jackkuo commited on
Commit
2be9cbc
·
verified ·
1 Parent(s): 67ab4af

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dE1T4oBgHgl3EQfoQRv/content/tmp_files/2301.03318v1.pdf.txt +1060 -0
  2. -dE1T4oBgHgl3EQfoQRv/content/tmp_files/load_file.txt +0 -0
  3. -tE1T4oBgHgl3EQfoQTL/content/tmp_files/2301.03319v1.pdf.txt +1483 -0
  4. -tE1T4oBgHgl3EQfoQTL/content/tmp_files/load_file.txt +0 -0
  5. 09E1T4oBgHgl3EQf5AUq/content/tmp_files/2301.03506v1.pdf.txt +738 -0
  6. 09E1T4oBgHgl3EQf5AUq/content/tmp_files/load_file.txt +0 -0
  7. 0NE2T4oBgHgl3EQfMwbp/content/tmp_files/2301.03729v1.pdf.txt +1521 -0
  8. 0NE2T4oBgHgl3EQfMwbp/content/tmp_files/load_file.txt +0 -0
  9. 19E1T4oBgHgl3EQfRwPe/content/tmp_files/2301.03058v1.pdf.txt +304 -0
  10. 19E1T4oBgHgl3EQfRwPe/content/tmp_files/load_file.txt +363 -0
  11. 39FQT4oBgHgl3EQfHTWW/content/tmp_files/2301.13248v1.pdf.txt +1071 -0
  12. 39FQT4oBgHgl3EQfHTWW/content/tmp_files/load_file.txt +0 -0
  13. 59FAT4oBgHgl3EQfnB39/content/tmp_files/2301.08627v1.pdf.txt +892 -0
  14. 59FAT4oBgHgl3EQfnB39/content/tmp_files/load_file.txt +0 -0
  15. 8NAzT4oBgHgl3EQfgfyv/content/tmp_files/2301.01470v1.pdf.txt +856 -0
  16. 8NAzT4oBgHgl3EQfgfyv/content/tmp_files/load_file.txt +441 -0
  17. 9dFRT4oBgHgl3EQfqjdh/content/tmp_files/2301.13617v1.pdf.txt +0 -0
  18. 9dFRT4oBgHgl3EQfqjdh/content/tmp_files/load_file.txt +0 -0
  19. A9AzT4oBgHgl3EQfhv18/content/tmp_files/2301.01489v1.pdf.txt +2530 -0
  20. A9AzT4oBgHgl3EQfhv18/content/tmp_files/load_file.txt +0 -0
  21. AdAzT4oBgHgl3EQfF_tg/content/tmp_files/2301.01020v1.pdf.txt +862 -0
  22. AdAzT4oBgHgl3EQfF_tg/content/tmp_files/load_file.txt +477 -0
  23. DtE1T4oBgHgl3EQfEQNL/content/tmp_files/2301.02887v1.pdf.txt +224 -0
  24. DtE1T4oBgHgl3EQfEQNL/content/tmp_files/load_file.txt +302 -0
  25. GNAzT4oBgHgl3EQfxP7V/content/tmp_files/2301.01736v1.pdf.txt +537 -0
  26. GNAzT4oBgHgl3EQfxP7V/content/tmp_files/load_file.txt +0 -0
  27. HdE1T4oBgHgl3EQfFgNH/content/tmp_files/2301.02902v1.pdf.txt +797 -0
  28. HdE1T4oBgHgl3EQfFgNH/content/tmp_files/load_file.txt +0 -0
  29. I9E2T4oBgHgl3EQfpAhk/content/tmp_files/2301.04024v1.pdf.txt +0 -0
  30. I9E2T4oBgHgl3EQfpAhk/content/tmp_files/load_file.txt +0 -0
  31. ItA0T4oBgHgl3EQfCP98/content/tmp_files/2301.01987v1.pdf.txt +2041 -0
  32. L9FQT4oBgHgl3EQfUzaG/content/tmp_files/2301.13298v1.pdf.txt +2125 -0
  33. L9FQT4oBgHgl3EQfUzaG/content/tmp_files/load_file.txt +0 -0
  34. MdFRT4oBgHgl3EQf2zi9/content/tmp_files/2301.13662v1.pdf.txt +1854 -0
  35. MdFRT4oBgHgl3EQf2zi9/content/tmp_files/load_file.txt +0 -0
  36. MtE0T4oBgHgl3EQf0QIf/content/tmp_files/2301.02682v1.pdf.txt +1305 -0
  37. MtE0T4oBgHgl3EQf0QIf/content/tmp_files/load_file.txt +0 -0
  38. O9AzT4oBgHgl3EQflP2h/content/tmp_files/2301.01545v1.pdf.txt +2013 -0
  39. O9AzT4oBgHgl3EQflP2h/content/tmp_files/load_file.txt +0 -0
  40. PtFRT4oBgHgl3EQf6Djm/content/tmp_files/2301.13675v1.pdf.txt +1332 -0
  41. PtFRT4oBgHgl3EQf6Djm/content/tmp_files/load_file.txt +0 -0
  42. QNE2T4oBgHgl3EQfrwi3/content/tmp_files/2301.04053v1.pdf.txt +1520 -0
  43. QNE2T4oBgHgl3EQfrwi3/content/tmp_files/load_file.txt +0 -0
  44. RNFAT4oBgHgl3EQf0x4X/content/tmp_files/2301.08705v1.pdf.txt +1626 -0
  45. RNFAT4oBgHgl3EQf0x4X/content/tmp_files/load_file.txt +0 -0
  46. S9FLT4oBgHgl3EQfPy8r/content/tmp_files/2301.12029v1.pdf.txt +1717 -0
  47. S9FLT4oBgHgl3EQfPy8r/content/tmp_files/load_file.txt +0 -0
  48. StAzT4oBgHgl3EQf0f7W/content/tmp_files/2301.01786v1.pdf.txt +973 -0
  49. StAzT4oBgHgl3EQf0f7W/content/tmp_files/load_file.txt +0 -0
  50. TtFJT4oBgHgl3EQfMiyz/content/tmp_files/2301.11474v1.pdf.txt +2263 -0
-dE1T4oBgHgl3EQfoQRv/content/tmp_files/2301.03318v1.pdf.txt ADDED
@@ -0,0 +1,1060 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03318v1 [cs.LG] 9 Jan 2023
2
+ ORIGINAL ARTICLE
3
+ The Optimal Input-Independent Baseline for
4
+ Binary Classification: The Dutch Draw
5
+ Joris Pries1
6
+ |
7
+ Etienne van de Bijl1
8
+ |
9
+ Jan Klein1
10
+ |
11
+ Sandjai Bhulai2
12
+ |
13
+ Rob van der Mei1,2
14
+ 1Department of Stochastics, Centrum
15
+ Wiskunde & Informatica, Amsterdam,
16
+ North Holland, 1098 XG, Netherlands
17
+ 2Department of Mathematics, Vrije
18
+ Universiteit, Amsterdam, North Holland,
19
+ 1081 HV, Netherlands
20
+ Correspondence
21
+ Joris Pries, Department of Stochastics,
22
+ Centrum Wiskunde & Informatica,
23
+ Amsterdam, North Holland, 1098 XG,
24
+ Netherlands
25
26
+ Funding information
27
+ No additional funding
28
+ Before any binary classification model is taken into practice,
29
+ it is important to validate its performance on a proper test set.
30
+ Without a frame of reference given by a baseline method, it
31
+ is impossible to determine if a score is ‘good’ or ‘bad’. The
32
+ goal of this paper is to examine all baseline methods that are
33
+ independent of feature values and determine which model is
34
+ the ‘best’ and why. By identifying which baseline models are
35
+ optimal, a crucial selection decision in the evaluation process
36
+ is simplified. We prove that the recently proposed Dutch
37
+ Draw baseline is the best input-independent classifier (inde-
38
+ pendent of feature values) for all positional-invariant mea-
39
+ sures (independent of sequence order) assuming that the sam-
40
+ ples are randomly shuffled. This means that the Dutch Draw
41
+ baseline is the optimal baseline under these intuitive require-
42
+ ments and should therefore be used in practice.
43
+ KEYWORDS
44
+ Baseline, binary classification, benchmark, evaluation, supervised
45
+ learning
46
+ 1
47
+ |
48
+ INTRODUCTION
49
+ A binary classification model is trying to answer the following question: Should the instance be labeled as zero or
50
+ one? This question might seem simple, but there are many practical applications for binary classification, ranging from
51
+ 1
52
+
53
+ 2
54
+ Joris Pries et al.
55
+ predicting confirmed COVID-19 cases (Pirouz et al., 2020), detecting malicious intrusions (Li et al., 2018) to determin-
56
+ ing if a runner is fatigued or not (Buckley et al., 2017). Whenever a classification model is developed for a practical
57
+ application, it is important to validate the performance on a test set. However, a baseline is necessary to put the
58
+ achieved performance in perspective. Without this frame of reference, only partial conclusions can be drawn from
59
+ the results. An accuracy of 0.9 indicates that 90% of all predictions are correct. But it could be that the model actually
60
+ did not learn anything and such a high accuracy can already be achieved by predicting only zeros. To put the perfor-
61
+ mance in perspective, it should therefore be compared with some meaningful benchmark method, preferably with a
62
+ state-of-the-art model.
63
+ Nevertheless, many state-of-the-art methods are very problem-specific. They can rapidly change and often involve
64
+ many fine-tuned parameters. Thus, as a necessary additional check in the development process, Van de Bijl et al.
65
+ (2022) plead for a supplementary baseline that is general, simple, and informative. This baseline should test if the
66
+ new model truly performs better than a simple model. It should be considered a major warning sign when a model
67
+ is outperformed by e.g., a weighted coin flip. The binary classification model can use information about the feature
68
+ values of a sample, yet it is outperformed by a model that does not even consider these values. Is the model then
69
+ actually learning something productive?
70
+ A theoretical approach for binary classificationis proposed in (Van de Bijl et al., 2022) based on Dutch Draw classifiers.
71
+ Such a classifier draws uniformly at random (u.a.r.) a subset out of all samples, and labels these 1, and the rest 0. The
72
+ size of the drawn subset is optimized to obtain the optimal expected performance, which is the Dutch Draw baseline.
73
+ For most commonly used performance measures, a closed-form expression is given (Van de Bijl et al., 2022).
74
+ However, there are infinitely many ways to devise a baseline method. We only investigate prediction models that do
75
+ not take any information from the features into account, as this will result in a more general and simple baseline. We
76
+ call these models input-independent. Irrespective of the input, the way that such a model predicts remains the same.
77
+ Any newly developed model should at least beat the performance of these kinds of models, as an input-independent
78
+ model cannot exploit patterns in the data to predict the labels more accurately. However, sometimes a model can get
79
+ lucky by accidentally predicting the labels perfectly for a specific order of the labels. The order of the samples should
80
+ not influence the ‘optimality’ of a model. This is why we introduce the notion of permutation-optimality. Furthermore,
81
+ the order of the samples should not change the outcome of the performance measure (positional-invariant). This is
82
+ not a strict condition, as most commonly used measures have this property. Under these restrictions, we prove that
83
+ the Dutch Draw baseline is permutation-optimal out of all input-independent classifiers for any positional-invariant
84
+ measure.
85
+ To summarize, in this paper we:
86
+ • determine natural requirements for a general, informative and simple baseline;
87
+ • prove that the Dutch Draw baseline is the optimal baseline under these requirements.
88
+ These contributions improve the evaluation process of any new binary classification method.
89
+ The remainder of this paper is organized as follows. First, the necessary preliminaries and notations are discussed
90
+ in Section 2. Next, in Section 3 we determine requirements for a general, simple and informative baseline. Further-
91
+ more, we formally define what optimality entails under these requirements. In Section 4, an alternative definition
92
+
93
+ Joris Pries et al.
94
+ 3
95
+ for the Dutch Draw classifiers is given, which is necessary for the main proof. In Section 5, we prove that the Dutch
96
+ Draw baseline is optimal. Finally, Section 6 summarizes the general findings and discusses possible future research
97
+ opportunities.
98
+ 2
99
+ |
100
+ PRELIMINARIES
101
+ Next, we introduce some concepts and notations to lay the foundation for the main proof. First, binary classifiers
102
+ (Section 2.1) and performance measures (Section 2.2) for binary classification are discussed. Then, properties of
103
+ permutations are examined in Section 2.3, which will play a crucial role in the proof of the main result.
104
+ 2.1
105
+ |
106
+ Binary classifiers
107
+ To find a good baseline for a binary classification model, we first have to discuss what a binary classifier actually is. To
108
+ this end, let X be the feature space (think e.g., �d ). Normally, a binary classifier is defined as a function h : X → {0, 1}
109
+ that maps feature values to zero or one. However, this classifier only classifies one sample at a time. Instead, we are
110
+ interested in classifiers that classify multiple samples simultaneously:
111
+ hM : XM → {0, 1}M ,
112
+ where M ∈ �>0 denotes the number of samples that are classified. This gives classifiers the ability to precisely predict
113
+ k out of M samples positive. Note that a single sample classifier h can simply be extended to classify M samples
114
+ simultaneously by applying the classifier for each sample individually:
115
+ hM : (x1, . . . , xM ) ↦→ (h(x1), . . . , h(xM )) .
116
+ Let HM = {hM : XM → {0, 1}M } be the set of all binary classifiers that classify M samples at the same time.
