+ Example 3. As shown in Figure 1, there exist three corona pedigrees
643
+ in 𝐺3, e.g., 𝑃(4,𝐺) contains nodes {1, 3, 4} and edges {(1, 3), (1, 4)},
644
+ 𝑃(5,𝐺) contains node {5}, 𝑃(10,𝐺) contains nodes {9, 10} and edge
645
+ {(9, 10)}.
646
+ Note that 𝑃(𝑗,𝐺) is equivalent to 𝑃(𝑖,𝐺) if it satisfies that 𝑗 ∈ 𝑃(𝑖,𝐺).
647
+ Then, those edges adjacent to 𝑃(𝑖,𝐺) are represented as 𝐸𝑃
648
+ (𝑖,𝐺) =
649
+ {(𝑢, 𝑣)|(𝑢, 𝑣) ∈ 𝐸,𝑢 ∈ 𝑃(𝑖,𝐺)∨𝑣 ∈ 𝑃(𝑖,𝐺)} and the following theorem
650
+ could be deduced.
651
+ Theorem 6. The removal of an arbitrary edge within 𝐸𝑃
652
+ (𝑖,𝐺) will
653
+ absolutely make all nodes within 𝑃(𝑖,𝐺) collapse.
654
+ Proof. According to Definition 3, each node within 𝑃(𝑖,𝐺) pos-
655
+ sesses its core strength of 1 which means the disconnection of any
656
+ supportive neighbor will make this node collapse. Besides, each
657
+ edge within 𝐸𝑃
658
+ (𝑖,𝐺) actually bridges some corona node within 𝑃(𝑖,𝐺)
659
+ with one of its supportive neighbors. In this way, if one of edges in
660
+ 𝐸𝑃
661
+ (𝑖,𝐺) is removed, the corona node (or corona nodes) adjacent to it
662
+ will surely collapse. Because of the cascade phenomenon, the other
663
+ nodes contained in 𝑃(𝑖,𝐺) will collapse follow.
664
+
665
+ 5
666
+
667
+ Example 4. As shown in Figure 2, taking 𝑃(1,𝐺) where nodes {1, 3}
668
+ exist as example, We get 𝐸𝑃
669
+ (1,𝐺) = {(1, 2), (1, 3), (1, 5), (2, 3), (3, 7)}.
670
+ Node 3 will be absolutely squeezed out of 3-core after the removal of
671
+ an arbitrary edge contained in 𝐸𝑃
672
+ (1,𝐺), like (2, 3), and then node 1 will
673
+ also collapse from 𝐺3 because of the cascade phenomenon.
674
+ 4
675
+ METHODOLOGIES
676
+ In this section, in order to address the TNCP problem, we propose
677
+ an effective heuristic algorithm called Targeted 𝑘-Node Collapse
678
+ (TNC) as the first solution. Additionally, based on TNC algorithm,
679
+ we design an optimized strategy called Adjacent Targeted 𝑘-Node
680
+ Collapse (ATNC) to further reduce computational complexity, mak-
681
+ ing it suitable for large-scale networks.
682
+ 4.1
683
+ TNC Algorithm
684
+ To solve the TNCP problem, we propose the TNC algorithm, which
685
+ itreatively removes one edge that can lead to the greatest impact
686
+ on the target node 𝑖 until the target node collapses. The impact
687
+ on the target node is determined by maximizing (i) the number of
688
+ collapsed nodes within 𝑆𝑁(𝑖,𝐺), and (ii) the number of nodes whose
689
+ core strengths change within 𝑆𝑁(𝑖,𝐺). As discussed earlier, those
690
+ edges existing in 𝐸𝑘\𝑘+1 and connecting to 𝑉𝐶
691
+ (𝑘,𝐺) play significant
692
+ roles in the collapse of target node 𝑖 with 𝐶(𝑖,𝐺) = 𝑘. Then, ac-
693
+ cording to Theorem 6, for a corona node 𝑢 ∈ 𝑉𝐶
694
+ (𝑘,𝐺) and its corona
695
+ pedigree 𝑃(𝑢,𝐺) ∈ 𝐺𝑘, it is easy to realize that the disconnection of
696
+ the relationship between node𝑢 and one of its supportive neighbors
697
+ will actually make all nodes within 𝑃(𝑢,𝐺) collapse from 𝐺𝑘 and
698
+ then make all edges within 𝐸𝑃
699
+ (𝑢,𝐺) be excluded from 𝐸𝑘\𝑘+1. In this
700
+ manner, in order to avoid unnecessary duplicate operations, we
701
+ only need to select the corona pedigree 𝑃(𝑣,𝐺) whose detachment
702
+ leads to the greatest impact on the target node and removes one of
703
+ edges existing in 𝐸𝑃
704
+ (𝑣,𝐺) in each iteration until the target node col-
705
+ lapses. Figure 3 illustrates the overall framework of TNC algorithm
706
+ along with the detailed operations shown in Algorithm 1. Words
707
+ for further descriptions are given as following.
708
+ As shown in Algorithm 1, Line 4, the corona nodes, 𝐶𝑜𝑟𝑜𝑛𝑎𝑠,
709
+ are firstly extracted from 𝐺′
710
+ 𝑘 as candidates where 𝐺′ is initialized
711
+ as 𝐺 in Line 1. After that, in Lines 6-7, by exploiting an assistant
712
+ algorithm called CalculateImpact which will be introduced in the
713
+ following paragraphs, the impact which will be made on the target
714
+ node 𝑖 is measured by 𝐹 [𝑢] and 𝐼 [𝑢] if corona node 𝑢 ∈ 𝐶𝑜𝑟𝑜𝑛𝑎𝑠
715
+ collapses, and𝐶𝑜𝑟𝑜𝑛𝑎𝑠 is updated according to Theorem 6. Next, we
716
+ select the top corona node 𝑣 sorted according to 𝐹 [·] (first priority)
717
+ and 𝐼 [·] (second priority) in Line 8. Then, one of edges contained
718
+ in 𝐸𝑃
719
+ (𝑣,𝐺′) is added to 𝑒 with the update of 𝐺′ in Lines 13-14. The
720
+ above process will continue until there is the violation of Theorem
721
+ 1 to make the target node 𝑖 collapse. Note that if the collapse of 𝑣
722
+ makes no supportive neighbors of node 𝑖 collapse, we will remove
723
+ the edge bridging the target node and its supportive neighbor with
724
+ the minimal core strength in 𝐺′ as instead, in Lines 9-11.
725
+ CalculateImpact Algorithm. After the collapse of node�� ∈ 𝑉 ,
726
+ for all nodes in 𝐺, those nodes whose core strength decreases are
727
+ named as Influenced Nodes, those whose core value decreases are
728
+ named as Followed Nodes, and those whose core strengths and
729
+ core values remain the same are named as Uninfluenced Nodes. To
730
+ effectively measure the impact that the collapse of a corona node 𝑛
731
+ can make on the target node 𝑖, we offer CalculateImpact algorithm
732
+ which is based on Depth-First Search (DFS) and whose details are
733
+ shown in Algorithm 2.
734
+ As shown in Algorithm 2, Line 1, S is defined to store the nodes
735
+ waiting to be visited, F and I are defined to store the followed
736
+ nodes and the influenced nodes, respectively. Besides, in Line 2, a
737
+ dictionary T with default value of 0 is defined to record the decrease
738
+ in the number of supportive neighbors of each node in 𝐺 after the
739
+ input node 𝑛 collapses. In this way, for a visited node 𝑢 popped
740
+ from S, if T [𝑢] > 0, it will be marked as an influenced node and
741
+ be added into I in Line 7; furthermore, if 𝐶𝑆(𝑢,𝐺) ≤ T [𝑢], it will
742
+ also be marked as a followed node and be added into F in Line 9.
743
+ Besides, if node 𝑢 has been marked as a followed node, on the basis
744
+ of Theorem 4, those nodes contained in �
745
+ 𝑆𝑁 (𝑢,𝐺) and satisfying
746
+ 𝐶𝑆(·,𝐺) > T [·] will be pushed into S in Line 10. Please note that
747
+ those nodes marked as followed nodes will be excluded from S in
748
+ Line 11. The above process will be repeated iteratively until S is
749
+ empty.
750
+ For example, contents shown in the dotted box of Figure 3 exhibit
751
+ the detailed process of Algorithm 2 where node 1 with 𝐶𝑆(1,𝐺) = 1
752
+ is taken as the input node. First, in the initial-state graph, F and
753
+ I are initialized as empty sets and S = {1}. Next, in the second
754
+ graph, node 1 is popped from S with the update of T [1] = 1 and
755
+ be added into I. It is apparent that node 1 is also added into F
756
+ because of the satisfaction of 𝐶𝑆(1,𝐺) ≤ T [1], and its neighbors
757
+ {2, 5, 3} are pushed into S. After that, in the third graph, node 2
758
+ with 𝐶𝑆(2,𝐺) = 2 is popped, and we get T [2] = 1 with the addition
759
+ of node 2 into I. Then, the next iteration will be triggered directly
760
+ because of 𝐶𝑆(2,𝐺) > T [2]. Continuing in this flow, we finally
761
+ achieve that I = {1, 2, 5, 3, 4, 7, 6} and F = {1, 3, 5, 2, 4}, and further
762
+ get that |N(5,𝐺) ∩ F | = 4 and |N(5,𝐺) ∩ I| = 5.
763
+ Time Complexity. As shown in Algorithm 1, first, in order to
764
+ extract the corona nodes 𝐶𝑜𝑟𝑜𝑛𝑎𝑠 of 𝐺𝑘 from 𝐺, it takes the time
765
+ in the order of O(|𝑉 |) in Line 3. Then, from Line 5 to Line 7, one
766
+ corona node within each corona pedigree in 𝐺𝑘 is assigned weights
767
+ through 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐼𝑚𝑝𝑎𝑐𝑡 algorithm which takes the time in the
768
+ order of O(𝐶𝑆𝑘\𝑘+1·|𝐶𝑜𝑟𝑜𝑛𝑎𝑠|) where𝐶𝑆𝑘\𝑘+1 =
769
+
770
+ 𝑣∈𝑉𝑘 \𝑉𝑘+1 𝐶𝑆(𝑣,𝐺)
771
+ |𝑉𝑘\𝑉𝑘+1 |
772
+ .
773
+ After that, considering the worst condition, 𝐶𝑆(𝑖,𝐺) iterations are
774
+ executed with the total time complexity in the order of O(𝐶𝑆(𝑖,𝐺) ·
775
+ (|𝑉 | + 𝐶𝑆𝑘\𝑘+1 · |𝐶𝑜𝑟𝑜𝑛𝑎𝑠|)).
776
+ 4.2
777
+ ATNC Algorithm
778
+ In the previous part, we give the introduction of TNC algorithm
779
+ which iteratively removes one edge that connected to the corona
780
+ pedigree whose detachment could cause the greatest impact on the
781
+ target node for addressing the TNCP problem. However, in each
782
+ iteration, TNC algorithm needs to traverse all nodes within 𝐺′ to
783
+ extract the corona nodes of 𝐺′
784
+ 𝑘 and then visit each corona pedigree
785
+ through CalculateImpact algorithm to filter out the most impacted
786
+ one. Clearly, the process is highly time-consuming for large-scale
787
+ networks which pushes the expectation of a heuristic algorithm
788
+ with less time complexity. In this part, we offer Adjacent Targeted
789
+ 𝑘-Node Collapse (ATNC) improved from TNC which actually takes
790
+ the strategy of adjacent search to exploit the local information of
791
+ 6
792
+
793
+ Delete one edge
794
+ from 𝑬(𝟏,𝑮)
795
+ 𝑷
796
+ Re-extract corona nodes
797
+ (No)
798
+ Extract
799
+ corona nodes
800
+ 1
801
+ 3
802
+ 5
803
+ 6
804
+ 9
805
+ 8
806
+ 2
807
+ 4
808
+ 7
809
+ 1
810
+ 3
811
+ 5
812
+ 6
813
+ 9
814
+ 8
815
+ 2
816
+ 4
817
+ 7
818
+ Take node 1 as input for example
819
+ If target node
820
+ has collapsed
821
+ (Yes)
822
+ Original Graph
823
+ Adversarial Graph
824
+ Target Node
825
+ 1
826
+ 3
827
+ 9
828
+ 8
829
+ 4
830
+ Node
831
+ F[·]
832
+ I[·]
833
+ 4
834
+ 5
835
+ 4
836
+ 5
837
+ 2
838
+ 3
839
+ 2
840
+ 3
841
+ 1
842
+ 2
843
+ 1
844
+ 3
845
+ 8
846
+ 9
847
+ 4
848
+ 1
849
+ 3
850
+ 5
851
+ 6
852
+ 9
853
+ 8
854
+ 2
855
+ 4
856
+ 7
857
+ Get F[·], I[·] by
858
+ CalculateImpact
859
+ Initial State
860
+ ={}, ={},
861
+ ={1}
862
+ 𝒖=1
863
+ ={1}, ={1},
864
+ ={2,5,3}
865
+ 𝒖=2
866
+ ={1,2}, ={1},
867
+ ={5,3}
868
+ 𝒖=5
869
+ ={1,2,5},
870
+ ={1},
871
+ ={3}
872
+ Terminated State
873
+ ={1,2,5,3,4,7,6},
874
+ ={1,3,5,2,4},
875
+ ={}
876
+ 𝒖=3
877
+ ={1,2,5,3},
878
+ ={1,3},
879
+ ={5,2}
880
+ 𝒖=5
881
+ ={1,2,5,3},
882
+ ={1,3,5},
883
+ ={2,4,6,2}
884
+ 𝒖=2
885
+ ={1,2,5,3},
886
+ ={1,3,5,2},
887
+ ={4,4,6}
888
+ 𝒖=4
889
+ ={1,2,5,3,4},
890
+ ={1,3,5,2,4},
891
+ ={7,6}
892
+ 𝒖=7
893
+ ={1,2,5,3,4,7},
894
+ ={1,3,5,2,4},
895
+ ={6}
896
+ Influenced Node
897
+ Followed Node
898
+ UnInfluenced Node
899
+ Sort corona nodes by F[·] and I[·]
900
+ Figure 3: The framework of TNC algorithm. Given a target node 5 with 𝐶𝑆(5,𝐺) = 3, we first extract the corona nodes from 𝐺3,
901
+ and then evaluate the impact of each corona node on the target node through CalculateImpact algorithm. After that, the most
902
+ impacted node 1 is filtered out and one edge existing in 𝐸𝑃
903
+ (1,𝐺) is deleted. If the target node has collapsed, the adversarial graph
904
+ will be output and the removed edges will be returned; otherwise, we re-extract the corona nodes and repeat the above process.
905
+ The contents shown in the dotted box display the detailed operations of CalculateImpact algorithm. The detailed descriptions
906
+ will be presented in Section 4.1.
907
+ Algorithm 1: TNC
908
+ input :the given graph 𝐺, the target node 𝑖;
909
+ output:the removed edges 𝑒.
910
+ 1 𝑒 ← empty set; 𝐺′ ← 𝐺; 𝑘 ← 𝐶(𝑖,𝐺);
911
+ 2 𝐹, 𝐼 ← dictionaries with default value of 0;
912
+ 3 while |𝑆𝑁(𝑖,𝑘,𝐺′) | ≥ 𝑘 do
913
+ 4
914
+ 𝐶𝑜𝑟𝑜𝑛𝑎𝑠 ← {𝑢|𝑢 ∈ 𝐺′
915
+ 𝑘, N(𝑢,𝐺′
916
+ 𝑘) = 𝑘};
917
+ 5
918
+ foreach 𝑢 ∈ 𝐶𝑜𝑟𝑜𝑛𝑎𝑠 do
919
+ 6
920
+ 𝐹 [𝑢], 𝐼 [𝑢] ← CalculateImpact(𝐺′,𝑖,𝑢);
921
+ 7
922
+ 𝐶𝑜𝑟𝑜𝑛𝑎𝑠 ← 𝐶𝑜𝑟𝑜𝑛𝑎𝑠 \ 𝑃(𝑢,𝐺′);
923
+ 8
924
+ 𝑣 ← The top corona node sorted according to 𝐹 [·] (first
925
+ priority) and 𝐼 [·] (second priority);
926
+ 9
927
+ if 𝐹 [𝑣] = 0 then
928
+ 10
929
+ 𝑚 ← The supportive neighbor of 𝑖 in 𝐺′ with the
930
+ lowest core strength;
931
+ 11
932
+ 𝑒 ← 𝑒 ∪ {(𝑖,𝑚)};
933
+ 12
934
+ else
935
+ 13
936
+ 𝑒 ← 𝑒 ∪ {∀(𝑚,𝑛) ∈ 𝐸𝑃
937
+ (𝑣,𝐺′)};
938
+ 14
939
+ 𝐺′ ← 𝐺 \ 𝑒;
940
+ 15 return 𝑒
941
+ the target node. The details of ATNC are shown in Algorithm 3
942
+ along with its descriptions as following.
943
+ As shown in Algorithm 3, Line 3, instead of extracting all corona
944
+ nodes within 𝐺′
945
+ 𝑘 by TNC algorithm, ATNC only exploits those
946
+ corona nodes adjacent to the target node which are named as corona
947
+ neighbors𝐶𝑜𝑟𝑁𝑏𝑟𝑠. Next, in Lines 5-8, through the same operations
948
+ Algorithm 2: CalculateImpact
949
+ input :the given graph 𝐺, the target node 𝑖, the input node
950
+ 𝑛;
951
+ output:the number of followed nodes in N(𝑖,𝐺), the
952
+ number of influenced nodes in N(𝑖,𝐺).
953
+ 1 S ← empty stack; F ← empty set; I ← empty set;
954
+ 2 T ← a dictionary with default value of 0;
955
+ 3 S.𝑝𝑢𝑠ℎ(𝑛);
956
+ 4 while S is not empty do
957
+ 5
958
+ 𝑢 ← S.𝑝𝑜𝑝();
959
+ 6
960
+ T [𝑢] ← T [𝑢] + 1;
961
+ 7
962
+ I ← I ∪ {𝑢};
963
+ 8
964
+ if 𝐶𝑆(𝑢,𝐺) ≤ T [𝑢] then
965
+ 9
966
+ F ← F ∪ {𝑢};
967
+ 10
968
+ V ← {𝑣|𝑣 ∈ �
969
+ 𝑆𝑁 (𝑢,𝐺),𝐶𝑆(𝑣,𝐺) > T [𝑣]};
970
+ 11
971
+ S.𝑝𝑢𝑠ℎ(V);
972
+ 12
973
+ S ← S \ F ;
974
+ 13 return |N(𝑖,𝐺) ∩ F |, |N(𝑖,𝐺) ∩ I|
975
+ as those of TNC, the top corona node 𝑣 is filtered out. After that, we
976
+ add edge (𝑖, 𝑣) into 𝑒 with the update of 𝐺′ and the re-extraction
977
+ of 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 in Lines 9-10. The above process will continue until
978
+ 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 is empty or there is the violation of Theorem 1 for the
979
+ target node 𝑖. Note that if the above loop quits with 𝑆𝑁(𝑖,𝑘,𝐺′) > 𝑘
980
+ which means that |𝐶𝑜𝑟𝑁𝑏𝑟𝑠| = 0 and the target node still remains
981
+ in 𝐺𝑘, then we will randomly sample 𝐶𝑆(𝑖,𝐺′) supportive neighbors
982
+ 7
983
+
984
+ from 𝑆𝑁(𝑖,𝑘,𝐺′) and make the target node 𝑖 disconnected with them
985
+ in Lines 12-14.
986
+ Time Complexity. Similar to the time complexity of TNC, since
987
+ only the corona nodes existing in the one-hop neighbors of the
988
+ target node will be selected as candidates, the time for collecting the
989
+ candidates is in the order of O(|N(𝑖,𝐺) |) in Algorithm 3, Line 3 at
990
+ first. Then, from Line 5 to Line 7, each corona pedigree contained in
991
+ 𝐺𝑘 is traversed with the quantification of their impact to the target
992
+ node which takes the time in the order of O(𝐶𝑆 (𝑘\𝑘+1) · |𝐶𝑜𝑟𝑁𝑏𝑟𝑠|).
993
+ After that, considering the worst condition, 𝐶𝑆(𝑖,𝐺) iterations are
994
+ executed with the total time complexity in the order of O(𝐶𝑆(𝑖,𝐺) ·
995
+ (|𝑉 | + 𝐶𝑆𝑘\𝑘+1 · |𝐶𝑜𝑟𝑁𝑏𝑟𝑠|)).
996
+ Algorithm 3: ATNC
997
+ Input: the given graph 𝐺, the target node 𝑖;
998
+ Output: the removed edges 𝑒.
999
+ 1 𝑒 ← empty set; 𝐺′ ← 𝐺; 𝑘 ← 𝐶(𝑖,𝐺);
1000
+ 2 𝐹, 𝐼 ← dictionaries with default value of 0;
1001
+ 3 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 ← {𝑗|𝑗 ∈ �
1002
+ 𝑆𝑁 (𝑖,𝐺′),𝐶𝑆(𝑗,𝐺′) = 1};
1003
+ 4 while |𝐶𝑜𝑟𝑁𝑏𝑟𝑠| > 0 and |𝑆𝑁(𝑖,𝑘,𝐺′) | ≥ 𝑘 do
1004
+ 5
1005
+ foreach 𝑢 ∈ 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 do
1006
+ 6
1007
+ 𝐹 [𝑢], 𝐼 [𝑢] ← CalculateImpact(𝐺′,𝑖,𝑢);
1008
+ 7
1009
+ 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 ← 𝐶𝑜𝑟𝑁𝑏𝑟𝑠 \ 𝑃(𝑢,𝐺′);
1010
+ 8
1011
+ 𝑣 ← The top corona node sorted according to 𝐹 [·] (first
1012
+ priority) and 𝐼 [·] (second priority);
1013
+ 9
1014
+ 𝑒 ← 𝑒 ∪ {(𝑖, 𝑣)};
1015
+ 10
1016
+ 𝐺′ ← 𝐺 \ 𝑒;
1017
+ 11
1018
+ Re-extract 𝐶𝑜𝑟𝑁𝑏𝑟𝑠;
1019
+ 12 if |𝑆𝑁(𝑖,𝑘,𝐺���) | ≥ 𝑘 then
1020
+ 13
1021
+ 𝑒′ ← Sample({(𝑖, 𝑗)|𝑗 ∈ 𝑆𝑁(𝑖,𝐺′)},𝐶𝑆(𝑖,𝐺′));
1022
+ 14
1023
+ 𝑒 ← 𝑒 ∪ 𝑒′;
1024
+ 15 return 𝑒
1025
+ 5
1026
+ EXPERIMENTS
1027
+ In this section, our experiments will be conducted on 16 real-world
1028
+ network datasets collected from various domains to demonstrate
1029
+ the performance of TNC and ATNC. We also include 4 baseline
1030
+ methods for comparisons. All of our experiments are deployed on
1031
+ a server with Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz and
1032
+ 377GB RAM, which installs Linux Ubuntu 20.04.4.
1033
+ 5.1
1034
+ Datasets
1035
+ The basic properties of 16 real-world networks from various do-
1036
+ mains, e.g., Social Network (SN), Collaboration Network (CN), In-
1037
+ frastructure Network (IN) and Web Network (WN), are presented
1038
+ in Table 2. Different labels are exploited to distinguish the different
1039
+ public platforms where networks are collected. For example, those
1040
+ marked with stars are collected from https://networkrepository.
1041
+ com/ [38] and those marked with circles are collected from http:
1042
+ //snap.stanford.edu/ [24]. Please note that all networks used in the
1043
+ following experiments are converted to undirected and unweighted
1044
+ graphs, with no self-loops or isolated nodes. Due to the space limita-
1045
+ tion, more detailed information of these networks could be achieved
1046
+ on the mentioned websites.
1047
+ Table 2: Basic properties of mentioned networks containing
1048
+ the number of nodes |𝑉 |, the number of edges |𝐸|, the maxi-
1049
+ mal value of 𝑘-core 𝑘𝑚𝑎𝑥 and the average degree 𝑑𝑎𝑣𝑔.
1050
+ Network
1051
+ |𝑉 |
1052
+ |𝐸|
1053
+ 𝑘𝑚𝑎𝑥
1054
+ 𝑑𝑎𝑣𝑔
1055
+ SN
1056
+ TVShow★
1057
+ 3892
1058
+ 17239
1059
+ 56
1060
+ 8.8587
1061
+ LastFM◦
1062
+ 7624
1063
+ 27806
1064
+ 20
1065
+ 7.2943
1066
+ Facebook◦
1067
+ 22470
1068
+ 170823
1069
+ 56
1070
+ 15.2045
1071
+ DeezerEU◦
1072
+ 28281
1073
+ 92752
1074
+ 12
1075
+ 6.5593
1076
+ Gowalla◦
1077
+ 196591
1078
+ 950327
1079
+ 51
1080
+ 9.6681
1081
+ CN
1082
+ HepPh★
1083
+ 12006
1084
+ 118489
1085
+ 238
1086
+ 19.7383
1087
+ AstroPh★
1088
+ 18771
1089
+ 198050
1090
+ 56
1091
+ 21.1017
1092
+ CondMat★
1093
+ 21363
1094
+ 91286
1095
+ 25
1096
+ 8.5462
1097
+ Citeseer★
1098
+ 227320
1099
+ 814134
1100
+ 86
1101
+ 7.1629
1102
+ IN
1103
+ USAir★
1104
+ 332
1105
+ 2126
1106
+ 26
1107
+ 12.8072
1108
+ USPower★
1109
+ 4941
1110
+ 6594
1111
+ 5
1112
+ 2.6691
1113
+ RoadNet★
1114
+ 1965206
1115
+ 2766607
1116
+ 3
1117
+ 2.8156
1118
+ WN
1119
+ EDU★
1120
+ 3031
1121
+ 6474
1122
+ 29
1123
+ 4.2719
1124
+ Indo★
1125
+ 11358
1126
+ 47606
1127
+ 49
1128
+ 8.3828
1129
+ Arabic★
1130
+ 163598
1131
+ 1747269
1132
+ 101
1133
+ 21.3605
1134
+ Google◦
1135
+ 875713
1136
+ 4322051
1137
+ 44
1138
+ 9.8709
1139
+ 5.2
1140
+ Baselines
1141
+ Given that we are the first work to study the TNCP problem, there
1142
+ is no ready-made method that can be used as a comparison ex-
1143
+ periment. For this reason, we design two random-based baseline
1144
+ methods and adjust two existing algorithms which are originally
1145
+ proposed to solve the 𝑘-core minimization problem. Their details
1146
+ are shown as follows.
1147
+ • Random Edge Deletion (RED) arbitrarily selects an edge
1148
+ within 𝐸 to remove and then updates the core values of nodes
1149
+ within 𝑉 . These two steps will be performed iteratively until
1150
+ the target node collapses successfully.
1151
+ • Random Neighbor Disconnection (RND) arbitrarily removes
1152
+ an edge connected to the target node and then updates the core
1153
+ values of nodes within 𝑉 . These two steps will be performed
1154
+ iteratively until the target node collapses successfully.
1155
+ • KNM was proposed by [8] as a solution to the 𝑘-core mini-
1156
+ mization problem. It works by iteratively removing the edge
1157
+ whose detachment will lead to the maximal number of nodes
1158
+ who collapse from 𝐺𝑘. This process continues until the pertur-
1159
+ bation budget is reached or 𝐺𝑘 = ∅. In this paper, we adapt the
1160
+ termination condition of KNM algorithm to the collapse of the
1161
+ target node.
1162
+ • SV was proposed by [34] for covering the 𝑘-core minimization
1163
+ problem which exploits the shapley value, a cooperative game-
1164
+ theoretic concept. It assigns weights to the candidate edges
1165
+ and then chooses the top 𝑏 edges to remove. In this paper,
1166
+ considering the consumption of time, we set 𝐸𝑘\𝑘+1 as the
1167
+ candidate edges instead of 𝐸𝑘 which is originally used by [34],
1168
+ and we set the hyperparameter 𝜖2 = 0.1. Then we remove
1169
+ 8
1170
+
1171
+ candidate edges one by one according to their weights until
1172
+ the target node collapses without the budget limitation of 𝑏.
1173
+ In order to evaluate the transferability not only among various
1174
+ networks but also among various individual nodes, we will apply
1175
+ all baseline methods as well as our proposed algorithms on each
1176
+ node within every network to achieve its node robustness. Then
1177
+ we will evaluate the effectiveness of these algorithms by several
1178
+ global metrics which will be introduced in Section 5.3. Additionally,
1179
+ it is necessary to be noted that both of RED and RND will be
1180
+ performed 10 times independently on each node in order to reduce
1181
+ the randomness and the mean value is recorded as the robustness
1182
+ of each node.
1183
+ 5.3
1184
+ Metrics
1185
+ We propose the following metrics, Number of Bubble Nodes (NBN),
1186
+ Sum of Reduced Cost (SRC), Weighted Average Reduction (WAR), and
1187
+ Reduction Proportion (RP) to evaluate the effectiveness of various
1188
+ methods.
1189
+ • NBN: Through a particular algorithm, we are interested in how
1190
+ many bubble nodes can be explored from 𝐺. Thus, the total
1191
+ number of explored bubble nodes is recorded as NBN which is
1192
+ formulated as below:
1193
+ NBN = |𝐵𝑁 |.
1194
+ (4)
1195
+ The higher NBN is, the more transferable the algorithm is
1196
+ among various nodes in a graph.
1197
+ • SRC: For a bubble node𝑖, the decrease between its core strength
1198
+ and node robustness is named as Reduced Cost which is quan-
1199
+ tified as 𝑅𝐶(𝑖,𝐺) = 𝐶𝑆(𝑖,𝐺) − 𝑁𝑅(𝑖,𝐺). Therefore, the sum of
1200
+ reduced cost of all explored bubble nodes in 𝐺 could be formu-
1201
+ lated as below:
1202
+ SRC =
1203
+ ∑︁
1204
+ 𝑖 ∈𝐵𝑁
1205
+ 𝑅𝐶(𝑖,𝐺).
1206
+ (5)
1207
+ • WAR: In order to illustrate the average cost reduction of ex-
1208
+ plored bubble nodes in a network through some algorithm, we
1209
+ propose WAR which is formulated as below:
1210
+ WAR =
1211
+
1212
+ 𝑟 ∈U
1213
+ 𝑝−1
1214
+ 𝑟
1215
+ · 𝑟
1216
+
1217
+ 𝑟 ∈U
1218
+ 𝑝−1
1219
+ 𝑟
1220
+ .
1221
+ (6)
1222
+ where U contains the unique elements of {𝑅𝐶(𝑖,𝐺) |𝑖 ∈ 𝐵𝑁 }
1223
+ and 𝑝𝑟 = |{𝑖 |𝑖 ∈𝐵𝑁,𝑅𝐶(𝑖,𝐺)=𝑟 }|
1224
+ |𝐵𝑁 |
1225
+ denotes the probability of those
1226
+ nodes whose reduced cost equal to 𝑟 appearing in 𝐵𝑁. And the
1227
+ reason why we do not use arithmetic average will be explained
1228
+ in Section 6.1 with specific examples.
1229
+ • RP: We are also interested in the reduction proportion of node
1230
+ robustness relative to core strength on all nodes in 𝐺 and pro-
1231
+ pose RP for measuring, which is formulated as below:
1232
+ RP =
1233
+ SRC
1234
+
1235
+ 𝑖 ∈𝑉 𝐶𝑆(𝑖,𝐺)
1236
+ × 100%.
1237
+ (7)
1238
+ In addition, RP can be used to describe the redundancy of core
1239
+ strength with respect to node robustness. The higher the RP,
1240
+ the more redundant the core strength.
1241
+ Table 3: The experimental results of RED and RND. Those
1242
+ datasets that could not be covered within 105 seconds are
1243
+ marked as /. Attention that for RED and RND, the robust-
1244
+ ness of each node is assigned as the average of the results
1245
+ achieved by 10 independent experiments.
1246
+ Network
1247
+ RED
1248
+ RND
1249
+ NBN SRC WAR RP(%) NBN
1250
+ SRC
1251
+ WAR RP(%)
1252
+ TVShow
1253
+ 8
1254
+ 1.8
1255
+ 0.2
1256
+ 0.02
1257
+ 375
1258
+ 204.9
1259
+ 1.6894
1260
+ 2.75
1261
+ LastFM
1262
+ 23
1263
+ 20.1 1.2346
1264
+ 0.15
1265
+ 263
1266
+ 350.4
1267
+ 5.2813
1268
+ 2.7
1269
+ Facebook
1270
+ 9
1271
+ 4.7
1272
+ 0.4083
1273
+ 0.01
1274
+ 1346
1275
+ 1022.5
1276
+ 4.3603
1277
+ 2.0
1278
+ DeezerEU
1279
+ 1
1280
+ 0.4
1281
+ 0.4
1282
+ 0.001
1283
+ 648
1284
+ 324.8
1285
+ 2.3962
1286
+ 0.62
1287
+ Gowalla
1288
+ /
1289
+ /
1290
+ /
1291
+ /
1292
+ 5215
1293
+ 3015.2
1294
+ 4.1356
1295
+ 1.02
1296
+ HepPh
1297
+ 159 308.9 5.4106
1298
+ 1.51
1299
+ 1181
1300
+ 2773.4 13.3372 13.59
1301
+ AstroPh
1302
+ 94
1303
+ 90.2 2.1622
1304
+ 0.24
1305
+ 2234
1306
+ 4337.7 10.7611 11.48
1307
+ CondMat
1308
+ 13
1309
+ 2.4
1310
+ 0.2441 0.007
1311
+ 2439
1312
+ 2209.4
1313
+ 4.3676
1314
+ 6.05
1315
+ Citeseer
1316
+ /
1317
+ /
1318
+ /
1319
+ /
1320
+ 23285 20848.6 12.4333 6.37
1321
+ USAir
1322
+ 2
1323
+ 0.3
1324
+ 0.15
1325
+ 0.05
1326
+ 10
1327
+ 3.9
1328
+ 0.4714
1329
+ 0.66
1330
+ USPower
1331
+ 1
1332
+ 0.4
1333
+ 0.4
1334
+ 0.005
1335
+ 97
1336
+ 50.2
1337
+ 0.9693
1338
+ 0.62
1339
+ RoadNet
1340
+ /
1341
+ /
1342
+ /
1343
+ /
1344
+ /
1345
+ /
1346
+ /
1347
+ /
1348
+ EDU
1349
+ 3
1350
+ 0.4
1351
+ 0.1667 0.005
1352
+ 14
1353
+ 11.9
1354
+ 0.9455
1355
+ 0.16
1356
+ Indo
1357
+ 20
1358
+ 3.7
1359
+ 0.7049
1360
+ 0.02
1361
+ 754
1362
+ 703.4
1363
+ 3.8977
1364
+ 4.68
1365
+ Arabic
1366
+ 9
1367
+ 1.8
1368
+ 0.3032 0.0009 4510
1369
+ 5086.6
1370
+ 6.9982
1371
+ 2.42
1372
+ Google
1373
+ /
1374
+ /
1375
+ /
1376
+ /
1377
+ 53222 50569.3 18.2091
1378
+ 3.1
1379
+ 6
1380
+ RESULTS AND ANALYSES
1381
+ The experimental results are exhibited in Table 3 and Table 4, which
1382
+ contrastively shows the performance of TNC and ATNC, compared
1383
+ with 4 baseline methods on 16 real-world networks mentioned
1384
+ before. Meanwhile, the detailed comparisons and analyses are pre-
1385
+ sented as follows.
1386
+ 6.1
1387
+ Performance Evaluation
1388
+ Comparisons Among Baselines. Let us concentrate on Table 3
1389
+ in which the experimental results of RED and RND are exhibited.
1390
+ Notice that the robustness of each node in networks is achieved
1391
+ by the average of 10 independent experimental results. From the
1392
+ table, it is easy to find that the NBN of RED is far fewer than that
1393
+ of RND on all networks which represents that RED is unable to
1394
+ explore bubble nodes and fails to cover the TNCP problem. On
1395
+ the contrary, RND performs much better than RED on all used
1396
+ metrics which demonstrates that the strategy of adjacent search
1397
+ for candidate reduction is helpful for covering the TNCP problem.
1398
+ Additionally, we can realize that RED is not able to complete the
1399
+ search missions on the 4 networks whose number of nodes is more
1400
+ than 105, i.e. Gowalla, Citeseer, RoadNet and Google, while RND
1401
+ only fails on RoadNet, a network with millions of nodes. It also
1402
+ proves that the strategy of adjacent search can effectively reduce
1403
+ the time complexity of the algorithm.
1404
+ After that, let us turn our sights to the experimental results
1405
+ achieved by KNM and SV which are illustrated in Table 4. Neither
1406
+ KNM nor SV displays powerful transferability among different
1407
+ nodes in a network compared to RND. For instance, RND detects
1408
+ 2439 bubble nodes on CondMat network, whereas this number is
1409
+ 259 and 184 induced by KNM and SV, respectively, which reveals
1410
+ 9
1411
+
1412
+ Table 4: The experiment results of KNM, SV, TNC and ATNC. Those datasets that could not be completed by the method within
1413
+ 105 seconds are marked as /. The best results are bolded and the second-best results are underlined.
1414
+ Network
1415
+ KNM
1416
+ SV
1417
+ TNC
1418
+ ATNC
1419
+ NBN
1420
+ SRC
1421
+ WAR
1422
+ RP(%) NBN
1423
+ SRC
1424
+ WAR
1425
+ RP(%)
1426
+ NBN
1427
+ SRC
1428
+ WAR
1429
+ RP(%)
1430
+ NBN
1431
+ SRC
1432
+ WAR
1433
+ RP(%)
1434
+ TVShow
1435
+ 188
1436
+ 502
1437
+ 8.8894
1438
+ 6.73
1439
+ 142
1440
+ 403
1441
+ 8.0841
1442
+ 5.40
1443
+ 543
1444
+ 1104
1445
+ 10.4244 14.80
1446
+ 514
1447
+ 1055
1448
+ 10.4196
1449
+ 14.14
1450
+ LastFM
1451
+ 201
1452
+ 1025 17.0836
1453
+ 7.90
1454
+ 164
1455
+ 895
1456
+ 16.4166
1457
+ 6.90
1458
+ 458
1459
+ 1652
1460
+ 17.7163 12.74
1461
+ 404
1462
+ 1485
1463
+ 17.6044
1464
+ 11.45
1465
+ Facebook
1466
+ 828
1467
+ 5335 35.8553
1468
+ 10.42
1469
+ 618
1470
+ 3040 28.4149
1471
+ 5.90
1472
+ 2709 11691 40.5852 22.83
1473
+ 2468
1474
+ 10033
1475
+ 37.4845
1476
+ 19.59
1477
+ DeezerEU
1478
+ 182
1479
+ 606
1480
+ 11.3760
1481
+ 1.15
1482
+ 94
1483
+ 303
1484
+ 9.139
1485
+ 0.58
1486
+ 1162
1487
+ 2185
1488
+ 15.4195
1489
+ 4.15
1490
+ 1062
1491
+ 1967
1492
+ 15.1067
1493
+ 3.74
1494
+ Gowalla
1495
+ /
1496
+ /
1497
+ /
1498
+ /
1499
+ 828
1500
+ 9068 58.8298
1501
+ 3.06
1502
+ /
1503
+ /
1504
+ /
1505
+ /
1506
+ 7719
1507
+ 22864
1508
+ 62.2077
1509
+ 7.72
1510
+ HepPh
1511
+ 562
1512
+ 3664 31.4897
1513
+ 17.96
1514
+ 481
1515
+ 3244 31.4435
1516
+ 15.90
1517
+ 1381
1518
+ 5142
1519
+ 31.9080 25.19
1520
+ 1332
1521
+ 5026
1522
+ 31.7788
1523
+ 24.63
1524
+ AstroPh
1525
+ 1276 7702 30.2089
1526
+ 20.38
1527
+ 816
1528
+ 5191 29.0587
1529
+ 13.73
1530
+ 2984 12637 32.9459 33.43
1531
+ 2727
1532
+ 11382
1533
+ 31.6881
1534
+ 30.11
1535
+ CondMat
1536
+ 259
1537
+ 797
1538
+ 12.2096
1539
+ 2.18
1540
+ 184
1541
+ 574
1542
+ 10.3739
1543
+ 1.57
1544
+ 3008
1545
+ 6760
1546
+ 13.1719 18.50
1547
+ 2801
1548
+ 6231
1549
+ 13.0097
1550
+ 17.05
1551
+ Citeseer
1552
+ /
1553
+ /
1554
+ /
1555
+ /
1556
+ 514
1557
+ 1884
1558
+ 18.377
1559
+ 0.58
1560
+ /
1561
+ /
1562
+ /
1563
+ /
1564
+ 25244
1565
+ 50203
1566
+ 29.3033 15.34
1567
+ USAir
1568
+ 30
1569
+ 111
1570
+ 3.8897
1571
+ 18.91
1572
+ 21
1573
+ 59
1574
+ 2.6262
1575
+ 10.05
1576
+ 36
1577
+ 120
1578
+ 3.9747
1579
+ 20.44
1580
+ 36
1581
+ 120
1582
+ 3.9747
1583
+ 20.44
1584
+ USPower
1585
+ 21
1586
+ 27
1587
+ 2.7141
1588
+ 0.33
1589
+ 16
1590
+ 20
1591
+ 2.5852
1592
+ 0.25
1593
+ 109
1594
+ 130
1595
+ 2.9294
1596
+ 1.60
1597
+ 109
1598
+ 127
1599
+ 2.9212
1600
+ 1.56
1601
+ RoadNet
1602
+ /
1603
+ /
1604
+ /
1605
+ /
1606
+ 19
1607
+ 21
1608
+ 2.8945
1609
+ 0.0006
1610
+ /
1611
+ /
1612
+ /
1613
+ /
1614
+ 4105
1615
+ 4175
1616
+ 2.8658
1617
+ 0.11
1618
+ EDU
1619
+ 11
1620
+ 16
1621
+ 2.5805
1622
+ 0.21
1623
+ 12
1624
+ 16
1625
+ 2.5516
1626
+ 0.21
1627
+ 59
1628
+ 67
1629
+ 2.8268
1630
+ 0.89
1631
+ 59
1632
+ 67
1633
+ 2.8268
1634
+ 0.89
1635
+ Indo
1636
+ 73
1637
+ 157
1638
+ 9.4433
1639
+ 1.04
1640
+ 69
1641
+ 140
1642
+ 9.1799
1643
+ 0.93
1644
+ 779
1645
+ 1212
1646
+ 12.4205
1647
+ 8.06
1648
+ 772
1649
+ 1177
1650
+ 12.6278
1651
+ 7.83
1652
+ Arabic
1653
+ 354
1654
+ 550
1655
+ 7.3287
1656
+ 0.26
1657
+ 214
1658
+ 486
1659
+ 8.8685
1660
+ 0.23
1661
+ 5088
1662
+ 8232
1663
+ 14.4142
1664
+ 3.92
1665
+ 5001
1666
+ 8049
1667
+ 14.423
1668
+ 3.83
1669
+ Google
1670
+ /
1671
+ /
1672
+ /
1673
+ /
1674
+ 868
1675
+ 4309 35.6256
1676
+ 0.26
1677
+ /
1678
+ /
1679
+ /
1680
+ /
1681
+ 77928 222404 75.7784 13.63
1682
+ TVShow
1683
+ LastFM Facebook DeezerEU
1684
+ HepPh
1685
+ AstroPh CondMat
1686
+ USAir
1687
+ USPower
1688
+ EDU
1689
+ Indo
1690
+ Arabic
1691
+ 10
1692
+ 0
1693
+ 10
1694
+ 1
1695
+ 10
1696
+ 2
1697
+ 10
1698
+ 3
1699
+ 10
1700
+ 4
1701
+ Time Consumption (seconds)
1702
+ TNC
1703
+ KNM
1704
+ SV
1705
+ ATNC
1706
+ Figure 4: Comparisons of the running time of TNC, KNM, SV and ATNC. The subfigure exhibits the running time of SV and
1707
+ ATNC on those large-scale networks separately. We can see that ATNC is significantly more efficient than the other methods
1708
+ on the time consumption.
1709
+ a difference of almost 10 times. Similarly, RND is able to filter out
1710
+ 4510 bubble nodes on Arabic network, while KNM and SV could
1711
+ only find 354 and 214 nodes. However, the other metrics, i.e., SRC,
1712
+ WAR and RP, are much higher for KNM and SV compared to those
1713
+ for RND. For example, on Facebook network, the SRC of KNM is 5
1714
+ times larger than that of RND and on AstroPh network, the WAR
1715
+ of KNM is 3 times larger than that of RND. These results tell us that
1716
+ the heuristic methods enable the target node to collapse at a lower
1717
+ budget compared to the random-based methods, although they can
1718
+ only work on part of bubble nodes. Analysis from the principle
1719
+ of these two algorithms, neither of them exploits the information
1720
+ associated with the target node to guide the removal of edges which
1721
+ leads to the unsatisfied performance on solving the TNCP problem.
1722
+ Benefits of Our Proposed Methods. Next, turning to the re-
1723
+ sults generated by TNC and ATNC shown in Table 4, TNC and
1724
+ ATNC achieve the best and second-best performance on majority
1725
+ of the datasets with significant benefits over KNM and SV. For ex-
1726
+ ample, on CondMat network, only 259 and 184 bubble nodes could
1727
+ be detected through KNM and SV, respectively, while there are
1728
+ 3008 and 2801 bubble nodes found by TNC and ATNC, respectively,
1729
+ resulting in a difference of more than 10-fold between the two sides.
1730
+ This definitely demonstrates that in the comparison to KNM and
1731
+ SV, TNC and ATNC have stronger transferability across different
1732
+ nodes and different networks. Besides, our proposed algorithms
1733
+ also perform better than KNM and SV considering SRC, WAR and
1734
+ RP metrics. However, we notice that the WAR of SV is a little larger
1735
+ 10
1736
+
1737
+ 10
1738
+ 10
1739
+ Google
1740
+ Gowalla
1741
+ Citeseer
1742
+ RoadNet0
1743
+ 10
1744
+ 20
1745
+ Number of Deleted Edges
1746
+ 10
1747
+ 20
1748
+ 30
1749
+ Number of Support Neighbors
1750
+ k=11, CS=27, NR=17
1751
+ (a) LastFM, Node 6101
1752
+ 0
1753
+ 10
1754
+ 20
1755
+ Number of Deleted Edges
1756
+ 10
1757
+ 20
1758
+ 30
1759
+ Number of Support Neighbors
1760
+ k=11, CS=23, NR=14
1761
+ (b) LastFM, Node 3103
1762
+ 0
1763
+ 5
1764
+ 10
1765
+ 15
1766
+ 20
1767
+ Number of Deleted Edges
1768
+ 10
1769
+ 15
1770
+ 20
1771
+ 25
1772
+ 30
1773
+ Number of Support Neighbors
1774
+ k=10, CS=21, NR=17
1775
+ (c) DeezerEU, Node 17963
1776
+ 0
1777
+ 10
1778
+ 20
1779
+ 30
1780
+ 40
1781
+ Number of Deleted Edges
1782
+ 10
1783
+ 20
1784
+ 30
1785
+ 40
1786
+ Number of Support Neighbors
1787
+ k=8, CS=40, NR=12
1788
+ (d) DeezerEU, Node 24062
1789
+ 0
1790
+ 5
1791
+ 10
1792
+ 15
1793
+ Number of Deleted Edges
1794
+ 5
1795
+ 10
1796
+ 15
1797
+ 20
1798
+ 25
1799
+ Number of Support Neighbors
1800
+ k=9, CS=18, NR=6
1801
+ (e) CondMat, Node 1233
1802
+ 0
1803
+ 5
1804
+ 10
1805
+ 15
1806
+ Number of Deleted Edges
1807
+ 10
1808
+ 15
1809
+ 20
1810
+ 25
1811
+ Number of Support Neighbors
1812
+ k=8, CS=18, NR=8
1813
+ (f) CondMat, Node 13621
1814
+ 0
1815
+ 1
1816
+ 2
1817
+ 3
1818
+ 4
1819
+ Number of Deleted Edges
1820
+ 4
1821
+ 6
1822
+ 8
1823
+ 10
1824
+ 12
1825
+ Number of Support Neighbors
1826
+ k=9, CS=4, NR=1
1827
+ (g) Indo, Node 2721
1828
+ 0
1829
+ 5
1830
+ 10
1831
+ 15
1832
+ Number of Deleted Edges
1833
+ 5
1834
+ 10
1835
+ 15
1836
+ 20
1837
+ Number of Support Neighbors
1838
+ k=5, CS=18, NR=10
1839
+ (h) Indo, Node 4712
1840
+ TNC
1841
+ KNM
1842
+ SV
1843
+ ATNC
1844
+ Figure 5: Case study on individual nodes from 4 mentioned networks operated by TNC, KNM, SV and ATNC. Each method is
1845
+ marked with a unique label and the red dotted line in each subfigure indicates the critical value of the number of supportive
1846
+ neighbors for current target node.
1847
+ than that of ATNC on RoadNet. After the observation of the bubble
1848
+ nodes found by SV and ATNC, there exists the situation that among
1849
+ the 19 bubble nodes detected by SV, 1 node has reduced cost of 3
1850
+ and 18 nodes has reduced cost of 1; while for the 4105 bubble nodes
1851
+ detected by ATNC, there are 8 nodes with reduced cost of 3, 54
1852
+ nodes with 2 and even 4043 nodes with 1. In the calculation of WAR
1853
+ for ATNC, the bubble nodes with reduced cost of 1, which make
1854
+ up nearly 98% of the total, surely have a significant diluting impact
1855
+ on the final result. Actually, the existence of bubble nodes with
1856
+ low reduced cost is common in the other networks. For instance,
1857
+ on Facebook network, about 65% of the bubble nodes detected by
1858
+ ATNC have their reduced cost less than 4 while there are 30 nodes
1859
+ with reduced cost larger than 30, and on Indo network, 90% of the
1860
+ bubble nodes detected by ATNC have their reduced cost less than
1861
+ 3 with 4 nodes whose reduced cost larger than 10. This is why we
1862
+ use weighted averaging instead of arithmetic averaging to quantify
1863
+ the average reduced cost of each bubble node in the network.
1864
+ Comparison between TNC and ATNC. Reviewing what is
1865
+ discussed in Section 4, it is easy to be realized that the candidates
1866
+ waiting to be filtered of ATNC is a subset of those of TNC. Unsur-
1867
+ prisingly, considering the comparison between TNC and ATNC in
1868
+ Table 4, the performance of TNC is better than that of ATNC on
1869
+ the majority of networks. We also notice that on Indo and Arabic,
1870
+ the WAR of ATNC is slightly higher than that of TNC while the
1871
+ other metrics of ATNC are less than those of TNC. Taking Indo as
1872
+ example for analysis, we find that there are 3 nodes with reduced
1873
+ cost of 8 among the 779 bubble detected by TNC while none of
1874
+ these nodes with reduced cost of 8 explored by ATNC. This situ-
1875
+ ation leads to an unfair weighting process of TNC compared to
1876
+ ATNC in the calculation of WAR and causes the slight difference in
1877
+ the final results. For the similar reason, the slight variations in the
1878
+ number of bubble nodes with high reduced cost lead to the differ-
1879
+ ence in the final result of WAR. However, the performance of TNC
1880
+ is completely superior to that of ATNC on the whole. Besides, it is
1881
+ easy to find that TNC is not suitable for those large-scale networks,
1882
+ e.g., Gowalla, Citeseer, RoadNet and Google, due to the huge size
1883
+ of the candidates. On the contrary, ATNC is able to complete these
1884
+ tasks and receives appreciable results. The detailed comparisons of
1885
+ efficiency will be discussed in the following contents.
1886
+ Redundancy of Core Strength Metric. As introduced before,
1887
+ the RP metric measures the redundancy of core strength with re-
1888
+ spect to node robustness. As mentioned in Section 3.1, we have
1889
+ shown that the core strength metric does not accurately quantify
1890
+ the number of necessarily removed edges for making the target
1891
+ 𝑘-node collapse. From the results of ATNC in Table 4, there are
1892
+ more than half of the networks whose RP is larger than 10% and
1893
+ even part of them owning RP larger than 20%. For example, the
1894
+ RP of Facebook is nearby 20% and the RP of AstroPh is more than
1895
+ 30%. These results undoubtedly demonstrate that the core strength
1896
+ metric is not suitable for measuring the least number of edges to
1897
+ remove for leading the collapse to a target node.
1898
+ Efficiency of Different Methods. The visualization for the
1899
+ time consumption of implementing KNM, SV, TNC and ATNC
1900
+ across all the mentioned networks is illustrated in Figure 4. Overall,
1901
+ we can find that TNC and KNM have similar performance since they
1902
+ both traverse all corona nodes for edge removal in each iteration.
1903
+ Then, we can find that SV performs better than KNM and TNC
1904
+ on most of the networks except for HepPh network and USAir
1905
+ 11
1906
+
1907
+ 0
1908
+ PRC
1909
+ KNM
1910
+ ?
1911
+ SV
1912
+ ...APRC.network. For HepPh network, its maximal core value 𝑘𝑚𝑎𝑥 = 238
1913
+ is much higher than that of the other networks which is up to
1914
+ 101. For USAir network, its size if much smaller than the others
1915
+ and causes the operations of SV are much more time-consuming
1916
+ than those of KNM and TNC. Besides, ATNC occupies the best
1917
+ efficiency with significant time-consumption reduction compared
1918
+ to the other methods. For example, on DeezerEU network, the time
1919
+ consumption of SV method is about 10 times larger than that of
1920
+ ARPC and the time consumption of TNC is even more than 100
1921
+ times larger than that of ATNC. And for large-scale networks, e.g.,
1922
+ Gowalla, Citeseer, RoadNet and Google, neither TNC nor KNM
1923
+ can calculate the robustness for each node in those networks in
1924
+ the limitation of 105 seconds, e.g., TNC even fails to complete the
1925
+ calculation of 0.1% of total nodes on Google network within 105
1926
+ seconds, while ATNC is able to cover the task in an appreciable
1927
+ amount of time.
1928
+ In a word, our proposed methods TNC and ATNC have signifi-
1929
+ cant advantages over the other baseline methods. And considering
1930
+ the much lower time complexity of ATNC compared to TNC, ATNC
1931
+ is more suitable to be deployed on large-scale networks for solving
1932
+ TNCP problem, although the effect of TNC is slightly better than
1933
+ that of ATNC.
1934
+ 6.2
1935
+ Case Study
1936
+ In the previous section, we provide the performance of different
1937
+ methods from a macroscopic perspective. Here, in this part, we
1938
+ offer a microscopic point of view as a case study. We visualize the
1939
+ variation in the number of supportive neighbors of the target node
1940
+ when the implementation is processing. As illustrated in Figure 5,
1941
+ 8 individual target nodes collected from 4 of the mentioned net-
1942
+ works are visualized. In each subfigure, the horizontal coordinate
1943
+ indicates the number of removed edges during the process, the
1944
+ vertical coordinate indicates the number of remaining supportive
1945
+ neighbors of the target node after the removal. Different imple-
1946
+ mented methods are marked with different labels. Meanwhile, the
1947
+ red dotted line in each subfigure represents the critical number
1948
+ of supportive neighbors for the target node which is equal to its
1949
+ core value. The collapse of the target node happens when the curve
1950
+ drops below the red dotted line since the violation of Theorem 1.
1951
+ From the examples, it is clear that fewer removed edges is needed
1952
+ through TNC and ATNC compared to those of KNM and SV, and
1953
+ TNC is able to remove fewer edges than ATNC in some cases.
1954
+ 7
1955
+ APPLICATION
1956
+ Currently, 𝑘-core has been widely used in numerous downstream
1957
+ tasks, e.g., anomaly detection [41, 42], community detection [37],
1958
+ detection of influential spreaders [6, 19, 28, 29], etc. Laishram et
1959
+ al.[23] demonstrated that the performance of those downstream
1960
+ tasks is highly relative to the resilience of the 𝑘-core structure in a
1961
+ network. They proposed a heuristic metric named CIS whose cal-
1962
+ culation is based on the core strength metric. They indicated that
1963
+ the resilience of 𝑘-core is positively correlated with CIS. However,
1964
+ as mentioned before, we have demonstrated that the core strength
1965
+ metric is highly redundant for measuring the robustness of indi-
1966
+ vidual 𝑘-nodes in real-world networks. Thus, the CIS calculated
1967
+ from core strength, named as CS-based CIS, probably overestimates
1968
+ TVShow
1969
+ LastFM
1970
+ Facebook
1971
+ DeezerEU
1972
+ Gowalla
1973
+ HepPh
1974
+ AstroPh
1975
+ CondMat
1976
+ Citeseer
1977
+ USAir
1978
+ USPower
1979
+ RoadNet EDU
1980
+ Indo
1981
+ Arabic
1982
+ Google
1983
+ 0
1984
+ 2
1985
+ 4
1986
+ 6
1987
+ 8
1988
+ CIS
1989
+ CS-based
1990
+ NR-based
1991
+ Figure 6: Comparisons of CS-based CIS and NR-based CIS
1992
+ on all mentioned networks. It is clear that, on most net-
1993
+ works, NR-based CIS is able to measure the resilience of 𝑘-
1994
+ core more precisely than CS-based CIS.
1995
+ the resilience of 𝑘-core structures in a network. For the above rea-
1996
+ sons, we replace core strength with the node robustness achieved
1997
+ by ATNC algorithm in the calculation of CIS, which is named as
1998
+ NR-based CIS. The results of CS-based CIS and NR-based CIS on
1999
+ real-world networks are shown in Figure 6. It is clear that on most
2000
+ networks, NR-based CIS is much smaller than CS-based CIS and is
2001
+ able to precisely measure the resilience of the 𝑘-core in a network.
2002
+ Besides, combining the information illustrated in Table 4, we can
2003
+ find that the difference between NR-based CIS and CS-based CIS is
2004
+ proportional to the RP metric, e.g., on Facebook network, ATNC
2005
+ provides RP=19.59% and there is a two-fold difference between CS-
2006
+ based CIS and NR-based CIS; while the difference on EDU network
2007
+ who receives RP=0.89% by ATNC is negligible. From this, it is clear
2008
+ that the node robustness metric has better performance, compared
2009
+ to the core strength metric, in precisely describing the resilience of
2010
+ 𝑘-core structures in networks.
2011
+ 8
2012
+ CONCLUSION
2013
+ In this paper, we engage in the first work on studying the robustness
2014
+ of individual nodes within 𝑘-core. We propose the TNCP problem,
2015
+ which aims to remove the minimal number of edges for making the
2016
+ target node collapse, and we also provide a proof of its NP-hardness.
2017
+ In order to solve TNCP problem, we propose two heuristic algo-
2018
+ rithms including TNC algorithm which exploits corona nodes to
2019
+ improve search efficiency, and ATNC algorithm which introduces
2020
+ adjacent-search strategy to further lower down computational com-
2021
+ plexity on large-scale networks. Extensive experimental results
2022
+ on various real-world networks, together with thorough analyses,
2023
+ demonstrate the superiority of our proposed methods over the
2024
+ baseline methods. Meanwhile, we offer the detailed processes of
2025
+ different algorithms being implemented on various target nodes for
2026
+ case study. Finally, we demonstrate that studying TNCP problem is
2027
+ helpful for precisely estimating the resilience of 𝑘-core in networks.
2028
+ ACKNOWLEDGMENTS
2029
+ This work was supported in part by the Key R&D Program of
2030
+ Zhejiang under Grant 2022C01018, by the National Natural Science
2031
+ Foundation of China under Grants 61973273 and U21B2001, by the
2032
+ National Key R&D Program of China under Grant 2020YFB1006104,
2033
+ and by The Major Key Project of PCL under Grants PCL2022A03,
2034
+ PCL2021A02, and PCL2021A09.
2035
+ 12
2036
+
2037
+ REFERENCES
2038
+ [1] Abhijin Adiga and Anil Kumar S Vullikanti. 2013. How robust is the core of
2039
+ a network?. In Joint European Conference on Machine Learning and Knowledge
2040
+ Discovery in Databases. Springer, Berlin, Heidelberg, 541–556.
2041
+ [2] DO Akinyele and RK Rayudu. 2014. Review of energy storage technologies for
2042
+ sustainable power networks. Sustainable energy technologies and assessments 8
2043
+ (2014), 74–91.
2044
+ [3] N Azimi-Tafreshi, J Gómez-Gardenes, and SN Dorogovtsev. 2014. k- core perco-
2045
+ lation on multiplex networks. Physical Review E 90, 3 (2014), 032816.
2046
+ [4] GJ Baxter, SN Dorogovtsev, K-E Lee, JFF Mendes, and AV Goltsev. 2015. Critical
2047
+ dynamics of the k-core pruning process. Physical Review X 5, 3 (2015), 031017.
2048
+ [5] Gareth J Baxter, Sergey N Dorogovtsev, Alexander V Goltsev, and José FF Mendes.
2049
+ 2011. Heterogeneous k-core versus bootstrap percolation on complex networks.
2050
+ Physical Review E 83, 5 (2011), 051134.
2051
+ [6] Phil Brown and Junlan Feng. 2011. Measuring user influence on twitter us-
2052
+ ing modified k-shell decomposition. In Proceedings of the International AAAI
2053
+ Conference on Web and Social Media, Vol. 5. 18–23.
2054
+ [7] Kate Burleson-Lesser, Flaviano Morone, Maria S Tomassone, and Hernán A Makse.
2055
+ 2020. K-core robustness in ecological and financial networks. Scientific reports
2056
+ 10, 1 (2020), 1–14.
2057
+ [8] Chen Chen, Qiuyu Zhu, Renjie Sun, Xiaoyang Wang, and Yanping Wu. 2021.
2058
+ Edge manipulation approaches for k-core minimization: metrics and analytics.
2059
+ IEEE Transactions on Knowledge and Data Engineering 35, 1 (2021), 390–403.
2060
+ [9] Sergey N Dorogovtsev, Alexander V Goltsev, and Jose Ferreira F Mendes. 2006.
2061
+ K-core organization of complex networks. Physical review letters 96, 4 (2006),
2062
+ 040601.
2063
+ [10] Marius Eidsaa and Eivind Almaas. 2013. S-core network decomposition: A
2064
+ generalization of k-core analysis to weighted networks. Physical Review E 88, 6
2065
+ (2013), 062819.
2066
+ [11] Michelle Girvan and Mark EJ Newman. 2002. Community structure in social and
2067
+ biological networks. Proceedings of the national academy of sciences 99, 12 (2002),
2068
+ 7821–7826.
2069
+ [12] Alexander V Goltsev, Sergey N Dorogovtsev, and Jose Ferreira F Mendes. 2006.
2070
+ k-core (bootstrap) percolation on complex networks: Critical phenomena and
2071
+ nonlocal effects. Physical Review E 73, 5 (2006), 056101.
2072
+ [13] Shu Guo, Xiaoqi Chen, Yimeng Liu, Rui Kang, Tao Liu, and Daqing Li. 2021.
2073
+ Percolation analysis of brain structural network. Frontiers in Physics 9 (2021),
2074
+ 698077.
2075
+ [14] András Hajnal, Paul Erdos, and B Rothchild. 1966. On chromatic number of
2076
+ graphs and set-systems. Acta Math. Hungar 16 (1966), 61–99.
2077
+ [15] Laurent Hébert-Dufresne, Joshua A Grochow, and Antoine Allard. 2016. Multi-
2078
+ scale structure and topological anomaly detection via a new network statistic:
2079
+ The onion decomposition. Scientific reports 6, 1 (2016), 1–9.
2080
+ [16] Norman P Hummon and Patrick Dereian. 1989. Connectivity in a citation network:
2081
+ The development of DNA theory. Social networks 11, 1 (1989), 39–63.
2082
+ [17] Arnold Emerson Isaac and Sitabhra Sinha. 2015. Analysis of core–periphery
2083
+ organization in protein contact networks reveals groups of structurally and
2084
+ functionally critical residues. Journal of biosciences 40, 4 (2015), 683–699.
2085
+ [18] Wissam Khaouid, Marina Barsky, Venkatesh Srinivasan, and Alex Thomo. 2015.
2086
+ K-core decomposition of large networks on a single PC. Proceedings of the VLDB
2087
+ Endowment 9, 1 (2015), 13–23.
2088
+ [19] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik,
2089
+ H Eugene Stanley, and Hernán A Makse. 2010. Identification of influential
2090
+ spreaders in complex networks. Nature physics 6, 11 (2010), 888–893.
2091
+ [20] Yi-Xiu Kong, Gui-Yuan Shi, Rui-Jie Wu, and Yi-Cheng Zhang. 2019. k-core:
2092
+ Theories and applications. Physics Reports 832 (2019), 1–32.
2093
+ [21] Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. 2011. Combinatorial opti-
2094
+ mization. Vol. 1. Springer, Berlin, Heidelberg. 424–429 pages.
2095
+ [22] Mikaela Koutrouli, Evangelos Karatzas, David Paez-Espino, and Georgios A
2096
+ Pavlopoulos. 2020. A guide to conquer the biological network era using graph
2097
+ theory. Frontiers in bioengineering and biotechnology 8 (2020), 34.
2098
+ [23] Ricky Laishram, Ahmet Erdem Sariyüce, Tina Eliassi-Rad, Ali Pinar, and Sucheta
2099
+ Soundarajan. 2018. Measuring and improving the core resilience of networks. In
2100
+ Proceedings of the 2018 World Wide Web Conference. International World Wide
2101
+ Web Conferences Steering Committee, Republic and Canton of Geneva, CHE,
2102
+ 609–618.
2103
+ [24] Jure Leskovec and Andrej Krevl. 2014. SNAP Datasets: Stanford Large Network
2104
+ Dataset Collection. http://snap.stanford.edu/data.
2105
+ [25] Rong-Hua Li, Jeffrey Xu Yu, and Rui Mao. 2013. Efficient core maintenance in
2106
+ large dynamic graphs. IEEE Transactions on Knowledge and Data Engineering 26,
2107
+ 10 (2013), 2453–2465.
2108
+ [26] Hanwen Liu, Huaizhen Kou, Chao Yan, and Lianyong Qi. 2019. Link prediction
2109
+ in paper citation network to construct paper correlation graph. EURASIP Journal
2110
+ on Wireless Communications and Networking 2019, 1 (2019), 1–12.
2111
+ [27] Yiding Liu, Tuan-Anh Nguyen Pham, Gao Cong, and Quan Yuan. 2017. An
2112
+ experimental evaluation of point-of-interest recommendation in location-based
2113
+ social networks. Proceedings of the VLDB Endowment 10, 10 (2017), 1010–1021.
2114
+ [28] Linyuan Lü, Duanbing Chen, Xiao-Long Ren, Qian-Ming Zhang, Yi-Cheng Zhang,
2115
+ and Tao Zhou. 2016. Vital nodes identification in complex networks. Physics
2116
+ Reports 650 (2016), 1–63.
2117
+ [29] Linyuan Lü, Tao Zhou, Qian-Ming Zhang, and H Eugene Stanley. 2016. The
2118
+ H-index of a network node and its relation to degree and coreness. Nature
2119
+ communications 7, 1 (2016), 1–7.
2120
+ [30] Feng Luo, Bo Li, Xiu-Feng Wan, and Richard H Scheuermann. 2009. Core and
2121
+ periphery structures in protein interaction networks. In BMC bioinformatics,
2122
+ Vol. 10. BioMed Central, 1–11.
2123
+ [31] Abdul Majeed and Ibtisam Rauf. 2020. Graph theory: A comprehensive sur-
2124
+ vey about graph theory applications in computer science and social networks.
2125
+ Inventions 5, 1 (2020), 10.
2126
+ [32] Fragkiskos D Malliaros, Christos Giatsidis, Apostolos N Papadopoulos, and
2127
+ Michalis Vazirgiannis. 2020. The core decomposition of networks: Theory, algo-
2128
+ rithms and applications. The VLDB Journal 29, 1 (2020), 61–92.
2129
+ [33] David W Matula and Leland L Beck. 1983. Smallest-last ordering and clustering
2130
+ and graph coloring algorithms. Journal of the ACM (JACM) 30, 3 (1983), 417–427.
2131
+ [34] Sourav Medya, Tiyani Ma, Arlei Silva, and Ambuj Singh. 2020. A Game Theoretic
2132
+ Approach For Core Resilience. In Proceedings of the Twenty-Ninth International
2133
+ Joint Conference on Artificial Intelligence, IJCAI-20, Christian Bessiere (Ed.). In-
2134
+ ternational Joint Conferences on Artificial Intelligence Organization, 3473–3479.
2135
+ https://doi.org/10.24963/ijcai.2020/480 Main track.
2136
+ [35] Flaviano Morone, Gino Del Ferraro, and Hernán A Makse. 2019. The k-core as a
2137
+ predictor of structural collapse in mutualistic ecosystems. Nature physics 15, 1
2138
+ (2019), 95–102.
2139
+ [36] Fabio Pasqualetti, Antonio Bicchi, and Francesco Bullo. 2011. A graph-theoretical
2140
+ characterization of power network vulnerabilities. In Proceedings of the 2011
2141
+ American Control Conference. IEEE, IEEE, San Francisco, CA, USA, 3918–3923.
2142
+ [37] Fabio Pasqualetti, Antonio Bicchi, and Francesco Bullo. 2011. A graph-theoretical
2143
+ characterization of power network vulnerabilities. In Proceedings of the 2011
2144
+ American Control Conference. IEEE, San Francisco, CA, USA, 3918–3923. https:
2145
+ //doi.org/10.1109/ACC.2011.5991344
2146
+ [38] Ryan A. Rossi and Nesreen K. Ahmed. 2015.
2147
+ The Network Data Reposi-
2148
+ tory with Interactive Graph Analytics and Visualization. In AAAI.
2149
+ https:
2150
+ //networkrepository.com
2151
+ [39] Ahmet Erdem Sariyüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu,
2152
+ and Ümit V Çatalyürek. 2013. Streaming algorithms for k-core decomposition.
2153
+ Proceedings of the VLDB Endowment 6, 6 (2013), 433–444.
2154
+ [40] Stephen B Seidman. 1983. Network structure and minimum degree. Social
2155
+ networks 5, 3 (1983), 269–287.
2156
+ [41] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2016. Corescope: Graph
2157
+ mining using k-core analysis—patterns, anomalies and algorithms. In 2016 IEEE
2158
+ 16th international conference on data mining (ICDM). IEEE, IEEE, Barcelona, Spain,
2159
+ 469–478.
2160
+ [42] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. 2018. Patterns and anom-
2161
+ alies in k-cores of real-world graphs with applications. Knowledge and Information
2162
+ Systems 54, 3 (2018), 677–710.
2163
+ [43] Meng Wang, Chaokun Wang, Jeffrey Xu Yu, and Jun Zhang. 2015. Community
2164
+ detection in social networks: an in-depth benchmarking study with a procedure-
2165
+ oriented framework. Proceedings of the VLDB Endowment 8, 10 (2015), 998–1009.
2166
+ [44] Shang-Nan Wang, Luan Cheng, and Hai-Jun Zhou. 2021. Vulnerability and
2167
+ resilience of social engagement: Equilibrium theory. Europhysics Letters 132, 6
2168
+ (2021), 60006.
2169
+ [45] Wei Wang, Wenyao Li, Tao Lin, Tao Wu, Liming Pan, and Yanbing Liu. 2022.
2170
+ Generalized k-core percolation on higher-order dependent networks. Appl. Math.
2171
+ Comput. 420 (2022), 126793.
2172
+ [46] Wonseok Whi, Youngmin Huh, Seunggyun Ha, Hyekyoung Lee, Hyejin Kang,
2173
+ and Dong Soo Lee. 2022. Characteristic functional cores revealed by hyperbolic
2174
+ disc embedding and k-core percolation on resting-state fMRI. Scientific reports
2175
+ 12, 1 (2022), 1–16.
2176
+ [47] Donghyeon Yu, MinSoo Kim, Guanghua Xiao, and Tae Hyun Hwang. 2013. Re-
2177
+ view of biological network data and its applications. Genomics & informatics 11,
2178
+ 4 (2013), 200.
2179
+ [48] Lenka Zdeborová, Pan Zhang, and Hai-Jun Zhou. 2016. Fast and simple decycling
2180
+ and dismantling of networks. Scientific reports 6, 1 (2016), 1–6.
2181
+ [49] Fan Zhang, Ying Zhang, Lu Qin, Wenjie Zhang, and Xuemin Lin. 2017. Finding
2182
+ critical users for social network engagement: The collapsed k-core problem. In
2183
+ Thirty-First AAAI Conference on Artificial Intelligence.
2184
+ [50] Kexian Zheng, Ying Liu, Yang Wang, and Wei Wang. 2021. k-core percolation on
2185
+ interdependent and interconnected multiplex networks. Europhysics Letters 133,
2186
+ 4 (2021), 48003.
2187
+ [51] Bo Zhou, Yuqian Lv, Yongchao Mao, Jinhuan Wang, Shanqing Yu, and Qi Xuan.
2188
+ 2021. The Robustness of Graph k-shell Structure under Adversarial Attacks. IEEE
2189
+ Transactions on Circuits and Systems II: Express Briefs 69, 3 (2021), 1797–1801.
2190
+ [52] Bo Zhou, Yuqian Lv, Jinhuan Wang, Jian Zhang, and Qi Xuan. 2022. Attacking
2191
+ the Core Structure of Complex Network. IEEE Transactions on Computational
2192
+ Social Systems (2022), 1–15.
2193
+ 13
2194
+
J9AyT4oBgHgl3EQfTffD/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
JdFLT4oBgHgl3EQfKC80/content/tmp_files/2301.12006v1.pdf.txt ADDED
@@ -0,0 +1,853 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Improved knowledge distillation by utilizing
2
+ backward pass knowledge in neural networks
3
+ Aref Jafari∗
4
+ University of Waterloo
5
6
+ Mehdi Rezagholizadeh
7
+ Huawei Noah’s Ark Lab
8
9
+ Ali Ghodsi
10
+ University of Waterloo
11
12
+ Abstract
13
+ Knowledge distillation (KD) is one of the prominent techniques for model com-
14
+ pression. In this method, the knowledge of a large network (teacher) is distilled
15
+ into a model (student) with usually significantly fewer parameters. KD tries to
16
+ better-match the output of the student model to that of the teacher model based on
17
+ the knowledge extracts from the forward pass of the teacher network. Although
18
+ conventional KD is effective for matching the two networks over the given data
19
+ points, there is no guarantee that these models would match in other areas for which
20
+ we do not have enough training samples. In this work, we address that problem
21
+ by generating new auxiliary training samples based on extracting knowledge from
22
+ the backward pass of the teacher in the areas where the student diverges greatly
23
+ from the teacher. We compute the difference between the teacher and the student
24
+ and generate new data samples that maximize the divergence. This is done by
25
+ perturbing data samples in the direction of the gradient of the difference between
26
+ the student and the teacher. Augmenting the training set by adding this auxiliary
27
+ improves the performance of KD significantly and leads to a closer match between
28
+ the student and the teacher. Using this approach, when data samples come from a
29
+ discrete domain, such as applications of natural language processing (NLP) and
30
+ language understanding, is not trivial. However, we show how this technique can
31
+ be used successfully in such applications. We evaluated the performance of our
32
+ method on various tasks in computer vision and NLP domains and got promising
33
+ results.
34
+ 1
35
+ Introduction
36
+ During the last few years, we faced the emerge of a huge number of cumbersome state-of-the-art deep
37
+ neural network models in different fields of machine learning, including computer vision [27, 10],
38
+ natural language processing [16, 12, 13, 3] and speech processing [1, 7]. We need powerful servers
39
+ to be able to deploy such large models. Running such large models on edge devices would be
40
+ infeasible due to the limited memory and computational power of edge devices [22]. On the other
41
+ hand, considering users’ privacy concerns, network reliability issues, and network delays increase
42
+ the demand for offline machine learning solutions on edge devices. The field of neural model
43
+ compression focuses on providing compression solutions such as quantization [11], pruning [26],
44
+ tensor decomposition [24] and knowledge distillation (KD) [9] for large neural networks.
45
+ ∗This work was done while doing internship at Huawei Noah’s Ark Lab
46
+ Preprint. Under review.
47
+ arXiv:2301.12006v1 [cs.LG] 27 Jan 2023
48
+
49
+ (a)
50
+ (b)
51
+ Figure 1: (a) Minimization Step: Using the teacher model knowledge for training the student in KD
52
+ (utilizing forward knowledge) (b) Maximization Step: Augmenting the input dataset x with auxiliary
53
+ data samples x′ which is generated by the back propagation of gradient through both networks
54
+ (utilizing backward knowledge)
55
+ Knowledge distillation (KD) is one of the most prominent compression techniques in the literature.
56
+ As its name implies, KD tries to transfer the learned knowledge from a large teacher network to a
57
+ small student. The idea of KD was proposed by Rich Caruana et al. [4] for the first time and later this
58
+ idea generalized by Hinton et al. 2015 [9] for deep neural nets. The original KD method concerns
59
+ transferring knowledge from a teacher to a student network only by matching their forward pass
60
+ outputs. Later on, several works in the literature suggested other sources of knowledge in the teacher
61
+ network besides the logit outputs of the last layer. This includes using intermediate layer feature
62
+ maps [20, 21, 12], gradients of the network outputs w.r.t the inputs [5, 19]), and matching decision
63
+ boundaries for classification tasks [8]. using this additional information might be useful to get the
64
+ student network performance closer to that of the teacher.
65
+ In this work, we focus on identifying regions of the input space of the teacher and student networks in
66
+ which the two functions diverge the most from each other. Moreover, we highlight the importance of
67
+ incorporating backward knowledge of the teacher and student networks in the knowledge distillation
68
+ process. Our proposed iterative backward KD approach is comprised of: first, a maximization
69
+ step in which a new set of auxiliary training samples is generated by pushing training samples
70
+ towards maximum divergence regions of the two functions; second, a minimization step in which
71
+ the student network is trained using the regular KD approach over its training data together with the
72
+ generated auxiliary samples from the first step. We show the success of our backward KD technique
73
+ in improving KD on both classification and regression tasks over the image and textual data and also
74
+ in the few-sample KD scenario. We summarize the main contributions of this paper in the following:
75
+ • Our technique extracts knowledge from both the forward and backward passes of the teacher
76
+ and student networks in order to identify the maximum divergence regions between the two
77
+ functions and generate auxiliary data samples around those regions.
78
+ • We provide a solution on how to address the non-differentiability of discrete tokens in NLP
79
+ applications.
80
+ • Our approach is generic and is applicable to any improved KD approach.
81
+ • The results of our experiments, show 4% improvement on MNIST with a student network
82
+ that is 160 times smaller, 1% improvement on the CIFAR-10 dataset with a student that
83
+ is 9 times smaller, and an average 1.5% improvement on the GLUE benchmark with a
84
+ distilroBERTa-base student.
85
+ 2
86
+
87
+ LKD(c)
88
+ T(oackpropagation
89
+ oackpropagation
90
+ VLBKD(c)
91
+ VαLBKD(α)
92
+ LBKD(α)
93
+ T(i)2
94
+ Related Works
95
+ 2.1
96
+ Knowledge Distillation
97
+ In the original KD, the process of transferring knowledge from a teacher to a student model accom-
98
+ plishes by minimizing a loss function between the logits of student and teacher networks. This loss
99
+ function has been used in addition to the regular training loss function for the student network. In
100
+ other words, we have an additional loss term in the KD loss function between the softmax outputs of
101
+ teacher and student networks which is softened by a temperature term.
102
+ LKD = αL
103
+
104
+ Softmax
105
+
106
+ S(x)
107
+
108
+ , y
109
+
110
+ + (1 − α)L
111
+
112
+ Softmax
113
+ �S(x)
114
+ τ
115
+
116
+ , Softmax
117
+ �T(x)
118
+ τ
119
+ ��
120
+ (1)
121
+ where S(x) and T(x) are student and teacher networks respectively. τ is the temperature parameter
122
+ and α is a coefficient between [0, 1]. This loss function is a linear combination of two loss functions.
123
+ The first loss function minimizes the difference between the output of the student model and the given
124
+ true label. The second loss function minimizes the difference between the outputs of the student
125
+ model and the teacher model. Therefore the whole loss function minimizes the distance between the
126
+ student and both underlying and teacher functions. Since the teacher network is assumed to be a good
127
+ approximation of the underlying function, it should be close enough to the underlying function of
128
+ data samples. Fig. 2-(a) shows a simple example with three data points, an underlying function, a
129
+ trained teacher and a potential student function that satisfies the KD loss function in eq. 1. However,
130
+ the problem is, even though the student satisfies the KD objective function and intersects the teacher
131
+ function close to the training data samples, there is no guarantee that it would fit the teacher network
132
+ in other regions of the input space as well. In this work, we try to address this problem by deploying
133
+ the backward gradient information w.r.t the input (we refer to as backward knowledge) in the two
134
+ networks.
135
+ 2.2
136
+ Sobolev Training for KD
137
+ As we mentioned in 2.1 (see Fig. 2.), the KD loss cannot guarantee the student and teacher functions
138
+ to match over the entire input space. The reason is training two networks based on the original KD
139
+ loss function would only match their output values on the training samples and not their gradients.
140
+ There are some work in the literature to address this issue by matching the gradients of the two
141
+ networks at given training samples during training [5, 19]. However, since we usually deal with
142
+ networks with multidimensional inputs and outputs, the gradients of output vectors w.r.t input vectors
143
+ give rise to large Jacobin matrices. Matching these Jacobian matrices is not computationally efficient
144
+ and is not practical in real-world problems.
145
+ Sobolev training [5] proposes a solution to avoid large Jacobian matrices: instead of directly matching
146
+ the gradients of the two networks, one can match the projection of the gradients onto a random
147
+ vector v which is sampled uniformly from the unit sphere. Although this approach can reduce the
148
+ computational complexity of matching gradients during the training, still computing Jacobian matrices
149
+ before this projection can be very computationally expensive (especially for NLP applications that
150
+ deal with large vocabulary sizes). To tackle this problem in our work, we define a new scalar loss
151
+ function based on an l2 norm to measure the distance between the teacher and student networks (see
152
+ Fig. 2-(c)). Gradients of this scalar loss function is a vector with the same size as the input vector x
153
+ and can be used as a proxy for the network gradients introduced in [5, 19].
154
+ 3
155
+ Methodology: Improving Knowledge Distillation using Backward Pass
156
+ Knowledge
157
+ In this section, we propose our improved KD method based on generating new out of sample points
158
+ around the areas of the input domain where the student output diverges greatly from the teacher. This
159
+ approach identifies the areas of the input space X around which the two functions have maximum
160
+ distance. Then we generate out of sample points X′ ⊂ X from the existing training set X ⊂ X over
161
+ those regions. These new generated samples X′ can be labelled by the teacher and then X ← X ∪X′
162
+ be deployed in the KD’s training process to match the student better to the teacher over a broader
163
+ 3
164
+
165
+ Figure 2: Visualizing the data insufficiency issue for the original KD algorithm. (a) behaviour of
166
+ the teacher and the student function when training with KD loss. (b) divergence areas between the
167
+ teacher and the student networks. (c) behaviour of l2 − norm loss function between teacher and the
168
+ student and the way of obtaining auxiliary data samples.
169
+ range in the input space (see Fig. 2). We show that augmenting the training set by adding this auxiliary
170
+ set improves the performance of KD significantly and leads to a closer match between the student
171
+ and teacher. Our improved KD approach follows a procedure similar to the minimax principle [2] :
172
+ first, in the maximization step we generate auxiliary data samples; second, in the minimization step
173
+ we apply regular KD on the union of existing X and generated auxiliary data X′.
174
+ To have a better understanding of how this can be cast as an instance of minimax estimator, assume
175
+ that we are given the data samples {xi, T(xi))}N
176
+ i=1. The goal is to estimate T(x) by S(x). We
177
+ may seek an estimator S(x) attaining the minimax principle. In minimax principle, where θ is an
178
+ estimand and δ is an estimator, we evaluate all estimators according to its maximum risk R(θ, δ). An
179
+ estimator δ0 , then, is said to be minimax if:
180
+ sup
181
+ θ
182
+ R(θ, δ0) = inf
183
+ δ∈C sup
184
+ θ∈Θ
185
+ R(θ, δ)
186
+ (2)
187
+ That is we chose the estimator for the situation that the worst divergence between θ and δ is smallest.
188
+ We follow a similar insight: i.e. the maximization step computes X′, where there is the worst
189
+ divergence between the teacher and the student. The minimization step finds the weights of the
190
+ student network such that the difference between the student and teacher for this worst scenario is the
191
+ smallest.
192
+ min
193
+ w max
194
+ x
195
+ R(Tx, Sx,w)
196
+ (3)
197
+ 3.1
198
+ Maximization Step: Generating Auxilary Data based on Backward-KD Loss
199
+ In the maximization step of our technique, we define a new loss function (we refer to as the backward
200
+ KD loss or BKD throughout this paper) to measure the distance between the output of the teacher
201
+ and the student networks:
202
+ LBKD = ||S(x) − T(x)||2
203
+ 2
204
+ (4)
205
+ Here the main idea is that by taking the gradient of LBKD loss function in eq. 4 w.r.t the input samples,
206
+ we can perturb the training samples along the directions of their gradients to increase the loss between
207
+ two networks. Using this process, we can generate new auxiliary training samples for which the
208
+ student and the teacher networks are in maximum distance. To obtain these auxiliary data samples,
209
+ we can consider the following optimization problem.
210
+ x′ = max
211
+ x∈X ||S(x) − T(x)||2
212
+ 2
213
+ (5)
214
+ We can solve this problem using stochastic gradient ascent method. Therefore our perturbation
215
+ formula for each data sample will be:
216
+ xi+1 = xi + η ∇x ||S(x) − T(x)||2
217
+ 2
218
+ (6)
219
+ 4
220
+
221
+ (b)
222
+ y.
223
+ X1
224
+ X2
225
+ X3
226
+ a
227
+ L(αx) = II S(x) -T(x) /2
228
+ y=f(x)[underlying function
229
+ r = T(x) [Teacher Network]
230
+ ys = S(x) [Student Network]
231
+ Data Samples
232
+ Logits
233
+ Auxiliary Samples
234
+ 22where in this formula η is the perturbation rate. This is an iterative algorithm and i is the iteration
235
+ index. xi is a training sample at ith iteration. Each time, we perturb xi by adding a portion of the
236
+ gradient of loss to this sample. For more detail about this algorithm consider algorithm 1 in the
237
+ Appendix.
238
+ Fig. 2 demonstrates our idea using a simple example more clearly. Fig. 2-(a) shows a trained teacher
239
+ and student functions given the training samples (x1,y1), (x2,y2), (x3,y3). Fig. 2-(c) constructs the
240
+ LBKD between these two networks. LBKD shows where the two networks diverge in the original
241
+ space. Bear in mind that LBKD gives a scalar for each input. Hence, the gradient of LBKD with
242
+ respect to input variable x will be a vector with the same size as the variable x. Therefore, it does not
243
+ need to deal with the large dimensionality issue of the Jacobian matrix as described in [5]. Fig. 2-(c)
244
+ also illustrates an example of generating one auxiliary sample from the training sample x2. If we
245
+ apply eq. 6 to this sample, after several iterations, we will reach to a new auxiliary data point (x′
246
+ 2). It
247
+ is evident in Fig. 2-(a) that, as expected, there is a large divergence between the teacher and student
248
+ networks in (x′
249
+ 2) point.
250
+ 3.2
251
+ Minimization Step: Improving KD with Generated Auxiliary Data
252
+ We can apply the maximization step to all given training data to generate their corresponding auxiliary
253
+ samples. Then by adding the auxiliary samples X′ into the training dataset X ← X′ ∪ X, we can
254
+ train the student network again based on the original KD algorithm over the updated training set in
255
+ order to obtain a better output match between the student and teacher networks. Inspired by [15], we
256
+ have used the following KD loss function in our work:
257
+ LKD = (1 − λ) H
258
+
259
+ σ
260
+
261
+ S(x)
262
+
263
+ , y
264
+
265
+ + τ 2 λ KL
266
+
267
+ σ
268
+ �S(x)
269
+ τ
270
+
271
+ , σ
272
+ �T(x)
273
+ τ
274
+ ��
275
+ (7)
276
+ where σ(.) is the softmax function, H(.) is the cross-entropy loss function, KL(.) is the Kullback
277
+ Leibler divergence, λ is a hyper parameter, τ is the temperature parameter, and y is the true labels.
278
+ The intuition behind expecting to get a better KD performance using the updated training data is as
279
+ follows. Now given the auxiliary data samples which point toward the regions of the input space
280
+ where the student and teacher have maximum divergence, these regions of input space are not dark
281
+ for the original KD algorithm anymore. Therefore, it is expected from the KD algorithm to be able to
282
+ match the student to the teacher network over a larger input space (see Fig. 4). Moreover, it is worth
283
+ mentioning that the maximization and minimization steps can be taken multiple times. In this regard,
284
+ for each maximization step, we need to construct the auxiliary set X′ from scratch and we do not
285
+ need the previously generated auxiliary sets. However, in our few-sample training scenarios where
286
+ the number of data samples is small, we can keep the auxiliary samples.
287
+ 3.3
288
+ Backward KD for NLP Applications
289
+ It is not trivial how to deploy the introduced backward KD approach (i.e. calculating ∇xLBKD for
290
+ discrete inputs) when data samples come from a discrete domain, such as NLP applications. Here,
291
+ we propose a solution to how this technique can be adapted for the NLP domain. For neural NLP
292
+ models, first, we pass the one-hot vectors of the input tokens to the so-called embedding layer of
293
+ neural networks. Then, these one-hot vectors are converted into embedding vectors (see Fig. 3). The
294
+ key for our solution is that embedding vectors of input tokens are not discrete and we can take the
295
+ gradient of loss function w.r.t the embedding vectors z. But the problem is that, in the KD algorithm,
296
+ we have two networks with different embedding sizes (see Fig. 3). To address this issue, we can take
297
+ the gradient of the loss function w.r.t one of the embedding vectors (here student embedding vector
298
+ zS). However, then we need a transformation matrix like Q to be able to derive the corresponding
299
+ embedding vector zT for the teacher network form zS.
300
+ zT = QzS
301
+ (8)
302
+ We can show that the transform matrix Q is equal to the following equation:
303
+ Q = WT W T
304
+ S (WSW T
305
+ S )−1
306
+ (9)
307
+ where in this equation W T
308
+ S (WSW T
309
+ S )−1 is the pseudo inverse of WS embedding matrix. We refer
310
+ you to the Appendix to see the proof of this derivation. Therefore, to obtain the auxiliary samples,
311
+ 5
312
+
313
+ Figure 3: General procedure of utilizing auxiliary samples in NLP models. Here x is the one-hot
314
+ vector of input tokens, W is the embedding matrix, and z is the embedding vector of x.
315
+ we can take the gradient of the LBKD loss function w.r.t the student embedding vector zS. Then by
316
+ using equations 10 and 9, we can re-construct zT during the steps of data perturbation as following.