117
+ |
118
+ Example of a binary classifier
119
+ An example of a binary classifier is a coin toss, where each sample is classified by throwing a coin and determining on
120
+ which side it lands. Let θ ∈ [0, 1] be the probability that the coin lands head, and 1 − θ for tails. Assuming that head
121
+ and tails are classified by 1 and 0 respectively, we get:
122
+ hsingle
123
+ coin (·) :=
124
+
125
+ 1
126
+ with probability θ,
127
+ 0
128
+ with probability 1 − θ.
129
+ Classifying M samples by repeatedly throwing coins can be achieved by:
130
+ hcoin : (x1, . . . , xM ) ↦→
131
+
132
+ hsingle
133
+ coin (x1), . . . , hsingle
134
+ coin (xM )
135
+
136
+ .
137
+
138
+ 4
139
+ Joris Pries et al.
140
+ 2.2
141
+ |
142
+ Performance measures for binary classification
143
+ To assess the effectiveness of a binary classification model, it is necessary to choose a performance measure, which
144
+ quantifies how much the predicted labels agree with the actual labels. Namely, each sample indexed by i has feature
145
+ values xi ∈ X and a corresponding label yi ∈ {0, 1}. Let X := (x1 . . . xM ) ∈ XM be the combined feature values of
146
+ M samples. Furthermore, let Y = (y1, . . . , yM ) denote the corresponding labels. A performance measure for binary
147
+ classification is then defined as µ : {0, 1}M × {0, 1}M → �, where the first entry of µ is the predictions made by the
148
+ classifier and the second entry is the corresponding labels. The performance of classifier hM can now be written as:
149
+ µ(hM (X), Y).
150
+ |
151
+ Example of a performance measure
152
+ An example of a performance measure for binary classification is accuracy (µacc). It is defined as the total number
153
+ of correctly classified samples divided by the total number of samples. For any hM (X) = ( ˆy1, . . . , ˆyM ) ∈ {0, 1}M and
154
+ Y = (y1, . . . , yM ) ∈ {0, 1}M , it holds that
155
+ µacc (hM (X), Y) =
156
+ �M
157
+ i=1 1{ ˆyi =yi }
158
+ M
159
+ .
160
+ |
161
+ Undefined cases
162
+ Some measures are undefined for specific combinations of hM (X) and Y. Take for example the true positive rate
163
+ (Tharwat, 2021), which is the number of correctly predicted positives divided by the total number of actual positives.
164
+ When there are no actual positives, the measure is ill-defined, as it divides by zero. Less obvious, the measure negative
165
+ predictive value (Tharwat, 2021) is undefined when no negatives are predicted, as it is defined as the number of
166
+ correctly predicted negatives divided by the total number of predicted negatives. Defining x
167
+ 0 := 0 for all x ∈ � will
168
+ solve many undefined issues. However, this can make it desirable for a classifier to always predict labels that lead to
169
+ a previously undefined measure in order to minimize the measure. Therefore, we redefine µ from now on for every
170
+ ˆY, Y ∈ {0, 1}M to be equal to a constant Cundef, when µ( ˆY, Y) was undefined. We make a distinction for each objective
171
+ (maximizing/minimizing). Let
172
+ Cundef :=
173
+ 
174
+ 
175
+ max ˆY,Y∈{0,1}M
176
+
177
+ µ( ˆY, Y)
178
+
179
+ if minimizing,
180
+ min ˆY,Y∈{0,1}M
181
+
182
+ µ( ˆY, Y)
183
+
184
+ if maximizing.
185
+ It is therefore always disadvantageous for a classifier to predict a previously undefined case. By defining Cundef in this
186
+ way, we do not have to omit such classifiers from our analysis.
187
+ 2.3
188
+ |
189
+ Permutations
190
+ To determine which binary classifier is considered to be the ‘best’, we define permutation-optimality in Section 3.3.3,
191
+ which uses permutations to define ‘optimality’. In this section, we examine properties of permutations that are used
192
+ in the main proof (see Section 5). A permutation is a bijective function from a set to itself (Dixon and Mortimer, 1996).
193
+ This means that a permutation is not a reordered list; it is a function that determines where each element should be
194
+ rearranged to.
195
+
196
+ Joris Pries et al.
197
+ 5
198
+ Let SM denote the set of all permutations of a set of size M , also called the symmetric group. More formally,
199
+ SM :=
200
+
201
+ π : {1, . . . , M } → {1, . . . , M } s.t. {π (i ) }M
202
+ i=1 = {1, . . . , M }
203
+
204
+ .
205
+ |
206
+ Example of symmetric group
207
+ Using the Cauchy one-line notation (Cauchy, 1815), all possible permutations of three elements are given by
208
+
209
+ 1
210
+ 2
211
+ 3
212
+
213
+ ,
214
+
215
+ 1
216
+ 3
217
+ 2
218
+
219
+ ,
220
+
221
+ 2
222
+ 1
223
+ 3
224
+
225
+ ,
226
+
227
+ 2
228
+ 3
229
+ 1
230
+
231
+ ,
232
+
233
+ 3
234
+ 1
235
+ 2
236
+
237
+ ,
238
+
239
+ 3
240
+ 2
241
+ 1
242
+
243
+ .
244
+ The permutation
245
+
246
+ 2
247
+ 3
248
+ 1
249
+
250
+ sends the first element to the second position, the second element to the third position
251
+ and the third element to the first position.
252
+ |
253
+ Sample-wise permutations
254
+ To apply permutations to a matrix, we discuss sample-wise permutations. For every M × K dimensional matrix X =
255
+ (x1 . . . xM ), let Xπ denote the sample-wise permutation under π. Thus,
256
+ Xπ := �xπ(1) . . . xπ(M )
257
+ � ,
258
+ with K ∈ �>0 the number of features. This means that the matrix X is reordered by row.
259
+ |
260
+ Properties of permutations
261
+ Next, we outline some properties of SM that are used in the proof of the main result. SM is a group with the com-
262
+ position of functions as group operator (denoted by ◦), thus the group axioms must hold (Dixon and Mortimer, 1996;
263
+ Artin, 2011). This means that there exists an identity element id ∈ SM such that for all π ∈ SM :
264
+ id ◦ π = π = π ◦ id.
265
+ Furthermore, for every π ∈ SM , there exists a unique inverse element π−1 ∈ SM such that
266
+ π ◦ π−1 = id = π−1 ◦ π.
267
+ Thus, for each permutation, there exists an inverse permutation that reverses the change of order of the permutation,
268
+ which is used in Section 5. As each inverse is unique and also contained in SM , it follows that
269
+ {π ∈ SM } = {π−1 : π ∈ SM },
270
+ (1)
271
+ which means that the set of all permutations is the same as the set of all inverses of these permutations. Thus, taking
272
+
273
+ 6
274
+ Joris Pries et al.
275
+ an expectation over all permutations in SM is the same as taking the expectation over all inverse permutations of
276
+ permutations in SM . This is used in the proof of the main result in Section 5.
277
+ 3
278
+ |
279
+ ESSENTIAL CONDITIONS
280
+ To prove that the optimal Dutch Draw classifier yields the ‘optimal’ baseline, we first have to define ‘optimality’. When
281
+ is a baseline considered to be optimal? To determine this, the following two questions must be answered: (1) which
282
+ methods do we compare and (2) how do we compare them? To this end, we define the notion of input-independent
283
+ classifiers, positional-invariant measures, and permutation-optimality.
284
+ 3.1
285
+ |
286
+ Input-independent classifier
287
+ Any binary classifier can be used as a baseline. However, any good standardized baseline should be general, simple,
288
+ and informative (Van de Bijl et al., 2022). Thus, it needs to be applicable to any domain, quick to train and clearly still
289
+ beatable. To this end, we investigate all models that do not take any feature values into account, as they meet these
290
+ three requirements. Without considering feature values, they can be applied to any domain. Furthermore, they do not
291
+ require any training, because they cannot learn the relationship between the feature values and the corresponding
292
+ labels. This makes them also clearly still beatable, as any newly developed model should leverage the information
293
+ from the feature values to make better predictions.
294
+ A binary classifier hM ∈ HM is called input-independent if for all feature spaces XM
295
+ 1 , XM
296
+ 2
297
+ and for all feature values
298
+ Xi ∈ XM
299
+ 1
300
+ and Xj ∈ XM
301
+ 2
302
+ it holds that hM (Xi ) and hM (Xj ) are identically distributed. In other words,
303
+ hM (Xi ) d= hM (Xj ) d=: hM (·),
304
+ where the notation of hM (·) is chosen to visualize that the classifier hM is not dependent on the input. By this
305
+ definition, an input-independent classifier is not dependent on feature values or even the feature domains. Let
306
+ Hi.i.
307
+ M = {hM ∈ HM : hM is input-independent} be the set of all input-independent binary classifiers. A newly devel-
308
+ oped model, that was optimized using the same performance measure, should always beat the performance of an
309
+ input-independent model, as it gains information from the feature values. Otherwise, the model was not able to
310
+ exploit this extra information to make better predictions.
311
+ |
312
+ Example of an input-independent classifier
313
+ The coin flip (see Section 2.1) is by definition input-independent. The feature values have no influence on the proba-
314
+ bility distribution of the coin. Thus, for any (x1, . . . , xM ) ∈ XM ,
315
+
316
+ hsingle
317
+ coin (x1), . . . , hsingle
318
+ coin (xM )
319
+
320
+ =
321
+
322
+ hsingle
323
+ coin (·), . . . , hsingle
324
+ coin (·)
325
+
326
+ .
327
+ 3.2
328
+ |
329
+ Positional-invariant measure
330
+ To assess the performance of a method, a measure needs to be chosen. Reasonably, the order of the samples should
331
+ not change the outcome of this measure. If a measure has this property, we call it positional-invariant. More formally, a
332
+
333
+ Joris Pries et al.
334
+ 7
335
+ measure µ is positional-invariant if for every permutation π ∈ SM and for all hM (X), Y ∈ {0, 1}M it holds that:
336
+ µ (hM (X), Y) = µ(hM (X)π, Yπ).
337
+ (2)
338
+ This means that any reordering of the coupled predictedand actual labels does not affect the performance score.
339
+ This is not a hard restriction, as most measures have this property. Note for example that the number of true
340
+ positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) are all positional-invariant. Most
341
+ commonly used measures are a function of these four measures (Sokolova and Lapalme, 2009), making them also
342
+ positional-invariant.
343
+ |
344
+ Example of a non-positional-invariant measure
345
+ Nonetheless, it is possible to define measures that are not positional-invariant. For example, take the measure
346
+ λ : {0, 1}M × {0, 1}M → �, (a = (a1, . . . , aM ), b) ↦→ a1,
347
+ which is dependent on the first position of the prediction, as
348
+ λ
349
+ ��
350
+ 0
351
+ 1
352
+
353
+ ,
354
+
355
+ 1
356
+ 0
357
+ ��
358
+ = 0,
359
+ λ
360
+ ��
361
+ 1
362
+ 0
363
+
364
+ ,
365
+
366
+ 0
367
+ 1
368
+ ��
369
+ = 1.
370
+ 3.3
371
+ |
372
+ Defining optimality
373
+ To find the ‘optimal’ baseline, it is first essential to specify what ‘optimality’ entails.
374
+ 3.3.1
375
+ |
376
+ Optimal classifier
377
+ A binary classifier does not need to have a deterministic outcome. Thus, due to stochasticity, we consider a classifier to
378
+ be optimal if it minimizes/maximizes the expected performance out of all considered binary classifiers (i.e., ˜HM ⊆ HM ).
379
+ Whether optimization means minimization or maximization depends on the objective of the problem. So:
380
+ hmin
381
+ M
382
+ ∈ arg min
383
+ hM ∈ ˜HM
384
+ ��hM (X) [µ(hM (X), Y)]� ,
385
+ (3)
386
+ hmax
387
+ M
388
+ ∈ arg max
389
+ hM ∈ ˜HM
390
+
391
+ �hM (X) [µ(hM (X), Y)]
392
+
393
+ .
394
+ (4)
395
+ For example, when the goal is to maximize the accuracy, then hmax
396
+ M
397
+ is an optimal baseline out of all other baselines in
398
+ ˜HM . Note that there could be multiple different optimal baselines.
399
+
400
+ 8
401
+ Joris Pries et al.
402
+ 3.3.2
403
+ |
404
+ Trivial optimal solution
405
+ However, this definition of ‘optimality’ leads to a trivial optimal solution, when we consider all input-independent
406
+ classifiers ( ˜HM = Hi.i.
407
+ M ). Take the deterministic classifier
408
+ ˜hmax
409
+ M
410
+ (·) := ˆYmax ∈ arg max
411
+ ˆY∈{0,1}M
412
+ µ( ˆY, Y),
413
+ which always predicts a vector ˆYmax that maximizes the measure µ. Note that ˜hmax
414
+ M
415
+ is clearly input-independent (see
416
+ Section 3.1), thus ˜hmax
417
+ M
418
+ ∈ Hi.i.
419
+ M . Furthermore, it holds that
420
+ max
421
+ hM ∈ ˜HM
422
+ ��hM (X) [µ(hM (X), Y)]� ≤
423
+ max
424
+ ˆY∈{0,1}M µ( ˆY, Y)
425
+ = �˜hmax
426
+ M
427
+ (·)
428
+
429
+ µ( ˜hmax
430
+ M
431
+ (·), Y)
432
+
433
+ .
434
+ In other words, the expected performance of ˜hmax
435
+ M
436
+ is always higher or equal compared to any other classifier. Thus,
437
+ ˜hmax
438
+ M
439
+ is considered to be optimal (see Equation (4)). The same holds for minimization with
440
+ ˜hmin
441
+ M (·) := ˆYmin ∈ arg min
442
+ ˆY∈{0,1}M
443
+ µ( ˆY, Y).
444
+ Essentially, a perfect prediction can always be made by an input-independent classifier, using the actual labels and the
445
+ performance measure. Consider for example the commonly used performance measure: accuracy, which is maximized
446
+ if the prediction ˆY = Y. A classifier ˜hmax
447
+ M
448
+ that always predicts Y, is thus optimal for these given labels. This shows that
449
+ an extension to the definition of ‘optimality’ should be considered.
450
+ 3.3.3
451
+ |
452
+ Permutation-optimality
453
+ The optimal property (see Equations (3) and (4)) is not very insightful when we consider all deterministic classifiers,
454
+ as the perfect prediction is always made by one of them. Similarly, a broken clock gives the correct time twice
455
+ a day, but should not be used to determine the time. Therefore, we introduce a new optimality condition called
456
+ permutation-optimality.
457
+ It is often assumed that the test set is randomly shuffled. Therefore, we introducethe notion of permutation-optimality.
458
+ Instead of being optimal for the distinct order that the feature values and corresponding labels are given in, now all per-
459
+ mutations of the samples are considered. A classifier is permutation-optimal if it minimizes/maximizes the expected
460
+ performance for a random permutation of the test set out of all considered binary classifiers ( ˜HM ). Thus,
461
+ hmin
462
+ M
463
+ ∈ arg min
464
+ hM ∈ ˜HM
465
+ ��π∼U(SM )
466
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� ,
467
+ (5)
468
+ hmax
469
+ M
470
+ ∈ arg max
471
+ hM ∈ ˜HM
472
+
473
+ �π∼U(SM )
474
+
475
+ �hM (Xπ ) [µ(hM (Xπ), Yπ)]
476
+ ��
477
+ .
478
+ (6)
479
+
480
+ Joris Pries et al.
481
+ 9
482
+ 4
483
+ |
484
+ DUTCH DRAW CLASSIFIER
485
+ A Dutch Draw classifier is defined in (Van de Bijl et al., 2022) for θ ∈ [0, 1], as
486
+ σθ (X) := (1E (i ))i∈{1,...M } with E ⊆ {1, . . . M }
487
+ drawn u.a.r. such that |E | = ⌊M · θ⌉.
488
+ (7)
489
+ In other words, the classifier draws u.a.r. a subset E of size ⌊M · θ⌉ out of all samples, which it then labels as 1, while
490
+ the rest is labeled 0. In this section, we introduce an alternative definition, that is used in the main proof, and show
491
+ that all Dutch Draw classifiers are input-independent.
492
+ 4.1
493
+ |
494
+ Alternative definition
495
+ Insteadof the definition in Equation (7), we introduce an alternative definition for the Dutch Draw classifiers to simplify
496
+ the proof of the main result. Given a binary vector (y1, . . . , yM ) ∈ {0, 1}M of length M , note that the number of ones
497
+ it contains can be counted by taking the sum �M
498
+ i=1 yi . Next, we define sets of binary vectors (of the same length) that
499
+ contain the same number of ones. For all j ∈ {0, . . . , M }, define
500
+ Yj :=
501
+
502
+ ˆY = (y1, . . . , yM ) ∈ {0, 1}M s.t.
503
+ M
504
+
505
+ i=1
506
+ yi = j
507
+
508
+ .
509
+ (8)
510
+ In other words, Yj contains all binary vectors of length M with exactly j ones and M −j zeros. For example, for M = 4
511
+ it holds that
512
+ Y0 = {(0, 0, 0, 0) },
513
+ Y1 = {(0, 0, 0, 1), (0, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 0) },
514
+ Y2 = {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0) },
515
+ Y3 = {(0, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0) },
516
+ Y4 = {(1, 1, 1, 1) }.
517
+ A Dutch Draw classifier selects u.a.r. E out of M samples and labels these as one, and the rest zero. Note that this
518
+ is the same as taking u.a.r. a vector from YE . To simplify notation, let U(A) denote the uniform distribution over a
519
+ finite set A. Thus, when X ∼ U(A) it must hold that �(X = a) =
520
+ 1
521
+ |A| for each a ∈ A. Now, a Dutch Draw classifier σθ
522
+ can be rewritten as
523
+ σθ (X) := ˆY with ˆY ∼ U �Y⌊M ·θ⌉
524
+ � .
525
+ (9)
526
+ Put differently, a Dutch Draw classifier σθ chooses u.a.r. a vector with exactly ⌊M · θ⌉ ones as prediction out of all
527
+ vectors with ⌊M · θ⌉ ones (Y⌊M ·θ⌉). This alternative definition simplifies the proof of the main result.
528
+
529
+ 10
530
+ Joris Pries et al.
531
+ 4.2
532
+ |
533
+ Input-independence
534
+ Next, we discuss why all Dutch Draw classifiers are input-independent (see Section 3.1). Note that a Dutch Draw
535
+ classifier σθ is independent of feature values, as it is only dependent on θ and M , see Equation (9). In other words, any
536
+ Dutch Draw classifier is by definition input-independent. Instead of σθ (X), we can therefore write σθ (·). To conclude,
537
+ for every θ ∈ [0, 1] it holds that σθ (·) ∈ Hi.i.
538
+ M , which is the set of all input-independent binary classifiers.
539
+ 4.3
540
+ |
541
+ Optimal Dutch Draw classifier
542
+ The optimal Dutch Draw classifier σθopt is determined by minimizing/maximizing the expected performance for the
543
+ parameter θ out of all allowed parameter values Θ (Van de Bijl et al., 2022). Note that some measures are undefined
544
+ for certain predictions, thus Θ is not always equal to [0, 1]. Take e.g., the measure precision (Tharwat, 2021), which is
545
+ defined as the number of true positives divided by the total number of predicted positives. Therefore, if no positives
546
+ are predicted, the measure becomes undefined (division by zero). By adapting each measure according to Section 2.2,
547
+ all undefined cases are resolved and Θ = [0, 1] always holds.
548
+ Using the alternative definition of the Dutch Draw classifier (see Equation (9)), we obtain:
549
+ θ∗
550
+ min ∈ arg min
551
+ θ∈[0,1]
552
+
553
+ � ˆY∼U
554
+
555
+ Y⌊M ·θ⌉
556
+ � �
557
+ µ( ˆY, Y)
558
+ ��
559
+ ,
560
+ (10)
561
+ θ∗
562
+ max ∈ arg max
563
+ θ∈[0,1]
564
+
565
+ � ˆY∼U
566
+
567
+ Y⌊M ·θ⌉
568
+ � �
569
+ µ( ˆY, Y)
570
+ ��
571
+ .
572
+ (11)
573
+ Depending on the objective, either σθ∗
574
+ min or σθ∗max is an optimal Dutch Draw classifier.
575
+ 5
576
+ |
577
+ THEOREM AND PROOF
578
+ After defining input-independence (Section3.1), positional-invariance (Section3.2), permutation-optimality(Section3.3.3),
579
+ and introducing an alternative formulation for the Dutch Draw classifier, all ingredients for the following theorem are
580
+ present.
581
+ Theorem 1 (Main result) The optimal Dutch Draw classifier σθopt is permutation-optimal out of all input-independent clas-
582
+ sifiers (Hi.i.
583
+ M ), for any positional-invariant measure µ. In other words:
584
+ σθ∗
585
+ min ∈ arg min
586
+ hM ∈Hi .i .
587
+ M
588
+ ��π∼U(SM )
589
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� ,
590
+ (12)
591
+ σθ∗max ∈ arg max
592
+ hM ∈Hi .i .
593
+ M
594
+ ��π∼U(SM )
595
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� .
596
+ (13)
597
+ This means that the optimal Dutch Draw classifier is the best general, simple, and informative baseline.
598
+ Proof Let hM ∈ Hi.i.
599
+ M be an input-independent classifier and let µ be a positional-invariant measure, the classifier is
600
+ permutation-optimal if it minimizes/maximizes the expected performance under a random permutation of the test
601
+ set out of all input-independent classifiers (see Equations (5) and (6)).
602
+ For any input-independent classifier hM , it holds that
603
+
604
+ Joris Pries et al.
605
+ 11
606
+ �hM (Xπ ) [µ(hM (Xπ), Yπ)] = �hM (·) [µ(hM (·), Yπ)] .
607
+ (14)
608
+ The input Xπ is not relevant for the classification, and can thus be omitted.
609
+ In total, there are 2M unique possible predictions in {0, 1}M . Denote these distinct vectors by ˆY1, . . . , ˆY2M such that
610
+ �2M
611
+ i=1 ˆYi = {0, 1}M . Next, the expectation in Equation (14) can be written out by:
612
+ �hM (·) [µ(hM (·), Yπ)] =
613
+ 2M
614
+
615
+ i=1
616
+ �(hM (·) = ˆYi) · µ( ˆYi, Yπ).
617
+ (15)
618
+ As we need to proof permutation-optimality, we have to take the expectation of Equation (15) over all permutations.
619
+ Using linearity of expectation gives:
620
+ �π∼U(SM )
621
+ 
622
+ 2M
623
+
624
+ i=1
625
+ �(hM (·) = ˆYi) · µ( ˆYi, Yπ)
626
+ 
627
+ =
628
+ 2M
629
+
630
+ i=1
631
+ �(hM (·) = ˆYi) · �π∼U(SM )
632
+
633
+ µ( ˆYi, Yπ)
634
+
635
+ .
636
+ (16)
637
+ Instead of taking the expectation of a sum, we now take the sum of expectations.
638
+ The measure µ is positional-invariant, thus using Equation (2) gives
639
+ µ( ˆYi, Yπ) = µ(( ˆYi)π−1, (Yπ)π−1) = µ(( ˆYi)π−1, Y).
640
+ (17)
641
+ Applying a permutation does not change a positional-invariant measure µ. In this case, we apply the inverse permuta-
642
+ tion π−1 to retrieve Y.
643
+ Because of Equation (17), it therefore also holds that
644
+ �π∼U(SM )
645
+
646
+ µ( ˆYi, Yπ)
647
+
648
+ = �π∼U(SM )
649
+
650
+ µ(( ˆYi)π−1, Y)
651
+
652
+ .
653
+ (18)
654
+ Equation (1) shows that the set of all inverse permutations is the same as the set of all permutations. Given that the
655
+ permutations are drawn u.a.r., taking the expectation over all the inverse permutations is the same as taking the expec-
656
+ tation over all permutations. When permutation π is drawn u.a.r., it namely holds that �(π = s) = �(π = s−1) =
657
+ 1
658
+ |SM |
659
+ for all s ∈ SM . Therefore,
660
+ �π∼U(SM )
661
+
662
+ µ(( ˆYi)π−1, Y)
663
+
664
+ =
665
+
666
+ s∈SM
667
+
668
+ µ(( ˆYi)s−1, Y) · �(π = s)
669
+
670
+ =
671
+
672
+ s∈SM
673
+
674
+ µ(( ˆYi)s−1, Y) · �(π = s−1)
675
+
676
+ = �π∼U(SM )
677
+
678
+ µ(( ˆYi)π, Y)
679
+
680
+ .
681
+ (19)
682
+
683
+ 12
684
+ Joris Pries et al.
685
+ Thus, π−1 can be replaced with π in Equation (18).
686
+ Recall that Yj is the set of all binary vectors of length M with j ones (see Equation (8)). Furthermore, note that applying
687
+ a u.a.r. chosen permutation π ∈ SM on ˆYi ∈ Yj is the same as selecting u.a.r. ˆY ∈ Yj as outcome, because for every
688
+ ˆY⋆ ∈ Yj it holds that
689
+
690
+
691
+ ( ˆYi)π = ˆY⋆
692
+
693
+ =
694
+ 1
695
+ |Yj | with π ∼ U (SM ) ,
696
+ and
697
+
698
+
699
+ ˆY = ˆY⋆
700
+
701
+ =
702
+ 1
703
+ |Yj | with ˆY ∼ U �Yj
704
+ � .
705
+ Therefore, we can rewrite the expectation �π∼U(SM ) [·] over all permutations into an expectation over a u.a.r. drawn
706
+ vector with the same number of ones, by
707
+ �π∼U(SM )
708
+
709
+ µ(( ˆYi)π, Y)
710
+
711
+ = � ˆY∼U
712
+
713
+ Yj
714
+
715
+ : ˆYi∈Yj
716
+
717
+ µ( ˆY, Y)
718
+
719
+ .
720
+ (20)
721
+ Using Equations (18), (19), and (20) in combination with Equation (16) gives
722
+ 2M
723
+
724
+ i=1
725
+ �(hM (·) = ˆYi) · �π∼U(SM )
726
+
727
+ µ( ˆYi, Yπ)
728
+
729
+ =
730
+ 2M
731
+
732
+ i=1
733
+ �(hM (·) = ˆYi) · � ˆY∼U
734
+
735
+ Yj
736
+
737
+ : ˆYi∈Yj
738
+
739
+ µ( ˆY, Y)
740
+
741
+ .
742
+ We have now eliminated all permutations from the equation. Note that the expectation in the right-hand side is the
743
+ same for each ˆYi ∈ Yj . In other words, the expectation is the same for two vectors, when they have the same number
744
+ of ones. Grouping the vectors with the same number of ones, gives
745
+ 2M
746
+
747
+ i=1
748
+ �(hM (·) = ˆYi) · � ˆY∼U
749
+
750
+ Yj
751
+
752
+ : ˆYi∈Yj
753
+
754
+ µ( ˆY, Y)
755
+
756
+ =
757
+ M
758
+
759
+ j =0
760
+ �(hM (·) ∈ Yj ) · � ˆY∼U
761
+
762
+ Yj
763
+ � �
764
+ µ( ˆY, Y)
765
+
766
+ .