317
+ zi+1
318
+ S
319
+ = zi
320
+ S + η∇zSLBKD
321
+ zi+1
322
+ T
323
+ = WT W T
324
+ S (WSW T
325
+ S )−1zi+1
326
+ S
327
+ (10)
328
+ 4
329
+ Experiments and Results
330
+ We designed five experiments to evaluate our proposed method.The first experiment is on synthetic
331
+ data in order to visualize the idea behind our technique. The second and third experiments are on the
332
+ image classification tasks and the last two experiments are in NLP. For all of these experiments, we
333
+ followed the general procedure illustrated in algorithm 1 in the Appendix. For NLP experiments, we
334
+ applied the method explained in section 3.3 (see algorithm 2 in the Appendix for more details). We
335
+ summarize the procedure of our experiments in the following.
336
+ Pre-training Step: We train the student network based on the original KD procedure for a few
337
+ epochs (e epochs). In this step, the student network will get close to the teacher network around the
338
+ given training samples and will diverge from the teacher in some other areas.
339
+ Iterative Min Max Step: We do the following two steps iteratively for several epochs (h epochs) :
340
+ 1) Using the pre-trained student network and the trained teacher network, we use the proposed
341
+ maximization step in 3.2 for generating an auxiliary dataset.
342
+ 2) Combine the auxiliary data with the training dataset and train the student network based on the
343
+ augmented dataset using the original KD procedure for e epochs again.
344
+ Fine-tuning Step: Finally, fine-tune the student network using original KD only based on the train
345
+ samples for e epochs again. The reason for this step is that, although during the previous step the
346
+ student network has been got close to the teacher network in general since the student has a limited
347
+ amount of parameter, it might not be able to completely converge to the teacher network using all
348
+ augmented data samples. On the other hand, since the given data points are more important than the
349
+ auxiliary points, then during the last step, we only train the student based on the given dataset in order
350
+ to have the maximum match between student and teacher over the given data samples in the end.
351
+ 4.1
352
+ Synthetic data experiment
353
+ For visualizing our technique and showing the intuition behind it, we designed a very simple
354
+ experiment to show how the proposed method works over a synthetic setting. In this experiment, we
355
+ consider a polynomial function of degree 20 as the trained teacher function. Then, we considered
356
+ 8 data points on its surface as our data samples to train a student network which is a polynomial
357
+ function from degree 15 (see Fig. 4-(a)). As it is depicted in this figure, although the student model
358
+ perfectly fits the given data points, it diverges from the teacher model in some areas between the
359
+ given points. After applying our backward KD method, we can generate some auxiliary samples
360
+ 6
361
+
362
+ Backpropagation
363
+ Vzs La(α)
364
+ La(a)
365
+ Teacher
366
+ Student
367
+ Inner
368
+ Layers
369
+ ZT = QZs
370
+ Embedding
371
+ Vectors
372
+ Embedding
373
+ WT
374
+ Ws
375
+ Matrix(a)
376
+ (b)
377
+ (c)
378
+ Figure 4: Visualizing the generation of auxiliary samples and their utilization in training the student
379
+ model.
380
+ in the diverged areas between the teacher and student models in Fig. 4-(b). Then, we augmented
381
+ the training data samples with the generated auxiliary samples and trained the student model based
382
+ on this new augmented dataset. The resulting student model has achieved a much better fit on the
383
+ teacher model as it is evident in Fig. 4-(c).
384
+ 4.2
385
+ MNIST classification:
386
+ In this experiment, one of our goals was testing the performance of the proposed method in the
387
+ scenario of extremely small student networks. Because of that, we considered two fully connected
388
+ neural networks as student and teacher networks for the MNIST dataset classification task. The
389
+ teacher network consists of only one hidden layer with 800 neurons which leads in 636010 trainable
390
+ parameters. The student network was an extremely simplified version of the same network with
391
+ only 5 neurons in the hidden layer. This network has only 3985 trainable parameters, which is 160x
392
+ smaller than the teacher network. The student network is trained in three different ways: a) from
393
+ scratch with only training data, b) based on the original KD approach with training data samples
394
+ augmented by random noise, and c) based on the proposed method. As it is illustrated in table 1,
395
+ the student network which is trained by using the proposed method achieves much better results in
396
+ comparison with two other trained networks.
397
+ Table 1: Results of experiment on the MNIST dataset
398
+ Model
399
+ method
400
+ #parameters
401
+ accuracy on test set
402
+ teacher
403
+ from scratch
404
+ 636010
405
+ 98.14
406
+ student
407
+ from scratch
408
+ 3985
409
+ 87.62
410
+ student
411
+ original KD
412
+ 3985
413
+ 88.04
414
+ student
415
+ proposed method
416
+ 3985
417
+ 91.45
418
+ 4.3
419
+ CIFAR-10 classification
420
+ The second experiment is conducted on the CIFAR10 dataset with two popular network structures as
421
+ the teacher and the student networks. In this experiment, we used the inception v3 [23] network as
422
+ the teacher and mobileNet v2 [17] as the student. The teacher is approximately 9 times bigger than
423
+ the student. We repeated the previous experiment on CIFAR10 by using these two networks. Table 2
424
+ shows the results of this experiment.
425
+ Table 2: Results of experiment on CIFAR10 dataset
426
+ Model
427
+ method
428
+ #parameters
429
+ accuracy on test set
430
+ inception v3 (teacher)
431
+ from scratch
432
+ 21638954
433
+ 95.41%
434
+ mobilenet (student)
435
+ from scratch
436
+ 2236682
437
+ 91.17%
438
+ mobilenet (student)
439
+ original KD
440
+ 2236682
441
+ 91.74%
442
+ mobilenet (student)
443
+ proposed method
444
+ 2236682
445
+ 92.60%
446
+ 7
447
+
448
+ student and tezdher models
449
+ teacher
450
+ 8
451
+ student
452
+ data
453
+ 6-
454
+ 2
455
+ 0transferbetweendatasamplestoauxiliarydata
456
+ samples
457
+ Teacher
458
+ 8
459
+ student
460
+ data
461
+ auxiliarydata
462
+ 2
463
+ 0
464
+ 0
465
+ 6result of proposed method
466
+ Teacher
467
+ 8
468
+ student
469
+ student trained by augmented data
470
+ 6
471
+ data
472
+ auxiliary data
473
+ 2
474
+ 04.4
475
+ GLUE tasks
476
+ The third experiment is designed based on General Language Understanding Evaluation (GLUE)
477
+ benchmark [25] and roBERTa family language models [14, 18]. The GLUE benchmark is a set of nine
478
+ language understanding tasks, which are designed to evaluate the performance of natural language
479
+ understanding systems. roBERTa models (roBERTa-large, roBERTa-base, and distilroBERTa) are
480
+ BERT [6] based language understanding pre-trained models where roBERTa-large and roBERTa-base
481
+ are the cumbersome versions which are proposed in [14] and have 24 and 12 transformer layers
482
+ respectively. distilroBERTa is the compressed version of these models with 6 transformer layers
483
+ and has been trained based on KD procedure proposed in [18] with utilizing the roBERTa-base
484
+ as the teacher. The general procedure in GLUE tasks is fine-tuning the pre-trained models for its
485
+ down-stream tasks and the average performance score. Here, we fine-tuned the distilroBERTa model
486
+ based on the proposed method by utilizing the fine-tuned roBERTa-large teacher for each of these
487
+ tasks. As it is shown in table 3, the proposed method could improve the distilroBERTa performance
488
+ on most of these tasks.
489
+ Table 3: Results of experiment on GLUE tasks
490
+ Model (Network)
491
+ ColA
492
+ SST-2
493
+ MRPC
494
+ STS-B
495
+ QQP
496
+ MNLI
497
+ QNLI
498
+ RTE
499
+ WNLI
500
+ Score
501
+ roBERTa-large (Teacher)
502
+ 60.56
503
+ 96.33
504
+ 89.95
505
+ 91.75
506
+ 91.01
507
+ 89.11
508
+ 93.08
509
+ 79.06
510
+ 56.33
511
+ 85.82
512
+ DistilroBERTa (Student)
513
+ 56.61
514
+ 92.77
515
+ 84.06
516
+ 87.28
517
+ 90.8
518
+ 84.14
519
+ 91.36
520
+ 65.70
521
+ 56.33
522
+ 78.78
523
+ Our DistilroBERTa (Student)
524
+ 60.49
525
+ 92.51
526
+ 87.25
527
+ 87.56
528
+ 91.21
529
+ 85.1
530
+ 91.19
531
+ 71.11
532
+ 56.33
533
+ 80.30
534
+ 4.5
535
+ GLUE tasks with few sample points
536
+ In this experiment, we modified the previous experiment slightly to investigate the performance of
537
+ the proposed method in the few data sample scenario. Here we randomly select a small portion of
538
+ samples in each data set and fine-tuned the distilroBERTa based on these samples. For CoLA, MRPC,
539
+ STS-B, QNLI, RTE, and WNLI, 10% of data samples and for SST-2, QQP, and MNLI 5% of them in
540
+ the dataset are used for fine-tuning the student model.
541
+ Table 4: Results of few sample experiment on GLUE tasks
542
+ Model (Network)
543
+ ColA
544
+ SST-2
545
+ MRPC
546
+ STS-B
547
+ QQP
548
+ MNLI
549
+ QNLI
550
+ RTE
551
+ WNLI
552
+ Score
553
+ roBERTa-large (Teacher)
554
+ 60.56
555
+ 96.33
556
+ 89.95
557
+ 91.75
558
+ 91.01
559
+ 89.11
560
+ 93.08
561
+ 79.06
562
+ 56.33
563
+ 85.82
564
+ DistilroBERTa (Student)
565
+ 43.82
566
+ 91.05
567
+ 76.96
568
+ 81.51
569
+ 84.92
570
+ 75.88
571
+ 83.94
572
+ 52.07
573
+ 56.33
574
+ 71.90
575
+ Our DistilroBERTa (Student)
576
+ 44.11
577
+ 91.74
578
+ 77.20
579
+ 82.82
580
+ 85.32
581
+ 76.75
582
+ 84.34
583
+ 56.31
584
+ 56.33
585
+ 72.76
586
+ 5
587
+ Conclusion
588
+ In this paper, we have introduced the backward KD method and showed how we can use the backward
589
+ knowledge of teacher model to train the student model. Based on this method, we could easily locate
590
+ the diverge areas between teacher and student model in order to acquire auxiliary samples at those
591
+ areas with utilizing the gradient of the networks and use these samples in the training procedure of
592
+ the student model. We showed that our proposal can be efficiently applied to the KD procedure to
593
+ improve its performance. Also, we introduced an efficient way to apply backward KD on discrete
594
+ domain applications such as NLP tasks. In addition to the synthetic experiment which is performed
595
+ to visualize the mechanism of our method, we tested its performance on several image and NLP
596
+ tasks. Also, we examined the extremely small student and the few sample scenarios in two of
597
+ these experiments. We showed that the backward KD can improve the performance of the trained
598
+ student network in all of these practices. We believe that all auxiliary samples do not have the same
599
+ contribution to improving the performance of the student model. Also perturbing all data samples
600
+ can be computationally expensive in large datasets.
601
+ Broader Impact
602
+ This research provides a simple but efficient method for model compression and knowledge distillation
603
+ which is easily applicable on a variety of domains in machine learning from computer vision to
604
+ 8
605
+
606
+ natural language processing with the hope of achieving better results. The proposed procedure in this
607
+ work is a general procedure which can be used beside the other KD methods in order to improve their
608
+ results. Since the main idea just deals with the data samples and generate more samples for better
609
+ training, without any major changes in the body of other algorithms, they can use this procedure in
610
+ their methods easily. It is applicable in different scenarios like extremely small student models, few
611
+ data sample regimes, and zero-shot KD.
612
+ Acknowledgments
613
+ We thank Mindspore2 for the partial support of this work. We thank the anonymous reviewers for
614
+ their insightful comments.
615
+ References
616
+ [1] BIE, A., VENKITESH, B., MONTEIRO, J., HAIDAR, M., REZAGHOLIZADEH, M., ET AL. Fully
617
+ quantizing a simplified transformer for end-to-end speech recognition. arXiv preprint arXiv:1911.03604
618
+ (2019).
619
+ [2] BRATKO, I., AND GAMS, M. Error analysis of the minimax principle. In Advances in computer chess.
620
+ Elsevier, 1982, pp. 1–15.
621
+ [3] BROWN, T. B., MANN, B., RYDER, N., SUBBIAH, M., KAPLAN, J., DHARIWAL, P., NEELAKANTAN,
622
+ A., SHYAM, P., SASTRY, G., ASKELL, A., ET AL. Language models are few-shot learners. arXiv preprint
623
+ arXiv:2005.14165 (2020).
624
+ [4] BUCILU ˇA, C., CARUANA, R., AND NICULESCU-MIZIL, A. Model compression. In Proceedings
625
+ of the 12th ACM SIGKDD international conference on Knowledge discovery and data mining (2006),
626
+ pp. 535–541.
627
+ [5] CZARNECKI, W. M., OSINDERO, S., JADERBERG, M., ´SWIRSZCZ, G., AND PASCANU, R. Sobolev
628
+ Training for Neural Networks. arXiv e-prints (June 2017), arXiv:1706.04859.
629
+ [6] DEVLIN, J., CHANG, M.-W., LEE, K., AND TOUTANOVA, K. Bert: Pre-training of deep bidirectional
630
+ transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018).
631
+ [7] HE, Y., SAINATH, T. N., PRABHAVALKAR, R., MCGRAW, I., ALVAREZ, R., ZHAO, D., RYBACH, D.,
632
+ KANNAN, A., WU, Y., PANG, R., ET AL. Streaming end-to-end speech recognition for mobile devices. In
633
+ ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
634
+ (2019), IEEE, pp. 6381–6385.
635
+ [8] HEO, B., LEE, M., YUN, S., AND CHOI, J. Y.
636
+ Knowledge distillation with adversarial samples
637
+ supporting decision boundary. In Proceedings of the AAAI Conference on Artificial Intelligence (2019),
638
+ vol. 33, pp. 3771–3778.
639
+ [9] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge in a neural network. arXiv preprint
640
+ arXiv:1503.02531 (2015).
641
+ [10] HOWARD, A. G., ZHU, M., CHEN, B., KALENICHENKO, D., WANG, W., WEYAND, T., ANDREETTO,
642
+ M., AND ADAM, H. Mobilenets: Efficient convolutional neural networks for mobile vision applications.
643
+ arXiv preprint arXiv:1704.04861 (2017).
644
+ [11] JACOB, B., KLIGYS, S., CHEN, B., ZHU, M., TANG, M., HOWARD, A., ADAM, H., AND
645
+ KALENICHENKO, D. Quantization and training of neural networks for efficient integer-arithmetic-only
646
+ inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018),
647
+ pp. 2704–2713.
648
+ [12] JIAO, X., YIN, Y., SHANG, L., JIANG, X., CHEN, X., LI, L., WANG, F., AND LIU, Q. Tinybert:
649
+ Distilling bert for natural language understanding. arXiv preprint arXiv:1909.10351 (2019).
650
+ [13] LAN, Z., CHEN, M., GOODMAN, S., GIMPEL, K., SHARMA, P., AND SORICUT, R. Albert: A lite bert
651
+ for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942 (2019).
652
+ 2A new deep learning computing framework https://www.mindspore.cn/
653
+ 9
654
+
655
+ [14] LIU, Y., OTT, M., GOYAL, N., DU, J., JOSHI, M., CHEN, D., LEVY, O., LEWIS, M., ZETTLEMOYER,
656
+ L., AND STOYANOV, V. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
657
+ arXiv:1907.11692 (2019).
658
+ [15] MIRZADEH, S.-I., FARAJTABAR, M., LI, A., AND GHASEMZADEH, H. Improved knowledge distillation
659
+ via teacher assistant: Bridging the gap between student and teacher. arXiv preprint arXiv:1902.03393
660
+ (2019).
661
+ [16] PRATO, G., CHARLAIX, E., AND REZAGHOLIZADEH, M. Fully quantized transformer for improved
662
+ translation. arXiv preprint arXiv:1910.10485 (2019).
663
+ [17] SANDLER, M., HOWARD, A., ZHU, M., ZHMOGINOV, A., AND CHEN, L.-C. Mobilenetv2: Inverted
664
+ residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern
665
+ recognition (2018), pp. 4510–4520.
666
+ [18] SANH, V., DEBUT, L., CHAUMOND, J., AND WOLF, T. Distilbert, a distilled version of bert: smaller,
667
+ faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019).
668
+ [19] SRINIVAS, S., AND FLEURET, F. Knowledge Transfer with Jacobian Matching. arXiv e-prints (Mar.
669
+ 2018), arXiv:1803.00443.
670
+ [20] SUN, S., CHENG, Y., GAN, Z., AND LIU, J. Patient knowledge distillation for bert model compression.
671
+ arXiv preprint arXiv:1908.09355 (2019).
672
+ [21] SUN, Z., YU, H., SONG, X., LIU, R., YANG, Y., AND ZHOU, D. Mobilebert: Task-agnostic compression
673
+ of bert for resource limited devices.
674
+ [22] SUN, Z., YU, H., SONG, X., LIU, R., YANG, Y., AND ZHOU, D. Mobilebert: a compact task-agnostic
675
+ bert for resource-limited devices. arXiv preprint arXiv:2004.02984 (2020).
676
+ [23] SZEGEDY, C., VANHOUCKE, V., IOFFE, S., SHLENS, J., AND WOJNA, Z. Rethinking the inception
677
+ architecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern
678
+ recognition (2016), pp. 2818–2826.
679
+ [24] TJANDRA, A., SAKTI, S., AND NAKAMURA, S. Tensor decomposition for compressing recurrent neural
680
+ network. In 2018 International Joint Conference on Neural Networks (IJCNN) (2018), IEEE, pp. 1–8.
681
+ [25] WANG, A., SINGH, A., MICHAEL, J., HILL, F., LEVY, O., AND BOWMAN, S. R. Glue: A multi-task
682
+ benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461
683
+ (2018).
684
+ [26] WANG, Y., ZHANG, X., XIE, L., ZHOU, J., SU, H., ZHANG, B., AND HU, X. Pruning from scratch.
685
+ arXiv preprint arXiv:1909.12579 (2019).
686
+ [27] WONG, A., FAMUORI, M., SHAFIEE, M. J., LI, F., CHWYL, B., AND CHUNG, J. Yolo nano: a
687
+ highly compact you only look once convolutional neural network for object detection. arXiv preprint
688
+ arXiv:1910.01271 (2019).
689
+ Supplementary Materials
690
+ 6
691
+ Transform matrix between student and teacher embedding
692
+ If WS ∈ Rd1×|V | be the embedding matrix of the student network and WT ∈ Rd2×|V | be the embedding
693
+ matrix of the teacher network, where |V | is the vocabulary size and d1 and d2 are the embedding vector size
694
+ of the student and the teacher networks respectively. If x ∈ {0, 1}|v| be the one-hot vector of a token in a text
695
+ document and if zS = WSx and zT = WT x be the student and teacher embedding vectors of x, then there
696
+ exists a transform matrix Q ∈ Rd2×d1 such that:
697
+ zT = QzS
698
+ (11)
699
+ 10
700
+
701
+ Proof:
702
+ zT = WT x
703
+ (12)
704
+ zS = WSx
705
+ (13)
706
+ We want to find a transform matrix Q such that:
707
+ WT = QWS
708
+ (14)
709
+ For this purpose we can solve the following optimization problem by using list square method:
710
+ min
711
+ Q ||WT − QWS||2
712
+ (15)
713
+ By solving the above optimization problem using the least squares method, we achieves the following solution
714
+ for Q:
715
+ Q = WT W T
716
+ s (WsW T
717
+ s )−1
718
+ (16)
719
+ Now, from Eq. 14 we have:
720
+ WT = QWs
721
+ (17)
722
+ WT x = QWsx
723
+ (18)
724
+ zT = Qzs
725
+ (19)
726
+ 7
727
+ Algorithm 1
728
+ Algorithm 1 explains the details of the proposed method in section 3 of the paper. The input variables of our
729
+ proposed KD function are the student network S(.), the teacher network T(.), the input dataset X, the number of
730
+ training epochs e, and the number of hyper epochs h. In this algorithm, we assume that the teacher network T(.)
731
+ has trained and the student network S(.) has not trained yet. Also, we assume X′ is the set of the augmented
732
+ data samples. We first initialize X′ with data set X in line 3 of the algorithm. The basic idea is that each time
733
+ we train the student network using the Vanilla-KD function for a few training epochs e in the outer loop of
734
+ line 4. Then, in line 6 first, we re-initialize X′ with dataset X and in lines 7 to 11 we perturb data samples
735
+ in X′ using the gradient of the loss between teacher and student iteratively in order to generate new auxiliary
736
+ samples. Then in line 12 we replace X with the union of X and X′ sets. In the next iteration of the loop in
737
+ line 4, Vanilla-KD function will be fed with the augmented data samples X′. Note that just in the first iteration,
738
+ Vanilla-KD function is fed with original data set X.
739
+ Algorithm 1
740
+ 1: function PROPOSED-KD(S,T,X, e, h)
741
+ 2:
742
+ ▷ S is the student network, T is the teacher network, X is input dataset, e is #training epochs,
743
+ h is #hyper epochs
744
+ 3:
745
+ X′ ← X
746
+ 4:
747
+ for i = 1 to h do
748
+ 5:
749
+ VANILLA-KD(S,T,X′,e)
750
+ 6:
751
+ X′ ← X
752
+ 7:
753
+ for x′ in X′ do
754
+ 8:
755
+ while converge do
756
+ 9:
757
+ x′ ← x′ + η∇x||S(x′) − T(x′)||2
758
+ 2
759
+ 10:
760
+ end while
761
+ 11:
762
+ end for
763
+ 12:
764
+ X′ ← X′ ∪ X
765
+ 13:
766
+ end for
767
+ 14:
768
+ VANILLA-KD(S,T,X,e)
769
+ 15:
770
+ return S
771
+ 16: end function
772
+ 11
773
+
774
+ 8
775
+ Algorithm 2
776
+ Algorithm 2, explains how to apply the proposed method in NLP tasks. This algorithm is almost similar to
777
+ algorithm 1. The only main difference is in the way we feed the networks. Here instead of considering the
778
+ one-hot index vectors of tokens in the text documents, we consider the embedding vectors zS and zT of the
779
+ input vector x (see lines 5 and 6 in the algorithm). Then we fed each of the teacher and the student networks
780
+ separately using their own embedding vectors. Only in line 16 we use the transform method which is proposed
781
+ in section 3.2 of the paper to transform student’s perturbed embedding vectors into teacher’s embedding vectors.
782
+ Algorithm 2
783
+ 1: function PROPOSED-KD(S,T,X, e, h)
784
+ 2:
785
+ ▷ S is the student network, T is the teacher network, X is input dataset, e is #training epochs,
786
+ h is #hyper epochs
787
+ 3:
788
+ WT ← EMBEDDING-MATRIX(T)
789
+ 4:
790
+ WS ← EMBEDDING-MATRIX(S)
791
+ 5:
792
+ ZT ← WT X
793
+ 6:
794
+ ZS ← WSX
795
+ 7:
796
+ Z′
797
+ T ← ZT
798
+ 8:
799
+ Z′
800
+ S ← ZS
801
+ 9:
802
+ for i = 1 to h do
803
+ 10:
804
+ VANILLA-KD(S,T,Z′
805
+ T , Z′
806
+ S,e)
807
+ 11:
808
+ Z′
809
+ T ← ZT
810
+ 12:
811
+ Z′
812
+ S ← ZS
813
+ 13:
814
+ for (z′
815
+ S, z′
816
+ T ) in (Z′
817
+ S, Z′
818
+ T ) do
819
+ 14:
820
+ while converge do
821
+ 15:
822
+ z′
823
+ S ← z′
824
+ S + η∇zS||S(z′
825
+ S) − T(z′
826
+ S)||2
827
+ 2
828
+ 16:
829
+ z′
830
+ T ← WT WS(WSW T
831
+ S )−1z′
832
+ S
833
+ 17:
834
+ end while
835
+ 18:
836
+ end for
837
+ 19:
838
+ Z′
839
+ S ← Z′
840
+ S ∪ ZS
841
+ 20:
842
+ Z′
843
+ T ← Z′
844
+ T ∪ ZT
845
+ 21:
846
+ end for
847
+ 22:
848
+ VANILLA-KD(S,T,ZT , ZS,e)
849
+ 23:
850
+ return S
851
+ 24: end function
852
+ 12
853
+
JdFLT4oBgHgl3EQfKC80/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
N9E1T4oBgHgl3EQfZwR9/content/tmp_files/2301.03154v1.pdf.txt ADDED
@@ -0,0 +1,1151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03154v1 [physics.atom-ph] 9 Jan 2023
2
+ Calculation of the hyperfine structure of Dy, Ho, Cf, and Es
3
+ Saleh O. Allehabi, V. A. Dzuba, and V. V. Flambaum
4
+ School of Physics, University of New South Wales, Sydney 2052, Australia
5
+ (Dated: January 10, 2023)
6
+ A recently developed version of the configuration interaction (CI) method for open shells with
7
+ a large number of valence electrons has been used to study two heavy atoms, californium (Cf,
8
+ Z= 98) and einsteinium (Es, Z= 99). Motivated by experimental work to measure the hyperfine
9
+ structure (HFS) for these atoms, we perform the calculations of the magnetic dipole HFS constants
10
+ A and electric quadrupole HFS constant B for the sake of interpretation of the measurements in
11
+ terms of nuclear magnetic moment µ and electric quadrupole moment Q. For verification of our
12
+ computations, we have also carried out similar calculations for the lighter homologs dysprosium (Dy,
13
+ Z= 66) and holmium (Ho, Z= 67), whose electronic structures are similar to Cf and Es, respectively.
14
+ We have conducted a revision of the nuclear moments of some isotopes of Es leading to an improved
15
+ value of the magnetic moment of 253Es [µ(253Es) = 4.20(13)µN ].
16
+ I.
17
+ INTRODUCTION
18
+ The study of atomic properties of heavy actinides has
19
+ gained growing interest [1–8]. Transition frequencies and
20
+ hyperfine structure (HFS) are being measured. Measur-
21
+ ing HFS is motivated by obtaining data on the nuclear
22
+ momenta of heavy nuclei. This would advance our knowl-
23
+ edge about the nuclear structure of superheavy nuclei
24
+ benefiting the search for the hypothetical stability island.
25
+ In light of this, we focus on theoretically studying of the
26
+ hyperfine structure for heavy actinides, californium (Cf,
27
+ Z= 98) and einsteinium (Es, Z= 99).
28
+ Combining the
29
+ calculations with the measurements would allow the ex-
30
+ traction of the nuclear magnetic moment µ and electric
31
+ quadrupole moments Q of the studied isotopes.
32
+ HFS constants of some states of odd isotopes of Cf
33
+ (249Cf,251Cf,253Cf) were recently measured and nuclear
34
+ moments µ and Q were extracted using our calcula-
35
+ tions [8]. This work presents a detailed account of these
36
+ calculations as well as similar calculations for Es. In the
37
+ case of Es, there are no theoretical results currently avail-
38
+ able, whereas several experimental papers have been pub-
39
+ lished. Using different empirical techniques, Refs. [1–3]
40
+ studied the HFS of Es for three isotopes with non-zero
41
+ nuclear spins, 253,254,255Es.
42
+ Heavy actinides like Cf and Es, are atoms with an open
43
+ 5f subshell. The number of electrons on open shells is
44
+ twelve for Cf and thirteen for Es (including the 7s elec-
45
+ trons).This presents a challenge for the calculations. We
46
+ use the configuration interaction with perturbation the-
47
+ ory (CIPT) [9] method, which has been developed for
48
+ such systems. To check the applicability of the method
49
+ and the expected accuracy of the results we performed
50
+ similar calculations for lanthanides dysprosium (Dy, Z=
51
+ 66) and holmium (Ho, Z= 67), whose electronic struc-
52
+ tures are similar to Cf and Es, respectively. Both, Dy
53
+ and Ho were extensively studied experimentally and the-
54
+ oretically (see, e.g. [10–18]). Here we compare our results
55
+ to experimental data, Refs. [10, 16] for Dy and Refs. [16–
56
+ 18] for Ho, to check the accuracy of the method we use.
57
+ II.
58
+ METHOD OF CALCULATION
59
+ A.
60
+ Calculation of energy levels
61
+ As it was mentioned in the introduction the Dy and Cf
62
+ atoms have twelve valence electrons, the Ho and Es atoms
63
+ have thirteen valence electrons. It is well known that as
64
+ the number of valence electrons increases, the size of the
65
+ CI matrix increases dramatically, making the standard
66
+ CI calculations practically impossible for such systems.
67
+ In this work we use the CIPT method [9] which has been
68
+ especially developed for such systems. It reduces the size
69
+ of the CI matrix by neglecting the off-diagonal matrix el-
70
+ ements between high-energy states and reducing the con-
71
+ tribution of these states to the perturbation theory-like
72
+ corrections to the matrix elements between low-energy
73
+ states. The size of the resulting CI matrix is equal to the
74
+ number of low-energy states.
75
+ The CI Hamiltonian can be written as follows
76
+ ˆHCI =
77
+ Nv
78
+
79
+ i=1
80
+ ˆHHF
81
+ i
82
+ +
83
+ Nv
84
+
85
+ i<j
86
+ e2
87
+ |ri − rj|,
88
+ (1)
89
+ where i and j enumerate valence electrons and Nv is the
90
+ total number of valence electrons, e is electron charge,
91
+ and r is the distance. ˆHHF
92
+ i
93
+ is the single-electron Hartree-
94
+ Fock (HF) Hamiltonian, which has the form
95
+ ˆHHF
96
+ i
97
+ = cαi · ˆpi + (β − 1)mc2 + Vnuc(ri) + V N−1(ri). (2)
98
+ Here c is the speed of light, αi and β are the Dirac
99
+ matrixes, ˆpi is the electron momentum, m is the elec-
100
+ tron mass, Vnuc(i) is the nuclear potential obtained by
101
+ integrating Fermi distribution of nuclear charge density,
102
+ and V N−1(i) is the self-consistent HF potential obtained
103
+ for the configuration with one 7s (or 6s) electron re-
104
+ moved from the ground state configuration of the con-
105
+ sidered atom. This corresponds to the V N−1 approxima-
106
+ tion [19, 20] which is convenient for generating a single-
107
+ electron basis. Single-electron basis states are calculated
108
+ in the frozen V N−1 potential, so that they correspond
109
+ to the atom with one electron excited from the ground
110
+
111
+ 2
112
+ state. External electron wave functions are expressed in
113
+ terms of coefficients of expansion over single-determinant
114
+ basis state functions
115
+ Ψ(r1, . . . , rM) =
116
+ (3)
117
+ N1
118
+
119
+ i=1
120
+ XiΦi(r1, . . . , rM) +
121
+ N2
122
+
123
+ j=1
124
+ YjΦj(r1, . . . , rM).
125
+ Here M is the number of valence electrons, N1 is the
126
+ number of low-energy basis states, N2 is the number of
127
+ high-energy basis states.
128
+ Then the CI matrix equation can be written in a block
129
+ form
130
+
131
+ A B
132
+ C D
133
+ � �
134
+ X
135
+ Y
136
+
137
+ = Ea
138
+
139
+ X
140
+ Y
141
+
142
+ .
143
+ (4)
144
+ Here block A corresponds to low-energy states, block D
145
+ corresponds to high-energy states, and blocks B and C
146
+ correspond to cross terms. Note that since the total CI
147
+ matrix is symmetric, we have C = B′, i.e., cij = bji.
148
+ Vectors X and Y contain the coefficients of expansion
149
+ of the valence wave function over the single-determinant
150
+ many-electron basis functions (see Eq. 3).
151
+ Finding Y from the second equation of (4) leads to
152
+ Y = (EaI − D)−1CX.
153
+ (5)
154
+ Substituting Y to the first equation of (4) leads to
155
+
156
+ A + B(EaI − D)−1C
157
+
158
+ X = EaX,
159
+ (6)
160
+ where I is the unit matrix. Then, following Ref. [9] we
161
+ neglect off-diagonal matrix elements in block D.
162
+ This
163
+ leads to a very simple structure of the (EaI − D)−1
164
+ matrix, (EaI − D)−1
165
+ ik
166
+ = δik/(Ea − Ek), where Ek =
167
+ ⟨k|HCI|k⟩.Matrix elements of the effective CI matrix (6)
168
+ have the form
169
+ ⟨i| ˆHeff|j⟩ = ⟨i| ˆHCI|j⟩ +
170
+
171
+ k
172
+ ⟨i| ˆHCI|k⟩⟨k| ˆHCI|j⟩
173
+ Ea − Ek
174
+ .
175
+ (7)
176
+ We see that the standard CI matrix elements between
177
+ low-energy states are corrected by an expression which
178
+ is very similar to the second-order perturbation theory
179
+ correction to the energy. This justifies the name of the
180
+ method.
181
+ To calculate this second-order correction we
182
+ need to know the energy of the state Ea which must come
183
+ as the result of the solution of the equation, i.e. it is not
184
+ known in advance. Therefore, iterations are needed. We
185
+ start from any reasonable guess for the energy. For exam-
186
+ ple, it may come from the solution of the equation with
187
+ neglected second-order correction. Note that the energy
188
+ independent numerators of the second-order correction
189
+ can be calculated only once, on the first iteration, kept
190
+ on disk and reused on every consequent iteration. This
191
+ means that only the first iteration takes some time while
192
+ all other iterations are very fast. As a rule, less than ten
193
+ iterations are needed for full convergence. As a result, we
194
+ have an energy of the state Ea and expansion coefficients
195
+ X and Y .
196
+ B.
197
+ Basis states
198
+ To solve the CI equations we need many-electron basis
199
+ states which are constructed from single-electron states.
200
+ For single-electron basis states we use the B-spline tech-
201
+ nique [21, 22]. These states are defined as linear combina-
202
+ tions of B-splines that are eigenstates of the HF Hamilto-
203
+ nian (2). Forty B-splines of the order nine are calculated
204
+ within a box of radius Rmax = 40aB (where aB repre-
205
+ sents Bohr’s radius) and an orbital angular momentum
206
+ of 0 ≤ l ≤ 4. 14 states above the core in each partial
207
+ wave are used. It has been found that by selecting the
208
+ values of lmax, Rmax, and the number of B-splines, a basis
209
+ is adequately saturated for low-lying states. The many-
210
+ electron states are found by making all possible single and
211
+ double electron excitations from a few reference config-
212
+ urations. One, two or three configurations, correspond-
213
+ ing to the low-lying states of an atom are considered as
214
+ reference configurations. One configuration of the same
215
+ parity is considered at a time. For each configuration,
216
+ all possible values of the projection of the total angular
217
+ momentum j of the single-electron states are considered
218
+ and many-electron states with fixed values of total many-
219
+ electron angular momentum J and its projection M are
220
+ constructed. Usually, we take M = J.
221
+ C.
222
+ Calculation of hyperfine structure
223
+ In this section, we mostly follow our previous work on
224
+ hafnium and rutherfordium [23]. To calculate HFS, we
225
+ use the time-dependent Hartree-Fock (TDHF) method,
226
+ which is equivalent to the well-known random-phase ap-
227
+ proximation (RPA). The RPA equations are the follow-
228
+ ing:
229
+
230
+ ˆHRHF − ǫc
231
+
232
+ δψc = −
233
+
234
+ ˆf + δV f
235
+ core
236
+
237
+ ψc
238
+ (8)
239
+ where ˆf is an operator of an external field (nuclear mag-
240
+ netic dipole or electric quadrupole fields). Index c in (8)
241
+ numerates states in the core, ψc is a single-electron wave
242
+ function of the state c in the core, δψc is the correction
243
+ to this wave function caused by an external field, and
244
+ δV f
245
+ core is the correction to the self-consistent RHF po-
246
+ tential caused by changing of all core states.
247
+ Eq. (8)
248
+ are solved self-consistently for all states in the core. As
249
+ a result, an effective operator of the interaction of va-
250
+ lence electrons with an external field is constructed as
251
+ ˆf + δV f
252
+ core. The energy shift of a many-electron state a is
253
+ given by
254
+ δǫa = ⟨a|
255
+ M
256
+
257
+ i=1
258
+
259
+ ˆf + δV f
260
+ core
261
+
262
+ i |a⟩.
263
+ (9)
264
+ Here M is the number of valence electrons.
265
+ When the wave function for the valence electrons
266
+
267
+ 3
268
+ comes as a solution of Eq. (6), Eq. (9) is reduced to
269
+ δǫa =
270
+
271
+ ij
272
+ xixj⟨Φi| ˆHhfs|Φj⟩,
273
+ (10)
274
+ where ˆHhfs = �M
275
+ i=1( ˆf + δV f
276
+ core)i. For better accuracy of
277
+ the results, the full expansion (3) might be used. Then it
278
+ is convenient to introduce a new vector Z, which contains
279
+ both X and Y , Z ≡ {X, Y }.
280
+ Note that the solution
281
+ of (6) is normalized by the condition �
282
+ i x2
283
+ i = 1. The
284
+ normalization condition for the total wave function (3)
285
+ is different, �
286
+ i x2
287
+ i + �
288
+ j y2
289
+ j ≡ �
290
+ i z2
291
+ i = 1.
292
+ Therefore,
293
+ when X is found from (6), and Y is found from (5), both
294
+ vectors should be renormalized. Then the HFS matrix
295
+ element is given by the expression, which is similar to
296
+ (10) but has much more terms
297
+ δǫa =
298
+
299
+ ij
300
+ zizj⟨Φi| ˆHhfs|Φj⟩.
301
+ (11)
302
+ Energy shift (9) is used to calculate HFS constants A
303
+ and B using textbook formulas
304
+ Aa =
305
+ gIδǫ(A)
306
+ a
307
+
308
+ Ja(Ja + 1)(2Ja + 1)
309
+ ,
310
+ (12)
311
+ and
312
+ Ba = −2Qδǫ(B)
313
+ a
314
+
315
+ Ja(2Ja − 1)
316
+ (2Ja + 3)(2Ja + 1)(Ja + 1).
317
+ (13)
318
+ Here δǫ(A)
319
+ a
320
+ is the energy shift (9) caused by the interaction
321
+ of atomic electrons with the nuclear magnetic moment
322
+ µ, gI = µ/I, I is nuclear spin; δǫ(B)
323
+ a
324
+ is the energy shift
325
+ (9) caused by the interaction of atomic electrons with
326
+ the nuclear electric quadrupole moment Q (Q in (13) is
327
+ measured in barns).
328
+ III.
329
+ ENERGY LEVELS AND HFS OF
330
+ DYSPROSIUM AND HOLMIUM
331
+ For the purpose of testing the accuracy of the method,
332
+ we start calculating the energy levels for some low-lying
333
+ states of Dy and Ho. The results are shown in Table I.
334
+ As can be seen, our results are consistent with the exper-
335
+ imental results compiled in Ref. [16] of respective atomic
336
+ systems. The difference between theoretical calculations
337
+ and measurements is within a few hundred cm−1. Cal-
338
+ culated and experimental Land´e g-factors are also pre-
339
+ sented. A comparison of Land´e g-factors calculated with
340
+ non-relativistic expressions is helpful for identifying state
341
+ labels.
342
+ gNR = 1 + J(J + 1) − L(L + 1) + S(S + 1)
343
+ 2J(J + 1)
344
+ .
345
+ (14)
346
+ Total orbital momentum L, and total spin S in (14)
347
+ cannot come from relativistic calculations. Instead, we
348
+ TABLE I. Excitation energies (E, cm−1), and g-factors for
349
+ some low states of Dy, and Ho atoms.
350
+ This work
351
+ NIST [16]
352
+ Conf.
353
+ Term
354
+ J
355
+ E
356
+ g
357
+ E
358
+ g
359
+ Dy
360
+ 4f 106s2
361
+ 5I
362
+ 8
363
+ 0.000
364
+ 1.242
365
+ 0.000
366
+ 1.2416
367
+ 4f 106s2
368
+ 7
369
+ 3933
370
+ 1.175
371
+ 4134.2
372
+ 1.1735
373
+ 4f 106s2
374
+ 6
375
+ 7179
376
+ 1.073
377
+ 7050.6
378
+ 1.0716
379
+ 4f 95d6s2
380
+ 7Ho
381
+ 8
382
+ 7818
383
+ 1.347
384
+ 7565.610
385
+ 1.35246
386
+ 4f 95d6s2
387
+ 7
388
+ 9474
389
+ 1.353
390
+ 8519.210
391
+ 1.336
392
+ 4f 106s2
393
+ 5I
394
+ 5
395
+ 9589
396
+ 0.909
397
+ 9211.6
398
+ 0.911
399
+ 4f 95d6s2
400
+ 7Io
401
+ 9
402
+ 10048
403
+ 1.316
404
+ 9990.974
405
+ 1.32
406
+ 4f 95d6s2
407
+ 7Ho
408
+ 6
409
+ 11052
410
+ 1.417
411
+ 10088.802
412
+ 1.36
413
+ 4f 106s2
414
+ 5I
415
+ 4
416
+ 11299
417
+ 0.613
418
+ 10925.3
419
+ 0.618
420
+ Ho
421
+ 4f 116s2
422
+ 4Io
423
+ 15/2
424
+ 0.00
425
+ 1.196
426
+ 0.00
427
+ 1.1951
428
+ 4f 116s2
429
+ 13/2
430
+ 5205
431
+ 1.107
432
+ 5419.7
433
+
434
+ 4f 105d6s2
435
+ (8, 3
436
+ 2)
437
+ 17/2
438
+ 8344
439
+ 1.262
440
+ 8378.91
441
+
442
+ 4f 105d6s2
443
+ 15/2
444
+ 8385
445
+ 1.280
446
+ 8427.11
447
+
448
+ 4f 116s2
449
+ 4Io
450
+ 11/2
451
+ 8501
452
+ 0.979
453
+ 8605.2
454
+ 1.012
455
+ 4f 105d6s2
456
+ (8, 3
457
+ 2)
458
+ 13/2
459
+ 8989
460
+ 1.336
461
+ 9147.08
462
+
463
+ 4f 105d6s2
464
+ 19/2
465
+ 8952
466
+ 1.231
467
+ 9741.50
468
+
469
+ 4f 116s2
470
+ 4Io
471
+ 9/2
472
+ 10550
473
+ 0.780
474
+ 10695.8
475
+ 0.866
476
+ choose their values from the condition that formula (14)
477
+ gives values very close to the calculated g-factors. This
478
+ allows us to link the state to the non-relativistic nota-
479
+ tion 2S+1LJ.
480
+ Here, J is the total angular momentum
481
+ (J = L + S). A good agreement is also observed be-
482
+ tween current calculations and experimental g-factors of
483
+ Dy and Ho whenever experimental data are available. In
484
+ order to identify the states correctly, it is essential to take
485
+ this into consideration. An exception stands out in state
486
+ 4f 116s2 4Io
487
+ 9/2 of Ho, where the theory differs significantly
488
+ from the experiment. Based on the NIST database [16]
489
+ of Ho spectrum, we can observe that there are multiple
490
+ states with the same parity and total angular momentum
491
+ J, separated only by small energy intervals and domi-
492
+ nated by different electron configurations. Due to this
493
+ vigorous mixing, the calculations of the g-factor become
494
+ unstable.
495
+ The hyperfine structures of the ground states and some
496
+ low-lying states of Dy and Ho have also been calculated.
497
+ The Dy atom has two stable isotopes, 161Dy and 163Dy,
498
+ and the Ho atom has one stable isotope, 165Ho.
499
+ The
500
+ results of calculations and corresponding nuclear param-
501
+ eters are presented in Table II. One can see that we have
502
+ good agreement between theory and experiment for mag-
503
+ netic dipole constant A and electric quadrupole constant
504
+ B for most states of Dy and Ho. The difference between
505
+ theory and experiment is within 3% for the A constant
506
+ of Dy and Ho, within 4% for the B constants of Dy and
507
+ ∼ 20% for the B constant of Ho. A similar agreement
508
+ between theory and experiment was found earlier for the
509
+ HFS constants of Er [7]. Two states of Ho present an ex-
510
+ ception. These are the 4f 105d6s2 (8, 3
511
+ 2)13/2 state, and the
512
+
513
+ 4
514
+ TABLE II. Hyperfine structure constants A and B (in MHz) for low-lying states of Dy and Ho. Nuclear spin I, nuclear magnetic
515
+ moment µ(µN), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 161,163Dy and 165Ho are taken from
516
+ Ref. [24], gI = µ/I. Last column presents references to experimental data for A and B.
517
+ Isotope
518
+ This work
519
+ Experimental results.
520
+ Nuclear Parameters
521
+ Conf.
522
+ Term
523
+ J
524
+ A
525
+ B
526
+ A
527
+ B
528
+ Ref.
529
+ 161Dy
530
+ µ= -0.480, I= 5/2, Q= 2.51
531
+ 4f 106s2
532
+ 5I
533
+ 8
534
+ -113
535
+ 1127
536
+ -116.231
537
+ 1091.577
538
+ [10]
539
+ 4f 106s2
540
+ 7
541
+ -125
542
+ 1057
543
+ -126.787
544
+ 1009.742
545
+ [10]
546
+ 4f 106s2
547
+ 6
548
+ -140
549
+ 991
550
+ -139.635
551
+ 960.889
552
+ [10]
553
+ 4f 95d6s2
554
+ 7Ho
555
+ 8
556
+ -88
557
+ 2256
558
+ -
559
+ -
560
+ -
561
+ 4f 95d6s2
562
+ 7
563
+ -104
564
+ 2397
565
+ -
566
+ -
567
+ -
568
+ 4f 106s2
569
+ 5I
570
+ 5
571
+ -166
572
+ 928
573
+ -161.971
574
+ 894.027
575
+ [10]
576
+ 4f 95d6s2
577
+ 7Io
578
+ 9
579
+ -80
580
+ 2663
581
+ -
582
+ -
583
+ -
584
+ 4f 95d6s2
585
+ 7Ho
586
+ 6
587
+ -122
588
+ 2901
589
+ -
590
+ -
591
+ -
592
+ 4f 106s2
593
+ 5I
594
+ 4
595
+ -216
596
+ 997
597
+ -205.340
598
+ 961.156
599
+ [10]
600
+ 163Dy
601
+ µ= 0.673, I= 5/2, Q= 2.65
602
+ 4f 106s2
603
+ 5I
604
+ 8
605
+ 158
606
+ 1190
607
+ 162.754
608
+ 1152.869
609
+ [10]
610
+ 4f 106s2
611
+ 7
612
+ 176
613
+ 1116
614
+ 177.535
615
+ 1066.430
616
+ [10]
617
+ 4f 106s2
618
+ 6
619
+ 196
620
+ 1046
621
+ -
622
+ -
623
+ -
624
+ 4f 95d6s2
625
+ 7Ho
626
+ 8
627
+ 123
628
+ 2381
629
+ -
630
+ -
631
+ -
632
+ 4f 95d6s2
633
+ 7
634
+ 146
635
+ 2531
636
+ -
637
+ -
638
+ -
639
+ 4f 106s2
640
+ 5I
641
+ 5
642
+ 233
643
+ 979
644
+ -
645
+ -
646
+ -
647
+ 4f 95d6s2
648
+ 7Io
649
+ 9
650
+ 112
651
+ 2812
652
+ -
653
+ -
654
+ -
655
+ 4f 95d6s2
656
+ 7Ho
657
+ 6
658
+ 170
659
+ 3063
660
+ -
661
+ -
662
+ -
663
+ 4f 106s2
664
+ 5I
665
+ 4
666
+ 303
667
+ 1053
668
+ -
669
+ -
670
+ -
671
+ 165Ho
672
+ µ= 4.17, I= 7/2, Q= 3.58
673
+ 4f 116s2
674
+ 4Io
675
+ 15/2
676
+ 787
677
+ -1943
678
+ 800.583
679
+ -1668.089
680
+ [17]
681
+ 4f 116s2
682
+ 13/2
683
+ 939
684
+ -1668
685
+ 937.209
686
+ -1438.065
687
+ [17]
688
+ 4f 105d6s2
689
+ (8, 3
690
+ 2)
691
+ 17/2
692
+ 666
693
+ 1085
694
+ 776.4(4.5)
695
+ 608(300)
696
+ [18]
697
+ 4f 105d6s2
698
+ 15/2
699
+ 763
700
+ 1127
701
+ 783.0(4.5)
702
+ 801(300)
703
+ [18]
704
+ 4f 116s2
705
+ 4Io
706
+ 11/2
707
+ 1061
708
+ -1315
709
+ 1035.140
710
+ -1052.556
711
+ [17]
712
+ 4f 105d6s2
713
+ (8, 3
714
+ 2)
715
+ 13/2
716
+ 879
717
+ 1829
718
+ 916.6(0.5)
719
+ 2668(7)
720
+ [18]
721
+ 4f 105d6s2
722
+ 19/2
723
+ 617
724
+ 1650
725
+ 745.1(1.4)
726
+ 1747(78)
727
+ [18]
728
+ 4f 116s2
729
+ 4Io
730
+ 9/2
731
+ 1279
732
+ -1174
733
+ 1137.700
734
+ -494.482
735
+ [17]
736
+ 4f 116s2 4Io
737
+ 9/2 state. Here the difference between theory
738
+ and experiment for electric quadrupole HFS constant B is
739
+ significant. In particular, it is 138% for the 4f 116s2 4Io
740
+ 9/2
741
+ state. This is the same state which shows poor accuracy
742
+ for the g-factor, which indicates that strong configuration
743
+ mixing affects the HFS as well. It should be mentioned
744
+ that an earlier study performed using the MCDF method
745
+ also found that this state had a low level of accuracy with
746
+ a 117 % deviation from the experimental result [13].
747
+ Note that our investigations of testing the accuracy of
748
+ using the CIPT method on the Er atomic system, which
749
+ has a similar electronic structure, were previously per-
750
+ formed [7]. All the above atomic properties, energies, g-
751
+ factors, and HFS constants A and B for the stable isotope
752
+ with non-zero spin, 167Er, have been calculated. There
753
+ has been a good agreement between measurements and
754
+ our results (see Ref. [7] Tables 1 and 6). In the end, we
755
+ expect that the results for Cf and Es will be accurate as
756
+ well.
757
+ IV.
758
+ IONIZATION POTENTIALS
759
+ Calculating ionization potential (IP) is a good way to
760
+ test the theoretical approach for the ground state. The
761
+ IP is obtained as a difference between the ground state
762
+ energies of the neutral atom and the ion.
763
+ The CIPT
764
+ method, which we use in the present calculations, has a
765
+ feature of having good accuracy for low-lying states, and
766
+ it decreases while going up on the energy scale. The best
767
+ accuracy is expected for the ground state. On the other
768
+ hand, having HFS for the ground state is sufficient to
769
+ extract nuclear parameters µ and Q. Therefore, we cal-
770
+ culate the first ionization potential (IP1) for all atoms
771
+ considered in the present work.
772
+ We calculate ground
773
+ state energies of neutral atoms and corresponding ions
774
+ in the same V N−1 potential and the same single-electron
775
+ basis. This ensures exact cancelation of the energies as-
776
+ sociated with core electrons. The results are presented
777
+ in Table III and compared with available experimental
778
+ data. As can be seen from the table the accuracy of the
779
+ results is 2.7% for Dy, 1.6% for Ho, 0.3% for Cf and 0.8%
780
+ for Es.
781
+
782
+ 5
783
+ TABLE III. Experimental and theoretical values of the first ionization potential IP1 (in cm−1).
784
+ State
785
+ IP1
786
+ Atom
787
+ Initial
788
+ Final
789
+ Presesnt
790
+ Expt.
791
+ Ref.
792
+ Dy
793
+ 4f 106s2
794
+ 5I8
795
+ 4f 106s (8, 1
796
+ 2)17/2
797
+ 46658
798
+ 47901.76(5)
799
+ [25]
800
+ Ho
801
+ 4f 116s2
802
+ 4Io
803
+ 15/2
804
+ 4f 116s ( 15
805
+ 2 , 1
806
+ 2)o
807
+ 8
808
+ 47819
809
+ 48567(5)
810
+ [26]
811
+ Cf
812
+ 5f 107s2
813
+ 5I8
814
+ 5f 107s
815
+ 6I17/2
816
+ 50821
817
+ 50663(2)
818
+ [27]
819
+ Es
820
+ 5f 117s2
821
+ 4Io
822
+ 15/2
823
+ 5f 117s
824
+ 5Io
825
+ 8
826
+ 51763
827
+ 51358(2)
828
+ [27]
829
+ 51364.58(14)stat(50)sys
830
+ [28]
831
+ TABLE IV. Calculated hyperfine structure constants A and
832
+ B (in MHz) for the ground states of Dy, Ho, Cf and Es atoms.
833
+ Atom
834
+ Conf.
835
+ Term
836
+ J
837
+ A
838
+ B
839
+ Dy
840
+ 4f 106s2
841
+ 5I
842
+ 8
843
+ 587×gI
844
+ 449×Q
845
+ Ho
846
+ 4f 116s2
847
+ 4Io
848
+ 15/2
849
+ 661×gI
850
+ -543×Q
851
+ Cf
852
+ 5f 107s2
853
+ 5I
854
+ 8
855
+ 608×gI
856
+ 477×Q
857
+ Es
858
+ 5f 117s2
859
+ 4Io
860
+ 15/2
861
+ 681×gI
862
+ -818×Q
863
+ V.
864
+ RESULTS FOR HFS
865
+ In Table IV, we present the results of our calculations
866
+ of the HFS constants of the ground states of Dy, Ho,
867
+ Cf and Es. We have calculated both, magnetic dipole
868
+ HFS constant A and electric quadrupole HFS constant B,
869
+ which can be used for the extraction of nuclear moments
870
+ for any isotope with non-zero spin. For a better under-
871
+ standing of the accuracy of the calculations for heavy
872
+ actinides, it is instructive to compare electron structure
873
+ factors for the HFS constants with those of lighter atoms,
874
+ Dy, Ho, and Er. The situation is different for the HFS
875
+ constants A and B. The electron structure factor for the
876
+ magnetic dipole constant A is almost the same for heavy
877
+ actinides and their lighter analogs; it varies within 3%.
878
+ The electron structure factors for the HFS constant B are
879
+ also similar, although the variation is larger. It goes from
880
+ about 20% for the Dy, Cf pair to 50% for the Ho, Es pair.
881
+ This justifies using lighter analogs of heavy actinides for
882
+ the estimation of the uncertainty of the calculations. We
883
+ assume 3% uncertainty for the HFS constant A of all con-
884
+ sidered atoms and 16% uncertainty for the HFS constant
885
+ B (as the difference between theory and experiment for
886
+ the ground state of Ho). This latter assumption is rather
887
+ conservative. The difference between theory and experi-
888
+ ment for the HFS constant B of the ground state of Dy
889
+ is about 3% and it is about 10% for the ground state of
890
+ Er [7].
891
+ This high level of accuracy is a bit surprising for atoms
892
+ with open shells. Therefore, it is instructive to see how
893
+ dominating contributions are formed. First, we note that
894
+ according to numerical tests, configuration mixing gives
895
+ a relatively small contribution to the HFS constants.
896
+ About 90% or more comes from leading configurations
897
+ which is 4f n6s2 for Dy and Ho and 5f n7s2 for Cf and
898
+ Es (n=10,11). In these configurations s-electrons form
899
+ a closed shell and do not contribute to the HFS. There-
900
+ fore, all contribution comes from f-electrons. It is well
901
+ known that in the case of excited valence f-states (e.g,
902
+ 4f state of Cs or 5f state of Fr) the HF value of the
903
+ energy shift due to HFS operator ⟨4f| ˆf|4f⟩ is small and
904
+ dominating contribution comes from the core polarisa-
905
+ tion correction ⟨4f|δV f
906
+ core|4f⟩ (see, Eq. (9)). The situa-
907
+ tion is different in atoms considered in present work. The
908
+ f electron states are inside the core, localised at about
909
+ the same distances as other states with the same principal
910
+ quantum number, i.e. it is not even the outermost shell.
911
+ For example, ⟨4f|r|4f⟩ < 1aB for Dy, Ho and Er, while
912
+ ⟨4f|r|4f⟩ ∼ 20aB for Cs. Being inside the core f-states
913
+ penetrate to short distances near the nucleus making a
914
+ large value of the HF matrix element ⟨4f| ˆf|4f⟩. In con-
915
+ trast, the core polarization correction ⟨4f|δV f
916
+ core|4f⟩ is
917
+ small (∼ 1%). In the end, zero-order matrix elements
918
+ are large while core polarization and configuration mix-
919
+ ing corrections are small.
920
+ This is the key to the high
921
+ accuracy of the results.
922
+ Table V shows the results and analysis of the HFS
923
+ for three isotopes of Es (253−255Es). This table serves
924
+ two purposes. First, this is another confirmation of the
925
+ accuracy of the calculations. However, to compare the
926
+ calculations to the experiment we need to use nuclear
927
+ moments, which are known to have pretty poor accuracy
928
+ (see the table).
929
+ For example, the uncertainty for the
930
+ magnetic moment of the 253Es nucleus is 17%. On the
931
+ other hand, our estimated accuracy for the HFS constant
932
+ A is 3%. This means that we can improve the accuracy
933
+ of the nuclear moments by extracting them from a com-
934
+ parison of the experimental data with our calculations.
935
+ The results are presented in the table. We see that real
936
+ improvement is obtained for µ(253)Es only. For other nu-
937
+ clear moments, the uncertainties are similar but central
938
+ points are shifted.
939
+ New and old values are consistent
940
+ when error bars are taken into account.
941
+ VI.
942
+ CONCLUSIONS
943
+ Magnetic dipole and electric quadrupole HFS con-
944
+ stants A and B were calculated for the ground states of
945
+ heavy actinides Cf and Es. Similar calculations were per-
946
+ formed for the lighter analogs of these atoms, Dy and Ho.
947
+ To establish the accuracy of the results, the comparison
948
+
949
+ 6
950
+ TABLE V. Hyperfine structure constants A and B (in MHz) of the ground state of Es. Nuclear spin I, nuclear magnetic
951
+ moment µ(µN), and nuclear electric quadrupole moment Q(b) values for the isotopes of the 253Es are taken from Ref. [24],
952
+ while 254Es and 255Es parameters are taken from Ref. [3]. gI = µ/I. The last column presents references for experimental data
953
+ on A and B. The values of µ and Q obtained in this work are extracted from comparison of experimental and calculated HFS
954
+ constants assuming 3% uncertainty in calculation of A and 16% uncertainty in calculation of B.
955
+ Isotope
956
+ This work
957
+ Experimental results.
958
+ Nuclear Parameters
959
+ Conf.
960
+ Term
961
+ A
962
+ B
963
+ µ
964
+ Q
965
+ A
966
+ B
967
+ Ref.
968
+ 253Es
969
+ µ= 4.1(7), I= 7/2, Q= 6.7(8)
970
+ 5f 117s2
971
+ 4Io
972
+ 15/2
973
+ 798
974
+ -5481
975
+ 4.12(15)
976
+ 4.8(1.0)
977
+ 802(18)
978
+ -3916(550)
979
+ [3]
980
+ 4.20(13)
981
+ 5.3(8)
982
+ 817.153(7)
983
+ -4316.254(76)
984
+ [1]
985
+ 254Es
986
+ µ= 3.42(7), I= 7, Q= 9.6(1.2)
987
+ 5f 117s2
988
+ 4Io
989
+ 15/2
990
+ 333
991
+ -7853
992
+ 3.48(10)
993
+ 7.6(1.3)
994
+ 339(4)
995
+ -6200(300)
996
+ [3]
997
+ 255Es
998
+ µ= 4.14(10), I= 7/2, Q= 5.1(1.7)
999
+ 5f 117s2
1000
+ 4Io
1001
+ 15/2
1002
+ 806
1003
+ -4172
1004
+ 4.23(26)
1005
+ 3.7(1.8)
1006
+ 824(45)
1007
+ -3001(1400)
1008
+ [3]
1009
+ between theory and experiment was done for HFS con-
1010
+ stants, energy levels, g-factors and ionization potential,
1011
+ everywhere where the experimental data are available.
1012
+ We found the uncertainty of 3% for the HFS constant A
1013
+ and about 16% uncertainty for the HFS constant B. Us-
1014
+ ing the calculated HFS constants of those heavy elements
1015
+ considered, nuclear magnetic and electric quadrupole mo-
1016
+ ments can be extracted from the measurement data.
1017
+ ACKNOWLEDGMENTS
1018
+ The authors are grateful to Sebastian Raeder for
1019
+ many stimulating discussions. This work was supported
1020
+ by the Australian Research Council under Grants No.
1021
+ DP190100974 and No. DP200100150. S.O.A. gratefully
1022
+ acknowledges the Islamic University of Madinah (Min-
1023
+ istry of Education, Kingdom of Saudi Arabia) for funding
1024
+ his scholarship.
1025
+ [1] ] L. S. Goodman, H. Diamond, and H. E. Stanton, Nu-
1026
+ clear and atomic moments and hyperfine-structure pa-
1027
+ rameters of 253Es and 254mEs, Phys. Rev. A 11, 499
1028
+ (1975).
1029
+ [2] N. Severijns, A. A. Belyaev, A. L. Erzinkyan, P. -D. Ever-
1030
+ sheim, V. T. Filimonov, V. V. Golovko, G. M. Gurevich,
1031
+ P. Herzog, I. S. Kraev, A. A. Lukhanin, V. I. Noga, V. P.
1032
+ Parfenova, T. Phalet, A. V. Rusakov, M. Tandecki, Yu.
1033
+ G. Toporov, C. Tramm, E. Traykov, S. Van Gorp, V. N.
1034
+ Vyachin, F. Wauters, D. Z´akouck´y, and E. Zotov, Hy-
1035
+ perfine field of einsteinium in iron and nuclear magnetic
1036
+ moment of 254Es, Phys. Rev. C 79, 064322 (2009).
1037
+ [3] S. Nothhelfer, Th. E. Albrecht-Sch¨onzart, M. Block,
1038
+ et al., Nuclear structure investigations of Es 253-255 by
1039
+ laser spectroscopy. Phys. Rev. C 105, L021302 (2022).
1040
+ [4] M. Laatiaoui, and S. Raeder, New Developments in the
1041
+ Production and Research of Actinide Elements, Atoms
1042
+ 10, 61 (2022).
1043
+ [5] H. Backe, A. Dretzke, S. Fritzsche, R.G. Haire, P. Kunz,
1044
+ W. Lauth, M. Sewtz and N. Trautmann, Laser Spectro-
1045
+ scopic Investigation of the Element Fermium (Z = 100),
1046
+ Hyperfine Interact. 162, 3 (2005).
1047
+ [6] M. Sewtz, H. Backe, A. Dretzke, G. Kube, W. Lauth,
1048
+ P. Schwamb, K. Eberhardt, C. Gr¨uning, P. Th¨orle, N.
1049
+ Trautmann, P. Kunz, J. Lassen, G. Passler, C. Z. Dong,
1050
+ S. Fritzsche, and R. G. Haire, First Observation of
1051
+ Atomic Levels for the Element Fermium (Z = 100), Phys.
1052
+ Rev. Lett. 90, 163002 (2003).
1053
+ [7] S. O. Allehabi, J. Li, V. A. Dzuba, and V. V. Flam-
1054
+ bauma, Theoretical study of electronic structure of er-
1055
+ bium and fermium, J. Quantitative Spectroscopy and Ra-
1056
+ diative Transfer 253, 107137 (2020).
1057
+ [8] Felix Weber, Thomas E. Albrecht-Sch¨onzart, S. O. Alle-
1058
+ habi, Sebastian Berndt, Michael Block, Holger Dorrer,
1059
+ Christoph E. D¨ullmann, Vladimir A. Dzuba, Julie G.
1060
+ Ezold, Victor Flambaum, et al, Nuclear moments and
1061
+ isotope shifts of 249,253Cf probed by laser spectroscopy,
1062
+ To be published.
1063
+ [9] V. A. Dzuba, J. C. Berengut, C. Harabati, and V.
1064
+ V. Flambaum, Combining configuration interaction with
1065
+ perturbation theory for atoms with a large number of
1066
+ valence electrons, Phys. Rev. A 95, 012503 (2017).
1067
+ [10] W. J. Childs, Hyperfine Structure of 5I8,7 Atomic States
1068
+ of Dy161,163 and the Ground-State Nuclear Moments,
1069
+ Phys. Rev. A 2, 1692 (1970).
1070
+ [11] W. Ebenh¨oh, V. J. Ehlers, and J. Ferch, Hyperfine-
1071
+ Structure Measurements on Dy161 and Dy63, Zeitschrift
1072
+ f¨ur Physik 200, 84 (1967).
1073
+ [12] J. Ferch, W. Dankwort, and H. Gebauer, Hyperfine struc-
1074
+ ture investigations in DyI with the atomic beam magnetic
1075
+ resonance method, Phys. Lett. A 49, 287 (1974).
1076
+ [13] K. T. Cheng and W. J. Childs, Ab initio calculation of
1077
+ 4f N6s2 hyperfine structure in neutral rare-earth atoms,
1078
+ Phys. Rev. A 31, 2775 (1985).
1079
+ [14] V. A. Dzuba and V. V. Flambaum, Relativistic correc-
1080
+ tions to transition frequencies of Ag I, Dy I, Ho I, Yb II,
1081
+ Yb III, Au I, and Hg II and search for variation of the
1082
+ fine-structure constant, Phys. Rev. A 77, 012515 (2008).
1083
+ [15] V. A. Dzuba, V. V. Flambaum, and M. V. Marchenko,
1084
+ Relativistic effects in Sr, Dy, Yb II, and Yb III and search
1085
+ for variation of the fine-structure constant, Phys. Rev. A
1086
+ 68, 022506 (2003).
1087
+
1088
+ 7
1089
+ [16] A. Kramida, Yu. Ralchenko, J. Reader, and NIST
1090
+ ASD Team (2019). NIST Atomic Spectra Database (ver.
1091
+ 5.7.1), [Online]. Available: https://physics.nist.gov/asd
1092
+ [2020,
1093
+ September
1094
+ 26].
1095
+ National
1096
+ Institute
1097
+ of
1098
+ Stan-
1099
+ dards
1100
+ and
1101
+ Technology,
1102
+ Gaithersburg,
1103
+ MD.
1104
+ DOI:
1105
+ https://doi.org/10.18434/T4W30F.
1106
+ [17] B. Burghardt, S. B¨uttgenbach, N. Glaeser, R. Harzer,G.
1107
+ Meisel, B. Roski, and F. Tr¨aber, Hyperfine structure
1108
+ measurements in metastable states of 165Ho, Z. Phys. A
1109
+ 307, 193 (1982).
1110
+ [18] D. Stefanska, J. Ruczkowski, M. Elantkowska, and B.
1111
+ Furmann, Fine- and hyperfine structure investigations of
1112
+ the even-parity configuration system in atomic holmium,
1113
+ J. Quantitative Spectroscopy and Radiative Transfer
1114
+ 209, 180 (2018).
1115
+ [19] H. P. Kelly, Many-Body Perturbation Theory Applied to
1116
+ Atoms, Phys. Rev. 136, B896 (1964).
1117
+ [20] V. A. Dzuba, VN−M approximation for atomic calcula-
1118
+ tions, Phys. Rev. A 71, 032512 (2005).
1119
+ [21] W. R. Johnson and J. Sapirstein,
1120
+ Computation of
1121
+ Second-Order Many-Body Corrections in Relativistic
1122
+ Atomic Systems, Phys. Rev. Lett. 57, 1126 (1986).
1123
+ [22] W. R. Johnson, S. A. Blundell, and J. Sapirstein, Fi-
1124
+ nite basis sets for the Dirac equation constructed from B
1125
+ splines, Phys. Rev. A 37, 307 (1988).
1126
+ [23] S. O. Allehabi , V. A. Dzuba, and V. V. Flambaum,
1127
+ Theoretical study of the electronic structure of hafnium
1128
+ (Hf, Z = 72) and rutherfordium (Rf, Z = 104) atoms
1129
+ and their ions: Energy levels and hyperfine-structure con-
1130
+ stants, Phys. Rev. A 104, 052811 (2021).
1131
+ [24] N. J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).
1132
+ [25] D. Studer, P. Dyrauf, P. Naubereit, R. Heinke, and
1133
+ K. Wendt, Resonance ionization spectroscopy in dyspro-
1134
+ sium, Hyperfine Interact. 238, 02A916 (2017).
1135
+ [26] E. F. Worden, R. W. Solarz, J. A. Paisner, and J. G. Con-
1136
+ way, First ionization potentials of lanthanides by laser
1137
+ spectroscopy, J. Opt. Soc. Am. 68, 52 (1978)
1138
+ [27] A. Waldek, N. Erdmann, C. Gr¨uning, G. Huber, P. Kunz,
1139
+ J. V. Kratz, J. Lassen, G. Passler, and N. Trautmann,
1140
+ RIMS Measurements for the Determination of the First
1141
+ Ionization Potential of the Actinides Actinium up to Ein-
1142
+ steinium, AIP Conf. Proc. 584, 219 (2001).
1143
+ [28] F. Weber,
1144
+ T. E. Albrecht-Sch¨onzart, M. Block,
1145
+ P.
1146
+ Chhetri, C. E. D¨ullmann, J. G. Ezold, V. Gadelshin,
1147
+ A. N. Gaiser, F. Giacoppo, R. Heinke et al., Atomic-
1148
+ structure investigations of neutral einsteinium by laser
1149
+ resonance ionization, Phys. Rev. Research 4, 043053
1150
+ (2022).
1151
+
N9E1T4oBgHgl3EQfZwR9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
NdFRT4oBgHgl3EQfGjdL/content/tmp_files/2301.13485v1.pdf.txt ADDED
@@ -0,0 +1,991 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Tropical Geometric Approach To Exceptional Points
2
+ Ayan Banerjee,1 Rimika Jaiswal,2, 3 Madhusudan Manjunath,4 and Awadhesh Narayan1, ∗
3
+ 1Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
4
+ 2Undergraduate Programme, Indian Institute of Science, Bengaluru 560012, India
5
+ 3Department of Physics, University of California, Santa Barbara, California 93106-9530, USA
6
+ 4Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
7
+ (Dated: February 1, 2023)
8
+ Non-Hermitian systems have been widely explored in platforms ranging from photonics to electric
9
+ circuits.
10
+ A defining feature of non-Hermitian systems is exceptional points (EPs), where both
11
+ eigenvalues and eigenvectors coalesce. Tropical geometry is an emerging field of mathematics at
12
+ the interface between algebraic geometry and polyhedral geometry, with diverse applications to
13
+ science.
14
+ Here, we introduce and develop a unified tropical geometric framework to characterize
15
+ different facets of non-Hermitian systems. We illustrate the versatility of our approach using several
16
+ examples, and demonstrate that it can be used to select from a spectrum of higher-order EPs in
17
+ gain and loss models, predict the skin effect in the non-Hermitian Su-Schrieffer-Heeger model, and
18
+ extract universal properties in the presence of disorder in the Hatano-Nelson model. Our work puts
19
+ forth a new framework for studying non-Hermitian physics and unveils a novel connection of tropical
20
+ geometry to this field.
21
+ INTRODUCTION
22
+ Several branches of mathematics show an unreason-
23
+ able effectiveness in formulating and understanding a
24
+ myriad of physical phenomena [1].
25
+ Striking recent ex-
26
+ amples include the role of topology in condensed matter
27
+ systems [2, 3], advent of knot theory in quantum field
28
+ theory [4], and applications of graph theory in statistical
29
+ mechanics [5].
30
+ Tropical geometry is a branch of modern mathematics
31
+ at the interface between algebraic geometry and polyhe-
32
+ dral geometry [6, 7]. The tropical approach has not only
33
+ had applications to geometry, but also to areas such as
34
+ physics, number theory, genetics, economics, optimiza-
35
+ tion theory, and computational biology [8–11]. Notable
36
+ has been the role of tropical geometry in understanding
37
+ physical systems. Deep connections of tropical geome-
38
+ try to string theory have been discovered [12, 13], while
39
+ tropical algebra has been used to analyze frustrated sys-
40
+ tems such as spin ice and spin glasses [14].
41
+ Another
42
+ recent successful application of tropical ideas has been
43
+ in understanding self-organized criticality in dynamical
44
+ systems [15]. Tropical geometric tools such as the loga-
45
+ rithmic transformation offer drastic computational sim-
46
+ plification, and, interestingly, the low-temperature limit
47
+ of statistical physics can be studied in terms of such a
48
+ tropical mapping [9, 16].
49
+ Hermiticity of operators is a central principle in quan-
50
+ tum mechanics, ensuring that a system has real eigenen-
51
+ ergies and orthogonal eigenstates, and leads to the con-
52
+ servation of probability [17]. In recent decades the no-
53
+ tion of non-Hermiticity has been introduced in a variety
54
+ of physical contexts [18–20]. A unique feature of non-
55
+ Hermitian systems are degeneracies called exceptional
56
+ points (EPs), where both eigenvalues and eigenvectors
57
+ coalesce [21]. The energy level-splitting, ∆λ, upon mov-
58
+ ing away from an EP follows a distinctive fractional de-
59
+ pendence on the perturbation. An N-th order EP [EP-N,
60
+ where two or more eigenvectors (N ≥ 2) coalesce] shows
61
+ a splitting of the form ∆λ ∼ ν1/N, where ν is an external
62
+ perturbation [22, 23]. Recent advances have led to con-
63
+ trollable realization of EPs in a variety of platforms [24–
64
+ 30]. Their control has enabled the exploration of novel
65
+ phenomena, such as uni-directional sensitivity [31, 32],
66
+ laser mode selectivity [33, 34], and non-Hermitian skin
67
+ effect (NHSE) [35].
68
+ In this work, we propose and develop a general tropical
69
+ geometric framework for understanding and characteriz-
70
+ ing various facets of non-Hermitian systems. We demon-
71
+ strate that the tropical geometric information encoded
72
+ in the characteristic polynomial of the non-Hermitian
73
+ Hamiltonian can be used to identify and classify EPs us-
74
+ ing valuation and tropical roots – concepts that naturally
75
+ emerge in the tropical setting. We show that EPs of dif-
76
+ ferent orders and their transitions can be captured in an
77
+ elegant manner by amoebas and Newton polygons. We
78
+ illustrate our framework using experimentally-realized
79
+ gain and loss models, and show how it allows obtaining a
80
+ higher-order EP or choosing from a spectrum of EPs. Us-
81
+ ing the paradigmatic non-Hermitian Su-Schrieffer-Heeger
82
+ (SSH) model, we demonstrate how our tropical geomet-
83
+ ric approach can be used to predict the NHSE. Our ap-
84
+ proach naturally allows extracting the universal proper-
85
+ ties of EPs in the presence of disorder, which we high-
86
+ light using the celebrated Hatano-Nelson model.
87
+ Our
88
+ framework allows a unified approach to different facets
89
+ of non-Hermitian phenomena, including EPs, NHSE, and
90
+ holonomy.
91
+ arXiv:2301.13485v1 [quant-ph] 31 Jan 2023
92
+
93
+ 2
94
+ a
95
+ b
96
+ FIG. 1. Illustration of the tropical geometric frame-
97
+ work with two site gain and loss model. (a) Schematic
98
+ of the two site gain and loss model with γ as the gain and
99
+ loss parameter and κ as the coupling between the sites. (b)
100
+ Using tropicalization to find the order of EP. The tropical
101
+ polynomial contains different linear monomials with integer
102
+ coefficients (see Eq. 5).
103
+ The bend locus of the monomials
104
+ (encircled in red) gives the tropical root ω0 = 1/2 implying a
105
+ second order EP.
106
+ Tropical characterization of exceptional points
107
+ Basics of tropical geometry. We begin by briefly
108
+ summarizing the fundamental ideas of tropical geometry
109
+ (see supplemental material [36] for a detailed discussion).
110
+ Broadly speaking, tropical geometry studies solutions of
111
+ systems of polynomials by transforming them into piece-
112
+ wise linear subsets of Euclidean space [37].
113
+ The basic
114
+ algebraic object underlying tropical geometry is the trop-
115
+ ical semiring, (R ∪ {∞}, ⊕, ⊙). This denotes a set that
116
+ is the union of the set of real numbers R, together with
117
+ an element “infinity”, and two operations on it, namely
118
+ tropical addition ⊕ and tropical multiplication ⊙. The
119
+ tropical sum of two numbers is their minimum and the
120
+ tropical product is their usual sum,
121
+ x ⊕ y = min(x, y),
122
+ x ⊙ y = x + y.
123
+ (1)
124
+ Many of the usual axioms of arithmetic remain valid in
125
+ the tropical setting. These operations satisfy all the ring
126
+ axioms except for the existence of an additive inverse and
127
+ thus turn (R ∪ {∞}, ⊕, ⊙) into a semiring.
128
+ Defining order of exceptional points. In the fol-
129
+ lowing, we define the notion of order of an EP of a non-
130
+ Hermitian system. To the best of our knowledge, this
131
+ definition is consistent with the literature on this topic.
132
+ Let H(ν) be the Hamiltonian of a non-Hermitian sys-
133
+ tem in one variable ν with an EP at ν = 0 and let
134
+ p(ν, λ) ∈ C[ν, λ] be its characteristic polynomial. In the
135
+ following, we regard p as a polynomial in one variable
136
+ λ and with coefficients in the field C{{ν}} of Puiseux
137
+ series.
138
+ Definition .1. Let p ∈ C{{ν}}[λ] have at least one non-
139
+ zero root. Suppose that p has a non-trivial Puiseux series
140
+ root, i.e. a root s such that the least exponent of s is
141
+ non-zero. In this case, the order of this EP (at ν = 0)
142
+ is the maximum absolute value of the denominator n of
143
+ m/n ∈ Q (in reduced form) where m/n varies over the
144
+ least exponent in the Puiseux series expansion over all
145
+ the non-trivial roots of p. Otherwise, if all the roots of p
146
+ have zero as their least exponent, then ν = 0 is called a
147
+ degenerate point.
148
+ Consider a system at an EP-N (at ν = 0) given by
149
+ the Hamiltonian H0(x1, x2, ...) where x1, x2... are system-
150
+ dependent parameters.
151
+ When we perturb this system
152
+ around the EP, the eigenvalues of the perturbed Hamil-
153
+ tonian H(ν) = H0 + νH1 follow a Puiseux series in ν,
154
+ λ(ν) = γ1ν1/N + γ2ν2/N + ...,
155
+ (2)
156
+ where ν is the perturbation strength. To leading order,
157
+ the response goes as ∆λEP −N ∝ ν1/N.
158
+ Our tropical
159
+ geometric approach features a characterization of EPs
160
+ by determining such leading order behavior.
161
+ Characterizing exceptional points using tropi-
162
+ cal geometry. Next, we present the tropical geometric
163
+ framework that can be used to reveal the structure of EPs
164
+ and characterize as well as tune them in various physical
165
+ platforms.
166
+ For a field K, a valuation on K is defined as a function
167
+ val : K → R ∪ {∞} such that:
168
+ • val(a) = ∞ if and only if a = 0;
169
+ • val(ab) = val(a) + val(b) ;
170
+ • val(a + b) ≥ min{val(a), val(b)} for all a, b ∈ K.
171
+ In our framework, we primarily deal with the field of
172
+ Puiseux series with coefficients in the complex numbers
173
+ C. This field has a natural valuation which is given by
174
+ taking a non-zero Puiseux series to the lowest exponent
175
+ that appears in its expansion. For example, val(t2 − 2t +
176
+ 3) = min{val(t2), val(−2t), val(3)} = min{2, 1, 0} = 0
177
+ and val(t1/2 − t3/4 + t1 + t2 + . . . ) = 1/2.
178
+ In its most basic form, tropical geometry gives a
179
+ method to compute the valuations of the non-zero roots
180
+ of a non-zero polynomial p ∈ K[λ] in terms of the val-
181
+ uations of the coefficients of p. More precisely, given a
182
+ non-zero polynomial p = �d
183
+ i=0 aiλi ∈ K[λ], its tropi-
184
+ calization trop(p) : R → R is defined as trop(p)(ω) =
185
+ mini{val(ai) + i · ω}.
186
+ A real number ω0 is called a tropical root of trop(p) if
187
+ the minimum defining trop(p)(ω0) is attained by at least
188
+ two distinct terms val(aj)+j·ω0 and val(ak)+k·ω0 for j ̸=
189
+ k. Equivalently, the tropical roots of trop(p) precisely
190
+
191
+ 3
192
+ are the real numbers where trop(p) is not differentiable,
193
+ called the bend locus of trop(p).
194
+ The fundamental theorem of tropical geometry asserts
195
+ that the set of tropical roots of trop(p) is precisely the set
196
+ of valuations of the non-zero roots of p [37, Chapter 3,
197
+ Section 2]. This leads us to one of the main propositions
198
+ of our framework.
199
+ For a non-Hermitian Hamiltonian,
200
+ H(ν), with a characteristic polynomial p(ν, λ) ∈ C[ν, λ],
201
+ as described before, p can be regarded as an element in
202
+ C{{ν}}[λ], where C{{ν}} is equipped with its standard
203
+ valuation that takes a non-zero Puiseux series s to the
204
+ exponent of the leading order term of s.
205
+ Proposition .2. Suppose that trop(p(ν, λ)) has a non-
206
+ zero tropical root.
207
+ The order of the EP at ν = 0 of
208
+ H(ν) is the maximum absolute value of the denominator
209
+ n of m/n (in reduced form) where m/n varies over all
210
+ the non-zero tropical roots of trop(p(ν, λ)). Otherwise, if
211
+ trop(p(ν, λ)) has no non-zero tropical roots, then ν = 0
212
+ is a degenerate point.
213
+ Proof. By the fundamental theorem of tropical geome-
214
+ try [37, Chapter 3, Section 2], the set of tropical roots
215
+ of trop(p) is precisely the set {val(s)}s where s varies
216
+ over all the non-zero Puiseux series solutions of p(ν, λ) ∈
217
+ C{{ν}}[λ]. With this information at hand, the statement
218
+ follows from the definition of the order of an EP.
219
+ To simply illustrate our framework, we consider an ex-
220
+ perimentally realizable non-Hermitian system consisting
221
+ of two coupled sites with gain and loss (see Fig. 1a). The
222
+ Hamiltonian reads
223
+ H2 =
224
+
225
+ α + iγ
226
+ κ
227
+ κ
228
+ −α − iγ
229
+
230
+ .
231
+ (3)
232
+ Here α quantifies the onsite energies, γ is the corre-
233
+ sponding gain/loss coefficient, and κ is the coupling be-
234
+ tween the sites.
235
+ This system has an EP at α = 0 if
236
+ γ = κ.
237
+ The characteristic polynomial and the corre-
238
+ sponding tropicalization for γ = κ are
239
+ p(α, λ) = −2iκα − α2 + λ2,
240
+ (4)
241
+ trop (p(α, λ)) (ω) = min (1, 2ω) .
242
+ (5)
243
+ The root of the tropical polynomial is given by the
244
+ bend locus of trop(p(α, λ))(ω) which occurs at ω0 = 1/2,
245
+ as shown in Fig. 1b. Using the fundamental theorem of
246
+ tropical geometry, we then conclude that p(α, λ) has a
247
+ non-zero root with valuation s = 1/2. This implies that
248
+ the roots of p(α, λ), i.e., the eigenvalues of H have the
249
+ form λ ∼ α1/2 near the EP at α = 0. Thus, the EP at
250
+ a
251
+ b
252
+ FIG. 2. Characterization of exceptional points through
253
+ amoebas in a three-site gain and loss model. Realiza-
254
+ tion of Newton polygon (left), amoeba (center), and the spine
255
+ of the amoeba for (a) φ = −π/6 and (b) φ = −π/4. The con-
256
+ vex slope of the Newton polygon defines the order of EPs.
257
+ We obtain third-order EPs in (a) and second-order EPs in
258
+ (b). The interior point in the Newton polygon in (a) results
259
+ in a vacuole in the amoeba. The amoeba structures abruptly
260
+ change from (a) to (b) while transitioning from third-order to
261
+ second-order EPs. We set γ =
262
+
263
+ 2κ and κ = 1.0.
264
+ α = 0 is a second-order EP (see the supplement [36] for
265
+ a detailed discussion). Further, in the supplement [36],
266
+ we use tropicalization to illustrate how our framework
267
+ provides a natural way to characterize and tune to higher-
268
+ order EPs using companion matrices.
269
+ Relation to amoebas and Newton polygons.
270
+ Above, we saw how tropical geometry can be used to
271
+ determine the order of EPs. A precursor to tropical ge-
272
+ ometry is a construction called the amoeba of a complex
273
+ algebraic variety due to Gelfand, Kapranov and Zelevin-
274
+ sky [38]. Let V ⊆ (C⋆)n be the set of solutions, all of
275
+ whose coordinates are non-zero, of a finite set of Lau-
276
+ rent polynomials in n variables.
277
+ Let Log : (C⋆)n →
278
+ Rn be the logarithmic map that takes (z1, . . . , zn) to
279
+ (log(|z1|), . . . , log(|zn|)). The amoeba of V is the image
280
+ of the logarithmic map restricted to V . A related and im-
281
+ portant notion is the spine of the amoeba and is defined
282
+ as the limit as t → ∞ of the parameterized logarithmic
283
+ map Logt(z1, . . . , zn) = (logt(|z1|), . . . , logt(|zn|)). In the
284
+ Methods section we present the connection of amoeba to
285
+ tropicalization.
286
+ We are primarily concerned with amoebas of polyno-
287
+ mials in two variables with complex coefficients, namely
288
+ characteristic polynomials of a non-Hermitian Hamilo-
289
+ tian in one variable. Typical examples of such amoebas
290
+ are shown in Fig. 2, which will be discussed shortly. The
291
+ amoeba of a typical polynomial contains (unbounded)
292
+ rays that are called its tentacles. We recall that the New-
293
+ ton polygon of p is the convex hull of the exponents of
294
+ the monomials in the support of p. The following propo-
295
+ sition that relates the edges of the Newton polygon of p
296
+ and the amoeba (of the algebraic variety) associated to
297
+ p is of fundamental importance to our framework.
298
+ Proposition .3. The set of directions of the tentacles
299
+ of the amoeba associated to p is precisely the set of outer
300
+ normals of the edges of the Newton polygon of p.
301
+
302
+ 4
303
+
304
+
305
+
306
+
307
+
308
+
309
+
310
+
311
+
312
+
313
+
314
+
315
+
316
+
317
+
318
+
319
+
320
+
321
+
322
+
323
+
324
+
325
+
326
+
327
+
328
+
329
+
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+ 1
342
+ (N-2)⍵
343
+ N⍵
344
+ (N-4)⍵
345
+ N⍵
346
+ 1
347
+ a
348
+ d
349
+ b
350
+ c
351
+ e
352
+ FIG. 3.
353
+ Detecting skin effect in the non-Hermitian
354
+ SSH model with higher-order EPs via tropical geom-
355
+ etry (a) Schematic of SSH model with non-reciprocal hop-
356
+ ping and a weak link connecting the last site to the first.
357
+ The inter-unit cell hopping is a constant t2, but the left and
358
+ right intra-unit cell hoppings are given by t ± γ incorporat-
359
+ ing non-Hermiticity in the system. (b) Newton polygons and
360
+ the concomitant amoebas for SSH model with odd number
361
+ of sites.
362
+ Here we choose t1 = 2.0, γ = 1.0 and t2 = 1.0.
363
+ The structure is similar for all values t1 ̸= γ. (c) At t1 = γ
364
+ the Newton polygon abruptly transforms to a single line with
365
+ slope 1/N at t1 = γ, indicative of a higher order EP and the
366
+ skin effect. The amoeba collapses to a single line perpendicu-
367
+ lar to the Newton polygon, characterizing the non-Hermitian
368
+ phase transition. Panel (d) shows the tropicalization for the
369
+ general case corresponding to Eq. 10. Each straight line rep-
370
+ resents a term in Eq. 10. (e) Tropicalization for the case of
371
+ t1 = γ, wherein the coefficients of all the points corresponding
372
+ to λM vanish, other than M = 0, N. The bend locus gives
373
+ the tropical root ω0 = 1/N, which indicates the presence of
374
+ an N-th order EP and, correspondingly, the occurrence of a
375
+ non-Hermitian skin effect. Here we choose N = 5.
376
+ We refer to Proposition 1.9 [38] and Section 1.4 [37]
377
+ for a more general version of this proposition.
378
+ We illustrate this proposition using a three-site non-
379
+ Hermitian trimer model with balanced gain and loss and
380
+ an asymmetric onsite potential. The Hamiltonian for the
381
+ trimer is
382
+ H3 =
383
+
384
+
385
+ α + iγ κ
386
+ 0
387
+ κ
388
+ 0
389
+ κ
390
+ 0
391
+ κ β − iγ
392
+
393
+ � ,
394
+ (6)
395
+ where the different symbols have a meaning analogous
396
+ to the two-site model. We use the transformation β =
397
+ α tan φ to scan all angles in the α-β parameter plane.
398
+ Using the formalism developed above, we can find the
399
+ tropical roots to reveal the nature of EPs.
400
+ In Fig. 2
401
+ we illustrate the amoebas and the concomitant Newton
402
+ polygons for various φ. Note that the steepest slope of
403
+ the Newton polygon ∆ determines the order of the EPs.
404
+ Interestingly, the integer points of the Newton polygon
405
+ correspond to the vacuole in the amoeba (see Fig. 2a).
406
+ The structure of the amoeba drastically transforms from
407
+ φ = −π/4 to π/4 while the tropical roots change from
408
+ 1/2 to 1/3 with a transition from second-order to third-
409
+ order EPs. Therefore, the structure of the amoeba can
410
+ be directly used to identify the various non-Hermitian
411
+ phases.
412
+ Tropical analysis of the Su-Schrieffer-Heeger model
413
+ Below we apply the complete tropical approach de-
414
+ veloped in this work to the paradigmatic non-Hermitian
415
+ SSH Hamiltonian with non-reciprocal hopping [39, 40].
416
+ We demonstrate how our tropical geometric approach
417
+ can detect the NHSE, which is a unique feature of non-
418
+ Hermitian systems where a large number of states ac-
419
+ cumulate at boundaries of open systems [35, 41]. The
420
+ Hamiltonian of the non-Hermitian SSH model reads
421
+ HSSH = −
422
+
423
+ i
424
+ [t1(c†
425
+ i,Aci,B + h.c.) + t2(c†
426
+ i+1,Aci,B + h.c.)]
427
+ +
428
+
429
+ i
430
+ γ(c†
431
+ i,Bci,A − c†
432
+ i,Aci,B),
433
+ (7)
434
+ where c†
435
+ i,α(ci,α) is the fermionic creation (annihilation)
436
+ operator at site i for sublattice α = A, B. The intra-
437
+ and inter-unit cell hopping amplitudes are given by t1
438
+ and t2, respectively, and γ introduces a non-reciprocity
439
+ only in the intra-unit cell hopping, resulting in non-
440
+ Hermiticity (see Fig. 3a). We introduce a perturbation,
441
+ σt2, σ ∈ [0, 1], which connects the last and first sites.
442
+ The Hamiltonian takes the matrix form (ϵ = σt2)
443
+ HSSH(ϵ) =
444
+
445
+ ����
446
+ 0
447
+ t − γ
448
+ 0 · · ·
449
+ ϵ
450
+ t + γ
451
+ 0
452
+ t2 · · · 0
453
+ 0
454
+ t2
455
+ 0 · · · 0
456
+ ...
457
+ ...
458
+ ...
459
+ ...
460
+ ...
461
+
462
+ ����
463
+ N×N
464
+ .