767
+ Instead of summing over all possible binary vectors ˆYi ∈ {0, 1}M , all vectors with the same number of ones are grouped
768
+ together, as they have the same expectation. All probability mass of the grouped vectors is also added up. Note, that
769
+ it is thus only relevant for a classifier in which group Yj the prediction hM (·) belongs.
770
+ For any j ∈ {0, . . . , M } it holds that � ˆY∼U
771
+
772
+ Yj
773
+ � �
774
+ µ( ˆY, Y)
775
+
776
+ is bounded by minimizing/maximizing over all possible values
777
+
778
+ Joris Pries et al.
779
+ 13
780
+ of j . Thus,
781
+ � ˆY∼U
782
+
783
+ Yj
784
+ � �
785
+ µ( ˆY, Y)
786
+
787
+
788
+ min
789
+ j ′∈{0,...,M } � ˆY∼U
790
+
791
+ Yj ′
792
+ � �
793
+ µ( ˆY, Y)
794
+
795
+ ,
796
+ (21)
797
+ � ˆY∼U
798
+
799
+ Yj
800
+ � �
801
+ µ( ˆY, Y)
802
+
803
+
804
+ max
805
+ j ′∈{0,...,M } � ˆY∼U
806
+
807
+ Yj ′
808
+ � �
809
+ µ( ˆY, Y)
810
+
811
+ .
812
+ (22)
813
+ Observe that �M
814
+ j =0 �(hM (·) ∈ Yj ) = 1 and �(hM (·) ∈ Yj ) ≥ 0 hold for each j , therefore it follows using Equations (21)
815
+ and (22) that
816
+ M
817
+
818
+ j =0
819
+ �(hM (·) ∈ Yj ) · � ˆY∼U
820
+
821
+ Yj
822
+ � �
823
+ µ( ˆY, Y)
824
+
825
+
826
+ min
827
+ j ′∈{0,...,M } � ˆY∼U
828
+
829
+ Yj ′
830
+ � �
831
+ µ( ˆY, Y)
832
+
833
+ ,
834
+ M
835
+
836
+ j =0
837
+ �(hM (·) ∈ Yj ) · � ˆY∼U
838
+
839
+ Yj
840
+ � �
841
+ µ( ˆY, Y)
842
+
843
+
844
+ max
845
+ j ′∈{0,...,M } � ˆY∼U
846
+
847
+ Yj ′
848
+ � �
849
+ µ( ˆY, Y)
850
+
851
+ .
852
+ Consequently, we have found a lower and upper bound for Equations (12) and (13), respectively. Namely,
853
+ min
854
+ hM ∈Hi .i .
855
+ M
856
+
857
+ �π∼U(SM )
858
+
859
+ �hM (Xπ ) [µ(hM (Xπ), Yπ)]
860
+ ��
861
+
862
+ min
863
+ j ∈{0,...,M }
864
+
865
+ � ˆY∼U
866
+
867
+ Yj
868
+ �µ( ˆY, Y)
869
+
870
+ ,
871
+ (23)
872
+ max
873
+ hM ∈Hi .i .
874
+ M
875
+ ��π∼U(SM )
876
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� ≤
877
+ max
878
+ j ∈{0,...,M }
879
+
880
+ � ˆY∼U
881
+
882
+ Yj
883
+ �µ( ˆY, Y)
884
+
885
+ .
886
+ (24)
887
+ Equality only holds for any classifierhM ∈ Hi.i.
888
+ M , when all probability mass is given to arg minj ∈{0,...,M }
889
+
890
+ � ˆY∼U
891
+
892
+ Yj
893
+ �µ( ˆY, Y)
894
+
895
+ and arg maxj ∈{0,...,M }
896
+
897
+ � ˆY∼U
898
+
899
+ Yj
900
+ �µ( ˆY, Y)
901
+
902
+ , respectively. In other words, the minimum can only be attained if
903
+
904
+ jmin∈arg minj ∈{0,...,M }
905
+
906
+ � ˆY∼U
907
+
908
+ Yj
909
+ � µ( ˆY,Y)
910
+ � �(hM (·) ∈ Yjmin) = 1,
911
+ (25)
912
+ and the maximum only if
913
+
914
+ jmax∈arg maxj ∈{0,...,M }
915
+
916
+ � ˆY∼U
917
+
918
+ Yj
919
+ � µ( ˆY,Y)
920
+ � �(hM (·) ∈ Yjmax) = 1.
921
+ (26)
922
+ A classifier hM ∈ Hi.i.
923
+ M can therefore only attain the minimum/maximum if all predictions belong to a group Yj or
924
+ possibly multiple groups that all minimize/maximize the expectation (depending on the objective).
925
+
926
+ 14
927
+ Joris Pries et al.
928
+ Remember that the Dutch Draw selects the optimal classifier based on Equations (10) and (11),which leads to
929
+ ⌊M · θ∗
930
+ min⌉ ∈ arg min
931
+ j ∈{0,...,M }
932
+
933
+ � ˆY∼U
934
+
935
+ Yj
936
+ � �
937
+ µ( ˆY, Y)
938
+ ��
939
+ ,
940
+ ⌊M · θ∗
941
+ max⌉ ∈ arg max
942
+ j ∈{0,...,M }
943
+
944
+ � ˆY∼U
945
+
946
+ Yj
947
+ � �
948
+ µ( ˆY, Y)
949
+ ��
950
+ .
951
+ Combining this with the alternative definition of the Dutch Draw (Equation (9)) directly gives that
952
+
953
+ jmin∈arg minj ∈{0,...,M }
954
+
955
+ � ˆY∼U
956
+
957
+ Yj
958
+ � µ( ˆY,Y)
959
+ � �(σθ∗
960
+ min (·) ∈ Yjmin) = 1,
961
+
962
+ jmax∈arg maxj ∈{0,...,M }
963
+
964
+ � ˆY∼U
965
+
966
+ Yj
967
+ � µ( ˆY,Y)
968
+ � �(σθ∗max (·) ∈ Yjmax) = 1.
969
+ This shows in combination with Equations (25) and (26) that the optimal Dutch Draw classifier actually attains the
970
+ bound given in Equations (23) and (24). It now follows that,
971
+ σθ∗
972
+ min ∈ arg min
973
+ hM ∈Hi .i .
974
+ M
975
+ ��π∼U(SM )
976
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� ,
977
+ σθ∗max ∈ arg max
978
+ hM ∈Hi .i .
979
+ M
980
+ ��π∼U(SM )
981
+ ��hM (Xπ ) [µ(hM (Xπ), Yπ)]�� .
982
+ Thus, we can conclude that the optimal Dutch Draw classifier attains the minimum/maximum expected performance
983
+ and is therefore permutation-optimal for all input-independent classifiers with a positional-invariant measure.
984
+ 6
985
+ |
986
+ DISCUSSION AND CONCLUSION
987
+ A baseline is crucial to assess the performance of a prediction model. However, there are infinitely many ways to
988
+ devise a baseline method. As a necessary check in the development process, Van de Bijl et al. (2022) plead for a
989
+ supplementary baseline that is general, simple, and informative. In this paper, we have therefore examined all base-
990
+ lines that are independent of feature values, which makes them general and relatively simple. Additionally, these
991
+ baselines are also informative, as it should be considered a major warning sign when a newly developed model is out-
992
+ performed by a model that does not take any feature values into account. In this paper, we have shown that, out of
993
+ all input-independent binary classifiers, the Dutch Draw baseline is permutation-optimal for any positional-invariant
994
+ measure. Our findings improve the evaluation process of any new binary classification method, as we have proven
995
+ that the Dutch Draw baseline is ideal to gauge the performance score of a newly developed model.
996
+ Next, we discuss two points that could be considered an ‘unfair’ advantage for the Dutch Draw baseline. First of all,
997
+ we have considered in this paper classifiers that predict M labels simultaneously. This gives classifiers a potential
998
+ advantage over classifying each sample sequentially, as e.g., exactly k out of M samples can be labeled positive. This
999
+ can only be done sequentially when a classifier is allowed to track previous predictions or to change based on the
1000
+
1001
+ Joris Pries et al.
1002
+ 15
1003
+ number of classifications it has made. Even with this advantage, we believe that all input-independent models still
1004
+ remain clearly beatable by a newly developed model.
1005
+ Secondly, the Dutch Draw baseline can be derived for most commonly used measures without any additional knowl-
1006
+ edge about the number of positive labels P . Nonetheless, it was shown in (Van de Bijl et al., 2022) that the Dutch
1007
+ Draw baseline can only be calculated for the measure accuracy when it is known if P ≥ M /2 holds. If the distribution
1008
+ of the training set is the same as the test set, the training set can be used to determine whether P ≥ M /2 is likely
1009
+ to hold. Furthermore, a domain expert could estimate whether it is likely that a dataset contains more positives than
1010
+ negatives. Take for example a cybersecurity dataset, where there are often significantly less harmful instances and
1011
+ more normal instances (Wheelus et al., 2018). There are thus many ways to estimate if P ≥ M /2 holds. Nevertheless,
1012
+ even if the Dutch Draw baseline uses this information (only for the accuracy), we believe that any newly developed
1013
+ model should still beat the Dutch Draw baseline, as it does not use any feature values to improve prediction.
1014
+ Finally, we address future researchopportunities. In this paper, we have only considered binary classification. A natural
1015
+ extension would be to also consider multiclass classification (Grandini et al., 2020). Is a strategy similar to the Dutch
1016
+ Draw optimal in this case? Can a closed-form expression of the optimal baseline be derived? We believe that the three
1017
+ introduced properties (namely, input-independent, positional-invariant, and permutation-optimal) are still relevant for
1018
+ the multiclass case. This could help identify what kind of classifier is considered to be optimal. Van de Bijl et al. (2022)
1019
+ stated that the Dutch Draw baseline could be used to scale existing measures. This paper provides more motivation
1020
+ to scale measures with the Dutch Draw baseline and not by using any other input-independent classifier. Yet, it could
1021
+ still be investigated how each measure should be scaled in order to maximize the explainability behind a performance
1022
+ score.
1023
+ Disclosure statement
1024
+ The authors have no relevant financial or non-financial interests to disclose.
1025
+ Funding
1026
+ No funding was received for conducting this study.
1027
+ Availability of data
1028
+ No datasets were used in this research.
1029
+ references
1030
+ Artin, M. (2011) Algebra. Prentice Hall, 2nd edn.
1031
+ van de Bijl, E., Klein, J., Pries, J., Bhulai, S., Hoogendoorn, M. and van der Mei, R. (2022) The dutch draw: Constructing a
1032
+ universal baseline for binary prediction models. URL: https://arxiv.org/abs/2203.13084.
1033
+ Buckley, C., O’Reilly, M., Whelan, D., Farrell, A. V., Clark, L., Longo, V., Gilchrist, M. and Caulfield, B. (2017) Binary classification
1034
+ of running fatigue using a single inertial measurement unit. In 2017 IEEE 14th International Conference on Wearable and
1035
+ Implantable Body Sensor Networks (BSN), 197–201.
1036
+
1037
+ 16
1038
+ Joris Pries et al.
1039
+ Cauchy, A.-L. (1815) Mémoire sur le nombre des valeurs qu’une fonction peut acquérir lorsqu’on y permute de toutes les
1040
+ maniéres possibles les quantités qu’elle renferme. Journal de l’École polytechnique.
1041
+ Dixon, J. D. and Mortimer, B. (1996) Permutation groups, vol. 163. Springer Science & Business Media.
1042
+ Grandini, M., Bagli, E. and Visani, G. (2020) Metrics for multi-class classification: an overview.
1043
+ Li, L., Yu, Y., Bai, S., Hou, Y. and Chen, X. (2018) An effective two-step intrusion detection approach based on binary classifi-
1044
+ cation and k -nn. IEEE Access, 6, 12060–12073.
1045
+ Pirouz, B., Shaffiee Haghshenas, S., Shaffiee Haghshenas, S. and Piro, P. (2020) Investigating a serious challenge
1046
+ in the sustainable development process:
1047
+ Analysis of confirmed cases of covid-19 (new type of coronavirus)
1048
+ through a binary classification using artificial intelligence and regression analysis.
1049
+ Sustainability, 12.
1050
+ URL:
1051
+ https://www.mdpi.com/2071-1050/12/6/2427.
1052
+ Sokolova, M. and Lapalme, G. (2009) A systematic analysis of performance measures for classification tasks. Information Pro-
1053
+ cessing & Management, 45, 427–437. URL: https://www.sciencedirect.com/science/article/pii/S0306457309000259.
1054
+ Tharwat, A. (2021) Classification assessment methods.
1055
+ Applied Computing and Informatics, 17, 168–192.
1056
+ URL:
1057
+ https://doi.org/10.1016/j.aci.2018.08.003.
1058
+ Wheelus, C., Bou-Harb, E. and Zhu, X. (2018) Tackling class imbalance in cyber security datasets. In 2018 IEEE International
1059
+ Conference on Information Reuse and Integration (IRI), 229–232.
1060
+
-dE1T4oBgHgl3EQfoQRv/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
-tE1T4oBgHgl3EQfoQTL/content/tmp_files/2301.03319v1.pdf.txt ADDED
@@ -0,0 +1,1483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FullStop: Punctuation and Segmentation Prediction for
2
+ Dutch with Transformers
3
+ Vincent Vandeghinste∗
4
5
+ Oliver Guhr†
6
7
+ ∗Instituut voor de Nederlandse Taal, Leiden, the Netherlands and Centre for Computational Linguistics,
8
+ Leuven.AI, KU Leuven, Belgium
9
+ †Hochschule f¨ur Technik und Wirtschaft, Dresden, Germany
10
+ Abstract
11
+ When applying automated speech recognition (ASR) for Belgian Dutch (Van Dyck et al. 2021),
12
+ the output consists of an unsegmented stream of words, without any punctuation. A next step is
13
+ to perform segmentation and insert punctuation, making the ASR output more readable and easy
14
+ to manually correct. As far as we know there is no publicly available punctuation insertion system
15
+ for Dutch that functions at a usable level.
16
+ The model we present here is an extension of the models of Guhr et al. (2021) for Dutch and is
17
+ made publicly available.1 We trained a sequence classification model, based on the Dutch language
18
+ model RobBERT (Delobelle et al. 2020). For every word in the input sequence, the models predicts
19
+ a punctuation marker that follows the word. We have also extended a multilingual model, for cases
20
+ where the language is unknown or where code switching applies.
21
+ When performing the task of segmentation, the application of the best models onto out of
22
+ domain test data, a sliding window of 200 words of the ASR output stream is sent to the classifier,
23
+ and segmentation is applied when the system predicts a segmenting punctuation sign with a ratio
24
+ above threshold. Results show to be much better than a machine translation baseline approach.
25
+ 1. Introduction
26
+ Language is primarily a spoken medium, as every human society has a fully functioning spoken
27
+ language, and until some hundred years ago, only relatively few societies had a written language,
28
+ accessible to only a small class of people (Aronoff 2007).
29
+ In order to study properties of language performance, linguists can use corpora, and in order
30
+ to study properties of spoken language, speech corpora are often used. A written transcript of the
31
+ speech used in these corpora, aligned at the word or sentence/utterance level increases the usability
32
+ of these corpora as they facilitate search and analysis of the contents.
33
+ Manual transcription of speech corpora is a very costly process and is therefore often unavailable.
34
+ Automated speech recognition (ASR) can provide a cheap, albeit imperfect, solution, by providing
35
+ a rough transcript. Manual transcription can then be redefined as a post-editing process on the
36
+ output of the ASR system. For Belgian Dutch spoken data we can use the relatively recent ASR
37
+ system developed by Van Dyck et al. (2021).
38
+ As shown in Figure 1, incoming Belgian Dutch speech is recognized by an ASR system, resulting
39
+ in a transcript consisting of a stream of words with time stamps (not shown in Figure 1), but
40
+ without any segmentation (into sentences or utterances) or punctuation. While this already makes
41
+ it possible to search for the occurrence of specific words in the speech, the streams have a low
42
+ readability because of the lack of segmentation.
43
+ The FullStop model for Dutch provides a punctuation and segmentation prediction system, that
44
+ consists of two steps:
45
+ 1. https://huggingface.co/oliverguhr/
46
+ arXiv:2301.03319v1 [cs.CL] 9 Jan 2023
47
+
48
+ Figure 1: An incoming sound is recognized with an ASR system, resulting in a stream of words. The
49
+ FullStop approach, presented in this paper, segments this stream of words in segments, by predicting
50
+ punctuation.
51
+ 1. A sliding window of 200 words slides over the input text that needs to be segmented. Per
52
+ window the system checks how often segmenting punctuation is predicted.
53
+ If this relative
54
+ frequency is above a threshold θ, then the predicted punctuation is accepted and segmentation
55
+ is applied as well. Increasing θ will result in a higher precision at the price of a lower recall.
56
+ We have two experimental conditions with respect to the set of segmenting punctuation S:
57
+ only the full stop (S = {.}), and the full stop and the question mark (S = {., ?}).
58
+ 2. This step takes as input the 200 words from the previous step and segments it in batches
59
+ of up to 512 tokens. This is necessary since the used transformer-based models are limited
60
+ to 512 tokens input length. The model predicts for every token whether it is followed by a
61
+ punctuation sign that is part of P = {:-,?.0}, where 0 indicates that the classifier predicts that
62
+ no punctuation follows.
63
+ Together, these two steps apply the classifier of step 2 onto every sliding window of 200 words,
64
+ implying that we get a maximum of 200 punctuation predictions per word, depending on in how
65
+ many sliding windows the word appears. The ratio of predictions of a certain punctuation should
66
+ be above θ before it is accepted.
67
+ One type of speech corpora that particularly motivates this study is the preprocessing of mul-
68
+ timedia corpora, consisting of video and speech. Video is becoming an increasingly popular means
69
+ of communication, with 300 hours of video being uploaded to YouTube every minute,2 and TikTok
70
+ becoming ever more popular. It therefore makes sense that the creation of video corpora becomes
71
+ more important. Audio transcription of these video corpora is often the first step, and the usage
72
+ of ASR helps in the transcription process. There are two video corpora that motivate the current
73
+ research:
74
+ 1. The Spoken Academic Belgian Dutch corpus, and
75
+ 2. https://fortunelords.com/youtube-statistics/
76
+
77
+ Motivation
78
+ Stream of words
79
+ ASR
80
+ kijk om je heen alles beweegt alles draait zo komen wij ter
81
+ : wereld de zon de maan de planeten en de sterren kijken
82
+ : toe en wij staan in het midden onze plaats maar Nicolaas
83
+ Copernicus kwam en stelde dat de Zon in het midden staat
84
+ en dat wij om haar heen draaien net als de andere planeten
85
+ FullStop
86
+ Segmented and punctated text
87
+ kijk om je heen .
88
+ : alles beweegt .
89
+ : alles draait .
90
+ zo komen wij ter wereld .
91
+ de zon de maan de planeten en de sterren kijken toe en wij staan in het midden .
92
+ onze plaats .
93
+ maar Nicolaas Copernicus kwam en stelde dat de Zon in het midden staat en dat
94
+ wij om haar heen draaien net als de andere planeten ..2. The Belgian Federal COVID-19 Sign language (BeCoS) corpus.
95
+ Spoken Academic Belgian Dutch (SABeD)
96
+ The first corpus is the Spoken Academic Belgian
97
+ Dutch (SABeD) corpus,3 which is currently under development. The SABeD project is an interdis-
98
+ ciplinary research project which develops a corpus of spoken academic Belgian Dutch consisting of
99
+ at least 200 lectures.
100
+ Lectures are typical of higher education.
101
+ In lectures students learn new course content in a
102
+ language register they are not familiar with, viz. academic Dutch. The SABeD project will
103
+ • compile a corpus of spoken academic Belgian Dutch;
104
+ • investigate the effectiveness of ASR for automatic transcription of spoken texts;
105
+ • create a word frequency list of spoken academic Belgian Dutch and
106
+ • develop a vocabulary test of spoken academic Belgian Dutch.
107
+ The corpus is mainly based on video lectures of academic teaching to first-year bachelor students.
108
+ These videos are, as a positive consequence of the COVID-19 pandemic, abundantly available. The
109
+ lectures contain content in a language register students are not familiar with, viz. academic dutch.
110
+ The corpus will serve as a source to develop representative study and test material on academic
111
+ language. Furthermore, it can also serve as a source for linguistic research and a tool to optimize
112
+ the language policy of higher education institutions. It will allow us to create study material and
113
+ tests for international students and will be an important tool for researchers, language support and
114
+ policy makers.
115
+ An additional aim is the improvement of Belgian Dutch ASR through the creation of a spoken
116
+ Dutch corpus with manually transcribed (or corrected) speech. Based on these manual transcriptions
117
+ the ASR system of Van Dyck et al. (2021) will be retrained to improve fully automated transcriptions
118
+ at a later stage so the corpus can be expanded efficiently. Once ready, the corpus will be made freely
119
+ available for research through the Dutch Language Institute and the CLARIN Virtual Language
120
+ Observatory.4
121
+ In order to speed up the transcription process, the first step consists of applying ASR. As a
122
+ second step, human transcribers edit and correct the ASR output. A tool that provides manual
123
+ transcription functionality is ELAN (Wittenburg et al. 2006). ELAN is an annotation tool for audio
124
+ and video recordings and supports the creation of multiple tiers of annotation. We integrate the ASR
125
+ output into ELAN by converting the automatically recognized words and associated time stamps
126
+ into an ELAN tier. The human editor can easily adapt the content of the tier, but the unit of
127
+ annotation in the tier is the word, as this is the unit of output of the ASR system. This is not the
128
+ most convenient unit for manual transcription, due to the fact that ASR errors often lead to errors
129
+ over the word boundaries. Human editors would have to make changes over several units and adapt
130
+ unit boundaries (to keep the alignment with the audio/video), which is quite a time-consuming task
131
+ in ELAN. A much more convenient unit to work with is the sentence or utterance level. The model
132
+ described in this paper provides a way to segment the ASR output stream into appropriate segments,
133
+ usable for human annotation.
134
+ Within the SABeD corpus we are not going to provide manually corrected transcripts for the
135
+ entire videos, but limit these to the first 25 minutes and the last 5 minutes, to keep the data set
136
+ balanced, irrespective of the length of the videos. The rest of the video corpus will be released with
137
+ fully automatic transcripts (and fully automatic segmentation).
138
+ The Belgian Federal COVID-19 Sign language (BeCoS) corpus
139
+ The second corpus that
140
+ motivates the described punctuation and segmentation approach is the BeCoS corpus, the Belgian
141
+ federal COVID-19 Sign language video corpus. This corpus is extensively described in Vandeghinste
142
+ 3. https://www.arts.kuleuven.be/ling/language-education-society/projects/sabed
143
+ 4. https://vlo.clarin.eu
144
+
145
+ et al. (2022), and is developed within the SignON project.5 SignON is a user-centric and community-
146
+ driven project that aims to facilitate the exchange of information among Deaf, hard of hearing and
147
+ hearing individuals across Europe, targeting the Irish, British, Dutch, Flemish and Spanish sign as
148
+ well as the English, Irish, Dutch and Spanish spoken languages.
149
+ One of the bottlenecks for developing machine translation (MT) systems between sign languages
150
+ and spoken/written languages is the lack of parallel data. The BeCoS corpus addresses this issue.
151
+ It consists of 220 press conferences of the Belgian Federal Government concerning the COVID-19
152
+ pandemic, totalling 178 hours of speech. These press conferences were live interpreted into sign
153
+ language: when speech was in Dutch, the sign language was Vlaamse GebarenTaal (VGT, Flemish
154
+ Sign Language), when speech was in French, the sign language was Langue des Signes de Belgique
155
+ Francophone (LSFB, Belgian Francophone Sign Language). The Dutch-VGT part of the data can
156
+ serve as a parallel corpus for training a machine translation engine from VGT to Dutch or vice versa.
157
+ The speech in this corpus is unscripted, and manual transcription is currently unattainable.
158
+ As MT engines commonly are trained on parallel data at the sentence level, the corpus requires a
159
+ sentence-like segmentation, which is attained by the models proposed in this paper.
160
+ Segmenting transcriptions generated by ASR systems has an application in voice user interfaces
161
+ as well.
162
+ We developed the first FullStop model to segment multi sentence user statements into
163
+ single statements. The goal was to process the sentences of users’ utterances individually. This is
164
+ important as typical text classification models can only classify the users’ intention, e.g a command,
165
+ reliably if the input text does not contain multiple intentions.
166
+ ***
167
+ Section 2 presents related work. Section 3 describes the data sets we used and how they were
168
+ processed, section 4 presents the models, and section 5 first describes an experimental evaluation as
169
+ a classifier, then performs a qualitative discussion on some system output, and ends with showing
170
+ results on full stop prediction on out of domain data, using the sliding window on continuous text
171
+ streams. The final section, section 6 concludes the paper.
172
+ 2. Related Work
173
+ P˘ai¸s and Tufi¸s (2022) provides an extensive survey of what they call punctuation restoration, making
174
+ a distinction between methods that only use lexical features and methods that include audio specific
175
+ features. As we work on the recognition output of the ASR, we do not consider the latter.
176
+ Within the methods with lexical features, there are the early rule-based approaches and boot-
177
+ strapping approaches that extract rules from large corpora, such as Petasis et al. (2001). There are
178
+ also the n-gram approaches, such as Stolcke and Shriberg (1996) for sentence boundary detection.
179
+ Conditional random fields are used by Lu and Ng (2010) amongst others. Character-level recurrent
180
+ neural networks have been used by Susanto et al. (2016). Tilk and Alum¨ae (2016) approach the
181
+ punctuation restoration problem as a bidirectional recurrent neural network with attention model.
182
+ Guhr et al. (2021) lists other sources of punctuation/segmentation research. Attia et al. (2014)
183
+ constitutes a rather traditional approach to spelling and punctuation correction for Arabic. Classifi-
184
+ cation is carried out with Support Vector Machines and Conditional Random Field (CRF) classifiers,
185
+ using part-of-speech and morphological information, and obtains an F1-score of 0.56, with the CRF
186
+ classifier and a window size of five tokens.
187
+ Che et al. (2016) experiments with different neural network architectures, using pretrained GloVe
188
+ embeddings (Pennington et al. 2014) as inputs. It evaluates its models on ASR transcripts of TED
189
+ 5. https://www.signon-project.eu/
190
+
191
+ talks, predicting commas, periods, and question marks. Its best result in this 4-class classification
192
+ is an F1 -score of 0.54.
193
+ Sunkara et al. (2020) works in the clinical domain on the output of medical ASR systems. It
194
+ jointly models punctuation and truecasing by predicting a punctuation sequence and then the case of
195
+ each input word. It uses a pretrained transformer model in combination with subword embeddings
196
+ to overcome lexical sparsity in the medical domain. It carries out a fine-tuning step on medical
197
+ data and a task adaptation step, randomly masking punctuation marks, before training the actual
198
+ model. Predicting full stops and commas, it achieves F1 -scores of 0.81 (for commas) and 0.92 (for
199
+ full stops) with Bio-BERT (Lee et al. 2019), which was trained on biomedical corpora.