465
+ (8)
466
+ The characteristic equation, in turn, is
467
+ p(ϵ, λ) = mod(N − 1, 2){γ2 − t2
468
+ 1}
469
+ N
470
+ 2 − t
471
+ N−2
472
+ 2
473
+ 2
474
+ (t1 + γ)N/2ϵ
475
+ +
476
+
477
+ M=N,N−2,···
478
+ [zM{γ2 − t2
479
+ 1}
480
+ N−M
481
+ 2
482
+ + t2OM]λM,
483
+ (9)
484
+ where each zM is a constant, zM ∈ Z. The tropical
485
+ polynomial is calculated to be
486
+
487
+ 3DCoreDiagramforPowerPoint5
488
+ 1
489
+
490
+
491
+
492
+
493
+
494
+
495
+
496
+
497
+
498
+
499
+
500
+
501
+
502
+ 2⍵ + 1
503
+ 4⍵
504
+
505
+
506
+
507
+
508
+
509
+
510
+
511
+
512
+
513
+
514
+
515
+
516
+
517
+ 4⍵
518
+ 2⍵ + 1
519
+ 2
520
+
521
+
522
+
523
+
524
+
525
+
526
+
527
+
528
+
529
+
530
+
531
+ 4⍵
532
+ 2⍵ + 1
533
+ ⍵ + 1
534
+ 2
535
+ a
536
+ b
537
+ c
538
+ d
539
+ e
540
+ f
541
+ g
542
+ EP
543
+ EP
544
+ FIG. 4.
545
+ Holonomy characterization of disordered Hatano-Nelson model.
546
+ (a) Riemann surface for a quartic root
547
+ in the complex plane. (b) The Hatano-Nelson model exhibits anisotropic exceptional behaviour in the parameter space as
548
+ illustrated by the different projection of eigenbands along different parameter planes (the number of petals representing the
549
+ order of EP) (c), (d) Swapping of eigenmodes arising from Riemann sheet exchange while tracing a loop in parameter space
550
+ given by R = ceiψ, ψ ∈ (0, 2π). We show the holonomy properties when the loop (c) critically touches EP and (d) encloses
551
+ the EP. Note that in (d) the N eigenmodes undergo a cyclic permutation among themselves while in (c) eigenmode evolution
552
+ forms N petals in the complex energy plane where N is the order of EP. Tropicalization and tropical roots showing (e) fourth-
553
+ (θ = 0, φ = π/4), (f) second- (θ = 0, φ = 0), and (g) third-order (θ = π/4, φ = 0) EPs for different values of φ and θ. The
554
+ insets show holonomy characterization in the presence (brown) and absence (blue) of disorder. Disorder preserves the stability
555
+ of EPs but renormalizes the spectral properties.
556
+ trop (p(ϵ, λ)) (ω) = min{m, · · · (N − 2)ω, Nω},
557
+ (10)
558
+ where m = 0 (1) for even (odd) sites. The tropical-
559
+ ization and bend locus for p(ϵ, λ) are shown in Fig. 3d
560
+ and 3e. Strikingly at t1 = γ and t2 → 0, the coefficients
561
+ of all the terms in p(ϵ, λ) vanish other than the ϵ1 and
562
+ the λN terms which lead to the solution λ = ϵ1/N. This
563
+ fractional exponent, in turn, shows that higher-order EPs
564
+ appear for t1 = ±γ with an algebraic multiplicity that
565
+ scales with system size while the geometric multiplicity
566
+ remains unity. This is a signature of the NHSE, wherein
567
+ all the bulk modes collapse to one state and are exponen-
568
+ tially localized at the edge under open boundary condi-
569
+ tions.
570
+ This physics can be beautifully captured by the amoe-
571
+ bas and their corresponding Newton polygons. In Fig. 3b
572
+ and 3c, we present the Newton polygon and associated
573
+ amoeba for this model. The edges of the Newton polygon
574
+ are perpendicular to the tentacles of the amoeba. The
575
+ structure of the amoeba remains invariant unless we have
576
+ t1 = γ, where the amoeba and the corresponding New-
577
+ ton polygon strikingly collapse to a single straight line,
578
+ as shown in Fig. 3c. The Newton polygon in the latter
579
+ case has a slope of 1/N, establishing the presence of an
580
+ EP-N.
581
+ Application to disorder and holonomy
582
+ Our tropical geometric framework can be used to ex-
583
+ tract universal properties of EPs even in the presence of
584
+ disorder as we show next. To illustrate, we consider the
585
+ celebrated Hatano-Nelson model [42] under open bound-
586
+ ary conditions with N sites, along with upper corner per-
587
+ turbations, i.e., additional couplings in the (1, j)-th en-
588
+ tries of the Hamiltonian, where j = N, N − 2 · · · . For 4
589
+ sites, the Hamiltonian reads
590
+ H4 =
591
+
592
+
593
+
594
+
595
+ 0
596
+ δ
597
+ η
598
+
599
+ (2 + δ)
600
+ 0
601
+ δ
602
+ 0
603
+ 0
604
+ (2 + δ)
605
+ 0
606
+ δ
607
+ 0
608
+ 0
609
+ (2 + δ) 0
610
+
611
+
612
+
613
+ � .
614
+ (11)
615
+ The Hamiltonian can be written as a sum of two com-
616
+ panion matrices indicating that it features different ex-
617
+ ceptional behaviour along different sections of the param-
618
+ eter space. To study the structure of EPs in the parame-
619
+ ter space of δ, ∆ and η, we shift to generalized spherical
620
+ coordinates δ = r cos θ cos φ, ∆ = r cos θ sin φ, η = r sin θ
621
+ and study the tropicalization of the characteristic equa-
622
+ tion p(r, λ). We find highly anisotropic behaviour result-
623
+ ing in EP-2, EP-3 or EP-4 along various directions, as
624
+ summarized in Fig. 4. Please refer to the supplement for
625
+
626
+ 6
627
+ a more detailed analysis [36].
628
+ Here, we will use the N = 4 case as an example to show
629
+ that the exceptional behaviour in Hatano-Nelson model
630
+ remains universal even in the presence of certain kinds of
631
+ disorder, and the disordered Hamiltonians are homotopic
632
+ to each other with respect to the tropicalization. The
633
+ Hamiltonian, H4, in the presence of a general form of
634
+ scaling disorder reads
635
+ Hdis =
636
+
637
+
638
+
639
+
640
+ 0
641
+
642
+ η
643
+
644
+ (2 + δ)c
645
+ 0
646
+ δb
647
+ 0
648
+ 0
649
+ (2 + δ)d
650
+ 0
651
+ δm
652
+ 0
653
+ 0
654
+ (2 + δ)n
655
+ 0
656
+
657
+
658
+
659
+ � ,
660
+ (12)
661
+ where a, b, c, m and n are arbitrary real numbers that
662
+ introduce disorder in the asymmetric hopping terms.
663
+ Such models are well-studied and can be experimentally
664
+ realized in different physical settings [43]. The form of
665
+ the characteristic equation now changes, but remarkably,
666
+ its tropicalization remains the same as for H4.
667
+ trop (p(r, λ)(ω)) = min(4ω, 2ω + 1, ω + 1, 1),
668
+ (13)
669
+ for cos θ, sin θ, cos φ, sin φ ̸= 0.
670
+ The tropical polyno-
671
+ mial remains invariant to the values of disorder scaling
672
+ parameters suggesting the exceptional behaviour remains
673
+ invariant, or is universal in the presence of disorder. Our
674
+ framework makes this apparent through the tropicaliza-
675
+ tion. A complementary view is to analyze the holonomy
676
+ around the EPs. Consider varying some system param-
677
+ eters to form a loop in the parameter space while si-
678
+ multaneously tracing the evolution of the complex eigen-
679
+ modes.
680
+ If the loop encloses an EP-N, N eigenmodes
681
+ would undergo a cyclic permutation, which can be un-
682
+ derstood using holonomy matrices [44, 45].
683
+ Whereas,
684
+ if the loop marginally touches an EP-N, the projection
685
+ of the eigenmode evolution forms N petals in the com-
686
+ plex energy plane, as shown in Fig. 4c. We used such a
687
+ marginally touching loops to study the holonomy prop-
688
+ erties for Hdis. We find that in the presence of disor-
689
+ der, the eigenvalues get scaled, however their holonomy
690
+ properties do not change, as shown in insets of Fig. 4e-g.
691
+ As the tropicalization remains invariant, the set of dis-
692
+ ordered Hamiltonians are homotopically connected and
693
+ the EPs are universal.
694
+ OUTLOOK
695
+ Our work opens up several avenues for exploration.
696
+ While we have formulated the tropical geometric frame-
697
+ work for a single variable, we envisage that it should be
698
+ possible to generalize this to several variables – this will
699
+ allow treating multiple perturbations on the same foot-
700
+ ing. It will be interesting to use our approach to clas-
701
+ sify the different non-Hermitian symmetry classes, and
702
+ explore potential connections of tropical geometry to K
703
+ theory [46]. Since our approach allows treating disorder
704
+ in a natural way, it could be interesting to connect trop-
705
+ ical geometry and random matrices, which have appli-
706
+ cations in many different fields of physics [47]. We also
707
+ expect our analytical approach to be practically useful
708
+ for tuning to EPs and identifying conditions for NHSE in
709
+ various experimental arenas. Finally, we note that, very
710
+ recently, amoebas have been used to determine the gen-
711
+ eralized Brillouin zone for non-Hermitian systems [48].
712
+ In summary, we have introduced and developed a new
713
+ framework to characterize EPs using tropical geometry.
714
+ We have illustrated its implications using paradigmatic
715
+ SSH and Hatano-Nelson models.
716
+ Our work, bridging
717
+ the fields of tropical geometry and non-Hermitian phe-
718
+ nomena, is particularly timely given the surge of interest
719
+ in non-Hermitian systems.
720
+ We hope that our findings
721
+ motivate further synergy between mathematics and non-
722
+ Hermitian physics.
723
+ Acknowledgments
724
+ A.B. thanks the Prime Minister’s Research Fellowship.
725
+ R.J. thanks the Kishore Vaigyanik Protsahan Yojana fel-
726
+ lowship. M.M was supported by a MATRICS grant from
727
+ the Department of Science and Technology (DST) In-
728
+ dia. A.N. is supported by the startup grant of the Indian
729
+ Institute of Science (SG/MHRD-19-0001) and by DST-
730
+ SERB (project number SRG/2020/000153). A part of
731
+ this work was carried out during the program “Combi-
732
+ natorial Algebraic Geometry: Tropical and Real” held at
733
+ the International Centre for Theoretical Sciences, Ban-
734
+ galore (ICTS) in June-July, 2022. We thank ICTS for
735
+ their warm hospitality. We thank Vamsi P. Pingali for
736
+ bringing us together on this project. We thank G. Reddy
737
+ and N. Aetukuri for feedback on the manuscript. MM
738
+ also thanks Indian Institute of Science, Bangalore and
739
+ Waseda University, Tokyo for their hospitality during the
740
+ visits in May, 2022 and January, 2023, respectively, in
741
+ which a part of the work was carried out.
742
+ Author contributions
743
+ A.B. and R.J. carried out the calculations in consul-
744
+ tation with M.M. and A.N. All authors analyzed the re-
745
+ sults, developed the theory, and wrote the manuscript.
746
+
747
+ 7
748
+ METHODS
749
+ Fundamentals of tropical geometry.
750
+ Here we
751
+ summarize some of the fundamentals of tropical geom-
752
+ etry. The algebraic structure of tropical geometry is also
753
+ known as the min-plus algebra. Many of the usual ax-
754
+ ioms of arithmetic remain valid in the tropical setting.
755
+ For instance, addition and multiplication are commuta-
756
+ tive
757
+ x ⊕ y = y ⊕ x,
758
+ x ⊙ y = y ⊙ x.
759
+ (14)
760
+ Associative property also holds, as does the distribu-
761
+ tive law
762
+ x ⊙ (y ⊕ z) = x ⊙ y ⊕ x ⊙ z.
763
+ (15)
764
+ Both tropical operations have an identity element –
765
+ infinity for addition and zero for multiplication.
766
+ x ⊕ ∞ = x,
767
+ x ⊙ 0 = x.
768
+ (16)
769
+ A distinct feature of tropical arithmetic is the absence
770
+ of subtraction operation.
771
+ On the other hand, tropical
772
+ division is the classical subtraction. So, (R ∪ {∞}, ⊕, ⊙)
773
+ satisfies all the ring axioms except for the existence of
774
+ additive inverse – such algebraic structures are termed
775
+ semirings.
776
+ Newton polygon formalism. We briefly discuss the
777
+ Newton polygon formalism which is dual to amoebas. Let
778
+ us start with the Puiseux series solution of the equation
779
+ f(x, y) = 0 in a suitable neighbourhood of the origin (in
780
+ our case an EP (ν = 0)). Any polynomial f(x, y) with
781
+ the form
782
+ f(x, y) =
783
+
784
+ η,ζ
785
+ aηζxηyζ,
786
+ (17)
787
+ admits a solution y = txµ, where t is a complex number
788
+ and µ = p/q is a positive rational number. One can find
789
+ a solution by substituting y = txµ in Eq. 17, to obtain
790
+ f(x, txµ) =
791
+
792
+ η,ζ
793
+ aηζxη+µζtζ = xξ �
794
+ η,ζ
795
+ aηζtζ.
796
+ (18)
797
+ The above equation puts a constraint that f(x, y) con-
798
+ tains only monomials xηyζ for which η + µζ = ξ, which
799
+ is the essential feature of the Newton polygon. The ge-
800
+ ometric interpretation of Newton polygon is embedded
801
+ in the following mapping. Each monomial xηyζ maps to
802
+ the pair (η, ζ) of natural numbers comprising a set of N2
803
+ lattice points with integer coordinates for non-zero co-
804
+ efficients aηζ ̸= 0. This set of lattice points forms the
805
+ carrier ∆(f) of f, thus
806
+ ∆(f) = {(η, ζ) ∈ N2|aηζ ̸= 0}.
807
+ (19)
808
+ For a convergent power series f(x, y) with a carrier
809
+ ∆ (f), one can define a convex hull from each point of
810
+ the carrier ∆ (f). The boundary of the convex hull, de-
811
+ lineating a compact polygonal path, gives the Newton
812
+ polygon of f. The steepest segment of the Newton poly-
813
+ gon gives the lowest order term for the Puiseux series
814
+ solution, thus defining the order of EP [49, 50]. More
815
+ concretely, the condition η + µζ = ξ for all (η, ζ) ∈ ∆(f)
816
+ indicates that all points of ∆(f) lie on a line, with a slope
817
+ − 1
818
+ µ, and the line meets the α−axis at η = ξ.
819
+ Amoeba and tropicalization. We next present the
820
+ connection between amoeba and tropicalization as used
821
+ in the main text. The absolute value |.| over the complex
822
+ numbers satisfies the archimedean property [51, Chapter
823
+ 9, page 313]. Any field F has an absolute value |.|t that is
824
+ non-archimedean, i.e., does not satisfy the archimedean
825
+ property: |0F |t = 0 and |c|t = 1 for all c ̸= 0F in F,
826
+ where 0F is the additive identity of F.
827
+ This is usu-
828
+ ally called the trivial absolute value on F. Otherwise,
829
+ the non-archimedean absolute value is called non-trivial.
830
+ Fields such as the rational numbers Q, the field C((t)) of
831
+ formal Laurent power series in one variable (with com-
832
+ plex coefficients) are naturally equipped with non-trivial
833
+ (non-archimedean) absolute values.
834
+ More explicitly, i.
835
+ |n|p := e−valp(n) for any n ∈ Q where p is a prime, valp(n)
836
+ is ordp(r) − ordp(s) where n = r/s such that r, s ∈ Z,
837
+ s ̸= 0 and ordp(i), for an integer i, is the largest power
838
+ of p that divides i, ii. |ℓ(z)| for a Laurent power series
839
+ ℓ(z) is defined as e−ord(ℓ(z)) where ord(ℓ(z)) is the least
840
+ exponent of z in the support of ℓ. The rational num-
841
+ ber ord(ℓ(z)) is also called the valuation of ℓ(z) and is
842
+ denoted by val(ℓ(z)).
843
+ Suppose that K is an algebraically closed field (every
844
+ polynomial of degree at least one in K[t] has a root)
845
+ equipped with a non-trivial, non-archimedean absolute
846
+ value |.|K. Our primary example of such a field is the
847
+ field C{{t}} of Puiseux series is one variable. The notion
848
+ of amoeba that we defined over the complex numbers
849
+ can also be mimicked over K as follows. Suppose that
850
+ V ⊆ (K⋆)n is the set of solutions, all of whose coordinates
851
+ are non-zero, to a finite set of Laurent polynomials in n-
852
+ variables with coefficients in K. Let LogK : (K⋆)n → Rn
853
+ be the map LogK(s) = − log |s|K (note that s ̸= 0K) [52].
854
+ The tropicalization of V is defined as the image of the
855
+ map LogK restricted to V . Hence, the tropicalization of
856
+ V is a non-archimedean analogue of an amoeba.
857
858
+ [1] E. P. Wigner, in Mathematics and science (World Scien-
859
+ tific, 1990) pp. 291–306.
860
+
861
+ 8
862
+ [2] F. D. M. Haldane, Reviews of Modern Physics 89, 040502
863
+ (2017).
864
+ [3] J. M. Kosterlitz, Reviews of Modern Physics 89, 040501
865
+ (2017).
866
+ [4] E. Witten, Communications in Mathematical Physics
867
+ 121, 351 (1989).
868
+ [5] J. W. Essam, Discrete Mathematics 1, 83 (1971).
869
+ [6] D. Maclagan and B. Sturmfels, Graduate Studies in
870
+ Mathematics 161, 75 (2009).
871
+ [7] G. Mikhalkin and J. Rau, Tropical geometry, Vol. 8 (Cite-
872
+ seer, 2009).
873
+ [8] E. Brugall´e and K. Shaw, The American Mathematical
874
+ Monthly 121, 563 (2014).
875
+ [9] M. Kapranov, arXiv preprint arXiv:1108.3472 (2011).
876
+ [10] S. S. Samal, D. Grigoriev, H. Fr¨ohlich, A. Weber,
877
+ and
878
+ O. Radulescu, Bulletin of mathematical biology 77, 2180
879
+ (2015).
880
+ [11] V. Noel, D. Grigoriev, S. Vakulenko, and O. Radulescu,
881
+ Electronic Notes in Theoretical Computer Science 284,
882
+ 75 (2012).
883
+ [12] M. Kontsevich and Y. Soibelman, in Symplectic Geom-
884
+ etry And Mirror Symmetry (World Scientific, 2001) pp.
885
+ 203–263.
886
+ [13] M. Gross, Tropical geometry and mirror symmetry, 114
887
+ (American Mathematical Soc., 2011).
888
+ [14] D. Cimasoni and N. Reshetikhin, Communications in
889
+ Mathematical Physics 275, 187 (2007).
890
+ [15] N. Kalinin, A. Guzm´an-S´aenz, Y. Prieto, M. Shkolnikov,
891
+ V. Kalinina,
892
+ and E. Lupercio, Proceedings of the Na-
893
+ tional Academy of Sciences 115, E8135 (2018).
894
+ [16] R. Kenyon, A. Okounkov,
895
+ and S. Sheffield, Annals of
896
+ mathematics , 1019 (2006).
897
+ [17] P. A. M. Dirac, The principles of quantum mechanics, 27
898
+ (Oxford university press, 1981).
899
+ [18] C. M. Bender and S. Boettcher, Physical review letters
900
+ 80, 5243 (1998).
901
+ [19] E. J. Bergholtz, J. C. Budich, and F. K. Kunst, Reviews
902
+ of Modern Physics 93, 015005 (2021).
903
+ [20] Y. Ashida, Z. Gong, and M. Ueda, Advances in Physics
904
+ 69, 249 (2020).
905
+ [21] T. Kato, Perturbation theory for linear operators, Vol.
906
+ 132 (Springer Science & Business Media, 2013).
907
+ [22] H. Hodaei, A. U. Hassan, S. Wittek, H. Garcia-Gracia,
908
+ R. El-Ganainy, D. N. Christodoulides,
909
+ and M. Kha-
910
+ javikhan, Nature 548, 187 (2017).
911
+ [23] W. Tang, X. Jiang, K. Ding, Y.-X. Xiao, Z.-Q. Zhang,
912
+ C. T. Chan, and G. Ma, Science 370, 1077 (2020).
913
+ [24] M.-A. Miri and A. Al`u, Science 363, eaar7709 (2019).
914
+ [25] S¸. K. ¨Ozdemir, S. Rotter, F. Nori, and L. Yang, Nature
915
+ materials 18, 783 (2019).
916
+ [26] M. Naghiloo, M. Abbasi, Y. N. Joglekar, and K. Murch,
917
+ Nature Physics 15, 1232 (2019).
918
+ [27] A. Cerjan, S. Huang, M. Wang, K. P. Chen, Y. Chong,
919
+ and M. C. Rechtsman, Nature Photonics 13, 623 (2019).
920
+ [28] Y. Xu, S.-T. Wang,
921
+ and L.-M. Duan, Physical review
922
+ letters 118, 045701 (2017).
923
+ [29] Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Nature
924
+ communications 9, 1 (2018).
925
+ [30] T. Stehmann, W. Heiss,
926
+ and F. Scholtz, Journal of
927
+ Physics A: Mathematical and General 37, 7813 (2004).
928
+ [31] Z. Lin, H. Ramezani, T. Eichelkraut, T. Kottos, H. Cao,
929
+ and D. N. Christodoulides, Physical Review Letters 106,
930
+ 213901 (2011).
931
+ [32] B. Peng, S¸. K. ¨Ozdemir, F. Lei, F. Monifi, M. Gianfreda,
932
+ G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
933
+ Nature Physics 10, 394 (2014).
934
+ [33] L. Feng, Z. J. Wong, R.-M. Ma, Y. Wang, and X. Zhang,
935
+ Science 346, 972 (2014).
936
+ [34] H.
937
+ Hodaei,
938
+ M.-A.
939
+ Miri,
940
+ M.
941
+ Heinrich,
942
+ D.
943
+ N.
944
+ Christodoulides, and M. Khajavikhan, Science 346, 975
945
+ (2014).
946
+ [35] S. Yao and Z. Wang, Physical review letters 121, 086803
947
+ (2018).
948
+ [36] “See supplemental material for a discussion of basics of
949
+ tropical geometry, in-depth analysis of two site gain and
950
+ loss model, characterization in presence of disorder, and
951
+ connections to holonomy.”.
952
+ [37] D. Maclagan and B. Sturmfels, Introduction to tropi-
953
+ cal geometry, Vol. 161 (American Mathematical Society,
954
+ 2021).
955
+ [38] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky,
956
+ in Discriminants, Resultants, and Multidimensional De-
957
+ terminants (Springer, 1994) pp. 271–296.
958
+ [39] S. Lieu, Physical Review B 97, 045106 (2018).
959
+ [40] L. Herviou, J. H. Bardarson, and N. Regnault, Physical
960
+ Review A 99, 052118 (2019).
961
+ [41] S. Weidemann, M. Kremer, T. Helbig, T. Hofmann,
962
+ A. Stegmaier, M. Greiter, R. Thomale, and A. Szameit,
963
+ Science 368, 311 (2020).
964
+ [42] N. Hatano and D. R. Nelson, Physical review letters 77,
965
+ 570 (1996).
966
+ [43] Y.-X. Xiao, Z.-Q. Zhang, Z. H. Hang, and C. T. Chan,
967
+ Physical Review B 99, 241403 (2019).
968
+ [44] H. Mehri-Dehnavi and A. Mostafazadeh, Journal of
969
+ Mathematical Physics 49, 082105 (2008).
970
+ [45] J.-W. Ryu, S.-Y. Lee, and S. W. Kim, Physical Review
971
+ A 85, 042101 (2012).
972
+ [46] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S. Hi-
973
+ gashikawa, and M. Ueda, Physical Review X 8, 031079
974
+ (2018).
975
+ [47] T. Guhr, A. M¨uller-Groeling, and H. A. Weidenm¨uller,
976
+ Physics Reports 299, 189 (1998).
977
+ [48] H.-Y. Wang, F. Song,
978
+ and Z. Wang, arXiv preprint
979
+ arXiv:2212.11743 (2022).
980
+ [49] E. Brieskorn and H. Kn¨orrer, Plane Algebraic Curves:
981
+ Translated by John Stillwell (Springer Science & Business
982
+ Media, 2012).
983
+ [50] R. Jaiswal, A. Banerjee, and A. Narayan, arXiv preprint
984
+ arXiv:2107.11649 (2021).
985
+ [51] P. M. Cohn, Basic algebra:
986
+ groups, rings and fields
987
+ (Springer Science & Business Media, 2012).
988
+ [52] Note that the negative sign in the definition of LogK is
989
+ only for compatibility with the associated valuation and
990
+ does not cause any essential change.
991
+
NdFRT4oBgHgl3EQfGjdL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf ADDED
Binary file (93.7 kB). View file
 
QNAzT4oBgHgl3EQflf3i/content/tmp_files/2301.01550v1.pdf.txt ADDED
@@ -0,0 +1,977 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01550v1 [math.GM] 4 Jan 2023
2
+ Logarithmic Integration Method for Solving of First and Second
3
+ Order Differential Equations
4
+ A. Ponomarenko
5
+ In this article we present logarithmic methods for solving first order and second order ordinary
6
+ differential equations. The essence of the method is that we apply the basic properties derivatives
7
+ and logarithms to reduce the number of terms in the equation. Here we carry out this only for
8
+ equations of the first and second order. Similar methods can also be used to obtain solutions to
9
+ higher order equations.
10
+ Keywords: differential equations, Riemann integrable functions, logarithmic methods.
11
+ The main methods for solving ordinary differential equations have long been studied and are
12
+ known to everyone. In [1], [2], [3] presents some basic methods for integrating simple ordinary
13
+ differential equations (ODEs) and focuses on real solutions of ODEs with real coefficients. It
14
+ describes homogeneous linear equations with constant coefficients. In [1] shows that the general
15
+ solution of nonhomogeneous linear equations with constant coefficients is the sum of the com-
16
+ plementary function (the general solution of the corresponding homogeneous equation) and a
17
+ particular integral. This article discusses a new approach to solving ordinary differential equa-
18
+ tions using the simplest elementary operations. The calculations can be cumbersome, but we
19
+ do not lose particular solutions to differential equations.
20
+ Let f(x), g(x) be Riemann integrable functions; y = y(x), y′(x) = dy(x)
21
+ dx , y′′(x) = d2y(x)
22
+ dx2 ,
23
+ log y = ln y = loge y; C, C1, C2, C1,1, ... , C1,7, C2,1, C2,2 is an integration constant. The symbol
24
+ ⇒ between two formulas will mean that the second formula follows from the first one.
25
+ 1
26
+ First order differential equations
27
+ 1.1. Linear inhomogeneous first order differential equation:
28
+ y′(x) + f(x)y(x) = g(x).
29
+ (1)
30
+ Logarithmic integration method. In equation (1) the function g(x) is not identically zero. Then
31
+ y(x) be not identifically zero. Then with equations (1) we get
32
+ y′(x)
33
+ y(x) + f(x) = g(x)
34
+ y(x),
35
+
36
+ (log |y(x)|)′ + f(x) = g(x)
37
+ y(x),
38
+
39
+ (log |y(x)|)′ +
40
+ ��
41
+ f(x)dx
42
+ �′
43
+ = g(x)
44
+ y(x),
45
+
46
+ (2)
47
+ (log |y(x)|)′ +
48
+
49
+ log e
50
+
51
+ f(x)dx�′
52
+ = g(x)
53
+ y(x),
54
+
55
+
56
+ log |y(x)| + log e
57
+ � f(x)dx�′
58
+ = g(x)
59
+ y(x),
60
+
61
+ 1
62
+
63
+
64
+ log
65
+
66
+ |y(x)|e
67
+ � f(x)dx��′
68
+ = g(x)
69
+ y(x),
70
+
71
+
72
+ y(x)e
73
+
74
+ f(x)dx�′
75
+ y(x)e
76
+ � f(x)dx
77
+ = g(x)
78
+ y(x),
79
+
80
+
81
+ y(x)e
82
+ � f(x)dx�′
83
+ = g(x)e
84
+ � f(x)dx,
85
+
86
+ y(x)e
87
+ � f(x)dx =
88
+
89
+ g(x)e
90
+ � f(x)dxdx + C,
91
+
92
+ y(x) = e−
93
+
94
+ f(x)dx
95
+ ��
96
+ g(x)e
97
+
98
+ f(x)dxdx + C
99
+
100
+ .
101
+ (3)
102
+ Remark 1.1.1. A similar method can be obtain solution the equation (1) in the Cauchy form:
103
+ y(x) = e− � x
104
+ x0 f(t)dt
105
+ �� x
106
+ x0
107
+ g(τ)e
108
+ � τ
109
+ x0 f(σ)dσdτ + y(x0)
110
+
111
+ ,
112
+ (4)
113
+ where x0 is a given constant. Indeed, the equation (2) is equivalent to the equation
114
+ (log |y(x)|)′ +
115
+ ��
116
+ f(x)dx + C1
117
+ �′
118
+ = g(x)
119
+ y(x),
120
+ (5)
121
+ where C1 is an integration constant.
122
+ Let C1 = −F(x0), where F(x) is a function that has
123
+ property F ′(x) = f(x). Then the equation (5) can be represented as
124
+ (log |y(x)|)′ +
125
+ �� x
126
+ x0
127
+ f(t)dt
128
+ �′
129
+ = g(x)
130
+ y(x),
131
+
132
+ (log |y(x)|)′ +
133
+
134
+ log e
135
+ � x
136
+ x0 f(t)dt�′
137
+ = g(x)
138
+ y(x),
139
+
140
+
141
+ log |y(x)| + log e
142
+ � x
143
+ x0 f(t)dt�′
144
+ = g(x)
145
+ y(x),
146
+
147
+
148
+ log
149
+
150
+ |y(x)|e
151
+ � x
152
+ x0 f(t)dt��′
153
+ = g(x)
154
+ y(x),
155
+
156
+
157
+ y(x)e
158
+ � x
159
+ x0 f(t)dt�′
160
+ y(x)e
161
+ � x
162
+ x0 f(t)dt
163
+ = g(x)
164
+ y(x),
165
+
166
+
167
+ y(x)e
168
+ � x
169
+ x0 f(t)dt�′
170
+ = g(x)e
171
+ � x
172
+ x0 f(σ)dσ,
173
+
174
+ y(x)e
175
+ � x
176
+ x0 f(t)dt =
177
+ � x
178
+ x0
179
+ g(τ)e
180
+ � τ
181
+ x0 f(σ)dσdτ + C,
182
+
183
+ y(x) = e− � x
184
+ x0 f(t)dt
185
+ �� x
186
+ x0
187
+ g(τ)e
188
+ � τ
189
+ x0 f(σ)dσdτ + C
190
+
191
+ .
192
+ (6)
193
+ If in the equation (6) we let C = y(x0), then we have the formula (4).
194
+ 2
195
+
196
+ 1.2. Bernoulli Differential equation:
197
+ y′ + f(x)y = g(x)yα,
198
+ (7)
199
+ where α ∈ R\{0, 1}.
200
+ Logarithmic integration method. Let y is not identically zero. Then from the equations (7)
201
+ we obtain
202
+ y′
203
+ y + f(x) = g(x)
204
+ y
205
+ yα,
206
+
207
+ (log |y|)′ + f(x) = g(x)
208
+ y
209
+ yα,
210
+
211
+ (log |y|)′ +
212
+ ��
213
+ f(x)dx
214
+ �′
215
+ = g(x)
216
+ y
217
+ yα,
218
+
219
+ (log |y|)′ +
220
+
221
+ log e
222
+
223
+ f(x)dx�′
224
+ = g(x)
225
+ y
226
+ yα,
227
+
228
+
229
+ log |y| + log e
230
+ � f(x)dx�′
231
+ = g(x)
232
+ y
233
+ yα,
234
+
235
+
236
+ log
237
+
238
+ |y|e
239
+ � f(x)dx��′
240
+ = g(x)
241
+ y
242
+ yα,
243
+
244
+ (8)
245
+
246
+ ye
247
+ � f(x)dx�′
248
+ ye
249
+ � f(x)dx
250
+ = g(x)
251
+ y
252
+ yα,
253
+
254
+
255
+ ye
256
+
257
+ f(x)dx�′
258
+ = g(x)e
259
+
260
+ f(x)dxyα,
261
+
262
+
263
+ ye
264
+ � f(x)dx�′
265
+ = g(x)e(1−α) � f(x)dxyαeα � f(x)dx,
266
+
267
+
268
+ ye
269
+ � f(x)dx�′
270
+ = g(x)e(1−α) � f(x)dx �
271
+ ye
272
+ � f(x)dx�α
273
+ ,
274
+
275
+
276
+ ye
277
+ � f(x)dx�′
278
+
279
+ ye
280
+
281
+ f(x)dx�α = g(x)e(1−α) � f(x)dx,
282
+
283
+
284
+ 1
285
+ 1 − α
286
+
287
+ ye
288
+
289
+ f(x)dx�1−α�′
290
+ = g(x)e(1−α)
291
+
292
+ f(x)dx,
293
+
294
+ 1
295
+ 1 − α
296
+ ��
297
+ ye
298
+
299
+ f(x)dx�1−α�′
300
+ = g(x)e(1−α)
301
+
302
+ f(x)dx,
303
+
304
+ ��
305
+ ye
306
+ � f(x)dx�1−α�′
307
+ = (1 − α) g(x)e(1−α) � f(x)dx,
308
+
309
+ (9)
310
+
311
+ ye
312
+
313
+ f(x)dx�1��α
314
+ = (1 − α)
315
+
316
+ g(x)e(1−α)
317
+
318
+ f(x)dxdx + C,
319
+
320
+ ye
321
+
322
+ f(x)dx =
323
+
324
+ (1 − α)
325
+
326
+ g(x)e(1−α)
327
+
328
+ f(x)dxdx + C
329
+
330
+ 1
331
+ 1−α
332
+ ,
333
+
334
+ 3
335
+
336
+ y = e− � f(x)dx
337
+
338
+ (1 − α)
339
+
340
+ g(x)e(1−α) � f(x)dxdx + C
341
+
342
+ 1
343
+ 1−α
344
+ .
345
+ (10)
346
+ Remark 1.2.1. At the beginning of the course of the method, we assumed that y be not
347
+ identically zero 0. It follows that the equation (7) has a particular solution y = 0, if α ∈ (0, 1).
348
+ Remark 1.2.2. (The second version of the logarithmic method.)
349
+ In the equation (7) we
350
+ obtain
351
+ y′
352
+ y + f(x) = g(x)
353
+ y
354
+ yα,
355
+
356
+ (log |y|)′ + f(x) = g(x)yα−1,
357
+
358
+ (1 − α)(log |y|)′ + (1 − α)f(x) = (1 − α)g(x)yα−1,
359
+
360
+ ((1 − α) log |y|)′ + (1 − α)f(x) = (1 − α)g(x)yα−1,
361
+
362
+ (log |y|1−α)′ + (1 − α)f(x) = (1 − α)g(x)yα−1,
363
+
364
+
365
+ y1−α�′
366
+ y1−α
367
+ + (1 − α)f(x) = (1 − α)g(x)yα−1,
368
+
369
+
370
+ y1−α�′ + (1 − α)f(x)y1−α = (1 − α)g(x)yα−1y1−α,
371
+
372
+
373
+ y1−α�′ + (1 − α)f(x)y1−α = (1 − α)g(x).
374
+ (11)
375
+ The equation (11) is a linear inhomogeneous first order differential equation, with respect to the
376
+ function y1−α. Its solution by the with formula (3), has the form
377
+ y1−α = e−(1−α) � f(x)dx
378
+
379
+ (1 − α)
380
+
381
+ g(x)e(1−α) � f(x)dxdx + C
382
+
383
+ .
384
+ (12)
385
+ The formula (12) implies the solution (10).
386
+ Remark 1.2.3. (The third version of the logarithmic method.)
387
+ In the equation (8) we obtain
388
+ (1 − α)
389
+
390
+ log
391
+
392
+ |y|e
393
+ � f(x)dx��′
394
+ = (1 − α)g(x)yα−1,
395
+
396
+
397
+ (1 − α) log
398
+
399
+ |y|e
400
+ � f(x)dx��′
401
+ = (1 − α)g(x)yα−1,
402
+
403
+
404
+ log
405
+
406
+ |y|e
407
+
408
+ f(x)dx�1−α�′
409
+ = (1 − α)g(x)yα−1,
410
+
411
+ ��
412
+ ye
413
+
414
+ f(x)dx�1−α�′
415
+
416
+ ye
417
+
418
+ f(x)dx�1−α
419
+ = (1 − α)g(x)yα−1,
420
+
421
+ ��
422
+ ye
423
+ � f(x)dx�1−α�′
424
+ = (1 − α)g(x)yα−1 �
425
+ ye
426
+ � f(x)dx�1−α
427
+ = (1 − α)g(x)e(1−α) � f(x)dx.
428
+ (13)
429
+ The equation (13) is similar to the equation (9).
430
+ 1.3. The equation of the form:
431
+ y′ + f(x)eβy = g(x),
432
+ (14)
433
+ 4
434
+
435
+ where β ∈ R\{0}.
436
+ Logarithmic integration method. In the equation (14) we get
437
+ (log (ey))′ + f(x)eβy = g(x), ⇒
438
+ −β (log (ey))′ − βf(x)eβy = −βg(x), ⇒
439
+ (−β log (ey))′ − βf(x)eβy = −βg(x), ⇒
440
+
441
+ log
442
+
443
+ e−βy��′
444
+ − βf(x)eβy = −βg(x), ⇒
445
+
446
+ e−βy�′
447
+ e−βy
448
+ − βf(x)eβy = −βg(x), ⇒
449
+
450
+ e−βy�′
451
+ − βf(x)eβye−βy = −βg(x)e−βy, ⇒
452
+
453
+ e−βy�′
454
+ − βf(x) = −βg(x)e−βy, ⇒
455
+
456
+ e−βy�′
457
+ + βg(x)e−βy = βf(x).
458
+ (15)
459
+ The equation (15) is a linear inhomogeneous first order differential equation, with respect to the
460
+ function e−βy. Its solution, by the formula (3), has the form
461
+ e−βy = e−β � g(x)dx
462
+
463
+ β
464
+
465
+ f(x)eβ � g(x)dxdx + C
466
+
467
+ .
468
+ (16)
469
+ Solving the equation (16), with respect to y, we have
470
+ y = − 1
471
+ β log
472
+
473
+ e−β
474
+
475
+ g(x)dx
476
+
477
+ β
478
+
479
+ f(x)eβ
480
+
481
+ g(x)dxdx + C
482
+ ��
483
+ , ⇒
484
+ y =
485
+
486
+ g(x)dx − 1
487
+ β log
488
+
489
+ β
490
+
491
+ f(x)eβ
492
+
493
+ g(x)dxdx + C
494
+
495
+ .
496
+ (17)
497
+ 2
498
+ Second order differential equations
499
+ 2.1. Linear homogeneous second order differential equation:
500
+ y′′ + by′ + cy = 0,
501
+ (18)
502
+ where b ∈ R, c ∈ R.
503
+ Let y is not identically zero. Then from the equation (18) we obtain
504
+ y′′
505
+ y + by′
506
+ y + c = 0,
507
+
508
+ (log |y|)′′ + ((log |y|)′)2 + b(log |y|)′ + c = 0,
509
+ (19)
510
+ 5
511
+
512
+ because y′
513
+ y = (log |y|)′, (log |y|)′′ =
514
+
515
+ y′
516
+ y
517
+ �′
518
+ = y′′
519
+ y −
520
+
521
+ y′
522
+ y
523
+ �2
524
+ = y′′
525
+ y − ((log |y|)′)2, ⇒ y′′
526
+ y = (log |y|)′′ +
527
+ ((log |y|)′)2. Let in the equation (19):
528
+ (log |y|)′ = z.
529
+ Then we have equation (19) in the form
530
+ z′ + z2 + bz + c = 0,
531
+
532
+ (20)
533
+ z′
534
+ z2 + bz + c = −1.
535
+ (21)
536
+ Case 1. b2 − 4c > 0. In this case we have equation (21) has be form
537
+ z′
538
+
539
+ z + b
540
+ 2
541
+ �2 − 1
542
+ 4(b2 − 4c)
543
+ = −1,
544
+
545
+ z′
546
+
547
+ z + b
548
+ 2
549
+ �2 −
550
+
551
+ 1
552
+ 2
553
+
554
+ b2 − 4c
555
+ �2 = −1,
556
+
557
+ 1
558
+ 21
559
+ 2
560
+
561
+ b2 − 4c
562
+ log
563
+ �����
564
+ z + b
565
+ 2 − 1
566
+ 2
567
+
568
+ b2 − 4c
569
+ z + b
570
+ 2 + 1
571
+ 2
572
+
573
+ b2 − 4c
574
+ ����� = −x + C1,1.
575
+ (22)
576
+ Let in the equation (22): z + b
577
+ 2 = ξ, 1
578
+ 2
579
+
580
+ b2 − 4c = γ. Then we obtain
581
+ 1
582
+
583
+ b2 − 4c
584
+ log
585
+ ����
586
+ ξ − γ
587
+ ξ + γ
588
+ ���� = −x + C1,1,
589
+
590
+ ξ − γ
591
+ ξ + γ = C1,2e−
592
+
593
+ b2−4cx,
594
+ C1,2 = eC1,1,
595
+
596
+ 1 −
597
+
598
+ ξ + γ = C1,2e−
599
+
600
+ b2−4cx,
601
+
602
+ 1
603
+ ξ + γ = 1
604
+ 2γ + C1,3e−
605
+
606
+ b2−4cx,
607
+ C1,3 = − 1
608
+ 2γ C1,2,
609
+
610
+ ξ + γ =
611
+ 1
612
+ 1
613
+ 2γ + C1,3e−
614
+
615
+ b2−4cx .
616
+ (23)
617
+ Returning to the change of variables z + b
618
+ 2 = ξ, 1
619
+ 2
620
+
621
+ b2 − 4c = γ in the equation (23), we obtain
622
+ z + b
623
+ 2 + 1
624
+ 2
625
+
626
+ b2 − 4c =
627
+ 1
628
+ 1
629
+
630
+ b2−4c + C1,3e−
631
+
632
+ b2−4cx ,
633
+
634
+ z = −
635
+ �b
636
+ 2 + 1
637
+ 2
638
+
639
+ b2 − 4c
640
+
641
+ +
642
+ 1
643
+ 1
644
+
645
+ b2−4c + C1,3e−
646
+
647
+ b2−4cx,
648
+
649
+ 6
650
+
651
+ z = −
652
+ �b
653
+ 2 + 1
654
+ 2
655
+
656
+ b2 − 4c
657
+
658
+ +
659
+
660
+ b2 − 4c
661
+ 1 + C1,4e−
662
+
663
+ b2−4cx ,
664
+ C1,4 =
665
+
666
+ b2 − 4cC1,3,
667
+
668
+ z = −
669
+ �b
670
+ 2 + 1
671
+ 2
672
+
673
+ b2 − 4c
674
+
675
+ + e
676
+
677
+ b2−4cx√
678
+ b2 − 4c
679
+ e
680
+ ��
681
+ b2−4cx + C1,4
682
+ .
683
+ (24)
684
+ Because z = (log |y|)′, then we have in the equation (24)
685
+ (log |y|)′ = −
686
+ �b
687
+ 2 + 1
688
+ 2
689
+
690
+ b2 − 4c
691
+
692
+ + e
693
+
694
+ b2−4cx√
695
+ b2 − 4c
696
+ e
697
+
698
+ b2−4cx + C1,4
699
+ ,
700
+
701
+ log |y| =
702
+ � e
703
+
704
+ b2−4cx√
705
+ b2 − 4c
706
+ e
707
+
708
+ b2−4cx + C1,4
709
+ dx −
710
+ �b
711
+ 2 + 1
712
+ 2
713
+
714
+ b2 − 4c
715
+
716
+ x + log |C2,1| =
717
+ = log
718
+ ���e
719
+
720
+ b2−4cx + C1,4
721
+ ��� −
722
+ � b
723
+ 2 + 1
724
+ 2
725
+
726
+ b2 − 4c
727
+
728
+ x + log |C2,1|,
729
+
730
+ y =
731
+
732
+ e
733
+
734
+ b2−4cx + C1,4
735
+
736
+ e−( b
737
+ 2+ 1
738
+ 2
739
+
740
+ b2−4c)xC2,1,
741
+
742
+ y = C1e(− b
743
+ 2 − 1
744
+ 2
745
+
746
+ b2−4c)x + C2e(− b
747
+ 2+ 1
748
+ 2
749
+
750
+ b2−4c)x,
751
+ (25)
752
+ where C1 = C2,1C1,4, C2 = C2,1 is an integration constant.
753
+ Case 2. b2 − 4c = 0. In this case we have equation (21) has be form
754
+ z′
755
+
756
+ z + b
757
+ 2
758
+ �2 = −1.
759
+ Step by step from the last equation we obtain
760
+
761
+
762
+ 1
763
+ z + b
764
+ 2
765
+ �′
766
+ = −1,
767
+
768
+ 1
769
+ z + b
770
+ 2
771
+ = x + C1,5,
772
+
773
+ z + b
774
+ 2 =
775
+ 1
776
+ x + C1,5
777
+ ,
778
+
779
+ z = −b
780
+ 2 +
781
+ 1
782
+ x + C1,5
783
+ .
784
+ (26)
785
+ Because z = (log |y|)′, then we have in the equation (26)
786
+ (log |y|)′ = −b
787
+ 2 +
788
+ 1
789
+ x + C1,5
790
+ ,
791
+
792
+ log |y| = −b
793
+ 2x + log |x + C1,5| + log |C2| ,
794
+
795
+ y = e− b
796
+ 2 x (x + C1,5) C2 = C1e− b
797
+ 2 x + C2xe− b
798
+ 2 x,
799
+ (27)
800
+ 7
801
+
802
+ where C1 = C1,5C2 is an integration constant.
803
+ Case 3. b2 − 4c < 0. In this case we have equation (21) has be form
804
+ z′
805
+
806
+ z + b
807
+ 2
808
+ �2 + 1
809
+ 4(4c − b2)
810
+ = −1,
811
+
812
+ z′
813
+
814
+ z + b
815
+ 2
816
+ �2 +
817
+
818
+ 1
819
+ 2
820
+
821
+ 4c − b2
822
+ �2 = −1,
823
+
824
+ 1
825
+ 1
826
+ 2
827
+
828
+ 4c − b2 arctan
829
+ z + b
830
+ 2
831
+ 1
832
+ 2
833
+
834
+ 4c − b2 = −x + C1,6
835
+
836
+ arctan
837
+ z + b
838
+ 2
839
+ 1
840
+ 2
841
+
842
+ 4c − b2 = −1
843
+ 2
844
+
845
+ 4c − b2x + C1,7,
846
+ C1,7 = C1,6
847
+ 1
848
+ 2
849
+
850
+ 4c − b2,
851
+
852
+ z + b
853
+ 2
854
+ 1
855
+ 2
856
+
857
+ 4c − b2 = tan
858
+
859
+ −1
860
+ 2
861
+
862
+ 4c − b2x + C1,7
863
+
864
+ ,
865
+
866
+ z = −b
867
+ 2 + 1
868
+ 2
869
+
870
+ 4c − b2 tan
871
+
872
+ −1
873
+ 2
874
+
875
+ 4c − b2x + C1,7
876
+
877
+ .
878
+ (28)
879
+ Because z = (log |y|)′, then we have in the equation (28)
880
+ (log |y|)′ = −b
881
+ 2 + 1
882
+ 2
883
+
884
+ 4c − b2 tan
885
+
886
+ −1
887
+ 2
888
+
889
+ 4c − b2x + C1,7
890
+
891
+ ,
892
+
893
+ log |y| = −b
894
+ 2x + 1
895
+ 2
896
+
897
+ 4c − b2
898
+
899
+ tan
900
+
901
+ −1
902
+ 2
903
+
904
+ 4c − b2x + C1,7
905
+
906
+ dx + log |C2,2| =
907
+ = −b
908
+ 2x + log
909
+ ����cos
910
+
911
+ −1
912
+ 2
913
+
914
+ 4c − b2x + C1,7
915
+ ����� + log |C2,2| ,
916
+
917
+ y = e− b
918
+ 2x cos
919
+
920
+ −1
921
+ 2
922
+
923
+ 4c − b2x + C1,7
924
+
925
+ C2,2 =
926
+ = C2,2e− b
927
+ 2x
928
+
929
+ cos
930
+
931
+ −1
932
+ 2
933
+
934
+ 4c − b2x
935
+
936
+ cos (C1,7) − sin
937
+
938
+ −1
939
+ 2
940
+
941
+ 4c − b2x
942
+
943
+ sin (C1,7)
944
+
945
+ =
946
+ = e− b
947
+ 2 x
948
+
949
+ C1 cos
950
+ �1
951
+ 2
952
+
953
+ 4c − b2x
954
+
955
+ + C2 sin
956
+ �1
957
+ 2
958
+
959
+ 4c − b2x
960
+ ��
961
+ ,
962
+ (29)
963
+ where C1 = C2,2 cos(C1,7), C2 = C2,2 sin(C1,7) is an integration constant.
964
+ The formulas (25), (27), (29), solve the equation (18) in the respective cases 1,2,3.
965
+ Conclusion. This method in chapter 2 makes it possible to obtain these solutions without
966
+ applying a complex analysis and finding a solution in the form y = ψ(x)eζx. Also, we got exact
967
+ solutions for many kinds of first-order differential equations in chapter 1.
968
+ 8
969
+
970
+ References
971
+ [1] C. H. Edwards, D. E. Penny, D. Calvis. Differential equations and boundary value prob-
972
+ lems. Firth Edition, (2014) - 797 p.
973
+ [2] C. H. Edwards, D. E. Penny, D. Calvis. Elementary differential equations, - 632 p.
974
+ [3] Charles Roberts, Jr., Elementary Differential Equations, Second Edition, A Chapman and
975
+ Hall Book, 2016, 380 p.
976
+ 9
977
+
QNAzT4oBgHgl3EQflf3i/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,181 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf,len=180
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
3
+ page_content='01550v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
4
+ page_content='GM] 4 Jan 2023 Logarithmic Integration Method for Solving of First and Second Order Differential Equations A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
5
+ page_content=' Ponomarenko In this article we present logarithmic methods for solving first order and second order ordinary differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
6
+ page_content=' The essence of the method is that we apply the basic properties derivatives and logarithms to reduce the number of terms in the equation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
7
+ page_content=' Here we carry out this only for equations of the first and second order.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
8
+ page_content=' Similar methods can also be used to obtain solutions to higher order equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
9
+ page_content=' Keywords: differential equations, Riemann integrable functions, logarithmic methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
10
+ page_content=' The main methods for solving ordinary differential equations have long been studied and are known to everyone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
11
+ page_content=' In [1], [2], [3] presents some basic methods for integrating simple ordinary differential equations (ODEs) and focuses on real solutions of ODEs with real coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
12
+ page_content=' It describes homogeneous linear equations with constant coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
13
+ page_content=' In [1] shows that the general solution of nonhomogeneous linear equations with constant coefficients is the sum of the com- plementary function (the general solution of the corresponding homogeneous equation) and a particular integral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
14
+ page_content=' This article discusses a new approach to solving ordinary differential equa- tions using the simplest elementary operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
15
+ page_content=' The calculations can be cumbersome, but we do not lose particular solutions to differential equations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
16
+ page_content=' Let f(x), g(x) be Riemann integrable functions;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
17
+ page_content=' y = y(x), y′(x) = dy(x) dx , y′′(x) = d2y(x) dx2 , log y = ln y = loge y;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
18
+ page_content=' C, C1, C2, C1,1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
19
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
20
+ page_content=' , C1,7, C2,1, C2,2 is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
21
+ page_content=' The symbol ⇒ between two formulas will mean that the second formula follows from the first one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
22
+ page_content=' 1 First order differential equations 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
23
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
24
+ page_content=' Linear inhomogeneous first order differential equation: y′(x) + f(x)y(x) = g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
25
+ page_content=' (1) Logarithmic integration method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
26
+ page_content=' In equation (1) the function g(x) is not identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
27
+ page_content=' Then y(x) be not identifically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
28
+ page_content=' Then with equations (1) we get y′(x) y(x) + f(x) = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
29
+ page_content=' ⇒ (log |y(x)|)′ + f(x) = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
30
+ page_content=' ⇒ (log |y(x)|)′ + �� f(x)dx �′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
31
+ page_content=' ⇒ (2) (log |y(x)|)′ + � log e � f(x)dx�′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
32
+ page_content=' ⇒ � log |y(x)| + log e � f(x)dx�′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
33
+ page_content=' ⇒ 1 � log � |y(x)|e � f(x)dx��′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
34
+ page_content=' ⇒ � y(x)e � f(x)dx�′ y(x)e � f(x)dx = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
35
+ page_content=' ⇒ � y(x)e � f(x)dx�′ = g(x)e � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
36
+ page_content=' ⇒ y(x)e � f(x)dx = � g(x)e � f(x)dxdx + C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
37
+ page_content=' ⇒ y(x) = e− � f(x)dx �� g(x)e � f(x)dxdx + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
38
+ page_content=' (3) Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
39
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
40
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
41
+ page_content=' A similar method can be obtain solution the equation (1) in the Cauchy form: y(x) = e− � x x0 f(t)dt �� x x0 g(τ)e � τ x0 f(σ)dσdτ + y(x0) � , (4) where x0 is a given constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
42
+ page_content=' Indeed, the equation (2) is equivalent to the equation (log |y(x)|)′ + �� f(x)dx + C1 �′ = g(x) y(x), (5) where C1 is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
43
+ page_content=' Let C1 = −F(x0), where F(x) is a function that has property F ′(x) = f(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
44
+ page_content=' Then the equation (5) can be represented as (log |y(x)|)′ + �� x x0 f(t)dt �′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
45
+ page_content=' ⇒ (log |y(x)|)′ + � log e � x x0 f(t)dt�′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
46
+ page_content=' ⇒ � log |y(x)| + log e � x x0 f(t)dt�′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
47
+ page_content=' ⇒ � log � |y(x)|e � x x0 f(t)dt��′ = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
48
+ page_content=' ⇒ � y(x)e � x x0 f(t)dt�′ y(x)e � x x0 f(t)dt = g(x) y(x),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
49
+ page_content=' ⇒ � y(x)e � x x0 f(t)dt�′ = g(x)e � x x0 f(σ)dσ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
50
+ page_content=' ⇒ y(x)e � x x0 f(t)dt = � x x0 g(τ)e � τ x0 f(σ)dσdτ + C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
51
+ page_content=' ⇒ y(x) = e− � x x0 f(t)dt �� x x0 g(τ)e � τ x0 f(σ)dσdτ + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
52
+ page_content=' (6) If in the equation (6) we let C = y(x0), then we have the formula (4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
53
+ page_content=' 2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
54
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
55
+ page_content=' Bernoulli Differential equation: y′ + f(x)y = g(x)yα, (7) where α ∈ R\\{0, 1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
56
+ page_content=' Logarithmic integration method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
57
+ page_content=' Let y is not identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
58
+ page_content=' Then from the equations (7) we obtain y′ y + f(x) = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
59
+ page_content=' ⇒ (log |y|)′ + f(x) = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
60
+ page_content=' ⇒ (log |y|)′ + �� f(x)dx �′ = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
61
+ page_content=' ⇒ (log |y|)′ + � log e � f(x)dx�′ = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
62
+ page_content=' ⇒ � log |y| + log e � f(x)dx�′ = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
63
+ page_content=' ⇒ � log � |y|e � f(x)dx��′ = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
64
+ page_content=' ⇒ (8) � ye � f(x)dx�′ ye � f(x)dx = g(x) y yα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
65
+ page_content=' ⇒ � ye � f(x)dx�′ = g(x)e � f(x)dxyα,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
66
+ page_content=' ⇒ � ye � f(x)dx�′ = g(x)e(1−α) � f(x)dxyαeα � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
67
+ page_content=' ⇒ � ye � f(x)dx�′ = g(x)e(1−α) � f(x)dx � ye � f(x)dx�α ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
68
+ page_content=' ⇒ � ye � f(x)dx�′ � ye � f(x)dx�α = g(x)e(1−α) � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
69
+ page_content=' ⇒ � 1 1 − α � ye � f(x)dx�1−α�′ = g(x)e(1−α) � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
70
+ page_content=' ⇒ 1 1 − α �� ye � f(x)dx�1−α�′ = g(x)e(1−α) � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
71
+ page_content=' ⇒ �� ye � f(x)dx�1−α�′ = (1 − α) g(x)e(1−α) � f(x)dx,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
72
+ page_content=' ⇒ (9) � ye � f(x)dx�1−α = (1 − α) � g(x)e(1−α) � f(x)dxdx + C,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
73
+ page_content=' ⇒ ye � f(x)dx = � (1 − α) � g(x)e(1−α) � f(x)dxdx + C � 1 1−α ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
74
+ page_content=' ⇒ 3 y = e− � f(x)dx � (1 − α) � g(x)e(1−α) � f(x)dxdx + C � 1 1−α .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
75
+ page_content=' (10) Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
76
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
77
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
78
+ page_content=' At the beginning of the course of the method, we assumed that y be not identically zero 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
79
+ page_content=' It follows that the equation (7) has a particular solution y = 0, if α ∈ (0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
80
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
81
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
82
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
83
+ page_content=' (The second version of the logarithmic method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
84
+ page_content=') In the equation (7) we obtain y′ y + f(x) = g(x) y yα, ⇒ (log |y|)′ + f(x) = g(x)yα−1, ⇒ (1 − α)(log |y|)′ + (1 − α)f(x) = (1 − α)g(x)yα−1, ⇒ ((1 − α) log |y|)′ + (1 − α)f(x) = (1 − α)g(x)yα−1, ⇒ (log |y|1−α)′ + (1 − α)f(x) = (1 − α)g(x)yα−1, ⇒ � y1−α�′ y1−α + (1 − α)f(x) = (1 − α)g(x)yα−1, ⇒ � y1−α�′ + (1 − α)f(x)y1−α = (1 − α)g(x)yα−1y1−α, ⇒ � y1−α�′ + (1 − α)f(x)y1−α = (1 − α)g(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
85
+ page_content=' (11) The equation (11) is a linear inhomogeneous first order differential equation, with respect to the function y1−α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
86
+ page_content=' Its solution by the with formula (3), has the form y1−α = e−(1−α) � f(x)dx � (1 − α) � g(x)e(1−α) � f(x)dxdx + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
87
+ page_content=' (12) The formula (12) implies the solution (10).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
88
+ page_content=' Remark 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
89
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
90
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
91
+ page_content=' (The third version of the logarithmic method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
92
+ page_content=') In the equation (8) we obtain (1 − α) � log � |y|e � f(x)dx��′ = (1 − α)g(x)yα−1, ⇒ � (1 − α) log � |y|e � f(x)dx��′ = (1 − α)g(x)yα−1, ⇒ � log � |y|e � f(x)dx�1−α�′ = (1 − α)g(x)yα−1, ⇒ �� ye � f(x)dx�1−α�′ � ye � f(x)dx�1−α = (1 − α)g(x)yα−1, ⇒ �� ye � f(x)dx�1−α�′ = (1 − α)g(x)yα−1 � ye � f(x)dx�1−α = (1 − α)g(x)e(1−α) � f(x)dx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
93
+ page_content=' (13) The equation (13) is similar to the equation (9).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
94
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
95
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
96
+ page_content=' The equation of the form: y′ + f(x)eβy = g(x), (14) 4 where β ∈ R\\{0}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
97
+ page_content=' Logarithmic integration method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
98
+ page_content=' In the equation (14) we get (log (ey))′ + f(x)eβy = g(x), ⇒ −β (log (ey))′ − βf(x)eβy = −βg(x), ⇒ (−β log (ey))′ − βf(x)eβy = −βg(x), ⇒ � log � e−βy��′ − βf(x)eβy = −βg(x), ⇒ � e−βy�′ e−βy − βf(x)eβy = −βg(x), ⇒ � e−βy�′ − βf(x)eβye−βy = −βg(x)e−βy, ⇒ � e−βy�′ − βf(x) = −βg(x)e−βy, ⇒ � e−βy�′ + βg(x)e−βy = βf(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
99
+ page_content=' (15) The equation (15) is a linear inhomogeneous first order differential equation, with respect to the function e−βy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
100
+ page_content=' Its solution, by the formula (3), has the form e−βy = e−β � g(x)dx � β � f(x)eβ � g(x)dxdx + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
101
+ page_content=' (16) Solving the equation (16), with respect to y, we have y = − 1 β log � e−β � g(x)dx � β � f(x)eβ � g(x)dxdx + C �� , ⇒ y = � g(x)dx − 1 β log � β � f(x)eβ � g(x)dxdx + C � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
102
+ page_content=' (17) 2 Second order differential equations 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
103
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
104
+ page_content=' Linear homogeneous second order differential equation: y′′ + by′ + cy = 0, (18) where b ∈ R, c ∈ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
105
+ page_content=' Let y is not identically zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
106
+ page_content=' Then from the equation (18) we obtain y′′ y + by′ y + c = 0, ⇒ (log |y|)′′ + ((log |y|)′)2 + b(log |y|)′ + c = 0, (19) 5 because y′ y = (log |y|)′, (log |y|)′′ = � y′ y �′ = y′′ y − � y′ y �2 = y′′ y − ((log |y|)′)2, ⇒ y′′ y = (log |y|)′′ + ((log |y|)′)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
107
+ page_content=' Let in the equation (19): (log |y|)′ = z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
108
+ page_content=' Then we have equation (19) in the form z′ + z2 + bz + c = 0, ⇒ (20) z′ z2 + bz + c = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
109
+ page_content=' (21) Case 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
110
+ page_content=' b2 − 4c > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
111
+ page_content=' In this case we have equation (21) has be form z′ � z + b 2 �2 − 1 4(b2 − 4c) = −1, ⇒ z′ � z + b 2 �2 − � 1 2 √ b2 − 4c �2 = −1, ⇒ 1 21 2 √ b2 − 4c log ����� z + b 2 − 1 2 √ b2 − 4c z + b 2 + 1 2 √ b2 − 4c ����� = −x + C1,1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
112
+ page_content=' (22) Let in the equation (22): z + b 2 = ξ, 1 2 √ b2 − 4c = γ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
113
+ page_content=' Then we obtain 1 √ b2 − 4c log ���� ξ − γ ξ + γ ���� = −x + C1,1, ⇒ ξ − γ ξ + γ = C1,2e− √ b2−4cx, C1,2 = eC1,1, ⇒ 1 − 2γ ξ + γ = C1,2e− √ b2−4cx, ⇒ 1 ξ + γ = 1 2γ + C1,3e− √ b2−4cx, C1,3 = − 1 2γ C1,2, ⇒ ξ + γ = 1 1 2γ + C1,3e− √ b2−4cx .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
114
+ page_content=' (23) Returning to the change of variables z + b 2 = ξ, 1 2 √ b2 − 4c = γ in the equation (23), we obtain z + b 2 + 1 2 � b2 − 4c = 1 1 √ b2−4c + C1,3e− √ b2−4cx , ⇒ z = − �b 2 + 1 2 � b2 − 4c � + 1 1 √ b2−4c + C1,3e− √ b2−4cx, ⇒ 6 z = − �b 2 + 1 2 � b2 − 4c � + √ b2 − 4c 1 + C1,4e− √ b2−4cx , C1,4 = � b2 − 4cC1,3, ⇒ z = − �b 2 + 1 2 � b2 − 4c � + e √ b2−4cx√ b2 − 4c e √ b2−4cx + C1,4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
115
+ page_content=' (24) Because z = (log |y|)′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
116
+ page_content=' then we have in the equation (24) (log |y|)′ = − �b 2 + 1 2 � b2 − 4c � + e √ b2−4cx√ b2 − 4c e √ b2−4cx + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
117
+ page_content='4 ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
118
+ page_content=' ⇒ log |y| = � e √ b2−4cx√ b2 − 4c e √ b2−4cx + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
119
+ page_content='4 dx − �b 2 + 1 2 � b2 − 4c � x + log |C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
120
+ page_content='1| = = log ���e √ b2−4cx + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
121
+ page_content='4 ��� − � b 2 + 1 2 � b2 − 4c � x + log |C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
122
+ page_content='1|,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
123
+ page_content=' ⇒ y = � e √ b2−4cx + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
124
+ page_content='4 � e−( b 2+ 1 2 √ b2−4c)xC2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
125
+ page_content='1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
126
+ page_content=' ⇒ y = C1e(− b 2 − 1 2 √ b2−4c)x + C2e(− b 2+ 1 2 √ b2−4c)x,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
127
+ page_content=' (25) where C1 = C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
128
+ page_content='1C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
129
+ page_content='4,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
130
+ page_content=' C2 = C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
131
+ page_content='1 is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
132
+ page_content=' Case 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
133
+ page_content=' b2 − 4c = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
134
+ page_content=' In this case we have equation (21) has be form z′ � z + b 2 �2 = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
135
+ page_content=' Step by step from the last equation we obtain � − 1 z + b 2 �′ = −1, ⇒ 1 z + b 2 = x + C1,5, ⇒ z + b 2 = 1 x + C1,5 , ⇒ z = −b 2 + 1 x + C1,5 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
136
+ page_content=' (26) Because z = (log |y|)′, then we have in the equation (26) (log |y|)′ = −b 2 + 1 x + C1,5 , ⇒ log |y| = −b 2x + log |x + C1,5| + log |C2| , ⇒ y = e− b 2 x (x + C1,5) C2 = C1e− b 2 x + C2xe− b 2 x, (27) 7 where C1 = C1,5C2 is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
137
+ page_content=' Case 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
138
+ page_content=' b2 − 4c < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
139
+ page_content=' In this case we have equation (21) has be form z′ � z + b 2 �2 + 1 4(4c − b2) = −1, ⇒ z′ � z + b 2 �2 + � 1 2 √ 4c − b2 �2 = −1, ⇒ 1 1 2 √ 4c − b2 arctan z + b 2 1 2 √ 4c − b2 = −x + C1,6 ⇒ arctan z + b 2 1 2 √ 4c − b2 = −1 2 � 4c − b2x + C1,7, C1,7 = C1,6 1 2 � 4c − b2, ⇒ z + b 2 1 2 √ 4c − b2 = tan � −1 2 � 4c − b2x + C1,7 � , ⇒ z = −b 2 + 1 2 � 4c − b2 tan � −1 2 � 4c − b2x + C1,7 � .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
140
+ page_content=' (28) Because z = (log |y|)′,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
141
+ page_content=' then we have in the equation (28) (log |y|)′ = −b 2 + 1 2 � 4c − b2 tan � −1 2 � 4c − b2x + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
142
+ page_content='7 � ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
143
+ page_content=' ⇒ log |y| = −b 2x + 1 2 � 4c − b2 � tan � −1 2 � 4c − b2x + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
144
+ page_content='7 � dx + log |C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
145
+ page_content='2| = = −b 2x + log ����cos � −1 2 � 4c − b2x + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
146
+ page_content='7 ����� + log |C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
147
+ page_content='2| ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
148
+ page_content=' ⇒ y = e− b 2x cos � −1 2 � 4c − b2x + C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
149
+ page_content='7 � C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
150
+ page_content='2 = = C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
151
+ page_content='2e− b 2x � cos � −1 2 � 4c − b2x � cos (C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
152
+ page_content='7) − sin � −1 2 � 4c − b2x � sin (C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
153
+ page_content='7) � = = e− b 2 x � C1 cos �1 2 � 4c − b2x � + C2 sin �1 2 � 4c − b2x �� ,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
154
+ page_content=' (29) where C1 = C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
155
+ page_content='2 cos(C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
156
+ page_content='7),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
157
+ page_content=' C2 = C2,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
158
+ page_content='2 sin(C1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
159
+ page_content='7) is an integration constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
160
+ page_content=' The formulas (25), (27), (29), solve the equation (18) in the respective cases 1,2,3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
161
+ page_content=' Conclusion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
162
+ page_content=' This method in chapter 2 makes it possible to obtain these solutions without applying a complex analysis and finding a solution in the form y = ψ(x)eζx.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
163
+ page_content=' Also, we got exact solutions for many kinds of first-order differential equations in chapter 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
164
+ page_content=' 8 References [1] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
165
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
166
+ page_content=' Edwards, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
167
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
168
+ page_content=' Penny, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
169
+ page_content=' Calvis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
170
+ page_content=' Differential equations and boundary value prob- lems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
171
+ page_content=' Firth Edition, (2014) - 797 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
172
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
173
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
174
+ page_content=' Edwards, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
175
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
176
+ page_content=' Penny, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
177
+ page_content=' Calvis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
178
+ page_content=' Elementary differential equations, - 632 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
179
+ page_content=' [3] Charles Roberts, Jr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
180
+ page_content=', Elementary Differential Equations, Second Edition, A Chapman and Hall Book, 2016, 380 p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
181
+ page_content=' 9' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/QNAzT4oBgHgl3EQflf3i/content/2301.01550v1.pdf'}
StE3T4oBgHgl3EQfDwk0/content/tmp_files/2301.04289v1.pdf.txt ADDED
@@ -0,0 +1,1169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04289v1 [eess.SY] 11 Jan 2023
2
+ Balancing a Stick with Eyes Shut: Inverted Pendulum on a Cart without Angle
3
+ Measurement
4
+ Bidhayak Goswami∗
5
+ Anindya Chatterjee†
6
+ Mechanical Engineering, IIT Kanpur
7
+ January 12, 2023
8
+ A shorter version of this paper is due to appear in ASME JDSMC.
9
+ Abstract
10
+ We consider linear time-invariant dynamic systems in the
11
+ single-input, single-output (SISO) framework. In particular,
12
+ we consider stabilization of an inverted pendulum on a cart
13
+ using a force on the cart.
14
+ This system is easy to stabilize
15
+ with pendulum angle feedback. However, with cart position
16
+ feedback it cannot be stabilized with stable and proper com-
17
+ pensators. Here we demonstrate that with an additional com-
18
+ pensator in a parallel feedforward loop, stabilization is possible
19
+ with such compensators. Sensitivity to noise seems to be about
20
+ 3 times worse than for the situation with angle feedback. For
21
+ completeness, discussion is presented of compensator parame-
22
+ ter choices, robustness, fragility and comparison with another
23
+ control approach.
24
+ Keywords:
25
+ Stabilization, Stable Compensator, Inverted
26
+ Pendulum, Cart.
27
+ 1
28
+ Introduction
29
+ Stabilization of an inverted pendulum on a cart is a familiar
30
+ problem in control theory, and also one that is interesting to a
31
+ broad audience. The control input is a horizontal force on the
32
+ cart; and it is desired to use feedback to stabilize the cart at a
33
+ given location and the pendulum in the inverted (or standing
34
+ vertical) position. Formally, the linearized system is control-
35
+ lable. In the classical control theory framework, with a single
36
+ input and a single output (SISO), it is important whether the
37
+ output is the pendulum angle or the cart position. Due to the
38
+ obvious resemblance to balancing a stick on one’s palm, we
39
+ refer to the latter case (i.e., cart position known and pendu-
40
+ lum angle unknown) as balancing a stick with eyes shut. This
41
+ problem, although simple to state, is interesting to a broad
42
+ audience because a few attempts to balance a stick on one’s
43
+ palm with eyes shut will convince the reader that the task is
44
+ difficult if not impossible. Technically, the problem is also in-
45
+ teresting within the usual classical single-loop feedback control
46
+ framework because, in the case of solely position feedback, it
47
+ turns out that the system is not stabilizable with a stable and
48
+ proper controller [1].
49
+ As a control problem, the inverted pendulum is a famil-
50
+ iar favorite. It has been studied by several researchers in the
51
+ past [2–5]. It has been used as a teaching example for many
52
+ decades [6, 7].
53
+ Linear control theory has been used for the
54
+ angular position feedback case, and that case does not rep-
55
56
57
+ resent significant challenges any more. Control in the nonlin-
58
+ ear regime, including swing-up dynamics from a hanging-down
59
+ position, has been studied [8–12] from various viewpoints in-
60
+ cluding energy-based control as well as control input shap-
61
+ ing. Some researchers have studied the effectiveness of simple
62
+ feedback laws with delays [13], again with angular position
63
+ feedback. Lee et al. [14] have considered system uncertainties,
64
+ feedback with multi-timescale structure and an extended high-
65
+ gain observer. An optimal control approach has been used as
66
+ well, even for harder variants, e.g., a double inverted pendulum
67
+ on a moving cart [15]. With advances in control theory, more
68
+ modern techniques like robust control, fuzzy logic control, etc.
69
+ have been considered as well [16–18].
70
+ In spite of the abovementioned works with modern ap-
71
+ proaches, in this paper we remain within the classical SISO
72
+ linear regime for two reasons. Firstly, a large number of in-
73
+ dustrial control systems are still linear in their thinking, and
74
+ often close to just PID control or variations thereof. Secondly,
75
+ in the absence of angle feedback, for the inverted pendulum
76
+ on a cart, we obtain a nonminimum phase system with an odd
77
+ number of real poles on the right of an RHP real zero which,
78
+ it is known, cannot be stabilized by a stable and proper com-
79
+ pensator in the usual single feedback loop configuration.
80
+ Of course, not all control is based solely on feedback. Feed-
81
+ forward compensators [19,20] have been used earlier for stabi-
82
+ lizing nonminimum phase systems. Kim et al. [21] used feed-
83
+ forward compensation for the synchronization of a multi-agent
84
+ system to achieve faster convergence. Golovin and Palis [22,23]
85
+ used feedforward compensation for stabilizing an electrome-
86
+ chanical system with friction-induced instabilities. Here, we
87
+ seek suitable feedforward and feedback compensators, both sta-
88
+ ble and proper, to stabilize the inverted pendulum using only
89
+ the cart position as output.
90
+ In what follows, we describe the system in section 2, present
91
+ the control approach and show some relevant results in sec-
92
+ tion 3, and discuss the effect of noise in section 4. A detailed
93
+ derivation of the equations of motion is given in appendix A,
94
+ a description of the controller design methodology is given in
95
+ appendix B, the modern control approach in terms of controlla-
96
+ bility and observability is discussed in appendix C, robustness
97
+ and fragility of the stable compensators have been examined
98
+ in appendix D, and finally, in appendix E, the effect of noise
99
+ on the system has been discussed.
100
+ 2
101
+ The inverted pendulum
102
+ Consider an inverted pendulum on a cart (Fig. 1). A control
103
+ force u acts on the cart as shown. The pendulum consists of a
104
+ 1
105
+
106
+ massless rigid rod of length L with a point mass m at the tip.
107
+ The cart’s mass is M. There is gravity g. The coordinates used
108
+ are θ for the pendulum angle and x for the cart displacement.
109
+ Figure 1: An inverted pendulum on a cart.
110
+ The equations of motion (see appendix A for details) for
111
+ small θ and ˙θ are
112
+ M ¨x + m
113
+
114
+ ¨x + L¨θ
115
+
116
+ = u,
117
+ (1a)
118
+ ¨x + L¨θ = gθ.
119
+ (1b)
120
+ By choice of units of mass, length and time, we can set m, L
121
+ and g to unity. This leaves
122
+ M ¨x +
123
+
124
+ ¨x + ¨θ
125
+
126
+ = u,
127
+ (2a)
128
+ ¨x + ¨θ = θ,
129
+ (2b)
130
+ where M should henceforth be thought of as dimensionless.
131
+ In the SISO framework within elementary classical control,
132
+ we have a single output: this will often be either the pendulum
133
+ angle or the cart position. See the block diagram in Fig. 2
134
+ for the basic control structure we will consider in this paper.
135
+ Here, U is the input, K is a gain, G is the plant, C0, C1 and C2
136
+ are compensators, P is an optional feedforward compensator
137
+ placed in parallel, Y is the actual plant output, and Z is the
138
+ quantity that is fed back.
139
+ Obviously, in the absence of P,
140
+ or with P = 0, we will have Z = Y and obtain the usual
141
+ single-loop feedback control design. The parallel feedforward
142
+ compensator P is the novelty we will consider here.
143
+ A feedforward compensator before the input signal U is rou-
144
+ tinely used in physical systems where the input from the user
145
+ may be, e.g., a desired angle and the input to the measure-
146
+ ment and control system is, typically, a voltage.
147
+ However,
148
+ subsequent analysis of the control system is independent of
149
+ that compensator. So, we have not included it in this paper.
150
+ Returning to the inverted pendulum on a cart, when we
151
+ balance a stick on our palm, we always look at the pendulum
152
+ angle θ. The corresponding transfer function of the plant is
153
+ F =
154
+ 1
155
+ 1 + M − M s2 ,
156
+ (3)
157
+ which has a right half plane or RHP pole but is easily sta-
158
+ bilizable with a stable controller without any P in a parallel
159
+ feedforward path. For example, with M = 0.3, C0 = C1 = 1,
160
+ and K > 4.33,
161
+ F =
162
+ 1
163
+ 1.3 − 0.3s2
164
+ (4)
165
+ Figure 2: A feedfoward-feedback control system: basic layout.
166
+ We take C0 = 1 for simplicity (see section 3 for justification).
167
+ can be stabilized by the stable compensator
168
+ C2 = − s + 3
169
+ s + 10.
170
+ (5)
171
+ However, if our output variable is x, which loosely corre-
172
+ sponds to trying to balance the stick on our palm with our
173
+ eyes shut, then the plant becomes
174
+ G =
175
+ s2 − 1
176
+ s2 (0.3s2 − 1.3),
177
+ (6)
178
+ which has a real RHP zero at s = 1 and a single real RHP pole
179
+ to its right, at s =
180
+
181
+ 1.3/0.3. This is more interesting.
182
+ 3
183
+ Stabilization
184
+ In classical control theory with a single control loop [24],
185
+ P = 0. Then, although C0, C1 and C2 can in principle all
186
+ be present, stability is affected only by the product C0C1C2,
187
+ and so we can for stabilization purposes take any two of them
188
+ to be unity. The gain K, too, can be included within C1 if
189
+ we wish. In this paper, we take C0 = 1 for simplicity. From
190
+ a design viewpoint, non unity C0 can be thought as a system
191
+ modification and we leave it for more challenging problems.
192
+ In simple control systems, the compensators C1 and C2 may
193
+ be physically realized using simple circuits made with resistors,
194
+ capacitors, and op-amps. In such cases we want the compen-
195
+ sator transfer functions themselves to be stable, i.e., C0, C1
196
+ and C2 should not have RHP poles. Here we assume that P
197
+ has no RHP poles either. Thus we are interested in stabilizing
198
+ G with stable controllers1.
199
+ In the absence of P, a fundamental fact has been known
200
+ for almost 50 years [1]. If G has one or more real RHP zeros;
201
+ and if G also has an odd number of real RHP poles that lie
202
+ to the right of any positive real zero; then in the absence of
203
+ P in Fig. 2, G is not stabilizable [1] with stable and proper
204
+ compensators C0, C1 and C2.
205
+ The mathematical aim of this paper can now be clearly
206
+ stated.
207
+ We will take the troublesome G of Eq. (6), set
208
+ K = C1 = 1 (as well as C0 = 1 as stated above), and find
209
+ a stable and proper C2 = C along with a stable and proper P
210
+ such that the plant output Y is stabilized.
211
+ Let
212
+ C = nC
213
+ dC
214
+ ,
215
+ G = nG
216
+ dG
217
+ ,
218
+ and P = nP
219
+ dP
220
+ ,
221
+ 1The motivation is that the analog control card should not saturate
222
+ and lose linearity before the actual system dynamics is established, e.g.,
223
+ during a warm-up phase.
224
+
225
+ where the n’s stand for numerator polynomials in s and the
226
+ d’s stand for denominator polynomials in s of equal or greater
227
+ order. Routine manipulations show that
228
+ Y =
229
+ GU
230
+ 1 + C(P + G) = HU,
231
+ (7)
232
+ i.e., the controlled transfer function is
233
+ H =
234
+ nGdCdP
235
+ dCdGdP + nCnP dG + nCnGdP
236
+ .
237
+ (8)
238
+ Thus, our controller design for stabilization reduces to
239
+ choosing polynomials nC, dC, nP and dP such that the d-
240
+ polynomials are stable (i.e., they have only LHP roots), and
241
+ the denominator polynomial
242
+ dCdGdP + nCnP dG + nCnGdP
243
+ is stable as well (has only LHP roots).
244
+ We are not aware of systematic and guaranteed ways of ob-
245
+ taining such polynomials. We have used trial and error based
246
+ on a simple optimization routine. Some details of the opti-
247
+ mization are given in appendix B. Our main aim here is to
248
+ demonstrate and assess specific numerical solutions.
249
+ Two stabilizing solutions, out of many that we found, are
250
+ shown below in Eqs. (9) and (10), labeled “a” and “b” respec-
251
+ tively.
252
+ Pa = 0.05s3 + 7s2 − 0.1s − 1.9
253
+ 11s3 + 21.7s2 + 5.4s + 1 ,
254
+ Ca = −10.1s3 + 2s2 + 0.9s + 0.09
255
+ 0.002s3 + 4.2s2 + 10.2s + 1 ,
256
+ (9)
257
+ and
258
+ Pb = 0.2s3 + 1.4s2 − 2s − 0.8
259
+ 4.1s3 + 10.8s2 + 5.3s + 1,
260
+ Cb = −6.9s3 + 1.6s2 + 1.1s + 0.3
261
+ 0.08s3 + 0.4s2 + 9.3s + 1 .
262
+ (10)
263
+ The corresponding unit-step responses of the controlled sys-
264
+ tems are shown in Fig. 3.
265
+ 0
266
+ 10
267
+ 20
268
+ 30
269
+ 40
270
+ 0
271
+ 5
272
+ 10
273
+ 15
274
+ 20
275
+ 0
276
+ 5
277
+ 10
278
+ 15
279
+ -5
280
+ 0
281
+ 5
282
+ 10
283
+ 15
284
+ 20
285
+ Figure 3: Unit-step responses of G of Eq. (6), with P and C
286
+ as given by Eq. (9) and Eq. (10).
287
+ At this point we can check to see, for the same controlled
288
+ system (with only position feedback), the angle response of the
289
+ inverted pendulum. Recalling F from Eq. (4), we write
290
+ nF = 1,
291
+ and
292
+ dF = 1.3 − 0.3 s2.
293
+ 0
294
+ 10
295
+ 20
296
+ 30
297
+ -3
298
+ -2
299
+ -1
300
+ 0
301
+ 1
302
+ 2
303
+ 3
304
+ 0
305
+ 5
306
+ 10
307
+ 15
308
+ -4
309
+ -2
310
+ 0
311
+ 2
312
+ 4
313
+ Figure 4: Angular response of the pendulum.
314
+ Further, recalling Eqs. (6), (7) and (8), we find that the angular
315
+ response of the inverted pendulum must be
316
+ HF
317
+ G U,
318
+ with
319
+ HF
320
+ G
321
+ = −
322
+ nF dCdP
323
+ dCdGdP + nCnP dG + nCnGdP
324
+ s2,
325
+ (11)
326
+ where we have used
327
+ dG = −s2 dF .
328
+ The angular response of the pendulum is given by the step
329
+ response of Eq. (11): see figure 4.
330
+ It is also interesting to ask how other control strategies might
331
+ work for this same system. A discussion of the textbook ap-
332
+ proach of modern control theory, with state estimation and
333
+ full state feedback, is given in appendix C.
334
+ Finally, we must address two more issues: (i) the robust-
335
+ ness of the controller, i.e., its ability to stabilize plants with
336
+ slightly different plant-parameter values, and (ii) the fragility
337
+ of the controller, i.e., its tendency to lose effectiveness under
338
+ small perturbations of the controller-parameter values. Both
339
+ robustness and fragility are good, as shown in appendix D.
340
+ 4
341
+ Effect of noise
342
+ The system has now been mathematically stabilized. We must
343
+ also study the effect of noise on the stabilized system. Since
344
+ the basic control problem is difficult at least in some ways
345
+ (as in balancing a stick on one’s palm with eyes shut), we may
346
+ expect increased sensitivity to noise. The system now has more
347
+ than one input (the control force u along with noise inputs
348
+ ek, k ∈ {1, 2, . . ., 6}), but still only one output (y), as shown
349
+ in Fig. 5. In the Laplace domain, elementary calculations give
350
+ us individual transfer functions for each input, with the net
351
+ output given as
352
+ Y (s) = H(s)U(s) +
353
+ 6
354
+
355
+ k=1
356
+ Hek(s)Ek(s).
357
+ (12)
358
+ In the above the seven transfer functions H and Hek, k ∈
359
+ {1, 2, . . ., 6}, share a common denominator.
360
+ If H is stable,
361
+ then so is each Hek. The Bode magnitude plots for Hek with
362
+ P = Pb and C = Cb are shown in Fig. 6. For Pa and Ca, the
363
+ maximum magnitude is higher. It is seen in Fig. 6 that for
364
+
365
+ Figure 5:
366
+ The control system with added noise inputs
367
+ ek(t), k ∈ {1, 2, . . ., 6}.
368
+ nondimensional frequencies on the order of unity, the magni-
369
+ tudes of the transfer functions take their highest values, which
370
+ are around 30 dB. This corresponds to amplification by roughly
371
+ a factor of 30, which is quite large.
372
+ 10-2
373
+ 100
374
+ 102
375
+ -80
376
+ -60
377
+ -40
378
+ -20
379
+ 0
380
+ 20
381
+ 10-2
382
+ 100
383
+ 102
384
+ -80
385
+ -60
386
+ -40
387
+ -20
388
+ 0
389
+ 20
390
+ 40
391
+ 10-2
392
+ 100
393
+ 102
394
+ -80
395
+ -60
396
+ -40
397
+ -20
398
+ 0
399
+ 20
400
+ 40
401
+ 10-2
402
+ 100
403
+ 102
404
+ -40
405
+ -20
406
+ 0
407
+ 20
408
+ 40
409
+ 10-2
410
+ 100
411
+ 102
412
+ -100
413
+ -50
414
+ 0
415
+ 50
416
+ 10-2
417
+ 100
418
+ 102
419
+ -40
420
+ -20
421
+ 0
422
+ 20
423
+ 40
424
+ Figure 6: Bode magnitude plots of Hek, k ∈ {1, 2, . . ., 6}, for
425
+ the system shown in Fig. 5 with P = Pb and C = Cb given by
426
+ Eq. (10).
427
+ We mention that in separate calculations with G as in Eq.
428
+ (3), K > 4.33, P = 0 (i.e., no parallel feedforward compen-
429
+ sator), and C = C2 of Eq. (5), maximum amplification fac-
430
+ tors about 10 dB lower were easily obtained (details omitted).
431
+ This is not intuitively surprising because balancing a stick with
432
+ one’s eyes open is easier than with one’s eyes shut; and corre-
433
+ spondingly, stabilizing the inverted pendulum on a cart in the
434
+ classical SISO setting with pendulum angle feedback is easier
435
+ than with cart position feedback. The sensitivity to noise in
436
+ the eyes-shut case, for our control design, seems to be greater
437
+ by about a factor of 3.
438
+ Some numerical examples of the response to noise inputs,
439
+ where the “noise” is the sum of a large number of small sinu-
440
+ soidal inputs with randomly chosen amplitudes and frequen-
441
+ cies, are given in appendix E. The results there are consistent
442
+ with the above estimate of 30 dB.
443
+ 5
444
+ Concluding remarks
445
+ In some applications such as low cost consumer products or
446
+ toys, there may be simple analog control cards which, if oper-
447
+ ated within the linear domain, produce desirable behavior in
448
+ the controlled device. In such situations, stabilization with a
449
+ stable controller has practical utility. Additionally, there may
450
+ be sophisticated scientific or technical instruments wherein
451
+ simple controllers are implemented with some parameters ad-
452
+ justable by the user.
453
+ In such cases, too, while the system
454
+ is warming up, or is outside the operational position range,
455
+ an unstable compensator may lead to overly large actuator
456
+ commands that cause saturation, deviation from linearity, or
457
+ possibly specimen damage. In such cases, also, stabilization
458
+ with a stable controller may make the system more foolproof.
459
+ With the above motivation, we appreciate the classic pa-
460
+ per [1] which lays down the mathematical conditions under
461
+ which, in the single loop control structure, stabilization is not
462
+ possible with a stable and proper compensator. One of the
463
+ most familiar control problems, namely balancing an inverted
464
+ pendulum on a cart, presents this situation when position feed-
465
+ back is used. For this system, using a parallel stable feedfor-
466
+ ward compensator, we have demonstrated using numerical ex-
467
+ amples that it is possible to achieve stabilization with stable
468
+ and proper compensators.
469
+ Finding such stable and stabilizing compensators is not a
470
+ familiar and routine control design problem within classical
471
+ control theory. Others have studied this control approach be-
472
+ fore as well [21,22], but not widely and not for such a popular
473
+ problem as balancing a stick. We hope that the community of
474
+ industrial and academic control systems practitioners and re-
475
+ searchers will find this class of problems sufficiently interesting
476
+ as to develop this kind of control design further, and possibly
477
+ even seek rational design criteria for when such controllers ex-
478
+ ist and how they may be found easily.
479
+ Moreover, once such a block diagram framework is adopted,
480
+ it can also be used for design of controllers for nonlinear sys-
481
+ tems. Such work [25] has begun to appear.
482
+ A
483
+ Equations of motion
484
+ We draw free-body diagrams for both cart and pendulum (Fig.
485
+ 7). The pendulum’s pivot point P (see Fig. 7(a)) experiences
486
+ a reaction force from the cart. This force has components Rx
487
+ and Ry along unit vectors ˆe1 and ˆe2 respectively. The cart ex-
488
+ periences equal and opposite reactions. There are two ground
489
+ forces on the cart wheels, named N1 and N2 (see Fig. 7(b)).
490
+
491
+ Friction has not been included. The weight of the pendulum
492
+ and cart are mg and Mg respectively. A horizontal force u
493
+ acts on the cart.
494
+ Figure 7: Free body diagrams for the pendulum and the cart.
495
+ Moving on to the kinematics, P has an acceleration ¨x ˆe1.
496
+ The acceleration of G is
497
+ aG = aP + aG/P
498
+ = ¨x ˆe1 +
499
+
500
+ L ¨θ ˆeθ − L ˙θ2 ˆen
501
+
502
+ ,
503
+ (13)
504
+ where ˆeθ and ˆen are unit vectors shown in Fig. 7(a).
505
+ For the pendulum, linear momentum balance gives
506
+ Rx = m (aG · ˆe1) = m
507
+
508
+ ¨x + L ¨θ cos(θ) − L ˙θ2 sin(θ)
509
+
510
+ ,
511
+ (14)
512
+ and for the cart, it gives
513
+ − Rx + u = M ¨x.
514
+ (15)
515
+ Substituting Rx from Eq. (14) in Eq. (15)
516
+ M ¨x + m
517
+
518
+ ¨x + L ¨θ cos(θ)
519
+
520
+ − m L ˙θ2 sin(θ) = u.
521
+ (16)
522
+ Now, for the pendulum, the moment about spatial point P
523
+ (coincides with the pivot instantaneously) is
524
+ τ P = IG · α + rG/P × m aG,
525
+ (17)
526
+ where IG is zero and rG/P is the position vector of from P to
527
+ G. This yields
528
+ − m g L sin(θ) = −m L
529
+
530
+ ¨x cos(θ) + L¨θ
531
+
532
+ .
533
+ (18)
534
+ or
535
+ ¨x cos(θ) + L¨θ = g sin(θ).
536
+ (19)
537
+ Linearizing Eqs. (16) and (19), for small θ and ˙θ, we obtain
538
+ M ¨x + m
539
+
540
+ ¨x + L¨θ
541
+
542
+ = u,
543
+ (20a)
544
+ ¨x + L¨θ = gθ.
545
+ (20b)
546
+ B
547
+ Methodology used for obtaining C
548
+ and P
549
+ For both compensators C and P, we choose nth order polyno-
550
+ mials with unknown coefficients for both numerator and de-
551
+ nominator, where n is a positive integer to be chosen by trial
552
+ and error. The compensators’ transfer functions are taken as
553
+ C =
554
+ a0 + a1 s + . . . an sn
555
+ 1 + an+1s + · · · + a2nsn , P =
556
+ b0 + b1 s + · · · + bn sn
557
+ 1 + bn+1 s + · · · + b2n sn ,
558
+ where ak, bk constitute 4n + 2 unknown coefficients.
559
+ Now we construct an objective function F as follows.
560
+ (i) F takes 4n+2 numbers as a vector input q and first forms
561
+ the candidate C and P.
562
+ (ii) From the numerators and the denominators of C and P,
563
+ it calculates H (Eq. (8)).
564
+ (iii) It calculates the poles of C, P and H.
565
+ (iv) From the poles of C and P, the right-most real part is
566
+ saved as p1.
567
+ (v) From the poles zHi of H, the right-most real part is saved
568
+ as p2.
569
+ (vi) A preliminary function value f0 is defined as
570
+ f0 =
571
+
572
+ p2 + 6 p1
573
+ if p1 ≥ 0,
574
+ p2
575
+ otherwise,
576
+ where the “6” is a penalty parameter, found to be big
577
+ enough by trial and error (unnecessarily large penalty pa-
578
+ rameters are best avoided).
579
+ (vii) For better behavior, the actual objective function used
580
+ was
581
+ F = f0 + ε1 ||q|| + ε2 max{|zHi|},
582
+ i = 1, 2, . . . , 2 n + 4,
583
+ where ε1 = 10−5 and ε2 = 10−4.
584
+ If we can find a q such that
585
+ F(q) < 0,
586
+ then our goal is accomplished.
587
+ We can now use any optimization techniques we like. We
588
+ used a simple in-house genetic algorithm. The code is available
589
+ on request.
590
+ C
591
+ Controllability and observability
592
+ So far, we have studied the system from the viewpoint of classi-
593
+ cal control theory. In the modern control approach, the system
594
+ state consists of x, θ, ˙x and ˙θ given as a column matrix
595
+ x =
596
+
597
+
598
+
599
+
600
+
601
+ x
602
+ θ
603
+ ˙x
604
+ ˙θ
605
+
606
+
607
+
608
+
609
+
610
+ .
611
+ (21)
612
+ Writing Eqs. (1a) and (1b) in state space form, we obtain
613
+ ˙x = A x + B u,
614
+ (22)
615
+
616
+ where, for M = 0.3,
617
+ A =
618
+
619
+ 
620
+ 0
621
+ 0
622
+ 1
623
+ 0
624
+ 0
625
+ 0
626
+ 0
627
+ 1
628
+ 0
629
+ − 10
630
+ 3
631
+ 0
632
+ 0
633
+ 0
634
+ 13
635
+ 3
636
+ 0
637
+ 0
638
+
639
+ 
640
+ and
641
+ B =
642
+
643
+
644
+
645
+
646
+
647
+
648
+
649
+
650
+
651
+
652
+
653
+ 0
654
+ 0
655
+ 10
656
+ 3
657
+ − 10
658
+ 3
659
+
660
+
661
+
662
+
663
+
664
+
665
+
666
+
667
+
668
+
669
+
670
+ .
671
+ (23)
672
+ In this problem, only the measurement of the cart displace-
673
+ ment is available. So, the measured quantity
674
+ y = x = C x,
675
+ where C = [1 0 0 0].
676
+ (24)
677
+ Taking Laplace transforms of both sides of Eq. (22), we obtain
678
+ for zero initial conditions
679
+ X(s) = (s I − A)−1 B U(s),
680
+ where X(s) = L[x(t)].
681
+ (25)
682
+ Using the symbolic algebra package Maple, we have verified
683
+ that
684
+ C (s I − A)−1 B = G(s) =
685
+ s2 − 1
686
+ s2 (0.3 s2 − 1.3).
687
+ (26)
688
+ The controllability matrix [24] is
689
+ PC =
690
+
691
+ A3B | A2B | AB | B
692
+
693
+ =
694
+
695
+ 
696
+ 100
697
+ 9
698
+ 0
699
+ 10
700
+ 3
701
+ 0
702
+ − 130
703
+ 9
704
+ 0
705
+ − 10
706
+ 3
707
+ 0
708
+ 0
709
+ 100
710
+ 9
711
+ 0
712
+ 10
713
+ 3
714
+ 0
715
+ − 130
716
+ 9
717
+ 0
718
+ − 10
719
+ 3
720
+
721
+ 
722
+ ,
723
+ (27)
724
+ which has full rank. The observability matrix [24]
725
+ PO =
726
+
727
+ 
728
+ CA3
729
+ CA2
730
+ CA
731
+ C
732
+
733
+  =
734
+
735
+ 
736
+ 0
737
+ 0
738
+ 0
739
+ − 10
740
+ 3
741
+ 0
742
+ − 10
743
+ 3
744
+ 0
745
+ 0
746
+ 0
747
+ 0
748
+ 1
749
+ 0
750
+ 1
751
+ 0
752
+ 0
753
+ 0
754
+
755
+ 
756
+ (28)
757
+ also has full rank. The system is both controllable and ob-
758
+ servable. A controller can be designed by constructing a state
759
+ estimator and then using full state feedback. Let us consider
760
+ the following system
761
+ ˙x = A x − B K ˜x + B u
762
+ (29a)
763
+ ˙˜x = A ˜x − B K ˜x + G C (x − ˜x) + B u
764
+ (29b)
765
+ where ˜x is the estimated state and the gain matrices K and
766
+ G are found by placing the system poles (arbitrarily) at
767
+ − 1 ± i and − 2 ± i,
768
+ (30)
769
+ and the estimator poles (also arbitrarily) at
770
+ − 1, −2, and − 3 ± i
771
+ (31)
772
+ on the complex plane. These numbers are chosen for demon-
773
+ stration only.
774
+ Combining Eqs. (29a) and (29b), we obtain
775
+ ˙˜Z = ˜A ˜Z + ˜B u,
776
+ (32)
777
+ where,
778
+ ˜Z =
779
+
780
+ x
781
+ ˜x
782
+
783
+ , ˜A =
784
+
785
+ A
786
+ −B K
787
+ G C
788
+ A − B K − G C
789
+
790
+ , and ˜B =
791
+
792
+ B
793
+ B
794
+
795
+ .
796
+ (33)
797
+ The output
798
+ y = C x = ˜C ˜Z,
799
+ where ˜C = [C, 0, 0, 0, 0].
800
+ (34)
801
+ To interpret these result in light of the main paper, we can
802
+ now think of an implied feedback controller, with closed loop
803
+ transfer function
804
+ Q(s) = ˜C
805
+
806
+ sI − ˜A
807
+ �−1 ˜B.
808
+ (35)
809
+ Using Maple, we obtain
810
+ Q(s) =
811
+ 10 s2 − 10
812
+ 3 s4 + 18 s3 + 45 s2 + 54 s + 30.
813
+ (36)
814
+ We observe that Q and G share the same zeros, and the poles of
815
+ Q are the same as the system poles chosen for placement (Eq.
816
+ (30)). We may think of a feedback control system equivalent to
817
+ Figure 8: An equivalent single loop feedback control system.
818
+ the implied control system as shown in Fig. 8, where plant G
819
+ is assigned compensators Kb and Kf in forward and feedback
820
+ loops respectively. Hence
821
+ Q =
822
+ Kf G
823
+ 1 + Kb Kf G.
824
+ (37)
825
+ From algebraic manipulations, we obtain;
826
+ Kf = Q
827
+ G
828
+ 1
829
+ 1 − Kb Q
830
+ and
831
+ Kb = 1
832
+ Q −
833
+ 1
834
+ Kf G.
835
+ (38)
836
+ Clearly, there are infinitely many solutions for Kf and Kb. We
837
+ examine two limiting cases for better understanding.
838
+ (i) The system shown in Fig. 8 has a compensator only in the
839
+ feedback loop, i.e., Kf = 1. In this case,
840
+ Kb = 1
841
+ Q − 1
842
+ G = 9 s3 + 29 s2 + 27 s + 15
843
+ 5 s2 − 5
844
+ ,
845
+ (39)
846
+ which is unacceptable (both improper and unstable).
847
+ (ii) The system shown in Fig. 8 has a compensator only in the
848
+ forward loop, i.e., Kb = 1. Now we have
849
+ Kf = Q
850
+ G
851
+ 1
852
+ 1 − Q =
853
+ dG
854
+ dQ − nQ
855
+ =
856
+ s2 �
857
+ 3 s2 − 13
858
+
859
+ 3 s4 + 18 s3 + 35 s2 + 54 s + 40,
860
+ (40)
861
+
862
+ where dQ and nQ are the denominator and numerator of
863
+ Q respectively.
864
+ The compensator Kf is stable, but relies on pole zero
865
+ cancellation which is not allowed in classical control. A
866
+ commonly stated reason for not allowing pole zero can-
867
+ cellation is that the slightest inaccuracy in the controller
868
+ will destroy the cancellation and instability will reappear.
869
+ Youla et al. [1] also point out that exact pole zero cancel-
870
+ lation may represent nonobservable modes which remain
871
+ unstable. In any case, we cannot accept this Kf.
872
+ We already know that the controller obtained in this ap-
873
+ pendix cannot be realized (Youla et al. [1]) with stable and
874
+ proper compensators in the classical single loop configuration.
875
+ Equations (39) and (40) merely provide two examples of the
876
+ difficulties encountered if such an attempt is made.
877
+ D
878
+ Robustness and fragility
879
+ Having found a stable closed loop transfer function H as ex-
880
+ plained in appendix B, we can check its sensitivity to small
881
+ changes in plant and compensator parameters.
882
+ Robustness, for a control system, is its ability to retain sta-
883
+ bility under small changes in the plant parameters. Here, the
884
+ plant parameters depend on the system parameters: L, m, g
885
+ and M. Of them, the first three were eliminated from the gov-
886
+ erning equations by introducing nondimensional displacement,
887
+ time and mass ˜x, ˜t and ˜m respectively where
888
+ ˜x = x
889
+ L,
890
+ ˜t = t
891
+ � g
892
+ L,
893
+ ˜m = M
894
+ m ,
895
+ (41)
896
+ which is analogous to setting the values of m, L and g to unity
897
+ and treating M as the only free parameter. So far we have
898
+ considered M = 0.3. To investigate the effect of small changes
899
+ in parameter values on the system behavior, we rewrite the
900
+ plant transfer function as
901
+ G =
902
+ A0 s2 − A1
903
+ s2 (0.3 A2 s2 − 1.3 A3),
904
+ (42)
905
+ where the parameters A0, A1, A2 and A3 are notionally equal
906
+ to unity along with M = 0.3. For a large number of random
907
+ calculations (1000 times), we perturb the A’s by normally dis-
908
+ tributed iid random variables ri, i = 0, 1, 2, 3, with zero mean
909
+ and standard deviation 0.02 (99.7% of the points are within ±
910
+ 6%) in the following way
911
+ Ai �→ Ai (1 + ri),
912
+ i = 0, 1, 2, 3, .
913
+ We then plot the poles (zH) of the respective closed loop trans-
914
+ fer functions (CLTF). Results are shown in Fig. 9.
915
+ For compensators Ca and Pa, the entire cloud (Fig. 9(a)) of
916
+ poles remains in the left half plane. For compensators Cb and
917
+ Pb, a significant part of the cloud (Fig. 9(b)) remains in the
918
+ left half plane. In 44 out of 1000 cases, the CLTF has poles in
919
+ the right half plane. Thus, the compensators are fairly robust;
920
+ and Ca and Pa are more robust than Cb and Pb.
921
+ Some robust control systems perform poorly under small
922
+ perturbations in the compensator parameters. This is called
923
+ the fragility [26] of the system. To check fragility, we perturb
924
+ the compensator parameters, again 1000 times, by normally
925
+ distributed iid random variables si, i = 0, 1, . . ., 4 n+ 1. Here,
926
+ Figure 9: Robustness under small changes in plant parameters
927
+ (1000 random perturbations).
928
+ Figure 10: Performance of the system under small changes in
929
+ compensator parameters (1000 random perturbations).
930
+ n is degree of the polynomials in the numerator and denomi-
931
+ nator of the compensators. The random variables si have zero
932
+ mean and standard deviation 0.02 (99.7% of them are within
933
+ ± 6%). We perturb the a’s and b’s as follows:
934
+ ai �→ ai (1 + si),
935
+ bi �→ bi (1 + s2 n+1+i),
936
+ i = 0, 1, . . . , 2 n.
937
+ We then calculate the poles (zH) of the respective closed loop
938
+ transfer functions. The results are shown in Fig. 10. For the
939
+ compensators Ca and Pa, a large portion of the cloud of poles
940
+ again remains in the left half plane. In 9 out of 1000 cases, the
941
+ CLTF has poles in the right half plane. For the compensators
942
+ Cb and Pb, in 32 out of 1000 cases, the CLTF has poles in the
943
+ right half plane.
944
+ We conclude with the following observation. Implementabil-
945
+ ity, albeit implicitly discussed, has motivated this entire paper.
946
+ Finding stable compensators (which we have now shown are
947
+ fairly robust and not fragile) indicates that the compensators
948
+ are implementable.
949
+ E
950
+ Response to noise
951
+ In section 4, we examined the system’s sensitivity to six noise
952
+ inputs ei(t), i = 1, 2, . . ., 6 by using Bode plots. To demon-
953
+ strate the effect of noise on the time response of the system,
954
+ we use the following input
955
+ ei(t) =
956
+ N
957
+
958
+ k=1
959
+ ck sin (ωk t) ,
960
+ i = 1, 2, . . ., 6,
961
+ (43)
962
+ where the ω’s are randomly chosen numbers uniformly dis-
963
+ tributed in the interval [0.5, 1.5].
964
+ The amplitudes ck, k =
965
+
966
+ 41类
967
+ 2
968
+
969
+ Im(ZH)
970
+ 0
971
+
972
+
973
+ -2
974
+
975
+ -4
976
+
977
+ -2
978
+ -1
979
+ 0
980
+ Re(ZH)21
981
+ Im(ZH)
982
+ 0
983
+ -1
984
+ -2
985
+ -1
986
+ -0.5
987
+ 0
988
+ 0.5
989
+ Re(ZH)41米
990
+ ■**米
991
+ 2
992
+
993
+ 来米
994
+ Im(ZH)
995
+ 0
996
+
997
+ -2
998
+
999
+ -4
1000
+ -2
1001
+ -1
1002
+ 0
1003
+ Re(ZH)211
1004
+ (Hz)
1005
+ 0
1006
+ Im (
1007
+ 米瓣
1008
+ -1
1009
+ -2
1010
+ -1
1011
+ -0.5
1012
+ 0
1013
+ 0.5
1014
+ Re
1015
+ (ZH)80
1016
+ 100 120 140 160
1017
+ 200
1018
+ -0.1
1019
+ 0
1020
+ 0.05
1021
+ 0.1
1022
+ 0.15
1023
+ 0
1024
+ 20
1025
+ 40
1026
+ 60
1027
+ 180
1028
+ -0.05
1029
+ -0.15
1030
+ 80
1031
+ 100 120 140 160
1032
+ 180 200
1033
+ -0.15
1034
+ -0.1
1035
+ -0.05
1036
+ 0
1037
+ 0.05
1038
+ 0.1
1039
+ 0.15
1040
+ 0
1041
+ 20
1042
+ 40
1043
+ 60
1044
+ 100 120 140 160
1045
+ 180 200
1046
+ -0.15
1047
+ -0.1
1048
+ -0.05
1049
+ 0
1050
+ 0.05
1051
+ 0.1
1052
+ 0.15
1053
+ 0.2
1054
+ 0
1055
+ 20
1056
+ 40
1057
+ 60
1058
+ 80
1059
+ 80
1060
+ 100 120 140 160 180 200
1061
+ -0.15
1062
+ -0.1
1063
+ -0.05
1064
+ 0
1065
+ 0.05
1066
+ 0.1
1067
+ 0.15
1068
+ 0.2
1069
+ 0
1070
+ 20
1071
+ 40
1072
+ 60
1073
+ Figure 11: Time responses to noise inputs e1(t) and e3(t).
1074
+ 1, . . . , N are random numbers where the norm of the vector
1075
+ c = [c1, c2, . . . , cN]⊤ is set to 0.01. For calculations, we have
1076
+ used N = 4000.
1077
+ The response, with phase randomized, is
1078
+ taken as
1079
+ xei(t) =
1080
+ N
1081
+
1082
+ k=1
1083
+ ck|Hei(i ωk )| sin (ωk t + arg (Hei(i ωk) ) + φk) ,
1084
+ i = 1, 2, . . ., 6,
1085
+ (44)
1086
+ where i = √−1, and the φk are random numbers uniformly
1087
+ distributed in the interval [0, 2 π].
1088
+ In Fig. 11, the amplification factor is consistent with the
1089
+ Bode plots of section 4.
1090
+ References
1091
+ [1] Youla, D. C., Bongiorno Jr, J. J., and Lu, C. N., Single-loop
1092
+ feedback-stabilization of linear multivariable dynamical plants.
1093
+ Automatica, 10(2): 159-173, (1974).
1094
+ [2] Blitzer, L., Inverted pendulum. American Journal of Physics,
1095
+ 33(12): 1076-1078, (1965).
1096
+ [3] Phelps III, F. M., and Hunter Jr, J. H., An analytical solution
1097
+ of the inverted pendulum. American Journal of Physics, 33(4):
1098
+ 285-295, (1965).
1099
+ [4] Kalmus, H. P., The inverted pendulum. American Journal of
1100
+ Physics, 38(7): 874-878, (1970).
1101
+ [5] Mori, S., Nishihara, H., and Furuta, K., Control of unstable
1102
+ mechanical system control of pendulum. International Journal
1103
+ of Control, 23(5): 673-692, (1976).
1104
+ [6] Cannon, R. H., Dynamics of Physical Systems. Courier Corpo-
1105
+ ration, (2003).
1106
+ [7] Dorf, R. C., and Bishop, R. H., Modern Control Systems. Pear-
1107
+ son Prentice Hall, (2008).
1108
+ [8] Furuta, K., Yamakita, M., and Kobayashi, S., Swing-up control
1109
+ of inverted pendulum using pseudo-state feedback. Proceedings
1110
+ of the Institution of Mechanical Engineers, Part I: Journal of
1111
+ Systems and Control Engineering, 206(4): 263-269, (1992).
1112
+ [9] Bradshaw, A., and Shao, J., Swing-up control of inverted pen-
1113
+ dulum systems. Robotica, 14(4): 397-405, (1996).
1114
+ [10] ˚Astr¨om, K. J., and Furuta, K., Swinging up a pendulum by
1115
+ energy control. Automatica, 36(2): 287-295, (2000).
1116
+ [11] Bugeja, M., Non-linear swing-up and stabilizing control of an
1117
+ inverted pendulum system. IEEE Region 8 EUROCON 2003.
1118
+ Computer as a Tool, 2: 437-441, (2003).
1119
+ [12] Siuka, A., and Sch¨oberl, M., Applications of energy based con-
1120
+ trol methods for the inverted pendulum on a cart. Robotics and
1121
+ Autonomous Systems, 57(10): 1012-1017, (2009).
1122
+ [13] Milton, J., Cabrera, J. L., Ohira, T., Tajima, S., Tonosaki, Y.,
1123
+ Eurich, C. W., and Campbell, S. A., The time-delayed inverted
1124
+ pendulum: implications for human balance control. Chaos: An
1125
+ Interdisciplinary Journal of Nonlinear Science, 19(2): 026110,
1126
+ (2009).
1127
+ [14] Lee, J., Mukherjee, R., and Khalil, H. K., Output feedback
1128
+ stabilization of inverted pendulum on a cart in the presence of
1129
+ uncertainties. Automatica, 54: 146-157, (2015).
1130
+ [15] Bogdanov, A., Optimal control of a double inverted pendulum
1131
+ on a cart. Oregon Health and Science University, Tech. Rep.
1132
+ CSE-04-006, OGI School of Science and Engineering, Beaver-
1133
+ ton, (2004).
1134
+ [16] Dastranj, M. R., Moghaddas, M., Ghezi, Y., and Rouhani,
1135
+ M., Robust Control of Inverted Pendulum Using FuzzySliding
1136
+ Mode Control and Genetic Algorithm. International Journal of
1137
+ Information and Electronics Engineering, 2(5): 773, (2012).
1138
+ [17] Nour, M. I. H., Ooi, J., and Chan, K. Y., Fuzzy logic control
1139
+ vs. conventional PID control of an inverted pendulum robot.
1140
+ International Conference on Intelligent and Advanced Systems,
1141
+ IEEE, 209-214, (2007).
1142
+ [18] Zabihifar, S. H., Yushchenko, A. S., and Navvabi, H., Ro-
1143
+ bust control based on adaptive neural network for Rotary in-
1144
+ verted pendulum with oscillation compensation. Neural Com-
1145
+ puting and Applications, 32(18): 14667-14679, (2020).
1146
+ [19] Bar-Kana, I., On parallel feedforward and simplified adaptive
1147
+ control. International Journal of Adaptive Control and signal
1148
+ Processing, 1: 95-109, (1987).
1149
+ [20] Palis, S., and Kienle, A., Discrepancy based control of particu-
1150
+ late processes. Journal of Process Control, 24(3): 33-46, (2014).
1151
+ [21] Kim, H., Kim, S., Back, J., Shim, H., and Seo, J. H., Design
1152
+ of stable parallel feedforward compensator and its application
1153
+ to synchronization problem. Automatica, 64: 208-216, (2016).
1154
+ [22] Golovin, I., and Palis, S., Design of parallel feed-forward com-
1155
+ pensator and its application to electromechanical system with
1156
+ friction load. IFAC-PapersOnLine, 50(1): 15524-15529, (2017).
1157
+ [23] Golovin, I., and Palis, S., PFC-Based Control of Friction-
1158
+ Induced Instabilities in Drive Systems. Machines, 9(7): 134,
1159
+ (2021).
1160
+ [24] Ogata, K., Modern Control Engineering (Vol. 5), Upper Saddle
1161
+ River, NJ: Prentice Hall, (2010).
1162
+ [25] R¨obenack, K., Palis, S., On the control of non-minimum phase
1163
+ systems using a parallel compensator. International Conference
1164
+ on System Theory, Control and Computing (ICSTCC),IEEE,
1165
+ 308-313, (2019).
1166
+ [26] Keel, L. H., and Bhattacharyya, S. P., Robust, fragile, or op-
1167
+ timal? IEEE Transactions on Automatic Control, 42(8): 1098-
1168
+ 1105, (1997).
1169
+
StE3T4oBgHgl3EQfDwk0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
UNE0T4oBgHgl3EQflQHp/content/tmp_files/2301.02485v1.pdf.txt ADDED
@@ -0,0 +1,2668 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Hard Jet Substructure in a Multi-stage Approach
2
+ Y. Tachibana,1, ∗ A. Kumar,2, 3, † A. Majumder,3 A. Angerami,4 R. Arora,5 S. A. Bass,6 S. Cao,7, 3 Y. Chen,8, 9
3
+ T. Dai,10 L. Du,2 R. Ehlers,11, 12 H. Elfner,13, 14, 15 W. Fan,6 R. J. Fries,16, 17 C. Gale,2 Y. He,18, 19
4
+ M. Heffernan,2 U. Heinz,20 B. V. Jacak,21, 22 P. M. Jacobs,21, 22 S. Jeon,2 Y. Ji,23 K. Kauder,24 L. Kasper,25
5
+ W. Ke,26 M. Kelsey,3 M. Kordell II,16, 17 J. Latessa,27 Y.-J. Lee,8, 9 D. Liyanage,20 A. Lopez,28 M. Luzum,28
6
+ S. Mak,23 A. Mankolli,25 C. Martin,11 H. Mehryar,27 T. Mengel,11 J. Mulligan,21, 22 C. Nattrass,11
7
+ D. Oliinychenko,22, 29 J.-F. Paquet,10 J. H. Putschke,3 G. Roland,8, 9 B. Schenke,30 L. Schwiebert,27
8
+ A. Sengupta,16, 17 C. Shen,3, 31 A. Silva,11 C. Sirimanna,3 D. Soeder,10 R. A. Soltz,3, 4 I. Soudi,3 J. Staudenmaier,14
9
+ M. Strickland,32 J. Velkovska,25 G. Vujanovic,3, 33 X.-N. Wang,34, 21, 22 R. L. Wolpert,23 and W. Zhao3
10
+ (The JETSCAPE Collaboration)
11
+ 1Akita International University, Yuwa, Akita-city 010-1292, Japan.
12
+ 2Department of Physics, McGill University, Montr´eal QC H3A 2T8, Canada.
13
+ 3Department of Physics and Astronomy, Wayne State University, Detroit MI 48201.
14
+ 4Lawrence Livermore National Laboratory, Livermore CA 94550.
15
+ 5Research Computing Group, University Technology Solutions,
16
+ The University of Texas at San Antonio, San Antonio TX 78249.
17
+ 6Department of Physics, Duke University, Durham, NC 27708, USA
18
+ 7Institute of Frontier and Interdisciplinary Science,
19
+ Shandong University, Qingdao, Shandong 266237, China
20
+ 8Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge MA 02139.
21
+ 9Department of Physics, Massachusetts Institute of Technology, Cambridge MA 02139.
22
+ 10Department of Physics, Duke University, Durham NC 27708.
23
+ 11Department of Physics and Astronomy, University of Tennessee, Knoxville TN 37996.
24
+ 12Physics Division, Oak Ridge National Laboratory, Oak Ridge TN 37830.
25
+ 13GSI Helmholtzzentrum f¨ur Schwerionenforschung, 64291 Darmstadt, Germany.
26
+ 14Institute for Theoretical Physics, Goethe University, 60438 Frankfurt am Main, Germany.
27
+ 15Frankfurt Institute for Advanced Studies, 60438 Frankfurt am Main, Germany.
28
+ 16Cyclotron Institute, Texas A&M University, College Station TX 77843.
29
+ 17Department of Physics and Astronomy, Texas A&M University, College Station TX 77843.
30
+ 18Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter,
31
+ South China Normal University, Guangzhou 510006, China.
32
+ 19Guangdong-Hong Kong Joint Laboratory of Quantum Matter,
33
+ Southern Nuclear Science Computing Center, South China Normal University, Guangzhou 510006, China.
34
+ 20Department of Physics, The Ohio State University, Columbus OH 43210.
35
+ 21Department of Physics, University of California, Berkeley CA 94270.
36
+ 22Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley CA 94270.
37
+ 23Department of Statistical Science, Duke University, Durham NC 27708.
38
+ 24Department of Physics, Brookhaven National Laboratory, Upton NY 11973.
39
+ 25Department of Physics and Astronomy, Vanderbilt University, Nashville TN 37235.
40
+ 26Los Alamos National Laboratory, Theoretical Division, Los Alamos, NM 87545.
41
+ 27Department of Computer Science, Wayne State University, Detroit MI 48202.
42
+ 28Instituto de F`ısica, Universidade de S˜ao Paulo, C.P. 66318, 05315-970 S˜ao Paulo, SP, Brazil.
43
+ 29Institute for Nuclear Theory, University of Washington, Seattle WA, 98195.
44
+ 30Physics Department, Brookhaven National Laboratory, Upton NY 11973.
45
+ 31RIKEN BNL Research Center, Brookhaven National Laboratory, Upton NY 11973.
46
+ 32Department of Physics, Kent State University, Kent, OH 44242.
47
+ 33Department of Physics, University of Regina, Regina, SK S4S 0A2, Canada.
48
+ 34Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics,
49
+ Central China Normal University, Wuhan 430079, China.
50
+ We present predictions and postdictions for a wide variety of hard jet-substructure observables
51
+ using a multi-stage model within the JETSCAPE framework. The details of the multi-stage model
52
+ and the various parameter choices are described in Ref. [1]. A novel feature of this model is the
53
+ presence of two stages of jet modification: a high virtuality phase (modeled using MATTER), where
54
+ coherence effects diminish medium-induced radiation, and a lower virtuality phase (modeled using
55
+ LBT), where parton splits are fully resolved by the medium as they endure multiple scattering in-
56
+ duced energy loss. Energy loss calculations are carried out on event-by-event viscous fluid dynamic
57
+ backgrounds constrained by experimental data. The uniformed and consistent descriptions of multi-
58
+ ple experimental observables demonstrate the essential role of coherence effects and the multi-stage
59
+ modeling of the jet evolution. Using the best choice of parameters from Ref. [1], and with no further
60
+ tuning, we present calculations for the medium modified jet fragmentation function, the groomed
61
+ arXiv:2301.02485v1 [hep-ph] 6 Jan 2023
62
+
63
+ 2
64
+ jet momentum fraction zg and angular separation rg distributions, as well as the nuclear modifi-
65
+ cation factor of groomed jets. These calculations provide accurate descriptions of published and
66
+ preliminary data from experiments at RHIC and LHC. Furthermore, we provide predictions from
67
+ the multi-stage model for future measurements at RHIC.
68
+ I.
69
+ INTRODUCTION
70
+ In high-energy heavy-ion collisions, the high-transverse
71
+ momentum (pT ) partons (pT ⪆ 10 GeV) are generated
72
+ almost at the instant at which the incoming nuclei over-
73
+ lap. Such high pT partons are generated in parton-parton
74
+ exchanges with large momentum transfers Q ≫ ΛQCD.
75
+ They are typically produced far from their mass shell
76
+ and engender multiple collinear emissions produced over
77
+ a large time range. In the case of a heavy-ion collision,
78
+ the propagation and development of these parton show-
79
+ ers are strongly affected by the produced Quark Gluon
80
+ Plasma (QGP). Studying jet modification in nucleus-
81
+ nucleus collisions relative to proton-proton collisions, to-
82
+ gether with constraints from model-to-data comparison
83
+ provides unique opportunities to probe the properties of
84
+ the QGP [2–20].
85
+ The experimental attempts started at the Relativis-
86
+ tic Heavy Ion Collider (RHIC) with the observation of
87
+ suppression in the yield of single inclusive hadrons [21–
88
+ 25] and associated hadrons (dihadrons) [26–28] produced
89
+ with high transverse momentum relative to the yield
90
+ in proton-proton collisions. Since 2010, starting at the
91
+ Large Hadron Collider (LHC) and later at RHIC, the
92
+ ability of experiments evolved from single hadrons and
93
+ dihadrons to jets [29–31].
94
+ Over the last decade, experiments have attained the
95
+ ability to not just study the energy-momentum and cross
96
+ section of a jet but also to look at modifications of the
97
+ internal properties of the jet, often referred to as jet
98
+ substructure.
99
+ Based on current detector improvements
100
+ and accumulated high statistics data at RHIC and the
101
+ LHC, it is possible to analyze a vast variety of observ-
102
+ ables revealing different aspects of the jet-medium in-
103
+ teraction [32]. For example, the yield suppression and
104
+ internal structure of fully reconstructed jets, revealed in
105
+ observables such as the jet fragmentation function and
106
+ jet shape (respectively), provide details on the diffusion
107
+ of jet energy and momentum in momentum or angular
108
+ space due to the interaction with the medium [29–31, 33–
109
+ 52]. Even the structural modification of hard partonic
110
+ branching is now potentially accessible through groomed
111
+ jet observables [53–58].
112
+ On the theory side, many studies have attempted to
113
+ describe and understand the jet-medium interaction by
114
+ constructing models that reproduce these various observ-
115
+ ables or propose predictions and new observables [59–79].
116
+ In particular, to obtain a universal understanding, it is
117
+ ∗ Corresponding author: [email protected]
118
+ † Corresponding author: [email protected]
119
+ essential to simultaneously explain multiple observables,
120
+ ultimately all observables, with a consistent theoretical
121
+ picture. Therefore, Monte Carlo calculations, which can
122
+ generate experiment-like events by a single model, are
123
+ a powerful tool for theoretical approaches because they
124
+ enable one to calculate a wide range of event-by-event
125
+ defined jet observables [80–113].
126
+ Jets evolve dynamically, moving through the expand-
127
+ ing medium, and generating more partons from splits
128
+ and interactions with the dense medium. The original
129
+ partons start at very high virtuality, and thus, the early
130
+ splits have a small transverse size. These splittings from
131
+ the leading parton and the still highly-virtual daugh-
132
+ ters are driven by their individual virtualities, with mi-
133
+ nor medium correction via the scattering, strongly sup-
134
+ pressed due to their small transverse size. We refer to
135
+ these as Vacuum Like Emissions (VLE) [114]. To simu-
136
+ late the VLEs, taking into account the reduction in the
137
+ effective interaction rate with scale dependence, an event
138
+ generator such as MATTER [115, 116] can be employed.
139
+ With repeated splittings, the virtuality of the partons
140
+ reduces to the point that splits are widely separated in
141
+ time. With decreasing virtuality, the transverse size of
142
+ the parton becomes larger, thereby increasing the rate
143
+ of interaction with the medium, which in turn triggers
144
+ more radiation. Thus, the main mechanism causing par-
145
+ ton splittings changes dynamically in the medium. The
146
+ evolution of such partons at lower virtuality but en-
147
+ ergy still large enough to treat the medium interaction
148
+ perturbatively can be approximated by kinetic theory-
149
+ based approaches for on-shell particles, as implemented
150
+ by generators such as LBT [90, 92, 96, 97], or MAR-
151
+ TINI [84, 111, 113].
152
+ As partons transition to energies
153
+ and virtualities close to those of the QGP, they begin to
154
+ undergo strong coupling [89] and thermalization with the
155
+ medium [117]. Thus, jets interact with the medium over
156
+ a wide range of scales, which requires incorporating mul-
157
+ tiple generators at different scales for simulations [17].
158
+ JETSCAPE is a general-purpose framework for Monte
159
+ Carlo simulations of the complete evolution in high-
160
+ energy heavy-ion collisions [1, 118–124]. The framework
161
+ is designed to be as general and extensive as possible
162
+ while modularizing each physics element involved in a
163
+ collision event, such as the generation of geometric initial
164
+ conditions, hydrodynamic evolution of the soft sector, jet
165
+ production by hard scattering, etc. so that users can em-
166
+ ploy a module based on their favorite physical description
167
+ for each. For the in-medium parton shower evolution, the
168
+ most distinctive feature of the JETSCAPE framework is
169
+ its support for multi-stage descriptions that, by stitching
170
+ multiple models together, cover a broader range of scales.
171
+ Depending on the virtuality or energy of a parton, each
172
+ model becomes active to handle the parton shower evo-
173
+
174
+ 3
175
+ lution interactions with the medium.
176
+ Recently, we systematically studied the energy loss of
177
+ large-transverse momentum particles, jets, and charmed
178
+ particles using a multi-stage model, combining two mod-
179
+ ules, MATTER for high-virtual parton shower and LBT
180
+ for low virtuality, developed within the JETSCAPE
181
+ framework in Refs. [1, 124].
182
+ Our simulations indicate
183
+ that the single high-pT particle spectra are dominated
184
+ by the large virtuality phase simulated by the MATTER
185
+ module. On the other hand, to describe the suppression
186
+ of reconstructed jets and D mesons, we found that the
187
+ energy loss of soft daughter partons and heavy quarks
188
+ is governed by the low-virtuality scattering dominated
189
+ phase simulated by the LBT module.
190
+ One further important insight from our prior work is
191
+ that the reduction of the interaction with the medium
192
+ at high virtuality due to coherence effects plays a crucial
193
+ role in explaining the weak suppression of single charged
194
+ particles with pT ⪆ 10 GeV. These coherence effects oc-
195
+ cur because the partons probing the medium have a small
196
+ transverse size when the virtuality is large. A section of
197
+ QGP resolved at such a shorter distance scale appears
198
+ more dilute, resulting in fewer interactions [125].1
199
+ Coherence effects implemented in MATTER drasti-
200
+ cally improve the description of the transverse momen-
201
+ tum dependence of the nuclear modification factor for
202
+ inclusive single-charged particles, even at the qualitative
203
+ functional behavior level. In contrast, for reconstructed
204
+ jets at the currently available collision energies, coher-
205
+ ence effects are not visible in the transverse momentum
206
+ dependence of the nuclear modification factor, which only
207
+ necessitated a readjustment of the overall medium cou-
208
+ pling parameter αfix
209
+ s . Thus, it is essential to search for
210
+ the role of coherence effects in the evolution of jet show-
211
+ ering patterns by examining further inner jet structure
212
+ modification.
213
+ In this paper, we systematically analyze the observ-
214
+ ables characterizing the internal structure of jets using
215
+ the results of the exact same numerical simulations with
216
+ MATTER+LBT that were used to study the nuclear
217
+ modification factors for reconstructed jets and high pT
218
+ single-charged particles in Ref. [1]. The goal is to explore
219
+ the details of the interaction strength at each scale on
220
+ the internal structure of the jet. In particular, we exam-
221
+ ine the groomed jet observables, which display the effect
222
+ of jet-medium interactions at the early high-virtuality
223
+ stage, and the jet fragmentation function, which shows
224
+ the medium effect on partons throughout a wide range
225
+ of scales. In this work, we do not re-tune any parameters
226
+ and employ those obtained in our previous work [1].
227
+ The paper is organized as follows. In Sec. II, salient
228
+ characteristics of the underlying model are presented. In
229
+ Subsec. II A, an overview of the framework and setup is
230
+ 1 In several other models, e.g., those in Refs [102, 103], coherence
231
+ effects are implicitly taken into account, without detailed formu-
232
+ lations, by turning off the medium effect at high virtuality.
233
+ outlined. Subsection II B is devoted to formulating co-
234
+ herence effects. This is followed by an investigation of
235
+ the medium modification of jet substructure observables,
236
+ focusing on coherence effects, by presenting results from
237
+ our model calculations in Sec. III. Here, we also make
238
+ predictions for the upcoming measurements of the jet
239
+ substructure observables at RHIC. A summary of our re-
240
+ sults and concluding remarks are presented in Sec. IV.
241
+ The Appendix is dedicated to the presentation of our
242
+ predictions of jet RAA at the top RHIC energy for bench-
243
+ marking purposes.
244
+ II.
245
+ MODEL
246
+ JETSCAPE is a general-purpose event generator
247
+ framework where different sub event generators can be
248
+ included in a modular fashion, producing an extensive
249
+ end-to-end simulation of a heavy-ion collision.
250
+ In this
251
+ paper, we will use the results of simulations that were
252
+ generated in Ref. [1] to calculate all jet substructure ob-
253
+ servables.
254
+ This is not just for convenience but rather
255
+ to demonstrate how the exact same simulations can si-
256
+ multaneously describe both the jet and leading hadron
257
+ suppression, as well as several jet substructure observ-
258
+ ables.
259
+ To that end, only a very brief overview of the compo-
260
+ nents of the simulation will be provided in this section.
261
+ The reader may refer to Ref. [1] for specific details of the
262
+ physics included in a MATTER+LBT simulation within
263
+ the JETSCAPE framework. Computational aspects of
264
+ the JETSCAPE framework are described in great detail
265
+ in Ref. [118], while the basic physics of multi-stage sim-
266
+ ulators is described in Ref. [126].
267
+ A.
268
+ Overview
269
+ To explore the medium modification of jet substruc-
270
+ ture, we perform simulations of jet events in high-energy
271
+ nucleus-nucleus collisions utilizing the full framework of
272
+ JETSCAPE in two separate steps. First, we calculate the
273
+ event-by-event space-time profiles of the QGP medium
274
+ in nucleus+nucleus (A+A) collisions for the estimation
275
+ of the local medium effect on parton shower evolution.
276
+ For this part, we perform simulations of (2+1)-D free-
277
+ streaming pre-equilibrium evolution [127] and subsequent
278
+ viscous hydrodynamic evolution by the (2+1)D VISHNU
279
+ code package [128] with the initial condition generated by
280
+ TRENTo [129]. Here the MAP parameters obtained by
281
+ Bayesian calibration in Ref. [130] are used for the LHC
282
+ energy calculations, while hand-tuned parameters were
283
+ used for top RHIC energy.
284
+ In the second step, the binary collision distribution
285
+ from the same TRENTo initial condition as for the
286
+ medium is used to sample the transverse position of a
287
+ hard scattering.
288
+ The hard scattering is produced by
289
+ Pythia 8 [131] with initial state radiation (ISR) and
290
+
291
+ 4
292
+ multiparton interaction (MPI) turned on, and final state
293
+ radiation (FSR) turned off. The produced partons in the
294
+ hard scattering then undergo the multi-stage in-medium
295
+ parton shower evolution within the JETSCAPE frame-
296
+ work. In this study, we use a combination of MATTER
297
+ and LBT modules as described in Ref. [1].
298
+ The partons produced by hard scattering are first
299
+ passed
300
+ to
301
+ the
302
+ MATTER
303
+ module,
304
+ which
305
+ simulates
306
+ virtuality-ordered splitting of high-energy partons incor-
307
+ porating medium effects [115, 116]. This description by
308
+ MATTER is valid for partons with virtuality sufficiently
309
+ larger than the accumulated transverse momentum and
310
+ virtuality generated by scattering from the medium.
311
+ Partons whose virtuality is reduced by showering in
312
+ MATTER are then transferred to LBT at a transition
313
+ scale.
314
+ In LBT, the kinetic theory for on-shell partons
315
+ with elastic and inelastic scatterings with medium con-
316
+ stituents is applied [90, 92, 132].
317
+ The parton split-
318
+ tings under this description are entirely scattering-driven.
319
+ In the multi-stage approach of the JETSCAPE frame-
320
+ work, virtuality-dependent switching between modules
321
+ is done bi-directionally on a per-parton basis using a
322
+ switching parameter Q2
323
+ sw. If the virtuality of the par-
324
+ ton Q2 = pµpµ − m2 falls below Q2
325
+ sw, it is then sent
326
+ from MATTER to LBT. Conversely, the parton is re-
327
+ turned to MATTER if its virtuality exceeds Q2
328
+ sw again,
329
+ or it goes out of the dense medium. The transition from
330
+ medium-like back to vacuum-like emission takes place at
331
+ a boundary with a temperature Tc = 0.16 GeV. In this
332
+ study, Q2
333
+ sw is set to 4 GeV2. After all the partons are out-
334
+ side the QGP medium and have virtuality smaller than
335
+ the cut-off scale Q2
336
+ min = 1 GeV2, they are hadronized via
337
+ the Colorless Hadronization module, in which the Lund
338
+ string model of Pythia 8 is utilized.
339
+ In both MATTER and LBT modules, the medium
340
+ response effect is taken into account via recoil par-
341
+ tons [85, 88, 97, 98, 117, 133, 134].
342
+ In the recoil pre-
343
+ scription, the energy-momentum transfer is described by
344
+ scatterings between jet partons and medium partons. For
345
+ each scattering, a parton is sampled from the thermal
346
+ medium. Then, the scattered sampled parton is assumed
347
+ to be on-shell, and passed to LBT for its in-medium evo-
348
+ lution, assuming weak coupling with the medium. These
349
+ recoil partons and further accompanying daughter par-
350
+ tons are collectively hadronized with the other jet shower
351
+ partons. On the other hand, a deficit of energy and mo-
352
+ mentum in the medium is left for each recoil process,
353
+ where a parton emanating from the medium is included,
354
+ post scattering, as a part of the jet. We treat this deficit
355
+ as a freestreaming particle, referred to as a hole parton,
356
+ and track it. The hole partons are hadronized separately
357
+ from other jet partons, and their energy and momentum
358
+ within each positive particle jet cone are subtracted in
359
+ the jet clustering routine to ensure energy-momentum
360
+ conservation.
361
+ In the later stages of evolution, where the energy of
362
+ a jet shower parton reaches a comparable scale to the
363
+ ambient temperature, the mean free path is no longer
364
+ large enough to apply the kinetic theory-based approach
365
+ with the recoil prescription.
366
+ In principle, such soft
367
+ components of jets are supposed to be thermalized and
368
+ evolve hydrodynamically as part of the bulk medium
369
+ fluid [20, 135–140]. As in Refs. [141–151], implementa-
370
+ tion of models based on such a description is proposed,
371
+ and there are some studies of the hydrodynamic medium
372
+ response to jets using it [72, 74, 95, 112, 117, 152–156].
373
+ However, with such an implementation of the hydrody-
374
+ namic medium response, the computational cost for a
375
+ systematic and exhaustive study covering various config-
376
+ urations, as presented in this paper, is enormously expen-
377
+ sive. Thus, in this paper, we mainly discuss the structure
378
+ of the hard part of the jet, where the contributions of such
379
+ very soft components are relatively small. A further com-
380
+ prehensive investigation with more detailed modeling of
381
+ the medium response in jet modification is left for future
382
+ work.
383
+ To investigate the modification of jet substructures by
384
+ medium effects in A+A collisions, the calculations of the
385
+ same observables for p+p collisions are necessary as ref-
386
+ erences. For such calculations, the parton shower evolu-
387
+ tion modules are replaced entirely by MATTER with no
388
+ in-medium scattering. This setup for p+p collisions of
389
+ JETSCAPE, referred to as the JETSCAPE PP19 tune,
390
+ is equivalent to the limit of no medium effect in the event
391
+ and is detailed in Ref. [119].
392
+ B.
393
+ Coherence Effects at High Virtuality
394
+ In this study, we focus on coherence effects [114, 125,
395
+ 157–159] on the interaction of a highly virtual parton
396
+ with the medium and explore their manifestation in jet
397
+ substructure modification. In Ref. [125], it was demon-
398
+ strated that a hard parton with large virtuality resolves
399
+ the very short-distance structure of the medium via the
400
+ exchange of a gluon whose momentum is much larger
401
+ than the medium temperature.
402
+ These coherence ef-
403
+ fects are formulated with the continuous evolution of the
404
+ medium-resolution scale and give a gradual reduction of
405
+ jet parton-medium interaction as a function of the virtu-
406
+ ality.
407
+ For jet quenching calculations, coherence effects can
408
+ be effectively implemented by introducing a modulation
409
+ factor f(Q2), which diminishes as a function of the parent
410
+ parton’s virtuality Q2, in the medium-modified splitting
411
+ function:
412
+ ˜Pa(y, Q2) = P vac
413
+ a
414
+ (y)
415
+ ×
416
+
417
+
418
+
419
+
420
+
421
+ 1 +
422
+ τ +
423
+ form
424
+
425
+ 0
426
+ dξ+ˆqa
427
+ HTL
428
+ ca
429
+ ˆqf(Q2)
430
+
431
+ 2 − 2 cos
432
+
433
+ ξ+
434
+ τ +
435
+ form
436
+ ��
437
+ y(1 − y)Q2(1 + χa)2
438
+
439
+
440
+
441
+
442
+
443
+ .
444
+ (1)
445
+ In the equation above, P vac
446
+ a
447
+ (y) is the Altarelli-Parisi
448
+ vacuum splitting function [160] for the parent par-
449
+ ton species a = (g, q, ¯q) with the forward light-cone
450
+
451
+ 5
452
+ momentum fraction of the daughter parton y, χa =
453
+ (δaq + δa¯q)y2m2
454
+ a/[y(1 − y)Q2 − y2m2
455
+ a] with ma being
456
+ the parent parton mass, and ca
457
+ ˆq =
458
+
459
+ 1 − y
460
+ 2 (δa,q + δa,¯q)
461
+
462
+
463
+ χa
464
+
465
+ 1 −
466
+
467
+ 1 − y
468
+ 2
469
+
470
+ χa
471
+
472
+ . The integration in Eq. (1) is taken
473
+ over light-cone time ξ+ with the upper bound τ +
474
+ form =
475
+ 2p+/Q2 being the formation time of the radiated par-
476
+ ton, where p+ = pµˆnµ/
477
+
478
+ 2 [with ˆnµ = (1, p/|p|)] is
479
+ the forward light-cone momentum of the parent parton.
480
+ The formulation of ˜Pa(y, Q2) in Eq. (1) is obtained us-
481
+ ing soft collinear effective theory within the higher twist
482
+ scheme [161, 162].
483
+ The parameterization of the virtuality-dependent mod-
484
+ ulation factor is given as [1]
485
+ f(Q2) =
486
+ � 1+10 ln2(Q2
487
+ sw)+100 ln4(Q2
488
+ sw)
489
+ 1+10 ln2(Q2)+100 ln4(Q2)
490
+ if Q2 > Q2
491
+ sw
492
+ 1
493
+ if Q2 ≤ Q2
494
+ sw
495
+ . (2)
496
+ When this explicit virtuality dependence is eliminated,
497
+ the strength of the medium effect is controlled solely by
498
+ the conventional transport coefficient for a low virtuality
499
+ (near on shell) parton from the hard-thermal-loop (HTL)
500
+ calculation [90],
501
+ ˆqa
502
+ HTL = Ca
503
+ 42ζ(3)
504
+ π
505
+ αrun
506
+ s
507
+ (p0T)αfix
508
+ s T 3 ln
509
+ �2p0T
510
+ m2
511
+ D
512
+
513
+ .
514
+ (3)
515
+ Here, Ca is the Casimir color factor for the hard parent
516
+ parton, ζ(3) ≈ 1.20205 is Ap´ery’s constant, p0 is the en-
517
+ ergy of the hard parent parton, T is the temperature at
518
+ its location, and m2
519
+ D = 4παfix
520
+ s T 2
521
+ 3
522
+
523
+ Nc + Nf
524
+ 2
525
+
526
+ is the Debye
527
+ screening mass for a QCD plasma with Nc = 3 colors and
528
+ Nf = 3 fermion flavors. The coupling strength αrun
529
+ s
530
+ (p0T)
531
+ is evaluated at the scale µ2 = p0T via the running cou-
532
+ pling constant,
533
+ αrun
534
+ s
535
+ (µ2) =
536
+
537
+
538
+ 11−2Nf /3
539
+ 1
540
+ ln(µ2/Λ2)
541
+ if µ2 > µ2
542
+ 0
543
+ αfix
544
+ s
545
+ if µ2 ≤ µ2
546
+ 0
547
+ ,
548
+ (4)
549
+ with Λ being chosen such that αrun
550
+ s
551
+ (µ2
552
+ 0) = αfix
553
+ s
554
+ at µ2
555
+ 0 =
556
+ 1 GeV2. In this framework, αfix
557
+ s
558
+ is the free parameter
559
+ controlling the overall interaction strength and chosen to
560
+ give the best fit to the experimental data of inclusive jet
561
+ RAA [1].
562
+ In this paper, we compare results from two different
563
+ setups: with and without the virtuality-dependent coher-
564
+ ence effects (referred to as Type-3 and Type-2 in Ref. [1],
565
+ respectively). For the case with coherence, ˜Pa(y, Q2) in
566
+ Eq. (1), with the virtuality-dependent modulation factor
567
+ from Eq. (2), is employed in the high virtuality phase
568
+ by MATTER, with αfix
569
+ s
570
+ = 0.3.2
571
+ In the setup without
572
+ 2 This configuration for MATTER+LBT with coherence effects
573
+ is referred to as JETSACPEv3.5 AA22 tune, and its results are
574
+ provided as defaults for comparisons with experimental and other
575
+ data.
576
+ coherence effects, the modulation factor is fixed to unity
577
+ [f(Q2) = 1] for any Q2 to eliminate the explicit virtual-
578
+ ity dependence. The best fit with leading hadron and jet
579
+ data is obtained with an αfix
580
+ s
581
+ = 0.25 for this case. We
582
+ will present results for jet substructure using events gen-
583
+ erated with the above parametrizations, both with and
584
+ without coherence effects.
585
+ III.
586
+ RESULTS
587
+ In this section, we present the results for jet sub-
588
+ structure observables in Pb+Pb collisions at √sNN =
589
+ 5.02 TeV based on the multi-stage (MATTER+LBT) jet
590
+ quenching model described in the previous section.
591
+ A
592
+ complementary study of the nuclear modification factor
593
+ RAA for reconstructed jets and charged particles using
594
+ the same model has been presented in Ref. [1]. Moreover,
595
+ this same formalism has been applied to study the heavy-
596
+ flavor observables and has been presented in Ref. [124].
597
+ To show the capability of the JETSCAPE framework,
598
+ we also provide predictions of the groomed jet observ-
599
+ ables, fragmentation function, and jet cone size depen-
600
+ dence of inclusive jets and charged jets for the upcom-
601
+ ing jet measurements at RHIC. Throughout this work,
602
+ the jet reconstruction and Soft Drop grooming are per-
603
+ formed using the FastJet package [163, 164] with FastJet
604
+ Contrib [165].
605
+ A.
606
+ Groomed jet observables
607
+ In this subsection, we present the observables ob-
608
+ tained via Soft Drop grooming algorithm [166–168]. The
609
+ Soft Drop procedure removes the contributions from soft
610
+ wide-angle radiation and enables access to the hard par-
611
+ ton splittings during the jet evolution. In this algorithm,
612
+ first, jets are constructed by a standard jet finding algo-
613
+ rithm such as the anti-kt algorithm [169] with a definite
614
+ jet cone size R. Then, the constituents of an anti-kt jet
615
+ are again reclustered by the Cambridge-Aachen (C/A)
616
+ algorithm [170, 171] to form a pairwise clustering tree.
617
+ The next step is to trace back the C/A tree. Here, one
618
+ declusters the C/A jet by undoing the last step of the
619
+ C/A clustering and selecting the resulting two prongs.
620
+ The two prongs are checked to see if they satisfy the Soft
621
+ Drop condition, given as:
622
+ min (pT,1, pT,2)
623
+ pT,1 + pT,2
624
+ > zcut
625
+ �∆R12
626
+ R
627
+ �β
628
+ ,
629
+ (5)
630
+ where pT,1 and pT,2 are the transverse momenta of the
631
+ prongs, ∆R12 =
632
+
633
+ (η1 − η2)2 + (φ1 − φ2)2 is the radial
634
+ distance between the prongs in the rapidity-azimuthal
635
+ angle plane, zcut and β are parameters controlling the
636
+ grooming procedure. If the condition is failed, the prong
637
+ with the larger pT of the pair is further declustered into
638
+ a pair of prongs. This process is repeated until one finds
639
+
640
+ 6
641
+ a pair of prongs satisfying the Soft Drop condition. The
642
+ resulting pair of prongs are used to compute the groomed
643
+ jet observables. It is worth noting that there may exist
644
+ cases in which no prong pair passing the soft-drop condi-
645
+ tion is eventually found even if the C/A tree is traversed
646
+ back to the end; such cases are referred to as “Soft Drop
647
+ fail”.
648
+ 1.
649
+ Jet splitting momentum fraction
650
+ Here we study the medium modification of the jet split-
651
+ ting momentum fraction zg, which is defined as the left-
652
+ hand side of Eq. (5) in the case with the prong pair pass-
653
+ ing the Soft Drop condition.
654
+ Figure 1 shows zg distributions for charged jets in p+p
655
+ collisions at √s = 5.02 TeV defined as
656
+ 1
657
+ σjet
658
+ dσSD,jet
659
+ dzg
660
+ =
661
+ 1
662
+ Njet
663
+ dNSD,jet
664
+ dzg
665
+ ,
666
+ (6)
667
+ where Njet is the number of inclusive jets, NSD,jet is the
668
+ number of jets passing the Soft Drop condition and σjet,
669
+ σSD,jet are the corresponding cross sections.
670
+ The Soft
671
+ Drop parameters are set as zcut = 0.2 and β = 0. The re-
672
+ sults from the JETSCAPE PP19 tune for different pch,jet
673
+ T
674
+ ranges and jet cone sizes are compared with the experi-
675
+ mental data from ALICE. Some small discrepancies can
676
+ be seen, but they are mostly compatible within uncer-
677
+ tainty.
678
+ In Fig. 2, the modification of the zg distribution for
679
+ charged jets is presented as the ratio of the distribution
680
+ in Pb+Pb to p+p collisions at √sNN = 5.02 TeV. Both
681
+ results, with and without consideration of coherence ef-
682
+ fects, do not exhibit significant modification and are con-
683
+ sistent with the experimental data. This indicates that
684
+ the medium effects on the functional form for the mo-
685
+ mentum fraction y of the splitting function are small in
686
+ hard partonic splittings. To be clear, the entire ensemble
687
+ of jets in Pb+Pb that are included in this analysis is in-
688
+ deed modified by the medium. Looking at these results
689
+ and the experimental data, one could imagine two pos-
690
+ sibilities: (i) The sample of jets that pass the soft drop
691
+ condition is biased towards jets that are unmodified, and
692
+ (ii) the jets are modified, but this modification does not
693
+ affect the momentum fraction distribution of the prongs
694
+ produced in the hardest split.
695
+ In the subsequent sub-
696
+ section on the angle between the prongs, we will demon-
697
+ strate that it is indeed the latter of the two possibilities.
698
+ This indicates that most of the modification of the jet
699
+ may take place at softer momenta, i.e., the hardest split
700
+ is not affected by the medium at all.
701
+ Next, for upcoming measurements at RHIC, we present
702
+ the prediction of the modification of the zg distribution
703
+ for charged jets in 0-10% Au+Au collisions at √sNN =
704
+ 200 GeV from MATTER+LBT with coherence effects in
705
+ Fig. 3. The trend is similar to the results observed at the
706
+ LHC collision energy and does not show any significant
707
+ nuclear effects for the kinematic configurations consid-
708
+ ered.
709
+ 2.
710
+ Jet splitting radius
711
+ Next, we study the medium modification of jet split-
712
+ ting radius rg, which is defined as the radial distance
713
+ ∆R12 of the prong pair passing the Soft Drop condition.
714
+ In Fig. 4, rg distributions defined as
715
+ 1
716
+ σjet
717
+ dσSD,jet
718
+ d (rg/R) =
719
+ 1
720
+ Njet
721
+ dNSD,jet
722
+ d (rg/R),
723
+ (7)
724
+ are shown for charged jets in p+p collisions at √s =
725
+ 5.02 TeV. The results from the JETSCAPE PP19 tune
726
+ show good agreement with the ALICE data, particularly
727
+ for the cases with zcut = 0.2.
728
+ Figure 5 shows the modification of rg distribution for
729
+ charged jets in Pb+Pb collisions at √sNN = 5.02 TeV.
730
+ Our full results with coherence effects capture the trend
731
+ observed in experimental data: Enhancement at small
732
+ rg and suppression at large rg. In particular, the agree-
733
+ ments within uncertainties can be seen for the case with
734
+ zcut = 0.2. For the 0–10% most central bin, the result
735
+ without coherence effects is shown for comparison.
736
+ It
737
+ gives a slightly smaller slope, but no conclusion can be
738
+ drawn within the current uncertainties. Combined with
739
+ the results for the zg distribution, we obtain the clear con-
740
+ clusion that these jets passing the Soft Drop condition
741
+ are indeed modified, but predominantly in their softer
742
+ components rather than in the hard partonic splittings.
743
+ For jets originally having a larger hard-splitting angle,
744
+ the soft component diffusing due to the medium effect is
745
+ more likely to leave the jet cone, resulting in more consid-
746
+ erable energy loss. Thus, jets with larger hard splitting
747
+ angles are less likely to be triggered, and the narrowing
748
+ is observed as the yield ratio of jets with smaller splitting
749
+ angles increases.
750
+ Motivated by the recent analysis by ATLAS [58], we
751
+ also calculated the nuclear modification factor RAA for
752
+ full jets with different rg. Figures 6 and 7 show the RAA
753
+ results as a function of pjet
754
+ T
755
+ and rg, respectively. Here,
756
+ RAA is defined as
757
+ RAA =
758
+ 1
759
+ ⟨Ncoll⟩
760
+ d2NSD,jet
761
+ drgdpjet
762
+ T
763
+ ���
764
+ AA
765
+ d2NSD,jet
766
+ drgdpjet
767
+ T
768
+ ���
769
+ pp
770
+ ,
771
+ (8)
772
+ for jets passing the Soft Drop condition with a finite value
773
+ of rg, and
774
+ RAA =
775
+ 1
776
+ ⟨Ncoll⟩
777
+ dN
778
+ incl/rg=0
779
+ jet
780
+ dpjet
781
+ T
782
+ ����
783
+ AA
784
+ dN
785
+ incl/rg=0
786
+ jet
787
+ dpjet
788
+ T
789
+ ����
790
+ pp
791
+ ,
792
+ (9)
793
+ for inclusive jets and jets failing the Soft Drop condition
794
+ (rg = 0), where N incl/rg=0
795
+ jet
796
+ is the number of triggered jets
797
+
798
+ 7
799
+ 0
800
+ 2
801
+ 4
802
+ 6
803
+ 8
804
+ 1
805
+ σjet
806
+ dσSD,jet
807
+ dzg
808
+ pp, √s = 5.02 TeV
809
+ Charged Jets, anti-kt
810
+ Soft Drop zcut = 0.2, β = 0
811
+ R=0.2, |ηch,jet|<0.7
812
+ 60<pch,jet
813
+ T
814
+ <80 GeV
815
+ R=0.4, |ηch,jet|<0.5
816
+ 80<pch,jet
817
+ T
818
+ <100 GeV
819
+ ALICE [PRL 128, no.10, 102001 (2022)]
820
+ JETSCAPE [MATTER (vacuum)]
821
+ R=0.4, |ηch,jet|<0.5
822
+ 60<pch,jet
823
+ T
824
+ <80 GeV
825
+ 0.2
826
+ 0.3
827
+ 0.4
828
+ zg
829
+ 0.5
830
+ 1.0
831
+ 1.5
832
+ MC/Exp.
833
+ 0.2
834
+ 0.3
835
+ 0.4
836
+ zg
837
+ 0.2
838
+ 0.3
839
+ 0.4
840
+ 0.5
841
+ zg
842
+ FIG. 1. (Color online) Distributions of jet splitting momentum fraction zg for charged jets in p+p collisions at √s = 5.02 TeV
843
+ and the ratios for different jet cone size R, and pch,jet
844
+ T
845
+ range. The Soft Drop parameters are zcut = 0.2 and β = 0. The
846
+ solid lines and circles with statistical error bars show the results from JETSCAPE and the experimental data from ALICE
847
+ Collaboration [57], respectively. The bands indicate the systematic uncertainties of the experimental data.
848
+ 0.2
849
+ 0.3
850
+ 0.4
851
+ zg
852
+ 0.0
853
+ 0.5
854
+ 1.0
855
+ 1.5
856
+ 2.0
857
+ PbPb
858
+ pp
859
+
860
+ 1
861
+ σjet
862
+ dσSD,jet
863
+ dzg
864
+
865
+ PbPb, √sNN = 5.02 TeV
866
+ Charged Jets, anti-kt
867
+ Soft Drop zcut = 0.2, β = 0
868
+ 0-10%
869
+ R=0.2, |ηch,jet|<0.7
870
+ 60<pch,jet
871
+ T
872
+ <80 GeV
873
+ 0.2
874
+ 0.3
875
+ 0.4
876
+ zg
877
+ 0-10%
878
+ R=0.4, |ηch,jet|<0.5
879
+ 80<pch,jet
880
+ T
881
+ <100 GeV
882
+ ALICE [PRL 128, no.10, 102001 (2022)]
883
+ JETSCAPE [MATTER+LBT (w/ coherence)]
884
+ JETSCAPE [MATTER+LBT (w/o coherence)]
885
+ 0.2
886
+ 0.3
887
+ 0.4
888
+ 0.5
889
+ zg
890
+ 30-50%
891
+ R=0.4, |ηch,jet|<0.5
892
+ 60<pch,jet
893
+ T
894
+ <80 GeV
895
+ FIG. 2. (Color online) Ratios of zg distributions for charged jets between Pb+Pb and p+p collisions at √sNN = 5.02 TeV
896
+ for different centrality, jet cone size R, and pch,jet
897
+ T
898
+ range. The Soft Drop parameters are zcut = 0.2 and β = 0. The solid
899
+ and dashed lines with statistical error bars show the results from MATTER+LBT of JETSCAPE with and without coherence
900
+ effects, respectively. For comparison, the experimental data from the ALICE Collaboration [57] are shown by squares with
901
+ statistical errors (bars) and systematic uncertainties (bands).
902
+ for each condition.
903
+ The denominator is calculated for
904
+ p+p collisions, and the numerator is for a given central-
905
+ ity class of A+A collisions, where ⟨Ncoll⟩ is the average
906
+ number of binary nucleon-nucleon collisions in the given
907
+ centrality class.
908
+ Figure 6 shows jet RAA as a function of pjet
909
+ T
910
+ for dif-
911
+ ferent rg intervals. As already described in Ref. [1], for
912
+ the case of inclusive jets (top left plot in Fig. 6), no clear
913
+ differences due to coherence effects are observed in the
914
+ jet RAA. Note that the overall medium coupling param-
915
+ eter αfix
916
+ s
917
+ is adjusted separately for each setup (αfix
918
+ s
919
+ = 0.3
920
+ for the case with coherence effects, and 0.25 for the case
921
+ without coherence effects). It should also be noted that
922
+ our simulations, which do not contain any nuclear shad-
923
+ owing effects, have a somewhat sharper rise than the AT-
924
+ LAS data and are somewhat consistent with the data
925
+ from CMS.
926
+ Moving to the case of Soft Drop fail (top middle plot
927
+ in Fig. 6), one notices that the data clearly prefer the
928
+ simulation with coherence as opposed to that without
929
+ coherence.
930
+ The reduced suppression for the case with
931
+ coherence can be understood under the assumption that
932
+ the prong structure is established in the high virtuality or
933
+ MATTER stage. In this stage, the effective jet quench-
934
+
935
+ 000000
936
+ 582000000
937
+ 5828
938
+ 0.2
939
+ 0.3
940
+ 0.4
941
+ zg
942
+ 0.0
943
+ 0.5
944
+ 1.0
945
+ 1.5
946
+ 2.0
947
+ AuAu
948
+ pp
949
+
950
+ 1
951
+ σjet
952
+ dσSD,jet
953
+ dzg
954
+
955
+ AuAu 0-10%, √sNN = 200 GeV
956
+ Charged Jets, anti-kt
957
+ Soft Drop zcut = 0.2, β = 0
958
+ R=0.2, |ηch,jet|<0.7
959
+ 0.2
960
+ 0.3
961
+ 0.4
962
+ 0.5
963
+ zg
964
+ R=0.4, |ηch,jet|<0.5
965
+ JETSCAPE
966
+ MATTER+LBT (w/ coherence)
967
+ 10 < pch,jet
968
+ T
969
+ < 30 GeV
970
+ 30 < pch,jet
971
+ T
972
+ < 50 GeV
973
+ FIG. 3. (Color online) Ratios of zg distributions for charged jets with R = 0.2 and |ηch,jet| < 0.7 (left), and R = 0.4 |ηch,jet| < 0.5
974
+ (right) between 0-10% Au+Au and p+p collisions at √sNN = 200 GeV from MATTER+LBT of JETSCAPE with coherence
975
+ effects. The Soft Drop parameters are zcut = 0.2 and β = 0. The solid and dashed lines with statistical error bars show the
976
+ results for 10 < pch,jet
977
+ T
978
+ < 30 GeV and 30 < pch,jet
979
+ T
980
+ < 50 GeV, respectively.
981
+ 0
982
+ 1
983
+ 2
984
+ 3
985
+ 4
986
+ 5
987
+ 6
988
+ 1
989
+ σjet
990
+ dσSD,jet
991
+ d(rg/R)
992
+ pp, √s = 5.02 TeV
993
+ Charged Jets, anti-kt
994
+ Soft Drop zcut = 0.2, β = 0
995
+ R=0.2, |ηch,jet|<0.7
996
+ 60<pch,jet
997
+ T
998
+ <80 GeV
999
+ Soft Drop zcut = 0.2, β = 0
1000
+ R=0.4, |ηch,jet|<0.5
1001
+ 60<pch,jet
1002
+ T
1003
+ <80 GeV
1004
+ ALICE [PRL 128, no.10, 102001 (2022)]
1005
+ JETSCAPE [MATTER (vacuum)]
1006
+ Soft Drop zcut = 0.4, β = 0
1007
+ R=0.4, |ηch,jet|<0.5
1008
+ 60<pch,jet
1009
+ T
1010
+ <80 GeV
1011
+ 0.00
1012
+ 0.05
1013
+ 0.10
1014
+ 0.15
1015
+ rg
1016
+ 0.5
1017
+ 1.0
1018
+ 1.5
1019
+ MC/Exp.
1020
+ 0.0
1021
+ 0.1
1022
+ 0.2
1023
+ 0.3
1024
+ rg
1025
+ 0.00
1026
+ 0.05
1027
+ 0.10
1028
+ 0.15
1029
+ 0.20
1030
+ rg
1031
+ FIG. 4. (Color online) Distributions of jet splitting radius rg for charged jets in p+p collisions at √s = 5.02 TeV and the ratios
1032
+ for different jet cone size R, and pch,jet
1033
+ T
1034
+ range. The Soft Drop parameters are zcut = 0.2 and β = 0. The solid lines and circles
1035
+ with statistical error bars show the results from JETSCAPE and the experimental data from the ALICE Collaboration [57],
1036
+ respectively. The bands indicate the systematic uncertainties of the experimental data.
1037
+ ing strength with the virtuality dependence ˆq · f(Q2) is
1038
+ smaller for the case with coherence effects compared to
1039
+ that without. For the case without coherence, the larger
1040
+ value of ˆq · f(Q2) = ˆq in the MATTER stage leads to the
1041
+ formation of wider prongs, leading to a reduction in the
1042
+ number of jets that fail the Soft Drop condition.
1043
+ It bears repeating yet again: The comparisons of simu-
1044
+ lations to data presented in this paper do not include any
1045
+ parameter tuning to fit any substructure data. All pa-
1046
+ rameter tuning was carried out in the calculation of the
1047
+ single high-pT particle and jet suppressions in Ref. [1].
1048
+ All simulation results presented in this paper are predic-
1049
+ tions.
1050
+ Figure 7 shows jet RAA as a function of rg for different
1051
+ pjet
1052
+ T
1053
+ intervals.
1054
+ The yellow-shaded regions in the figure
1055
+ indicate the areas of bins containing contributions from
1056
+ jets with a transverse scale µ⊥ ≊ pjet
1057
+ T rg ⪅ 1 GeV, where
1058
+ the perturbative description of parton splitting in the
1059
+ model is not valid. To regulate the infra-red singularity
1060
+ in the splitting function, the model needs to specify a
1061
+ minimum cut-off scale for resolvable splitting [172], which
1062
+ here is Qmin = 1 GeV.
1063
+ In other words, the jet structure of the yellow-shaded
1064
+ region is governed by the effects from non-perturbative
1065
+ dynamics, namely hydrodynamic evolution of the soft
1066
+
1067
+ 000000
1068
+ 582000000
1069
+ 5829
1070
+ 0.00
1071
+ 0.05
1072
+ 0.10
1073
+ 0.15
1074
+ rg
1075
+ 0.0
1076
+ 0.5
1077
+ 1.0
1078
+ 1.5
1079
+ 2.0
1080
+ PbPb
1081
+ pp
1082
+
1083
+ 1
1084
+ σjet
1085
+ dσSD,jet
1086
+ d(rg/R)
1087
+
1088
+ PbPb, √sNN = 5.02 TeV
1089
+ Charged Jets, anti-kt
1090
+ 0-10%
1091
+ Soft Drop zcut = 0.2, β = 0
1092
+ R=0.2, |ηch,jet|<0.7
1093
+ 60<pch,jet
1094
+ T
1095
+ <80 GeV
1096
+ 0.0
1097
+ 0.1
1098
+ 0.2
1099
+ 0.3
1100
+ rg
1101
+ 30-50%
1102
+ Soft Drop zcut = 0.2, β = 0
1103
+ R=0.4, |ηch,jet|<0.5
1104
+ 60<pch,jet
1105
+ T
1106
+ <80 GeV
1107
+ ALICE [PRL 128, no.10, 102001 (2022)]
1108
+ JETSCAPE [MATTER+LBT (w/ coherence)]
1109
+ JETSCAPE [MATTER+LBT (w/o coherence)]
1110
+ 0.00
1111
+ 0.05
1112
+ 0.10
1113
+ 0.15
1114
+ 0.20
1115
+ rg
1116
+ 30-50%
1117
+ Soft Drop zcut = 0.4, β = 0
1118
+ R=0.4, |ηch,jet|<0.5
1119
+ 60<pch,jet
1120
+ T
1121
+ <80 GeV
1122
+ FIG. 5. (Color online) Ratios of rg distributions for charged jets between Pb+Pb and p+p collisions at √sNN = 5.02 TeV for
1123
+ different centrality, jet cone size R, soft drop parameter zcut, and pch,jet
1124
+ T
1125
+ range. The solid and dashed lines with statistical error
1126
+ bars show the results from MATTER+LBT of JETSCAPE with and without coherence effects, respectively. For comparison,
1127
+ the experimental data from the ALICE Collaboration [57] are shown by squares with statistical errors (bars) and systematic
1128
+ uncertainties (bands).
1129
+ 0.0
1130
+ 0.2
1131
+ 0.4
1132
+ 0.6
1133
+ 0.8
1134
+ 1.0
1135
+ 1.2
1136
+ RAA
1137
+ Inclusive
1138
+ PbPb, 0-10%, √sNN = 5.02 TeV
1139
+ anti-kt, R = 0.4, |yjet| < 2.1
1140
+ Soft Drop, zcut = 0.2, β = 0.0
1141
+ rg = 0 (Soft Drop Fail)
1142
+ 0 < rg < 0.022
1143
+ 200
1144
+ 400
1145
+ 600
1146
+ 800 1000
1147
+ pjet
1148
+ T (GeV)
1149
+ 0.0
1150
+ 0.2
1151
+ 0.4
1152
+ 0.6
1153
+ 0.8
1154
+ 1.0
1155
+ RAA
1156
+ 0.022 < rg < 0.1153
1157
+ JETSCAPE
1158
+ [MATTER+LBT (w/ coherence)]
1159
+ JETSCAPE
1160
+ [MATTER+LBT (w/o coherence)]
1161
+ 200
1162
+ 400
1163
+ 600
1164
+ 800 1000
1165
+ pjet
1166
+ T (GeV)
1167
+ 0.1153 < rg < 0.2642
1168
+ ATLAS [arXiv:2211.11470]
1169
+ CMS (|ηjet| < 2.0) [JHEP 05, 284 (2021)]
1170
+ 200
1171
+ 400
1172
+ 600
1173
+ 800 1000
1174
+ pjet
1175
+ T (GeV)
1176
+ 0.2642 < rg < 0.4
1177
+ FIG. 6.
1178
+ (Color online) Nuclear modification factor RAA as a function of pjet
1179
+ T
1180
+ for inclusive jets, jets failing the Soft Drop
1181
+ condition (rg = 0), and groomed jets with different splitting radius rg in 0-10% Pb+Pb collisions at √sNN = 5.02 TeV. Jets
1182
+ are reconstructed with R = 0.4 at midrapidity |yjet| < 2.1. The Soft Drop parameters are zcut = 0.2 and β = 0. The solid
1183
+ and dashed lines with statistical error bars show the results from MATTER+LBT of JETSCAPE with and without coherence
1184
+ effects, respectively. The results are compared to ATLAS data [58] (squares) and CMS data for |ηjet| < 2.0 [39] (triangles) are
1185
+ shown with statistical errors (bars) and systematic uncertainties (bands).
1186
+ thermalized portion of jets (not modeled in this study),
1187
+ hadronization and subsequent dynamics, rather than the
1188
+
1189
+ 000000
1190
+ 582000000
1191
+ 58210
1192
+ perturbative parton-level dynamics. Note that one needs
1193
+ to examine the results shown in Figs. 5 and 6 with the
1194
+ same considerations for regions with small rg or small
1195
+ pjet
1196
+ T . In this regard, it should also be noted that the re-
1197
+ sults in Fig. 5 are for charged jets.
1198
+ Given that the calculation with coherence (solid red
1199
+ lines in the Figs. 6 and 7) have a larger αfix
1200
+ s
1201
+ than calcu-
1202
+ lations without coherence, there are a larger number of
1203
+ softer near collinear partons branched in the later low-
1204
+ virtuality stage, which leads to an enhancement of the
1205
+ RAA at non-perturbatively low rg, indicated by the yel-
1206
+ low band in Fig. 7. As a result, in this region, the solid
1207
+ red line (RAA with coherence) will always exceed the
1208
+ dashed green line (RAA calculated without coherence).
1209
+ This excess at very low rg, which emanates from the
1210
+ lack of non-perturbative modification of the jets in the
1211
+ simulation, also strongly affects the RAA as a function
1212
+ of pjet
1213
+ T
1214
+ for 0 < rg < 0.022, which is the top right plot
1215
+ in Fig. 6. As pjet
1216
+ T
1217
+ increases, the deviation of the curves
1218
+ from the data increases as more soft partons pile up at
1219
+ low momentum around the jet. This deviation will be
1220
+ addressed when a non-perturbative modification for soft
1221
+ partons radiated from the jet is included in the simula-
1222
+ tions.
1223
+ At very large rg, with rg > 0.2, the prong struc-
1224
+ ture as the transverse scale of the split exceeds µ⊥ ⪆
1225
+ 158 GeV × 0.2 ≈ 32 GeV can be completely dominated
1226
+ by the virtuality acquired by a parent parton at its pro-
1227
+ duction in the initial hard scattering. This is because,
1228
+ in this region, the initial virtuality is quite large, and
1229
+ furthermore, the formation time for the splitting is very
1230
+ short: τform ⪅ 2·(158 GeV)
1231
+ (32 GeV)2 ≈ 0.3 GeV−1 ≈ 0.06 fm. Thus,
1232
+ even without the interaction reduction due to coherence,
1233
+ no amount of scattering from the medium has much of
1234
+ an effect on the hard splitting. As a result, the RAA as a
1235
+ function of pjet
1236
+ T for the case of 0.2642 < rg < 0.4 shows no
1237
+ difference between the cases with and without coherence,
1238
+ as shown in the bottom panel of Fig. 6. This is also the
1239
+ case for rg ⪆ 0.2 in all the plots of Fig. 7.
1240
+ We finally address the region with 0.022 < rg <
1241
+ 0.26. Perturbative QCD should be applicable in this re-
1242
+ gion.
1243
+ Calculations without coherence effects include a
1244
+ ˆq · f(Q2) = ˆq that has a large value (growing with the
1245
+ logarithm of the energy) even in the high virtuality MAT-
1246
+ TER stage, given by Eq. (3). One notes in Fig. 7, for the
1247
+ case of the dashed green line (without coherence effects),
1248
+ that multiple scattering broadens the prong structure.
1249
+ This creates a depletion at lower rg and an enhancement
1250
+ around 0.02 ⪅ rg ⪅ 0.06, which eventually begins to dis-
1251
+ appear at large rg ⪆ 0.1. The broadening can be roughly
1252
+ estimated using the simple formula that
1253
+ k2
1254
+ ⊥ ≊ z(1 − z)
1255
+
1256
+ 2Eˆq ≈
1257
+
1258
+ Eˆq/8.
1259
+ (10)
1260
+ This yields the simple expression for the peak angle of
1261
+ the bump of the dashed green line as,
1262
+ θmax ≊ k⊥
1263
+ E ≈ (ˆq/8)1/4
1264
+ E3/4
1265
+ .
1266
+ (11)
1267
+ Using the above equation, one would obtain that if the
1268
+ energy of the jet were to double, the angle of the bump in
1269
+ the dashed green line in Fig. 7 would move down in rg by
1270
+ a factor of 23/4 ≈ 1.6. One notes that this is indeed the
1271
+ case in the 2nd and 4th panels of Fig. 7. The energy range
1272
+ between these doubles and the position of the bump in
1273
+ the green curve shift down in rg by about a factor of 1.5-
1274
+ 2. This different behavior, depending on the presence or
1275
+ absence of coherence effects, is also evident when shown
1276
+ as a function of pjet
1277
+ T from intermediate ranges of rg, as in
1278
+ Fig. 6.
1279
+ The bump structure of the jet RAA as a function of rg,
1280
+ which our results without coherence show, can also be
1281
+ seen in the prediction results from the JetMed model by
1282
+ Caucal et al. [102, 114, 173] and semi-analytical calcula-
1283
+ tion with pT -broadening effect by Ringer et al. [76] for
1284
+ the ATLAS measurements presented in Ref. [58]. How-
1285
+ ever, the data from ATLAS exhibit an almost monotoni-
1286
+ cally decreasing trend with no such clear bump structure
1287
+ for all pjet
1288
+ T
1289
+ intervals, which rather agrees with our MAT-
1290
+ TER+LBT results with coherence effects. This reveals
1291
+ that the medium effect is strongly suppressed at high
1292
+ virtuality, where hard partonic splitting passing the Soft
1293
+ Drop condition is likely to occur.
1294
+ Figure 8 presents our prediction for the modification
1295
+ of rg distribution for charged jets in 0-10% Au+Au col-
1296
+ lisions at √sNN = 200 GeV from MATTER+LBT with
1297
+ coherence effects. Similar to the LHC case, one finds en-
1298
+ hancement at small rg and slight suppression at large rg,
1299
+ which is more pronounced for jets with larger transverse
1300
+ momentum.
1301
+ B.
1302
+ Jet fragmentation function
1303
+ We now turn to the last jet substructure observable:
1304
+ the jet fragmentation function. Jet fragmentation func-
1305
+ tions are measured as a function of the track-particle
1306
+ transverse momentum ptrk
1307
+ T
1308
+ or longitudinal momentum
1309
+ fraction relative to the jet,
1310
+ z = ptrk
1311
+ T cos(∆r)
1312
+ pjet
1313
+ T
1314
+ ,
1315
+ (12)
1316
+ where ∆r =
1317
+
1318
+ (ηtrk − ηjet)2 + (φtrk − φjet)2. The frag-
1319
+ mentation functions are defined as
1320
+ D(z) =
1321
+ 1
1322
+ Njet
1323
+ dNtrk
1324
+ dz
1325
+ ,
1326
+ (13)
1327
+ D(ptrk
1328
+ T ) =
1329
+ 1
1330
+ Njet
1331
+ dNtrk
1332
+ dptrk
1333
+ T
1334
+ ,
1335
+ (14)
1336
+ where Njet is the number of triggered jets and Ntrk is
1337
+ the number of charged track particles detected inside the
1338
+ jet cones, ∆r < R. Our JETSCAPE PP19 results for
1339
+ the fragmentation functions are compared with the ex-
1340
+ perimental data by ATLAS in Fig. 9. For all available
1341
+ pjet
1342
+ T ranges, the discrepancies from the data are generally
1343
+ within 20% at most.
1344
+
1345
+ 11
1346
+ 10−2
1347
+ 10−1
1348
+ rg
1349
+ 0.0
1350
+ 0.2
1351
+ 0.4
1352
+ 0.6
1353
+ 0.8
1354
+ 1.0
1355
+ 1.2
1356
+ 1.4
1357
+ RAA
1358
+ 158 < pjet
1359
+ T < 1000 GeV
1360
+ PbPb, 0-10%, √sNN = 5.02 TeV
1361
+ anti-kt, R = 0.4, |yjet| < 2.1
1362
+ 10−2
1363
+ 10−1
1364
+ rg
1365
+ 158 < pjet
1366
+ T < 200 GeV
1367
+ Soft Drop, zcut = 0.2, β = 0.0
1368
+ 10−2
1369
+ 10−1
1370
+ rg
1371
+ 200 < pjet
1372
+ T < 316 GeV
1373
+ JETSCAPE
1374
+ [MATTER+LBT (w/ coherence)]
1375
+ JETSCAPE
1376
+ [MATTER+LBT (w/o coherence)]
1377
+ 10−2
1378
+ 10−1
1379
+ rg
1380
+ 316 < pjet
1381
+ T < 501 GeV
1382
+ ATLAS
1383
+ [arXiv:2211.11470]
1384
+ FIG. 7. (Color online) Nuclear modification factor RAA as a function of rg for jets with different pjet
1385
+ T
1386
+ in 0-10% Pb+Pb collisions
1387
+ at √sNN = 5.02 TeV. Jets are reconstructed with R = 0.4 at midrapidity |yjet| < 2.1. The Soft Drop parameters are zcut = 0.2
1388
+ and β = 0. The solid and dashed lines with statistical error bars show the results from MATTER+LBT of JETSCAPE with
1389
+ and without coherence effects, respectively. For comparison, the experimental data from the ATLAS Collaboration [58] are
1390
+ shown by squares with statistical errors (bars) and systematic uncertainties (bands). The yellow-shaded regions are the bin
1391
+ areas including the regime where the perturbation approach does not apply (see text for details).
1392
+ 0.00
1393
+ 0.05
1394
+ 0.10
1395
+ 0.15
1396
+ rg
1397
+ 0.0
1398
+ 0.5
1399
+ 1.0
1400
+ 1.5
1401
+ 2.0
1402
+ AuAu
1403
+ pp
1404
+
1405
+ 1
1406
+ σjet
1407
+ dσSD,jet
1408
+ d(rg/R)
1409
+
1410
+ AuAu 0-10%, √sNN = 200 GeV
1411
+ Charged Jets, anti-kt
1412
+ Soft Drop zcut = 0.2, β = 0
1413
+ R=0.2, |ηch,jet|<0.7
1414
+ 0.0
1415
+ 0.1
1416
+ 0.2
1417
+ 0.3
1418
+ 0.4
1419
+ rg
1420
+ R=0.4, |ηch,jet|<0.5
1421
+ JETSCAPE
1422
+ MATTER+LBT (w/ coherence)
1423
+ 10 < pch,jet
1424
+ T
1425
+ < 30 GeV
1426
+ 30 < pch,jet
1427
+ T
1428
+ < 50 GeV
1429
+ FIG. 8.
1430
+ (Color online) Ratios of rg distributions for charged jets with R = 0.2 and |ηch,jet| < 0.7 (left), and R = 0.4,
1431
+ |ηch,jet| < 0.5 (right) between 0-10% Au+Au and p+p collisions at √sNN = 200 GeV, from MATTER+LBT simulations within
1432
+ JETSCAPE, including coherence effects. The Soft Drop parameters are zcut = 0.2 and β = 0. The solid and dashed lines with
1433
+ statistical error bars show the results for 10 < pch,jet
1434
+ T
1435
+ < 30 GeV and 30 < pch,jet
1436
+ T
1437
+ < 50 GeV, respectively.
1438
+ In Fig. 10, we present the modification of the jet frag-
1439
+ mentation functions for full jets in 0-10% Pb+Pb col-
1440
+ lisions at √sNN = 5.02 TeV. Results from the MAT-
1441
+ TER+LBT simulations, both with and without coher-
1442
+ ence effects, are compared with the experimental data
1443
+ from ATLAS. All the simulation results and the data
1444
+ show qualitatively the same trends. While the track par-
1445
+ ticles at intermediate z are suppressed by the interactions
1446
+ with the medium and give the enhancement at small z,
1447
+ the large-z part is enhanced due to the less affected hard
1448
+ part of jets.
1449
+ In jet fragmentation functions, coherence effects are
1450
+ quantitatively visible as more prominent enhancements
1451
+ in the large-z region dominated by hadrons from leading
1452
+ partons of jets. Since the leading parton has the largest
1453
+ virtuality at the early stage in the jet shower evolution,
1454
+ the interaction reduction due to coherence affects this
1455
+ parton the most. As a result, the modification of large-z
1456
+ jet hadrons is further lessened, and the enhancement be-
1457
+ comes more substantial than the case without coherence
1458
+ effects. This is consistent with the weak energy loss of
1459
+ inclusive charged particles at high pT explained by co-
1460
+ herence effects presented in Refs. [1, 124].
1461
+ In conjunction with the behaviors in the high-z region,
1462
+ a slight difference can also be seen in the low-z region be-
1463
+ tween the two settings. Both results with and without
1464
+ coherence effects show a sizable enhancement at low-z
1465
+ mainly due to the medium response via recoils but still
1466
+
1467
+ 000000
1468
+ 582000000
1469
+ 58212
1470
+ 10−2
1471
+ 10−1
1472
+ 100
1473
+ 101
1474
+ 102
1475
+ 103
1476
+ D(z)
1477
+ 126< pjet
1478
+ T <158 GeV
1479
+ pp, √s = 5.02 TeV
1480
+ anti-kt, R = 0.4
1481
+ |yjet| < 0.3, ptrk
1482
+ T > 1 GeV
1483
+ 158< pjet
1484
+ T <200 GeV
1485
+ JETSCAPE
1486
+ [MATTER (vacuum)]
1487
+ 200< pjet
1488
+ T <251 GeV
1489
+ ATLAS
1490
+ [PRC 98, no.2, 024908 (2018)]
1491
+ 251< pjet
1492
+ T <316 GeV
1493
+ 10−2
1494
+ 10−1
1495
+ 100
1496
+ z
1497
+ 0.5
1498
+ 1.0
1499
+ 1.5
1500
+ MC/Exp.
1501
+ 10−2
1502
+ 10−1
1503
+ 100
1504
+ z
1505
+ 10−2
1506
+ 10−1
1507
+ 100
1508
+ z
1509
+ 10−2
1510
+ 10−1
1511
+ 100
1512
+ z
1513
+ 10−4
1514
+ 10−2
1515
+ 100
1516
+ D(ptrk
1517
+ T )
1518
+ 126< pjet
1519
+ T <158 GeV
1520
+ pp, √s = 5.02 TeV
1521
+ anti-kt, R = 0.4
1522
+ |yjet| < 0.3, ptrk
1523
+ T > 1 GeV
1524
+ 158< pjet
1525
+ T <200 GeV
1526
+ JETSCAPE
1527
+ [MATTER (vacuum)]
1528
+ 200< pjet
1529
+ T <251 GeV
1530
+ ATLAS
1531
+ [PRC 98, no.2, 024908 (2018)]
1532
+ 251< pjet
1533
+ T <316 GeV
1534
+ 100
1535
+ 101
1536
+ 102
1537
+ ptrk
1538
+ T (GeV)
1539
+ 0.5
1540
+ 1.0
1541
+ 1.5
1542
+ MC/Exp.
1543
+ 100
1544
+ 101
1545
+ 102
1546
+ ptrk
1547
+ T (GeV)
1548
+ 100
1549
+ 101
1550
+ 102
1551
+ ptrk
1552
+ T (GeV)
1553
+ 100
1554
+ 101
1555
+ 102
1556
+ ptrk
1557
+ T (GeV)
1558
+ FIG. 9. (Color online) Jet fragmentation functions for jets in p+p collisions at √s = 5.02 TeV and the ratios as a function of
1559
+ z (top) and ptrk
1560
+ T
1561
+ (bottom) for different pjet
1562
+ T
1563
+ range. Jets are fully reconstructed including both charged and neutral particles by
1564
+ anti-kt with R = 0.4 at midrapidity
1565
+ ��yjet�� < 0.3. The solid lines and circles with statistical error bars show the results from
1566
+ JETSCAPE and the experimental data from the ATLAS Collaboration [50], respectively. The bands indicate the systematic
1567
+ uncertainties of the experimental data.