200
+ Previous work on multilingual punctuation prediction is described in Li and Lin (2020) and
201
+ Guerreiro et al. (2021).
202
+ Vandeghinste et al. (2018) models punctuation prediction in the context of speech translation, but
203
+ also investigates a monolingual approach for Dutch, modelling punctuation prediction as a machine
204
+ translation problem, in which the source language is the text without punctuation, and the target
205
+ language is the text with punctuation. It shows that a neural MT approach that uses LSTM cells
206
+ works much better than a language modelling approach using LSTMs, scoring on in domain data for
207
+ the punctuation set P = {., ?! :; ()/−} an F1 of 0.82. We have used this approach, but now using a
208
+ transformer model, as a baseline in the experiments in section 5.3. A statistical MT approach using
209
+ Moses (Koehn et al. 2007) is shown to work at least equally well, with F1 = 0.83.
210
+ In 2021 there was the shared task in Sentence End and Punctuation Prediction in NLG Text
211
+ (SEPP-NLG) (Tuggener and Aghaebrahimian 2021),6 which consisted of two subtasks:
212
+ 1. Fully unpunctuated sentences - full stop detection: Given the textual content of an utterance
213
+ where the full stops are fully removed, correctly detect the end of sentences by placing a full
214
+ stop in appropriate positions.
215
+ 2. Fully unpunctuated sentences - full punctuation marks: Given the textual content of an utter-
216
+ ance where all punctuation marks are fully removed, correctly predict all punctuation marks.
217
+ Guhr et al. (2021) modelled this task as a token-wise prediction and examined several language
218
+ models based on the transformer architecture. They trained two separate models for the two tasks
219
+ and submitted their results for all four languages of the shared task, reaching state-of-the-art F-
220
+ scores.
221
+ They advocated transfer learning for solving the task and showed that the multilingual
222
+ transformer models yielded better results than monolingual models. It is this approach that is taken
223
+ in the current paper, and which is applied and evaluated on Dutch.
224
+ For the SEPP-NLG task Guhr et al. (2021) also evaluated a CRF based model and found that
225
+ this approach was outperformed by transformer based models. A GRU based model was submitted
226
+ by (Masiello-Ruiz et al. 2021) for the shared task. This model scored 10 to 20 percent points lower
227
+ F1 scores than the best transformer based models. For these reasons we did not consider RNN based
228
+ models or more classical ML approaches for this work.
229
+ 3. Data
230
+ To finetune our models we experimented with two different data sets: Europarl (Koehn 2005) and
231
+ SoNaR (Oostdijk et al. 2013).
232
+ Europarl data set (EP)
233
+ contains transcribed plenary sessions of the European Parliament. For
234
+ our models we used the Europarl v8 data, to be analogous with the other languages in the model.
235
+ The text was extracted from the data downloads from OPUS (Tiedemann 2012).
236
+ 6. https://sites.google.com/view/sentence-segmentation
237
+
238
+ ...
239
+ doos
240
+ 0
241
+ 0
242
+ van
243
+ 0
244
+ 0
245
+ pandora
246
+ 0
247
+ 0
248
+ zouden
249
+ 0
250
+ 0
251
+ openen
252
+ 0
253
+ .
254
+ hoe
255
+ 0
256
+ 0
257
+ ...
258
+ op
259
+ 0
260
+ 0
261
+ de
262
+ 0
263
+ 0
264
+ volgende
265
+ 0
266
+ 0
267
+ vraag
268
+ 0
269
+ :
270
+ kunnen
271
+ 0
272
+ 0
273
+ ...
274
+ Table 1: Sepp format for text ... doos van pandora zouden openen. hoe ... op de volgende vraag:
275
+ kunnen ...
276
+ SoNaR data set
277
+ contains texts from different genres and domains in standard Dutch that have
278
+ been written after 1954. The data was obtained from the SoNaR website.7 We found that SoNaR
279
+ contains a number of artefacts like HTML code that can lead to issues when processing this data
280
+ set.
281
+ For out of domain evaluation, as described in sections 5.2 and 5.3, we make use of the OpenSub-
282
+ titles data8 for Dutch, as made available on OPUS (Lison and Tiedemann 2016). OpenSubtitles is
283
+ a large database of movie and TV subtitles. We chose this data as it mainly contains translations
284
+ of spoken language.
285
+ Data Preprocessing
286
+ Data was split at the sentence level and tokenized at the word level using
287
+ the Moses corpus preprocessing tools included in the Moses3.0 distribution (Koehn et al. 2007).
288
+ All data was truecased, as the ASR output is also truecased. The data was then converted into a
289
+ tab-separated format, where the first column contains the word, the second column contains a 0 if
290
+ the word is not followed by a full stop and a 1 if the word is followed by a full stop (to allow for
291
+ binary classification as sentence segmentation), and the third column contains a 0 if the word is not
292
+ followed by punctuation but contains the punctuation sign if it is followed by it. An example is given
293
+ in Table 1. This format is consistent with the format used in the shared task on Sentence End and
294
+ Punctuation Prediction in NLG Text (SEPP-NLG 2021) held at SwissText (Swiss Text Analytics
295
+ Conference) in 2021.
296
+ For both data sets we split the data into 75% training data and 25% test data. For the SoNaR
297
+ data set we needed to downsample the training data to 1 GB, due to limited computing resources.
298
+ 4. The Models
299
+ Transformers (Vaswani et al. 2017) and combining transformers with transfer learning (Devlin et al.
300
+ 2019) have led to performance gains for many different NLP tasks.
301
+ The first model we present here is an extension for Dutch of the models of Guhr et al. (2021).
302
+ We trained a token classification model, based on the Dutch language model RobBERT (Delobelle
303
+ et al. 2020). We also trained a Dutch model based on BERTje (de Vries et al. 2019), but found
304
+ that RobBERT slightly outperformed BERTje with a 0.75% better F1 score. For every token in
305
+ 7. http://hdl.handle.net/10032/tm-a2-h5
306
+ 8. http://www.opensubtitles.org/
307
+
308
+ the input sequence, the model predicts a punctuation marker that follows the token. The model is
309
+ trained to predict punctuation marks of the set P = {: −, ?.0}, with 0 indicating that the word is
310
+ not followed by a marker. We finetuned several variants of this model on the two different datasets.
311
+ These variants are shown in Table 2.
312
+ Transformer models can only process sequences of a fixed length, typically 512 tokens. Therefore
313
+ we implemented a sliding window approach to process the documents in our data set, which are
314
+ typically longer than 512 tokens. The simplest method to achieve that is by splitting the text into
315
+ chunks of 200 words before processing. The number of 200 words was chosen empirically to account
316
+ for the fact that words get tokenized into more than one token (subword tokenization). With this
317
+ method, it is important to leave some headroom since some words get decomposed into multiple
318
+ tokens. This problem is more prominent in languages that allow compound words, such as Dutch.
319
+ We choose to train a multilingual model for this work as well. A multilingual model can simplify
320
+ the data processing in mixed language scenarios. In our previous work (Guhr et al. 2021) we found
321
+ that multilingual models perform on par and in some cases, like Italian, significantly better than
322
+ monolingual models. We wanted to investigate if this is the case for the Dutch language as well
323
+ and trained a model on Dutch, English, German, French, and Italian texts. For the multilingual
324
+ model, we used ”xlm-roberta-base” (Conneau et al. 2020). We previously evaluated a list of current
325
+ language models and gained the best results using XLM Roberta in multilingual settings.
326
+ We choose to use the same hyper-parameters that we evaluated in our previous work.
327
+ This
328
+ hyper-parameters search included the optimiser algorithm, learning rate, random initialisation seed.
329
+ All models were trained for 3 epochs using Adafactor (Shazeer and Stern 2018) and a learning rate
330
+ of 4e−5 with a batch size of 8 and 16 as the seed. Furthermore we used 16-bit-precision training to
331
+ improve training and inference efficiency.
332
+ As explained in section 3, for our experiments we used two different data sets: Europarl (Koehn
333
+ 2005) and SoNaR (Oostdijk et al. 2013).
334
+ We trained one model for each data set, as well as
335
+ a multilingual model on Dutch, English, German, French, and Italian sentences from the Europarl
336
+ data set. For this model we used about 400 MB of data per language. Lastly we tested a combination
337
+ of all available data from the SoNaR and Europarl data set. For this model the Dutch data set was
338
+ downsampled to be on par with the other languages and contains 200 MB of Europarl and 200 MB
339
+ of SoNaR data. Table 2 provides an overview of the trained models.
340
+ Model Name
341
+ Data Set
342
+ Base Model
343
+ Monolingual Europarl
344
+ Nl EuroParl
345
+ RobBERT
346
+ Monolingual SoNaR
347
+ Nl SoNaR
348
+ RobBERT
349
+ Multilingual EP
350
+ Nl, En, Fr, De, It Europarl
351
+ xlm-roberta-base
352
+ Multilingual EP+SoNaR
353
+ Nl, En, Fr, De, It Europarl + Nl SoNaR
354
+ xlm-roberta-base
355
+ Table 2: The list of data set and model combinations that we evaluated for this work.
356
+ The models described here are made available on HuggingFace.9 We also provide a high level
357
+ software library to simplify the usage of the models.10
358
+ 5. Experimental Results
359
+ In section 5.1 we describe the evaluations of different variants of the model, evaluated as a multi-
360
+ class classifier. Section5.2 shows some qualitative evaluation. Section 5.3 describes how the model
361
+ performs on out-of-domain data.
362
+ 9. https://huggingface.co/oliverguhr/
363
+ 10. https://github.com/oliverguhr/deepmultilingualpunctuation
364
+
365
+ 5.1 Evaluation as a classifier
366
+ Table 3 compares the per class F1 scores for each model on the test set of the corresponding data
367
+ set it was trained on. Tables with the precision and recall values are presented in the Appendix.
368
+ The overall macro and micro averaged F1 scores are in the same range for every model. There are
369
+ more pronounced differences for certain classes. Question marks and full stops for models including
370
+ SoNaR data have 10 to 13 percentage points lower scores than models trained on Europarl without
371
+ SoNaR. We assume the reason for this is that the SoNaR data set contains more diverse data and
372
+ more noise (e.g. HTML code) than Europarl and is, therefore, harder to learn for the model.
373
+ Label/Model
374
+ EP
375
+ SoNaR
376
+ Multilingual EP
377
+ Multilingual EP + SoNaR
378
+ 0
379
+ 0.994
380
+ 0.986
381
+ 0.994
382
+ 0.987
383
+ .
384
+ 0.961
385
+ 0.855
386
+ 0.959
387
+ 0.854
388
+ ,
389
+ 0.811
390
+ 0.721
391
+ 0.813
392
+ 0.723
393
+ ?
394
+ 0.849
395
+ 0.687
396
+ 0.817
397
+ 0.671
398
+ -
399
+ 0.462
400
+ 0.723
401
+ 0.464
402
+ 0.613
403
+ :
404
+ 0.655
405
+ 0.697
406
+ 0.657
407
+ 0.709
408
+ macro F1
409
+ 0.789
410
+ 0.778
411
+ 0.784
412
+ 0.760
413
+ micro F1
414
+ 0.983
415
+ 0.964
416
+ 0.983
417
+ 0.965
418
+ Table 3:
419
+ Per class F1 scores for the FullStop models on the Dutch test data sets. For detailed
420
+ evaluation results of each model and per class precision and recall metrics please see the appendix.
421
+ Table 3 also shows that the multilingual Europarl model improved the F1 scores in every class
422
+ over its monolingual version. Part of this improvements can be explained by the fact that XLM-
423
+ Roberta base uses more than twice as many parameters than RobBERT. Note that it is not possible
424
+ to compare the performance of the other models directly, since models using the SoNaR data set in
425
+ Table 3 where trained and tested on different data sets. Therefore we compared the models using
426
+ an out of domain data set in section 5.3.
427
+ Figure 2 shows a confusion matrix for the Dutch language for every trained model.
428
+ Models
429
+ trained on Europarl tend to confuse dashes with commas. SoNaR based models predict 14% to 18%
430
+ of the colons and question marks as 0 or no punctuation mark. All models predict 10% to 25% of
431
+ the colons and question marks with full stops. This is to be expected, as colons are more stylistic
432
+ markers and there are no strict usage rules. Overall the Dutch language results are in line with
433
+ English, French, German and Italian language predictions from our previous work.
434
+ Furthermore we compared the performance of the different languages that both multilingual
435
+ model where trained on, in Tables 4 and 5. We think these models are useful in scenarios where
436
+ users mix languages or the source language is unknown, for example in social media posts. The
437
+ evaluation results of the multilingual Europarl model (Table 4) are comparable between all five
438
+ languages. We see an overall drop in Dutch language performance for the multilingual model using
439
+ both Europarl and SoNaR data in Table 5. This is to be expected, as the SoNaR data set is more
440
+ diverse. The results of the other four languages remain the same for both models.
441
+ For efficiency reasons we choose to train XLM-Roberta base instead of large models. Comparing
442
+ the results from Tables 4 and 5 with the finetuned multilingual model from our previous work, we
443
+ estimate that a size ”large” model could improve the macro F1 by 5%. However, XLM-Roberta
444
+ large models use more than twice as many parameters as base models, with 550 million parameters
445
+ compared to 270 million.
446
+
447
+ (a) Monolingual Europarl
448
+ ,
449
+ -
450
+ .
451
+ 0
452
+ :
453
+ ?