1568
+ underestimate the data.
1569
+ One possible cause of this is
1570
+ the visible discrepancy in the suppression at mid-z. Fur-
1571
+ thermore, for some very soft components of jets giving
1572
+ contribution in the low-z region, the recoil prescription
1573
+ may not provide an entirely reasonable description once
1574
+ their energies become close to the typical scale for the
1575
+ medium constituents. More comprehensive momentum
1576
+ structures of jet constituents, including such soft regions
1577
+ where hydrodynamic medium response needs to be con-
1578
+ sidered, will be explored in a future effort.
1579
+ With the current uncertainties, it is not yet possible
1580
+ to conclude the presence of coherence effects from com-
1581
+ parisons with only the experimental data on modified
1582
+ jet fragmentation functions.
1583
+ However, when taken in
1584
+ conjunction with the results on the rg distribution, a
1585
+ stronger case can be made for the existence of coherence
1586
+ effects at high virtuality. Our results also indicate that
1587
+ the medium effects over different scales can be discernible
1588
+ by future measurements with high precision.
1589
+ In Fig. 11, we present our results of the modifica-
1590
+ tion of jet fragmentation functions for charged jets in
1591
+ 0-10% Au+Au collisions at √sNN = 200 GeV from MAT-
1592
+ TER+LBT with coherence effects. Compared to the re-
1593
+ sults for the top LHC energy, the modifications are quite
1594
+ small.
1595
+ IV.
1596
+ SUMMARY AND OUTLOOK
1597
+ This paper explored the medium modification of jet
1598
+ substructure in high-energy heavy-ion collisions, employ-
1599
+ ing a multi-stage jet evolution model, MATTER+LBT,
1600
+ with the configuration and parameters established within
1601
+ the JETSCAPE framework by comparison with leading
1602
+ hadron and jet data. All parameters were taken from our
1603
+ previous efforts [1] and were not re-tuned for this study.
1604
+
1605
+ 000000
1606
+ 582000000
1607
+ 58213
1608
+ 10−2
1609
+ 10−1
1610
+ 100
1611
+ z
1612
+ 0.5
1613
+ 1.0
1614
+ 1.5
1615
+ 2.0
1616
+ 2.5
1617
+ PbPb
1618
+ pp
1619
+ [D(z)]
1620
+ 126< pjet
1621
+ T <158 GeV
1622
+ PbPb 0-10%, √sNN = 5.02 TeV
1623
+ anti-kt, R = 0.4
1624
+ |yjet| < 0.3, ptrk
1625
+ T > 1 GeV
1626
+ 10−2
1627
+ 10−1
1628
+ 100
1629
+ z
1630
+ 158< pjet
1631
+ T <200 GeV
1632
+ JETSCAPE
1633
+ [MATTER+LBT (w/ coherence)]
1634
+ JETSCAPE
1635
+ [MATTER+LBT (w/o coherence)]
1636
+ 10−2
1637
+ 10−1
1638
+ 100
1639
+ z
1640
+ 200< pjet
1641
+ T <251 GeV
1642
+ ATLAS
1643
+ [PRC 98, no.2, 024908 (2018)]
1644
+ 10−2
1645
+ 10−1
1646
+ 100
1647
+ z
1648
+ 251< pjet
1649
+ T <316 GeV
1650
+ 100
1651
+ 101
1652
+ 102
1653
+ ptrk
1654
+ T (GeV)
1655
+ 0.5
1656
+ 1.0
1657
+ 1.5
1658
+ 2.0
1659
+ 2.5
1660
+ PbPb
1661
+ pp
1662
+
1663
+ D(ptrk
1664
+ T )
1665
+
1666
+ 126< pjet
1667
+ T <158 GeV
1668
+ PbPb 0-10%, √sNN = 5.02 TeV
1669
+ anti-kt, R = 0.4
1670
+ |yjet| < 0.3, ptrk
1671
+ T > 1 GeV
1672
+ 100
1673
+ 101
1674
+ 102
1675
+ ptrk
1676
+ T (GeV)
1677
+ 158< pjet
1678
+ T <200 GeV
1679
+ JETSCAPE
1680
+ [MATTER+LBT (w/ coherence)]
1681
+ JETSCAPE
1682
+ [MATTER+LBT (w/o coherence)]
1683
+ 100
1684
+ 101
1685
+ 102
1686
+ ptrk
1687
+ T (GeV)
1688
+ 200< pjet
1689
+ T <251 GeV
1690
+ ATLAS
1691
+ [PRC 98, no.2, 024908 (2018)]
1692
+ 100
1693
+ 101
1694
+ 102
1695
+ ptrk
1696
+ T (GeV)
1697
+ 251< pjet
1698
+ T <316 GeV
1699
+ FIG. 10. (Color online) Ratios of jet fragmentation functions for jets between 0-10% Pb+Pb and p+p collisions at √sNN =
1700
+ 5.02 TeV as a function of z (top) and ptrk
1701
+ T
1702
+ (bottom) for different pjet
1703
+ T
1704
+ range. Jets are fully reconstructed, including both charged
1705
+ and neutral particles by anti-kt with R = 0.4 at midrapidity
1706
+ ��yjet�� < 0.3. The solid and dashed with statistical error bars
1707
+ lines show the results from MATTER+LBT of JETSCAPE with and without coherence effects, respectively. For comparison,
1708
+ the experimental data from the ATLAS Collaboration [50] are shown by squares with statistical errors (bars) and systematic
1709
+ uncertainties (bands).
1710
+ 10−1
1711
+ 100
1712
+ z
1713
+ 0.5
1714
+ 1.0
1715
+ 1.5
1716
+ 2.0
1717
+ 2.5
1718
+ AuAu
1719
+ pp
1720
+ AuAu 0-10%
1721
+ √sNN = 200 GeV
1722
+ anti-kt, R = 0.4
1723
+ |ηch,jet| < 1, ptrk
1724
+ T > 1 GeV
1725
+ D(z)
1726
+ 101
1727
+ ptrk
1728
+ T (GeV)
1729
+ D(ptrk
1730
+ T )
1731
+ JETSCAPE
1732
+ MATTER+LBT (w/ coherence)
1733
+ 10<pch,jet
1734
+ T
1735
+ <30 GeV
1736
+ 30<pch,jet
1737
+ T
1738
+ <50 GeV
1739
+ FIG. 11. (Color online) Ratios of jet fragmentation functions for charged jets with R = 0.4 and |ηch,jet| < 1.0 between 0-10%
1740
+ Au+Au and p+p collisions at √sNN = 200 GeV as a function of z (left) and ptrk
1741
+ T
1742
+ (right) from MATTER+LBT of JETSCAPE
1743
+ with coherence effects. The solid and dashed lines with statistical error bars show the results for 10 < pch,jet
1744
+ T
1745
+ < 30 GeV and
1746
+ 30 < pch,jet
1747
+ T
1748
+ < 50 GeV, respectively.
1749
+ In fact, no new simulations were run for this paper. The
1750
+ presented results were calculated from the simulations
1751
+ carried out for Ref. [1].
1752
+ To investigate the contribution of coherence effects
1753
+ based on the ability of the medium to resolve the par-
1754
+ tons radiated from splits at high energy and virtuality,
1755
+ we performed numerical simulations for two cases, with
1756
+ and without coherence effects. These coherence effects
1757
+ are implemented as the Q2-dependent modulation fac-
1758
+ tor in the medium-modified splitting function and give
1759
+ a drastic reduction of the interaction with the medium
1760
+ with increasing parton virtuality.
1761
+ The distribution of jet splitting momentum fraction
1762
+ (zg) shows almost no visible modification due to the
1763
+
1764
+ 000000
1765
+ 582000000
1766
+ 582000000
1767
+ 58214
1768
+ medium effects for any kinematic configurations in both
1769
+ cases with and without coherence effects. This extremely
1770
+ small sensitivity to the medium effects is consistent with
1771
+ the experimental data taken by ALICE at the LHC. Our
1772
+ predictions for future RHIC measurements also show no
1773
+ significant modification.
1774
+ Then, we presented the observables related to the jet
1775
+ splitting radius (rg).
1776
+ In comparison with the ALICE
1777
+ data, both results with and without coherence effects sat-
1778
+ isfactorily capture the monotonically decreasing behavior
1779
+ with increasing radius and give good agreement. Here, no
1780
+ conclusions about coherent effects could be drawn from
1781
+ this analysis in comparison with the data from ALICE.
1782
+ We reiterate again that our simulations reduce to and re-
1783
+ produce the zg and rg distributions in the absence of the
1784
+ medium, in comparison with data from p+p collisions.
1785
+ In comparison with data from ATLAS [58], we demon-
1786
+ strated that coherence effects manifest, even at the qual-
1787
+ itative behavior level, in rg-dependent RAA with finer
1788
+ binning. In both the RAA as a function of pjet
1789
+ T
1790
+ for dif-
1791
+ ferent bins of the angle rg as well as the RAA as a func-
1792
+ tion of rg in different pjet
1793
+ T
1794
+ bins, there is a clear difference
1795
+ between simulations with and without coherence effects.
1796
+ The experimental data clearly prefer simulations with co-
1797
+ herence effects. This indicates that the scattering with
1798
+ the medium constituents at high virtuality is reduced due
1799
+ to the finer scale of the medium probed by the jet parton.
1800
+ Finally, we found that coherence effects may also be
1801
+ visible as a more prominent enhancement at large z in
1802
+ the modification pattern of the jet fragmentation func-
1803
+ tions.
1804
+ The energy loss of hard leading partons, which
1805
+ form the jet core components with large transverse mo-
1806
+ mentum, is highly suppressed by coherence effects due to
1807
+ their large virtualities. The data have a slight preference
1808
+ for simulations with coherence if one restricts attention
1809
+ to particles with z ⪆ 0.1. For both the case with and
1810
+ without coherence, the simulations produce fewer parti-
1811
+ cles at very small z (z ⪅ 0.02), with the case without
1812
+ coherence performing marginally better.
1813
+ This paper constitutes the third installment of jet and
1814
+ hadron-based observables from the MATTER+LBT sim-
1815
+ ulations in the JETSCAPE framework [1, 124]. In all
1816
+ three of these papers, including the current effort, we
1817
+ have demonstrated wide-ranging agreement for the hard
1818
+ sector of jets, between simulations, typically with coher-
1819
+ ence and experimental data. The only remaining issues
1820
+ within the hard sector of the jet are related to coinci-
1821
+ dence measurements. These will be presented in a future
1822
+ effort.
1823
+ In terms of physics included within these simulations,
1824
+ the one remaining component is the very soft sector of
1825
+ jets. In the current effort, this was pointed out in the
1826
+ discussion of the low rg section of the rg dependent RAA,
1827
+ and the low-z and low-pT sector of the jet fragmenta-
1828
+ tion function. This requires incorporating an energy de-
1829
+ position scheme in which partons with energy compara-
1830
+ ble to the ambient temperature are converted into an
1831
+ energy-momentum source term and then included back
1832
+ in the hydrodynamic calculation.
1833
+ As may be obvious,
1834
+ these simulations require close to a single hydro run per
1835
+ hard event and, as such, are very computationally de-
1836
+ manding. Various schemes to approximately incorporate
1837
+ soft physics without the need for full hydrodynamic sim-
1838
+ ulation are currently underway. The analysis of certain
1839
+ jet-based observables predominantly sensitive to the soft
1840
+ sector of jets will be carried out after these efforts are
1841
+ complete.
1842
+ ACKNOWLEDGMENTS
1843
+ This work was supported in part by the National Sci-
1844
+ ence Foundation (NSF) within the framework of the
1845
+ JETSCAPE collaboration, under grant number OAC-
1846
+ 2004571 (CSSI:X-SCAPE). It was also supported un-
1847
+ der ACI-1550172 (Y.C. and G.R.), ACI-1550221 (R.J.F.,
1848
+ F.G., and M.K.), ACI-1550223 (U.H., L.D., and D.L.),
1849
+ ACI-1550225 (S.A.B., T.D., W.F., R.W.), ACI-1550228
1850
+ (J.M., B.J., P.J., X.-N.W.), and ACI-1550300 (S.C.,
1851
+ A.K., J.L., A.M., H.M., C.N., A.S., J.P., L.S., C.Si., I.S.,
1852
+ R.A.S. and G.V.); by PHY-1516590 and PHY-1812431
1853
+ (R.J.F., M.K. and A.S.); it was supported in part by
1854
+ NSF CSSI grant number OAC-2004601 (BAND; D.L. and
1855
+ U.H.); it was supported in part by the US Department of
1856
+ Energy, Office of Science, Office of Nuclear Physics un-
1857
+ der grant numbers DE-AC02-05CH11231 (X.-N.W.), DE-
1858
+ FG02-00ER41132 (D.O), DE-AC52-07NA27344 (A.A.,
1859
+ R.A.S.), DE-SC0013460 (S.C., A.K., A.M., C.S., I.S.
1860
+ and
1861
+ C.Si.),
1862
+ DE-SC0021969
1863
+ (C.S.
1864
+ and
1865
+ W.Z.),
1866
+ DE-
1867
+ SC0004286 (L.D., U.H. and D.L.), DE-SC0012704 (B.S.),
1868
+ DE-FG02-92ER40713 (J.P.) and DE-FG02-05ER41367
1869
+ (T.D., W.F., J.-F.P., D.S. and S.A.B.). The work was
1870
+ also supported in part by the National Science Founda-
1871
+ tion of China (NSFC) under grant numbers 11935007,
1872
+ 11861131009 and 11890714 (Y.H. and X.-N.W.), un-
1873
+ der grant numbers 12175122 and 2021-867 (S.C.), by
1874
+ the Natural Sciences and Engineering Research Coun-
1875
+ cil of Canada (C.G., M.H., S.J., and G.V.), by the
1876
+ Office of the Vice President for Research (OVPR) at
1877
+ Wayne State University (Y.T.), by JSPS KAKENHI
1878
+ Grant No. 22K14041 (Y.T.), by the S˜ao Paulo Research
1879
+ Foundation (FAPESP) under projects 2016/24029-6,
1880
+ 2017/05685-2 and 2018/24720-6 (A. L. and M.L.), and
1881
+ by the University of California, Berkeley - Central China
1882
+ Normal University Collaboration Grant (W.K.).
1883
+ U.H.
1884
+ would like to acknowledge support by the Alexander
1885
+ von Humboldt Foundation through a Humboldt Research
1886
+ Award. C.S. acknowledges a DOE Office of Science Early
1887
+ Career Award. Computations were carried out on the
1888
+ Wayne State Grid funded by the Wayne State OVPR.
1889
+ The bulk medium simulations were done using resources
1890
+ provided by the Open Science Grid (OSG) [174, 175],
1891
+ which is supported by the National Science Foundation
1892
+ award #2030508. Data storage was provided in part by
1893
+ the OSIRIS project supported by the National Science
1894
+ Foundation under grant number OAC-1541335.
1895
+
1896
+ 15
1897
+ 0
1898
+ 10
1899
+ 20
1900
+ 30
1901
+ 40
1902
+ pjet
1903
+ T (GeV)
1904
+ 0.0
1905
+ 0.2
1906
+ 0.4
1907
+ 0.6
1908
+ 0.8
1909
+ 1.0
1910
+ RAA
1911
+ AuAu 0-10%, √sNN = 200 GeV
1912
+ anti-kt
1913
+ Full Jet
1914
+ |ηjet|<1
1915
+ 0
1916
+ 10
1917
+ 20
1918
+ 30
1919
+ 40
1920
+ 50
1921
+ pch,jet
1922
+ T
1923
+ (GeV)
1924
+ JETSCAPE
1925
+ MATTER+LBT (w/ coherence)
1926
+ Charged Jet
1927
+ pch,lead
1928
+ T
1929
+ >5 GeV, |ηch,jet|<1−R
1930
+ R = 0.2
1931
+ R = 0.4
1932
+ R = 0.6
1933
+ FIG. 12.
1934
+ (Color online) Nuclear modification factor RAA for inclusive full jet with |ηjet| < 1 (left), and charged jet with
1935
+ |ηch,jet| < 1 − R and leading charged particle pch,lead
1936
+ T
1937
+ > 5 GeV (right) in 0 − 10% Au+Au collisions at √sNN = 200 GeV from
1938
+ MATTER+LBT of JETSCAPE with coherence effects. The solid, dashed, and dash-dotted lines with statistical error bars
1939
+ show the results for R = 0.2, R = 0.4, and R = 0.6, respectively.
1940
+ Appendix: Jets suppression at RHIC
1941
+ For the benchmarking purposes for our jet substruc-
1942
+ ture results in Au+Au collisions at √sNN = 200 GeV
1943
+ presented in the main body of the paper, we also show
1944
+ the predictions of RAA for inclusive full and charged jets
1945
+ from the same event generation by MATTER+LBT with
1946
+ coherence effects in Fig. 12.
1947
+ [1] A. Kumar et al. (JETSCAPE), Inclusive Jet and
1948
+ Hadron Suppression in a Multi-Stage Approach, (2022),
1949
+ arXiv:2204.01163 [hep-ph].
1950
+ [2] J. D. Bjorken, Energy Loss of Energetic Partons in
1951
+ Quark - Gluon Plasma: Possible Extinction of High p(t)
1952
+ Jets in Hadron - Hadron Collisions, (1982).
1953
+ [3] D. A. Appel, Jets as a Probe of Quark - Gluon Plasmas,
1954
+ Phys. Rev. D 33, 717 (1986).
1955
+ [4] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and
1956
+ D. Schiff, Radiative energy loss of high-energy quarks
1957
+ and gluons in a finite volume quark - gluon plasma,
1958
+ Nucl. Phys. B 483, 291 (1997), arXiv:hep-ph/9607355.
1959
+ [5] R. Baier, Y. L. Dokshitzer, A. H. Mueller, S. Peigne, and
1960
+ D. Schiff, Radiative energy loss and p(T) broadening of
1961
+ high-energy partons in nuclei, Nucl. Phys. B 484, 265
1962
+ (1997), arXiv:hep-ph/9608322.
1963
+ [6] B. G. Zakharov, Fully quantum treatment of the
1964
+ Landau-Pomeranchuk-Migdal effect in QED and QCD,
1965
+ JETP Lett. 63, 952 (1996), arXiv:hep-ph/9607440.
1966
+ [7] M. Gyulassy, P. Levai, and I. Vitev, Jet quenching in
1967
+ thin quark gluon plasmas. 1. Formalism, Nucl. Phys. B
1968
+ 571, 197 (2000), arXiv:hep-ph/9907461.
1969
+ [8] M. Gyulassy, P. Levai, and I. Vitev, NonAbelian energy
1970
+ loss at finite opacity, Phys. Rev. Lett. 85, 5535 (2000),
1971
+ arXiv:nucl-th/0005032.
1972
+ [9] M. Gyulassy, P. Levai, and I. Vitev, Reaction operator
1973
+ approach to nonAbelian energy loss, Nucl. Phys. B 594,
1974
+ 371 (2001), arXiv:nucl-th/0006010.
1975
+ [10] U. A. Wiedemann, Gluon radiation off hard quarks in
1976
+ a nuclear environment: Opacity expansion, Nucl. Phys.
1977
+ B 588, 303 (2000), arXiv:hep-ph/0005129.
1978
+ [11] U. A. Wiedemann, Jet quenching versus jet enhance-
1979
+ ment:
1980
+ A Quantitative study of the BDMPS-Z gluon
1981
+ radiation spectrum, Nucl. Phys. A 690, 731 (2001),
1982
+ arXiv:hep-ph/0008241.
1983
+ [12] X.-f. Guo and X.-N. Wang, Multiple scattering, par-
1984
+ ton energy loss and modified fragmentation functions
1985
+ in deeply inelastic e A scattering, Phys. Rev. Lett. 85,
1986
+ 3591 (2000), arXiv:hep-ph/0005044.
1987
+ [13] X.-N. Wang and X.-f. Guo, Multiple parton scattering
1988
+ in nuclei: Parton energy loss, Nucl. Phys. A 696, 788
1989
+ (2001), arXiv:hep-ph/0102230.
1990
+ [14] A. Majumder, Hard collinear gluon radiation and mul-
1991
+ tiple scattering in a medium, Phys. Rev. D 85, 014023
1992
+ (2012), arXiv:0912.2987 [nucl-th].
1993
+ [15] P. B. Arnold, G. D. Moore, and L. G. Yaffe, Photon
1994
+ emission from ultrarelativistic plasmas, JHEP 11, 057,
1995
+ arXiv:hep-ph/0109064.
1996
+ [16] P. B. Arnold, G. D. Moore, and L. G. Yaffe, Photon
1997
+ and gluon emission in relativistic plasmas, JHEP 06,
1998
+ 030, arXiv:hep-ph/0204343.
1999
+ [17] A. Majumder and M. Van Leeuwen, The Theory
2000
+ and Phenomenology of Perturbative QCD Based Jet
2001
+ Quenching, Prog. Part. Nucl. Phys. 66, 41 (2011),
2002
+ arXiv:1002.2206 [hep-ph].
2003
+ [18] J.-P. Blaizot and Y. Mehtar-Tani, Jet Structure in
2004
+ Heavy Ion Collisions, Int. J. Mod. Phys. E 24, 1530012
2005
+ (2015), arXiv:1503.05958 [hep-ph].
2006
+ [19] G.-Y. Qin and X.-N. Wang, Jet quenching in high-
2007
+ energy heavy-ion collisions, Int. J. Mod. Phys. E 24,
2008
+ 1530014 (2015), arXiv:1511.00790 [hep-ph].
2009
+
2010
+ 000000
2011
+ 58216
2012
+ [20] S. Cao and X.-N. Wang, Jet quenching and medium
2013
+ response in high-energy heavy-ion collisions: a review,
2014
+ Rept. Prog. Phys. 84, 024301 (2021), arXiv:2002.04028
2015
+ [hep-ph].
2016
+ [21] K. Adcox et al. (PHENIX), Suppression of hadrons with
2017
+ large transverse momentum in central Au+Au colli-
2018
+ sions at √sNN = 130-GeV, Phys. Rev. Lett. 88, 022301
2019
+ (2002), arXiv:nucl-ex/0109003.
2020
+ [22] S. S. Adler et al. (PHENIX), High pT charged hadron
2021
+ suppression in Au + Au collisions at √sNN = 200 GeV,
2022
+ Phys. Rev. C 69, 034910 (2004), arXiv:nucl-ex/0308006.
2023
+ [23] S. S. Adler et al. (PHENIX), Suppressed π0 production
2024
+ at large transverse momentum in central Au+ Au colli-
2025
+ sions at √SNN = 200 GeV, Phys. Rev. Lett. 91, 072301
2026
+ (2003), arXiv:nucl-ex/0304022.
2027
+ [24] C. Adler et al. (STAR), Centrality dependence of
2028
+ high pT hadron suppression in Au+Au collisions at
2029
+ √sNN = 130-GeV, Phys. Rev. Lett. 89, 202301 (2002),
2030
+ arXiv:nucl-ex/0206011.
2031
+ [25] J. Adams et al. (STAR), Transverse momentum and
2032
+ collision energy dependence of high p(T) hadron sup-
2033
+ pression in Au+Au collisions at ultrarelativistic ener-
2034
+ gies, Phys. Rev. Lett. 91, 172302 (2003), arXiv:nucl-
2035
+ ex/0305015.
2036
+ [26] C. Adler et al. (STAR), Disappearance of back-to-back
2037
+ high pT hadron correlations in central Au+Au colli-
2038
+ sions at √sNN = 200-GeV, Phys. Rev. Lett. 90, 082302
2039
+ (2003), arXiv:nucl-ex/0210033.
2040
+ [27] J. Adams et al. (STAR), Distributions of charged
2041
+ hadrons associated with high transverse momentum
2042
+ particles in pp and Au + Au collisions at s(NN)**(1/2)
2043
+ = 200-GeV, Phys. Rev. Lett. 95, 152301 (2005),
2044
+ arXiv:nucl-ex/0501016.
2045
+ [28] A. Adare et al. (PHENIX), Transverse momentum
2046
+ and centrality dependence of dihadron correlations in
2047
+ Au+Au collisions at s(NN) = 200-GeV: Jet-quenching
2048
+ and the response of partonic matter, Phys. Rev. C 77,
2049
+ 011901 (2008), arXiv:0705.3238 [nucl-ex].
2050
+ [29] B. Abelev et al. (ALICE), Measurement of charged jet
2051
+ suppression in Pb-Pb collisions at √sNN = 2.76 TeV,
2052
+ JHEP 03, 013, arXiv:1311.0633 [nucl-ex].
2053
+ [30] G. Aad et al. (ATLAS), Observation of a Centrality-
2054
+ Dependent Dijet Asymmetry in Lead-Lead Collisions
2055
+ at √sNN
2056
+ =
2057
+ 2.77 TeV with the ATLAS Detector
2058
+ at the LHC, Phys. Rev. Lett. 105, 252303 (2010),
2059
+ arXiv:1011.6182 [hep-ex].
2060
+ [31] S. Chatrchyan et al. (CMS), Observation and studies
2061
+ of jet quenching in PbPb collisions at nucleon-nucleon
2062
+ center-of-mass energy = 2.76 TeV, Phys. Rev. C 84,
2063
+ 024906 (2011), arXiv:1102.1957 [nucl-ex].
2064
+ [32] M. Connors, C. Nattrass, R. Reed, and S. Salur, Jet
2065
+ measurements in heavy ion physics, Rev. Mod. Phys.
2066
+ 90, 025005 (2018), arXiv:1705.01974 [nucl-ex].
2067
+ [33] G. Aad et al. (ATLAS), Measurement of the jet ra-
2068
+ dius and transverse momentum dependence of inclusive
2069
+ jet suppression in lead-lead collisions at √sNN= 2.76
2070
+ TeV with the ATLAS detector, Phys. Lett. B 719, 220
2071
+ (2013), arXiv:1208.1967 [hep-ex].
2072
+ [34] G. Aad et al. (ATLAS), Measurements of the Nuclear
2073
+ Modification Factor for Jets in Pb+Pb Collisions at
2074
+ √sNN = 2.76 TeV with the ATLAS Detector, Phys.
2075
+ Rev. Lett. 114, 072302 (2015), arXiv:1411.2357 [hep-
2076
+ ex].
2077
+ [35] V. Khachatryan et al. (CMS), Measurement of inclu-
2078
+ sive jet cross sections in pp and PbPb collisions at
2079
+ √sNN = 2.76 TeV, Phys. Rev. C 96, 015202 (2017),
2080
+ arXiv:1609.05383 [nucl-ex].
2081
+ [36] L. Adamczyk et al. (STAR), Dijet imbalance measure-
2082
+ ments in Au + Au and pp collisions at √sNN = 200
2083
+ GeV at STAR, Phys. Rev. Lett. 119, 062301 (2017),
2084
+ arXiv:1609.03878 [nucl-ex].
2085
+ [37] M. Aaboud et al. (ATLAS), Measurement of the nuclear
2086
+ modification factor for inclusive jets in Pb+Pb collisions
2087
+ at √sNN = 5.02 TeV with the ATLAS detector, Phys.
2088
+ Lett. B 790, 108 (2019), arXiv:1805.05635 [nucl-ex].
2089
+ [38] S. Acharya et al. (ALICE), Measurements of inclu-
2090
+ sive jet spectra in pp and central Pb-Pb collisions at
2091
+ √sNN = 5.02 TeV, Phys. Rev. C 101, 034911 (2020),
2092
+ arXiv:1909.09718 [nucl-ex].
2093
+ [39] A. M. Sirunyan et al. (CMS), First measurement of large
2094
+ area jet transverse momentum spectra in heavy-ion col-
2095
+ lisions, JHEP 05, 284, arXiv:2102.13080 [hep-ex].
2096
+ [40] J. Adam et al. (STAR), Measurement of inclusive
2097
+ charged-particle jet production in Au + Au collisions
2098
+ at √sNN =200 GeV, Phys. Rev. C 102, 054913 (2020),
2099
+ arXiv:2006.00582 [nucl-ex].
2100
+ [41] S. Chatrchyan et al. (CMS), Modification of Jet Shapes
2101
+ in PbPb Collisions at √sNN = 2.76 TeV, Phys. Lett. B
2102
+ 730, 243 (2014), arXiv:1310.0878 [nucl-ex].
2103
+ [42] V. Khachatryan et al. (CMS), Decomposing transverse
2104
+ momentum balance contributions for quenched jets in
2105
+ PbPb collisions at √sN N = 2.76 TeV, JHEP 11, 055,
2106
+ arXiv:1609.02466 [nucl-ex].
2107
+ [43] A. M. Sirunyan et al. (CMS), Jet properties in PbPb
2108
+ and pp collisions at √sN N = 5.02 TeV, JHEP 05, 006,
2109
+ arXiv:1803.00042 [nucl-ex].
2110
+ [44] A. M. Sirunyan et al. (CMS), Jet Shapes of Isolated
2111
+ Photon-Tagged Jets in Pb-Pb and pp Collisions at
2112
+ √sNN = 5.02 TeV, Phys. Rev. Lett. 122, 152001 (2019),
2113
+ arXiv:1809.08602 [hep-ex].
2114
+ [45] S. Acharya et al. (ALICE), Measurement of jet radial
2115
+ profiles in Pb–Pb collisions at √sNN = 2.76 TeV, Phys.
2116
+ Lett. B 796, 204 (2019), arXiv:1904.13118 [nucl-ex].
2117
+ [46] A. M. Sirunyan et al. (CMS), In-medium modification
2118
+ of dijets in PbPb collisions at √sNN = 5.02 TeV, JHEP
2119
+ 05, 116, arXiv:2101.04720 [hep-ex].
2120
+ [47] S. Chatrchyan et al. (CMS), Measurement of Jet Frag-
2121
+ mentation in PbPb and pp Collisions at √sNN = 2.76
2122
+ TeV, Phys. Rev. C 90, 024908 (2014), arXiv:1406.0932
2123
+ [nucl-ex].
2124
+ [48] G. Aad et al. (ATLAS), Measurement of inclusive jet
2125
+ charged-particle fragmentation functions in Pb+Pb col-
2126
+ lisions at √sNN = 2.76 TeV with the ATLAS detector,
2127
+ Phys. Lett. B 739, 320 (2014), arXiv:1406.2979 [hep-ex].
2128
+ [49] M. Aaboud et al. (ATLAS), Measurement of jet frag-
2129
+ mentation in Pb+Pb and pp collisions at √sNN = 2.76
2130
+ TeV with the ATLAS detector at the LHC, Eur. Phys.
2131
+ J. C 77, 379 (2017), arXiv:1702.00674 [hep-ex].
2132
+ [50] M. Aaboud et al. (ATLAS), Measurement of jet frag-
2133
+ mentation in Pb+Pb and pp collisions at √sNN = 5.02
2134
+ TeV with the ATLAS detector, Phys. Rev. C 98, 024908
2135
+ (2018), arXiv:1805.05424 [nucl-ex].
2136
+ [51] M. Aaboud et al. (ATLAS), Comparison of Fragmen-
2137
+ tation Functions for Jets Dominated by Light Quarks
2138
+ and Gluons from pp and Pb+Pb Collisions in ATLAS,
2139
+ Phys. Rev. Lett. 123, 042001 (2019), arXiv:1902.10007
2140
+ [nucl-ex].
2141
+
2142
+ 17
2143
+ [52] G. Aad et al. (ATLAS), Measurement of angular and
2144
+ momentum distributions of charged particles within and
2145
+ around jets in Pb+Pb and pp collisions at √sNN =
2146
+ 5.02 TeV with the ATLAS detector, Phys. Rev. C
2147
+ 100, 064901 (2019), [Erratum: Phys.Rev.C 101, 059903
2148
+ (2020)], arXiv:1908.05264 [nucl-ex].
2149
+ [53] A. M. Sirunyan et al. (CMS), Measurement of the
2150
+ Splitting Function in pp and Pb-Pb Collisions at
2151
+ √sNN = 5.02 TeV, Phys. Rev. Lett. 120, 142302 (2018),
2152
+ arXiv:1708.09429 [nucl-ex].
2153
+ [54] K. Kauder (STAR), Measurement of the Shared Mo-
2154
+ mentum Fraction zg using Jet Reconstruction in p+p
2155
+ and Au+Au Collisions with STAR, Nucl. Part. Phys.
2156
+ Proc. 289-290, 137 (2017), arXiv:1703.10933 [nucl-ex].
2157
+ [55] A. M. Sirunyan et al. (CMS), Measurement of the
2158
+ groomed jet mass in PbPb and pp collisions at √sNN =
2159
+ 5.02 TeV, JHEP 10, 161, arXiv:1805.05145 [hep-ex].
2160
+ [56] S. Acharya et al. (ALICE), Exploration of jet substruc-
2161
+ ture using iterative declustering in pp and Pb–Pb col-
2162
+ lisions at LHC energies, Phys. Lett. B 802, 135227
2163
+ (2020), arXiv:1905.02512 [nucl-ex].
2164
+ [57] S. Acharya et al. (A Large Ion Collider Experiment, AL-
2165
+ ICE), Measurement of the groomed jet radius and mo-
2166
+ mentum splitting fraction in pp and Pb−Pb collisions
2167
+ at √sNN = 5.02 TeV, Phys. Rev. Lett. 128, 102001
2168
+ (2022), arXiv:2107.12984 [nucl-ex].
2169
+ [58] Measurement of substructure-dependent jet suppression
2170
+ in Pb+Pb collisions at 5.02 TeV with the ATLAS de-
2171
+ tector, (2022), arXiv:2211.11470 [nucl-ex].
2172
+ [59] I.
2173
+ Vitev
2174
+ and
2175
+ B.-W.
2176
+ Zhang,
2177
+ Jet
2178
+ tomography
2179
+ of
2180
+ high-energy
2181
+ nucleus-nucleus
2182
+ collisions
2183
+ at
2184
+ next-to-
2185
+ leading order, Phys. Rev. Lett. 104, 132001 (2010),
2186
+ arXiv:0910.1090 [hep-ph].
2187
+ [60] G.-Y. Qin and B. Muller, Explanation of Di-jet asym-
2188
+ metry in Pb+Pb collisions at the Large Hadron Col-
2189
+ lider, Phys. Rev. Lett. 106, 162302 (2011), [Erratum:
2190
+ Phys.Rev.Lett. 108, 189904 (2012)], arXiv:1012.5280
2191
+ [hep-ph].
2192
+ [61] J. Casalderrey-Solana, J. G. Milhano, and U. Wiede-
2193
+ mann, Jet quenching via jet collimation, J. Phys. G 38,
2194
+ 124086 (2011), arXiv:1107.1964 [hep-ph].
2195
+ [62] Y. He, I. Vitev, and B.-W. Zhang, O(α3
2196
+ s) Analysis of
2197
+ Inclusive Jet and di-Jet Production in Heavy Ion Reac-
2198
+ tions at the Large Hadron Collider, Phys. Lett. B 713,
2199
+ 224 (2012), arXiv:1105.2566 [hep-ph].
2200
+ [63] G.-Y. Qin, Parton shower evolution in medium and nu-
2201
+ clear modification of photon-tagged jets in Pb+Pb col-
2202
+ lisions at the LHC, Eur. Phys. J. C 74, 2959 (2014),
2203
+ arXiv:1210.6610 [hep-ph].
2204
+ [64] J.-P. Blaizot, Y. Mehtar-Tani, and M. A. C. Torres, An-
2205
+ gular structure of the in-medium QCD cascade, Phys.
2206
+ Rev. Lett. 114, 222002 (2015), arXiv:1407.0326 [hep-
2207
+ ph].
2208
+ [65] Y.-T. Chien and I. Vitev, Towards the understand-
2209
+ ing of jet shapes and cross sections in heavy ion col-
2210
+ lisions using soft-collinear effective theory, JHEP 05,
2211
+ 023, arXiv:1509.07257 [hep-ph].
2212
+ [66] N.-B. Chang and G.-Y. Qin, Full jet evolution in quark-
2213
+ gluon plasma and nuclear modification of jet production
2214
+ and jet shape in Pb+Pb collisions at 2.76ATeV at the
2215
+ CERN Large Hadron Collider, Phys. Rev. C 94, 024902
2216
+ (2016), arXiv:1603.01920 [hep-ph].
2217
+ [67] Y. Mehtar-Tani and K. Tywoniuk, Groomed jets in
2218
+ heavy-ion collisions:
2219
+ sensitivity to medium-induced
2220
+ bremsstrahlung, JHEP 04, 125, arXiv:1610.08930 [hep-
2221
+ ph].
2222
+ [68] L. Chen, G.-Y. Qin, S.-Y. Wei, B.-W. Xiao, and H.-
2223
+ Z. Zhang, Probing Transverse Momentum Broadening
2224
+ via Dihadron and Hadron-jet Angular Correlations in
2225
+ Relativistic Heavy-ion Collisions, Phys. Lett. B 773, 672
2226
+ (2017), arXiv:1607.01932 [hep-ph].
2227
+ [69] Y.-T. Chien and I. Vitev, Probing the Hardest Branch-
2228
+ ing within Jets in Heavy-Ion Collisions, Phys. Rev. Lett.
2229
+ 119, 112301 (2017), arXiv:1608.07283 [hep-ph].
2230
+ [70] Y. Mehtar-Tani and K. Tywoniuk, Sudakov suppression
2231
+ of jets in QCD media, Phys. Rev. D 98, 051501 (2018),
2232
+ arXiv:1707.07361 [hep-ph].
2233
+ [71] N.-B. Chang, S. Cao, and G.-Y. Qin, Probing medium-
2234
+ induced jet splitting and energy loss in heavy-ion colli-
2235
+ sions, Phys. Lett. B 781, 423 (2018), arXiv:1707.03767
2236
+ [hep-ph].
2237
+ [72] Y. Tachibana,
2238
+ N.-B. Chang, and G.-Y. Qin, Full
2239
+ jet
2240
+ in
2241
+ quark-gluon
2242
+ plasma
2243
+ with
2244
+ hydrodynamic
2245
+ medium response, Phys. Rev. C 95, 044909 (2017),
2246
+ arXiv:1701.07951 [nucl-th].
2247
+ [73] H. T. Li and I. Vitev, Inclusive heavy flavor jet pro-
2248
+ duction with semi-inclusive jet functions: from proton
2249
+ to heavy-ion collisions, JHEP 07, 148, arXiv:1811.07905
2250
+ [hep-ph].
2251
+ [74] N.-B. Chang, Y. Tachibana, and G.-Y. Qin, Nuclear
2252
+ modification of jet shape for inclusive jets and γ-jets
2253
+ at the LHC energies, Phys. Lett. B 801, 135181 (2020),
2254
+ arXiv:1906.09562 [nucl-th].
2255
+ [75] J.-W. Qiu, F. Ringer, N. Sato, and P. Zurita, Factoriza-
2256
+ tion of jet cross sections in heavy-ion collisions, Phys.
2257
+ Rev. Lett. 122, 252301 (2019), arXiv:1903.01993 [hep-
2258
+ ph].
2259
+ [76] F. Ringer, B.-W. Xiao, and F. Yuan, Can we observe
2260
+ jet PT -broadening in heavy-ion collisions at the LHC?,
2261
+ Phys. Lett. B 808, 135634 (2020), arXiv:1907.12541
2262
+ [hep-ph].
2263
+ [77] S.
2264
+ Cao,
2265
+ C.
2266
+ Sirimanna,
2267
+ and
2268
+ A.
2269
+ Majumder,
2270
+ The
2271
+ medium modification of high-virtuality partons, (2021),
2272
+ arXiv:2101.03681 [hep-ph].
2273
+ [78] Y. Mehtar-Tani, D. Pablos, and K. Tywoniuk, Cone-
2274
+ Size Dependence of Jet Suppression in Heavy-Ion
2275
+ Collisions,
2276
+ Phys.
2277
+ Rev.
2278
+ Lett.
2279
+ 127,
2280
+ 252301
2281
+ (2021),
2282
+ arXiv:2101.01742 [hep-ph].
2283
+ [79] C. Sirimanna, I. Soudi, G. Vujanovic, W.-J. Xing,
2284
+ S. Cao, and A. Majumder, Quenching jets increases
2285
+ their flavor, (2022), arXiv:2211.15553 [hep-ph].
2286
+ [80] I. P. Lokhtin and A. M. Snigirev, A Model of jet quench-
2287
+ ing in ultrarelativistic heavy ion collisions and high-p(T)
2288
+ hadron spectra at RHIC, Eur. Phys. J. C 45, 211 (2006),
2289
+ arXiv:hep-ph/0506189.
2290
+ [81] K. Zapp,
2291
+ G. Ingelman,
2292
+ J. Rathsman,
2293
+ J. Stachel,
2294
+ and U. A. Wiedemann, A Monte Carlo Model for
2295
+ ’Jet Quenching’, Eur. Phys. J. C 60, 617 (2009),
2296
+ arXiv:0804.3568 [hep-ph].
2297
+ [82] T. Renk, Angular variation of hard back-to-back hadron
2298
+ suppression in heavy-ion collisions, Phys. Rev. C 78,
2299
+ 034904 (2008), arXiv:0803.0218 [hep-ph].
2300
+ [83] N. Armesto, L. Cunqueiro, and C. A. Salgado, Q-
2301
+ PYTHIA: A Medium-modified implementation of fi-
2302
+ nal state radiation, Eur. Phys. J. C 63, 679 (2009),
2303
+ arXiv:0907.1014 [hep-ph].
2304
+ [84] B. Schenke, C. Gale, and S. Jeon, MARTINI: An Event
2305
+ generator for relativistic heavy-ion collisions, Phys. Rev.
2306
+
2307
+ 18
2308
+ C 80, 054913 (2009), arXiv:0909.2037 [hep-ph].
2309
+ [85] H. Li, F. Liu, G.-l. Ma, X.-N. Wang, and Y. Zhu, Mach
2310
+ cone induced by γ-triggered jets in high-energy heavy-
2311
+ ion collisions, Phys. Rev. Lett. 106, 012301 (2011),
2312
+ arXiv:1006.2893 [nucl-th].
2313
+ [86] C. Young, B. Schenke, S. Jeon, and C. Gale, Di-
2314
+ jet asymmetry at the energies available at the CERN
2315
+ Large Hadron Collider, Phys. Rev. C 84, 024907 (2011),
2316
+ arXiv:1103.5769 [nucl-th].
2317
+ [87] I. P. Lokhtin, A. V. Belyaev, and A. M. Snigirev, Jet
2318
+ quenching pattern at LHC in PYQUEN model, Eur.
2319
+ Phys. J. C 71, 1650 (2011), arXiv:1103.1853 [hep-ph].
2320
+ [88] K. C. Zapp, JEWEL 2.0.0: directions for use, Eur. Phys.
2321
+ J. C 74, 2762 (2014), arXiv:1311.0048 [hep-ph].
2322
+ [89] J. Casalderrey-Solana, D. C. Gulhan, J. G. Milhano,
2323
+ D. Pablos, and K. Rajagopal, A Hybrid Strong/Weak
2324
+ Coupling Approach to Jet Quenching, JHEP 10, 019,
2325
+ [Erratum: JHEP 09, 175 (2015)], arXiv:1405.3864 [hep-
2326
+ ph].
2327
+ [90] Y. He, T. Luo, X.-N. Wang, and Y. Zhu, Linear Boltz-
2328
+ mann Transport for Jet Propagation in the Quark-
2329
+ Gluon Plasma: Elastic Processes and Medium Recoil,
2330
+ Phys. Rev. C 91, 054908 (2015), [Erratum: Phys.Rev.C
2331
+ 97, 019902 (2018)], arXiv:1503.03313 [nucl-th].
2332
+ [91] J. Casalderrey-Solana, D. Gulhan, G. Milhano, D. Pab-
2333
+ los, and K. Rajagopal, Angular Structure of Jet Quench-
2334
+ ing Within a Hybrid Strong/Weak Coupling Model,
2335
+ JHEP 03, 135, arXiv:1609.05842 [hep-ph].
2336
+ [92] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Linearized
2337
+ Boltzmann transport model for jet propagation in the
2338
+ quark-gluon plasma: Heavy quark evolution, Phys. Rev.
2339
+ C 94, 014909 (2016), arXiv:1605.06447 [nucl-th].
2340
+ [93] R. Kunnawalkam Elayavalli and K. C. Zapp, Medium
2341
+ response in JEWEL and its impact on jet shape
2342
+ observables in heavy ion collisions, JHEP 07, 141,
2343
+ arXiv:1707.01539 [hep-ph].
2344
+ [94] G. Milhano, U. A. Wiedemann, and K. C. Zapp, Sen-
2345
+ sitivity of jet substructure to jet-induced medium re-
2346
+ sponse, Phys. Lett. B 779, 409 (2018), arXiv:1707.04142
2347
+ [hep-ph].
2348
+ [95] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang,
2349
+ Effects of jet-induced medium excitation in γ-hadron
2350
+ correlation in A+A collisions, Phys. Lett. B 777, 86
2351
+ (2018), arXiv:1704.03648 [nucl-th].
2352
+ [96] Y. He, S. Cao, W. Chen, T. Luo, L.-G. Pang, and X.-N.
2353
+ Wang, Interplaying mechanisms behind single inclusive
2354
+ jet suppression in heavy-ion collisions, Phys. Rev. C 99,
2355
+ 054911 (2019), arXiv:1809.02525 [nucl-th].
2356
+ [97] T. Luo, S. Cao, Y. He, and X.-N. Wang, Multiple jets
2357
+ and γ-jet correlation in high-energy heavy-ion collisions,
2358
+ Phys. Lett. B 782, 707 (2018), arXiv:1803.06785 [hep-
2359
+ ph].
2360
+ [98] C. Park, S. Jeon, and C. Gale, Jet modification with
2361
+ medium recoil in quark-gluon plasma, Nucl. Phys. A
2362
+ 982, 643 (2019), arXiv:1807.06550 [nucl-th].
2363
+ [99] W. Ke,
2364
+ Y. Xu, and S. A. Bass, Modified Boltz-
2365
+ mann approach for modeling the splitting vertices in-
2366
+ duced by the hot QCD medium in the deep Landau-
2367
+ Pomeranchuk-Migdal region, Phys. Rev. C 100, 064911
2368
+ (2019), arXiv:1810.08177 [nucl-th].
2369
+ [100] J. Casalderrey-Solana, G. Milhano, D. Pablos, and
2370
+ K. Rajagopal, Modification of Jet Substructure in
2371
+ Heavy
2372
+ Ion
2373
+ Collisions
2374
+ as
2375
+ a
2376
+ Probe
2377
+ of
2378
+ the
2379
+ Resolu-
2380
+ tion Length of Quark-Gluon Plasma, JHEP 01, 044,
2381
+ arXiv:1907.11248 [hep-ph].
2382
+ [101] D. Pablos, Jet Suppression From a Small to Interme-
2383
+ diate to Large Radius, Phys. Rev. Lett. 124, 052301
2384
+ (2020), arXiv:1907.12301 [hep-ph].
2385
+ [102] P. Caucal, E. Iancu, and G. Soyez, Deciphering the
2386
+ zg distribution in ultrarelativistic heavy ion collisions,
2387
+ JHEP 10, 273, arXiv:1907.04866 [hep-ph].
2388
+ [103] W. Ke and X.-N. Wang, QGP modification to single
2389
+ inclusive jets in a calibrated transport model, JHEP 05,
2390
+ 041, arXiv:2010.13680 [hep-ph].
2391
+ [104] T. Dai, J.-F. Paquet, D. Teaney, and S. A. Bass, Par-
2392
+ ton energy loss in a hard-soft factorized approach, Phys.
2393
+ Rev. C 105, 034905 (2022), arXiv:2012.03441 [hep-ph].
2394
+ [105] W. Chen, S. Cao, T. Luo, L.-G. Pang, and X.-N. Wang,
2395
+ Medium modification of γ-jet fragmentation functions
2396
+ in Pb+Pb collisions at LHC, Phys. Lett. B 810, 135783
2397
+ (2020), arXiv:2005.09678 [hep-ph].
2398
+ [106] W. Zhao, W. Ke, W. Chen, T. Luo, and X.-N. Wang,
2399
+ From Hydrodynamics to Jet Quenching, Coalescence,
2400
+ and Hadron Cascade: A Coupled Approach to Solv-
2401
+ ing the RAA⊗v2 Puzzle, Phys. Rev. Lett. 128, 022302
2402
+ (2022), arXiv:2103.14657 [hep-ph].
2403
+ [107] F.-L. Liu, W.-J. Xing, X.-Y. Wu, G.-Y. Qin, S. Cao,
2404
+ and X.-N. Wang, QLBT: a linear Boltzmann trans-
2405
+ port model for heavy quarks in a quark-gluon plasma
2406
+ of quasi-particles, Eur. Phys. J. C 82, 350 (2022),
2407
+ arXiv:2107.11713 [hep-ph].
2408
+ [108] A. Luo, Y.-X. Mao, G.-Y. Qin, E.-K. Wang, and H.-Z.
2409
+ Zhang, Jet shape and redistribution of the lost energy
2410
+ from jets in Pb + Pb collisions at the LHC in a multi-
2411
+ phase transport model, Eur. Phys. J. C 82, 156 (2022),
2412
+ arXiv:2107.11751 [hep-ph].
2413
+ [109] A. Luo, Y.-X. Mao, G.-Y. Qin, E.-K. Wang, and
2414
+ H.-Z. Zhang, Enhancement of baryon-to-meson ratios
2415
+ around jets as a signature of medium response, (2021),
2416
+ arXiv:2109.14314 [hep-ph].
2417
+ [110] P. Caucal, A. Soto-Ontoso, and A. Takacs, Dynamically
2418
+ groomed jet radius in heavy-ion collisions, Phys. Rev. D
2419
+ 105, 114046 (2022), arXiv:2111.14768 [hep-ph].
2420
+ [111] R. M. Yazdi, S. Shi, C. Gale, and S. Jeon, Leading order,
2421
+ next-to-leading order, and nonperturbative parton colli-
2422
+ sion kernels: Effects in static and evolving media, Phys.
2423
+ Rev. C 106, 064902 (2022), arXiv:2206.05855 [hep-ph].
2424
+ [112] Z. Yang, T. Luo, W. Chen, L.-G. Pang, and X.-N. Wang,
2425
+ 3D structure of jet-induced diffusion wake in an expand-
2426
+ ing quark-gluon plasma, (2022), arXiv:2203.03683 [hep-
2427
+ ph].
2428
+ [113] S. Shi, R. Modarresi Yazdi, C. Gale, and S. Jeon,
2429
+ Comparing the MARTINI and CUJET models for jet-
2430
+ quenching: I. medium modification of jets and jet sub-
2431
+ structure, (2022), arXiv:2212.05944 [hep-ph].
2432
+ [114] P. Caucal, E. Iancu, A. H. Mueller, and G. Soyez,
2433
+ Vacuum-like jet fragmentation in a dense QCD medium,
2434
+ Phys. Rev. Lett. 120, 232001 (2018), arXiv:1801.09703
2435
+ [hep-ph].
2436
+ [115] S. Cao and A. Majumder, Nuclear modification of
2437
+ leading hadrons and jets within a virtuality ordered
2438
+ parton shower, Phys. Rev. C 101, 024903 (2020),
2439
+ arXiv:1712.10055 [nucl-th].
2440
+ [116] A.
2441
+ Majumder,
2442
+ Incorporating
2443
+ Space-Time
2444
+ Within
2445
+ Medium-Modified Jet Event Generators, Phys. Rev. C
2446
+ 88, 014909 (2013), arXiv:1301.5323 [nucl-th].
2447
+ [117] Y. Tachibana, C. Shen, and A. Majumder, Bulk medium
2448
+ evolution has considerable effects on jet observables,
2449
+
2450
+ 19
2451
+ Phys. Rev. C 106, L021902 (2022), arXiv:2001.08321
2452
+ [nucl-th].
2453
+ [118] J. H. Putschke et al., The JETSCAPE framework,
2454
+ (2019), arXiv:1903.07706 [nucl-th].
2455
+ [119] A. Kumar et al. (JETSCAPE), JETSCAPE frame-
2456
+ work: p + p results, Phys. Rev. C 102, 054906 (2020),
2457
+ arXiv:1910.05481 [nucl-th].
2458
+ [120] D. Everett et al. (JETSCAPE), Phenomenological con-
2459
+ straints on the transport properties of QCD matter
2460
+ with data-driven model averaging, Phys. Rev. Lett. 126,
2461
+ 242301 (2021), arXiv:2010.03928 [hep-ph].
2462
+ [121] D. Everett et al. (JETSCAPE), Multisystem Bayesian
2463
+ constraints on the transport coefficients of QCD mat-
2464
+ ter, Phys. Rev. C 103, 054904 (2021), arXiv:2011.01430
2465
+ [hep-ph].
2466
+ [122] S. Cao et al. (JETSCAPE), Determining the jet trans-
2467
+ port coefficient ˆq from inclusive hadron suppression
2468
+ measurements using Bayesian parameter estimation,
2469
+ Phys. Rev. C 104, 024905 (2021), arXiv:2102.11337
2470
+ [nucl-th].
2471
+ [123] D. Everett et al. (JETSCAPE), Role of bulk vis-
2472
+ cosity in deuteron production in ultrarelativistic nu-
2473
+ clear collisions, Phys. Rev. C 106, 064901 (2022),
2474
+ arXiv:2203.08286 [hep-ph].
2475
+ [124] W. Fan et al. (JETSCAPE), Multi-scale evolution
2476
+ of charmed particles in a nuclear medium,
2477
+ (2022),
2478
+ arXiv:2208.00983 [nucl-th].
2479
+ [125] A. Kumar, A. Majumder, and C. Shen, Energy and scale
2480
+ dependence of ˆq and the “JET puzzle”, Phys. Rev. C
2481
+ 101, 034908 (2020), arXiv:1909.03178 [nucl-th].
2482
+ [126] S. Cao et al. (JETSCAPE), Multistage Monte-Carlo
2483
+ simulation of jet modification in a static medium, Phys.
2484
+ Rev. C 96, 024909 (2017), arXiv:1705.00050 [nucl-th].
2485
+ [127] J. Liu, C. Shen, and U. Heinz, Pre-equilibrium evolution
2486
+ effects on heavy-ion collision observables, Phys. Rev. C
2487
+ 91, 064906 (2015), [Erratum: Phys.Rev.C 92, 049904
2488
+ (2015)], arXiv:1504.02160 [nucl-th].
2489
+ [128] C. Shen, Z. Qiu, H. Song, J. Bernhard, S. Bass, and
2490
+ U. Heinz, The iEBE-VISHNU code package for rela-
2491
+ tivistic heavy-ion collisions, Comput. Phys. Commun.
2492
+ 199, 61 (2016), arXiv:1409.8164 [nucl-th].
2493
+ [129] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alter-
2494
+ native ansatz to wounded nucleon and binary collision
2495
+ scaling in high-energy nuclear collisions, Phys. Rev. C
2496
+ 92, 011901 (2015), arXiv:1412.4708 [nucl-th].
2497
+ [130] J. E. Bernhard, J. S. Moreland, and S. A. Bass, Bayesian
2498
+ estimation of the specific shear and bulk viscosity of
2499
+ quark–gluon plasma, Nature Phys. 15, 1113 (2019).
2500
+ [131] T. Sj¨ostrand, The PYTHIA Event Generator:
2501
+ Past,
2502
+ Present and Future, Comput. Phys. Commun. 246,
2503
+ 106910 (2020), arXiv:1907.09874 [hep-ph].
2504
+ [132] X.-N. Wang and Y. Zhu, Medium Modification of γ-jets
2505
+ in High-energy Heavy-ion Collisions, Phys. Rev. Lett.
2506
+ 111, 062301 (2013), arXiv:1302.5874 [hep-ph].
2507
+ [133] K. C. Zapp, F. Krauss, and U. A. Wiedemann, A per-
2508
+ turbative framework for jet quenching, JHEP 03, 080,
2509
+ arXiv:1212.1599 [hep-ph].
2510
+ [134] S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, Heavy and
2511
+ light flavor jet quenching at RHIC and LHC energies,
2512
+ Phys. Lett. B 777, 255 (2018), arXiv:1703.00822 [nucl-
2513
+ th].
2514
+ [135] J. Casalderrey-Solana, E. V. Shuryak, and D. Teaney,
2515
+ Conical flow induced by quenched QCD jets, J. Phys.
2516
+ Conf. Ser. 27, 22 (2005), arXiv:hep-ph/0411315.
2517
+ [136] H. Stoecker, Collective flow signals the quark gluon
2518
+ plasma, Nucl. Phys. A 750, 121 (2005), arXiv:nucl-
2519
+ th/0406018.
2520
+ [137] Y. Tachibana, Medium response to jet-induced excita-
2521
+ tion: theory overview, Nucl. Phys. A 982, 156 (2019).
2522
+ [138] S. Schlichting and I. Soudi, Medium-induced fragmenta-
2523
+ tion and equilibration of highly energetic partons, JHEP
2524
+ 07, 077, arXiv:2008.04928 [hep-ph].
2525
+ [139] T. Luo, Medium response in jet quenching, Nucl. Phys.
2526
+ A 1005, 121992 (2021).
2527
+ [140] Y. Mehtar-Tani,
2528
+ S. Schlichting, and I. Soudi, Jet
2529
+ thermalization
2530
+ in
2531
+ QCD
2532
+ kinetic
2533
+ theory,
2534
+ (2022),
2535
+ arXiv:2209.10569 [hep-ph].
2536
+ [141] A. K. Chaudhuri and U. Heinz, Effect of jet quenching
2537
+ on the hydrodynamical evolution of QGP, Phys. Rev.
2538
+ Lett. 97, 062301 (2006), arXiv:nucl-th/0503028.
2539
+ [142] T. Renk and J. Ruppert, Mach cones in an evolving
2540
+ medium, Phys. Rev. C 73, 011901 (2006), arXiv:hep-
2541
+ ph/0509036.
2542
+ [143] L. M. Satarov, H. Stoecker, and I. N. Mishustin, Mach
2543
+ shocks induced by partonic jets in expanding quark-
2544
+ gluon plasma, Phys. Lett. B 627, 64 (2005), arXiv:hep-
2545
+ ph/0505245.
2546
+ [144] R. B. Neufeld, B. Muller, and J. Ruppert, Sonic Mach
2547
+ Cones Induced by Fast Partons in a Perturbative
2548
+ Quark-Gluon Plasma, Phys. Rev. C 78, 041901 (2008),
2549
+ arXiv:0802.2254 [hep-ph].
2550
+ [145] J. Noronha, M. Gyulassy, and G. Torrieri, Di-Jet Con-
2551
+ ical Correlations Associated with Heavey Quark Jets
2552
+ in anti-de Sitter Space/Conformal Field Theory Cor-
2553
+ respondence, Phys. Rev. Lett. 102, 102301 (2009),
2554
+ arXiv:0807.1038 [hep-ph].
2555
+ [146] G. Y. Qin, A. Majumder, H. Song, and U. Heinz, En-
2556
+ ergy and momentum deposited into a QCD medium
2557
+ by a jet shower, Phys. Rev. Lett. 103, 152303 (2009),
2558
+ arXiv:0903.2255 [nucl-th].
2559
+ [147] B. Betz, J. Noronha, G. Torrieri, M. Gyulassy, and D. H.
2560
+ Rischke, Universal Flow-Driven Conical Emission in Ul-
2561
+ trarelativistic Heavy-Ion Collisions, Phys. Rev. Lett.
2562
+ 105, 222301 (2010), arXiv:1005.5461 [nucl-th].
2563
+ [148] R. B. Neufeld and I. Vitev, Parton showers as sources
2564
+ of energy-momentum deposition in the QGP and their
2565
+ implication for shockwave formation at RHIC and at the
2566
+ LHC, Phys. Rev. C 86, 024905 (2012), arXiv:1105.2067
2567
+ [hep-ph].
2568
+ [149] M. Schulc and B. Tom´aˇsik, Anisotropic flow of the fire-
2569
+ ball fed by hard partons, Phys. Rev. C 90, 064910
2570
+ (2014), arXiv:1409.6116 [nucl-th].
2571
+ [150] Y. Tachibana and T. Hirano, Momentum transport
2572
+ away from a jet in an expanding nuclear medium, Phys.
2573
+ Rev. C 90, 021902 (2014), arXiv:1402.6469 [nucl-th].
2574
+ [151] Y. Tachibana et al. (JETSCAPE), Hydrodynamic re-
2575
+ sponse to jets with a source based on causal diffusion,
2576
+ Nucl. Phys. A 1005, 121920 (2021), arXiv:2002.12250
2577
+ [nucl-th].
2578
+ [152] M. Okai, K. Kawaguchi, Y. Tachibana, and T. Hirano,
2579
+ New approach to initializing hydrodynamic fields and
2580
+ mini-jet propagation in quark-gluon fluids, Phys. Rev.
2581
+ C 95, 054914 (2017), arXiv:1702.07541 [nucl-th].
2582
+ [153] J. Casalderrey-Solana, J. G. Milhano, D. Pablos, K. Ra-
2583
+ jagopal, and X. Yao, Jet Wake from Linearized Hydro-
2584
+ dynamics, JHEP 05, 230, arXiv:2010.01140 [hep-ph].
2585
+ [154] Z. Yang, W. Chen, Y. He, W. Ke, L. Pang, and X.-
2586
+ N. Wang, Search for the Elusive Jet-Induced Diffusion
2587
+
2588
+ 20
2589
+ Wake in Z/γ-Jets with 2D Jet Tomography in High-
2590
+ Energy Heavy-Ion Collisions, Phys. Rev. Lett. 127,
2591
+ 082301 (2021), arXiv:2101.05422 [hep-ph].
2592
+ [155] D. Pablos, M. Singh, S. Jeon, and C. Gale, Minijet
2593
+ quenching in a concurrent jet+hydro evolution and the
2594
+ nonequilibrium quark-gluon plasma, Phys. Rev. C 106,
2595
+ 034901 (2022), arXiv:2202.03414 [nucl-th].
2596
+ [156] Z. Yang, Y. He, W. Chen, W.-Y. Ke, L.-G. Pang,
2597
+ and X.-N. Wang, Deep learning assisted jet tomogra-
2598
+ phy for the study of Mach cones in QGP,
2599
+ (2022),
2600
+ arXiv:2206.02393 [nucl-th].
2601
+ [157] Y. Mehtar-Tani, C. A. Salgado, and K. Tywoniuk, Anti-
2602
+ angular ordering of gluon radiation in QCD media,
2603
+ Phys. Rev. Lett. 106, 122002 (2011), arXiv:1009.2965
2604
+ [hep-ph].
2605
+ [158] Y. Mehtar-Tani, C. A. Salgado, and K. Tywoniuk, Jets
2606
+ in QCD Media: From Color Coherence to Decoherence,
2607
+ Phys. Lett. B 707, 156 (2012), arXiv:1102.4317 [hep-
2608
+ ph].
2609
+ [159] J. Casalderrey-Solana and E. Iancu, Interference ef-
2610
+ fects in medium-induced gluon radiation, JHEP 08, 015,
2611
+ arXiv:1105.1760 [hep-ph].
2612
+ [160] G. Altarelli and G. Parisi, Asymptotic Freedom in Par-
2613
+ ton Language, Nucl. Phys. B 126, 298 (1977).
2614
+ [161] R. Abir, G. D. Kaur, and A. Majumder, Multiple scat-
2615
+ tering of heavy-quarks in dense matter and the para-
2616
+ metric prominence of drag, Phys. Rev. D 90, 114026
2617
+ (2014), arXiv:1407.1864 [nucl-th].
2618
+ [162] R. Abir and A. Majumder, Drag-induced radiative en-
2619
+ ergy loss from semihard heavy quarks, Phys. Rev. C 94,
2620
+ 054902 (2016), arXiv:1506.08648 [nucl-th].
2621
+ [163] M. Cacciari and G. P. Salam, Dispelling the N 3 myth
2622
+ for the kt jet-finder, Phys. Lett. B 641, 57 (2006),
2623
+ arXiv:hep-ph/0512210.
2624
+ [164] M. Cacciari,
2625
+ G. P. Salam, and G. Soyez, FastJet
2626
+ User
2627
+ Manual,
2628
+ Eur.
2629
+ Phys.
2630
+ J.
2631
+ C
2632
+ 72,
2633
+ 1896
2634
+ (2012),
2635
+ arXiv:1111.6097 [hep-ph].
2636
+ [165] https://fastjet.hepforge.org/contrib/.
2637
+ [166] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft
2638
+ Drop, JHEP 05, 146, arXiv:1402.2657 [hep-ph].
2639
+ [167] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam,
2640
+ Towards an understanding of jet substructure, JHEP
2641
+ 09, 029, arXiv:1307.0007 [hep-ph].
2642
+ [168] A. J. Larkoski, S. Marzani, and J. Thaler, Sudakov
2643
+ Safety in Perturbative QCD, Phys. Rev. D 91, 111501
2644
+ (2015), arXiv:1502.01719 [hep-ph].
2645
+ [169] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt
2646
+ jet clustering algorithm, JHEP 04, 063, arXiv:0802.1189
2647
+ [hep-ph].
2648
+ [170] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R.
2649
+ Webber, Better jet clustering algorithms, JHEP 08, 001,
2650
+ arXiv:hep-ph/9707323.
2651
+ [171] M. Wobisch and T. Wengler, Hadronization correc-
2652
+ tions to jet cross-sections in deep inelastic scattering,
2653
+ in Workshop on Monte Carlo Generators for HERA
2654
+ Physics (Plenary Starting Meeting) (1998) pp. 270–279,
2655
+ arXiv:hep-ph/9907280.
2656
+ [172] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and
2657
+ collider physics, Vol. 8 (Cambridge University Press,
2658
+ 2011).
2659
+ [173] P. Caucal, E. Iancu, and G. Soyez, Jet radiation in
2660
+ a longitudinally expanding medium, JHEP 04, 209,
2661
+ arXiv:2012.01457 [hep-ph].
2662
+ [174] R. Pordes et al., The Open Science Grid, J. Phys. Conf.
2663
+ Ser. 78, 012057 (2007).
2664
+ [175] I. Sfiligoi, D. C. Bradley, B. Holzman, P. Mhashilkar,
2665
+ S. Padhi, and F. Wurthwrin, The pilot way to Grid re-
2666
+ sources using glideinWMS, WRI World Congress 2, 428
2667
+ (2009).
2668
+
UNE0T4oBgHgl3EQflQHp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
VdE2T4oBgHgl3EQftwjJ/content/tmp_files/2301.04074v1.pdf.txt ADDED
@@ -0,0 +1,1701 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04074v1 [quant-ph] 10 Jan 2023
2
+ Cavity–Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular Ensemble
3
+ under Vibrational Strong Coupling
4
+ Eric W. Fischer∗
5
+ Theoretische Chemie, Institut für Chemie, Universität Potsdam,
6
+ Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
7
+ Peter Saalfrank
8
+ Theoretische Chemie, Institut für Chemie, Universität Potsdam,
9
+ Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany and
10
+ Institut für Physik und Astronomie, Universität Potsdam,
11
+ Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
12
+ Microcavities have been shown to influence the reactivity of molecular ensembles by strong cou-
13
+ pling of molecular vibrations to quantized cavity modes. In quantum mechanical treatments of such
14
+ scenarios, frequently idealized models with single molecules and scaled, effective molecule–cavity
15
+ interactions or alternatively ensemble models with simplified model Hamiltonians are used. In this
16
+ work, we go beyond these models by applying an ensemble variant of the Pauli–Fierz Hamiltonian
17
+ for vibro–polaritonic chemistry and numerically solve the underlying time–dependent Schrödinger
18
+ equation to study the cavity–induced quantum dynamics in an ensemble of thioacetylacetone (TAA)
19
+ molecules undergoing hydrogen transfer under vibrational strong coupling (VSC) conditions. Be-
20
+ ginning with a single molecule coupled to a single cavity mode, we show that the cavity indeed
21
+ enforces hydrogen transfer from an enol to an enethiol configuration with transfer rates significantly
22
+ increasing with light–matter interaction strength. This positive effect of the cavity on reaction rates
23
+ is different from several other systems studied so far, where a retarding effect of the cavity on rates
24
+ was found. It is argued that the cavity “catalyzes” the reaction by transfer of virtual photons to
25
+ the molecule. The same concept applies to ensembles with up to N = 20 TAA molecules coupled
26
+ to a single cavity mode, where an additional, significant, ensemble–induced collective isomerization
27
+ rate enhancement is found. The latter is traced back to complex entanglement dynamics of the
28
+ ensemble, which we quantify by means of von Neumann–entropies. A non–trivial dependence of
29
+ the dynamics on ensemble size is found, clearly beyond scaled single–molecule models, which we
30
+ interpret as transition from a multi–mode Rabi to a system–bath–type regime as N increases.
31
+ I.
32
+ INTRODUCTION
33
+ The interaction of optical modes confined in Fabry–
34
+ Pérot cavities with optically active molecular degrees of
35
+ freedom lies at the heart of the emerging field of po-
36
+ laritonic chemistry[1–7].
37
+ In one class of promising ex-
38
+ periments, molecular vibrations interact strongly with
39
+ the ground state of infrared active cavity modes.
40
+ In
41
+ this vibrational strong coupling (VSC) regime, signifi-
42
+ cantly altered thermal ground state chemistry has been
43
+ observed[8–12]. While in early examples of VSC–altered
44
+ reactivity, rates usually were retarded, meanwhile also
45
+ experiments exist with accelerated rates[13].
46
+ VSC ex-
47
+ periments have generated a significant theoretical effort
48
+ aiming to understand the complex interplay of light and
49
+ matter in thermal polariton chemistry[14–25, 28–30]. As
50
+ an example, isomerization reactions have been idealized
51
+ as arising from population transfer from one well of a
52
+ cavity–distorted double–minimum potential to the other
53
+ well, with the dynamics being treated classically or quan-
54
+ tum mechanically[21, 23–25]. At least in quantum me-
55
+ chanical treatments, typically single molecules are con-
56
+ sidered and the transition to ensembles of N molecules
57
+ ∗ ericwfi[email protected]
58
+ is mimicked via effective single–molecule models with
59
+ scaled molecule–cavity couplings[25]. Alternatively, sim-
60
+ plified N–emitter model Hamiltonians comprising a set
61
+ of two–level systems and model cavity–emitter couplings
62
+ are used such as the Tavis–Cummings[26] or Dicke[27]–
63
+ models.
64
+ In this contribution, we study hydrogen transfer re-
65
+ action models for thioacetylacetone (TAA) molecules[31]
66
+ placed in an infrared cavity both for a single molecule
67
+ or an ensemble of up to N = 20 molecules.
68
+ The lat-
69
+ ter are explicitly treated from a fully quantum mechan-
70
+ ical perspective and beyond simplified N–emitter model
71
+ Hamiltonians such as Tavis–Cummings[26], by employing
72
+ an N–molecule variant of the Pauli–Fierz Hamiltonian
73
+ and solving a corresponding multi–dimensional time-
74
+ dependent Schrödinger equation numerically.
75
+ For the
76
+ molecule under investigation, idealized here as an asym-
77
+ metric double–well, we first demonstrate for the single–
78
+ molecule scenario a cavity–induced isomerization/ H–
79
+ transfer from the “enol” configuration, which is the ener-
80
+ getically favored form outside the cavity, to an “enethiol”
81
+ form.
82
+ We extract approximate H–transfer rates from
83
+ the numerically obtained dynamics, which increase with
84
+ light–matter coupling and ensemble size.
85
+ The cavity
86
+ “catalytic��� effect in the single–molecule limit, i.e., rate
87
+ enhancement, is traced back to a symmetric distor-
88
+
89
+ 2
90
+ tion/ displacement of the cavity potential energy sur-
91
+ face (cPES) by a smoothly varying dipole function. In
92
+ contrast, if the distortion of the cPES is antisymmet-
93
+ ric (as for the inversion of ammonia, for example, with
94
+ an antisymmetric dipole function), rates are found to
95
+ be decelerated by the cavity[25]. Equivalently, the rate
96
+ enhancement found here can be understood as being
97
+ driven by transfer of virtual photons from the cavity
98
+ to the H–transfer system. The concept of virtual pho-
99
+ ton transfer directly generalizes to the ensemble scenario,
100
+ where single–molecule cPES distortion arguments no
101
+ longer hold due to significantly reduced single molecule
102
+ light–matter coupling in contrast to enhanced ensemble
103
+ coupling.[23] In particular, we discuss how virtual pho-
104
+ ton transfer in the many–molecule scenario leads to a
105
+ strongly entangled molecular transfer ensemble, which
106
+ in turn determines the quantum mechanical nature of
107
+ the transfer dynamics, beyond those arising from scaled
108
+ single–molecule model Hamiltonians.
109
+ The paper is organized as follows. In Sec.II the N–
110
+ molecule Pauli–Fierz Hamiltonian for an ensemble of
111
+ TAA molecules is introduced and the computation of ob-
112
+ servables employed to describe the isomerization dynam-
113
+ ics is illustrated. In Sec.III, we demonstrate and analyze
114
+ the cavity–induced isomerization of single TAA and en-
115
+ sembles of TAA molecules systematically in dependence
116
+ of the molecule–cavity coupling strength and the ensem-
117
+ ble size.
118
+ Finally, Sec.IV summarizes this work.
119
+ Most
120
+ of the numerical details and parameters as well as some
121
+ further results can be found in the Supplementary Infor-
122
+ mation (SI).
123
+ II.
124
+ THEORY AND MODEL
125
+ A.
126
+ Hamiltonian and Quantum Dynamics
127
+ We consider a cavity–altered asymmetric hydrogen
128
+ transfer reaction by extending a well studied reaction
129
+ model Hamiltonian for TAA[31] (cf. Fig.1a). The light–
130
+ matter hybrid system is described by an effective Pauli–
131
+ Fierz Hamiltonian in length–gauge representation, cavity
132
+ Born–Oppenheimer type and long–wavelength approxi-
133
+ mations, which reads[32–34]
134
+ ˆH = ˆHS + ˆHC + ˆHSC + ˆHDSE
135
+ .
136
+ (1)
137
+ The first term resembles N non–interacting H–transfer
138
+ systems, idealized here as a sum of one–dimensional
139
+ Hamiltonians along a transfer coordinate, qi, for the i–th
140
+ molecule with
141
+ ˆHS =
142
+ N
143
+
144
+ i=1
145
+
146
+ − ℏ2
147
+ 2µS
148
+ ∂2
149
+ ∂q2
150
+ i
151
+ + V (qi)
152
+
153
+ ,
154
+ (2)
155
+ and corresponding reduced mass, µS, close to the hy-
156
+ drogen mass (cf. SI, Sec.I). As shown in the SI, Sec.I,
157
+ this Hamiltonian is a one–dimensional approximation ob-
158
+ tained from a two–dimensional Hamiltonian developed
159
+ originally in Ref.[31].
160
+ The single–molecule potential,
161
+ V (q) (where we suppress the index i here, as all poten-
162
+ tials are identical), constitutes an asymmetric double–
163
+ well potential with a global minimum at q = −0.572 a0,
164
+ which relates to the enol (OH) configuration, and a local
165
+ minimum at q = 0.947 a0 corresponding to the enethiol
166
+ (SH) configuration of TAA. Both minima are charac-
167
+ terized by classical over–the–barrier activation energies,
168
+ ∆Ecl
169
+ OH = 1598 cm−1 and ∆Ecl
170
+ SH = 1081 cm−1, with re-
171
+ spect to the transition state located at q = 0.0, i.e.,
172
+ the classical energy difference between the two isomers is
173
+ 517 cm−1. By diagonalizing ˆHS for the single–molecule
174
+ case with N = 1, the two energetically lowest lying
175
+ eigenstates are found to correspond to the ground state
176
+ enol configuration, ψ0(q) = ψOH(q), and the first excited
177
+ state, enethiol configuration, ψ1(q) = ψSH(q), with en-
178
+ ergies, ε0 = 966.3 cm−1 and ε0 = 1092.8 cm−1, respec-
179
+ tively, giving a corresponding quantum mechanical en-
180
+ ergy difference of ∆ε10 = 126.5 cm−1.
181
+ Details on the
182
+ transfer potential, V (q), with all numerical parameters
183
+ are provided in the SI, Sec.I.
184
+ The second term in Eq.(1) describes the cavity Hamil-
185
+ tonian, which we restrict here to a single mode, given in
186
+ coordinate representation as
187
+ ˆHC = −ℏ2
188
+ 2
189
+ ∂2
190
+ ∂x2c
191
+ + ω2
192
+ c
193
+ 2 x2
194
+ c
195
+ ,
196
+ (3)
197
+ with cavity displacement coordinate, xc (of dimension
198
+ mass1/2× length), and harmonic cavity frequency, ωc,
199
+ chosen to be resonant with the lowest vibrational tran-
200
+ sition of the transfer system, i.e., ℏωc
201
+ =
202
+ ∆ε10
203
+ =
204
+ 126.5 cm−1. Further, the light–matter interaction term,
205
+ ˆHSC, is given by
206
+ ˆHSC =
207
+
208
+ 2ωc
209
+ ℏ gN d(q) xc
210
+ ,
211
+ (4)
212
+ with collective transfer coordinate, q = (q1 . . . qN). While
213
+ going well beyond Dicke–Hamiltonians, the collective
214
+ light–matter interaction constant, gN, is still chosen to be
215
+ of Dicke form[27], gN =
216
+ g
217
+
218
+ N , where g is a single–molecule
219
+ coupling strength. The collective dipole moment is given
220
+ by, d(q) = �N
221
+ i d(qi), with ground state dipole function,
222
+ d(qi), for the i–th H–transfer system. The latter is a lin-
223
+ ear approximation to the dipole function given in Ref.[31]
224
+ and reads
225
+ d(qi) = d0 + dS (qi − q0)
226
+ ,
227
+ (5)
228
+ with parameters d0, dS and q0 given in the SI, Sec. I.
229
+ We note that the dipole moment takes positive values
230
+ at both the enol minimum (dOH = 1.678 ea0) and the
231
+ enethiol minimum (dSH = 1.482 ea0), i.e., d(qi) changes
232
+ smoothly without sign change along the (classical) reac-
233
+ tion path. Note further that in Eq.(4), we assume the
234
+ dipole moment of each molecule to be aligned with both
235
+ the respective H–transfer coordinate and the polarization
236
+ axis of the cavity mode. The single–molecule coupling
237
+
238
+ 3
239
+ FIG. 1.
240
+ (a) Schematic setup for thioacetylacetone (TAA) isomerization in a single–mode cavity model.
241
+ Indicated are the
242
+ enol (with OH group, O in red) and enethiol configurations (with SH group, S in yellow), other molecules in the ensemble,
243
+ and the cavity mode between two parallel mirrors. b) Ground state density, |Ψ0(q, xc)|2, corresponding mainly to the enol
244
+ configuration and c) first excited state density, |Ψ1(q, xc)|2, corresponding mainly to the enethiol configuration, both embedded
245
+ in a two–dimensional cPES, V (q, xc) (contours in cm−1), which arises from a cavity–hydrogen–transfer model Hamiltonian. The
246
+ single–molecule cPES is a function of the H–transfer coordinate, q, and a cavity displacement coordinate, xc. The uncoupled
247
+ case with η = 0.0 is shown with lowest–state energies, E0 = ε0 + ℏωc
248
+ 2 , and, E1 = ε1 + ℏωc
249
+ 2 , where ε0 = 966.3 cm−1 and
250
+ ε1 = 1092.8 cm−1 are the lowest two eigenenergies of the one–dimensional H–transfer Hamiltonian, ˆHS, with potential, V (q).
251
+ We set the cavity frequency to be resonant with the lowest molecular vibrational transition, i.e., ℏωc = ∆ε10 = 126.5 cm−1.
252
+ constant, g, in Eq.(4) has dimension of an electric field
253
+ strength and is modeled here as, g = ℏωc
254
+ d10 η[34], where,
255
+ d10 = ⟨ψ0|d(q)|ψ1⟩ = 0.042 ea0, is the fundamental tran-
256
+ sition dipole moment of the H–transfer system. Further,
257
+ η is a dimensionless function of the effective cavity vol-
258
+ ume and the dielectric constant within the cavity [32–34],
259
+ but treated here as a variable parameter chosen between
260
+ η = 0.0 (no molecule–cavity coupling) and η = 0.09. The
261
+ vibrational strong coupling (VSC) regime is determined
262
+ by 0 < η < 0.1.[35] Note, we do not refer to alterna-
263
+ tive definitions of VSC related to dissipation strengths
264
+ here.[30] Finally, the dipole self–energy (DSE) reads
265
+ ˆHDSE = g2
266
+ N
267
+ ℏωc
268
+ N
269
+
270
+ i=1
271
+ d2(qi) + g2
272
+ N
273
+ ℏωc
274
+ N
275
+
276
+ i̸=j
277
+ d(qi) d(qj)
278
+ ,
279
+ (6)
280
+ containing both diagonal and off–diagonal contributions,
281
+ where the latter couples all N H–transfer systems. For
282
+ the N–molecule plus one–cavity mode system, an N +1–
283
+ dimensional cavity potential energy surface (cPES) can
284
+ be defined as
285
+ Vη(q, xc) = V (q) + ω2
286
+ c
287
+ 2
288
+
289
+ xc +
290
+
291
+
292
+ 2ω3c
293
+ gN d(q)
294
+ �2
295
+ .
296
+ (7)
297
+ For the uncoupled, single–molecule case (η = 0.0, N =
298
+ 1), the cPES, V (q, xc), is shown in Figs.1b and 1c su-
299
+ perimposed with probability densities of the two low-
300
+ est eigenfunctions, |Ψ0(q, xc)|2 and |Ψ1(q, xc)|2 obtained
301
+ from diagonalizing the corresponding total Hamiltonian
302
+ ˆH. These states are simple product states for η = 0.0 and
303
+ therefore also correspond to the enol and enethiol forms,
304
+ weakly delocalized with small contributions at the other
305
+ minimum as indicated.
306
+ For N molecules, in our fully quantum mechanical ap-
307
+ proach, the time–evolution of the light-matter hybrid sys-
308
+ tem is governed by an N +1–dimensional time-dependent
309
+ Schrödinger equation (TDSE)
310
+ iℏ ∂
311
+ ∂tΨ(q, xc, t) = ˆH Ψ(q, xc, t)
312
+ ,
313
+ (8)
314
+ which we solve numerically by means of the mul-
315
+ ticonfigurational
316
+ time–dependent
317
+ Hartree
318
+ (MCTDH)
319
+ approach[36,
320
+ 37]
321
+ and
322
+ its
323
+ multilayer (ML–MCTDH)
324
+ extension[38–40] (cf.
325
+ SI, Sec. II for details) as imple-
326
+ mented in the Heidelberg MCTDH package[41]. More-
327
+ over, we consider as initial state
328
+ Ψ0(q, xc) =
329
+ � N
330
+
331
+ i=1
332
+ ψOH(qi)
333
+
334
+
335
+ ��
336
+
337
+ =ψN(q)
338
+ ϕ0(xc)
339
+ ,
340
+ (9)
341
+ with ground state enol configuration, ψOH(qi), for the i–
342
+ th H–transfer system and cavity vacuum state, ϕ0(xc).
343
+ The latter corresponds to the ground state of the bare
344
+ cavity with zero physical photons.
345
+ We will discuss
346
+ differences to photon number expectation values for a
347
+ molecule–cavity system at finite light–matter interaction
348
+ strength (η > 0) below. Finally, we note that Ψ0(q, xc)
349
+ turns out to be not a good approximation to the vibra-
350
+ tional polariton ground state under VSC in the herein
351
+ discussed asymmetric transfer model, but leads to rich
352
+ dynamics from where also H–transfer rates can be deter-
353
+ mined. A further analysis of the initial state is given in
354
+ the SI, Sec. III.
355
+
356
+ 3000
357
+ -1.0
358
+ 0.10
359
+ -0.5
360
+ 0
361
+ 00
362
+ 0.08
363
+ 0.0
364
+ oe/b
365
+ 7500
366
+ 0009
367
+ 0.06
368
+ 1500
369
+ 0.5
370
+ 0.04
371
+ 1.0
372
+ 0.02
373
+ 1.5
374
+ 0.00
375
+ -400
376
+ -200
377
+ 0
378
+ 200
379
+ 400
380
+ Xc/ymeao3000
381
+ -1.0
382
+ 0.12
383
+ -0.5
384
+ 0.10
385
+ 0.0
386
+ lao
387
+ 0.08
388
+ 7500
389
+ 0009
390
+ 1500
391
+ 4500
392
+ 0.5
393
+ 0.06
394
+ 0.04
395
+ 1.0
396
+ 0.02
397
+ 1.5
398
+ 0.00
399
+ -400
400
+ -200
401
+ 0
402
+ 200
403
+ 400
404
+ Xc/ymeao4
405
+ B.
406
+ Observables
407
+ We describe the time–evolution of the light–matter hy-
408
+ brid system by a time–dependent ensemble transfer prob-
409
+ ability from the enol form (the more stable configura-
410
+ tion of the free molecule or the molecule in the cavity at
411
+ η = 0.0) to the enethiol form, which we define as
412
+ P ens
413
+ SH (t) =
414
+
415
+ Ψ(t)
416
+ ����
417
+ 1
418
+ N
419
+ N
420
+
421
+ i=1
422
+ θ(qi)
423
+ ����Ψ(t)
424
+
425
+ .
426
+ (10)
427
+ Here, θ(qi), is a Heaviside step function indicating a di-
428
+ viding surface located at the transition state of the in-
429
+ dividual transfer potentials. Due to the bound nature
430
+ of the cPES, the transfer dynamics is subject to recross-
431
+ ing events at the dividing–surface, where we characterize
432
+ the first recurrence by a recurrence time, τr. The latter
433
+ allows us to introduce the notion of short–time dynam-
434
+ ics for times, t ≤ τr, and subsequently the extraction
435
+ of approximate short–time transfer rates from enol– to
436
+ enethiol–configurations as
437
+ kens
438
+ SH = d
439
+ dtP ens
440
+ SH (t)
441
+ ����
442
+ t=tmax
443
+ ,
444
+ (11)
445
+ where tmax maximizes kens
446
+ SH for t0 < tmax < τr. Further,
447
+ time–dependent coordinate expectation values
448
+ ⟨R⟩ (t) = ⟨Ψ(t)|R|Ψ(t)⟩
449
+ ,
450
+ R = q, xc
451
+ ,
452
+ (12)
453
+ provide a complementary perspective on the dynamics.
454
+ In order to address cavity–induced collective quantum ef-
455
+ fects, we additionally study entanglement in the strongly
456
+ coupled light–matter hybrid system via von Neumann–
457
+ entropies
458
+ Si(t) = −kB tr{ˆρi(t) ln ˆρi(t)} ≥ 0
459
+ ,
460
+ (13)
461
+ with Boltzmann constant, kB, and reduced density oper-
462
+ ators, ˆρi(t), for an individual transfer mode, i = q, or the
463
+ cavity mode, i = C. The equality in Eq.(13) holds only
464
+ if the reduced system is in a pure state, i.e., when the
465
+ reduced subsystem is disentangled from the remaining
466
+ degrees of freedom.
467
+ Finally, we consider the photon number expectation
468
+ value, ⟨ˆnc⟩, and its time evolution, which reads in length–
469
+ gauge representation (cf. SI, Sec. IV)
470
+ ⟨ˆnc⟩ =
471
+ 1
472
+ ℏωc
473
+
474
+ ⟨ ˆHC⟩ + ⟨ ˆHSC⟩ + ⟨ ˆHDSE⟩
475
+
476
+ − 1
477
+ 2
478
+ .
479
+ (14)
480
+ In the non–interacting limit, Eq.(14) reduces to, ⟨ˆnc⟩ =
481
+ 1
482
+ ℏωc ⟨ ˆHC⟩ −
483
+ 1
484
+ 2
485
+ =
486
+ nc,
487
+ with
488
+ nc
489
+ physical
490
+ photons,
491
+ whereas nc
492
+ =
493
+ 0 for the herein studied cavity vac-
494
+ uum state.
495
+ For non–zero light–matter interaction,
496
+ the photon expectation value initially reads, ⟨ˆnc⟩0 =
497
+ 1
498
+ ℏωc
499
+
500
+ ⟨ ˆHC⟩0 + ⟨ ˆHDSE⟩0
501
+
502
+ − 1
503
+ 2 > nc, due to a non–zero
504
+ number of virtual photons generated by the strong inter-
505
+ action of light and matter.[35] In particular, the number
506
+ of virtual photons at t0 is directly determined by the
507
+ DSE contribution and therefore ensemble size dependent
508
+ (cf. Eq.(6)). Note, the interaction term, ⟨ ˆHSC⟩0, does
509
+ initially not contribute to ⟨ˆnc⟩0 but will become relevant
510
+ throughout the time–evolution of the hybrid system.
511
+ III.
512
+ RESULTS AND DISCUSSION
513
+ A.
514
+ Cavity–induced isomerization: Single molecule
515
+ We start our discussion of cavity–induced isomeriza-
516
+ tion for the asymmetric hydrogen transfer model in the
517
+ single–molecule limit with N = 1 by solving the TDSE
518
+ (8) for various coupling strengths, η, always using the
519
+ same initial state (9). Tab.I, upper two lines, lists the cor-
520
+ responding initial state energies, ⟨ ˆH⟩0, and correspond-
521
+ ing photon number expectation values, ⟨ˆnc⟩0, for selected
522
+ values of η. We observe an increase for both expectation
523
+ values, where ⟨ ˆH⟩0 > ∆Ecl
524
+ OH = 1598 cm−1 for relatively
525
+ strong couplings of η > 0.05 and ⟨ˆnc⟩0 > 0 correspond to
526
+ virtual photons generated by the DSE term.
527
+ η
528
+ 0.00
529
+ 0.01
530
+ 0.03
531
+ 0.05
532
+ 0.07
533
+ 0.09
534
+ ⟨ ˆH⟩0 / cm−1
535
+ 1098
536
+ 1111
537
+ 1218
538
+ 1433
539
+ 1755
540
+ 2184
541
+ ⟨ˆnc⟩0
542
+ 0.0
543
+ 0.16
544
+ 1.42
545
+ 3.95
546
+ 7.74
547
+ 12.80
548
+ τr/fs
549
+
550
+ 87
551
+ 88
552
+ 92
553
+ 95
554
+ 100
555
+ kSH/1011 s−1
556
+ 0.00
557
+ 0.02
558
+ 0.15
559
+ 0.46
560
+ 0.95
561
+ 1.39
562
+ TABLE I. Initial state energies, ⟨ ˆH⟩0 = ⟨ ˆHS⟩0 + ⟨ ˆHC⟩0 +
563
+ ⟨ ˆHDSE⟩0, photon number expectation values, ⟨ˆnc⟩0, first–
564
+ recurrence times, τr, and short–time transfer rates, kSH,
565
+ in the single–molecule limit for different light–matter inter-
566
+ actions strengths, η.
567
+ In all cases, the same initial state,
568
+ Ψ0(q, xc) = ψOH(q) ϕ0(xc), was employed.