454
+ Predicted label
455
+ ,
456
+ -
457
+ .
458
+ 0
459
+ :
460
+ ?
461
+ True label
462
+ 0.8
463
+ 0.01
464
+ 0.018
465
+ 0.17
466
+ 0.0037 0.00098
467
+ 0.39
468
+ 0.34
469
+ 0.056
470
+ 0.2
471
+ 0.014
472
+ 0.0013
473
+ 0.028
474
+ 0.0011
475
+ 0.95
476
+ 0.012
477
+ 0.0054
478
+ 0.0027
479
+ 0.0049 0.00015 0.00031
480
+ 0.99
481
+ 7e-05
482
+ 3e-05
483
+ 0.088
484
+ 0.0076
485
+ 0.25
486
+ 0.06
487
+ 0.59
488
+ 0.0023
489
+ 0.037
490
+ 0.0016
491
+ 0.17
492
+ 0.039
493
+ 0.0024
494
+ 0.75
495
+ 0.2
496
+ 0.4
497
+ 0.6
498
+ 0.8
499
+ (b) Monolingual SoNaR
500
+ ,
501
+ -
502
+ .
503
+ 0
504
+ :
505
+ ?
506
+ Predicted label
507
+ ,
508
+ -
509
+ .
510
+ 0
511
+ :
512
+ ?
513
+ True label
514
+ 0.69
515
+ 0.0026
516
+ 0.086
517
+ 0.21
518
+ 0.0082
519
+ 0.0053
520
+ 0.11
521
+ 0.63
522
+ 0.046
523
+ 0.2
524
+ 0.012
525
+ 0.0025
526
+ 0.042
527
+ 0.00039
528
+ 0.85
529
+ 0.088
530
+ 0.0079
531
+ 0.0094
532
+ 0.0056 0.00033 0.0036
533
+ 0.99
534
+ 0.00086 0.0004
535
+ 0.041
536
+ 0.0043
537
+ 0.14
538
+ 0.15
539
+ 0.66
540
+ 0.0072
541
+ 0.04
542
+ 0.00052
543
+ 0.16
544
+ 0.14
545
+ 0.011
546
+ 0.64
547
+ 0.2
548
+ 0.4
549
+ 0.6
550
+ 0.8
551
+ (c) Multilingual EP
552
+ ,
553
+ -
554
+ .
555
+ 0
556
+ :
557
+ ?
558
+ Predicted label
559
+ ,
560
+ -
561
+ .
562
+ 0
563
+ :
564
+ ?
565
+ True label
566
+ 0.81
567
+ 0.0093
568
+ 0.016
569
+ 0.16
570
+ 0.0036 0.00093
571
+ 0.39
572
+ 0.36
573
+ 0.052
574
+ 0.18
575
+ 0.016
576
+ 0.0012
577
+ 0.025
578
+ 0.00081
579
+ 0.96
580
+ 0.01
581
+ 0.0049
582
+ 0.0021
583
+ 0.0048 0.00011 0.00026
584
+ 0.99
585
+ 7.1e-05 2.5e-05
586
+ 0.079
587
+ 0.0073
588
+ 0.25
589
+ 0.052
590
+ 0.61
591
+ 0.0027
592
+ 0.026
593
+ 0.001
594
+ 0.17
595
+ 0.032
596
+ 0.0019
597
+ 0.77
598
+ 0.2
599
+ 0.4
600
+ 0.6
601
+ 0.8
602
+ (d) Multilingual EP+SoNaR
603
+ ,
604
+ -
605
+ .
606
+ 0
607
+ :
608
+ ?
609
+ Predicted label
610
+ ,
611
+ -
612
+ .
613
+ 0
614
+ :
615
+ ?
616
+ True label
617
+ 0.73
618
+ 0.0063
619
+ 0.048
620
+ 0.2
621
+ 0.0082
622
+ 0.0059
623
+ 0.19
624
+ 0.53
625
+ 0.038
626
+ 0.23
627
+ 0.015
628
+ 0.0019
629
+ 0.074
630
+ 0.00095
631
+ 0.81
632
+ 0.093
633
+ 0.0078
634
+ 0.011
635
+ 0.0055 0.00036 0.0025
636
+ 0.99
637
+ 0.00046 0.0004
638
+ 0.044
639
+ 0.0076
640
+ 0.11
641
+ 0.14
642
+ 0.69
643
+ 0.0074
644
+ 0.068
645
+ 0.0022
646
+ 0.12
647
+ 0.18
648
+ 0.015
649
+ 0.61
650
+ 0.2
651
+ 0.4
652
+ 0.6
653
+ 0.8
654
+ Figure 2: Confusion matrices for Dutch language for the FullStop models. Note that all values are
655
+ rounded.
656
+ Label
657
+ EN
658
+ DE
659
+ FR
660
+ IT
661
+ NL
662
+ 0
663
+ 0.990
664
+ 0.996
665
+ 0.991
666
+ 0.988
667
+ 0.994
668
+ .
669
+ 0.924
670
+ 0.951
671
+ 0.921
672
+ 0.917
673
+ 0.959
674
+ ,
675
+ 0.798
676
+ 0.937
677
+ 0.811
678
+ 0.778
679
+ 0.813
680
+ ?
681
+ 0.825
682
+ 0.829
683
+ 0.800
684
+ 0.736
685
+ 0.817
686
+ -
687
+ 0.345
688
+ 0.384
689
+ 0.353
690
+ 0.344
691
+ 0.464
692
+ :
693
+ 0.535
694
+ 0.608
695
+ 0.578
696
+ 0.544
697
+ 0.657
698
+ macro F1
699
+ 0.736
700
+ 0.784
701
+ 0.742
702
+ 0.718
703
+ 0.784
704
+ micro F1
705
+ 0.975
706
+ 0.987
707
+ 0.977
708
+ 0.972
709
+ 0.983
710
+ Table 4: Per class F1 scores of the multilingual Europarl model. Tested on English, German, French,
711
+ Italian and Dutch language on the test data set.
712
+ 5.2 Qualitative Evaluation
713
+ To better understand the capabilities and the limitations of the model, we qualitatively discuss some
714
+ examples, presented in Table 6. The examples are selected from the OpenSubtitles corpus (Lison
715
+ and Tiedemann 2016).
716
+
717
+ Label
718
+ EN
719
+ DE
720
+ FR
721
+ IT
722
+ NL
723
+ 0
724
+ 0.990
725
+ 0.996
726
+ 0.991
727
+ 0.988
728
+ 0.987
729
+ .
730
+ 0.924
731
+ 0.950
732
+ 0.921
733
+ 0.917
734
+ 0.854
735
+ ,
736
+ 0.797
737
+ 0.937
738
+ 0.810
739
+ 0.778
740
+ 0.723
741
+ ?
742
+ 0.823
743
+ 0.826
744
+ 0.802
745
+ 0.731
746
+ 0.671
747
+ -
748
+ 0.349
749
+ 0.380
750
+ 0.359
751
+ 0.348
752
+ 0.613
753
+ :
754
+ 0.533
755
+ 0.606
756
+ 0.576
757
+ 0.541
758
+ 0.709
759
+ macro F1
760
+ 0.736
761
+ 0.783
762
+ 0.743
763
+ 0.717
764
+ 0.760
765
+ micro F1
766
+ 0.975
767
+ 0.987
768
+ 0.977
769
+ 0.972
770
+ 0.965
771
+ Table 5:
772
+ Per class F1 scores of the multilingual Europarl + SoNaR model. Tested on English,
773
+ German, French, Italian and Dutch language data on the test set.
774
+ The results that are shown are those of a single input of the words to the classifier, so there is
775
+ no effect of θ in Table 6.
776
+ We can see that the Gold strings of the examples contain different punctuation signs, belonging
777
+ to the set P = {., ?}.They are tokenized at the word level and truecased. The Input strings simulate
778
+ the stream of words as coming from an ASR system, without any punctuation. The Prediction
779
+ strings show the output of the classification model, not in SEPP format, but in string format. In
780
+ the examples we have marked the inserted punctuation in the Prediction in green where they are
781
+ correct and in red when there is a mismatch (be it a deletion, substitution or insertion) between
782
+ the Prediction and the Gold version. For ease of reference we have indexed the predicted or omitted
783
+ punctuation with a subscript.
784
+ The first example shows the stream of words that was also presented in Figure 1, but now
785
+ somewhat longer. Prediction 1 is a comma where the gold standard has a full stop. This is counted
786
+ as a substitution error, but it is not an implausible prediction and could be correct. The next 5
787
+ predictions, containing comas and full stops, are correct.
788
+ Then our model misses a full stop at
789
+ prediction 7, which may be explained by the next sentence starting with the conjunction en. Then
790
+ two more correct predictions and an omission of a comma (10), which can be attributed to the next
791
+ word being en again. As Dutch has no Oxford comma rule, you would not necessarily expect a
792
+ comma here. In (11) the system substitutes a full stop with a comma. A comma would be plausible
793
+ at this position. (12) is a correct full stop prediction. In (13) and (14) question marks should have
794
+ been predicted, but there is nothing in the word order that indicates that these are questions, so
795
+ this information would have to come from the intonation, which is not available to our model. Then
796
+ the system misses the final full stop (15). This may be due to the lack of context.
797
+ The second example starts with an insertion (1) of a comma. This could be considered correct if
798
+ we would put the apposition hier between commas, as is done often. The next comma, ending the
799
+ apposition is correctly predicted. (3) and (4) omit commas at the start of a relative phrase, which
800
+ is not uncommon. (5), (6) and (7) are correctly predicted full stops and commas. (8) is an omitted
801
+ comma before en. (9) is a correctly predicted full stop before an en. (10) omits a comma before a
802
+ subordinate clause. (11) correctly predicts the final full stop.
803
+ From these samples we can see that the system makes several real mistakes, but that most of
804
+ the differences between the Gold version and the Predicted version can be attributed to the fact
805
+ that there are often are no strict punctuation rules, and that the output of the system could be
806
+ argumented for. It would be interesting to see how humans would add punctuation purely based on
807
+ the input text and what the inter-annotator agreement would be, but such an exercise is outside the
808
+ scope of this paper.
809
+
810
+ Example 1
811
+ Gold
812
+ kijk om je heen . alles beweegt , alles draait . zo komen wij ter wereld . de zon ,
813
+ de maan , de planeten en de sterren kijken toe . en wij staan in het midden .
814
+ onze plaats . maar Nicolaas Copernicus kwam en stelde dat de Zon in het midden
815
+ staat , en dat wij om haar heen draaien . net als de andere planeten . een Aarde
816
+ die beweegt ? maar daar zien en voelen we toch niets van ? dat was 1543 .
817
+ Input
818
+ kijk om je heen alles beweegt alles draait zo komen wij ter wereld de zon
819
+ de maan de planeten en de sterren kijken toe en wij staan in het midden
820
+ onze plaats maar Nicolaas Copernicus kwam en stelde dat de Zon in het midden
821
+ staat en dat wij om haar heen draaien net als de andere planeten een Aarde
822
+ die beweegt maar daar zien en voelen we toch niets van dat was 1543
823
+ Prediction
824
+ kijk om je heen ,1 alles beweegt ,2 alles draait .3 zo komen wij ter wereld .4 de zon ,5
825
+ de maan ,6 de planeten en de sterren kijken toe
826
+ 7 en wij staan in het midden .8
827
+ onze plaats .9 maar Nicolaas Copernicus kwam en stelde dat de Zon in het midden
828
+ staat
829
+ 10 en dat wij om haar heen draaien ,11 net als de andere planeten .12 een Aarde
830
+ die beweegt ,13 maar daar zien en voelen we toch niets van .14 dat was 1543
831
+ 15
832
+ Example 2
833
+ Gold
834
+ en waar we nu zitten hier , dat is bij een fotografische kijker , die heel veel gelijkenis
835
+ vertoont met de kijker , die werd gebruikt door David Gill . zo ’ n kijker moet dus in
836
+ staat zijn om foto ’ s te nemen . maar als je foto ’ s neemt met die kijker , moet je
837
+ natuurlijk ook een oogje houden op het stukje hemel waar hij op gericht is , en zorgen
838
+ dat de kijker heel nauwkeurig de dagelijkse beweging van de hemel volgt . en daarom
839
+ is zo ’ n kijker zo gebouwd , dat hij een gedeelte heeft waar de fotografische plaat zich
840
+ bevindt .
841
+ Input
842
+ en waar we nu zitten hier dat is bij een fotografische kijker die heel veel gelijkenis
843
+ vertoont met de kijker die werd gebruikt door David Gill zo ’ n kijker moet dus in
844
+ staat zijn om foto ’ s te nemen maar als je foto ’ s neemt met die kijker moet je
845
+ natuurlijk ook een oogje houden op het stukje hemel waar hij op gericht is en zorgen
846
+ dat de kijker heel nauwkeurig de dagelijkse beweging van de hemel volgt en daarom
847
+ is zo ’ n kijker zo gebouwd dat hij een gedeelte heeft waar de fotografische plaat zich
848
+ bevindt
849
+ Prediction
850
+ en waar we nu zitten ,1 hier ,2 dat is bij een fotografische kijker
851
+ 3 die heel veel gelijkenis
852
+ vertoont met de kijker
853
+ 4 die werd gebruikt door David Gill .5 zo ’ n kijker moet dus in
854
+ staat zijn om foto ’ s te nemen .6 maar als je foto ’ s neemt met die kijker ,7 moet je
855
+ natuurlijk ook een oogje houden op het stukje hemel waar hij op gericht is
856
+ 8 en zorgen
857
+ dat de kijker heel nauwkeurig de dagelijkse beweging van de hemel volgt .9 en daarom
858
+ is zo ’ n kijker zo gebouwd
859
+ 10 dat hij een gedeelte heeft waar de fotografische plaat zich
860
+ bevindt .11
861
+ Table 6: We generated these examples with the FullStop SoNaR model.