569
+ For η > 0, H–transfer converting the enol (OH) to the
570
+ enethiol (SH) form takes place. This can be seen from
571
+ Fig.2, where the transfer probability, PSH(t) is shown
572
+ (2a), as well as the expectation value of the H–transfer
573
+ coordinate, ⟨q⟩ (t) (2b), both as a function of time and
574
+ for different values of η. Note, for the transfer probabil-
575
+ ity, PSH(t), one initially finds PSH(t0) = 0.11 due to the
576
+ weakly delocalized nature of ψOH(q). As time evolves,
577
+ PSH(t) increases for η > 0 in an oscillatory fashion, which
578
+ indicates formation of the enethiol isomer (Fig.2a). Os-
579
+ cillatory signatures in PSH(t) represent recurrences with a
580
+ period of 264 fs for η < 0.07, which resembles the cavity–
581
+ mode energy, ℏωc. For stronger coupling, the dynamics
582
+ turns out to be less regular.
583
+ The transfer coordinate
584
+ expectation value, ⟨q⟩ (t), closely resembles the transfer
585
+ dynamics, with ⟨q⟩ < 0 indicating the enol and ⟨q⟩ > 0
586
+ the enethiol isomer (cf. Fig.2b).
587
+ From closer inspection of Fig.2a, we can extract first–
588
+ recurrence times, τr, and corresponding short–time trans-
589
+ fer rates, kSH, for different values of η. These are given
590
+ in Tab.I, lower two rows. In the non–interacting limit
591
+
592
+ 5
593
+ FIG. 2. Time–evolution of (a) single–molecule (N = 1) trans-
594
+ fer probability, PSH(t), and (b) transfer coordinate expecta-
595
+ tion value, ⟨q⟩ (t), with black dashed lines indicating the quan-
596
+ tum mechanical expectation values, ⟨q⟩OH = ⟨Ψ0|q|Ψ0⟩ and
597
+ ⟨q⟩SH = ⟨Ψ1|q|Ψ1⟩, respectively, for different light–matter in-
598
+ teraction strengths, η.
599
+ (η = 0.0), we have kSH = 0.0, i.e., there is no pop-
600
+ ulation transfer to the local enethiol minimum without
601
+ coupling to the cavity mode. In contrast, for η > 0 we
602
+ find transfer rates, kSH ≈ 109 s−1 to 1011 s−1, which in-
603
+ crease with η by nearly two orders of magnitude over
604
+ the whole VSC regime between η = 0.01 to η = 0.09.
605
+ The increase of reaction probability/ transfer rate in a
606
+ cavity for this particular system is in contrast to other
607
+ systems, where a rate retardation has been found either
608
+ experimentally[1] or theoretically[25]. That cavities can
609
+ also enhance reactivity is a probably less widespread phe-
610
+ nomenon, however, this possibility has been discussed in
611
+ recent experimental[13] and theoretical[23] work.
612
+ In order to interpret the positive effect of the cav-
613
+ ity on the early–time, single–molecule transfer proba-
614
+ bility, PSH(t), for TAA, we analyze the properties of
615
+ the underlying single–molecule cPES, Vη(q, xc), which
616
+ guides the dynamics of the vibro–polaritonic wave packet,
617
+ Ψ(q, xc, t).
618
+ In Figs.3a and b, we show single–molecule cPES,
619
+ Vη(q, xc),
620
+ besides
621
+ corresponding
622
+ vibro–polaritonic
623
+ ground state densities for different light–matter in-
624
+ teraction strengths,
625
+ with initial cavity displacement
626
+ coordinate expectation value, ⟨xc⟩0 = 0, indicated by
627
+ a red vertical line. For η > 0, the cPES’s minima are
628
+ symmetrically shifted to negative values of the cavity
629
+ displacement coordinate, such that the cavity contri-
630
+ bution of the initial wave packet naturally experiences
631
+ an excitation. This is in contrast to a recently studied
632
+ class of symmetric double well potentials, e.g., for the
633
+ inversion of an NH3 molecule[25] or the ground state
634
+ cPES of a cavity Shin–Metiu model[21, 23], which are
635
+ asymmetrically distorted at finite light–matter inter-
636
+ action due to an antisymmetric, sign–changing dipole
637
+ moment. The latter leads to barrier broadening, valley
638
+ narrowing and (classical) dynamical caging effects, which
639
+ in consequence reduce isomerization probabilities[21, 25].
640
+ The static cPES perspective for TAA translates into a
641
+ time–evolution of ⟨xc⟩ (t) as shown in Fig.3c. We find the
642
+ vibro–polaritonic wave packet to acquire a significant dy-
643
+ namical component along the cavity displacement coordi-
644
+ nate as time evolves due to the respective gradient on the
645
+ cPES. ⟨xc⟩ (t) reveals coherent oscillations with period
646
+ 264 fs reflecting ℏωc = ∆ε10 and amplitude increasing
647
+ with η, which resembles the enhanced cPES distortion in
648
+ terms of altered turning points. Since the dynamics along
649
+ cavity displacement and molecular transfer coordinates is
650
+ naturally coupled via the interaction term, ˆHSC, we can
651
+ interpret the isomerization as cavity–induced excitation
652
+ along the transfer coordinate. The corresponding energy
653
+ transfer can be related to a virtual photon exchange be-
654
+ tween cavity and transfer modes, as will be discussed in
655
+ detail below.
656
+ Since the dynamics is strictly restricted
657
+ to non–zero coupling strengths with η > 0.0, the cavity
658
+ can be interpreted as a “catalyst” in this model scenario
659
+ – despite the classical barrier height is not affected[34].
660
+ We also note, the studied model system does not ex-
661
+ hibit a “reactant resonance effect” as the local OH–/SH–
662
+ stretching modes have frequencies, ωOH = 3264 cm−1 and
663
+ ωSH = 2737 cm−1, which do not support localized bound
664
+ states below the classical activation barriers.
665
+ B.
666
+ Cavity–induced isomerization: Molecular
667
+ ensembles
668
+ We now extend our study to an ensemble of N trans-
669
+ fer systems coupled to a single cavity mode with initial
670
+ state, Ψ0(q, xc), given by Eq.(9).
671
+ In what follows, we
672
+ set η = 0.05 and concentrate on the influence of varying
673
+ ensemble sizes N on the transfer process up to N = 20.
674
+ At first, we discuss the time–evolution of ensemble trans-
675
+ fer probabilities, P ens
676
+ SH (t), for different ensemble sizes N
677
+ as shown in Fig.4a. From the short–time dynamics, we
678
+ extract an ensemble transfer rate, kens
679
+ SH = 3 × 1012 s−1,
680
+ which is found to be two orders of magnitude larger than
681
+
682
+ 6
683
+ FIG. 3.
684
+ Single–molecule cavity potential energy surface (cPES), Vη(q, xc), and vibro–polaritonic ground state densities,
685
+ |Ψ0(q, xc)|2, for different light–matter interaction strengths, η = 0.0 (a), and η = 0.09 (b), with initial cavity displacement
686
+ coordinate expectation value, ⟨xc⟩0 = 0 indicated by red vertical line. (c) Time–evolution of cavity displacement coordinate
687
+ expectation value, ⟨xc⟩ (t), for different light–matter interaction strengths, η.
688
+ FIG. 4.
689
+ Time–evolution of (a) ensemble transfer probabil-
690
+ ity, P ens
691
+ SH (t), and (b) normalized photon number expectation
692
+ value, ⟨ˆnc⟩(t), as function of ensemble size N for light–matter
693
+ interaction strength, η = 0.05.
694
+ Single molecule properties
695
+ (N = 1) as reference indicated by black–dashed graphs.
696
+ the single molecule rate (0.46 × 1011 s−1), and nearly in-
697
+ dependent of N for ensemble sizes studied here. As time
698
+ evolves, we observe an oscillatory evolution of P ens
699
+ SH (t),
700
+ which can be classified by three different “regimes”:
701
+ (i) For N ≤ 6, the dynamics is dominated by a max-
702
+ imal probability density transfer at around 500 fs and
703
+ P ens
704
+ SH (t) is modulated by a series of beats with varying
705
+ amplitude and period of 264 fs corresponding to the cav-
706
+ ity mode excitation energy of ℏωc = 126.5 cm−1.
707
+ (ii) For 10 ≤ N ≤ 20, two prominent maxima occur in
708
+ P ens
709
+ SH (t) at around 200 fs and 700 fs, with a significantly
710
+ increased recurrence time of approximately 472 fs, which
711
+ we will again address below in context to entanglement
712
+ of the cavity mode.
713
+ (iii) Eventually, for an intermediate ensemble size with
714
+ N = 8, the probability transfer is significantly reduced
715
+ (cf. orange graph in Fig.4a) and no specific recurrence
716
+ structure is observed.
717
+ In order to provide an explanation for the ensemble
718
+ transfer dynamics, we discuss a normalized photon num-
719
+ ber expectation value
720
+ ⟨ˆnc⟩(t) = ⟨ˆnc⟩ (t)
721
+ ⟨ˆnc⟩ (t0)
722
+ ,
723
+ (15)
724
+ with, ⟨ˆnc⟩(t0) = 1, which allows us to address ensem-
725
+ ble effects on the virtual photon transfer between cavity
726
+ and molecules. We note, due to the different contribu-
727
+ tions to ⟨ˆnc⟩ in Eq.(14), a strict assignment of virtual
728
+ photons only to the cavity mode is in principle not pos-
729
+ sible as both interaction and DSE term also contribute
730
+ significantly to ⟨ˆnc⟩ (t). The time–evolution of ⟨ˆnc⟩(t) for
731
+ different N is shown in Fig.4b and we find ⟨ˆnc⟩(t) < 1 for
732
+ all N (including N = 1) over the studied time–interval,
733
+ i.e., virtual photons are transferred to the molecular en-
734
+ semble. In particular, we observe ⟨ˆnc⟩(t) to qualitatively
735
+ resemble the inverse dynamical trend in P ens
736
+ SH (t), i.e.,
737
+ virtual photon transfer to the molecular ensemble coin-
738
+ cides with enhanced population transfer to the enethiol
739
+ region (cf.
740
+ Fig.4a).
741
+ Hence, virtual photons are not
742
+ only exchanged with the transfer ensemble but virtually
743
+
744
+ 4000
745
+ -1.0
746
+ 2000
747
+ 0.12
748
+ -0.5
749
+ 14000
750
+ 0.10
751
+ 0.0
752
+ oe/b
753
+ 0.08
754
+ 0.5
755
+ 0.06
756
+ 0.04
757
+ 1.0
758
+ 0.02
759
+ 1.5
760
+ 600
761
+ 0.00
762
+ -400
763
+ -200
764
+ 0
765
+ 200
766
+ 400
767
+ Xc/ymeao3000
768
+ -1.0
769
+ 0.12
770
+ -0.5
771
+ 0.10
772
+ 0.0
773
+ oel
774
+ 0.08
775
+ 7500
776
+ 0009
777
+ a
778
+ 1500
779
+ 4500
780
+ 0.5
781
+ 0.06
782
+ 0.04
783
+ 1.0
784
+ 0.02
785
+ 1.5
786
+ 0.00
787
+ -400
788
+ -200
789
+ 0
790
+ 200
791
+ 400
792
+ Xc/Vmeao7
793
+ drive the cavity–induced isomerization. We note, non–
794
+ normalized expectation values, ⟨ˆnc⟩, significantly depend
795
+ on the interaction regime,i.e., η (cf. SI).
796
+ C.
797
+ Cavity–induced entanglement in ensembles
798
+ In order to gain further insight, we address differences
799
+ in entanglement between the single–molecule limit and
800
+ the ensemble scenario, which allows us to formulate an
801
+ interpretation for ensemble–enhanced isomerization. We
802
+ first realize, that in the ensemble scenario, an enhanced
803
+ ensemble transfer rate cannot straightforwardly be ex-
804
+ plained by the distortion of the (N + 1-dimensional)
805
+ cPES, since the distortion in a single molecule–cavity
806
+ subspace decreases due to the Dicke–type light-matter
807
+ interaction used here, gN, as, gN ∼
808
+ 1
809
+
810
+ N , for increasing
811
+ N (cf. Eq.(7)).[23] However, due to strong coupling be-
812
+ tween light and matter constituents, entanglement effects
813
+ are in contrast expected to shape the ensemble transfer
814
+ dynamics.
815
+ We quantify entanglement by transfer and cavity von
816
+ Neumann–entropies, Sq(t), and SC(t), as defined in
817
+ Eq.(13) with time–evolution depicted in Figs.5a and b for
818
+ different ensemble sizes, N. Initially, we have, Sq(t0) =
819
+ SC(t0) = 0, independent of ensemble size due to the prod-
820
+ uct form of the initial state in Eq.(9), which is by defi-
821
+ nition disentangled. From a wave function perspective,
822
+ build up of entanglement can therefore be interpreted in
823
+ terms of an increase of the multiconfigurational charac-
824
+ ter of the full vibro–polaritonic wave function, i.e., as
825
+ deviation from a disentangled product state. In general,
826
+ we find the time–evolution of both entropies to differ sig-
827
+ nificantly due to the different nature of both subsystems
828
+ and, SC(t) > Sq(t).
829
+ Starting with the reduced transfer system perspective,
830
+ we observe Sq(t) to increase faster with time for increas-
831
+ ing N.
832
+ This indicates a faster build–up of subsystem
833
+ entanglement or equivalently multiconfigurational char-
834
+ acter in the vibro–polaritonic wave function with respect
835
+ to H–transfer systems. Further, for N > 1, we observe
836
+ an increase in Sq(t) to accompany the transfer process
837
+ to the enethiol configuration as characterized by P ens
838
+ SH (t)
839
+ (cf. Fig.4a), i.e., H–transfer relates to enhanced entan-
840
+ glement.
841
+ Further, the transfer von Neumann–entropy
842
+ reaches (local) minima, i.e., reduced transfer system en-
843
+ tanglement, where extrema are observed in the ensem-
844
+ ble transfer probability. This observation is in line with
845
+ above discussed dynamics of ⟨ˆnc⟩(t) (cf.
846
+ Fig.4b), i.e.,
847
+ virtual photon transfer drives isomerization, which nat-
848
+ urally leads to a stronger entanglement (larger Sq(t))
849
+ between cavity and transfer systems. In contrast, sup-
850
+ pressed transfer relates to small values of Sq(t). More-
851
+ over, for intermediate ensemble sizes of N = 8, Sq(t)
852
+ differs significantly by exhibiting a nearly monotonic but
853
+ slow increase with time, which is accompanied by sup-
854
+ pressed virtual photon transfer and isomerization proba-
855
+ bility (cf. Fig.4), in line with the previous argument.
856
+ FIG. 5. Time–evolution of (a) transfer von Neumann–entropy,
857
+ Sq(t), (b) cavity von Neumann–entropy, SC(t), and (c) cavity
858
+ displacement coordinate expectation value, ⟨xc⟩ (t), as func-
859
+ tion of ensemble size N for light–matter interaction strength,
860
+ η = 0.05. Single molecule properties (N = 1) as reference
861
+ indicated by black–dashed graphs.
862
+ Turning to the cavity mode, we find SC(t) to be char-
863
+ acterized by an overall increase with time, which be-
864
+ comes strongly pronounced for large N, i.e., the cav-
865
+ ity mode becomes quickly strongly entangled with the
866
+ transfer ensemble.
867
+ Further, the cavity von Neumann–
868
+
869
+ 8
870
+ entropy mimics the vibro–polaritonic wave packet’s dy-
871
+ namics along the cavity displacement coordinate as cap-
872
+ tured by ⟨xc⟩ (t) (cf.
873
+ Fig.5c).
874
+ For small ensembles
875
+ (N = 2), SC(t) oscillates with a period of 264 fs, re-
876
+ covering the cavity mode frequency and is minimized for
877
+ ⟨xc⟩ (t) reaching the initial position at xc = 0. In con-
878
+ trast, for large ensembles with N = 20, the cavity en-
879
+ tropy exhibits minima characterized by two different time
880
+ scales, which can be related to both maximal and min-
881
+ imal displacements of the vibro–polaritonic wave packet
882
+ along the displacement coordinate xc.
883
+ Eventually, we
884
+ note two characteristics, which additionally indicate the
885
+ complex nature of the ensemble dynamics: First, for in-
886
+ creasing N the amplitude of ⟨xc⟩ (t) is damped as time
887
+ evolves since the cavity mode is increasingly immersed in
888
+ a bath of strongly coupled and highly anharmonic trans-
889
+ fer systems. Second, as ensemble size N increases, the
890
+ initial amplitude of ⟨xc⟩ (t) increases too with a maxi-
891
+ mum around N = 8.
892
+ We attribute this transition to
893
+ a change from a small transfer ensemble of multi–mode
894
+ Rabi type to a “large” ensemble resembling a system–
895
+ bath–type regime with a cavity mode subject to dissipa-
896
+ tion on the time scale shown. Naturally, this transition
897
+ is equivalently observed in the transfer dynamics.
898
+ In summary, we attribute isomerization in the model
899
+ studied here to be induced by virtual photon transfer,
900
+ which maximizes time–dependent changes in transfer
901
+ system entanglement quantified by Sq(t).
902
+ In particu-
903
+ lar, ensemble–enhanced isomerization rates relate to a
904
+ cavity–induced entanglement effect between transfer sys-
905
+ tems, which is not explainable by classical cPES distor-
906
+ tion arguments valid in the single–molecule limit. Ac-
907
+ cordingly, the herein discussed cavity–induced ensemble
908
+ transfer process can be interpreted as an inherently col-
909
+ lective quantum mechanical effect, which in particular
910
+ cannot be captured by scaled single–molecule models.
911
+ IV.
912
+ SUMMARY AND CONCLUSIONS
913
+ In this work, we studied the quantum dynamics of an
914
+ entangled molecular ensemble for an asymmetric hydro-
915
+ gen transfer model of thioacetylacetone (TAA) interact-
916
+ ing with a single cavity mode under vibrational strong
917
+ coupling. An N–molecule form of the Pauli–Fierz Hamil-
918
+ tonian was used beyond frequently adopted model Hamil-
919
+ tonians such as the Tavis–Cummings or Dicke–models. A
920
+ N +1–dimensional time–dependent Schrödinger equation
921
+ was solved numerically by means of the MCTDH ansatz
922
+ to follow the cavity–induced isomerization dynamics from
923
+ enol to enethiol isomers of TAA.
924
+ At finite light–matter interaction, the cavity acts as a
925
+ “catalyst” by inducing population transfer to the enethiol
926
+ isomer, which is energetically less favorable than the enol
927
+ form of TAA outside the cavity or at vanishing cavity–
928
+ molecule coupling. This process is identified to be driven
929
+ by virtual photon transfer to the N–molecule subsystem.
930
+ We extract approximate short–time transfer rates, which
931
+ span in the single–molecule limit two orders of magnitude
932
+ for increasing light–matter interaction. In an entangled
933
+ ensemble of transfer systems, with a collective Dicke–type
934
+ light–matter coupling, a collectively enhanced transfer
935
+ rate is observed following from an interplay of virtual
936
+ photon–transfer and non–trivial entanglement dynamics
937
+ between light and matter components of the hybrid sys-
938
+ tem. We furthermore find non–trivial ensemble size de-
939
+ pendence of the dynamics as N grows, which we attribute
940
+ to a transition from a multi–mode Rabi type scenario to
941
+ a system–bath–type regime, where the cavity mode is ef-
942
+ fectively immersed in a bath of strongly coupled, anhar-
943
+ monic transfer systems. Our study points at the highly
944
+ non–trivial role of quantum effects in molecular ensem-
945
+ ble models strongly interacting with a quantized cavity
946
+ mode beyond scaled single–molecule dynamics.
947
+ We close by pointing out several possible extensions of
948
+ our model. First, we do not take into account dissipa-
949
+ tive effects and decoherence due to leaky cavity modes
950
+ or the presence of other molecular degrees of freedom,
951
+ which will naturally influence the transfer probability
952
+ and allow for a more rigorous definition of transfer rates.
953
+ However, if we assume additional degrees of freedom to
954
+ be only weakly coupled, which is relevant to ensure the
955
+ VSC regime, the main findings of our work should qual-
956
+ itatively remain the same for the herein studied time–
957
+ interval.
958
+ Further, we did not take into account finite
959
+ temperature effects, which can be assumed relevant due
960
+ to the relatively low energy scale in our model. Finally,
961
+ while we went well beyond the Dicke–model by using an
962
+ ensemble formulation based on the Pauli–Fierz Hamil-
963
+ tonian, we still assumed a Dicke–type coupling in our
964
+ work. It might be instructive to also lift the Dicke–type
965
+ perspective for the molecule–cavity coupling to carefully
966
+ discuss deviations and potentially emerging properties in
967
+ vibro–polaritonic chemistry for less restricted coupling
968
+ models. Along similar lines, orientational effects (due to
969
+ rotation of molecules) on the molecule–cavity coupling in
970
+ fluctuating molecular ensembles, their influence on the
971
+ related entanglement dynamics as well as the inclusion
972
+ of direct intermolecular interactions could be interesting
973
+ milestones towards a realistic description of molecular
974
+ ensembles in cavities.
975
+ ACKNOWLEDGEMENTS
976
+ We acknowledge fruitful discussions with Oliver Kühn
977
+ (Rostock) and Foudhil Bouakline (Potsdam). This work
978
+ was funded by the Deutsche Forschungsgemeinschaft
979
+ (DFG, German Research Foundation) under Germany’s
980
+ Excellence Strategy – EXC 2008/1-390540038.
981
+ E.W.
982
+ Fischer acknowledges support by the International Max
983
+ Planck Research School for Elementary Processes in
984
+ Physical Chemistry.
985
+
986
+ 9
987
+ DATA AVAILABILITY STATEMENT
988
+ The data that support the findings of this study are
989
+ available from the corresponding author upon reasonable
990
+ request.
991
+ CONFLICT OF INTEREST
992
+ The authors have no conflicts to disclose.
993
+ [1] T. W. Ebbesen, Acc. Chem. Res. 49, 2403, (2016).
994
+ [2] R. F. Ribeiro, L. A. Martínez-Martínez, M. Du, J.
995
+ Campos-Gonzalez-Angulo, J. Yuen-Zhou, Chem. Sci. 9,
996
+ 6325, (2018).
997
+ [3] J. Feist, J. Galego, F. J. Garcia-Vidal, ACS Photonics 5,
998
+ 205, (2018).
999
+ [4] A. D. Dunkelberger, B. S. Simpkins, I. Vurgaftman, J.
1000
+ C. Owrutsky, Ann. Rev. Phys. Chem. 73, 429, (2022).
1001
+ [5] J. Yuen-Zhou, W. Xiong, T. Shegai, J. Chem. Phys. 156,
1002
+ 030401, (2022).
1003
+ [6] J. Fregoni, F. J. Garcia-Vidal, J. Feist, ACS Photonics
1004
+ 9, 1096, (2022).
1005
+ [7] T. E. Li, B. Cui, J. E. Subotnik, A. Nitzan Ann. Rev.
1006
+ Phys. Chem. 73, 43, (2022).
1007
+ [8] J. George, A. Shalabney, J. A. Hutchison, C. Genet,
1008
+ T. W. Ebbesen; J. Phys. Chem. Lett. 6, 1027, (2015).
1009
+ [9] A. Thomas, J. George, A. Shalabney, M. Dryzhakov,
1010
+ S. J. Varma, J. Moran, T. Chervy, X. Zhong, E. De-
1011
+ vaux, C. Genet, J. A. Hutchison, T. W. Ebbesen, Angew.
1012
+ Chem. Int. Ed. 55, 11462, (2016).
1013
+ [10] A. Thomas, L. Lethuillier-Karl, K. Nagarajan, R. M. A.
1014
+ Vergauwe, J. George, T. Chervy, A. Shalabney, E. De-
1015
+ vaux, C. Genet, J. Moran, T. W. Ebbesen, Science 363,
1016
+ 615, (2019).
1017
+ [11] J. Lather, P. Bhatt, A. Thomas, T. W. Ebbesen, J.
1018
+ George, Angew. Chem. Int. Ed. 58, 10635, (2019).
1019
+ [12] A. Thomas, A. Jayachandran, L. Lethuillier-Karl, R. M.
1020
+ A. Vergauwe, K. Nagarajan, E. Devaux, C. Genet, J.
1021
+ Moran, T. W. Ebbesen, Nanophotonics 9, 249, (2020).
1022
+ [13] K. Nagarajan, A. Thomas, T.W. Ebbesen, J. Am. Chem.
1023
+ Soc. 143, 16877 (2021).
1024
+ [14] J. Galego, C. Climent, F. J. Garcia-Vidal, J. Feist, Phys.
1025
+ Rev. X 9, 021057, (2019).
1026
+ [15] J. A. Campos-Gonzalez-Angulo, R. F. Ribeiro, J. Yuen-
1027
+ Zhou, Nat. Commun. 10, 4685, (2019).
1028
+ [16] J. A. Campos-Gonzalez-Angulo, J. Yuen-Zhou, J. Chem.
1029
+ Phys. 152, 161101, (2020).
1030
+ [17] T. E. Li, A. Nitzan, J. E. Subotnik, J. Chem. Phys. 152,
1031
+ 234107, (2020).
1032
+ [18] I. Vurgaftman, B. S. Simpkins, A. D. Dunkelberger, J.
1033
+ C. Owrutsky, J. Phys. Chem. Lett. 11, 3557, (2020).
1034
+ [19] G. D. Wiesehan, W. Xiong, J. Chem. Phys. 155, 241103,
1035
+ (2021).
1036
+ [20] M. V. Imperatore, J. B. Asbury, N. C. Giebink, J. Chem.
1037
+ Phys. 154, 191103, (2021).
1038
+ [21] X. Li, A. Mandal, P. Huo, Nat. Commun. 12, 1315,
1039
+ (2021).
1040
+ [22] P.-Y. Yang, J. Cao, J. Phys. Chem. Lett. 12, 9531,
1041
+ (2021).
1042
+ [23] J. Sun, O. Vendrell, J. Phys. Chem. Lett. 13, 4441,
1043
+ (2022).
1044
+ [24] L. P. Lindoy, A. Mandal, D. R. Reichman, J. Phys.
1045
+ Chem. Lett. 13, 6580, (2022).
1046
+ [25] E. W. Fischer, J. Anders, P. Saalfrank, J. Chem. Phys.
1047
+ 156, 154305, (2022).
1048
+ [26] M. Tavis and F.W. Cummings, textitPhys. Rev. 170,
1049
+ 379, (1968).
1050
+ [27] R.H. Dicke, Phys. Rev. 93, 99, (1954).
1051
+ [28] A. Mandal, X. Li, P. Huo, J. Chem. Phys. 156, 014101,
1052
+ (2022).
1053
+ [29] D. Wellnitz, G. Pupillo, J. Schachenmayer, Commun.
1054
+ Phys. 5, 1, (2022).
1055
+ [30] A. Mandal, M. Taylor, B. Weight, E. Koessler, X. Li, P.
1056
+ Huo, chemRxiv:2022-g9lr7 (2022).
1057
+ [31] N. Doslić, K. Sundermann, L. González, O. Mó, J.
1058
+ Giraud-Girard, O. Kühn, Phys. Chem. Chem. Phys. 1,
1059
+ 1249, (1999).
1060
+ [32] J. Flick, H. Appel, M. Ruggenthaler, A. Rubio, J. Chem.
1061
+ Theory Comput. 13, 1616, (2017).
1062
+ [33] C. Schäfer, M. Ruggenthaler, A. Rubio, Phys. Rev. A 98,
1063
+ 043801, (2018).
1064
+ [34] E. W. Fischer, P. Saalfrank, J. Chem. Phys. 154, 104311,
1065
+ (2021).
1066
+ [35] A. F. Kockum, A. Miranowicz, S. De Liberato, S.
1067
+ Savasta, F. Nori, Nat. Rev. Phys. 1, 19 (2019).
1068
+ [36] M. H. Beck, A. Jäckle, G. A. Worth, H.-D. Meyer, Phys.
1069
+ Rep. 324, 1, (2000).
1070
+ [37] H.-D. Meyer, WIREs Comput. Mol. Sci. 2, 351, (2012).
1071
+ [38] H. Wang, M. Thoss, J. Chem. Phys. 119, 1289, (2003).
1072
+ [39] U. Manthe, J. Chem. Phys. 128, 164116, (2008).
1073
+ [40] O. Vendrell, H.-D. Meyer, J. Chem. Phys. 134, 044135,
1074
+ (2011).
1075
+ [41] G. A. Worth, M. H. Beck, A. Jäckle, and H.-D. Meyer.
1076
+ The MCTDH Package, Version 8.2, (2000). H.-D. Meyer,
1077
+ Version 8.3 (2002), Version 8.4 (2007). O. Vendrell and
1078
+ H.-D. Meyer Version 8.5 (2013). Version 8.5 contains
1079
+ the ML-MCTDH algorithm. See http://mctdh.uni-hd.de.
1080
+ Used versions: 8.6.1 (2022).
1081
+
1082
+ arXiv:2301.04074v1 [quant-ph] 10 Jan 2023
1083
+ Supplementary Information:
1084
+ Cavity–Catalyzed Hydrogen Transfer Dynamics in an Entangled Molecular Ensemble
1085
+ under Vibrational Strong Coupling
1086
+ Eric W. Fischer∗
1087
+ Theoretische Chemie, Institut für Chemie, Universität Potsdam,
1088
+ Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany
1089
+ Peter Saalfrank
1090
+ Theoretische Chemie, Institut für Chemie, Universität Potsdam,
1091
+ Karl-Liebknecht-Strasse 24-25, D-14476 Potsdam-Golm, Germany and
1092
+ Institut für Physik und Astronomie, Universität Potsdam,
1093
+ Karl-Liebknecht-Straße 24-25, D-14476 Potsdam-Golm, Germany
1094
+ I.
1095
+ ONE–DIMENSIONAL HYDROGEN TRANSFER REACTION HAMILTONIAN
1096
+ A.
1097
+ Reaction Potential and Minimum Energy Path
1098
+ We derive the one–dimensional H–transfer Hamiltonian, ˆHS (Eq.(2) with N = 1 in the main text ), from a two–
1099
+ dimensional asymmetric H–transfer reaction Hamiltonian for thioacetylacetone (TAA) developed by Doslić et al.[1],
1100
+ which was constructed from ab initio electronic structure calculations and reads
1101
+ ˆHR = − ℏ2
1102
+ 2µS
1103
+ ∂2
1104
+ ∂q2 − ℏ2
1105
+ 2µB
1106
+ ∂2
1107
+ ∂Q2 + V (q, Q)
1108
+ ,
1109
+ (I1)
1110
+ with a (H–transfer) reaction coordinate, q, a (collective) “heavy” mode coordinate, Q, and corresponding reduced
1111
+ masses, µS = 1914.028 me and µB = 8622.241 me, respectively.[1] The two–dimensional molecular potential energy
1112
+ surface (PES), V (q, Q), is given by
1113
+ V (q, Q) = V (q) + µB ω2
1114
+ B
1115
+ 2
1116
+ (Q − λS(q))2
1117
+ ,
1118
+ (I2)
1119
+ with “heavy” mode frequency, ωB = 0.0009728 Eh, and nonlinear coupling function, λS(q) = aS q2 +bS q3, determined
1120
+ by parameters, aS = 0.794 a−1
1121
+ 0
1122
+ and bS = −0.2688 a−2
1123
+ 0 .
1124
+ The reaction path potential is described in terms of an
1125
+ adiabatic potential
1126
+ V (q) = 1
1127
+ 2
1128
+
1129
+ V+(q) −
1130
+
1131
+ V 2
1132
+ −(q) + 4 K2(q)
1133
+
1134
+ ,
1135
+ (I3)
1136
+ where, V±(q) = V1(q)±V2(q), with diabatic harmonic PES, Vi(q), and non–adiabatic coupling function, K(q), defined
1137
+ as
1138
+ Vi(q) = µi ω2
1139
+ i
1140
+ 2
1141
+ (q − qi,0)2 + ∆i
1142
+ ,
1143
+ K(q) = kc exp
1144
+
1145
+ −(q − qc)2
1146
+
1147
+ .
1148
+ (I4)
1149
+ The harmonic potentials resemble the R–OH (V1(q)) and R–SH (V2(q)) configurations in TAA with correspond-
1150
+ ing harmonic frequencies, ωOH = 0.01487 Eh/ℏ and ωSH = 0.01247 Eh/ℏ, reduced masses, µOH = 1728.46 me and
1151
+ µSH = 1781.32 me, relative energy shifts, ∆OH = 0.0 Eh and ∆SH = 0.003583 Eh, as well as displacements, qOH,0 =
1152
+ −0.7181 a0 and qSH,0 = 1.2094 a0. The coupling function, K(q), is determined by an amplitude, kc = 0.15582 Eh, and
1153
+ a displacement, qc = 0.2872 a0.[1] Further, a molecular dipole function (neglecting the vector character of the dipole
1154
+ moment) is given in Ref.[1] as
1155
+ d(q, Q) = d0 + dS(q − q0) + dB(Q − λS(q)) + dSB(q − q0)(Q − λ(q))
1156
+ ,
1157
+ (I5)
1158
+ ∗ ericwfi[email protected]
1159
+
1160
+ 2
1161
+ with parameters, d0 = 1.68 ea0, dS = −0.129 ea0/a0, dB = 0.023 ea0/a0, dSB = 0.451 ea0/a2
1162
+ 0 and q0 = −0.59 a0.
1163
+ In the present work, where the ensemble character of the isomerizing molecules is in the focus, an effective ap-
1164
+ proximate one–dimensional Hamiltonian, ˆHS, and corresponding dipole function, d(q), are constructed, which still
1165
+ resemble the main features of their two–dimensional counterparts. We derive the one–dimensional transfer Hamilto-
1166
+ nian by minimizing, V (q, Q), with respect to Q as
1167
+
1168
+ ∂QV (q, Q) = 0
1169
+
1170
+ Q0 = λ(q)
1171
+ ,
1172
+ (I6)
1173
+ such that the transfer potential and the dipole function subsequently simplify to one–dimensional functions
1174
+ V (q, Q0) = V (q)
1175
+ ,
1176
+ d(q, Q0) = d(q) = d0 + dS(q − q0)
1177
+ .
1178
+ (I7)
1179
+ The latter holds equivalently for an ensemble of N transfer ensembles. In our study, we neglect the “heavy mode”,
1180
+ Q, which does not couple via a potential–like term to the transfer coordinate, q. In Fig.S1, we show V (q) and d(q),
1181
+ with the lowest two eigenfunctions, ψ0(q) = ψOH(q) (enol) and ψ1(q) = ψSH(q) (enethiol), indicated. The latter were
1182
+ obtained by diagonalizing ˆHS in terms of a Colbert–Miller discrete variable representation (DVR)[5] for the transfer
1183
+ coordinate with Nq = 121 grid points and q ∈ [−1.5, 2.1] a0. The corresponding eigenenergies are ε0 = 988.3 cm−1
1184
+ and ε1 = 1092.8 cm−1 as stated in the main text with an energy difference of ∆ε10 = ε1 − ε0 = 126.5cm−1.
1185
+ FIG. S1. (a) One–dimensional hydrogen–transfer reaction potential, V (q) (in black), with dipole function, d(q), and two lowest
1186
+ eigenstates, ψ0(q) = ψOH(q) and ψ1(q) = ψSH(q). (b) Ground state, |ψ0(q, Q)|2 = |ψOH(q, Q)|2, and (c) first excited state
1187
+ densities, |ψ1(q, Q)|2 = |ψSH(q, Q)|2, of two–dimensional reaction Hamiltonian, ˆHR, in Eq.(I1) embedded in two–dimensional
1188
+ molecular PES, V (q, Q), given in Eq.(I2) with contours in cm−1.
1189
+ For the two–dimensional Hamiltonian, ˆHR, in Eq.(I1), we numerically obtain energies, ǫ0 = 1037.5 cm−1 and
1190
+ ǫ1 = 1158.3 cm−1, for the ground and first excited states, respectively, with energy difference of ∆ǫ10 = 120.8 cm−1.
1191
+ Here, were we again employed a Colbert–Miller DVR with transfer grid parameters equivalent to the one–dimensional
1192
+ case discussed above and “heavy” mode coordinate Q ∈ [−2.0, 2.0] a0 with NQ = 61 grid points. Eventually, classical
1193
+ activation energies are by construction equivalent for the one– and two–dimensional PES with ∆Ecl
1194
+ OH = 1598 cm−1
1195
+ and ∆Ecl
1196
+ SH = 1081 cm−1 as stated in the main text, since V (q) is equivalent to the reaction potential along the
1197
+ minimum energy path on V (q, Q).
1198
+ B.
1199
+ Deviations from a Reaction Path Hamiltonian
1200
+ We discuss deviations of our approach from a reaction path Hamiltonian, which arises from a two–dimensional
1201
+ model and additionally involves kinetic energy couplings due to non–zero reaction path curvature. Miller, Handy and
1202
+ Adams[2] showed that a reaction path Hamiltonian of a two–dimensional system with mass–weighted, cartesian–like
1203
+ coordinates is given by
1204
+ ˆH(ˆps, s, ˆPs, Qs) =
1205
+ ˆp2
1206
+ s
1207
+ 2 (1 + Qs κ(s))2 + V0(s) + ˆHvalley(s)
1208
+ ,
1209
+ (I8)
1210
+
1211
+ 6000
1212
+ -1.0
1213
+ 500
1214
+ 0.05
1215
+ -0.5
1216
+ 1500
1217
+ 0.04
1218
+ lao
1219
+ 0.0
1220
+ 4500
1221
+ 0.03
1222
+ a
1223
+ 0.5
1224
+ 4500
1225
+ 3000
1226
+ 0.02
1227
+ .500
1228
+ 3000
1229
+ 1.0
1230
+ 0.01
1231
+ 4500
1232
+ 1.5
1233
+ 0.00
1234
+ -2.0
1235
+ -1.5
1236
+ -1.0
1237
+ -0.5
1238
+ 0.0
1239
+ 0.5
1240
+ 1.0
1241
+ 1.5
1242
+ 2.0
1243
+ Q/ao6000
1244
+ -1.0
1245
+ 500
1246
+ 0.06
1247
+ -0.5
1248
+ 0.05
1249
+ 500
1250
+ 0.04
1251
+ lao
1252
+ 0.0
1253
+ 4500
1254
+ a
1255
+ 0.03
1256
+ 0.5
1257
+ 4500
1258
+ 3000
1259
+ 3000
1260
+ 1500
1261
+ 0.02
1262
+ 1.0
1263
+ 0.01
1264
+ 4500
1265
+ 1.5
1266
+ 0.00
1267
+ -2.0
1268
+ -1.5
1269
+ -1.0
1270
+ -0.5
1271
+ 0.0
1272
+ 0.5
1273
+ 1.0
1274
+ 1.5
1275
+ 2.0
1276
+ Q/ao3
1277
+ where the first two terms correspond to kinetic and potential energy contributions along the reaction coordinate, s,
1278
+ with conjugate momentum, ˆps, whereas the third term provides the “valley” Hamiltonian
1279
+ ˆHvalley(s) =
1280
+ ˆP 2
1281
+ s
1282
+ 2 + ω(s)2
1283
+ 2
1284
+ Q2
1285
+ s
1286
+ ,
1287
+ (I9)
1288
+ which accounts for a s–dependent “valley” mode perpendicular to the reaction path with frequency, ω(s), that couples
1289
+ to the reaction coordinate via the reaction path curvature, κ(s). For the hydrogen transfer system studied here, we
1290
+ have by construction, V0(s) = V (q, Q0) = V (q). In the following, we discuss deviations from ˆH(ˆps, s, ˆPs, Qs), which
1291
+ emerge when we approximate the reaction path contribution by the bare transfer Hamiltonian
1292
+ ˆHS = ˆp2
1293
+ q
1294
+ 2 + V (q) = − ℏ2
1295
+ 2µS
1296
+ ∂2
1297
+ ∂q2 + V (q)
1298
+ .
1299
+ (I10)
1300
+ This assumption is equivalent to approximately decoupling the “valley” Hamiltonian, ˆHvalley(s), from the reaction
1301
+ path contribution by assuming the reaction path curvature, κ(s), to be small. In order to access this condition, we
1302
+ discuss the curvature, κ(s), of the minimum energy or reaction path, s(q), which we introduce as parametric curve in
1303
+ the mass–weighted q–Q–plane[3]
1304
+ s(q) = (s1(q), s2(q))T = (õS q, õB Q0(q))T
1305
+ ,
1306
+ (I11)
1307
+ with components, s1(q) and s2(q). Here, Q0(q) = λS(q), as derived above, which minimizes, V (q, Q), with respect
1308
+ to variations in the “heavy” mode coordinate. From s(q), which is parameterized in terms of the hydrogen–transfer
1309
+ coordinate, q, we obtain the corresponding curvature, κs(q), as[4]
1310
+ κs(q) = det (s′, s′′)
1311
+ ||s′||3
1312
+ =
1313
+ |s′
1314
+ 1s′′
1315
+ 2 − s′′
1316
+ 1s′
1317
+ 2|
1318
+ [(s′
1319
+ 1)2 + (s′
1320
+ 2)2]
1321
+ 3
1322
+ 2
1323
+ ,
1324
+ (I12)
1325
+ with derivatives, s′
1326
+ i =
1327
+
1328
+ ∂q si(q) and s′′
1329
+ i =
1330
+ ∂2
1331
+ ∂q2 si(q), respectively. We like to emphasize, that κs(q) depends now on
1332
+ the hydrogen transfer coordinate, q, which parametrizes the reaction path.
1333
+ Further, for reaction path elements,
1334
+ s1(q) = √µS q and s2(q) = √µB λS(q), we find derivatives
1335
+ s′
1336
+ 1 = õS
1337
+ ,
1338
+ s′′
1339
+ 1 = 0
1340
+ ,
1341
+ s′
1342
+ 2(q) = õB
1343
+
1344
+ 2 aS q + 3 bS q2�
1345
+ ,
1346
+ s′′
1347
+ 2(q) = õB (2 aS + 6 bS q)
1348
+ ,
1349
+ (I13)
1350
+ which allow us to write the curvature explicitly as
1351
+ κs(q) =
1352
+ 2√µS µB |aS + 3 bS q|
1353
+
1354
+ µB q2 (2 aS + 3 bS q)2 + µS
1355
+ � 3
1356
+ 2
1357
+ .
1358
+ (I14)
1359
+ In Fig.S2a, we show the two–dimensional molecular PES, V (q, Q), with reaction path, s(q), in red and in Fig.S2b
1360
+ the corresponding curvature, κs(q). A kinetic separation of the reaction path from the “valley�� coordinate is a good
1361
+ approximation, if
1362
+ ˆTs =
1363
+ ˆp2
1364
+ s
1365
+ 2 (1 + Qs κs(q))2 ≈ ˆp2
1366
+ q
1367
+ 2 = ˆTq
1368
+ ,
1369
+ (I15)
1370
+ which holds for |Qs κs(q)| ≪ 1. By taking into account the maximal curvature, κs(q = 0.0) ≈ 0.078 (√me a0)−1, at
1371
+ the transition state (q = 0.0), the coupling is solely determined by the “valley” coordinate’s magnitude, which can be
1372
+ traced back to the excitation of the two–dimensional transfer system along the “heavy” mode coordinate. We shall
1373
+ estimate the latter by means of the classical turning points
1374
+
1375
+ s = ±
1376
+
1377
+
1378
+ ωB
1379
+ (2v + 1)
1380
+ ,
1381
+ (I16)
1382
+ of the harmonic “valley” potential with vibrational quantum number, v, and, ω(s) = ωB, at the transition state.
1383
+ For the first excited state (v = 1), we find, |Q±
1384
+ s κs(q = 0.0)| ≈ 4.3. Hence, already for the “heavy” mode being
1385
+ excited to the first excited state, which has to be expected during the transfer process, we observe a coupling to
1386
+ the reaction coordinate that is assumed to alter the transfer dynamics of the molecular isomerization model system.
1387
+ However, as the role of the “heavy” mode is not central for the cavity–induced isomerization dynamics, we consider
1388
+ our approximation to be qualitatively valid and sufficient to discuss entanglement–induced collective effects in the
1389
+ herein studied reactive vibro–polaritonic model.
1390
+
1391
+ 4
1392
+ FIG. S2. a) Contour plot of molecular PES, V (q, Q), in mass–weighted coordinates with reaction path, s(q), in red and colorbar
1393
+ in wave numbers (cm−1) and b) minimum energy path curvature, κs(q), parameterized by mass–weighted transfer coordinate,
1394
+ õS q with maximum at the transition state.
1395
+ II.
1396
+ NUMERICAL DETAILS FOR QUANTUM DYNAMICS
1397
+ We solve the TDSE (Eq.(8) in the main text) numerically by means of the multiconfigurational time–dependent
1398
+ Hartree (MCTDH) method and its multilayer extension (ML–MCTDH) and propagate up to final time tf = 1000 fs.
1399
+ We employ a Colbert–Miller DVR for transfer reaction coordinates, qi ∈ [−1.5, 2.1]a0, with Nq = 101 grid points and
1400
+ a harmonic oscillator (HO) DVR for the cavity mode with Nc = 101 grid points and xc ∈ [−561.35, +561.35]√me a0.
1401
+ We treat ensembles up to N = 4 via the MCTDH method with single particle functions (SPFs), ns = nc = 10. For
1402
+ ensembles with 4 < N ≤ 20, we employ the ML–MCTDH method with converged trees (max. natural population
1403
+ ≤ 10−4) for all N as displayed in Fig.S3. We employ the same DVR with identical number of primitive basis functions
1404
+ as above independent of ensemble size, N, but N–dependent numbers of SPFs, as shown next to bonds in ML trees,
1405
+ due to different entanglement structure in the full vibro–polaritonic wave packet,.
1406
+ III.
1407
+ VIBRO–POLARITONIC CHARACTER OF INITIAL STATES
1408
+ In addition to the information given in the main text, here we analyze the initial states used in there (cf. Eq.(9)
1409
+ in main text) with respect to their vibro–polaritonic character.
1410
+ We consider contributions of vibro–polaritonic
1411
+ states to the initial state by means of infrared spectra, σ(ω), obtained from the autocorrelation function, C(t) =
1412
+ ⟨Ψ⋆(t/2)|Ψ(t/2)⟩, of the vibro–polaritonic wave packet, |Ψ(t)⟩, with initial state, |Ψ(t0)⟩ = |Ψ0⟩, as
1413
+ σ(ℏω) = A
1414
+ � 2tf
1415
+ 0
1416
+ C(t) ei(E−E0)t/ℏdt =
1417
+
1418
+ p
1419
+ | ⟨Ψ0|Ψp⟩ |2 δ(E − (Ep − E0))
1420
+ ,
1421
+ (III1)
1422
+ with constant, A = 1, vibro-polaritonic eigenergies, Ep, and corresponding eigenstates, |Ψp⟩, satisfying the time–
1423
+ independent Schrödinger equation
1424
+
1425
+ ˆHS + ˆHC + ˆHSC + ˆHDSE
1426
+
1427
+ |Ψp⟩ = Ep |Ψp⟩
1428
+ .
1429
+ (III2)
1430
+ Here, E0 corresponds to the ground state energy, which we obtained by means of imaginary time evolution of the
1431
+ light–matter hybrid system employing (ML)–MCTDH methods. In Fig.S4, we show σ(ℏω) for different ensemble sizes
1432
+ N and observe a significant number of states |Ψp⟩ contributing to the initial state.
1433
+ We attribute the substantial deviation from approximately harmonic vibro–polaritonic models, which commonly
1434
+ show clear signatures of lower and upper vibro–polaritonic states, to the strong anharmonicity of the hydrogen transfer
1435
+ potential. A shift of the spectral envelope’s center to higher energies for increasing N results from ⟨ ˆH⟩0 increasing
1436
+ with N at fixed η due to contributions from both ˆHS and ˆHDSE. Further, the number of states increases with N
1437
+
1438
+ 6000
1439
+ -40
1440
+ 500
1441
+ 16000
1442
+ 14000
1443
+ 0
1444
+ -20
1445
+ e
1446
+ 1500
1447
+ 12000
1448
+ e
1449
+ w//b sn
1450
+ -0
1451
+ 0
1452
+ 10000
1453
+ 45
1454
+ 8000
1455
+ 20 -
1456
+ 4500
1457
+ 3000
1458
+ 6000
1459
+ 1500
1460
+ 3000
1461
+ 40
1462
+ 4000
1463
+ 2000
1464
+ 60
1465
+ 9000
1466
+ 4500.
1467
+ 0
1468
+ -150
1469
+ -100
1470
+ -50
1471
+ 0
1472
+ 50
1473
+ 100
1474
+ 150
1475
+ O/yme ao
1476
+ VUB5
1477
+ FIG. S3. Multilayer trees for different ensemble sizes N with S1 to SN transfer systems and cavity mode C. Number of SPFs
1478
+ are shown next to bonds connecting circular nodes and number of primitive basis functions are shown next to bonds connecting
1479
+ circular and square nodes.
1480
+ up to N = 8, which is accompanied by intensity reduction. Around N = 8, the number of vibro–polaritonic states
1481
+ contributing to the initial state decrease significantly and increase in the following for large ensembles up to N = 20.
1482
+
1483
+ 6
1484
+ FIG. S4. Infrared spectra, σ(ℏω), for different ensembles sizes N with (a) N = 1 to N = 8 and (b) N = 8 to N = 20. Peak
1485
+ widths result from finite propagation time of tf = 1000 fs.
1486
+ Note, energy scales for Fig.S4a and S4b are different due to different ensemble sizes N.
1487
+ IV.
1488
+ PHOTON NUMBER OPERATOR IN LENGTH GAUGE REPRESENTATION
1489
+ In the main text, the expectation value of the photon number operators was used to analyze the cavity–induced
1490
+ H–transfer dynamics. The common photon number operator, ˆnc = ˆa†
1491
+ cˆac, can be written in terms of the single–mode
1492
+ cavity Hamiltonian, ˆHC = ℏωc
1493
+
1494
+ ˆa†
1495
+ cˆac + 1
1496
+ 2
1497
+
1498
+ , as
1499
+ ˆnc = ˆa†
1500
+ cˆac =
1501
+ 1
1502
+ ℏωc
1503
+ ˆHC − 1
1504
+ 2
1505
+ ,
1506
+ (IV1)
1507
+ where, ˆa†
1508
+ c and ˆac are bosonic photon creation and annihilation operators, respectively. However, in length gauge
1509
+ representation, ˆnc, takes the form[6–9]
1510
+ S† U† ˆa†
1511
+ cˆac U S =
1512
+ 1
1513
+ ℏωc
1514
+
1515
+ S† U† ˆHC U S
1516
+
1517
+ − 1
1518
+ 2
1519
+ ,
1520
+ (IV2)
1521
+ with unitary operator, U = exp
1522
+
1523
+ i
1524
+ ℏ ˆA d(q)
1525
+
1526
+ , mediating the Power–Zienau–Woolley (PZW) transformation, which is de-
1527
+ termined by the molecular dipole moment, d(q), and the transverse (single–mode) vector potential, ˆA =
1528
+ g
1529
+ ωc
1530
+
1531
+ ˆa†
1532
+ c + ˆac
1533
+
1534
+ .
1535
+ A second unitary rotation mediated by, S = exp
1536
+
1537
+ i π
1538
+ 2 ˆa†
1539
+ cˆac
1540
+
1541
+ , acts exclusively on the cavity mode subspace and provides
1542
+ a real light–matter interaction term, ˆHSC. Under U and S, photon creation and annihilation operators transform as
1543
+ S† U† ˆa†
1544
+ c U S = −i ˆa†
1545
+ c − i
1546
+
1547
+ g
1548
+ ωc
1549
+ d(q)
1550
+ ,
1551
+ S† U† ˆa U S = +i ˆac + i
1552
+
1553
+ g
1554
+ ωc
1555
+ d(q)
1556
+ .
1557
+ (IV3)
1558
+ Employing the latter identities, the transformed number operator turns with
1559
+ ℏωc
1560
+
1561
+ S† U† ˆa†
1562
+ cˆac U S
1563
+
1564
+ = ℏωc
1565
+
1566
+ −i ˆa†
1567
+ c − i
1568
+
1569
+ g
1570
+ ωc
1571
+ d(q)
1572
+ � �
1573
+ +i ˆac + i
1574
+
1575
+ g
1576
+ ωc
1577
+ d(q)
1578
+
1579
+ ,
1580
+ (IV4)
1581
+ = ℏωc
1582
+
1583
+ ˆa†
1584
+ cˆac + g d(q)
1585
+ ℏωc
1586
+
1587
+ ˆa†
1588
+ c + ˆac
1589
+
1590
+ +
1591
+ g2
1592
+ (ℏωc)2 d2(q)
1593
+
1594
+ ,
1595
+ (IV5)
1596
+ = ℏωc ˆa†
1597
+ cˆac + g d(q)
1598
+
1599
+ ˆa†
1600
+ c + ˆac
1601
+
1602
+ + g2
1603
+ ℏωc
1604
+ d2(q)
1605
+ (IV6)
1606
+
1607
+ 7
1608
+ as well as identities,
1609
+
1610
+
1611
+ 2ωc
1612
+
1613
+ ˆa†
1614
+ c + ˆac
1615
+
1616
+ = xc, and, i
1617
+
1618
+ ℏωc
1619
+ 2
1620
+
1621
+ ˆa†
1622
+ c − ˆac
1623
+
1624
+ = ˆpc, into
1625
+ S† U† ˆa†
1626
+ cˆac U S =
1627
+ 1
1628
+ ℏωc
1629
+
1630
+
1631
+
1632
+
1633
+
1634
+ ˆp2
1635
+ c
1636
+ 2 + ω2
1637
+ c
1638
+ 2 x2
1639
+ c
1640
+
1641
+ ��
1642
+
1643
+ = ˆ
1644
+ HC
1645
+ +
1646
+
1647
+ 2ωc
1648
+ ℏ g d(q) xc
1649
+
1650
+ ��
1651
+
1652
+ = ˆ
1653
+ HSC
1654
+ + g2
1655
+ ℏωc
1656
+ d2(q)
1657
+
1658
+ ��
1659
+
1660
+ = ˆ
1661
+ HDSE
1662
+
1663
+
1664
+
1665
+
1666
+  − 1
1667
+ 2
1668
+ ,
1669
+ (IV7)
1670
+ =
1671
+ 1
1672
+ ℏωc
1673
+
1674
+ ˆHC + ˆHSC + ˆHDSE
1675
+
1676
+ − 1
1677
+ 2
1678
+ .
1679
+ (IV8)
1680
+ This latter expression enters the cavity photon number expectation value, ⟨ˆnc⟩, in Eq.(14) of the main text. The same
1681
+ arguments generalize to ˆnc for ensembles of N molecules as the unitary operator mediating the PZW transformation,
1682
+ UN = �N
1683
+ i
1684
+ Ui, factorizes due the form of the ensemble dipole function, d(q) = �N
1685
+ i
1686
+ d(qi). In Fig.S5, we eventually
1687
+ FIG. S5. Time-evolution of photon number expectation value, ⟨ˆnc⟩ (t), as function of ensemble size N for light-matter interaction
1688
+ strength, η = 0.05.
1689
+ provide the time–evolution of the bare photon number operator expectation value without normalization to the initial
1690
+ value.
1691
+ [1] N. Doslić, K. Sundermann, L. González, O. Mó, J. Giraud-Girard, O. Kühn, Phys. Chem. Chem. Phys. 1, 1249, (1999).
1692
+ [2] W. H. Miller, N. C. Handy, J. E. Adams, J. Chem. Phys. 72, 99, (1979).
1693
+ [3] E. W. Fischer, J. Anders, P. Saalfrank, J. Chem. Phys. 156, 154305, (2022).
1694
+ [4] T. Arens, F. Hettlich, C. Karpfinger, U. Kockelkorn, K. Lichtenegger, H. Stachel. Mathematik. Springer Spektrum Berlin,
1695
+ (2018).
1696
+ [5] D.T. Colbert, W.H. Miller, J. Chem. Phys. 96, 1982, (1992).
1697
+ [6] V. Rokaj, D. M. Welakuh, M. Ruggenthaler, A. Rubio, J. Phys. B: At., Mol. Opt. Phys. 51, 034005 (2018).
1698
+ [7] C. Schäfer, M. Ruggenthaler, V. Rokaj, A. Rubio, ACS Photonics 7, 975 (2020).
1699
+ [8] A. Mandal, T. D. Krauss, P. Huo, J. Phys. Chem. B 124, 6321, (2020).
1700
+ [9] E. W. Fischer, P. Saalfrank, J. Chem. Phys. 154, 104311 (2021).
1701
+
VdE2T4oBgHgl3EQftwjJ/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
X9E0T4oBgHgl3EQfmgGg/content/tmp_files/2301.02500v1.pdf.txt ADDED
@@ -0,0 +1,1047 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02500v1 [quant-ph] 6 Jan 2023
2
+ Violation of Diagonal Non-Invasiveness: A Hallmark of Quantum Memory Effects
3
+ Adri´an A. Budini
4
+ Consejo Nacional de Investigaciones Cient´ıficas y T´ecnicas (CONICET),
5
+ Centro At´omico Bariloche, Avenida E. Bustillo Km 9.5, (8400) Bariloche,
6
+ Argentina, and Universidad Tecnol´ogica Nacional (UTN-FRBA),
7
+ Fanny Newbery 111, (8400) Bariloche, Argentina
8
+ (Dated: January 9, 2023)
9
+ An operational (measurement based) scheme that connects in a univocal way measurement in-
10
+ vasivity and the presence of memory effects is defined. Its underlying theoretical basis relies on a
11
+ non-invasive measurability of (memoryless) Markovian dynamics when the corresponding observ-
12
+ able is diagonal in the same basis as the system density matrix. In contrast, (operational defined)
13
+ quantum memory effects always lead to violation of diagonal non-invasiveness. Related conditions
14
+ for violation of Leggett-Garg inequality due to non-Markovian memory effects are also established.
15
+ Several well understood physical principles allow dis-
16
+ tinguishing classical from quantum realms.
17
+ For exam-
18
+ ple, the principle of locality, valid in a classical regime,
19
+ is violated in presence of quantum entanglement. This
20
+ property is captured by Bell inequality (BI), which in-
21
+ troduces a severe constraint on the (measurement) cor-
22
+ relations that can be established between two spatially-
23
+ separated systems [1, 2]. Non-invasive measurability is
24
+ another principle that distinguish classical and quantum
25
+ systems. In fact, a quantum measurement process leads
26
+ in general to an unavoidable modification of the system
27
+ state. Added to macroscopic realism, this feature is the
28
+ basis of Leggett-Garg inequality (LGI) [3, 4]. It defines
29
+ a constraint on the correlations that can be established
30
+ between measurements performed over a single system
31
+ at two different times. Similarly to BI, a broad class of
32
+ theoretical an experimental related results were analyzed
33
+ and proposed in the literature [5–24], being from different
34
+ perspectives a topic of current interest [25–30].
35
+ Both BI and LGI assume a similar structure after map-
36
+ ping the distance between the measured systems in the
37
+ former case with the time-interval between measurements
38
+ in the last case. For this reason LGIs are also termed as
39
+ “temporal Bell Inequalities” [4, 5]. Nevertheless, there
40
+ is an intrinsic unavoidable difference. Temporal correla-
41
+ tions can only be studied after introducing a non-trivial
42
+ (non-vanishing) system dynamics.
43
+ In fact, discussion
44
+ about the influence of the (open) system time-evolution
45
+ can be found in the original LGI presentation [3].
46
+ From a simplified point of view, one can affirm that
47
+ both closed and open quantum systems are always al-
48
+ tered by a measurement process, leading to LGI viola-
49
+ tion. This kind of simplification contrast with the strong
50
+ advancements achieved in the last years in the classifica-
51
+ tion and understanding of open quantum dynamics [31–
52
+ 33]. In particular, the usual association between memory
53
+ effects and time-convoluted contributions in the density
54
+ matrix evolution was abandoned. Instead, memory ef-
55
+ fects are defined from two complementary perspectives.
56
+ In non-operational approaches [34–42], memory effects
57
+ are related to departures of the system time-evolution
58
+ from a (memoryless) Markovian Lindblad master equa-
59
+ tion [31, 32].
60
+ Alternatively, in operational approaches
61
+ the system is subjected to a set of measurement pro-
62
+ cesses [43–53]. Thus, non-Markovianity is defined in a
63
+ standard probabilistic way [54] from the corresponding
64
+ outcome statistics.
65
+ Given the previous advancements in the characteriza-
66
+ tion of open system dynamics, it is compelling to find out
67
+ if there exist any general relation between measurement
68
+ invasivity and the presence of memory effects.
69
+ Stud-
70
+ ies along these lines were performed previously [55–58].
71
+ Nevertheless, not any clear boundary in the properties
72
+ of measurement invasivity seems to be defined by the
73
+ presence or absence of memory effects in the system dy-
74
+ namics, independently of which definition is taken. In
75
+ fact, the possible relations turn up to be strongly model-
76
+ dependent. Hence, a criteria that allow relating measure-
77
+ ment invasivity with the properties of the system dynam-
78
+ ics, Markovian or non-Markovian, is still lacking.
79
+ The aim of this work is to establishing a clear and rig-
80
+ orous general relation between measurement invasivity
81
+ and the presence of memory effects. It provides a fun-
82
+ damental step forward in the understanding and char-
83
+ acterization of measurement processes in open quantum
84
+ system dynamics. The main theoretical ingredient relies
85
+ on a diagonal non-invasiveness (DNI) of Markovian dy-
86
+ namics, which applies when the measurement observable
87
+ commutates with the (pre-measurement) system density
88
+ matrix. Hence, the observable and system state are diag-
89
+ onal in the same basis of states. In contrast, memory ef-
90
+ fects, as defined in operational approaches [43, 44], break
91
+ the previous condition. An operational scheme, based on
92
+ performing three consecutive system measurement pro-
93
+ cesses, allow to witnessing these properties. In addition,
94
+ these results enable us to establish under which condi-
95
+ tions violations of LGI can be related univocally to the
96
+ presence of memory effects.
97
+ Measurement Invasivity.—In operational approaches,
98
+ memory effects can be witnessed with (a minimum of)
99
+ three consecutive system measurement processes. Conse-
100
+ quently, measurement invasivity is defined from the same
101
+
102
+ 2
103
+ (operational) basis.
104
+ The measurements are performed
105
+ at times 0, t, and t + τ, delivering correspondingly the
106
+ outcomes {x}, {y}, and {z}. Their joint probability is
107
+ denoted as P3(z, y, x), where the subindex indicates the
108
+ number of performed measurements. Margination over
109
+ the intermediate measurement outcomes lead to
110
+ P3(z, x) ≡
111
+
112
+ y P3(z, y, x).
113
+ (1)
114
+ Alternatively, one can perform only two measurements
115
+ at times 0 and t + τ, which defines the joint probability
116
+ P2(z, x). For quantum systems, measurement invasivity
117
+ implies that P2(z, x) ̸= P3(z, x). In order to quantify this
118
+ disagreement, we use a Kolmogorov (trace) distance [59]
119
+ I ≡
120
+
121
+ zx |P3(z, x) − P2(z, x)|.
122
+ (2)
123
+ For classical systems I = 0, while I > 0 is a direct wit-
124
+ ness of measurement invasiveness. This property is valid
125
+ independently of the system dynamics, closed or open,
126
+ Markovian or non-Markovian. In the following analysis,
127
+ the quantifier I is studied by assuming different underly-
128
+ ing system-environment (s-e) dynamics.
129
+ Markovian dynamics.—Similarly to closed systems, a
130
+ Markovian dynamics is defined by a density matrix prop-
131
+ agator Λt,t′ that is completely independent of the system
132
+ or environment initial states [43, 44]. Hence, in the case
133
+ of two measurement processes it is simple to obtain
134
+ P2(z, x)
135
+ P1(x)
136
+ = Trs(EzΛt+τ,0[ρx]).
137
+ (3)
138
+ Similarly, when performing three measurements it follows
139
+ P3(z, y, x)
140
+ P1(x)
141
+ = Trs(EzΛt+τ,t[ρy]) Trs(EyΛt,0[ρx]).
142
+ (4)
143
+ In both cases, P1(x) = Trs(Exρ0), where ρ0 is the ini-
144
+ tial system state. Tr(•) is the trace operation. {Em}
145
+ and {ρm} (m = x, y, z) are the (positive) measurement
146
+ operators and system post-measurement states respec-
147
+ tively [32, 59]. For Hermitian observables, both {Em}
148
+ and {ρm} are the projectors associated to each observable
149
+ spectral representation. Notice that the Markov property
150
+ P3(z, y, x) = P3(z|y)P2(y|x)P1(x) is fulfilled. P(b|a) de-
151
+ notes the conditional probability of b given a.
152
+ From
153
+ Eq.
154
+ (3)
155
+ and
156
+ (4)
157
+ it
158
+ follows
159
+ that
160
+ in
161
+ gen-
162
+ eral I
163
+ ̸= 0. In fact, measurement invasivity applies
164
+ when the system dynamics is Markovian.
165
+ Neverthe-
166
+ less, given that the measurements are arbitrary ones,
167
+ the intermediate y-measurement can be chosen such
168
+ that [ρt|x, Ey]
169
+ =
170
+ 0, where ρt|x
171
+
172
+ Λt,0[ρx]. Thus,
173
+ {Trs(EyΛt,0[ρx])} can be read as the eigenvalues of ρt|x
174
+ implying �
175
+ y ρyTrs(EyΛt,0[ρx]) = ρt|x. Consequently,
176
+ ID
177
+ M= 0.
178
+ (5)
179
+ This property defines the DNI of Markovian dynamics:
180
+ a measurement process at a given time is non-invasive if
181
+ the corresponding observable commutates with the pre-
182
+ measurement system density matrix. In the three mea-
183
+ surement scheme DNI at (any) time t is valid for arbi-
184
+ trary x- and z-measurements. These are central results
185
+ for the developed scheme. They are violated in presence
186
+ of memory effects.
187
+ Stochastic Hamiltonian models.—Here the open sys-
188
+ tem is driven by random fluctuations such that Λt,t′ =
189
+ Λst
190
+ t,t′, where Λst
191
+ t,t′ is the stochastic propagator for each
192
+ noise realization while the overline denotes the corre-
193
+ sponding average. In similarity with Eq. (3) it follows
194
+ P2(z, x)
195
+ P1(x)
196
+ = Trs(EzΛst
197
+ t+τ,0[ρx]),
198
+ (6)
199
+ while in similarity with Eq. (4),
200
+ P3(z, y, x)
201
+ P1(x)
202
+ = Trs(EzΛst
203
+ t+τ,t[ρy]) Trs(EyΛst
204
+ t,0[ρx]).
205
+ (7)
206
+ Hence, DNI is not valid in general. It is recovered when
207
+ the average defining P3(z, y, x) split in two terms as in
208
+ Eq. (4). This property is only valid for white noise fluctu-
209
+ ations [54], that is, when the dynamics is Markovian [44].
210
+ Completely positive system-environment dynamics.—
211
+ We consider an open dynamics where the system (s) and
212
+ its environment (e) obey a completely positive dynamics.
213
+ Taking separable initial conditions, given the (bipartite)
214
+ propagator Gt,t′, it follows
215
+ P2(z, x)
216
+ P1(x)
217
+ = Trse(EzGt+τ,0[ρx ⊗ σ0]).
218
+ (8)
219
+ where σ0 is the environment initial state. Furthermore,
220
+ P3(z, y, x)
221
+ P1(x)
222
+ = Trse(EzGt+τ,t[ρy ⊗ Trs(EyGt,0[ρx ⊗ σ0])]).
223
+ (9)
224
+ From these expressions it follows that DNI is hardly sat-
225
+ isfied. Additionally, P3(z, y, x) ̸= P3(z|y)P2(y|x)P1(x).
226
+ For unitary s-e interactions, when a Born-Markov ap-
227
+ proximation applies [32], Gt,0[ρ0 ⊗ σ0] ≈ ρt ⊗ σ0, DNI
228
+ and Markovianity are simultaneously recovered. Com-
229
+ plementarily, memory effects lead to violation of DNI.
230
+ Alternatively, one can also consider non-unitary s-e (dis-
231
+ sipative) Lindblad dynamics [31, 32]. The same relation
232
+ between violation of DNI and non-Markovianity remains
233
+ valid.
234
+ From Eqs. (8) and (9), it is simple to check that even
235
+ in presence of memory effects (for example for environ-
236
+ ments of finite dimension) DNI is accidentally valid if the
237
+ bipartite (pre-measurement) state ρse
238
+ t|x ≡ Gt,0[ρx⊗σ0] has
239
+ (∀t) a null discord [60–62], ρse
240
+ t|x = �
241
+ c |ct⟩⟨ct|⊗σ(c)
242
+ t , where
243
+ {|ct⟩} is a (in general time-dependent) complete orthog-
244
+ onal basis of system states while {σ(c)
245
+ t } are bath states.
246
+ The intermediate y-measurement must be defined by the
247
+ projectors {|ct⟩⟨ct|}. This case is consistent with the re-
248
+ sults of Ref. [58], which relate classicality with a bipartite
249
+
250
+ 3
251
+ state with vanishing discord. Nevertheless, only for very
252
+ specific interactions and particular s-e initial conditions
253
+ bipartite evolutions (unitary or non-unitary) lead to a
254
+ state with vanishing discord ∀t [63–65].
255
+ Thus, for the
256
+ proposed continuous-in-time open system dynamics, the
257
+ relation between violation of DNI and memory effects is
258
+ always recovered by considering the arbitrariness of the
259
+ x- and z-measurements.
260
+ In fact, an underlying local-
261
+ in-time completely positive bipartite quantum dynamics
262
+ cannot lead to a vanishing discord state ∀t when consid-
263
+ ering arbitrary system initial conditions [63].
264
+ Leggett-Garg inequality—By denoting with {Om} the
265
+ observable values associated to each outcome, m =
266
+ x, y, z, LGI reads [4]
267
+ − 3 ≤ ⟨OyOx⟩ + ⟨OzOy⟩ − ⟨OzOx⟩ ≤ 1.
268
+ (10)
269
+ This result is valid for dichotomic observables, Om = ±1.
270
+ The correlators, which are obtained by performing only
271
+ two measurements, are ⟨OjOk⟩ ≡ �
272
+ jk OjOkP2(j, k).
273
+ Eq. (10) can be derived from P2(y, x) = �
274
+ z P3(z, y, x),
275
+ and by assuming that P2(z, y)
276
+ LGI
277
+ =
278
+
279
+ x P3(z, y, x), and
280
+ P2(z, x)
281
+ LGI
282
+ =
283
+
284
+ y P3(z, y, x) [4].
285
+ Due to measurement
286
+ invasiveness and independently of the system dynamics
287
+ (Markovian or non-Markovian), these equalities are not
288
+ valid in general. Nevertheless, from the present analysis
289
+ [DNI, Eq. (5)] we conclude that Markovian dynamics al-
290
+ ways obey LGI if at each pair of measurement processes
291
+ the observables commutate with the pre-measurement sys-
292
+ tem density matrix. On the other hand, even under this
293
+ election of measurement processes, non-Markovian dy-
294
+ namics may or may not obey LGI. In this sense, the dis-
295
+ tance I [Eq. (2)] provides a deeper characterization of
296
+ measurement invasivity.
297
+ Examples.—The previous results establish a univocal
298
+ relation between the presence of memory effects and vi-
299
+ olation of DNI. Here we study different s-e interactions
300
+ that lead to a dephasing non-Markovian dynamics. The
301
+ system is a qubit (two-level system) with basis of states
302
+ |±⟩. Its density matrix reads
303
+ ρt =
304
+
305
+ ⟨+|ρ0|+⟩
306
+ d(t)⟨+|ρ0|−⟩
307
+ d(t)∗⟨−|ρ0|+⟩
308
+ ⟨−|ρ0|−⟩
309
+
310
+ .
311
+ (11)
312
+ The populations remain constant while the coherences
313
+ are characterized by the decay function d(t).
314
+ In correspondence with the analyzed dynamics, the
315
+ first evolution is set by a stochastic Hamiltonian [66, 67]
316
+ dρst
317
+ t
318
+ dt
319
+ = −iξ(t)[σz, ρst
320
+ t ].
321
+ (12)
322
+ Here, σz is the z-Pauli matrix. The noise has a null aver-
323
+ age ξ(t) = 0 and correlation ξ(t)ξ(t′) = (γ/2τc) exp[−(t−
324
+ t′)/τc]. From the system density matrix ρt = ρst
325
+ t , the co-
326
+ herence decay reads d(t) = exp
327
+
328
+ −2γ(t − τc(1 − e−t/τc)
329
+
330
+ .
331
+ In the limit of a vanishing correlation time, τc/γ → 0, an
332
+ exponential (Markovian) decay is recovered.
333
+ A unitary s-e model is defined by a spin bath [68, 69],
334
+ dρse
335
+ t
336
+ dt
337
+ = −ig
338
+
339
+ σz ⊗
340
+ �n
341
+ j=1 σ(j)
342
+ z , ρse
343
+ t
344
+
345
+ .
346
+ (13)
347
+ Here, g is a coupling parameter while σ(j)
348
+ z
349
+ is the z-
350
+ Pauli matrix of the j environment spin.
351
+ The system
352
+ density matrix ρt = Tre[ρse
353
+ t ] follows by tracing the bi-
354
+ partite s-e state. Assuming that each bath spin begins
355
+ in an identity state, the system coherence decay reads
356
+ d(t) = [cos(2gt)]n.
357
+ A dissipative s-e model is set by a non-diagonal mul-
358
+ tipartite Lindblad equation [70, 71]
359
+ dρse
360
+ t
361
+ dt
362
+ =
363
+ n
364
+
365
+ j,k=1
366
+ Γjk(σ(j)
367
+ z ρse
368
+ t σ(k)
369
+ z
370
+ − 1
371
+ 2{σ(k)
372
+ z σ(j)
373
+ z , ρse
374
+ t }+), (14)
375
+ where Γjk = (γ − χ)δjk + χ(i)j−1(−i)k−1. When χ = 0,
376
+ each qubit obey a Markovian dephasing evolution with
377
+ rate γ. When χ ̸= 0 all subsystems are coupled to
378
+ each other, leading to the development of memory ef-
379
+ fects. Taking the first qubit as the system of interest,
380
+ the coherence decay reads d(t) = e−2γt[cos(2χt)]¯n, where
381
+ ¯n = Int(n/2) is the integer part of n/2. This result re-
382
+ lies on assuming that all environment qubit subsystems
383
+ begin in a completely mixed state [71].
384
+ For the three previous models it is possible to calcu-
385
+ late P3(z, y, x) in an exact analytical way, where z = ±1,
386
+ y = ±1, and x = ±1. We assume that three measurement
387
+ processes are performed successively in the Bloch direc-
388
+ tions ˆx − ˆn − ˆx, where the vector ˆn = ˆn(θ, φ) is defined
389
+ by polar angles (θ, φ). Using that d(t) = d(t)∗, we get
390
+ P3(z, y, x)
391
+ P1(x)
392
+ = 1
393
+ 4[1 + yxf(t) + zyf(τ) + zxf(t, τ)], (15)
394
+ where f(t) = sin(θ) cos(φ)d(t), while
395
+ f(t, τ) = 1
396
+ 2 sin2(θ)[d(t + τ) + cos(2φ)d(t, τ)].
397
+ (16)
398
+ The function d(t) is the coherence decay of each model,
399
+ while d(t, τ) differ in each case [72]. In all cases P3(z, y, x)
400
+ does not fulfill (in general) a Markovian property.
401
+ From Eqs. (1) and (15) it is easy to obtain P3(z, x) =
402
+ [1 + zxf(t, τ)]P1(x)/2. Given that the last measurement
403
+ is performed in the ˆx-Bloch direction, P2(z, x) can also
404
+ be obtained from Eq. (15) under the steps �
405
+ z, the re-
406
+ placements y → z, t → t + τ, and taking θ = π/2, φ = 0,
407
+ which deliver P2(z, x) = [1 + zxd(t + τ)]P1(x)/2. The
408
+ invasivity distance Eq. (2) therefore is
409
+ I = I(t, τ) = |f(t, τ) − d(t + τ)|.
410
+ (17)
411
+ This expression for I is valid for an arbitrary intermedi-
412
+ ate measurement defined by the angles (θ, φ). The DNI of
413
+ Markovian dynamics [Eq. (5)] is valid when this measure-
414
+ ment is performed in the same basis where ρt|x is diago-
415
+ nal. Given that the first measurement is performed in the
416
+
417
+ 4
418
+ 0.0
419
+ 0.2
420
+ 0.4
421
+ 0.6
422
+ 0.8
423
+ 1.0
424
+ 0.0
425
+ 0.1
426
+ 0.2
427
+ 0.3
428
+ 0.0
429
+ 0.5
430
+ 1.0
431
+ 1.5
432
+ 2.0
433
+ 0.0
434
+ 0.1
435
+ 0.2
436
+ 0.3
437
+ 0.0
438
+ 0.1
439
+ 0.2
440
+ 0.3
441
+ 0.4
442
+ 0.5
443
+ 0.0
444
+ 0.2
445
+ 0.4
446
+ 0.6
447
+ 0.8
448
+ 1.0
449
+ 0.0
450
+ 0.2
451
+ 0.4
452
+ 0.6
453
+ 0.8
454
+ 1.0
455
+ 0.0
456
+ 0.1
457
+ 0.2
458
+ 0.3
459
+ t
460
+
461
+ =0.3
462
+
463
+ =0.35
464
+
465
+ =0.4
466
+
467
+ =0.5
468
+ I(t,t)
469
+
470
+
471
+ c
472
+ /
473
+ =1/2
474
+ t
475
+ I(t,t)
476
+
477
+
478
+ (d)
479
+ (c)
480
+ (b)
481
+ n=3
482
+
483
+ =0.3
484
+
485
+ =0.35
486
+
487
+ =0.4
488
+
489
+ =0.5
490
+ gt/
491
+ I(t,t)
492
+
493
+ (a)
494
+ c
495
+ /
496
+ =10
497
+ -3
498
+ /
499
+ =0.3
500
+ n=100
501
+
502
+ =0.3
503
+
504
+ =0.35
505
+
506
+ =0.4
507
+
508
+ =0.5
509
+ t
510
+ I(t,t)
511
+
512
+ FIG. 1:
513
+ Invasivity measure I(t, τ) at equal time-intervals
514
+
515
+ = t) for different underlying open system dynamics,
516
+ where the measurements are performed in Bloch directions
517
+ ˆx− ˆn(θ, φ)− ˆx with φ = 0. (a) and (b) Stochastic Hamiltonian
518
+ model [Eq. (12)]. (c) Hamiltonian s-e model [Eq. (13)]. (d)
519
+ Dissipative model [Eq. (14)]. The parameters are indicated
520
+ in each plot. The DNI Bloch-direction is θ = π/2, φ = 0.
521
+ ˆx-Bloch direction, Eq. (11) implies ⟨±|ρt|x|±⟩ = 1/2 and
522
+ ⟨±|ρt|x|∓⟩ = xd(t)/2. Defining Mˆı ≡ Trs[σiρt|x] where
523
+ σi are the Pauli matrixes, we get Mˆx = xd(t), while
524
+ Mˆy = Mˆz = 0. Hence, ρt|x is diagonal (∀t) in the ˆx-Bloch
525
+ direction [73]. Consequently, the intermediate observable
526
+ commutates with ρt|x when θ = π/2 and φ = 0.
527
+ In Fig. 1 we plot I(t, τ) for the different open dynamics.
528
+ The intermediate measurement is in the ˆz-ˆx Bloch plane:
529
+ φ = 0. Fig. 1(a) and (b) correspond to the stochastic
530
+ Hamiltonian evolution [Eq. (12)]. In (a) the parameters
531
+ approach a Markovian white noise limit, τc/γ ≃ 0 ⇒
532
+ d(t) ≃ exp(−2γt) ⇒ P3(z, y, x) ≃ P3(z|y)P2(y|x)P1(x)
533
+ [Eq. (15)]. Invasiveness is clearly observed, I(t, τ) ̸= 0.
534
+ Nevertheless, when θ → π/2, the DNI of Markovian dy-
535
+ namics is corroborated I(t, τ) → 0. In contrast, in (b)
536
+ when τc/γ > 0, even when the intermediate observable
537
+ commutates with the system density matrix (θ = π/2
538
+ and φ = 0), consistently with our results, due to the
539
+ presence of memory effects I(t, τ) does not vanish.
540
+ In Fig. 1(c) we plot I(t, τ) for the spin environment
541
+ model [Eq. (13)]. Given that the number of spins is fi-
542
+ nite all behaviors are periodic in time. Again, even when
543
+ the measurement and system state commutate (θ = π/2
544
+ and φ = 0), DNI is violated, I(t, τ) > 0. The same re-
545
+ sult is valid for the dissipative model [Eq. (14)] when
546
+ χ/γ ̸= 0, Fig. 1(d). When χ/γ → 0, a Markovian regime
547
+ is approached. The behavior of I(t, τ) becomes indistin-
548
+ guishable from that shown in Fig. 1(a), corroborating the
549
+ DNI of Markovian dynamics in this alternative model.
550
+ Assuming that ρ0 is diagonal in the ˆx-Bloch direction,
551
+ the density matrix [Eq. (11)] remains diagonal in that
552
+ base.
553
+ Hence, violation of LGI due to memory effects
554
+ 0
555
+ 1
556
+ 2
557
+ 3
558
+ 4
559
+ 0.0
560
+ 0.2
561
+ 0.4
562
+ 0.6
563
+ 0.8
564
+ 1.0
565
+ 1.2
566
+ 0.0
567
+ 0.5
568
+ 1.0
569
+ -3
570
+ -2
571
+ -1
572
+ 0
573
+ 1
574
+ 0.0
575
+ 0.2
576
+ 0.4
577
+ 0.6
578
+ 0.8
579
+ 0.0
580
+ 0.2
581
+ 0.4
582
+ 0.6
583
+ 0.8
584
+ 1.0
585
+ 1.2
586
+ 0.0
587
+ 0.2
588
+ 0.4
589
+ 0.6
590
+ 0.8
591
+ 0.0
592
+ 0.2
593
+ 0.4
594
+ 0.6
595
+ 0.8
596
+ 1.0
597
+ t
598
+
599
+ c
600
+ /
601
+ =1
602
+
603
+ c
604
+ /
605
+ =0.5
606
+
607
+ c
608
+ /
609
+ =0.15
610
+
611
+ c
612
+ /
613
+ =10
614
+ -3
615
+ K(t,t)
616
+
617
+
618
+ n=3
619
+ n=4
620
+ gt/
621
+ K(t,t)
622
+
623
+
624
+ (d)
625
+ (c)
626
+ (b)
627
+
628
+ /
629
+ =0.17
630
+
631
+ /
632
+ =0.3
633
+
634
+ /
635
+ =0.5
636
+
637
+ /
638
+ =1
639
+ t
640
+ K(t,t)
641
+
642
+ (a)
643
+ n=100
644
+
645
+ /
646
+ =0.17
647
+
648
+ /
649
+ =0.3
650
+
651
+ /
652
+ =0.5
653
+
654
+ /
655
+ =1
656
+ t
657
+ d(t)
658
+
659
+ FIG. 2:
660
+ LGI parameter K(t, τ) ≡ d(t) + d(τ) − d(t + τ)
661
+ [Eq. (18)] for equal time-intervals. (a) Stochastic Hamilto-
662
+ nian model [Eq. (12)]. (b) Hamiltonian s-e model [Eq. (13)].
663
+ (c) Dissipative model [Eq. (14)], while (d) shows the associ-
664
+ ated system coherence decay. The dotted line corresponds to
665
+ the Markovian limit d(t) = exp[−2γt].
666
+ can be checked by choosing the three observables {Om}
667
+ (m = x, y, z) as diagonal in the same ˆx-direction. Given
668
+ that only two measurements are explicitly performed, for
669
+ the three studied s-e models, Eq. (10) (Om = m) can be
670
+ expressed in terms of the corresponding coherence decay,
671
+ − 3 ≤ d(t) + d(τ) − d(t + τ) ≤ 1.
672
+ (18)
673
+ In Fig. 2 we study the validity of this inequality. For
674
+ the stochastic Hamiltonian model (a), LGI is only valid
675
+ when a Markovian white noise limit is attained, that is
676
+ τc/γ = 0. For the unitary s-e model (b), given the ab-
677
+ sence of a Markovian limit (in probability), LGI is vio-
678
+ lated independently of the number of environment spins.
679
+ The dissipative model (c) presents a memory induced
680
+ transition. In fact, for χ/γ ≲ 0.17 LGI is valid, which
681
+ includes the Markovian case χ/γ = 0. Nevertheless, LGI
682
+ is violated for χ/γ ≳ 0.17. In (d) we show the corre-
683
+ sponding system coherence decay d(t). All of them are
684
+ quasi-monotonic. Thus, the memory induced transition,
685
+ as defined in the present operational approach [Eq. (15)],
686
+ does not relies on any revival in the coherence decay.
687
+ Conclusions.—A deep relation between measurement
688
+ invasivity and the presence of memory effects in open
689
+ quantum systems has been established. Based on an op-
690
+ erational (measurement based) approach, it was found
691
+ that non-Markovian dynamics are intrinsically modified
692
+ by a measurement process even when the corresponding
693
+ observable commutates with the system state. This vio-
694
+ lation of DNI disappears when the dynamic approaches
695
+ a memoryless Markovian regime.
696
+ A measure of the previous relation was introduced.
697
+ It relies on performing three system measurement pro-
698
+ cesses, where the observable of the intermediate one must
699
+
700
+ 5
701
+ to commutate with the (pre-measurement) system den-
702
+ sity matrix. By taking into account the arbitrariness of
703
+ the first and last measurements, the invasiveness indica-
704
+ tor only vanishes in a Markovian regime. In stretched
705
+ relation, we found that LGI is always obeyed by Marko-
706
+ vian dynamics if the pairs of involved measurements com-
707
+ mutate with the system state. The studied models sup-
708
+ port the main conclusions. All of them can be imple-
709
+ mented in different experimental platforms.
710
+ The DNI
711
+ measurement-basis can be determine from standard to-
712
+ mographic techniques. The examples also allowed us to
713
+ demonstrate that pure memory effects can drive a tran-
714
+ sition in the validity of LGI.
715
+ Acknowledgments.—The author thanks M´onica M.
716
+ Guraya for a critical reading of the manuscript.
717
+ This
718
+ paper was supported by Consejo Nacional de Investiga-
719
+ ciones Cient´ıficas y T´ecnicas (CONICET), Argentina.
720
+ [1] J. S. Bell, Speakable and unspeakable in quantum mechan-
721
+ ics, (Cambridge University Press, 1987).
722
+ [2] Scientific
723
+ Background
724
+ on
725
+ the
726
+ Nobel
727
+ Prize
728
+ in
729
+ Physics
730
+ 2022,
731
+ The
732
+ Nobel
733
+ Committee
734
+ for
735
+ Physics,
736
+ The
737
+ Royal
738
+ Swedish
739
+ Academy
740
+ of
741
+ Sciences;
742
+ https://www.aps.org/newsroom/pressreleases/nobel2022.
743
+ cfm
744
+ [3] A. J. Leggett and A. Garg, Quantum Mechanics versus
745
+ Macroscopic Realism: Is the Flux There when Nobody
746
+ Looks?, Phys. Rev. Lett. 54, 857 (1985).
747
+ [4] C. Emary, N. Lambert, and F. Nori, Leggett-Garg
748
+ Inequalities,
749
+ Rep.
750
+ Prog.
751
+ Phys.
752
+ 77,
753
+ 016001
754
+ (2014);
755
+ arXiv:1304.5133v3.
756
+ [5] J. P. Paz and G. Mahler, Proposed Test for Temporal
757
+ Bell Inequalities, Phys. Rev. Lett. 71, 3235 (1993).
758
+ [6] S. F. Huelga, T. W. Marshall, and E. Santos, Proposed
759
+ test for realist theories using Rydberg atoms coupled to
760
+ a high-Q resonator, Phys. Rev. A 52, R2497 (1995).
761
+ [7] R. Ruskov, A. N. Korotkov, and A. Mizel, Signatures of
762
+ Quantum Behavior in Single-QubitWeak Measurements,
763
+ Phys. Rev. Lett. 96, 200404 (2006).
764
+ [8] A. N. Jordan, A. N. Korotkov, and M. B¨uttiker, Leggett-
765
+ Garg Inequality with a Kicked Quantum Pump, Phys.
766
+ Rev. Lett. 97, 026805 (2006).
767
+ [9] J. Kofler and C. Brukner, Conditions for Quantum Vi-
768
+ olation of Macroscopic Realism, Phys. Rev. Lett. 101,
769
+ 090403 (2008).
770
+ [10] N. S. Williams and A. N. Jordan, Weak Values and
771
+ the Leggett-Garg Inequality in Solid-State Qubits, Phys.
772
+ Rev. Lett. 100, 026804 (2008).
773
+ [11] N. Lambert, C. Emary, Y.-N. Chen, and F. Nori, Dis-
774
+ tinguishing Quantum and Classical Transport through
775
+ Nanostructures, Phys. Rev. Lett. 105, 176801 (2010).
776
+ [12] J. Dressel, C. J. Broadbent, J. C. Howell, and A. N.
777
+ Jordan, Experimental Violation of Two-Party Leggett-
778
+ Garg Inequalities with Semiweak Measurements, Phys.
779
+ Rev. Lett. 106, 040402 (2011).
780
+ [13] G. Waldherr, P. Neumann, S. F. Huelga, F. Jelezko, and
781
+ J. Wrachtrup, Violation of a Temporal Bell Inequality
782
+ for Single Spins in a Diamond Defect Center, Phys. Rev.
783
+ Lett. 107, 090401 (2011).
784
+ [14] V. Athalye, S. Singha Roy, and T. S. Mahesh, Investi-
785
+ gation of the Leggett-Garg Inequality for Precessing Nu-
786
+ clear Spins, Phys. Rev. Lett. 107, 130402 (2011).
787
+ [15] C.-M. Li, N. Lambert, Y.-N. Chen, G.-Y. Chen, and F.
788
+ Nori, Witnessing Quantum Coherence: from solid-state
789
+ to biological systems, Sci. Rep. 2, 885 (2012).
790
+ [16] J. Kofler and C. Brukner, Condition for macroscopic re-
791
+ alism beyond the Leggett-Garg inequalities, Phys. Rev.
792
+ A 87, 052115 (2013).
793
+ [17] J. P. Groen, D. Rist`e, L. Tornberg, J. Cramer, P. C. de
794
+ Groot, T. Picot, G. Johansson, and L. DiCarlo, Partial-
795
+ Measurement Backaction and Nonclassical Weak Values
796
+ in a Superconducting Circuit, Phys. Rev. Lett. 111,
797
+ 090506 (2013).
798
+ [18] C. Budroni and C. Emary, Temporal Quantum Corre-
799
+ lations and Leggett-Garg Inequalities in Multilevel Sys-
800
+ tems, Phys. Rev. Lett. 113, 050401 (2014); R. Uola, G.
801
+ Vitagliano, and C. Budroni, Leggett-Garg macrorealism
802
+ and the quantum nondisturbance conditions, Phys. Rev.
803
+ A 100, 042117 (2019).
804
+ [19] G. Schild and C. Emary, Maximum violations of the
805
+ quantum-witness equality, Phys. Rev. A 92, 032101
806
+ (2015).
807
+ [20] C. Robens, W. Alt, D. Meschede, C. Emary, and A. Al-
808
+ berti, Ideal Negative Measurements in Quantum Walks
809
+ Disprove Theories Based on Classical Trajectories, Phys.
810
+ Rev. X 5, 011003 (2015).
811
+ [21] Z.-Q. Zhou, S. F. Huelga, C.-F. Li, and G.-C. Guo, Ex-
812
+ perimental Detection of Quantum Coherent Evolution
813
+ through the Violation of Leggett-Garg-Type Inequalities,
814
+ Phys. Rev. Lett. 115, 113002 (2015).
815
+ [22] F.
816
+ J.
817
+ G´omez-Ruiz,
818
+ J.
819
+ J.
820
+ Mendoza-Arenas,
821
+ F.
822
+ J.
823
+ Rodr´ıguez, C. Tejedor, and L. Quiroga, Universal two-
824
+ time correlations, out-of-time-ordered correlators, and
825
+ Leggett-Garg inequality violation by edge Majorana
826
+ fermion qubits, Phys. Rev. B 97, 235134 (2018); F. J.
827
+ G´omez-Ruiz, J. J. Mendoza-Arenas, F. J. Rodr´ıguez, C.
828
+ Tejedor, and L. Quiroga, Quantum phase transitions de-
829
+ tected by a local probe using time correlations and vi-
830
+ olations of Leggett-Garg inequalities, Phys. Rev. B 93,
831
+ 035441 (2016).
832
+ [23] J. J. Halliwell, Decoherent histories and measurement of
833
+ temporal correlation functions for Leggett-Garg inequal-
834
+ ities, Phys. Rev. A 94, 052131 (2016).
835
+ [24] S. V. Moreira and M. Terra Cunha, Quantifying quantum
836
+ invasiveness, Phys. Rev. A 99, 022124 (2019).
837
+ [25] F. Giacosa and G. Pagliara, Leggett-Garg inequalities
838
+ and decays of unstable systems, Phys. Rev. A 104,
839
+ 052225 (2021).
840
+ [26] S. Majidy, J. J. Halliwell, and Raymond Laflamme,
841
+ Detecting violations of macrorealism when the original
842
+ Leggett-Garg inequalities are satisfied, Phys. Rev. A 103,
843
+ 062212 (2021).
844
+ [27] A. Santini and V. Vitale, Experimental violations of
845
+ Leggett-Garg inequalities on a quantum computer, Phys.
846
+ Rev. A 105, 032610 (2022).
847
+ [28] M. Thenabadu and M. D. Reid, Bipartite Leggett-
848
+ Garg and macroscopic Bell-inequality violations using
849
+ cat states: Distinguishing weak and deterministic macro-
850
+ scopic realism, Phys. Rev. A 105, 052207 (2022); M.
851
+ Thenabadu and M. D. Reid, Macroscopic delayed choice
852
+ and retrocausality: Quantum eraser, Leggett-Garg, and
853
+ dimension witness tests with cat states, Phys. Rev. A
854
+
855
+ 6
856
+ 105, 062209 (2022).
857
+ [29] M. M.
858
+ Ettefaghi,
859
+ R. Ramazani
860
+ Arani,
861
+ and Z. S.
862
+ Tabatabaei Lotfi, Gravitational effects on quantum co-
863
+ herence in neutrino oscillation, Phys. Rev. D 105, 095024
864
+ (2022).
865
+ [30] A. Matsumura, Y. Nambu, and K. Yamamoto, Leggett-
866
+ Garg inequalities for testing quantumness of gravity,
867
+ Phys. Rev. A 106, 012214 (2022).
868
+ [31] R. Alicki and K. Lendi, Quantum Dynamical Semigroups
869
+ and Applications, Lect. Notes Phys. 717 (Springer,
870
+ Berlin Heidelberg, 1987).
871
+ [32] H. P. Breuer and F. Petruccione, The theory of open
872
+ quantum systems, (Oxford University Press, 2002).
873
+ [33] I. de Vega and D. Alonso, Dynamics of non-Markovian
874
+ open quantum systems, Rev. Mod. Phys. 89, 015001
875
+ (2017).
876
+ [34] H. P. Breuer, E. M. Laine, J. Piilo, and V. Vacchini,
877
+ Colloquium: Non-Markovian dynamics in open quantum
878
+ systems, Rev. Mod. Phys. 88, 021002 (2016).
879
+ [35] A. Rivas, S. F. Huelga, and M. B. Plenio, Quantum
880
+ non-Markovianity: characterization, quantification and
881
+ detection, Rep. Prog. Phys. 77, 094001 (2014).
882
+ [36] H. P. Breuer, E. M. Laine, and J. Piilo, Measure for
883
+ the Degree of Non-Markovian Behavior of Quantum Pro-
884
+ cesses in Open Systems, Phys. Rev. Lett. 103, 210401
885
+ (2009).
886
+ [37] M. M. Wolf, J. Eisert, T. S. Cubitt, and J. I. Cirac, As-
887
+ sessing Non-Markovian Quantum Dynamics, Phys. Rev.
888
+ Lett. 101, 150402 (2008).
889
+ [38] A. Rivas, S. F. Huelga, and M. B. Plenio, Entanglement
890
+ and Non-Markovianity of Quantum Evolutions, Phys.
891
+ Rev. Lett. 105, 050403 (2010).
892
+ [39] D. Chru´sci´nski and S. Maniscalco,
893
+ Degree of Non-
894
+ Markovianity of Quantum Evolution, Phys. Rev. Lett.
895
+ 112, 120404 (2014).
896
+ [40] X.-M. Lu, X. Wang, and C. P. Sun, Quantum Fisher
897
+ information flow and non-Markovian processes of open
898
+ systems, Phys. Rev. A 82, 042103 (2010).
899
+ [41] S. Lorenzo, F. Plastina, and M. Paternostro, Geometrical
900
+ characterization of non-Markovianity, Phys. Rev. A 88,
901
+ 020102(R) (2013).
902
+ [42] M. J. W. Hall, J. D. Cresser, L. Li, and E. Andersson,
903
+ Canonical form of master equations and characterization
904
+ of non-Markovianity, Phys. Rev. A 89, 042120 (2014).
905
+ [43] F. A. Pollock, C. Rodr´ıguez-Rosario, T. Frauenheim, M.
906
+ Paternostro, and K. Modi, Operational Markov Con-
907
+ dition for Quantum Processes, Phys. Rev. Lett. 120,
908
+ 040405 (2018); F. A. Pollock, C. Rodr´ıguez-Rosario,
909
+ T. Frauenheim, M. Paternostro, and K. Modi, Non-
910
+ Markovian quantum processes:
911
+ Complete framework
912
+ and efficient characterization, Phys. Rev. A 97, 012127
913
+ (2018).
914
+ [44] A. A. Budini, Quantum Non-Markovian Processes Break
915
+ Conditional Past-Future Independence, Phys. Rev. Lett.
916
+ 121, 240401 (2018); A. A. Budini, Conditional past-
917
+ future correlation induced by non-Markovian dephasing
918
+ reservoirs, Phys. Rev. A 99, 052125 (2019).
919
+ [45] P. Taranto, F. A. Pollock, S. Milz, M. Tomamichel, and
920
+ K. Modi, Quantum Markov Order, Phys. Rev. Lett. 122,
921
+ 140401 (2019); P. Taranto, S. Milz, F. A. Pollock, and K.
922
+ Modi, Structure of quantum stochastic processes with
923
+ finite Markov order, Phys. Rev. A 99, 042108 (2019).
924
+ [46] M. R. Jørgensen and F. A. Pollock, Exploiting the Causal
925
+ Tensor Network Structure of Quantum Processes to Ef-
926
+ ficiently Simulate Non-Markovian Path Integrals, Phys.
927
+ Rev. Lett. 123, 240602 (2019).
928
+ [47] M. Bonifacio and A. A. Budini, Perturbation theory for
929
+ operational quantum non-Markovianity, Phys. Rev. A
930
+ 102, 022216 (2020).
931
+ [48] L. Han, J. Zou, H. Li, and B. Shao, Non-Markovianity
932
+ of A Central Spin Interacting with a Lipkin–Meshkov–
933
+ Glick Bath via a Conditional Past–Future Correlation,
934
+ Entropy 22, 895 (2020).
935
+ [49] M. Ban, Operational non-Markovianity in a statistical
936
+ mixture of two environments, Phys. Lett. A 397, 127246
937
+ (2021).
938
+ [50] T. de Lima Silva, S. P. Walborn, M. F. Santos, G. H.
939
+ Aguilar, and A. A. Budini, Detection of quantum non-
940
+ Markovianity close to the Born-Markov approximation,
941
+ Phys. Rev. A 101, 042120 (2020).
942
+ [51] S. Yu, A. A. Budini, Y.-T. Wang, Z.-J. Ke, Y. Meng,
943
+ W. Liu, Z.-P. Li, Q. Li, Z.-H. Liu, J.-S. Xu, J.-S. Tang,
944
+ C.-F. Li, and G.-C. Guo, Experimental observation of
945
+ conditional past-future correlations, Phys. Rev. A 100,
946
+ 050301(R) (2019).
947
+ [52] Y.
948
+ -Y.
949
+ Hsieh,
950
+ Z.
951
+ -Y.
952
+ Su,
953
+ and
954
+ H.
955
+ -S.
956
+ Goan,
957
+ Non-Markovianity, information backflow, and system-
958
+ environment correlation for open-quantum-system pro-
959
+ cesses, Phys. Rev. A 100, 012120 (2019).
960
+ [53] A.
961
+ A.
962
+ Budini,
963
+ Detection
964
+ of
965
+ bidirectional
966
+ system-
967
+ environment information exchanges, Phys. Rev. A 103,
968
+ 012221 (2021).
969
+ [54] N. G. van Kampen, Stochastic Processes in Physics and
970
+ Chemistry, (North-Holland, Amsterdam, 1981).
971
+ [55] A. M. Souza, J. Li, D. O. Soares-Pinto, R. S. Sarthour,
972
+ I. S. Oliveira,
973
+ S. F. Huelga,
974
+ M. Paternostro,
975
+ and
976
+ F. L. Semi˜ao,
977
+ Experimental Demonstration of non-
978
+ Markovian Dynamics via a Temporal Bell-like Inequality,
979
+ arXiv:1308.5761v1 (2013).
980
+ [56] P.-W. Chen and Md. M. Ali, Investigating Leggett-Garg
981
+ inequality for a two level system under decoherence in a
982
+ non-Markovian dephasing environment, Sci. Rep. 4, 6165
983
+ (2014).
984
+ [57] H. Li , J. Zou, and B. Shao, Enhanced quantumness via
985
+ non-Markovianity, Phys. Rev. A 104, 052201 (2021).
986
+ [58] S. Milz, D. Egloff, P. Taranto, T. Theurer, M. B. Plenio,
987
+ A. Smirne, and S. F. Huelga, When Is a Non-Markovian
988
+ Quantum Process Classical?, Phys. Rev. X 10, 041049
989
+ (2020).
990
+ [59] M. A. Nielsen and I. L. Chuang, Quantum Computation
991
+ and Quantum Information (Cambridge University Press,
992
+ Cambridge, England, 2000).
993
+ [60] H. Ollivier and W. H. Zurek, Quantum Discord: A Mea-
994
+ sure of the Quantumness of Correlations, Phys. Rev.
995
+ Lett. 88, 017901 (2002).
996
+ [61] L. Henderson, V. Vedral, Classical, quantum and total
997
+ correlations, J. Phys. A 34, 6899 (2001); B. Dakic, V.
998
+ Vedral, and C. Brukner, Necessary and Sufficient Con-
999
+ dition for Nonzero Quantum Discord, Phys. Rev. Lett.
1000
+ 105, 190502 (2010).
1001
+ [62] K. Modi, A. Brodutch, T. Paterek, and V. Vedral, The
1002
+ classical-quantum boundary for correlations:
1003
+ Discord
1004
+ and related measures, Rev. Mod. Phys. 84, 1655 (2012).
1005
+ [63] A. A. Budini, Almost all dynamics generate quantum
1006
+ discord, to be published; A. Ferraro, L. Aolita, D. Cav-
1007
+ alcanti, F. M. Cucchietti, and A. Ac´ın, Almost all quan-
1008
+ tum states have nonclassical correlations, Phys. Rev. A
1009
+ 81, 052318 (2010).
1010
+
1011
+ 7
1012
+ [64] Cywi´nski, Equivalence of qubit-environment entangle-
1013
+ ment and discord generation via pure dephasing interac-
1014
+ tions and the resulting consequences, Phys. Rev. A 97,
1015
+ 012306 (2018).
1016
+ [65] X. Hu, Y. Gu, Q. Gong, and G. Guo, Necessary and
1017
+ sufficient condition for Markovian-dissipative-dynamics-
1018
+ induced quantum discord, Phys. Rev. A 84, 022113
1019
+ (2011).
1020
+ [66] P. W. Anderson and P. R. Weiss, Exchange Narrow-
1021
+ ing in Paramagnetic Resonance, Rev. Mod. Phys. 25,
1022
+ 269 (1953); P. T. Callaghan, Principles of Nuclear Mag-
1023
+ netic Resonance Microscopy, (Clarendom Press, Oxford,
1024
+ 1991).
1025
+ [67] A. A. Budini, Quantum systems subject to the action
1026
+ of classical stochastic fields, Phys. Rev. A 64, 052110
1027
+ (2001).
1028
+ [68] W. H. Zurek, Decoherence, einselection, and the quan-
1029
+ tum origins of the classical, Rev. Mod. Phys. 75, 715
1030
+ (2003).
1031
+ [69] F. M. Cucchietti, J. P. Paz, and W. H. Zurek, Decoher-
1032
+ ence from spin environments, Phys. Rev. A 72, 052113
1033
+ (2005).
1034
+ [70] A. Seif , Y.-X. Wang , and A. A. Clerk, Distinguishing
1035
+ between Quantum and Classical Markovian Dephasing
1036
+ Dissipation, Phys. Rev. Lett. 128, 070402 (2022).
1037
+ [71] A. A. Budini, Memory effects in multipartite systems
1038
+ coupled by non-diagonal dephasing mechanisms, arXiv:
1039
+ 2209.00400 (2022).
1040
+ [72] For the model Eq. (12), d(t, τ) = d(t + τ) exp[4γτc(1 −
1041
+ e−t/τc)(1 − e−τ/τc)], for the model Eq. (13), d(t, τ) =
1042
+ d(t−τ), and for the model Eq. (14), d(t, τ) = exp[−2γ(t+
1043
+ τ)] cos[2χ(t − τ)]¯n.
1044
+ [73] K. Blum,
1045
+ Density Matrix Theory and Applications,
1046
+ (Plenum Press, New York, 1996).
1047
+
X9E0T4oBgHgl3EQfmgGg/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
XdE1T4oBgHgl3EQfJQP0/content/tmp_files/2301.02951v1.pdf.txt ADDED
@@ -0,0 +1,2133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02951v1 [math.NT] 8 Jan 2023
2
+ Class Number of the Imaginary Quadratic
3
+ Field and Quadratic Residues Identities
4
+ Jorge Garcia
5
+ January 10, 2023
6
+ Abstract
7
+ A formula for the sum of quadratic residues modulus a prime
8
+ p = 4n − 1 is studied. We relate some terms on this formula with
9
+ roots of quadratics and provide an exhaustive analysis of new con-
10
+ cepts based on these roots. A number of formulas for the sum of the
11
+ quadratic residues are obtained. We finalize the paper by obtaining
12
+ several identities involving h(−p) the class number of the imaginary
13
+ quadratic field Q(√−p).
14
+ 1
15
+ Introduction
16
+ Consider a prime p = 4n − 1 and 1 ≤ k ≤ p − 1. By rp (k2) , we denote
17
+ the remainder of k2 when we divide by p. We call this number rp (k2) the
18
+ quadratic residue of k2 modulus p. When we add all these residues we obtain
19
+ the sum of quadratic residues relative to the prime number p. There is a
20
+ complicated formula for such sum,
21
+ p−1
22
+
23
+ k=1
24
+ rp
25
+
26
+ k2�
27
+ =
28
+ �p
29
+ 2
30
+
31
+ − p · h(−p),
32
+ (1.1)
33
+ where h(−p) is the class number of the imaginary quadratic field Q(√−p).
34
+ Important formulas for the class number when the prime is of the form p =
35
+ 4n − 1 > 3 include Dirichlet class number formula
36
+ 1
37
+
38
+ h(−p)
39
+ =
40
+ √p
41
+
42
+
43
+
44
+ r=1
45
+ χ(r)
46
+ r
47
+ ,
48
+ (1.2)
49
+ where χ is the Dirichlet character.
50
+ Formula 1.2 can be found in [2]. Another formula that involves the Kro-
51
+ necker symbol
52
+
53
+ p
54
+ r
55
+
56
+ can be found in [5] (Corollary 1 p. 428). Finally a formula
57
+ developed by Cohen [1] [Corollary 5.3.16] provides the class number too.
58
+ The main purpose of this paper is to obtain some identities for this num-
59
+ ber h(−p) by computing the quadratic residues in a different manner.
60
+ Here we provide a summary of the main formulas obtained in this paper.
61
+ Here Qk =
62
+
63
+ 1 + √4kp + 12n − 7
64
+
65
+ /2, M = ⌊n2/p⌋ and Jn is the number of
66
+ jumps (see Section 2).
67
+ M
68
+
69
+ k=1
70
+ ��
71
+ kp
72
+
73
+
74
+ M−1
75
+
76
+ k=0
77
+ ⌊Qk⌋
78
+ =
79
+ Jn − M − 1.
80
+ n
81
+
82
+ k=1
83
+ �k2 − k + 2 − 3n
84
+ p
85
+
86
+ +
87
+ M−1
88
+
89
+ k=0
90
+ ⌊Qk⌋
91
+ =
92
+ (M − 1)n.
93
+ p−1
94
+
95
+ k=1
96
+ rp
97
+
98
+ k2 − k + 2 − 3n
99
+
100
+ =
101
+ p−1
102
+
103
+ k=1
104
+ rp
105
+
106
+ k2�
107
+ + 3n − 2.
108
+ 2n
109
+
110
+ k=1
111
+ rp
112
+
113
+ k2 − k + 2 − 3n
114
+
115
+ =
116
+ 2n
117
+
118
+ k=1
119
+ rp
120
+
121
+ k2�
122
+ + n.
123
+ n
124
+
125
+ k=1
126
+ rp
127
+
128
+ k2 − k + 2 − 3n
129
+
130
+ =
131
+ n
132
+
133
+ k=1
134
+ rp
135
+
136
+ k2�
137
+ + n(n + 1)
138
+ 2
139
+ − p(Jn − 1 − M).
140
+ p−1
141
+
142
+ k=1
143
+ �k2 − k + 2 − 3n
144
+ p
145
+
146
+ =
147
+ p(p − 5) + 6 − n
148
+ 3
149
+ − 1
150
+ p
151
+ p−1
152
+
153
+ k=1
154
+ rp
155
+
156
+ k2�
157
+ .
158
+ 2n
159
+
160
+ k=1
161
+ �k2 − k + 2 − 3n
162
+ p
163
+
164
+ =
165
+ n(2n − 1)(4n − 7)
166
+ 3p
167
+ − 1
168
+ p
169
+ 2n
170
+
171
+ k=1
172
+ rp
173
+
174
+ k2�
175
+ .
176
+ n
177
+
178
+ k=1
179
+ �k2 − k + 2 − 3n
180
+ p
181
+
182
+ =
183
+ (n + 1)(2n2 − 23n + 6)
184
+ 3p
185
+ − 1
186
+ p
187
+ n
188
+
189
+ k=1
190
+ rp
191
+
192
+ k2�
193
+ + Jn − M.
194
+ 2
195
+
196
+ This is a summary of the identities involving the class number h = h(−p)
197
+ found on this paper.
198
+ Jn
199
+ 2 + M(n − 1)
200
+ =
201
+ h
202
+ 4 +
203
+ M
204
+
205
+ k=1
206
+ ��
207
+ kp
208
+
209
+ + n2 − 5n + 9
210
+ 12
211
+ .
212
+ −Jn
213
+ 2 + Mn
214
+ =
215
+ h
216
+ 4 +
217
+ M−1
218
+
219
+ k=0
220
+ ⌊Qk⌋ + n2 − 5n − 3
221
+ 12
222
+ .
223
+ Jn
224
+ 2 +
225
+ n−1
226
+
227
+ k=1
228
+ �k2
229
+ p
230
+
231
+ =
232
+ h
233
+ 4 + n2 − 5n + 9
234
+ 12
235
+ .
236
+ p−1
237
+
238
+ k=1
239
+ rp
240
+
241
+ k2 − k + 2 − 3n
242
+
243
+ =
244
+ p · (2n − h) − n − 1.
245
+ 2n
246
+
247
+ k=1
248
+ rp
249
+
250
+ k2 − k + 2 − 3n
251
+
252
+ =
253
+ p · (2n − h) + 1
254
+ 2
255
+ .
256
+ n
257
+
258
+ k=1
259
+ rp
260
+
261
+ k2 − k + 2 − 3n
262
+
263
+ =
264
+ p
265
+ 4(3n + 2 − 2Jn − h) − (n + 1)(n − 1)
266
+ 4
267
+ .
268
+ n
269
+
270
+ k=1
271
+ rp
272
+
273
+ k2�
274
+ =
275
+ p
276
+ 4(2Jn + 2n − 3 − 4M − h) + n(n + 1)
277
+ 4
278
+ .
279
+ p−1
280
+
281
+ k=1
282
+ �k2 − k + 2 − 3n
283
+ p
284
+
285
+ =
286
+ h + 16n2 − 35n + 15
287
+ 3
288
+ .
289
+ 2n
290
+
291
+ k=1
292
+ �k2 − k + 2 − 3n
293
+ p
294
+
295
+ =
296
+ h
297
+ 2 + 4n2 − 14n + 9
298
+ 6
299
+ .
300
+ n
301
+
302
+ k=1
303
+ �k2 − k + 2 − 3n
304
+ p
305
+
306
+ =
307
+ h
308
+ 4 + Jn
309
+ 2 + n2 − 17n − 3
310
+ 12
311
+ .
312
+ n
313
+
314
+ k=1
315
+ �k2 − k + 2 − 3n
316
+ p
317
+
318
+ =
319
+ h
320
+ 2 + M(1 − n) + n2 − 11n + 3
321
+ 6
322
+ +
323
+ M
324
+
325
+ k=1
326
+ ��
327
+ kp
328
+
329
+ .
330
+ 3
331
+
332
+ In Section 2 we provide the main definitions and the notation used in the
333
+ whole paper. Here, we develop the concepts of jump and total residue. We
334
+ also identify when these jumps occur. In Section 3 we organize the jumps on
335
+ six different sets and we state the main lemmas that will be used to count
336
+ the jumps which is done in Section 4. It is here where we define bijective
337
+ functions among different pairs of sets to compute their cardinalities.
338
+ In
339
+ Section 5 we obtain the sums of quadratic residues of terms of the form
340
+ k2 − k + 2 − 3n where k ranges on the different intervals [1, 4n − 2], [1, 2n]
341
+ or [1, n]. In this section we also count to total amount of jumps. Finally in
342
+ Section 6 we establish several identities involving the class number h(−p)
343
+ of the imaginary quadratic field Q(√−p). These identities are based on the
344
+ sums found in previous sections and in some of these identities the jumps
345
+ quantity appears.
346
+ Whereas in [4] we computed several sums of quadratic residues when
347
+ p = 4n + 1, in this paper, we perform a similar but different analysis when
348
+ p = 4n − 1. It is on this paper where the class number is involved.
349
+ On
350
+ some occasions we present both formulas (p = 4n − 1 and p = 4n + 1) for
351
+ comparison purposes.
352
+ 2
353
+ Sum of Quadratic Residues and Jumps
354
+ Consider p = 4n − 1 a prime number. It will be understood that when we
355
+ write n, we mean a natural number n ≥ 1.
356
+ Definition 2.1 Let q be a positive integer and x ∈ Z. By rq(x) we denote
357
+ the remainder of x when we divide by q. Hence rq(x) ∈ {0, 1, 2, ..., q − 1}
358
+ satisfies
359
+ x = m · q + rq(x),
360
+ for some m ∈ Z. Clearly, m = ⌊x/q⌋ .
361
+ The following notation found in [3] will be useful during the whole paper.
362
+ 4
363
+
364
+ Notation 2.2 For m ∈ Z, p = 4n − 1 prime and m ≥ 0 we denote
365
+ Qm = 1
366
+ 2 + 1
367
+ 2
368
+
369
+ 1 + 4 [(m + 1)p − n − 1] = 1
370
+ 2 + 1
371
+ 2
372
+
373
+ 4mp + 3p − 4 ,
374
+ Rm = √mp ,
375
+ M =
376
+ �n2
377
+ p
378
+
379
+ .
380
+ In [3], we obtained a theorem that involves the sum of quadratic residues
381
+ when p = 4n − 1. For reference purposes, we write here such theorem.
382
+ Theorem 2.3 Let p = 4n − 1 be prime. Using Notation 2.2 we have
383
+ 1
384
+ 2
385
+ p−1
386
+
387
+ k=1
388
+ rp
389
+
390
+ k2�
391
+ = p
392
+ � M
393
+
394
+ m=1
395
+ ⌊Rm⌋ +
396
+ M−1
397
+
398
+ m=0
399
+ ⌊Qm⌋
400
+
401
+ − Mp(2n − 1) + p · (n2 + n)
402
+ 6
403
+ .
404
+ A concept arises naturally when we study the term Qm. This term is the
405
+ positive root of the quadratic polynomial x2 − x + 2 − 3n − mp which is the
406
+ same as (x − 1)2 + x + 1 − 3n − mp.
407
+ Definition 2.4 Let p = 4n − 1 be a prime and 0 ≤ k ≤ p. The total residue
408
+ of k is defined and denoted by
409
+ Γ(k) = rp
410
+
411
+ (k − 1)2�
412
+ + rp (k + 1 − 3n) .
413
+ We also say that k is a jump if its total residue is p or more, i.e. if
414
+ Γ(k) ≥ p.
415
+ What is the importance of the jumps? Firstly, in the proof of Theorem 2.3
416
+ (see [3]), a key technique is adding rp (k2) and rp ((2n − k)2) . It happens that
417
+ when k ∈ (Rm, Qm] this sum is constant, but as soon as k exceeds Qm, we
418
+ need to subtract p. Therefore knowing when we need to subtract p is key
419
+ to comprehend better the formula in Theorem 2.3. Secondly, the amount of
420
+ jumps in the interval [2, n+2] will allow us to establish a formula to compute
421
+ the terms �M−1
422
+ m=0 ⌊Qm⌋ , �M
423
+ m=1 ⌊Rm⌋ as well as �n
424
+ k=0 rp (k2) as a function of
425
+ n, h(−p) and the number of jumps. This is achieved in Corollaries 6.2 and 6.4.
426
+ The following three lemmas allow us to identify some jumps and when
427
+ they occur. For notation purposes we define Z0 = {0, 1, 2, ...}.
428
+ 5
429
+
430
+ Lemma 2.5 Let p = 4n − 1 be a prime and m ∈ Z0. Then
431
+ ⌊Qm⌋ < Qm.
432
+ Proof. Assume there is j ∈ Z such that j =
433
+
434
+ 1 +
435
+
436
+ 4mp + 12n − 7
437
+
438
+ /2.
439
+ Then j2 − j + 2 − 3n = mp. Taking x0 = 2n − j gives
440
+ x2
441
+ 0 = 4n2 − n + mp + j − 4nj + n + 3n − 2 = (n + m − j + 1)p − 1,
442
+ hence x2
443
+ 0 ≡ −1 (mod p) which contradicts Fermat Little Theorem as p =
444
+ 4n − 1.
445
+
446
+ Remark 2.6 By using the same argument, there is no integer k with k2 −
447
+ 3k + 4 − 3n = mp, else taking k − 1 = j we obtain j2 − j + 2 − 3n = mp
448
+ which leads to a contradiction.
449
+ Lemma 2.7 Let p = 4n − 1 be a prime with n ≥ 3. Let m ∈ Z0 with
450
+ 0 ≤ m ≤
451
+ �n2 − 4n + 5
452
+ p
453
+
454
+ and km = 1 +
455
+ �1 + √4mp + 12n − 7
456
+ 2
457
+
458
+ .
459
+ Then
460
+ (i)
461
+ 3 ≤ km ≤ n + 2.
462
+ (ii)
463
+ 1 + √4mp + 12n − 7 < 2km < 3 + √4mp + 12n − 7.
464
+ (iii) km is a jump and
465
+ (iv)
466
+ 3n − km − 1 < rp
467
+
468
+ (km − 1)2�
469
+ = (km − 1)2 − mp ≤ 3n + km − 4.
470
+ Proof.
471
+ (i) Notice that 4mp + 12n − 7 ≤ 4n2 + 4n + 1, hence km ≤ n + 2. Since
472
+ 2 ≤ n, 9 ≤ 4mp + 12n − 7. Therefore 3 ≤ km.
473
+ (ii) Notice that km is strictly above the positive root of x2−x+2−3n−mp,
474
+ hence
475
+ k2
476
+ m − km + 2 − 3n > mp.
477
+ (2.3)
478
+ 6
479
+
480
+ Now km ≤ n + 2 ≤ 3n and 2 ≤ n imply
481
+ (km−1)2−mp = k2
482
+ m−km+2−3n−mp+3n−km−1 ≥ 3n−km. (2.4)
483
+ From Lemma 2.5, km <
484
+
485
+ 3 + √4mp + 12n − 7
486
+
487
+ /2. The other inequal-
488
+ ity is obvious.
489
+ (iii) From (ii), km is less than the positive root of x2 − 3x + 4 − mp − 3n,
490
+ hence k2
491
+ m − 3km + 4 − mp − 3n ≤ −1. Therefore
492
+ (km − 1)2 − mp ≤ 3n + km − 4 ≤ 4n.
493
+ (2.5)
494
+ It is impossible that (km−1)2−mp = 4n, otherwise (km−1)2−1 = (m+
495
+ 1)p, hence p would divide (km − 2)km which forces km = 0 or km = 2,
496
+ which contradicts km ≥ 3. Hence (km − 1)2 − mp ≤ 4n − 1, however,
497
+ if (km − 1)2 − mp = 4n − 1, then km = 1 which is again, impossible.
498
+ Then (km − 1)2 − mp < p and hence rp ((km − 1)2) = (km − 1)2 − mp.
499
+ Now Γ(km) = rp ((km − 1)2) + rp (km + 1 − 3n) = (km − 1)2 − mp +
500
+ km + 1 − 3n − p as km ≤ n + 2 ≤ 3n − 2. Now Inequality 2.3 implies
501
+ Γ(km) = k2
502
+ m − km + 2 − 3n − mp + p ≥ p, hence km is a jump.
503
+ (iv) To finish the proof, we observe that from Inequalities 2.4 and 2.5 we
504
+ obtain
505
+ 3n − km ≤ rp
506
+
507
+ (km − 1)2�
508
+ = (km − 1)2 − mp ≤ 3n + km − 4.
509
+
510
+ The following lemma allows us to find more jumps based on the ones
511
+ found in Lemma 2.7.
512
+ Lemma 2.8 Consider km be the jump in Lemma 2.7 and k ≤ n + 2. If
513
+ km < k ≤ 1 +
514
+ �√mp + p − 1
515
+
516
+ then k is a jump and
517
+ 3n + k − 3 < rp
518
+
519
+ (k − 1)2�
520
+ = (k − 1)2 − mp.
521
+ Proof. Clearly km < k implies mp ≤ (km − 1)2 < (k − 1)2. Since k ≤
522
+ �√mp + p − 1
523
+
524
+ , (k −1)2 ≤ mp+p−1. Hence rp ((k − 1)2) = (k −1)2 ��mp.
525
+ 7
526
+
527
+ Since k ≤ n+2, rp (k + 1 − 3n) = k+1−3n−p. We know that k is strictly
528
+ above the positive root of x2 −x+2−3n−mp, hence k2 −k +2−3n > mp.
529
+ This implies that
530
+ Γ(k) =rp
531
+
532
+ (k − 1)2�
533
+ + rp (k + 1 − 3n) = (k − 1)2 − mp + k + 1 − 3n + p
534
+ =k2 − k + 2 − 3n − mp + p ≥ p.
535
+ and then k is a jump.
536
+ From Lemma 2.7,
537
+
538
+ 1 + √4mp + 12n − 7
539
+
540
+ /2 < km ≤ k−1, hence
541
+
542
+ 3 + √4mp + 12n − 7
543
+
544
+ /2 <
545
+ k. Therefore 0 < k2 − 3k + 4 − mp − 3n, then
546
+ 3n + k − 3 < (k − 1)2 − mp = rp
547
+
548
+ (k − 1)2�
549
+ .
550
+
551
+ Remark 2.9 Note that by Lemma 2.7, the jumps km satisty 3n − km − 1 <
552
+ rp ((k − 1)2) ≤ 3n + km − 4 and by Lemma 2.8, the jumps k > km satisfy
553
+ 3n + k − 3 < rp ((k − 1)2) . Now if k is not a jump and 2 ≤ k ≤ n + 2, then
554
+ necessarily rp ((k − 1)2) < 3n − k − 1 as the following lemma shows.
555
+ The following two lemmas are about the total residues and will help us
556
+ to count the total amount of jumps in the interval [1, 4n]. We will only prove
557
+ the fist one as the proof of the second one is similar.
558
+ Lemma 2.10 Let n ≥ 2 and 2 ≤ k ≤ n + 2 and p = 4n − 1 prime.
559
+ (a) If rp ((k − 1)2) < 3n − k − 1 then
560
+ Γ(k) < p
561
+ and Γ(p + 2 − k) < p.
562
+ (b) If 3n−k −1 ≤ rp ((k − 1)2) < 3n+ k −3 then Γ(p + 2 −k) < p ≤ Γ(k).
563
+ (c) If 3n + k − 3 ≤ rp ((k − 1)2) then
564
+ p ≤ Γ(p + 2 − k) and
565
+ p ≤ Γ(k).
566
+ Proof.
567
+ Note that −(4n − 1) ≤ k + 1 − 3n ≤ −1, therefore rp (k + 1 − 3n) =
568
+ k + 1 − 3n + p. Similarly, k ≤ n + 2 implies 0 ≤ p + 3 − k − 3n ≤ p − 1 and
569
+ hence rp (k2) p + 3 − k − 3n = p + 3 − k − 3n.
570
+ 8
571
+
572
+ (a) Clearly
573
+ Γ(k) =rp
574
+
575
+ (k − 1)2�
576
+ + rp (k + 1 − 3n) ,
577
+ =rp
578
+
579
+ (k − 1)2�
580
+ + p + k + 1 − 3n < p.
581
+ Γ(p + 2 − k) =rp
582
+
583
+ (p − (k − 1))2�
584
+ + rp (p + 3 − k − 3n) ,
585
+ =rp
586
+
587
+ (k − 1)2�
588
+ + p + 3 − k − 3n < p.
589
+ (b) Here Γ(k) = rp ((k − 1)2) + p + k + 1 − 3n ≥ p and Γ(p + 2 − k) =
590
+ rp ((k − 1)2) + p + 3 − k − 3n < p.
591
+ (c) Finally Γ(k) = rp ((k − 1)2) + p + k + 1 − 3n ≥ p and Γ(p + 2 − k) =
592
+ rp ((k − 1)2) + p + 3 − k − 3n ≥ p.
593
+ Note that 2 ≤ k ≤ n + 2 implies 0 ≤ p + 2 − k ≤ p, hence Γ(p + 2 − k) is
594
+ defined. Also when k = 0 or k = 1,
595
+ rp (k2) < 3n − k − 1 and Γ(k) < p.
596
+ Then Γ(p + 2 − k) is not defined as p + 2 − k > p.
597
+
598
+ Lemma 2.11 Let n ≥ 2, p = 4n − 1 prime and n + 3 ≤ k ≤ 2n.
599
+ (a) If rp ((k − 1)2) < k − n − 2 then
600
+ Γ(k) < p
601
+ and Γ(p + 2 − k) < p.
602
+ (b) If k − n − 2 ≤ rp ((k − 1)2) < 3n − k − 1 then Γ(k) < p ≤ Γ(p + 2 − k).
603
+ (c) If 3n − k − 1 ≤ rp ((k − 1)2) then
604
+ p ≤ Γ(k) and
605
+ Γ(p + 2 − k).
606
+ Proof. (very similar to the one of Lemma 2.10.)
607
+
608
+ 3
609
+ Splitting the Jumps
610
+ For future reference we define the following sets.
611
+ 9
612
+
613
+ Notation 3.1 For p = 4n − 1 prime, denote
614
+ C< =
615
+
616
+ k ∈ {2, ..., n + 2} : rp
617
+
618
+ (k − 1)2�
619
+ < 3n − k − 1
620
+
621
+ ,
622
+ C[−−) =
623
+
624
+ k ∈ {2, ..., n + 2} : rp
625
+
626
+ (k − 1)2�
627
+ ∈ [3n − k − 1, 3n + k − 3)
628
+
629
+ ,
630
+ C≥ =
631
+
632
+ k ∈ {2, ..., n + 2} : rp
633
+
634
+ (k − 1)2�
635
+ ≥ 3n + k − 3
636
+
637
+ ,
638
+ D< =
639
+
640
+ k ∈ {n + 3, ..., 2n} : rp
641
+
642
+ (k − 1)2�
643
+ < k − n − 2
644
+
645
+ ,
646
+ D[−−) =
647
+
648
+ k ∈ {n + 3, ..., 2n} : rp
649
+
650
+ (k − 1)2�
651
+ ∈ [k − n − 2, 3n − k − 1)
652
+
653
+ ,
654
+ D≥ =
655
+
656
+ k ∈ {n + 3, ..., 2n} : rp
657
+
658
+ (k − 1)2�
659
+ ≥ 3n − k − 1
660
+
661
+ .
662
+ Lemma 3.2 Let ℓ ∈ Z and p = 4n − 1 prime.
663
+ (a) Let ℓ ≥ 6. If n = 4ℓ + 2 or n = 4ℓ + 3 then n − 3, n − 1, n + 1 ∈ C[−−)
664
+ and n − 2, n, n + 2 ∈ C<.
665
+ (b) Let ℓ ≥ 4. If n = 4ℓ + 1 or n = 4ℓ + 4 then n − 3, n − 1, n + 1 ∈ C< and
666
+ n − 2, n, n + 2 ∈ C[−−).
667
+ Proof.
668
+ Table 1 summarizes the residues of (k − 1)2 for k = n − 3, n −
669
+ 2, n − 1, n, n + 1 and n + 2 given the four different cases for n which are
670
+ 4ℓ + 1, 4ℓ + 2, 4ℓ + 3 and 4ℓ + 4,
671
+ ℓ ≥ 4.
672
+ We only verify the first column of Table 1, that is, we will compute the
673
+ residues of (k − 1)2 when k = n − 3.
674
+ (4ℓ − 3)2
675
+ =
676
+ (16ℓ + 3)(ℓ − 2) + 5ℓ + 15,
677
+ 0 ≤ 5ℓ + 15 ≤ 16ℓ + 2,
678
+ (4ℓ − 2)2
679
+ =
680
+ (16ℓ + 7)(ℓ − 2) + 9ℓ + 18,
681
+ 0 ≤ 9ℓ + 18 ≤ 16ℓ + 6,
682
+ (4ℓ − 1)2
683
+ =
684
+ (16ℓ + 11)(ℓ − 2) + 13ℓ + 23,
685
+ 0 ≤ 13ℓ + 23 ≤ 16ℓ + 10,
686
+ (4ℓ)2
687
+ =
688
+ (16ℓ + 15)(ℓ − 1) + ℓ + 15,
689
+ 0 ≤ ℓ + 15 ≤ 16ℓ + 14.
690
+ For a given n, k, denote Ik
691
+ n = [3n−k −1, 3n+k −3) and ∆k
692
+ n = rp ((k − 1)2) .
693
+ (a) Consider n = 4ℓ+2 and k = n−3 then Ik
694
+ n = [8ℓ+6, 16ℓ+2). According
695
+ to Table 1, ∆k
696
+ n = 9ℓ + 18. We observe that if ℓ ≥ 3, ∆k
697
+ n ∈ Ik
698
+ n. Similarly,
699
+ if k = n − 1, Ik
700
+ n = [8ℓ + 4, 16ℓ + 4) and ∆k
701
+ n = 9ℓ + 7 ∈ Ik
702
+ n for ℓ ≥ 1. If
703
+ k = n + 1, Ik
704
+ n = [8ℓ + 2, 16ℓ + 6) and ∆k
705
+ n = 9ℓ + 4 ∈ Ik
706
+ n for ℓ ≥ 0. Hence
707
+ for ℓ ≥ 6,
708
+ n − 3, n − 1, n + 1 ∈ C[−−).
709
+ Notice that if k = n − 2, ∆k
710
+ n = ℓ + 8 /∈ [8ℓ + 5, 16ℓ + 3) = Ik
711
+ n when ℓ ≥ 1.
712
+ Likewise, if k = n, ∆k
713
+ n = ℓ + 1 /∈ [8ℓ + 3, 16ℓ + 5) = Ik
714
+ n when ℓ ≥ 0.
715
+ 10
716
+
717
+ k
718
+ n − 3
719
+ n − 2
720
+ n − 1
721
+ n
722
+ n + 1
723
+ n + 2
724
+ n = 4ℓ + 1
725
+ p = 16ℓ + 3
726
+ 5ℓ + 15
727
+ 13ℓ + 10
728
+ 5ℓ + 4
729
+ 13ℓ + 3
730
+ 5ℓ + 1
731
+ 13ℓ + 4
732
+ n = 4ℓ + 2
733
+ p = 16ℓ + 7
734
+ 9ℓ + 18
735
+ ℓ + 8
736
+ 9ℓ + 7
737
+ ℓ + 1
738
+ 9ℓ + 4
739
+ ℓ + 2
740
+ n = 4ℓ + 3
741
+ p = 16ℓ + 11
742
+ 13ℓ + 23
743
+ 5ℓ + 11
744
+ 13ℓ + 12
745
+ 5ℓ + 4
746
+ 13ℓ + 9
747
+ 5ℓ + 5
748
+ n = 4ℓ + 4
749
+ p = 16ℓ + 15
750
+ ℓ + 15
751
+ 9ℓ + 16
752
+ ℓ + 4
753
+ 9ℓ + 9
754
+ ℓ + 1
755
+ 9ℓ + 10
756
+ Table 1: Residues of (k − 1)2 when k = n − 3, n − 2, ..., n + 2 for the different
757
+ cases of n.
758
+ Finally, if k = n + 2, ∆k
759
+ n = ℓ + 2 /∈ [8ℓ + 1, 16ℓ + 7) = Ik
760
+ n when ℓ ≥ 1.
761
+ Therefore n − 2, n, n + 2 /∈ C[−−) when ℓ ≥ 1, in fact, n − 2, n, n + 2 ∈ C<
762
+ for ℓ ≥ 1. The case n = 4ℓ + 3 is analogous.
763
+ (b) This case is done analogously.
764
+
765
+ Remark 3.3 If n > 3 either Γ(n + 2) < p ≤ Γ(n + 1) or Γ(n + 1) < p ≤
766
+ Γ(n + 2).
767
+ Proof. From Lemma 3.2, if n = 4ℓ + 2 or n = 4ℓ + 3 and ℓ ≥ 6, then
768
+ n + 1 ∈ C[−−) and n + 2 ∈ C<. By Lemma 2.10, Γ(n + 2) < p ≤ Γ(n + 1).
769
+ From Lemma 3.2, if n = 4ℓ + 1 or n = 4ℓ + 4 and ℓ ≥ 4, then n + 1 ∈ C<
770
+ and n + 2 ∈ C[−−). By Lemma 2.10, Γ(n + 1) < p ≤ Γ(n + 2).
771
+ We only need to verify the cases n = 5, 6, 8, 11, 12, 15 and 18 as the cases
772
+ n = 4, 7, 9, 10, 13, 16 and 19 do not give prime numbers.
773
+ (i) If n = 5 then n + 2 ∈ C[−−) = {5, 7} and n + 1 ∈ C< = {2, 3, 4, 6}.
774
+ (ii) If n = 6 then n + 1 ∈ C[−−) = {5, 7} and n + 2 ∈ C< = {2, 3, 4, 6, 8}.
775
+ 11
776
+
777
+ (iii) If n = 8 then n+2 ∈ C[−−) = {6, 8, 10} and n+1 ∈ C< = {2, 3, 4, 5, 7, 9}.
778
+ (iv) If n = 11 then n + 1 ∈ C[−−) = {7, 10, 12} and n + 2 ∈ C<.
779
+ (v) If n = 12 then n + 2 ∈ C[−−) = {7, 10, 12, 14} and n + 1 ∈ C<.
780
+ (vi) If n = 15 then n + 1 ∈ C[−−) = {8, 11, 14, 16} and n + 2 ∈ C<.
781
+ (vii) If n = 18 then n + 1 ∈ C[−−) = {8, 12, 15, 17, 19} and n + 2 ∈ C<.
782
+ An application of Lemma 2.10 gives us the result.
783
+ Observe that when n = 3, C[−−) = {4, 5}, C< = {2, 3}, in this case both
784
+ Γ(n + 1) = 16 and Γ(n + 2) = 13 are greater than p = 11.
785
+
786
+ The following two lemmas allow us to compute specifically the cardinality
787
+ of C≥.
788
+ Lemma 3.4 Let n > 3, p = 4n − 1 prime and M0 = ⌊(n2 − 4n + 5)/p⌋.
789
+ Define ℓm = 1 +
790
+ �√mp + p − 1
791
+
792
+ and consider km defined as in Lemma 2.7.
793
+ Let 2 ≤ k ≤ n + 2 and 0 ≤ m ≤ M0 − 1.
794
+ If k < k0, k > ℓM0 or ℓm < k ≤ km+1 then k /∈ C≥. Also if k < k0 or
795
+ ℓm < k < km+1 then k is not a jump.
796
+ Proof. Consider k < k0 = 1+
797
+
798
+ (1 + √12n − 7)/2
799
+
800
+ . Then (2k−1)2 < 12n−7
801
+ from which (k − 1)2 < 3n − k − 1 ≤ 4n − 1. Hence rp ((k − 1)2) = (k − 1)2 <
802
+ 3n − k − 1. Therefore by Lemma 2.10, k ∈ C< and k is not a jump.
803
+ Consider k > ℓM0. Notice that ℓM0 = 1 +
804
+ �√Mp
805
+
806
+ ≥ n − 1. By Lemma 3.2,
807
+ either k ∈ C[−−) or k ∈ C<. If k = km+1, by Lemma 2.7 (iv), k ∈ C[−−).
808
+ Finally consider ℓm < k < km+1. Then
809
+ 1 +
810
+
811
+ (m + 1)p < k < 1 +
812
+
813
+ 4(m + 1)p + 12n − 7
814
+ 2
815
+ .
816
+ Hence
817
+ (m + 1)p < (k − 1)2 < (m + 1)p + 3n − k − 1.
818
+ Therefore rp ((k − 1)2) = (k−1)2−(m+1)p < 3n−k−1. By Lemmas 2.10
819
+ and 3.2, k is not a jump and k ∈ C<.
820
+
821
+ 12
822
+
823
+ Lemma 3.5 Consider n, p and M0 as in Lemma 2.7. Then k ∈ C≥ if and
824
+ only if there is m ∈ {0, 1, ..., M0} such that km < k ≤ 1 +
825
+ �√mp + p − 1
826
+
827
+ .
828
+ Proof.
829
+ From Lemma 2.8, if km < k ≤ ℓm then k is a jump and rp ((k − 1)2) >
830
+ 3n + k − 3. Note that 2 ≤ k0 < k. Since m ≤ M0 we have ℓm ≤ n + 2, hence
831
+ 2 ≤ k ≤ n + 2. Therefore k ∈ C≥.
832
+ Conversely, let k ∈ C≥. Then 2 ≤ k ≤ n+2 and rp ((k − 1)2) ≥ 3n+k−3.
833
+ Observe that
834
+ [2, n + 2] = [2, k0] ∪ (k0, ℓ0] ∪ (ℓ0, k1] ∪ (k1, ℓ1] ∪ · · · ∪ (kM0, ℓM0] ∪ (ℓM0, n + 2].
835
+ If k < k0, k > ℓM0 or ℓm < k ≤ km+1, by Lemma 3.4, k /∈ C≥.
836
+ This forces k to be in (km, ℓm] for some m ∈ {0, ..., M0}, which is what
837
+ we wanted.
838
+
839
+ 4
840
+ Counting the Jumps
841
+ In this section we will relate the jumps in the different sets C<, C[−−), C≥, D<, D[−−)
842
+ and D≥. We will compute different cardinalities when possible. In this section
843
+ we consider n > 3 and p = 4n − 1 a prime number.
844
+ Theorem 4.1 The function f : C≥ −→ D< defined by
845
+ f(k) = 2n + 2 − k,
846
+ is well-defined and bijective.
847
+ Proof.
848
+ Consider k ∈ C≥. By Lemmas 2.8, 3.5 and Observation 2.9, there is
849
+ m ∈ {0, 1, ..., M0} with M0 = ⌊(n2 − 4n + 5)/p⌋ such that km < k ≤ 1 +
850
+ �√mp + p − 1
851
+
852
+ and 3n + k − 3 ≤ (k − 1)2 − mp = rp ((k − 1)2) , where km is
853
+ the jump given in Lemma 2.10. Hence
854
+ 0 ≤ k2 − 3k − 3n + 4 − mp,
855
+ (4.6)
856
+ k2 − 2k + 1 − mp ≤ 4n − 2.
857
+ (4.7)
858
+ 13
859
+
860
+ Let kf = f(k) = 2n + 2 − k. We will first prove that kf ∈ D<. Now
861
+ (kf − 1)2 = (n − k + m + 2)p + (k − 1)2 − mp + n − k + 1 − p.
862
+ Let w = (k − 1)2 − mp + n − k + 1 − p. From Inequality 4.6, w ≥ −1. From
863
+ Remark 2.6, k2 − 3k + 4 − 3n − mp ̸= 0, hence w ≥ 0.
864
+ Note that in the case of equality in Inequality 4.7, we would have (k−1)2 =
865
+ mp + p − 1, hence the congruency x2 ≡ −1 (mod p) would have a solution,
866
+ which is impossible. Therefore
867
+ k2 − 2k + 1 − mp < 4n − 2.
868
+ (4.8)
869
+ From Inequality 4.7,
870
+ w = k2 − 2k + 1 − mp + 2 − k − 3n < n − k.
871
+ (4.9)
872
+ Clearly n − k ≤ 4n − 2, hence w < p − 1. Therefore rp ((kf − 1)2) = w. From
873
+ Inequality 4.9, 0 ≤ w < n−k, this forces k ≤ n−1. Also from Inequality 4.9,
874
+ since kf − n − 2 = n − k, we conclude that rp ((kf − 1)2) = w < kf − n − 2.
875
+ Finally, 2 ≤ k ≤ n − 1 implies n + 3 ≤ kf ≤ 2n, hence f is well defined
876
+ as kf ∈ D<.
877
+ Clearly f is injective. Take now �k ∈ D<. Then n + 3 ≤ �k ≤ 2n and
878
+ rp
879
+
880
+ (�k − 1)2�
881
+ < �k − n − 2.
882
+ (4.10)
883
+ Consider k = 2n + 2 − �k and �m ∈ Z with
884
+ �m ≤ (�k − 1)2 < �m · p + p.
885
+ (4.11)
886
+ Then 2 ≤ k ≤ n − 1 and
887
+ (k − 1)2 = (n − �k + �m) · p + (�k − 1)2 − �mp + n − �k + 1 − p.
888
+ Consider m = n − �k + �m and u = (�k − 1)2 − �mp + n − �k + 1 − p.
889
+ Since �k ≤ 5n, Inequality 4.11 implies
890
+ 0 ≤ n − �k + 1 − p ≤ (k − 1)2 − �mp + n − �k + 1 − p.
891
+ (4.12)
892
+ Also from Inequality 4.10, we have (k − 1)2 − �mp + n − �k + 1 − p < p − 1,
893
+ therefore 0 ≤ u < p − 1. Hence rp ((k − 1)2) = (k − 1)2 − mp = u.
894
+ Finally Inequality 4.12 implies u ≥ 5n − �k ≥ 5n − 1 − �k = 3n + k − 3.
895
+ Therefore rp ((k − 1)2) ≥ 3n + k − 3, i.e. k ∈ C≥. Clearly f(k) = �k, then f
896
+ is bijective.
897
+
898
+ 14
899
+
900
+ Lemma 4.2 Let y, z be the last two elements in C[−−). If k ∈ C[−−) − {y, z}
901
+ then
902
+ mp + p ≤ (n − 2)2 + 1,
903
+ (4.13)
904
+ where m = m(k) = ⌊(k − 1)2/p⌋ .
905
+ Proof.
906
+ (a) Case n = 4ℓ + 2 or n = 4ℓ + 3, ℓ ≥ 6. By Lemma 3.2, k ∈ C[−−) − {y, z}
907
+ implies k ≤ n − 3. Hence m ≤ ℓ − 2 = ⌊(n − 4)2/p⌋ . If n = 4ℓ + 2 then
908
+ mp + p ≤ (ℓ − 1)(16ℓ + 7) ≤ 16ℓ2 + 1 = (n − 2)2 + 1.
909
+ If n = 4ℓ+3 then mp+p ≤ (ℓ−1)(16ℓ+11) ≤ 16ℓ2+8ℓ+2 = (n−2)2+1.
910
+ (b) Case n = 4ℓ + 1 or n = 4ℓ + 4, ℓ ≥ 4. By Lemma 3.2, k ∈ C[−−) − {y, z}
911
+ implies k ≤ n − 2. If n = 4ℓ + 1 then m ≤ ⌊(n − 3)2/p⌋ = ℓ − 2. Hence
912
+ mp + p ≤ (ℓ − 1)(16ℓ + 3) ≤ 16ℓ2 − 8ℓ + 2 = (n − 2)2 + 1.
913
+ If n = 4ℓ+4 then m ≤ ⌊(n − 3)2/p⌋ = ℓ−1. Hence mp+p ≤ ℓ·(16ℓ+15) ≤
914
+ 16ℓ2 + 16ℓ + 5 = (n − 2)2 + 1.
915
+ (c) The only left cases are n = 5, 6, 8, 11, 12, 15 and 18 as the choices n =
916
+ 4, 7, 9, 10, 13, 14, 16, 19, 22, 23 do not provide prime numbers.
917
+ (i) If n = 5 or 6 then C[−−) has only two elements. Hence Inequality 4.13
918
+ is trivial.
919
+ (ii) If n = 8 then C[−−) = {6, 8, 10} and k = 6. Therefore m(k) = 0 =
920
+ ⌊(k − 1)2/p⌋ = ⌊25/31⌋ clearly satisfies Inequality 4.13.
921
+ (iii) If n = 11 then C[−−) = {7, 10, 12} and k = 7. Therefore m(k) = 0
922
+ clearly satisfies Inequality 4.13.
923
+ (iv) If n = 12 then C[−−) = {7, 10, 12, 14}. If k = 10, then m(k) = 1 =
924
+ ⌊(k − 1)2/p⌋ = ⌊81/47⌋ clearly satisfies Inequality 4.13 as 94 ≤ 101.
925
+ Clearly m(7) also does.
926
+ (v) If n = 15 then C[−−) = {8, 11, 14, 16}. If k = 11, then m = 1 =
927
+ ⌊(k − 1)2/p⌋ = ⌊100/59⌋ clearly satisfies Inequality 4.13 as 118 ≤
928
+ 169. Clearly m(8) also does.
929
+ (vi) If n = 18 then n + 1 ∈ C[−−) = {8, 12, 15, 17, 19}. If k = 15, then
930
+ m(k) = 2 = ⌊(k − 1)2/p⌋ = ⌊196/71⌋ clearly satisfies Inequal-
931
+ ity 4.13 as 213 ≤ 256. Clearly m(8), m(12) also satisfy Inequal-
932
+ ity 4.13.
933
+ 15
934
+
935
+
936
+ Lemma 4.3 k ∈ D[−−) if and only if there is an integer m with 1 ≤ m ≤
937
+ ⌊(n2 − 4n + 5)/p⌋ and
938
+ k = 2n −
939
+ ��
940
+ mp − 1
941
+
942
+ .
943
+ Proof.
944
+ ⇒) Let k ∈ D[−−) and define α = 2n + 1 − k. Hence 1 ≤ α ≤ n − 2 and
945
+ (k − 1)2 = 4n2 + α2 − 4nα = (n − α + m)p + α2 + n − α − mp,
946
+ where m satisfies mp ≤ α2+n−α < (m+1)p. Therefore rp ((k − 1)2) =
947
+ α2+n−α−mp. Since k−n−2 ≤ rp ((k − 1)2) < 3n−k−1, mp−1 ≤ α2
948
+ and (α − 1)2 < mp − 1.
949
+ Hence √mp − 1 ≤ α < √mp − 1 + 1. Since x2 ≡ −1 (mod p) has no
950
+ solution, √mp − 1 is not an integer. Therefore α =
951
+ �√mp − 1
952
+
953
+ + 1.
954
+ Then k = 2n −
955
+ �√mp − 1
956
+
957
+ .
958
+ Since 0 ≤ α2 + n − α, m ≥ 0. Now (α − 1)2 < mp − 1 implies 1 ≤ m.
959
+ Clearly mp ≤ α2 + 1 ≤ (n − 2)2 + 1. Therefore m ≤ (n2 − 4n + 5)/p.
960
+ ⇐) Consider an integer m with 1 ≤ m ≤ (n2 − 4n + 5)/p and k = 2n −
961
+ �√mp − 1
962
+
963
+ .
964
+ Since mp − 1 ≤ (n − 2)2,
965
+ n + 2 ≤ k. Clearly n + 2 = k leads us to an
966
+ integer solution of x2 ≡ −1 (mod p), therefore n + 3 ≤ k. Also 1 ≤ m
967
+ implies k ≤ 2n.
968
+ Consider α =
969
+ �√mp − 1
970
+
971
+ + 1. Then √mp − 1 ≤ α < √mp − 1 + 1.
972
+ Clearly α ̸= √mp − 1 + 1 (otherwise x2 ≡ −1 (mod p) has an integer
973
+ solution), then √mp − 1 < α < √mp − 1 + 1.
974
+ Hence mp − 1 < α2 and (α − 1)2 < mp − 1. Since α < n − 1, mp ≤
975
+ α2 ≤ α2 + n − α < n + α − 2 + mp < mp + p. Since
976
+ (k − 1)2 = (2n − α)2 = (n − α + m)p + α2 + n − α − mp,
977
+ rp ((k − 1)2) = α2 + n − α − mp. Finally, from k − n − 2 = n − α − 1 <
978
+ rp ((k − 1)2) < n + α − 2 = 3n − k − 1, we conclude that k ∈ D[−−). □
979
+ 16
980
+
981
+ Theorem 4.4 Let y, z the last two elements of C[−−). For k ∈ C[−−) − {y, z},
982
+ consider m = ⌊(k − 1)2/p⌋ and u0 = u0(k) the first integer less than or equal
983
+ to n + 2 such that x = u0 satisfies
984
+ (m + 1) p ≤ (k + x − 1)2 + 1.
985
+ (4.14)
986
+ Then, the function f : C[−−) − {y, z} −→ D[−−) defined by
987
+ f(k) = kf = 2n + 2 − u0 − k,
988
+ is well-defined and bijective.
989
+ Proof. First, we will prove that f is well-defined. It is not hard to check
990
+ that u0 =
991
+ ��
992
+ (m + 1)p
993
+
994
+ +2−k. The definition of u0 implies that u0, u0+1, ...
995
+ satisfy Inequality 4.14 but u0 − 1 does not. Hence u0 satisfies
996
+ 4n + mp ≤ k2 + 2k(u0 − 1) + u2
997
+ 0 − 2u0 + 3,
998
+ (4.15)
999
+ k2 + 2k(u0 − 2) + u2
1000
+ 0 − 4u0 + 6 < 4n + mp.
1001
+ (4.16)
1002
+ If k2 = mp + 3n + 3k − 2 for 2 ≤ k ≤ n + 2 and we define x0 = 2n − k + 1,
1003
+ then x2
1004
+ 0 = (n+ m−k + 2)p + 1. Therefore p divides (x0 −1)(x0 + 1), however
1005
+ since n ≥ 3 and 2 ≤ k ≤ n + 2, we have that
1006
+ 1 ≤ 2n − k = x0 − 1 < x0 + 1 = 2n + 2 − k ≤ 4n − 2,
1007
+ which is impossible. Therefore
1008
+ k2 ̸= mp + 3n + 3k − 2.
1009
+ (4.17)
1010
+ Observe that u0 ≥ 1 as x = 0 does not satisfy Inequality 4.14. Also u0 ≤ n+2
1011
+ as (k + n + 1)2 ≥ (k − 1)2 + (n + 2)2 ≥ mp + p − 1.
1012
+ To shorten notation, define
1013
+
1014
+
1015
+
1016
+
1017
+
1018
+
1019
+
1020
+ mf
1021
+ =
1022
+ n + 2 − k − u0 + m,
1023
+
1024
+ =
1025
+ rp ((k − 1)2) ,
1026
+ ∆f
1027
+ =
1028
+ rp ((kf − 1)2) ,
1029
+ wf
1030
+ =
1031
+ ∆ + k(2u0 − 1) − p + n + u2
1032
+ 0 − 3u0 + 1.
1033
+ To check that f is well-defined, we need to verify that n + 3 ≤ kf ≤ 2n
1034
+ and kf − n − 2 ≤ ∆f < 3n − kf − 1. It is not hard to check that
1035
+ (kf − 1)2 = mf · p + wf.
1036
+ 17
1037
+
1038
+ Notice that ∆ = rp ((k − 1)2) = (k − 1)2 − mp ≤ 3n − k − 1. From Inequal-
1039
+ ity 4.17, ∆ ≥ 3n − k. Therefore,
1040
+ wf
1041
+
1042
+ 3n − k + +k(2u0 − 1) − p + n + u2
1043
+ 0 − 3u0 + 1,
1044
+ =
1045
+ k(2u0 − 2) + u2
1046
+ 0 − 3u0 + 2,
1047
+
1048
+ u2
1049
+ 0 − 3u0 + 2 = (u0 − 2)(u0 − 1) ≥ 0.
1050
+ From Inequality 4.16,
1051
+ wf
1052
+ =
1053
+ k2 + 2k(u0 − 2) + u2
1054
+ 0 − 4u0 + 6 − 4n − mp + k + u0 + n − 3,
1055
+ <
1056
+ k + u0 + n − 3 ≤ 4n − 1.
1057
+ This shows that wf = rp ((kf − 1)2) . Since 3n − kf − 1 = n − 3 + u0 +
1058
+ k, wf < 3n − kf − 1. Since kf − n − 2 = n − u0 − k, Inequality 4.15 implies
1059
+ that wf ≥ kf −n−2. Therefore kf −n−2 ≤ rp ((kf − 1)2) < 3n−kf −1. By
1060
+ Lemma 4.2, x = n−k −1 satisfies Inequality 4.14, hence 1 ≤ u0 ≤ n−k −1.
1061
+ Therefore n + 3 ≤ kf ≤ 2n. This proves that kf ∈ D[−−) and thus f is well
1062
+ defined.
1063
+ Consider k0 and k1 such that kf = f(k0) = f(k1). Take u0, u1, m0 and m1
1064
+ such that m0 = ⌊(k0 − 1)2/p⌋ , m1 = ⌊(k1 − 1)2/p⌋ and u0, u1 are the first
1065
+ integers such that Inequality 4.14 holds with k = k0 and k = k1 respectively.
1066
+ Now f(k0) = f(k1) implies that u0 + k0 = u1 + k1. Since
1067
+ mf = n + 2 − k0 − u0 + m0 = n + 2 − k1 − u1 + m1,
1068
+ we conclude m0 = m1. Since
1069
+ wf = (k0+u0−1)2−u0−m0p−p+n+1 = (k1+u1−1)2−u1−m1p−p+n+1,
1070
+ u0 = u1 and consequently k0 = k1. Therefore f is injective.
1071
+ Take now kf ∈ D[−−). Let mf = ⌊(kf − 1)2/p⌋. Then kf − n − 2 ≤ ∆f <
1072
+ 3n − kf − 1. Notice that x = 0 satisfies the inequality
1073
+ 0 ≤ (kf + x − 1)2 + 1 − mfp − px.
1074
+ (4.18)
1075
+ Let v0 the first integer greater than or equal to 1 such that x = v0 does not
1076
+ satisfy Inequality 4.18. Hence v0 = x satisfies the equivalent inequalities
1077
+ (kf + x − 1)2 + 1 − mfp − px < 0,
1078
+ (4.19)
1079
+ ∆f + 2kfx + (x − 1)2 − px < 0.
1080
+ 18
1081
+
1082
+ Consider k = 2n + 2 − v0 − kf, m = n − kf + mf and w = ∆f + kf(2v0 −
1083
+ 1) + n + (v2
1084
+ 0 − 3v0 + 1) − v0p + p. Then
1085
+ (k − 1)2
1086
+ =
1087
+ (n + 1 − kf + mf)p + k2
1088
+ f + kf(2v0 − 3) + n + 2 + v2
1089
+ 0 − 3v0 − v0p − mp,
1090
+ =
1091
+ (n − kf + mf)p + ∆f + kf(2v0 − 1) + n + (v2
1092
+ 0 − 3v0 + 1) − v0p + p,
1093
+ =
1094
+ mp + w.
1095
+ By Lemma 4.3, there is an integer m, 1 ≤ m ≤ (n2 − 4n + 5)/p such that
1096
+ kf = 2n−
1097
+ �√mp − 1
1098
+
1099
+ . Also from the proof of Lemma 4.3 if α = 2n−kf + 1
1100
+ then mf = n − α + m. Take x0 = α − 1 = 2n − kf. Notice that x0 ≥ 1 as
1101
+ √mp − 1 ≥ 1. Substituting x = x0 into (kf + x − 1)2 + 1 − mfp − px gives us
1102
+ (2n − 1)2 + 1 − (n − α + m)p − p(α − 1) = n + 3 − mp.
1103
+ Since m ≥ 1, n+3−mp < 0. Then x = x0 satisfies Inequality 4.19, therefore
1104
+ v0 exists and v0 ≤ 2n−kf. Since x = v0 −1 satisfies Inequality 4.18, we have
1105
+ that
1106
+ 0 ≤ ∆f + kf(2v0 − 2) + (v0 − 2)2 + p − v0p.
1107
+ Hence w ≥ kf + n + v0 − 3 = 3n − k − 1. Since kf ≥ n + 3 and v0 ≥ 1 we
1108
+ conclude w ≥ 0 and 2 ≤ k ≤ n − 2.
1109
+ Since v0 satisfies Inequality 4.19,
1110
+ w < n − kf − v0 + p = 5n − kf − v0 − 1 = 3n + k − 3 ≤ 4n − 1.
1111
+ Thus 0 ≤ w < p and 3n − k − 1 ≤ w < 3n + k − 3. This implies that
1112
+ w = rp ((k − 1)2) , m = ⌊(k − 1)2/p⌋ and hence k ∈ C[−−). Lemma 3.2 and the
1113
+ proof of Lemma 4.2 implies that {y, z} is a subset of {n − 1, n, n + 1, n + 2},
1114
+ then k ∈ C[−−) − {y, z}.
1115
+ Now we will find u0 = u0(k). Since ∆f ≥ kf − n − 2,
1116
+ (k + v0 − 1)2 + 1
1117
+ =
1118
+ (2n + 1 − kf)2 + 1,
1119
+ =
1120
+ (n − kf + mf + 1)p + ∆f + n − kf + 2,
1121
+ =
1122
+ (m + 1)p + ∆f + n − kf + 2 ≥ (m + 1)p.
1123
+ 19
1124
+
1125
+ From ∆f < 3n − kf − 1 = p − n − kf, we obtain
1126
+ (k + v0 − 2)2 + 1
1127
+ =
1128
+ (2n − kf)2 + 1,
1129
+ =
1130
+ (n − kf + mf + 1)p + ∆f + kf + n − p,
1131
+ =
1132
+ (m + 1)p + ∆f + kf + n − p < (m + 1)p.
1133
+ Therefore u0 = v0 and f(k) = kf. Then f is surjective and hence bijec-
1134
+ tive.
1135
+
1136
+ Corollary 4.5
1137
+ ��D[−−)
1138
+ �� = ⌊(n2 − 4n + 5)/2⌋ and
1139
+ ��C≥
1140
+ �� =
1141
+ ��D<
1142
+ ��,
1143
+ ��C[−−)
1144
+ �� =
1145
+ ��D[−−)
1146
+ �� + 2,
1147
+ ��C<
1148
+ �� =
1149
+ ��D≥
1150
+ �� + 1.
1151
+ Proof. From Lemma 4.1,
1152
+ ��C≥
1153
+ �� =
1154
+ ��D<
1155
+ ��. From Theorem 4.4,
1156
+ ��C[−−)
1157
+ �� =
1158
+ ��D[−−)
1159
+ ��+
1160
+ 2. Since n + 1 =
1161
+ ��C<
1162
+ �� +
1163
+ ��C[−−)
1164
+ �� +
1165
+ ��C≥
1166
+ �� and n − 2 =
1167
+ ��D<
1168
+ �� +
1169
+ ��D[−−)
1170
+ �� +
1171
+ ��D≥
1172
+ �� we
1173
+ have
1174
+ n + 1 =
1175
+ ��C<
1176
+ �� +
1177
+ ��D<
1178
+ �� +
1179
+ ��D[−−)
1180
+ �� + 2 =
1181
+ ��C<
1182
+ �� + n −
1183
+ ��D≥
1184
+ ��,
1185
+ hence
1186
+ ��C<
1187
+ �� =
1188
+ ��D≥
1189
+ �� + 1. To see that
1190
+ ��D[−−)
1191
+ �� = ⌊(n2 − 4n + 5)/2⌋ it is enough
1192
+ to see that all the k′s in Lemma 4.3 given by each m are all different, which
1193
+ is the case as
1194
+
1195
+ mp − 1 + 1 <
1196
+
1197
+ (m + 1)p − 1.
1198
+
1199
+ Theorem 4.6 Under the hypothesis of Theorem 4.4,
1200
+ ���{k ∈ Z | 2 ≤ k ≤ 4n − 1, Γ(k) ≥ p}
1201
+ ��� = 2n − 2.
1202
+ Proof. Let JΓ = {k ∈ Z : 2 ≤ k ≤ 4n − 2,
1203
+ Γ(k) ≥ p}. By Lemmas 2.10
1204
+ and 2.11,
1205
+ JΓ ∩ [2, n + 2]
1206
+ =
1207
+ C[−−) ∪ C≥,
1208
+ JΓ ∩ [n + 3, 2n]
1209
+ =
1210
+ D≥.
1211
+ 20
1212
+
1213
+ ��JΓ ∩ [2n + 1, 3n − 2]
1214
+ ��
1215
+ =
1216
+ ���{2n + 1 ≤ k ≤ 3n − 2 | Γ(k) ≥ p}
1217
+ ���,
1218
+ =
1219
+ ���{2n + 1 ≤ p + 2 − k ≤ 3n − 2 | Γ(p + 2 − k) ≥ p}
1220
+ ���,
1221
+ =
1222
+ ���{n + 3 ≤ k ≤ 2n | Γ(p + 2 − k) ≥ p}
1223
+ ��� =
1224
+ ��D[−−)
1225
+ �� +
1226
+ ��D≥
1227
+ ��.
1228
+ ��JΓ ∩ [3n − 1, 4n − 1]
1229
+ ��
1230
+ =
1231
+ ���{3n − 1 ≤ k ≤ 4n − 1 | Γ(k) ≥ p}
1232
+ ���,
1233
+ =
1234
+ ���{3n − 1 ≤ p + 2 − k ≤ 4n − 1 | Γ(p + 2 − k) ≥ p}
1235
+ ���,
1236
+ =
1237
+ ���{2 ≤ k ≤ n + 2 | Γ(p + 2 − k) ≥ p}
1238
+ ��� =
1239
+ ��C≥
1240
+ ��.
1241
+ Using these identities and Corollary 4.5, we obtain
1242
+ ��JΓ
1243
+ �� =
1244
+ ��C[−−)
1245
+ �� + 2
1246
+ ��C≥
1247
+ �� +
1248
+ ��D[−−)
1249
+ �� + 2
1250
+ ��D≥
1251
+ ��,
1252
+ =
1253
+ ��C[−−)
1254
+ �� + 2
1255
+ ��C≥
1256
+ �� +
1257
+ ��C[−−)
1258
+ �� − 2 + 2
1259
+ ���C<
1260
+ �� − 1
1261
+
1262
+ ,
1263
+ = 2
1264
+ ���C<
1265
+ �� +
1266
+ ��C[−−)
1267
+ �� +
1268
+ ��C≥
1269
+ ���
1270
+ − 4,
1271
+ = 2 ·
1272
+ ���Z ∩ [2, n + 2]
1273
+ ��� − 4 = 2n − 2.
1274
+
1275
+ The following corollary comes from proof of the previous theorem.
1276
+ Corollary 4.7 Under the hypotheses of Theorem 4.4,
1277
+ ��� {k ∈ Z : 2 ≤ k ≤ 2n,
1278
+ Γ(k) ≥ p}
1279
+ ��� = n,
1280
+ ��� {k ∈ Z : 2n + 1 ≤ k ≤ 4n,
1281
+ Γ(k) ≥ p}
1282
+ ��� = n − 2.
1283
+ 21
1284
+
1285
+ 5
1286
+ Sums involving rp
1287
+
1288
+ k2 − k + 2 − 3n
1289
+
1290
+ .
1291
+ Consider Jn =
1292
+ ��� {k ∈ Z : 2 ≤ k ≤ n + 2,
1293
+ Γ(k) ≥ p}
1294
+ ��� and we call Jn simply
1295
+ the number of jumps. We will now develop formulas relating the term residues
1296
+ of k2 − k + 2 − 3n modulus p.
1297
+ Theorem 5.1 If n > 3 and p = 4n − 1 is prime then
1298
+ p−1
1299
+
1300
+ k=1
1301
+ rp
1302
+
1303
+ k2 − k + 2 − 3n
1304
+
1305
+ =
1306
+ p−1
1307
+
1308
+ k=1
1309
+ rp
1310
+
1311
+ k2�
1312
+ + 3n − 2.
1313
+ 2n
1314
+
1315
+ k=1
1316
+ rp
1317
+
1318
+ k2 − k + 2 − 3n
1319
+
1320
+ =
1321
+ 2n
1322
+
1323
+ k=1
1324
+ rp
1325
+
1326
+ k2�
1327
+ + n.
1328
+ n
1329
+
1330
+ k=1
1331
+ rp
1332
+
1333
+ k2 − k + 2 − 3n
1334
+
1335
+ =
1336
+ n
1337
+
1338
+ k=1
1339
+ rp
1340
+
1341
+ k2�
1342
+ + n(n + 1)
1343
+ 2
1344
+ − p(Jn − 1 − M).
1345
+ Proof. Notice that
1346
+ rp (x + y) =
1347
+ � rp (x) + rp (y)
1348
+ if rp (x) + rp (y) < p,
1349
+ rp (x) + rp (y) − p
1350
+ if rp (x) + rp (y) ≥ p.
1351
+ Recall that we defined k as a jump when Γ(k) = rp ((k − 1)2)+rp (k + 1 − 3n) ≥
1352
+ p. By Theorem 4.6,
1353
+ 22
1354
+
1355
+ 4n−1
1356
+
1357
+ k=2
1358
+ rp
1359
+
1360
+ k2 − k + 2 − 3n
1361
+
1362
+ =
1363
+
1364
+ k:Γ(k)≥p
1365
+
1366
+ rp
1367
+
1368
+ (k − 1)2�
1369
+ + rp (k + 1 − 3n) − p
1370
+
1371
+ +
1372
+
1373
+ k:Γ(k)<p
1374
+
1375
+ rp
1376
+
1377
+ (k − 1)2�
1378
+ + rp (k + 1 − 3n)
1379
+
1380
+ ,
1381
+ =
1382
+ −p|JΓ| +
1383
+ p
1384
+
1385
+ k=2
1386
+ rp
1387
+
1388
+ (k − 1)2�
1389
+ +
1390
+ 3n−2
1391
+
1392
+ k=2
1393
+ rp (k + 1 − 3n) +
1394
+ 4n−1
1395
+
1396
+ k=3n−1
1397
+ rp (k + 1 − 3n) ,
1398
+ =
1399
+ −p(2n − 2) +
1400
+ p−1
1401
+
1402
+ k=1
1403
+ rp
1404
+
1405
+ k2�
1406
+ +
1407
+ 3n−2
1408
+
1409
+ k=2
1410
+ (k + 1 − 3n + p) +
1411
+ 4n−1
1412
+
1413
+ k=3n−1
1414
+ (k + 1 − 3n),
1415
+ =
1416
+ p−1
1417
+
1418
+ k=1
1419
+ rp
1420
+
1421
+ k2�
1422
+ +
1423
+ 4n−1
1424
+
1425
+ k=2
1426
+ (k + 1 − 3n) + p(2 − 2n + 3n − 3),
1427
+ =
1428
+ p−1
1429
+
1430
+ k=1
1431
+ rp
1432
+
1433
+ k2�
1434
+ + 3n − 2.
1435
+ Since rp (k2 − k + 2 − 3n) = 2−3n+p for k = 0, p the result follows. Observe
1436
+ that
1437
+ p−1
1438
+
1439
+ k=0
1440
+ rp
1441
+
1442
+ k2 − k + 2 − 3n
1443
+
1444
+ =
1445
+ p−1
1446
+
1447
+ k=1
1448
+ rp
1449
+
1450
+ k2�
1451
+ + p.
1452
+ The other two formulas are done analogously.
1453
+
1454
+ Compare this result with Theorem 5.1 in [4] when p = 4n + 1,
1455
+ p−1
1456
+
1457
+ k=0
1458
+ rp
1459
+
1460
+ k2 + k + 1 − n
1461
+
1462
+ =
1463
+ p−1
1464
+
1465
+ k=1
1466
+ rp
1467
+
1468
+ k2�
1469
+ − p = p(2n − 1).
1470
+ Remark 5.2 The first two formulas in Theorem 5.1 are actually valid for
1471
+ any n but the third one is only valid for n > 3. Charts 2 and 3 contain the
1472
+ sum of the residues rp (k2 − k + 2 − 3n) in the special cases excluded in such
1473
+ theorem.
1474
+ Corollary 5.3 If n > 3 and p = 4n − 1 is prime then
1475
+ 23
1476
+
1477
+ n
1478
+ p−1
1479
+
1480
+ k=0
1481
+ rp
1482
+
1483
+ k2 − k + 2 − 3n
1484
+
1485
+ p−1
1486
+
1487
+ k=0
1488
+ rp
1489
+
1490
+ k2�
1491
+ + p
1492
+ 1
1493
+ 5
1494
+ 5
1495
+ 2
1496
+ 21
1497
+ 21
1498
+ 3
1499
+ 55
1500
+ 55
1501
+ Table 2: Sum of residues rp (k2 − k + 2 − 3n) in special cases.
1502
+ n
1503
+ 2n
1504
+
1505
+ k=0
1506
+ rp
1507
+
1508
+ k2 − k + 2 − 3n
1509
+
1510
+ 2n
1511
+
1512
+ k=0
1513
+ rp
1514
+
1515
+ k2�
1516
+ + 2n + 1
1517
+ 1
1518
+ 5
1519
+ 5
1520
+ 2
1521
+ 14
1522
+ 14
1523
+ 3
1524
+ 32
1525
+ 32
1526
+ Table 3: Sum of residues rp (k2 − k + 2 − 3n) in special cases.
1527
+ p−1
1528
+
1529
+ k=1
1530
+ �k2 − k + 2 − 3n
1531
+ p
1532
+
1533
+ =
1534
+ p(p − 5) + 6 − n
1535
+ 3
1536
+ − 1
1537
+ p
1538
+ p−1
1539
+
1540
+ k=1
1541
+ rp
1542
+
1543
+ k2�
1544
+ .
1545
+ 2n
1546
+
1547
+ k=1
1548
+ �k2 − k + 2 − 3n
1549
+ p
1550
+
1551
+ =
1552
+ n(2n − 1)(4n − 7)
1553
+ 3p
1554
+ − 1
1555
+ p
1556
+ 2n
1557
+
1558
+ k=1
1559
+ rp
1560
+
1561
+ k2�
1562
+ .
1563
+ n
1564
+
1565
+ k=1
1566
+ �k2 − k + 2 − 3n
1567
+ p
1568
+
1569
+ =
1570
+ (n + 1)(2n2 − 23n + 6)
1571
+ 3p
1572
+ − 1
1573
+ p
1574
+ n
1575
+
1576
+ k=1
1577
+ rp
1578
+
1579
+ k2�
1580
+ + Jn − M.
1581
+ Proof. From x = p
1582
+
1583
+ x
1584
+ p
1585
+
1586
+ + rp (x) , we obtain that if y = �p−1
1587
+ k=1
1588
+
1589
+ k2−k+2−3n
1590
+ p
1591
+
1592
+ then
1593
+ p−1
1594
+
1595
+ k=1
1596
+
1597
+ k2 − k + 2 − 3n
1598
+
1599
+ = py +
1600
+ p−1
1601
+
1602
+ k=1
1603
+ rp
1604
+
1605
+ k2 − k + 2 − 3n
1606
+
1607
+ .
1608
+ From Theorem 5.1,
1609
+ (p − 1)p(2p − 1)
1610
+ 6
1611
+ − (p − 1)p
1612
+ 2
1613
+ + (p − 1)(2 − 3n) = py +
1614
+ p−1
1615
+
1616
+ k=1
1617
+ rp
1618
+
1619
+ k2�
1620
+ + 3n − 2,
1621
+ then
1622
+ p · p · (p − 5) + 6 − n
1623
+ 3
1624
+ = py +
1625
+ p−1
1626
+
1627
+ k=1
1628
+ rp
1629
+
1630
+ k2�
1631
+ .
1632
+ 24
1633
+
1634
+ The result follows. The proofs of the other two sums are done similarly.
1635
+
1636
+ The purpose of the following lemma and remark is to find a formula for
1637
+ �n
1638
+ k=0
1639
+
1640
+ k2−k+2−3n
1641
+ p
1642
+
1643
+ .
1644
+ Lemma 5.4 Let Qm = 1 + √4mp + 12n − 7
1645
+ 2
1646
+ as in Notation 2.2. Then
1647
+ ⌊Qm⌋ = max{k ∈ N : k2 − k + 2 − 3n ≤ mp}.
1648
+ Proof.
1649
+ Clearly ⌊Qm⌋ ≤ Qm < ⌊Qm⌋+1 and since Qm is the non-negative root of
1650
+ x2−x+2−3n = mp, k0 = ⌊Qm⌋ satisfies 0 ≤ k0 ≤ Qm and k2
1651
+ 0 −k0+2−3n ≤
1652
+ mp. Hence k1 = ⌊Qm⌋ + 1 satisfies 0 ≤ k1 and k2
1653
+ 1 − k1 + 2 − 3n > mp. If
1654
+ k0 = 0 then k1 = 1 and hence p ≤ mp < 2−3n which is impossible, therefore
1655
+ k0 ∈ N.
1656
+
1657
+ Observation 5.5 By Lemma 2.5, there are no integers k, m, n such that
1658
+ ⌊Qm⌋ = Qm, i.e. k2 − k + 2 − 3n ̸= mp regardless of k, m, n.
1659
+ Theorem 5.6 Let n > 3 and p = 4n − 1 prime. Then
1660
+ n
1661
+
1662
+ k=1
1663
+ �k2 − k + 2 − 3n
1664
+ p
1665
+
1666
+ = (M − 1)n −
1667
+ M−1
1668
+
1669
+ m=0
1670
+ ⌊Qm⌋ .
1671
+ Proof. Since n > 3, 1 ≤ M. Define, tm = ⌊Qm⌋ and
1672
+ Hm =
1673
+
1674
+
1675
+
1676
+
1677
+
1678
+
1679
+ 1, ..., t0
1680
+
1681
+ if m = 0,
1682
+
1683
+ tm−1 + 1, tm−1 + 2, ..., tm
1684
+
1685
+ if 1 ≤ m ≤ M − 1,
1686
+
1687
+ tM−1 + 1, tM−1 + 2, ..., n
1688
+
1689
+ if m = M.
1690
+ By Lemma 5.4, k = ⌊Qm⌋ satisfies k2 − k + 2 − 3n ≤ mp and from
1691
+ Observation 5.5, k2 −k + 2 −3n < mp. Therefore by Lemma 5.4, for k ∈ Hm
1692
+ we have
1693
+ (m − 1)p < k2 − k + 2 − 3n < mp.
1694
+ For such k necessarily ⌊(k2 − k + 2 − 3n)/p⌋ = m − 1.
1695
+ 25
1696
+
1697
+ Notice that {H0, H1, ..., HM} is a partition of {1, 2..., n} as QM−1 < n <
1698
+ QM (see Lemma 2.5 in [3]). Therefore
1699
+ n
1700
+
1701
+ k=1
1702
+ �k2 − k + 2 − 3n
1703
+ p
1704
+
1705
+ =
1706
+ M
1707
+
1708
+ m=0
1709
+ n
1710
+
1711
+ k=0
1712
+ k∈Hm
1713
+ �k2 − k + 2 − 3n
1714
+ p
1715
+
1716
+ ,
1717
+ =
1718
+ M
1719
+
1720
+ m=0
1721
+ (m − 1)|Hm|,
1722
+ =
1723
+ −t0 + 0(t1 − t0) + 1(t2 − t1) + · · · ,
1724
+ +(M − 2)(tM−1 − tM−2) + (M − 1)(n − tM−1),
1725
+ =
1726
+
1727
+ M−1
1728
+
1729
+ m=0
1730
+ ⌊Qm⌋ + (M − 1)n.
1731
+
1732
+ Corollary 5.7 If n > 3 and p = 4n − 1 is prime then
1733
+ n
1734
+
1735
+ k=0
1736
+ �k2
1737
+ p
1738
+
1739
+ +
1740
+ n
1741
+
1742
+ k=1
1743
+ �k2 − k + 2 − 3n
1744
+ p
1745
+
1746
+ = n(n − 5)
1747
+ 6
1748
+ + M − 1
1749
+ 2p
1750
+ p−1
1751
+
1752
+ k=1
1753
+ rp
1754
+
1755
+ k2�
1756
+ .
1757
+ Proof. From [6] (page 253) we have
1758
+ M
1759
+
1760
+ m=1
1761
+ ⌊Rm⌋ = Mn −
1762
+ n
1763
+
1764
+ k=0
1765
+ �k2
1766
+ p
1767
+
1768
+ .
1769
+ (5.20)
1770
+ Corollary 2 in [3] states
1771
+ 1
1772
+ 2
1773
+ p−1
1774
+
1775
+ k=1
1776
+ rp
1777
+
1778
+ k2�
1779
+ = p
1780
+ � M
1781
+
1782
+ m=1
1783
+ ⌊Rm⌋ +
1784
+ M−1
1785
+
1786
+ m=0
1787
+ ⌊Qm⌋
1788
+
1789
+ − Mp(2n − 1) + p · (n2 + n)
1790
+ 6
1791
+ .
1792
+ (5.21)
1793
+ Using Theorem 5.6 and Equation 5.20 in Equation 5.21 we obtain
1794
+ 1
1795
+ 2
1796
+ p−1
1797
+
1798
+ k=1
1799
+ rp
1800
+
1801
+ k2�
1802
+ =
1803
+ p
1804
+
1805
+ (2M − 1)n −
1806
+ n
1807
+
1808
+ k=1
1809
+ �k2
1810
+ p
1811
+
1812
+
1813
+ n
1814
+
1815
+ k=1
1816
+ �k2 − k + 2 − 3n
1817
+ p
1818
+ ��
1819
+ −Mp(2n − 1) + p · (n2 + n)
1820
+ 6
1821
+ .
1822
+ 26
1823
+
1824
+ The result now follows.
1825
+
1826
+ Compare Corollary 5.7 with Theorem 2.2 (case p = 4n + 1) in [4] which
1827
+ can be rewritten as
1828
+ n
1829
+
1830
+ k=0
1831
+ �k2
1832
+ p
1833
+
1834
+ +
1835
+ n
1836
+
1837
+ k=1
1838
+ �k2 + k + 1 − n
1839
+ p
1840
+
1841
+ = (n + 3)(n + 2)
1842
+ 6
1843
+ +M − 1
1844
+ 2p
1845
+ p−1
1846
+
1847
+ k=1
1848
+ rp
1849
+
1850
+ k2�
1851
+ +un.
1852
+ Corollary 5.8 If n > 3 and p = 4n − 1 is prime then
1853
+ M
1854
+
1855
+ m=1
1856
+ ⌊Rm⌋ −
1857
+ M−1
1858
+
1859
+ m=0
1860
+ ⌊Qm⌋ = Jn − M − 1.
1861
+ Proof. From Lemmas 2.10, 4.3 and 3.5 we obtain
1862
+ Jn
1863
+ =
1864
+ |C[−−)| + |C≥| = |D[−−)| + 2 + |C≥|,
1865
+ =
1866
+ M0 + 2 +
1867
+ M0
1868
+
1869
+ m=0
1870
+ (ℓm − km) ,
1871
+ =
1872
+ M + 1 +
1873
+ M0
1874
+
1875
+ m=0
1876
+ (⌊Rm+1⌋ − ⌊Qm⌋) ,
1877
+ =
1878
+ M + 1 +
1879
+ M
1880
+
1881
+ m=1
1882
+ ⌊Rm⌋ −
1883
+ M−1
1884
+
1885
+ m=0
1886
+ ⌊Qm⌋ .
1887
+
1888
+ Compare Corollary 5.8 with Theorem 5.3 (case p = 4n + 1) in [4]
1889
+ M
1890
+
1891
+ m=1
1892
+ ⌊Rm⌋ −
1893
+ M
1894
+
1895
+ m=0
1896
+ ⌊Sm⌋ = jn + 2 − n − un.
1897
+ 27
1898
+
1899
+ 6
1900
+ Class Number Identities
1901
+ In this section, we establish some identities involving the class number h =
1902
+ h(−p) of the imaginary quadratic field Q(√−p) when p is of the form p =
1903
+ 4n−1. These identities are based on the previous formulas we have developed
1904
+ in previous sections.
1905
+ In [3], we have
1906
+ h
1907
+ =
1908
+ (2M + 1)(2n − 1) − 2
1909
+ � M
1910
+
1911
+ m=1
1912
+ ⌊Rm⌋ −
1913
+ M−1
1914
+
1915
+ m=0
1916
+ ⌊Qm⌋
1917
+
1918
+ − n2 + n
1919
+ 3
1920
+ .
1921
+ h
1922
+ =
1923
+ p − 1
1924
+ 2
1925
+ − 1
1926
+ p
1927
+ p−1
1928
+
1929
+ k=1
1930
+ rp
1931
+
1932
+ k2�
1933
+ .
1934
+ From Corollaries 5.3, 5.7 and �p−1
1935
+ k=1 rp (k2) = 2 �2n
1936
+ k=1 rp (k2) − 2n we obtain
1937
+ Corollary 6.1
1938
+ p−1
1939
+
1940
+ k=1
1941
+ �k2 − k + 2 − 3n
1942
+ p
1943
+
1944
+ =
1945
+ h + 16n2 − 35n + 15
1946
+ 3
1947
+ .
1948
+ 2n
1949
+
1950
+ k=1
1951
+ �k2 − k + 2 − 3n
1952
+ p
1953
+
1954
+ =
1955
+ h
1956
+ 2 + 4n2 − 14n + 9
1957
+ 6
1958
+ .
1959
+ n
1960
+
1961
+ k=1
1962
+ �k2 − k + 2 − 3n
1963
+ p
1964
+
1965
+ =
1966
+ h
1967
+ 4 + Jn
1968
+ 2 + n2 − 17n − 3
1969
+ 12
1970
+ .
1971
+ n
1972
+
1973
+ k=1
1974
+ �k2 − k + 2 − 3n
1975
+ p
1976
+
1977
+ =
1978
+ h
1979
+ 2 + M + n2 − 11n + 3
1980
+ 6
1981
+
1982
+ n
1983
+
1984
+ k=1
1985
+ �k2
1986
+ p
1987
+
1988
+ .
1989
+ n
1990
+
1991
+ k=1
1992
+ �k2 − k + 2 − 3n
1993
+ p
1994
+
1995
+ =
1996
+ h
1997
+ 2 +
1998
+ M
1999
+
2000
+ m=1
2001
+ ⌊Rm⌋ + M(1 − n) + n2 − 11n + 3
2002
+ 6
2003
+ .
2004
+ From Corollary 5.8, we have
2005
+ 28
2006
+
2007
+ Corollary 6.2
2008
+ Jn
2009
+ 2 + M(n − 1)
2010
+ =
2011
+ h
2012
+ 4 +
2013
+ M
2014
+
2015
+ m=1
2016
+ ⌊Rm⌋ + n2 − 5n + 9
2017
+ 12
2018
+ .
2019
+ −Jn
2020
+ 2 + Mn
2021
+ =
2022
+ h
2023
+ 4 +
2024
+ M−1
2025
+
2026
+ m=0
2027
+ ⌊Qm⌋ + n2 − 5n − 3
2028
+ 12
2029
+ .
2030
+ Jn
2031
+ 2 +
2032
+ n−1
2033
+
2034
+ k=1
2035
+ �k2
2036
+ p
2037
+
2038
+ =
2039
+ h
2040
+ 4 + n2 − 5n + 9
2041
+ 12
2042
+ .
2043
+ From Theorem 5.1, we conclude
2044
+ Corollary 6.3
2045
+ p−1
2046
+
2047
+ k=1
2048
+ rp
2049
+
2050
+ k2 − k + 2 − 3n
2051
+
2052
+ =
2053
+ p · (2n − h) − n − 1.
2054
+ 2n
2055
+
2056
+ k=1
2057
+ rp
2058
+
2059
+ k2 − k + 2 − 3n
2060
+
2061
+ =
2062
+ p · (2n − h) + 1
2063
+ 2
2064
+ .
2065
+ n
2066
+
2067
+ k=1
2068
+ rp
2069
+
2070
+ k2 − k + 2 − 3n
2071
+
2072
+ =
2073
+ p
2074
+ 4(3n + 2 − 2Jn − h) − (n + 1)(n − 1)
2075
+ 4
2076
+ .
2077
+ Finally, combining this last formula with Theorem 5.1 we have
2078
+ Corollary 6.4
2079
+ n
2080
+
2081
+ k=1
2082
+ rp
2083
+
2084
+ k2�
2085
+ = p
2086
+ 4(2Jn + 2n − 3 − 4M − h) + n(n + 1)
2087
+ 4
2088
+ .
2089
+ The numerical data we have allow us to pose the following
2090
+ Conjecture 6.5 Consider all n such that p = 4n−1 a prime number. Then
2091
+ lim
2092
+ n→∞
2093
+ Jn
2094
+ n = 3
2095
+ 8.
2096
+ 29
2097
+
2098
+ Conjecture 6.6 Consider all n such that p = 4n−1 a prime number. Then
2099
+ lim
2100
+ n→∞
2101
+ �M
2102
+ m=1 ⌊Rm⌋ + �M−1
2103
+ m=0 ⌊Qm⌋
2104
+ Mp + 2n
2105
+ = 1
2106
+ 3.
2107
+ Also a good estimate of �M
2108
+ m=1 ⌊Rm⌋ + �M−1
2109
+ m=0 ⌊Qm⌋ is ⌊(Mp + 2n)/3⌋ .
2110
+ 30
2111
+
2112
+ References
2113
+ [1] H. Cohen, A course in computational algebraic number theory, vol. 138
2114
+ of Graduate Text in Mathematics., Springer-Verlag, New York, 1993.
2115
+ [2] P. G. L. Dirichlet, Beweis des satzes, dass jede unbegrenzte arith-
2116
+ metische progression, deren erstes glied und differenz ganze zahlen ohne
2117
+ gemeinschaftlichen factor sind, unendlich viele primzahlen enth¨alt. ab-
2118
+ handlungen der k¨oniglich preussischen akademie der wissenschaften von,
2119
+ Abhandlungen der K¨oniglich Preussischen Akademie der Wissenschaften
2120
+ von, (1837), pp. 45—-81.
2121
+ [3] J. Garcia, A computable formula for the class number of the imaginary
2122
+ quadratic field Q(√−p), p = 4n − 1, Electronic Research Archive, 29
2123
+ (2021), pp. 3853–3865.
2124
+ [4]
2125
+ , Sums involving quadratic residues modulus a prime of the form
2126
+ p = 4n + 1., 2022.
2127
+ [5] W. Narkiewicz, Elementary And Analytic Theory Of Algebraic Num-
2128
+ bers, Springer, 2004.
2129
+ [6] C. Zeller, Ueber Summen von gr¨ossten Ganzen bei arithmetische Rei-
2130
+ hen., Nachricten von der K. Gesselschaft der Wissenschaften und der
2131
+ Georg- Augusts Universitat, May 14, 1879.
2132
+ 31
2133
+
XdE1T4oBgHgl3EQfJQP0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
atFJT4oBgHgl3EQf8S2B/content/tmp_files/2301.11683v1.pdf.txt ADDED
@@ -0,0 +1,1373 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Neural Abstractions
2
+ Alessandro Abate∗
3
+ Department of Computer Science
4
+ University of Oxford, UK
5
+ Alec Edwards∗
6
+ Department of Computer Science
7
+ University of Oxford, UK
8
+ Mirco Giacobbe∗
9
+ School of Computer Science
10
+ University of Birmingham, UK
11
+ Abstract
12
+ We present a novel method for the safety verification of nonlinear dynamical models
13
+ that uses neural networks to represent abstractions of their dynamics. Neural net-
14
+ works have extensively been used before as approximators; in this work, we make
15
+ a step further and use them for the first time as abstractions. For a given dynamical
16
+ model, our method synthesises a neural network that overapproximates its dynam-
17
+ ics by ensuring an arbitrarily tight, formally certified bound on the approximation
18
+ error. For this purpose, we employ a counterexample-guided inductive synthesis
19
+ procedure. We show that this produces a neural ODE with non-deterministic distur-
20
+ bances that constitutes a formal abstraction of the concrete model under analysis.
21
+ This guarantees a fundamental property: if the abstract model is safe, i.e., free from
22
+ any initialised trajectory that reaches an undesirable state, then the concrete model
23
+ is also safe. By using neural ODEs with ReLU activation functions as abstractions,
24
+ we cast the safety verification problem for nonlinear dynamical models into that
25
+ of hybrid automata with affine dynamics, which we verify using SpaceEx. We
26
+ demonstrate that our approach performs comparably to the mature tool Flow* on
27
+ existing benchmark nonlinear models. We additionally demonstrate and that it is
28
+ effective on models that do not exhibit local Lipschitz continuity, which are out of
29
+ reach to the existing technologies.
30
+ 1
31
+ Introduction
32
+ Dynamical models describe processes that are ubiquitous in science and engineering. They are widely
33
+ used to model the behaviour of cyber-physical system designs, whose correctness is crucial when they
34
+ are deployed in safety-critical domains [10,13,49]. To guarantee that a dynamical model satisfies a
35
+ safety specification, simulations are useful but insufficient because they are inherently non-exhaustive
36
+ and they suffer from numerical errors, which may leave unsafe behaviours unidentified. Formal
37
+ verification of continuous dynamical models tackles the question of determining with formal certainty
38
+ whether every possible behavior of the model satisfies a safety specification [45, 51, 112]. In this
39
+ paper, we present a method to combine machine learning and symbolic reasoning for a sound and
40
+ effective safety verification of nonlinear dynamical models.
41
+ The formal verification problem for continuous-time and hybrid dynamical models is unsolvable in
42
+ general and, even for models with linear dynamics, complete procedures are available under stringent
43
+ conditions [11, 12, 72, 86, 87]. For most practical models that contain nonlinear terms [81, 105],
44
+ ∗The authors are listed alphabetically
45
+ 36th Conference on Neural Information Processing Systems (NeurIPS 2022).
46
+ arXiv:2301.11683v1 [cs.LO] 27 Jan 2023
47
+
48
+ methods for formal verification with soundness guarantees involve laborious safety and reachability
49
+ procedures whose efficacy can only be demonstrated in practice. Formal verification of nonlinear
50
+ models require ingenuity, and has involved sophisticated analysis techniques such as mathematical
51
+ relaxations [27,34–36,48,103,104], abstract interpretation [52,53,56,82,96], constraint solving [19,
52
+ 39, 85], and discrete abstractions [5, 9, 30, 37]. Notwithstanding recent progress, both scalability
53
+ and expressivity remain open challenges for nonlinear models: the largest model used in the annual
54
+ competition has 7 variables [66]. In addition, existing formal approaches rely on symbolic reasoning
55
+ techniques that explicitly leverage the structure of the dynamics. This results in verification procedures
56
+ that are bespoke to restricted classes of models. For example, it is common for formal verification
57
+ procedures to require the input model to be Lipschitz continuous. Yet, dynamical models with vector
58
+ fields that violate this assumption are abundant in literature, and a wide variety of models of natural
59
+ phenomena are non-Lipschitz, from fluid dynamics to n-body orbits and chaotic systems, as well
60
+ as in engineering, from electrical circuits and hydrological systems [50,55]. Our approach makes
61
+ progress in expressivity, showing that using neural networks as abstractions of dynamical systems
62
+ enables an effective formal verification of nonlinear dynamical models, including models that do not
63
+ exhibit local Lipschitz continuity.
64
+ Abstraction is a standard process in formal verification that aims at translating the model under
65
+ analysis—the concrete model—into a model that is simpler to analyse—the abstract model—such
66
+ that verification results from the abstract model carry over to the concrete model [20, 40, 41]. In
67
+ verification of systems with continuous time and space, an abstraction usually consists of a partitioning
68
+ of the state space of the concrete model into a finite set of regions that define the states of an
69
+ abstract, finite-state machine with a corresponding behaviour. Our method follows an approach that
70
+ constructs abstract, finite-state machines whose states are augmented with continuous linear dynamics
71
+ and non-deterministic drifts. Finite-state machines with continuous, possibly non-deterministic
72
+ dynamics are known as hybrid automata [71], and the process of abstracting dynamical nonlinear
73
+ models into hybrid automata is called hybridisation; this process has been widely applied in formal
74
+ verification [8,15,16,21,46,58,65,73,91,94,99,100,102].
75
+ Hybridising involves partitioning the state space and computing a local overapproximation of the
76
+ concrete model within each region of the partition. Common approaches for hybridisation partition the
77
+ state space by tuning the granularity of rectangular or simplicial meshes, until a desired approximation
78
+ error is attained. This may yield abstract hybrid automata that are too large in the number of discrete
79
+ states to be effectively verified. Notably, modern tools for the verification of hybrid automata are
80
+ designed for models that rarely have over hundred discrete states [7], while arbitrary meshes grow
81
+ exponentially as the granularity increases. Explosion in discrete states has been mitigated using
82
+ deductive approaches that construct an appropriate partitioning from the expressions that define the
83
+ concrete model and, unlike our method, rely on syntactic restrictions [14,26,30,47,70,80,83,84,98].
84
+ We propose an inductive approach to abstraction that combines the tasks of partitioning the state
85
+ space and overapproximating the dynamics into the single task of training a neural network. We
86
+ leverage the approximation capability of neural networks with ReLU activation functions to partition
87
+ the state space into arbitrary polyhedral regions, where each region and local affine approximation
88
+ correspond to a combinatorial configuration of the neurons. We show that this ultimately enables
89
+ verifying nonlinear dynamical models using efficient safety verifiers for hybrid automata with affine
90
+ dynamics (cf. Figure 1).
91
+ Our abstraction procedure synthesises abstract models by alternating a learner, which proposes
92
+ candidate abstractions, and a certifier, which formally assures (or disproves) their validity, in a
93
+ counterexample-guided inductive synthesis (CEGIS) loop [108,109]. First, the learner uses gradient
94
+ descent to train a neural network that approximates the concrete model over a finite set of sample
95
+ observations of its dynamics; then, the certifier uses satisfiability modulo theories (SMT) to check the
96
+ validity of an upper-bound on the approximation error over the entire continuous domain of interest.
97
+ If the latter disproves the bound, then it produces a counterexample which its added to the set of
98
+ samples and the loop is repeated. If it certifies the bound, then the procedure returns a neural network
99
+ approximation and a sound upper-bound on the error. Altogether, neural network and error bound
100
+ define a neural ODE with bounded additive non-determinism that overapproximates the concrete
101
+ model, which we call a neural abstraction.
102
+ We demonstrate the efficacy of our method over multiple dynamical models from a standard bench-
103
+ mark set for the verification of nonlinear systems [66], as well as additional locally non-Lipschitz
104
+ 2
105
+
106
+ 1
107
+ 0
108
+ 1
109
+ 1
110
+ 0
111
+ 1 Concrete nonlinear system
112
+ x
113
+ ...
114
+ ˙x
115
+ ReLU
116
+ Neural abstraction
117
+ 1
118
+ 0
119
+ 1
120
+ 1
121
+ 0
122
+ 1
123
+ Abstract hybrid automaton
124
+ Flowpipe propagation
125
+ Abstraction
126
+ synthesis
127
+ Model
128
+ translation
129
+ Safety
130
+ verification
131
+ Figure 1: Overview of our workflow on a non-Lipschitz dynamical model (cf. Section 5, NL2). The
132
+ concrete dynamics are abstracted by a neural ODE with ReLU activation functions and a certified
133
+ upper-bound on the approximation error. This characterises a polyhedral partitioning and defines a
134
+ hybrid automaton with affine dynamics and additive non-deterministic drift. Flowpipe propagation is
135
+ finally performed through a region of non-Lipschitz continuity.
136
+ models, and compare our approach with Flow*, the state-of-the-art verification tool for nonlinear
137
+ models [34,35,37]. We instantiate our approach on top of SpaceEx [62], which is a state-of-the-art
138
+ tool specialised to linear hybrid models [59,61,88]. We evaluate both approaches in safety verifi-
139
+ cation using flowpipe propagation, which computes the set of reachable states from a given set of
140
+ initial states up to a given time horizon. Our experiments demonstrate that our approach performs
141
+ comparably with Flow* for Lipschitz continuous model, and succeeds with non-Lipschitz models
142
+ that are out of range for Flow* and violate the working assumptions of many verification tools. These
143
+ outcomes suggest that neural abstractions are a promising technology, also in view of recent results
144
+ on direct methods for the safety verification for neural ODEs [68,69,95].
145
+ We summarise our contributions in the following points:
146
+ • we introduce the novel idea of leveraging neural networks to represent abstractions in formal
147
+ verification, and we instantiate it in safety verification of nonlinear dynamical models;
148
+ • we present a CEGIS procedure for the synthesis of neural ODEs that formally overapproxi-
149
+ mate the dynamics of nonlinear models, which we call neural abstractions;
150
+ • we define a translation from neural abstractions defined using ReLU activation functions to
151
+ hybrid automata with affine dynamics and additive non-determinism;
152
+ • we implement our approach2 and demonstrate its comparable performance w.r.t. the state-of-
153
+ the-art tool Flow* in safety verification of Lipschitz-continuous models, and even superior
154
+ efficacy on models that do not exhibit local Lipschitz continuity.
155
+ We consider there to be no significant negative societal impact of our work.
156
+ 2The code is available at https://github.com/aleccedwards/neural-abstractions-nips22.
157
+ 3
158
+
159
+ 0.5
160
+ 0.0
161
+ -0.5
162
+ 0.5
163
+ 0.0
164
+ 0.52
165
+ Neural Abstractions of Dynamical Models
166
+ We study the formal verification question of whether an n-dimensional, continuous-time, autonomous
167
+ dynamical model with possibly uncertain (bounded) disturbances, considered within a region of
168
+ interest, is safe with respect to a region of bad states when initialised from a region of initial states.
169
+ Definition 1 (Dynamical Model). A dynamical model F defined over a region of interest X ⊆ Rn
170
+ consists of a nonlinear function f : Rn → Rn and a possibly null disturbance radius δ ≥ 0. Its
171
+ dynamics are given by the system of nonlinear ODEs
172
+ ˙x = f(x) + d,
173
+ ∥d∥ ≤ δ,
174
+ x ∈ X,
175
+ (1)
176
+ where ∥ · ∥ denotes a norm operator (unless explicitly stated, we assume the norm operator to be
177
+ given the same semantics across the paper). A trajectory of F defined over time horizon T > 0 is
178
+ a function ξ : [0, T] → Rn that admits derivative at each point in [0, T] such that, for all t ∈ [0, T],
179
+ it holds true that ξ(t) ∈ X and ˙ξ(t) = f(ξ(t)) + dt for some ∥dt∥ < δ. Notably, symbol d in
180
+ Equation (1) is interpreted as a non-deterministic disturbance that at any time can take any possible
181
+ value within the bound provided by δ.
182
+ Let the sets X0 ⊂ X be a region of initial states and XB ⊂ X be a region of bad states. We say that a
183
+ trajectory ξ defined over time horizon T is initialised if ξ(0) ∈ X0; additionally, we say that it is safe
184
+ if ξ(t) ̸∈ XB for all t ∈ [0, T]; dually, we say that it is unsafe if ξ(t) ∈ XB for some t ∈ [0, T]. The
185
+ safety verification question for consists of determining whether all initialised trajectories are safe. If
186
+ this is the case, then we say that the model is safe with respect to X0 and XB. If there exist at least
187
+ one initialised trajectory that is unsafe, then we say that the model is unsafe.
188
+ We tackle safety verification by abstraction, that is, we construct an abstract dynamical model that
189
+ captures all behaviours of the concrete nonlinear model. This implies that if the abstract model is safe
190
+ then the concrete model is necessarily safe too, and we can thus apply a verification procedure over the
191
+ abstraction to determine whether the concrete model is safe. Notably, the converse may not hold: lack
192
+ of safety of the abstract model does not carry over to the concrete model, because our abstraction is
193
+ an overapproximation. We ultimately obtain a sound (but not complete) safety verification procedure.
194
+ Our approach synthesises an abstract dynamical model defined in terms a feed-forward neural network
195
+ with ReLU activation functions and endowed with a bounded non-deterministic disturbance. This
196
+ can be seen as a neural ODEs [33] augmented with an additive non-deterministic drift that ensures
197
+ the abstract model to overapproximate the concrete model. To the best of our knowledge, this is the
198
+ first work to consider neural ODEs with non-deterministic semantics.
199
+ Our feed-forward neural network consists of an n-dimensional input layer y0, k hidden layers
200
+ y1, . . . , yk with dimensions h1, . . . , hk respectively, and an n-dimensional output layer yk+1. Each
201
+ hidden or output layer with index i are respectively associated matrices of weights Wi ∈ Rhi×hi−1
202
+ and a vectors of biases bi ∈ Rhi. Upon a valuation of the input layer, the value of every subsequent
203
+ hidden layer is given by the following equation:
204
+ yi = ReLU(Wiyi−1 + bi).
205
+ (2)
206
+ Whereas many activation functions exist, we focus our study on ReLU activation functions, applying
207
+ function max{x, 0} to every element x ∈ R of its hi-dimensional argument. Finally, the value of the
208
+ output layer is given by the affine map yk+1 = Wk+1xk + bk+1. Altogether, the network results in a
209
+ function N whose output is N(x) = yk+1 for every given input y0 = x.
210
+ Definition 2 (Neural Abstraction). Let F be a dynamical model given by function f : Rn → Rn and
211
+ disturbance radius δ ≥ 0 and let X ⊆ Rn be a region of interest. A feed-forward neural network
212
+ N : Rn → Rn defines a neural abstraction of F with error bound ϵ > 0 over X, if it holds true that
213
+ ∀x ∈ X : ∥f(x) − N(x)∥ ≤ ϵ − δ.
214
+ (3)
215
+ Then, the neural abstraction consists of the dynamical model A defined by N and disturbance ϵ,
216
+ whose dynamics are given by the following neural ODE with bounded additive disturbances:
217
+ ˙x = N(x) + d,
218
+ ∥d∥ ≤ ϵ,
219
+ x ∈ X.
220
+ (4)
221
+ Theorem 1 (Soundness of Neural Abstractions). If A is a neural abstraction of a dynamical system
222
+ F over a region of interest X ⊆ Rn, then every trajectory of F is also a trajectory of A.
223
+ 4
224
+
225
+ Abstraction
226
+ Synthesis
227
+ Learner
228
+ Certifier
229
+ Counterexample scex
230
+ Candidate N
231
+ Valid neural
232
+ abstraction
233
+ A
234
+ F, X, ϵ
235
+ F, S, ϵ
236
+ Safety
237
+ Verification
238
+ F, X, S, ϵ
239
+ X, X0, XB
240
+ Figure 2: Architecture for the safety verification of nonlinear dynamical models using neural abstrac-
241
+ tions. The inputs to our architecture are a concrete model F and its domain of interest X, a finite set
242
+ of initial datapoints S, a desired approximation error ϵ, and regions of initial X0 and bad states XB.
243
+ Proof of Theorem 1. Let ξ be a trajectory of F and T be the time horizon over which ξ is defined.
244
+ Then, let t ∈ [0, T]. By definition of trajectory we have that (i) ξ(t) ∈ X and there exists dt s.t.
245
+ (ii) ∥dt∥ ≤ δ and (iii) ˙ξ(t) = f(ξ(t))+dt. By (i) and condition (3) we have that ∥f(ξ(t))−N(ξ(t))∥+
246
+ δ ≤ ϵ. Then, by (ii) we have that ∥f(ξ(t)) − N(ξ(t))∥ + ∥dt∥ ≤ ϵ which, by triangle inequality,
247
+ implies that ∥f(ξ(t)) + dt − N(ξ(t))∥ ≤ ϵ. Using (iii), we rewrite it into ∥ ˙ξ(t) − N(ξ(t))∥ ≤ ϵ.
248
+ Finally, we define d′
249
+ t = ˙ξ(t) − N(ξ(t)). As a result, we have that ∥d′
250
+ t∥ ≤ ϵ and ˙ξ(t) = N(ξ(t)) + d′
251
+ t
252
+ which, together with (i), shows that ξ is a trajectory of A.
253
+ Corollary 1. Let X0 ⊂ X be a region of initial states and XB ⊂ X and region of bad states. It holds
254
+ true that if A is safe with respect to X0 and XB then also F is safe with respect to X0 and XB.
255
+ Proof of Corollary 1. By Theorem 1, if there exists an initialised trajectory of F that is unsafe, then
256
+ the same is an initialised trajectory of A that is unsafe. The statement follows by contraposition.
257
+ Remark 1 (Existence of Neural Abstractions). Let F be a dynamical model defined by function
258
+ f and disturbance radius δ ≥ 0, and let X ⊆ Rn be a domain of interest. A neural abstraction
259
+ of F with arbitrary error bound ϵ > 0 over X exists if a neural network that approximates f with
260
+ error bound ϵ − δ (cf. condition (3)) exists over the same domain. In this work, we do not prescribe
261
+ conditions on either width or depth of the network to ensure existence of a neural abstraction. Such
262
+ conditions are given by universal approximation theorems for neural networks with ReLU activation
263
+ functions, which have been developed in seminal work in machine learning [25,42,63,74,90,93].
264
+ Altogether, we define the neural abstraction of a non-linear dynamical system F as a neural ODE with
265
+ an additive disturbance A that approximates the dynamics while also accounting for the approximation
266
+ error. Notably, we place no assumptions on the vector field f. In particular, Theorem 1 does not
267
+ require f to be Lipschitz continuous: the soundness of a neural abstraction relies on condition (3),
268
+ whose certification we offload to an SMT solver (cf. Section 3.2). The resulting neural abstraction is
269
+ to a hybrid automaton with affine dynamics and non-deterministic disturbance (cf. Section 4), which
270
+ does not rely on the Picard-Lindelof theorem to ensure uniqueness or existence of a solutions.
271
+ 3
272
+ Formal Synthesis of Neural Abstractions
273
+ Our approach to abstraction synthesis follows two phases—a learning phase and a certification phase—
274
+ that alternate each other in a CEGIS loop [1,3,43,78,101,108,109] (cf. Figure 2, left). Our learning
275
+ phase trains the parameters of a neural network N to approximate the system dynamics over a finite
276
+ set of samples S ⊂ X of the domain of interest. Learning uses gradient descent algorithms, which can
277
+ possibly scale to large amounts of samples. Then, our certification phase either confirms the validity
278
+ of condition (3) or produces a counterexample which we use to sample additional states and repeat the
279
+ loop. Certification is based on SMT solving, which reasons symbolically over the continuous domain
280
+ X and assures soundness. As a consequence, when certification confirms condition (3) formally valid,
281
+ then as per Theorem 1 our neural abstraction A is a sound overapproximation of the concrete model
282
+ F and is thus passed to safety verification (cf. Figure 2, right).
283
+ Neural networks have been used in the past as representations of formal certificates for the correctness
284
+ of systems such as Lyapunov neural networks, neural barrier certificates, neural ranking functions
285
+ 5
286
+
287
+ and supermartingales [1, 2, 4, 31, 32, 44, 67, 89, 97, 111, 117–119]. In the present work, we use
288
+ neural networks for the first time as abstractions, and we instantiate this idea in safety verification
289
+ of nonlinear models. We shall now present the components of our abstraction synthesis procedure:
290
+ learner (cf. Section 3.1) and certifier (cf. Section 3.2).
291
+ 3.1
292
+ Learning Phase
293
+ As with many machine learning-based algorithm, learning neural abstractions hinges on the loss
294
+ function used as part of the gradient descent scheme for optimising parameters. The task is that of a
295
+ regression problem, so the choice of loss function to be minimised is simple, namely,
296
+ L =
297
+
298
+ s∈S
299
+ ∥f(s) − N(s)∥2,
300
+ (5)
301
+ where ∥ · ∥2 represents the 2 − norm of its input, and S ⊂ X is a finite set of data points that are
302
+ sampled from the domain of interest. In other words, the neural abstractions are synthesised using a
303
+ scheme based on gradient descent to find the parameters that minimise the mean square error over S.
304
+ The main inputs to the learning procedure are the vector field f of the concrete dynamical model,
305
+ an initial set of points S sampled uniformly from the domain of interest X. Additional parameters
306
+ include the hyper-parameters for the learning scheme such as the learning rate, and a stopping
307
+ criterion for the learning procedure. For the latter, there are two possible options: a target error which
308
+ all data points must satisfy, or a bound on the value of the loss function.
309
+ If a target error smaller than ϵ − δ is provided, this is when all points in the data set S satisfy the
310
+ specification (3) and certification subsequently check that this generalises over the entire X. If an
311
+ alternative loss-based stopping criterion is provided, then an error bound on the approximation is
312
+ estimated using the maximum approximation error over the data set S for use in certification. This
313
+ estimated bound is conservative, i.e., greater than the maximum, to allow for successful certification
314
+ to be more likely.
315
+ After learning, the network N is translated to symbolic form and passed to the certification block,
316
+ which checks condition (3) as described in Section 3.2. The certifier either determines condition (3)
317
+ valid, and thus the CEGIS loop terminates, or computes a counterexample that falsifies the condition.
318
+ The counterexample is returned to the learning procedure and augmented by sampling for additional
319
+ points nearby in order to maximise the efficiency of learning and the overall synthesis.
320
+ 3.2
321
+ Certification Phase
322
+ The purpose of the certification is to check that at no point in the domain of interest X is the maximum
323
+ error greater than the upper bound ϵ − δ, as per the specification in condition (3). Therefore, the
324
+ certifier is provided with the negation of the specification, namely
325
+ ∃x: x ∈ X ∧ ∥f(x) − N(x)∥ > ϵ − δ
326
+
327
+ ��
328
+
329
+ φ
330
+ .
331
+ (6)
332
+ The certifier seeks an assignment scex of the variable x such that the quantifier-free formula φ
333
+ is satisfiable, namely that the specified bound is violated. If this search is successful, then the
334
+ network N has not achieved the specified accuracy over X, and is thus not a valid neural abstraction.
335
+ The corresponding assignment scex forms the counterexample that is provided back to the learner
336
+ (the machine learning procedure from Section 3.1). Alternatively, if no assignment is found then
337
+ specification (3) is proven valid; network N and error bound ϵ are then passed to the safety verification
338
+ procedure (cf. Section 4).
339
+ Certification of the accuracy of the neural abstractions is performed by an SMT solver. Several
340
+ options exist for the selection of the SMT solver, with the requirement that the solver should reason
341
+ over quantifier-free nonlinear real arithmetic formulae [57,64]. This is because the vector field f may
342
+ contain nonlinear terms. In our experiments, we employ dReal [64], which supports polynomial and
343
+ non-polynomial terms such as transcendental functions like trigonometric or exponential ones.
344
+ A successful verification process allows for the full abstraction to be constructed using the achieved
345
+ error ϵ and neural network N. CEGIS has been shown to perform well and terminate successfully
346
+ across a wide variety of problems. We demonstrate the robustness of our procedure in Appendix B.
347
+ 6
348
+
349
+ x
350
+ y
351
+ X1
352
+ X2
353
+ X3
354
+ ˙x = f1(x)
355
+ x ∈ X1
356
+ ˙x = f3(x)
357
+ x ∈ X3
358
+ ˙x = f2(x)
359
+ x ∈ X2
360
+ x ∈ X1
361
+ x ∈ X3
362
+ x ∈ X2
363
+ x ∈ X3
364
+ Figure 3: A hybrid automaton corresponding to a state-space partitioning. Each of the three discrete
365
+ modes corresponds to a unique partition Xi and vector field fi(x). Discrete transitions are denoted by
366
+ the edges of the directed graph with a transition between two modes if the corresponding partitions
367
+ Xi and Xj are adjacent and a trajectory from fi ‘crosses’ the corresponding partition.
368
+ 4
369
+ Safety Verification of Neural Abstractions
370
+ Neural abstractions are dynamical models expressed in terms of neural ODEs with additive distur-
371
+ bances (cf. Equation 4). Corollary 1 ensures the fact for which concluding that a neural abstraction is
372
+ safe suffices to assert that the concrete dynamical model is also safe. Consequently, once a neural
373
+ ODE is formally proven to be an abstraction for the concrete dynamical model, which is entirely
374
+ delegated to our synthesis procedure (cf. Section 3), our definition of neural abstractions enables any
375
+ procedure for the safety verification of neural ODEs with disturbances to be a valid safety verification
376
+ procedure for the corresponding dynamical model.
377
+ Safety verification approaches for dynamical systems controlled by neural networks solve a similar
378
+ problem [18,54,75,77,106,113,114,116], yet with a subtle difference: neural network controllers take
379
+ control actions at discrete points in time. Instead, neural ODEs characterise dynamics over continuous
380
+ time. Some procedures for the direct verification of neural ODEs have been introduced very recently,
381
+ and this currently an area under active development [68, 69, 95]. Yet, existing approaches do not
382
+ consider the case of a neural ODE with a non-deterministic drift. Therefore, in order to obtain a
383
+ verification procedure for neural abstractions, we build upon the observation that a neural ODEs
384
+ with ReLU activation functions and non-deterministic drift defines a hybrid automaton with affine
385
+ dynamics.
386
+ Hybrid automata (cf. Figure 3) model the interaction between continuous dynamical systems and
387
+ finite-state transition systems [71,115]. A hybrid automaton consists of a finite set of variables and a
388
+ finite graph, whose vertices we call discrete modes and edges we call discrete transitions. Every mode
389
+ is associated with an invariant condition and a flow condition over the variables, which determine the
390
+ continuous dynamics of the systems on the specific mode. Every discrete transition is associated with
391
+ a guard condition, which determines the effect on discrete transitions between modes. While we refer
392
+ the reader to seminal work for a general definition of hybrid automata [71], we present a translation
393
+ from neural abstractions to hybrid automata.
394
+ 4.1
395
+ Translation of Neural Abstractions Into Hybrid Automata
396
+ We begin with the observation that each neuron within a given hidden layer of a neural network with
397
+ ReLU activation functions induces a hyperplane in the vector space associated with the previous layer
398
+ This hyperplane results in two half-spaces, one corresponding to the neuron being active and one to it
399
+ being inactive. For the jth neuron in the ith layer, these two halfspaces are respectively the two parts
400
+ of the hyperplane given by
401
+ {yi−1 | Wi,jyi−1 + bi,j = 0},
402
+ (7)
403
+ where Wi,j is the jth row of the weight matrix Wi and bi,j is the jth element of the bias bi (cf.
404
+ Section 2). Therefore, every combinatorial configuration of the neural network defines an intersection
405
+ of halfspaces that defines a polyhedral region in the vector space of the input neurons. Moreover, every
406
+ 7
407
+
408
+ configuration also defines a linear function from input to output neurons. The space of configurations
409
+ thus defines a partitioning of the input space, where each region is associated with an affine function.
410
+ A neural abstraction casts into a hybrid automaton, where every mode is determined by a configuration
411
+ of the hidden neurons and each of these configurations induces a system of affine ODEs (cf. Figure 3).
412
+ Discrete Modes
413
+ We represent a configuration of a neural network as a sequence C = (c1, . . . , ck)
414
+ of Boolean vectors c1 ∈ {0, 1}h1, . . . , ck ∈ {0, 1}hk, where k denotes the number of hidden layers
415
+ and h1, . . . , hk denote the number neurons in each of them (cf. Section 2). Every vector ci represents
416
+ the configuration of the neurons at the ith hidden later, and the jth element of ci represent the
417
+ activation status of the jth neuron at the ith later, which equals to 1 is the neuron is active and 0 if it
418
+ is inactive. Every mode of the hybrid automaton corresponds to exactly one configuration of neurons.
419
+ Invariant Conditions
420
+ We define the invariant of each mode as a restriction of the domain of
421
+ interest to a region XC ⊆ X, which denotes the maximal set of states that enables configuration C.
422
+ To construct XC, we define a higher-dimensional polyhedron on the space of valuation of the neurons
423
+ that enable configuration C, i.e.,
424
+ YC =
425
+
426
+ (y0, . . . , yk)
427
+ ��� ∧k
428
+ i=1yi = diag(ci)(Wiyi−1 + bi)∧
429
+ diag(2ci − 1)(Wiyi−1 + bi) ≥ 0
430
+
431
+ .
432
+ (8)
433
+ Note that diag(v) denotes the square diagonal matrix whose diagonal takes its coefficients from
434
+ vector v; in our case, this results in a square diagonal matrix whose coefficients are either 0 or 1.
435
+ Then, we project YC onto the input neurons y0, denoted YC ↾y0. Since the input neurons y0 are
436
+ equivalent to the state variables of the dynamical model, the invariant condition of mode C results in
437
+ XC = (YC ↾y0) ∩ X.
438
+ (9)
439
+ A projection can be computed using the Fourier-Motzkin algorithm or by projecting the vertices
440
+ of the polyhedron in a double description method. However, even though this is effective in our
441
+ experiments, it has worst-case exponential time complexity. A polynomial time construction can
442
+ be obtained by propagating halfspaces backwards along the network, similarly to methods used in
443
+ abstraction-refinement [29,60]. We outline the alternative construction in Appendix C.1.
444
+ Flow Conditions
445
+ The dynamics of each mode C can be seen itself as a dynamical system with
446
+ bounded disturbance:
447
+ ˙x = ACx + bC + d,
448
+ ∥d∥ ≤ ϵ,
449
+ x ∈ XC.
450
+ (10)
451
+ The matrix AC ∈ Rn×n and the vector of drifts bC ∈ Rn determine the linear ODE of the mode,
452
+ whereas ϵ > 0 is the error bound derived from the neural abstraction.
453
+ The coefficients of the system are given by the weights and biases of the neural network as follows:
454
+ AC = Wk+1
455
+ �k
456
+ i=1 diag(ci)Wi,
457
+ (11)
458
+ bC = bk+1 + �k
459
+ i=1(Wk+1
460
+ �k
461
+ j=i+1 diag(cj)Wj) diag(ci)bi.
462
+ (12)
463
+ Discrete Transitions and Guard Conditions
464
+ A discrete transition exists between any two given
465
+ modes if the two polyhedra that define their invariant conditions share a facet and the dynamics pass
466
+ through at some point along the facet. This can be checked by considering the sign of the Lie derivative
467
+ between the dynamics and the corresponding facet, that is, the inner product between the dynamics
468
+ and the normal vector to the facet. In practice, we take a faster but more conservative approach by
469
+ considering that a transition exists between two modes when the corresponding polyhedral regions
470
+ share at least a vertex. The guard condition of a discrete transition is simply the invariant of the
471
+ destination mode.
472
+ 4.2
473
+ Enumeration of Feasible Modes
474
+ A given configuration C exists in the hybrid automaton if and only if the corresponding set XC, which
475
+ is a convex polyhedron in Rn, is nonempty; this consists of verifying that the linear program (LP)
476
+ constructed from the polyhedron is feasible. Finding all modes of the hybrid automaton therefore
477
+ consists of solving 2H linear programs, where H = h1 + · · · + hk is the total number of hidden
478
+ neurons in the network. However, this exponential scaling with the number of neurons is limiting
479
+ 8
480
+
481
+ in terms of network size. Therefore, we propose an approach that works very well in practice to
482
+ determine all valid neuron configurations.
483
+ The approach relies on the observation that within a bounded polyhedron P, a given neuron has two
484
+ modes (ReLU enabled or disabled) only if the induced hyperplane intersects P. If it does not, only
485
+ one of the two possible half-spaces contributes to any possible active configuration, and the other
486
+ neuron mode can be disregarded. Therefore, this approach involves iterating through each neuron in
487
+ turn and constructing two LPs—one for each halfspace intersected with the domain of interest X. If
488
+ only one LP is valid, we can fix the neuron to this mode, i.e., from this point onward only consider
489
+ the intersection with the halfspace corresponding to the feasible LP, and construct a new polyhedron
490
+ from the intersection of X and the feasible half-space.
491
+ In short, we consider the neurons of the network as a binary tree, with the branches representing
492
+ the enabled and disabled state of this neuron. We perform a depth-first tree search through this
493
+ tree by intersecting with the corresponding half-spaces. Upon reaching an end node, we store this
494
+ configuration (branches taken) and revert back to the most recent unexplored branch and continue.
495
+ We include a more detailed description of this algorithm in Appendix C.2. This approach is inspired
496
+ by that presented in [23], which similarly enumerates through the path of neurons using sets to
497
+ determine the output range of a network.
498
+ 5
499
+ Experimental Results
500
+ 5.1
501
+ Safety Verification Using Neural Abstractions
502
+ We benchmark the results obtained by the safety verification algorithm proposed in Section 4 against
503
+ Flow* [35] (available under GPL), which is a mature tool for computing reachable regions of
504
+ hybrid automata. It relies on computing flowpipes, i.e., sets of reachable states across time, which
505
+ are propagated from a given set of initial states. The flowpipes are generated from Taylor series
506
+ approximations of the model’s vector field in (1), over subsequent discrete time steps. Crucially,
507
+ the use of a higher-order Taylor series, or of smaller time steps, leads to more precise computation
508
+ of reachable sets. Since Flow*, like SpaceEx (available under GPLv3) is able to calculate over-
509
+ approximations of flowpipes, it is suitable for use in safety verification, and is a state-of-the-art tool
510
+ for verifying safety of nonlinear models.
511
+ Making a fair comparison around metrics for accuracy between Flow* and SpaceEx is challenging,
512
+ as they represent flowpipes differently [22,38]. We ask them to perform safety verification for a given
513
+ pair of initial and bad states, on a collection of different nonlinear models. These models, and their
514
+ parameters, are detailed in Appendix A. As described in Section 2, the task of safety verification
515
+ consists of ensuring that no trajectory starting within the set of initial states enters the set of bad
516
+ states, within a given time horizon.
517
+ Our setup is as follows. Firstly, for a given benchmark model we define a finite time horizon T,
518
+ a region of initial states X0 and a region of bad states XB. Then, we run flowpipe computations
519
+ with Flow* using high-order Taylor models. Similarly we run the procedure described in Section 3,
520
+ and construct a hybrid automaton as described in Section 4 to perform flowpipe computations using
521
+ SpaceEx. We present the results in Table 1. In the table, we show the Taylor model order (TM)
522
+ and time step used within Flow*, as well as the structure of the neural networks used for neural
523
+ abstractions. For example, we denote a network with two hidden layers with h1 neurons in the first
524
+ layer and h2 neurons in the second hidden layer as [h1, h2]. We note that while Flow*, much like
525
+ SpaceEx, can perform flowpipe computation on the constructed hybrid automaton, it is not specialised
526
+ to linear models like SpaceEx is and in practice struggles with the number of modes.
527
+ Notably, Flow* is unable to handle the two models that do not exhibit local Lipschitz continuity. Flow*
528
+ constructs Taylor models that incorporate the derivatives of the dynamics: as expected, unbounded
529
+ derivatives will cause issues for this approach. Meanwhile, Ariadne [24] a is an alternative tool
530
+ for over-approximating flowpipes of nonlinear systems. While Ariadne does not explicitly require
531
+ Lipschitz continuity, it is also unable to perform analysis on tools with nth root terms at zero, due to
532
+ numerical instability. Instead, our abstraction method works directly on the dynamics themselves,
533
+ rather than their derivatives, in order to construct simpler, abstract models that are amenable to be
534
+ verified. By formally quantifying how different an abstract model is through the approximation error,
535
+ we are able to formally perform safety verification on such challenging concrete models.
536
+ 9
537
+
538
+ Table 1: Comparison of safety verification between Flow* and the combination of Neural Abstractions
539
+ plus SpaceEx. Here, T: time horizon, TM: Taylor model order, δ: time-step, t: total computation time
540
+ (better times denoted by bold), W: network neural structure, M: total number of modes in resulting
541
+ hybrid automaton, Blw: blowup in the error before T is reached, and -: no results unobtainable.
542
+ Model
543
+ T
544
+ Flow*
545
+ Neural Abstractions
546
+ TM
547
+ δ
548
+ Safety Ver.
549
+ t
550
+ W
551
+ M
552
+ Safety Ver.
553
+ t
554
+ Jet Engine
555
+ 1.5
556
+ 10
557
+ 0.1
558
+ Yes
559
+ 1.3
560
+ [10, 16]
561
+ 8
562
+ Yes
563
+ 215
564
+ Steam Governor
565
+ 2.0
566
+ 10
567
+ 0.1
568
+ Yes
569
+ 62
570
+ [12]
571
+ 29
572
+ Yes
573
+ 219
574
+ Exponential
575
+ 1.0
576
+ 30
577
+ 0.05
578
+ Blw
579
+ 1034
580
+ [14, 14]
581
+ 12
582
+ Yes
583
+ 308
584
+ Water Tank
585
+ 2.0
586
+ -
587
+ -
588
+ No
589
+ -
590
+ [12]
591
+ 6
592
+ Yes
593
+ 49
594
+ Non-Lipschitz 1
595
+ 1.4
596
+ -
597
+ -
598
+ No
599
+ -
600
+ [10]
601
+ 12
602
+ Yes
603
+ 19
604
+ Non-Lipschitz 2
605
+ 1.5
606
+ -
607
+ -
608
+ No
609
+ -
610
+ [12, 10]
611
+ 32
612
+ Yes
613
+ 59
614
+ Notice that we additionally outperform Flow* on a Lipschitz-continuous model (Exponential in Table
615
+ 1), where the composition of functions that make up the model’s dynamics result in high errors in
616
+ Flow* before the flowpipe can be calculated across the given time horizon. We highlight that despite
617
+ relying on affine approximations (i.e., 1st order models), neural abstractions are able to compete with,
618
+ and even outperform, methods that use much higher order functions (10th and 30th in the benchmarks)
619
+ for approximation.
620
+ 5.2
621
+ Limitations
622
+ Our approach is limited in terms of scalability, both with regards to the dimension of the models and
623
+ to the size of the utilised neural networks. The causes of this limitation are twofold: firstly we are
624
+ bound by the computational complexity of SMT solving - known to be NP-hard - which can struggle
625
+ with complex formaulae with many variables. The certification step requires the largest amount of
626
+ time (cf. Appendix B), indicating that improvements in the verification of neural networks can lead
627
+ to a large performance increase for our abstractions.
628
+ Secondly, we are limited in terms of the complexity of our abstractions by SpaceEx. While SpaceEx
629
+ is a highly efficient implementation of LGG [88], the presence of a large number of discrete modes
630
+ poses a significant computational challenge. It future work, we hope to investigate the balance
631
+ between abstraction complexity and accuracy. The efficacy of neural abstraction on further tools for
632
+ hybrid automata with affine dynamics also remains to be investigated [6,24,28,107].
633
+ 6
634
+ Conclusion
635
+ We have proposed a novel technique that leverages the approximation capabilities of neural networks
636
+ with ReLU activation functions to synthesise formal abstractions of dynamical models. By combining
637
+ machine learning and SMT solving algorthms in a CEGIS loop, our method computes abstract neural
638
+ ODEs with non-determinism that overapproximate the concrete nonlinear models. This guarantees the
639
+ property for which safety of the abstract model carries over to the concrete model. Our method casts
640
+ these neural ODEs into hybrid automata with affine dynamics, which we have verified using SpaceEx.
641
+ We have demonstrated that our method is not only comparable to Flow* in safety verification on
642
+ existing nonlinear benchmarks, but also shows superior effectiveness on models that do not exhibit
643
+ local Lipschitz continuity, which is a hard problem in formal verification. Yet, our experiments are
644
+ limited to low-dimensional models and scalability remains an open challenge. Our approach has
645
+ advanced the state of the art in terms of expressivity, which is the first step toward obtaining a general
646
+ and efficient verifier based on neural abstraction. Obtaining scalability to higher dimensions will
647
+ require a synergy of efficient SMT solvers for neural networks and safety verification of neural ODEs,
648
+ which are both novel and actively researched questions in formal verification [68,69,76,79,92,95,114].
649
+ Acknowledgements
650
+ We thank the anonymous reviewers for their helpful suggestions. Alec was supported by the EPSRC
651
+ Centre for Doctoral Training in Autonomous Intelligent Machines and Systems (EP/S024050/1).
652
+ 10
653
+
654
+ References
655
+ [1] Abate, A., Ahmed, D., Edwards, A., Giacobbe, M., Peruffo, A.: FOSSIL: a software tool for
656
+ the formal synthesis of Lyapunov functions and barrier certificates using neural networks. In:
657
+ HSCC. pp. 24:1–24:11. ACM (2021)
658
+ [2] Abate, A., Ahmed, D., Giacobbe, M., Peruffo, A.: Formal synthesis of Lyapunov neural
659
+ networks. IEEE Control. Syst. Lett. 5(3), 773–778 (2021)
660
+ [3] Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample guided inductive
661
+ synthesis modulo theories. In: CAV (1). Lecture Notes in Computer Science, vol. 10981, pp.
662
+ 270–288. Springer (2018)
663
+ [4] Abate, A., Giacobbe, M., Roy, D.: Learning probabilistic termination proofs. In: CAV (2).
664
+ Lecture Notes in Computer Science, vol. 12760, pp. 3–26. Springer (2021)
665
+ [5] Althoff, M.: Reachability analysis of nonlinear systems using conservative polynomialization
666
+ and non-convex sets. In: HSCC. pp. 173–182. ACM (2013)
667
+ [6] Althoff, M.: An introduction to CORA 2015. In: ARCH@CPSWeek. EPiC Series in Comput-
668
+ ing, vol. 34, pp. 120–151. EasyChair (2015)
669
+ [7] Althoff, M., Ábrahám, E., Forets, M., Frehse, G., Freire, D., Schilling, C., Schupp, S.,
670
+ Wetzlinger, M.: ARCH-COMP21 category report: Continuous and hybrid systems with linear
671
+ continuous dynamics. In: ARCH@ADHS. EPiC Series in Computing, vol. 80, pp. 1–31.
672
+ EasyChair (2021)
673
+ [8] Althoff, M., Stursberg, O., Buss, M.: Reachability analysis of nonlinear systems with uncertain
674
+ parameters using conservative linearization. In: CDC. pp. 4042–4048. IEEE (2008)
675
+ [9] Alur, R., Henzinger, T., Lafferriere, G., Pappas, G.: Discrete abstractions of hybrid systems.
676
+ Proceedings of the IEEE 88(7), 971–984 (2000)
677
+ [10] Alur, R.: Principles of cyber-physical systems. MIT press (2015)
678
+ [11] Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P., Nicollin, X., Olivero, A.,
679
+ Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theor. Comput. Sci. 138(1),
680
+ 3–34 (1995)
681
+ [12] Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
682
+ [13] Alur, R., Giacobbe, M., Henzinger, T.A., Larsen, K.G., Mikucionis, M.: Continuous-time
683
+ models for system design and analysis. In: Computing and Software Science, Lecture Notes in
684
+ Computer Science, vol. 10000, pp. 452–477. Springer (2019)
685
+ [14] Asarin, E., Dang, T.: Abstraction by projection and application to multi-affine systems. In:
686
+ HSCC. Lecture Notes in Computer Science, vol. 2993, pp. 32–47. Springer (2004)
687
+ [15] Asarin, E., Dang, T., Girard, A.: Reachability analysis of nonlinear systems using conservative
688
+ approximation. In: HSCC. Lecture Notes in Computer Science, vol. 2623, pp. 20–35. Springer
689
+ (2003)
690
+ [16] Asarin, E., Dang, T., Girard, A.: Hybridization methods for the analysis of nonlinear systems.
691
+ Acta Informatica 43(7), 451–476 (2007)
692
+ [17] Aylward, E.M., Parrilo, P.A., Slotine, J.J.E.: Stability and robustness analysis of nonlinear
693
+ systems via contraction metrics and SOS programming. Autom. 44, 2163–2170 (2008)
694
+ [18] Bacci, E., Giacobbe, M., Parker, D.: Verifying reinforcement learning up to infinity. In: IJCAI.
695
+ pp. 2154–2160. ijcai.org (2021)
696
+ [19] Bae, K., Gao, S.: Modular SMT-based analysis of nonlinear hybrid systems. In: FMCAD. pp.
697
+ 180–187. IEEE (2017)
698
+ [20] Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
699
+ [21] Bak, S., Bogomolov, S., Henzinger, T.A., Johnson, T.T., Prakash, P.: Scalable static hybridiza-
700
+ tion methods for analysis of nonlinear systems. In: HSCC. pp. 155–164. ACM (2016)
701
+ [22] Bak, S., Bogomolov, S., Johnson, T.T.:
702
+ HYST: a source transformation and transla-
703
+ tion tool for hybrid automaton models. In:
704
+ Girard, A., Sankaranarayanan, S. (eds.)
705
+ Proceedings of the 18th International Conference on Hybrid Systems:
706
+ Computation
707
+ and Control, HSCC’15, Seattle, WA, USA, April 14-16, 2015. pp. 128–133. ACM
708
+ 11
709
+
710
+ (2015). https://doi.org/10.1145/2728606.2728630, https://doi.org/10.1145/2728606.
711
+ 2728630
712
+ [23] Bak, S., Tran, H., Hobbs, K., Johnson, T.T.: Improved geometric path enumeration for
713
+ verifying relu neural networks. In: CAV (1). Lecture Notes in Computer Science, vol. 12224,
714
+ pp. 66–96. Springer (2020)
715
+ [24] Balluchi, A., Casagrande, A., Collins, P., Ferrari, A., Villa, T., Sangiovanni-Vincentelli, A.:
716
+ Ariadne: A framework for reachability analysis of hybrid automata. In: MTNS. pp. 1267–1269
717
+ (2006)
718
+ [25] Barron, A.R.: Approximation and estimation bounds for artificial neural networks. Machine
719
+ Learning 14(1), 115–133 (1994)
720
+ [26] Batt, G., Belta, C., Weiss, R.: Temporal logic analysis of gene networks under parameter
721
+ uncertainty. IEEE Trans. Autom. Control. 53, 215–229 (2008)
722
+ [27] Ben Sassi, M.A., Testylier, R., Dang, T., Girard, A.: Reachability analysis of polynomial
723
+ systems using linear programming relaxations. In: ATVA. Lecture Notes in Computer Science,
724
+ vol. 7561, pp. 137–151. Springer (2012)
725
+ [28] Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a toolbox for
726
+ set-based reachability. In: HSCC. pp. 39–44. ACM (2019)
727
+ [29] Bogomolov, S., Frehse, G., Giacobbe, M., Henzinger, T.A.: Counterexample-guided refinement
728
+ of template polyhedra. In: TACAS (1). Lecture Notes in Computer Science, vol. 10205, pp.
729
+ 589–606 (2017)
730
+ [30] Bogomolov, S., Giacobbe, M., Henzinger, T.A., Kong, H.: Conic abstractions for hybrid
731
+ systems. In: FORMATS. Lecture Notes in Computer Science, vol. 10419, pp. 116–132.
732
+ Springer (2017)
733
+ [31] Chang, Y., Roohi, N., Gao, S.: Neural Lyapunov control. In: NeurIPS. pp. 3240–3249 (2019)
734
+ [32] Chen, S., Fazlyab, M., Morari, M., Pappas, G.J., Preciado, V.M.: Learning Lyapunov functions
735
+ for hybrid systems. In: HSCC. pp. 13:1–13:11. ACM (2021)
736
+ [33] Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.: Neural ordinary differential equa-
737
+ tions. In: NeurIPS. pp. 6572–6583 (2018)
738
+ [34] Chen, X., Ábrahám, E., Sankaranarayanan, S.: Taylor model flowpipe construction for non-
739
+ linear hybrid systems. In: RTSS. pp. 183–192. IEEE Computer Society (2012)
740
+ [35] Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: An analyzer for non-linear hybrid
741
+ systems. In: CAV. Lecture Notes in Computer Science, vol. 8044, pp. 258–263. Springer
742
+ (2013)
743
+ [36] Chen, X., Mover, S., Sankaranarayanan, S.: Compositional relational abstraction for nonlinear
744
+ hybrid systems. ACM Trans. Embed. Comput. Syst. 16(5s), 187:1–187:19 (2017)
745
+ [37] Chen, X., Sankaranarayanan, S.: Decomposed reachability analysis for nonlinear systems. In:
746
+ RTSS. pp. 13–24. IEEE Computer Society (2016)
747
+ [38] Chen, X., Sankaranarayanan, S., Ábrahám, E.: Flow* 1.2: More effective to play with hybrid
748
+ systems. In: ARCH@CPSWeek. EPiC Series in Computing, vol. 34, pp. 152–159. EasyChair
749
+ (2015)
750
+ [39] Cimatti, A., Mover, S., Tonetta, S.: A quantifier-free SMT encoding of non-linear hybrid
751
+ automata. In: FMCAD. pp. 187–195. IEEE (2012)
752
+ [40] Clarke, E.M., Grumberg, O., Kroening, D., Peled, D.A., Veith, H.: Model checking, 2nd
753
+ Edition. MIT Press (2018)
754
+ [41] Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
755
+ programs by construction or approximation of fixpoints. In: POPL. pp. 238–252. ACM (1977)
756
+ [42] Cybenko, G.: Approximation by superpositions of a sigmoidal function. Mathematics of
757
+ Control, Signals and Systems 2(4), 303–314 (1989)
758
+ [43] Dai, H., Landry, B., Pavone, M., Tedrake, R.: Counter-example guided synthesis of neural
759
+ network Lyapunov functions for piecewise linear systems. In: CDC. pp. 1274–1281. IEEE
760
+ (2020)
761
+ 12
762
+
763
+ [44] Dai, H., Landry, B., Yang, L., Pavone, M., Tedrake, R.: Lyapunov-stable neural-network
764
+ control. In: Robotics: Science and Systems (2021)
765
+ [45] Dang, T., Frehse, G., Girard, A., Le Guernic, C.: Tools for the analysis of hybrid models. In:
766
+ Communicating Embedded Systems, pp. 227–251. Wiley (2013)
767
+ [46] Dang, T., Maler, O., Testylier, R.: Accurate hybridization of nonlinear systems. In: HSCC. pp.
768
+ 11–20. ACM (2010)
769
+ [47] Dang, T., Testylier, R.: Hybridization domain construction using curvature estimation. In:
770
+ HSCC. pp. 123–132. ACM (2011)
771
+ [48] Dang, T., Testylier, R.: Reachability analysis for polynomial dynamical systems using the
772
+ bernstein expansion. Reliab. Comput. 17, 128–152 (2012)
773
+ [49] Derler, P., Lee, E.A., Sangiovanni-Vincentelli, A.L.: Modeling cyber-physical systems. Proc.
774
+ IEEE 100(1), 13–28 (2012)
775
+ [50] Diacu, F.: The solution of then-body problem. The Mathematical Intelligencer 18(3), 66–70
776
+ (Jun 1996). https://doi.org/10.1007/BF03024313
777
+ [51] Doyen, L., Frehse, G., Pappas, G.J., Platzer, A.: Verification of hybrid systems. In: Handbook
778
+ of Model Checking, pp. 1047–1110. Springer (2018)
779
+ [52] Dreossi, T.: Sapo: Reachability computation and parameter synthesis of polynomial dynamical
780
+ systems. In: HSCC. pp. 29–34. ACM (2017)
781
+ [53] Dreossi, T., Dang, T., Piazza, C.: Reachability computation for polynomial dynamical systems.
782
+ Formal Methods Syst. Des. 50(1), 1–38 (2017)
783
+ [54] Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feedback systems
784
+ using regressive polynomial rule inference. In: HSCC. pp. 157–168. ACM (2019)
785
+ [55] Eyink, G.L., Drivas, T.D.: Spontaneous stochasticity and anomalous dissipation for burgers
786
+ equation. Journal of Statistical Physics 158(2), 386–432 (2015)
787
+ [56] Fan, C., Qi, B., Mitra, S., Viswanathan, M., Duggirala, P.S.: Automatic reachability analysis
788
+ for nonlinear hybrid models with C2E2. In: CAV (1). Lecture Notes in Computer Science,
789
+ vol. 9779, pp. 531–538. Springer (2016)
790
+ [57] Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-
791
+ linear arithmetic constraint systems with complex boolean structure. J. Satisf. Boolean Model.
792
+ Comput. 1(3-4), 209–236 (2007)
793
+ [58] Frehse, G.: Phaver: Algorithmic verification of hybrid systems past hytech. In: HSCC. Lecture
794
+ Notes in Computer Science, vol. 3414, pp. 258–273. Springer (2005)
795
+ [59] Frehse, G.: Reachability of hybrid systems in space-time. In: EMSOFT. pp. 41–50. IEEE
796
+ (2015)
797
+ [60] Frehse, G., Giacobbe, M., Henzinger, T.A.: Space-time interpolants. In: CAV (1). Lecture
798
+ Notes in Computer Science, vol. 10981, pp. 468–486. Springer (2018)
799
+ [61] Frehse, G., Kateja, R., Le Guernic, C.: Flowpipe approximation and clustering in space-time.
800
+ In: HSCC. pp. 203–212. ACM (2013)
801
+ [62] Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard,
802
+ A., Dang, T., Maler, O.: SpaceEx: scalable verification of hybrid systems. In: CAV. Lecture
803
+ Notes in Computer Science, vol. 6806, pp. 379–395. Springer (2011)
804
+ [63] Funahashi, K.I.: On the approximate realization of continuous mappings by neural networks.
805
+ Neural Networks 2(3), 183–192 (1989)
806
+ [64] Gao, S., Kong, S., Clarke, E.M.: dReal: an SMT solver for nonlinear theories over the reals.
807
+ In: CADE, Lecture Notes in Computer Science, vol. 7898, pp. 208–214. Springer (2013)
808
+ [65] García Soto, M., Prabhakar, P.: Hybridization for stability verification of nonlinear switched
809
+ systems. In: RTSS. pp. 244–256. IEEE (2020)
810
+ [66] Geretti, L., Sandretto, J.A.D., Althoff, M., Benet, L., Chapoutot, A., Collins, P., Duggirala, P.S.,
811
+ Forets, M., Kim, E., Linares, U., Sanders, D.P., Schilling, C., Wetzlinger, M.: ARCH-COMP21
812
+ category report: Continuous and hybrid systems with nonlinear dynamics. In: ARCH@ADHS.
813
+ EPiC Series in Computing, vol. 80, pp. 32–54. EasyChair (2021)
814
+ 13
815
+
816
+ [67] Giacobbe, M., Kroening, D., Parsert, J.: Neural termination analysis. In: ESEC/SIGSOFT
817
+ FSE. pp. 633–645. ACM (2022)
818
+ [68] Gruenbacher, S., Hasani, R.M., Lechner, M., Cyranka, J., Smolka, S.A., Grosu, R.: On the
819
+ verification of neural ODEs with stochastic guarantees. In: AAAI. pp. 11525–11535. AAAI
820
+ Press (2021)
821
+ [69] Gruenbacher, S., Lechner, M., Hasani, R., Rus, D., Henzinger, T.A., Smolka, S., Grosu, R.:
822
+ Gotube: Scalable stochastic verification of continuous-depth models. In: AAAI (2022)
823
+ [70] Habets, L.C.G.J.M., Kloetzer, M., Belta, C.: Control of rectangular multi-affine hybrid systems.
824
+ In: CDC. pp. 2619–2624. IEEE (2006)
825
+ [71] Henzinger, T.A.: The theory of hybrid automata. In: LICS. pp. 278–292. IEEE Computer
826
+ Society (1996)
827
+ [72] Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata?
828
+ J. Comput. Syst. Sci. 57(1), 94–124 (1998)
829
+ [73] Henzinger, T.A., Wong-Toi, H.: Linear phase-portrait approximations for nonlinear hybrid
830
+ systems. In: Hybrid Systems. Lecture Notes in Computer Science, vol. 1066, pp. 377–388.
831
+ Springer (1995)
832
+ [74] Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal
833
+ approximators. Neural Networks 2(5), 359–366 (1989)
834
+ [75] Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: Reachnn: Reachability analysis of neural-
835
+ network controlled systems. ACM Trans. Embed. Comput. Syst. 18(5s), 106:1–106:22 (2019)
836
+ [76] Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks.
837
+ In: CAV (1). Lecture Notes in Computer Science, vol. 10426, pp. 3–29. Springer (2017)
838
+ [77] Ivanov, R., Carpenter, T.J., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig 2.0: Verification
839
+ of neural network controllers using taylor model preconditioning. In: CAV (1). Lecture Notes
840
+ in Computer Science, vol. 12759, pp. 249–262. Springer (2021)
841
+ [78] Kapinski, J., Deshmukh, J.V., Sankaranarayanan, S., Aréchiga, N.: Simulation-guided Lya-
842
+ punov analysis for hybrid dynamical systems. In: HSCC. pp. 133–142. ACM (2014)
843
+ [79] Katz, G., Huang, D.A., Ibeling, D., Julian, K., Lazarus, C., Lim, R., Shah, P., Thakoor, S.,
844
+ Wu, H., Zeljic, A., Dill, D.L., Kochenderfer, M.J., Barrett, C.W.: The Marabou framework for
845
+ verification and analysis of deep neural networks. In: CAV (1). Lecture Notes in Computer
846
+ Science, vol. 11561, pp. 443–452. Springer (2019)
847
+ [80] Kekatos, N., Forets, M., Frehse, G.: Constructing verification models of nonlinear simulink
848
+ systems via syntactic hybridization. In: CDC. pp. 1788–1795. IEEE (2017)
849
+ [81] Khalil, H.K.: Nonlinear Systems. Prentice Hall, Upper Saddle River, N.J, 3rd ed edn. (2002)
850
+ [82] Kim, E., Bak, S., Duggirala, P.S.: Automatic dynamic parallelotope bundles for reachability
851
+ analysis of nonlinear systems. In: FORMATS. Lecture Notes in Computer Science, vol. 12860,
852
+ pp. 50–66. Springer (2021)
853
+ [83] Kloetzer, M., Belta, C.: Reachability analysis of multi-affine systems. In: HSCC. Lecture
854
+ Notes in Computer Science, vol. 3927, pp. 348–362. Springer (2006)
855
+ [84] Kong, H., Bartocci, E., Bogomolov, S., Grosu, R., Henzinger, T.A., Jiang, Y., Schilling, C.:
856
+ Discrete abstraction of multiaffine systems. In: HSB. Lecture Notes in Computer Science,
857
+ vol. 9957, pp. 128–144 (2016)
858
+ [85] Kong, S., Gao, S., Chen, W., Clarke, E.M.: dreach: δ-reachability analysis for hybrid systems.
859
+ In: TACAS. Lecture Notes in Computer Science, vol. 9035, pp. 200–205. Springer (2015)
860
+ [86] Lafferriere, G., Pappas, G.J., Sastry, S.: O-minimal hybrid systems. Math. Control. Signals
861
+ Syst. 13(1), 1–21 (2000)
862
+ [87] Lafferriere, G., Pappas, G.J., Yovine, S.: A new class of decidable hybrid systems. In: HSCC.
863
+ Lecture Notes in Computer Science, vol. 1569, pp. 137–151. Springer (1999)
864
+ [88] Le Guernic, C., Girard, A.: Reachability analysis of hybrid systems using support functions.
865
+ In: CAV, Lecture Notes in Computer Science, vol. 5643, pp. 540–554. Springer (2009)
866
+ 14
867
+
868
+ [89] Lechner, M., Zikelic, D., Chatterjee, K., Henzinger, T.A.: Stability verification in stochastic
869
+ control systems via neural network supermartingales. In: AAAI. pp. 7326–7336. AAAI Press
870
+ (2022)
871
+ [90] Leshno, M., Lin, V.Y., Pinkus, A., Schocken, S.: Multilayer feedforward networks with
872
+ a nonpolynomial activation function can approximate any function. Neural Networks 6(6),
873
+ 861–867 (1993)
874
+ [91] Li, D., Bak, S., Bogomolov, S.: Reachability analysis of nonlinear systems using hybridization
875
+ and dynamics scaling. In: FORMATS. Lecture Notes in Computer Science, vol. 12288, pp.
876
+ 265–282. Springer (2020)
877
+ [92] Liu, C., Arnon, T., Lazarus, C., Strong, C.A., Barrett, C.W., Kochenderfer, M.J.: Algorithms
878
+ for verifying deep neural networks. Found. Trends Optim. 4(3-4), 244–404 (2021)
879
+ [93] Lu, Z., Pu, H., Wang, F., Hu, Z., Wang, L.: The expressive power of neural networks: A view
880
+ from the width. In: NIPS. pp. 6231–6239 (2017)
881
+ [94] Majumdar, R., Zamani, M.: Approximately bisimilar symbolic models for digital control
882
+ systems. In: CAV. Lecture Notes in Computer Science, vol. 7358, pp. 362–377. Springer
883
+ (2012)
884
+ [95] Manzanas Lopez, D., Musau, P., Hamilton, N., Johnson, T.T.: Reachability analysis of a
885
+ general class of neural ordinary differential equations. In: FORMATS. Lecture Notes in
886
+ Computer Science, vol. 13465, pp. 258–277. Springer (2022)
887
+ [96] Mover, S., Cimatti, A., Griggio, A., Irfan, A., Tonetta, S.: Implicit semi-algebraic abstraction
888
+ for polynomial dynamical systems. In: CAV (1). Lecture Notes in Computer Science, vol.
889
+ 12759, pp. 529–551. Springer (2021)
890
+ [97] Peruffo, A., Ahmed, D., Abate, A.: Automated and formal synthesis of neural barrier certifi-
891
+ cates for dynamical models. In: TACAS (1). Lecture Notes in Computer Science, vol. 12651,
892
+ pp. 370–388. Springer (2021)
893
+ [98] Pola, G., Girard, A., Tabuada, P.: Approximately bisimilar symbolic models for nonlinear
894
+ control systems. Autom. 44(10), 2508–2516 (2008)
895
+ [99] Prabhakar, P., Dullerud, G.E., Viswanathan, M.: Stability preserving simulations and bisimula-
896
+ tions for hybrid systems. IEEE Trans. Autom. Control. 60(12), 3210–3225 (2015)
897
+ [100] Prabhakar, P., García Soto, M.: Abstraction based model-checking of stability of hybrid
898
+ systems. In: CAV. Lecture Notes in Computer Science, vol. 8044, pp. 280–295. Springer
899
+ (2013)
900
+ [101] Ravanbakhsh, H., Sankaranarayanan, S.: Learning control Lyapunov functions from coun-
901
+ terexamples and demonstrations. Auton. Robots 43(2), 275–307 (2019)
902
+ [102] Roohi, N., Prabhakar, P., Viswanathan, M.: Hybridization based CEGAR for hybrid automata
903
+ with affine dynamics. In: TACAS. Lecture Notes in Computer Science, vol. 9636, pp. 752–769.
904
+ Springer (2016)
905
+ [103] Sankaranarayanan, S.: Automatic abstraction of non-linear systems using change of bases
906
+ transformations. In: HSCC. pp. 143–152. ACM (2011)
907
+ [104] Sankaranarayanan, S., Tiwari, A.: Relational abstractions for continuous and hybrid systems.
908
+ In: CAV. Lecture Notes in Computer Science, vol. 6806, pp. 686–702. Springer (2011)
909
+ [105] Sastry, S.: Nonlinear Systems, Interdisciplinary Applied Mathematics, vol. 10. Springer New
910
+ York, New York, NY (1999)
911
+ [106] Schilling, C., Forets, M., Guadalupe, S.: Verification of neural-network control systems by
912
+ integrating taylor models and zonotopes. In: AAAI (2022)
913
+ [107] Schupp, S., Ábrahám, E., Makhlouf, I.B., Kowalewski, S.: Hypro: A C++ library of state set
914
+ representations for hybrid systems reachability analysis. In: NFM. Lecture Notes in Computer
915
+ Science, vol. 10227, pp. 288–294 (2017)
916
+ [108] Solar-Lezama, A.: Program Synthesis by Sketching. Ph.D. thesis, University of California at
917
+ Berkeley, USA (2008)
918
+ [109] Solar-Lezama, A., Tancau, L., Bodík, R., Seshia, S.A., Saraswat, V.A.: Combinatorial sketch-
919
+ ing for finite programs. In: ASPLOS. pp. 404–415. ACM (2006)
920
+ 15
921
+
922
+ [110] Sotomayor, J., Mello, L., Braga, D.: Bifurcation analysis of the watt governor system. Compu-
923
+ tational and Applied Mathematics 26 (Jul 2006)
924
+ [111] Sun, D., Jha, S., Fan, C.: Learning certified control using contraction metric. In: CoRL.
925
+ Proceedings of Machine Learning Research, vol. 155, pp. 1519–1539. PMLR (2020)
926
+ [112] Tabuada, P.: Verification and Control of Hybrid Systems - A Symbolic Approach. Springer
927
+ (2009)
928
+ [113] Tran, H., Cai, F., Manzanas Lopez, D., Musau, P., Johnson, T.T., Koutsoukos, X.D.: Safety
929
+ verification of cyber-physical systems with reinforcement learning control. ACM Trans. Embed.
930
+ Comput. Syst. 18(5s), 105:1–105:22 (2019)
931
+ [114] Tran, H., Yang, X., Manzanas Lopez, D., Musau, P., Nguyen, L.V., Xiang, W., Bak, S., Johnson,
932
+ T.T.: NNV: the neural network verification tool for deep neural networks and learning-enabled
933
+ cyber-physical systems. In: CAV (1). Lecture Notes in Computer Science, vol. 12224, pp.
934
+ 3–17. Springer (2020)
935
+ [115] Van Der Schaft, A.J., Schumacher, H.: An introduction to hybrid dynamical systems, vol. 251.
936
+ Springer (2007)
937
+ [116] Xiang, W., Tran, H., Rosenfeld, J.A., Johnson, T.T.: Reachable set estimation and safety
938
+ verification for piecewise linear systems with neural network controllers. In: ACC. pp. 1574–
939
+ 1579. IEEE (2018)
940
+ [117] Zhao, H., Zeng, X., Chen, T., Liu, Z.: Synthesizing barrier certificates using neural networks.
941
+ In: HSCC. pp. 25:1–25:11. ACM (2020)
942
+ [118] Zhao, H., Zeng, X., Chen, T., Liu, Z., Woodcock, J.: Learning safe neural network controllers
943
+ with barrier certificates. Formal Aspects Comput. 33(3), 437–455 (2021)
944
+ [119] Zhou, R., Quartz, T., Sterck, H.D., Liu, J.: Neural Lyapunov control of unknown nonlinear
945
+ systems with stability guarantees. In: NeurIPS (2022)
946
+ 16
947
+
948
+ Checklist
949
+ 1. For all authors...
950
+ (a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
951
+ contributions and scope? [Yes]
952
+ (b) Did you describe the limitations of your work? [Yes] Please see Section 5.2
953
+ (c) Did you discuss any potential negative societal impacts of your work? [Yes] See 1
954
+ (d) Have you read the ethics review guidelines and ensured that your paper conforms to
955
+ them? [Yes]
956
+ 2. If you are including theoretical results...
957
+ (a) Did you state the full set of assumptions of all theoretical results? [Yes] See 2
958
+ (b) Did you include complete proofs of all theoretical results? [Yes] See 2
959
+ 3. If you ran experiments...
960
+ (a) Did you include the code, data, and instructions needed to reproduce the main experi-
961
+ mental results (either in the supplemental material or as a URL)? [Yes] The code and
962
+ data generation will be part of the supplementary material. Reproducing the results
963
+ will be possible from this but is not the intention of the authors.
964
+ (b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
965
+ were chosen)? [Yes] The hyper-parameters for the learning procedure are chosen
966
+ heuristically, but we include the relevant configuration files in the supplementary
967
+ material.
968
+ (c) Did you report error bars (e.g., with respect to the random seed after running experi-
969
+ ments multiple times)? [N/A]
970
+ (d) Did you include the total amount of compute and the type of resources used (e.g., type
971
+ of GPUs, internal cluster, or cloud provider)? [Yes] See Table 1.
972
+ 4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
973
+ (a) If your work uses existing assets, did you cite the creators? [Yes] We have cited all
974
+ used tools.
975
+ (b) Did you mention the license of the assets? [Yes] See Section 5
976
+ (c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
977
+ The code will be included in the supplementary material.
978
+ (d) Did you discuss whether and how consent was obtained from people whose data you’re
979
+ using/curating? [N/A]
980
+ (e) Did you discuss whether the data you are using/curating contains personally identifiable
981
+ information or offensive content? [N/A]
982
+ 5. If you used crowdsourcing or conducted research with human subjects...
983
+ (a) Did you include the full text of instructions given to participants and screenshots, if
984
+ applicable? [N/A]
985
+ (b) Did you describe any potential participant risks, with links to Institutional Review
986
+ Board (IRB) approvals, if applicable? [N/A]
987
+ (c) Did you include the estimated hourly wage paid to participants and the total amount
988
+ spent on participant compensation? [N/A]
989
+ 17
990
+
991
+ A
992
+ Benchmark Nonlinear Dynamical Models
993
+ For each dynamical model, we report the vector field f : Rn → Rn and the spatial domain X
994
+ over which the abstraction is performed and which, unless otherwise stated, is taken to be the
995
+ hyper-rectangle [−1, 1]n.
996
+ Water Tank
997
+
998
+
999
+
1000
+ ˙x = 1.5 − √x
1001
+ X0 = [0, 0.01]
1002
+ XB = {x|x ≥ 2}
1003
+ (13)
1004
+ Jet Engine [17]
1005
+
1006
+
1007
+
1008
+
1009
+
1010
+
1011
+
1012
+ ˙x = −y − 1.5x2 − 0.5x3 − 0.1,
1013
+ ˙y = 3x − y,
1014
+ X0 = [0.45, 0.50] × [−0.60, −0.55]
1015
+ XB = [0.3, 0.35] × [0.5, 0.6]
1016
+ (14)
1017
+ Steam Governor [110]
1018
+
1019
+
1020
+
1021
+
1022
+
1023
+
1024
+
1025
+
1026
+
1027
+
1028
+
1029
+
1030
+
1031
+ ˙x = y,
1032
+ ˙y = z2 sin(x) cos(x) − sin(x) − 3y,
1033
+ ˙z = −(cos(x) − 1),
1034
+ X0 = [0.70, 0.75] × [−0.05, 0.05] × [0.70, 0.75]
1035
+ XB = [0.5, 0.6] × [−0.4, −0.3] × [0.7, 0.8]
1036
+ (15)
1037
+ Exponential
1038
+
1039
+
1040
+
1041
+
1042
+
1043
+
1044
+
1045
+ ˙x = − sin(exp(y3 + 1)) − y2
1046
+ ˙y = −x,
1047
+ X0 = [0.45, 0.5] × [0.86, 0.91]
1048
+ XB = [0.3, 0.4] × [0.5, 0.6]
1049
+ (16)
1050
+ Non-Lipschitz Vector Field 1 (NL1)
1051
+
1052
+
1053
+
1054
+
1055
+
1056
+
1057
+
1058
+
1059
+
1060
+
1061
+
1062
+
1063
+
1064
+ ˙x = y
1065
+ ˙y = √x
1066
+ X = [0, 1] × [−1, 1],
1067
+ X0 = [0, 0.05] × [0, 0.1]
1068
+ XB = [0.35, 0.45] × [0.1, 0.2]
1069
+ (17)
1070
+ Non-Lipschitz Vector Field 2 (NL2)
1071
+
1072
+
1073
+
1074
+
1075
+
1076
+
1077
+
1078
+ ˙x = x2 + y
1079
+ ˙y =
1080
+ 3√
1081
+ x2 − x,
1082
+ X0 = [−0.025, 0.025] × [−0.9, −0.85]
1083
+ XB = [−0.05, 0.05] × [−0.8, −0.7]
1084
+ (18)
1085
+ B
1086
+ Additional Experimental Results and Figures
1087
+ B.1
1088
+ Experimental Comparison Against Affine Simplical Meshes
1089
+ In this section, we present some supplementary empirical results on neural abstractions. Firstly, we
1090
+ note that hybridisation-based abstraction of nonlinear models have been studied previously, such as
1091
+ in [16], which describes a type of hybridisation-based abstractions that is similar to those constructed
1092
+ in this work. The approach relies first on partitioning the state space using a simplicial mesh grid, and
1093
+ 18
1094
+
1095
+ Table 2: A comparison between abstractions constructed using an affine simplicial mesh and neural
1096
+ abstractions. Here, W represents the neural structure used for neural abstraction, NP : total number of
1097
+ partitions, ϵ: the calculated upper bound on the approximation error, ¯
1098
+ NP : average (mean) number of
1099
+ partitions, ¯ϵ: average (mean) approximation error bound, ϵ+ : the maximum approximation error, ϵ−:
1100
+ the minimum approximation error, Success Ratio: the ratio of repeated experiments that terminated
1101
+ successfully (i.e., an error of 0.5 was reached within the first timeout of 300s). Note, we only
1102
+ include successful experiments when calculating the average, min and max (since no error exists for
1103
+ unsuccessful experiments). All reported errors use the 2-norm.
1104
+ Benchmark
1105
+ Affine Simplicial Mesh
1106
+ Neural Abstractions
1107
+ Np
1108
+ ϵ
1109
+ W
1110
+ ¯
1111
+ NP
1112
+ ¯ϵ
1113
+ ϵ+
1114
+ ϵ−
1115
+ Success Ratio
1116
+ Jet Engine
1117
+ 8
1118
+ 1.33
1119
+ [10]
1120
+ 9
1121
+ 0.11
1122
+ 0.22
1123
+ 0.040
1124
+ 1.0
1125
+ 32
1126
+ 0.33
1127
+ [10, 10]
1128
+ 27
1129
+ 0.077
1130
+ 0.17
1131
+ 0.040
1132
+ 1.0
1133
+ 128
1134
+ 0.083
1135
+ [15, 15]
1136
+ 61
1137
+ 0.058
1138
+ 0.071
1139
+ 0.053
1140
+ 1.0
1141
+ Steam
1142
+ 24
1143
+ 3.58
1144
+ [10]
1145
+ 27
1146
+ 0.27
1147
+ 0.37
1148
+ 0.21
1149
+ 1.0
1150
+ 192
1151
+ 0.89
1152
+ [20]
1153
+ 236
1154
+ 0.18
1155
+ 0.27
1156
+ 0.15
1157
+ 1.0
1158
+ Exponential
1159
+ 8
1160
+ 13.7
1161
+ [10]
1162
+ 9
1163
+ 0.29
1164
+ 0.40
1165
+ 0.22
1166
+ 0.5
1167
+ 32
1168
+ 3.44
1169
+ [20]
1170
+ 30
1171
+ 0.19
1172
+ 0.22
1173
+ 0.13
1174
+ 0.9
1175
+ 128
1176
+ 0.86
1177
+ [20, 20]
1178
+ 75
1179
+ 0.15
1180
+ 0.22
1181
+ 0.071
1182
+ 1.0
1183
+ then allowing the dynamics in each mesh to be calculated from an affine interpolation between the
1184
+ vertices of the simplex. This affine simplicial mesh (ASM) based approach constructs abstractions
1185
+ of the same expressivity as neural abstractions (first order approximations) with partitions defined
1186
+ by affine inequalities. An approximation-error bound for ASM can be calculated for systems which
1187
+ have bounded second order derivatives using the model dynamics and the size of each simplex (all
1188
+ simplices are assumed to be the same size), as described in [16]. In Table 2 we compare between
1189
+ abstractions constructed using an affine simplicial mesh and neural abstractions. We run our procedure
1190
+ to synthesise certified abstractions using selected network structures and an initial target error of
1191
+ 0.5. If a successful abstraction is synthesised, we reduce the error by some multiplicative factor and
1192
+ repeat. This iterative procedure continues until no success is reached within a time of 300s. We report
1193
+ the results from 10 repeated experiments over different initial random seeds for neural abstractions,
1194
+ reporting the average (mean), minimum and maximum results obtained. In contrast, we report the
1195
+ approximation-error bound for ASM for different numbers of partitions.
1196
+ The results reported in Table 2 illustrate that neural abstractions outperform ASM based abstractions
1197
+ in terms of error for similar numbers of partitions. Furthermore, neural abstractions generally require
1198
+ significantly fewer partitions for significantly lower approximation-error bounds. In practice this
1199
+ means neural abstractions will outperform ASM-based abstractions for safety verification both in
1200
+ terms of speed and accuracy. We also note the success ratio of our experiments, i.e., the ratio of all
1201
+ experiments which achieve an approximation-error bound of 0.5 or less. These results suggest that in
1202
+ general or procedure is robust and terminates successfully with high probability for reasonable target
1203
+ errors.
1204
+ We note that since ASM based abstractions are constructive and are able to deterministically increase
1205
+ the number partitions and consequently reduce the error, for very large numbers of partitions they
1206
+ would achieve lower errors than neural abstractions. However, in practice these abstractions would
1207
+ be too large in complexity to use with SpaceEx for safety verification.
1208
+ B.2
1209
+ Computation Run-time Profiling
1210
+ In Table 3 we show a breakdown of the runtimes of our procedure shown in the main text. In
1211
+ particular, we present the total time spent during learning, certification of the abstraction and finally
1212
+ in safety verification.
1213
+ 19
1214
+
1215
+ Table 3: Breakdown of the timings shown in Table 1. Shown are the timings in the constituent
1216
+ component shown in Figure 2: time spent during learning, time spent during certification of the
1217
+ neural abstraction, and time spent during safety verification. Remaining time is spent in overheads,
1218
+ such as converting from neural network to hybrid automaton.
1219
+ Model
1220
+ Learner
1221
+ Certifier
1222
+ Safety Verification
1223
+ Jet Engine
1224
+ 19
1225
+ 194
1226
+ 1.8
1227
+ Steam Governor
1228
+ 42
1229
+ 177
1230
+ 0.5
1231
+ Exponential
1232
+ 27
1233
+ 278
1234
+ 3.3
1235
+ Water-tank
1236
+ 48
1237
+ 0.001
1238
+ 0.05
1239
+ Non-Lipschitz 1
1240
+ 13
1241
+ 0.50
1242
+ 5.5
1243
+ Non-Lipschitz 2
1244
+ 31
1245
+ 15
1246
+ 5.1
1247
+ C
1248
+ Improved Translation from Neural Abstractions to Hybrid Automata
1249
+ C.1
1250
+ Computing Invariant Conditions
1251
+ Invariant conditions are computed from the configuration of a neural network denoted as the sequence
1252
+ C = (c1, . . . , ck) of Boolean vectors c1 ∈ {0, 1}h1, . . . , ck ∈ {0, 1}hk, where k denotes the number
1253
+ of hidden layers and h1, . . . , hk denote the number neurons in each of them (cf. Section 2). Every
1254
+ vector ci represents the configuration of the neurons at the ith hidden later, and its jth element ci,j
1255
+ represents the activation status of the jth neuron at the ith layer. Every mode of the hybrid automaton
1256
+ corresponds to exactly one configuration of neurons. In turn, every configuration of neurons C
1257
+ restricts the neural network N into a linear function. More precisely, we inductively define the linear
1258
+ restriction at the ith hidden layer as follows:
1259
+ N (i)
1260
+ C (x) = diag(ci)(WiN (i−1)
1261
+ C
1262
+ (x) + bi), for i = 1, . . . , k,
1263
+ N (0)
1264
+ C (x) = x.
1265
+ (19)
1266
+ We define the invariant of each mode as a restriction of the domain of interest to a region XC ⊆ X,
1267
+ which denotes the maximal set of states that enables configuration C. To construct XC, we begin
1268
+ with the observation that the activation configuration ci at every ith hidden layer induces a halfspace
1269
+ on the vector space of the previous layer of the neural network. Then, the pre-image of this
1270
+ halfspace backward along the previous layers of the linear restriction of the network characterises
1271
+ a corresponding halfspace on its input neurons. Since the input neurons are equivalent to the state
1272
+ variables of the dynamical model, the halfspace induced by layer i projected onto state variables x is
1273
+ H(i)
1274
+ C = pre-image of {yi−1 | diag(2ci − 1)(Wiyi−1 + bi) ≥ 0}
1275
+
1276
+ ��
1277
+
1278
+ halfspace induced by ith layer onto (i − 1)th layer
1279
+ under N (i−1)
1280
+ C
1281
+ (20)
1282
+ The pre-image of a set Y under a function g is defined as {x | g(x) ∈ Y} and can be generally
1283
+ computed by quantifier elimination or, in the linear case, double description methods. However, these
1284
+ methods have worst-case exponential time complexity. To obtain XC efficiently, we can leverage the
1285
+ fact that the pre-image of any halfspace {y | cTy ≤ d} under any affine function g(x) = Ax+b equals
1286
+ to the set {x | cTy ≤ d ∧ y = Ax + b}, which in turn defines the halfspace {x | cTAx ≤ d − cTb}.
1287
+ Therefore, since N (i−1)
1288
+ C
1289
+ is an affine function, every halfspace can be projected backward through the
1290
+ affine functions N (i−1)
1291
+ C
1292
+ , . . . , N (1)
1293
+ C
1294
+ using O(k) linear algebra operations. Finally, the entire invariant
1295
+ condition for configuration C is defined as the following polyhedron:
1296
+ XC = ∩{H(i)
1297
+ C | i = 1, . . . , k} ∩ X.
1298
+ (21)
1299
+ An invariant condition thus results in a polyhedron defined as the intersection of k halfspaces together
1300
+ with the constrains that define the domain of interest. Notably, under the definition in this appendix,
1301
+ the dynamics of mode C given in Equation 10 correspond to the affine dynamical model
1302
+ ˙x = N (k+1)
1303
+ C
1304
+ (x) + d,
1305
+ ∥d∥ ≤ ϵ,
1306
+ x ∈ XC,
1307
+ (22)
1308
+ whose dynamics are governed by the affine function
1309
+ N (k+1)
1310
+ C
1311
+ (x) = Wk+1N (k)
1312
+ C (x) + bk+1.
1313
+ (23)
1314
+ 20
1315
+
1316
+ N1
1317
+ N2
1318
+ X = ∅
1319
+ N3
1320
+ N3
1321
+ End
1322
+ End
1323
+ End
1324
+ X = ∅
1325
+ C = (1, 0, 1)
1326
+ C = (1, 1, 1)
1327
+ C = (1, 0, 0)
1328
+ X ← X ∩ h+
1329
+ 1 ,
1330
+ X ̸= ∅
1331
+ X ← X ∩ h−
1332
+ 1
1333
+ X ← X ∩ h+
1334
+ 2 ,
1335
+ X ̸= ∅
1336
+ X ← X ∩ h+
1337
+ 3 ,
1338
+ X ̸= ∅
1339
+ X ← X ∩ h−
1340
+ 3
1341
+ X ← X ∩ h−
1342
+ 2 ,
1343
+ X ̸= ∅
1344
+ X ← X ∩ h+
1345
+ 3
1346
+ X ← X ∩ h−
1347
+ 3
1348
+ Figure 4: Example Tree search to determine the active configurations for a neural network consisting
1349
+ of a single hidden layer with 3 neurons. Here, h+
1350
+ i denotes the positive half-space ({x : wix+bi ≥ 0})
1351
+ and h−
1352
+ i denotes the negative half-space ({x : wix + bi ≤ 0}) of the ith neuron; wi represents the ith
1353
+ row of the weight matrix corresponding to the hidden layer, and bi represents the ith element of the
1354
+ bias vector of the hidden layer. Notably, when the set X becomes empty, it is no longer necessary to
1355
+ continue along that path. Once we reach the end of the tree, we have an active configuration C, and
1356
+ backtrack to the last node that was not fully explored.
1357
+ C.2
1358
+ Enumerating Feasible Modes
1359
+ Determining whether a mode C exists in the hybrid automaton amounts to determining the linear
1360
+ program (LP) associated to polyhedron XC is feasible. Finding all modes therefore consists of
1361
+ solving 2H linear programs, where H = h1 + · · · + hk is the total number of neurons. This scales
1362
+ exponentially in the number of neurons. Here, we elaborate on the tree search algorithm described in
1363
+ Section 4.2 using a diagram; the purpose of this algorithm is to efficiently determine all active neuron
1364
+ configurations within a bounded domain of interest X.
1365
+ We consider an example tree in Figure 4, which depicts an example search for a neural network with
1366
+ a single hidden layer consisting of three neurons. The tree illustrates the construction of XC through
1367
+ repeated intersections of half-spaces as paths are taken through the tree structure. Nodes represent
1368
+ each neuron, labelled Ni, i = 1, 2, 3 and each edge represents one of two possible half-spaces for the
1369
+ neuron it leaves from (ReLU enabled, solid line, and disabled, dashed line). This approach allows
1370
+ us to prune neurons and overall solve significantly fewer linear programs than simply enumerating
1371
+ through all possible configurations.
1372
+ 21
1373
+