862
+ 5.3 Experiments on full stop prediction on out of domain data
863
+ In this section we describe an evaluation on out of domain test data, i.e. test data coming from
864
+ OpenSubtitles, as described in section 3.
865
+ We test segmentation in two variants: with segementation set S = {.} and with segementation
866
+ set S = {.?}.
867
+ Baseline
868
+ As a baseline we tested a machine translation approach, similar to Vandeghinste et al.
869
+ (2018), in which we consider texts with all punctuation and segmentation removed as the source
870
+ language and the punctuated version as the target language.
871
+ We trained an OpenNMT (Klein et al. 2017) transformer model on a randomly resegmented
872
+ version of the SoNaR corpus complemented with the Corpus Spoken Dutch (Oostdijk et al. 2002).
873
+
874
+ Resegmenation was random, but distributed normally with an average of 14 tokens and standard
875
+ deviation of 3 tokens. These values are based on the average length and stdev of sentences in De
876
+ Standaard, according to Vandeghinste and Bult´e (2019). In order to create the training data for the
877
+ MT system, we removed all punctuation in the source side, and kept the original punctuation in the
878
+ target side.
879
+ In our best model and parameter setting, such an approach reached a segmentation prediction
880
+ F1 score of 42%, which seems not good enough for practical usage. The low F1 score is mostly due
881
+ to low recall, as shown in table 7.
882
+ Evaluation Procedure
883
+ Evaluation was performed on 1000 sentences from OpenSubtitles, and
884
+ applied with a sliding window of size 200. For every sequence of 200 words we checked where the
885
+ system inserted an element of S. We accept a segmentation if the element of S is predicted in more
886
+ than θ of all cases. We tried different θ values, but a θ = 0.1 setting seemed to provide the best
887
+ results.
888
+ Results
889
+ Table 7 shows the results for the different models we trained. It is clear that the current
890
+ models present a major improvement over the baseline MT apprach. The best F1-score for this
891
+ evaluation seems to be the monolingual model trained on SoNaR only. This may be due to the
892
+ fact that SoNaR contains different registers, amongst which some more colloquial forms of Dutch,
893
+ that may be closer to the subtitles register than the data from Europarl. Note that the multilingual
894
+ models also have good scores and an even higher precision than the monolingual models. There is
895
+ also a clear improvement when using S = {.?} as set of segmenters over just using S = {.}.
896
+ Model
897
+ S
898
+ Precision
899
+ Recall
900
+ F1-score
901
+ Baseline ONMT
902
+ {.}
903
+ 0.7187
904
+ 0.2986
905
+ 0.4219
906
+ FullStop EP
907
+ {.}
908
+ 0.8939
909
+ 0.7609
910
+ 0.8221
911
+ FullStop SoNaR
912
+ {.}
913
+ 0.8734
914
+ 0.8750
915
+ 0.8742
916
+ FullStop Multilingual
917
+ {.}
918
+ 0.9010
919
+ 0.7719
920
+ 0.8314
921
+ FullStop Multilingual EP+SoNaR
922
+ {.}
923
+ 0.9021
924
+ 0.7915
925
+ 0.8424
926
+ FullStop EP
927
+ {.?}
928
+ 0.8962
929
+ 0.8193
930
+ 0.8561
931
+ FullStop SoNaR
932
+ {.?}
933
+ 0.8749
934
+ 0.9380
935
+ 0.9053
936
+ FullStop Multilingual
937
+ {.?}
938
+ 0.9013
939
+ 0.8330
940
+ 0.8658
941
+ FullStop Multilingal EP+Sonar
942
+ {.?}
943
+ 0.9040
944
+ 0.8504
945
+ 0.8764
946
+ Table 7: Evaluation results on out of domain data
947
+ At this point, we are interested in the significance levels: do the models differ significantly or
948
+ not, and what is the 95% confidence interval?
949
+ Multiple testfiles
950
+ In order to determine whether the F-scores between the S = {.?} condition
951
+ and the S = {.} condition, or the scores for different θ values differ significantly, we have tested the
952
+ Condition
953
+ Characteristics
954
+ 95% Conf.
955
+ Model
956
+ θ
957
+ S
958
+ Median
959
+ Average
960
+ Std dev
961
+ Lo
962
+ Hi
963
+ A
964
+ SoNaR
965
+ 0.1
966
+ {.}
967
+ 0.7975
968
+ 0.7785
969
+ 0.0818
970
+ 0.5918
971
+ 0.8567
972
+ B
973
+ SoNaR
974
+ 0.2
975
+ {.}
976
+ 0.7933
977
+ 0.7746
978
+ 0.0820
979
+ 0.5882
980
+ 0.8540
981
+ C
982
+ SoNaR
983
+ 0.3
984
+ {.}
985
+ 0.7892
986
+ 0.7705
987
+ 0.0821
988
+ 0.5841
989
+ 0.8505
990
+ D
991
+ SoNaR
992
+ 0.1
993
+ {.?}
994
+ 0.8812
995
+ 0.8611
996
+ 0.0839
997
+ 0.6802
998
+ 0.9308
999
+ Table 8: Characteristics of the distribution of F1 scores over 10000 test files
1000
+
1001
+ Figure 3: Distribution of F1 scores over 10000 test files. The blue curve shows the distribution
1002
+ of using {.} as a segmentation marker. The red curve shows the distribution when using {.?} as
1003
+ segmentation markers.
1004
+ SoNaR model, which was the best scoring model in Table 7 on 10000 test sets of each 1000 sentences.
1005
+ These test sets were created by splitting up the OpenSubtitle file into sections of 1000 lines each.
1006
+ Per condition, we have evaluated these 10000 test sets, ranked the F1 scores and taken the score
1007
+ at rank 251 and at rank 9750 as the values of the 95% confidence interval.
1008
+ Table 8 lists the main characteristics of the F1 scores for the different conditions that were tested
1009
+ on the 10000 evaluation files.
1010
+ The difference between Condition A and Condition D has a p-value of 0.0981, so it is significant
1011
+ at the p < .10 level.
1012
+ Difference between Condition B and D is not significant (p = 0.100801).
1013
+ Difference between C and D has a p = 0.091266.
1014
+ The effect of the θ parameter is not significant, but the effect of adding the question mark to S
1015
+ is mildly significant at the p < .10 level.
1016
+ Figure 3 presents a visualisation of the distribution of the F1 scores for the two different S
1017
+ conditions, which shows clearly that S = {.?} scores better than only S = {.}.
1018
+ 6. Conclusions
1019
+ We have presented several models that perform punctuation prediction and evaluated them in dif-
1020
+ ferent settings. We have made various models specifically for Dutch, but have also extended the
1021
+ multilingual model from Guhr et al. (2021) with Dutch. The models use transfer learning from large
1022
+ pretrained models and are finetuned as per token classifiers.
1023
+ The models are evaluated as classifiers, reaching a similar accuracy as for the other languages,
1024
+ and they have also been tested on out-of-domain data, on which they present a great improvement
1025
+ over a baseline MT model.
1026
+ The best models are publicly available through Huggingface.11. The use of the model to actually
1027
+ predict segmentation on a stream of text, as used in the out-of-domain evaluation is made available
1028
+ on Github.12
1029
+ For future work, it would make sense to predict different sets of tokens. As for now, we have
1030
+ taken the set of tokens as defined in the shared task. Training a classifier just for the prediction
1031
+ of segmentation, punctuation signs in set S = {.?!} or for the prediction of all non-alphanumeric
1032
+ characters would be possible. The model could also be extended to predict the segmentation tokens
1033
+ 11. https://huggingface.co/oliverguhr
1034
+ 12. https://github.com/VincentCCL/Segment_FullStop
1035
+
1036
+ Distribution of F-scores
1037
+ 25.00%
1038
+ F0.1
1039
+ F0.1?
1040
+ 20.00%
1041
+ 15.00%
1042
+ 10.00%
1043
+ 5.00%
1044
+ 0.00%
1045
+ 0.60
1046
+ 0.70
1047
+ 0.80
1048
+ 0.90
1049
+ 1.00and the true case of every word in the sequence. This is a common use case in processing the output
1050
+ of automatic speech recognition systems.
1051
+ Another line of work would be to make a lighter version of the model, with fewer parameters,
1052
+ through knowledge distillation which is quicker in inference.
1053
+ All in all, we can conclude that the model we present provides a usable and practical way of
1054
+ inserting punctuation into streams of words, and therefore turning a sequence of words into a text.
1055
+ The SoNaR model came out as the best model and will therefore serve this purpose in further
1056
+ processing of the SABeD corpus and has been used in processing of the BeCoS corpus.
1057
+ 7. Acknowledgements
1058
+ Work in this paper is partly financed by the SignON project.13 This project has received funding from
1059
+ the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement
1060
+ No. 101017255. The SABeD project is funded by KU Leuven Internal Funding, Research Project
1061
+ 3H200610.
1062
+ Oliver Guhr has been funded by the European Social Fund (ESF), SAB grant number 100339497
1063
+ and the European Regional Development Funds (ERDF) (ERDF-100346119).
1064
+ References
1065
+ Aronoff, M. (2007), Language (linguistics), Scholarpedia 2 (5), pp. 3175. revision #121088.
1066
+ Attia, Mohammed, Mohamed Al-Badrashiny, and Mona Diab (2014), GWU-HASP: Hybrid Arabic
1067
+ spelling and punctuation corrector, Proceedings of the EMNLP 2014 Workshop on Arabic Nat-
1068
+ ural Language Processing (ANLP), Association for Computational Linguistics, Doha, Qatar,
1069
+ pp. 148–154. https://aclanthology.org/W14-3620.
1070
+ Che, Xiaoyin, Cheng Wang, Haojin Yang, and Christoph Meinel (2016), Punctuation prediction for
1071
+ unsegmented transcript based on word vector, Proceedings of the Tenth International Confer-
1072
+ ence on Language Resources and Evaluation (LREC’16), European Language Resources Asso-
1073
+ ciation (ELRA), Portoroˇz, Slovenia, pp. 654–658. https://aclanthology.org/L16-1103.
1074
+ Conneau, Alexis, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek,
1075
+ Francisco Guzm´an, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov (2020),
1076
+ Unsupervised cross-lingual representation learning at scale, Proceedings of the 58th Annual
1077
+ Meeting of the Association for Computational Linguistics, Association for Computational Lin-
1078
+ guistics, Online, pp. 8440–8451. https://aclanthology.org/2020.acl-main.747.
1079
+ de Vries, Wietse, Andreas van Cranenburgh, Arianna Bisazza, Tommaso Caselli, Gertjan van Noord,
1080
+ and Malvina Nissim (2019), Bertje: A dutch bert model. https://arxiv.org/abs/1912.09582.
1081
+ Delobelle,
1082
+ Pieter,
1083
+ Thomas
1084
+ Winters,
1085
+ and
1086
+ Bettina
1087
+ Berendt
1088
+ (2020),
1089
+ RobBERT:
1090
+ a
1091
+ Dutch
1092
+ RoBERTa-based Language Model, Findings of the Association for Computational Linguis-
1093
+ tics:
1094
+ EMNLP 2020, Association for Computational Linguistics, Online, pp. 3255–3265.
1095
+ https://aclanthology.org/2020.findings-emnlp.292.
1096
+ Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova (2019), BERT: Pre-training
1097
+ of deep bidirectional transformers for language understanding, Proceedings of the 2019 Confer-
1098
+ ence of the North American Chapter of the Association for Computational Linguistics: Human
1099
+ Language Technologies, Volume 1 (Long and Short Papers), Association for Computational
1100
+ Linguistics, Minneapolis, Minnesota, pp. 4171–4186. https://aclanthology.org/N19-1423.
1101
+ 13. https://signon-project.eu
1102
+
1103
+ Guerreiro, Nuno Miguel, Ricardo Rei, and Fernando Batista (2021), Towards better subtitles: A
1104
+ multilingual approach for punctuation restoration of speech transcripts, Expert Systems with
1105
+ Applications 186, pp. 115740, Elsevier.
1106
+ Guhr, Oliver, Anne-Kathrin Schumann, Frank Bahrmann, and Hans-Joachim B¨ohme (2021), Full-
1107
+ Stop: Multilingual Deep Models for Punctuation Prediction, Swiss Text Analytics Conference.
1108
+ Shared task on Sentence End and Punctuation Prediction in NLG Text.
1109
+ Klein, Guillaume, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander Rush (2017), Open-
1110
+ NMT: Open-source toolkit for neural machine translation, Proceedings of ACL 2017, System
1111
+ Demonstrations, Association for Computational Linguistics, Vancouver, Canada, pp. 67–72.
1112
+ https://aclanthology.org/P17-4012.
1113
+ Koehn,
1114
+ Philipp
1115
+ (2005),
1116
+ Europarl:
1117
+ A
1118
+ parallel
1119
+ corpus
1120
+ for
1121
+ statistical
1122
+ machine
1123
+ translation,
1124
+ Proceedings of Machine Translation Summit X: Papers,
1125
+ Phuket,
1126
+ Thailand,
1127
+ pp. 79–86.
1128
+ https://aclanthology.org/2005.mtsummit-papers.11.
1129
+ Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola
1130
+ Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondˇrej
1131
+ Bojar, Alexandra Constantin, and Evan Herbst (2007), Moses:
1132
+ Open source toolkit for
1133
+ statistical machine translation, Proceedings of the 45th Annual Meeting of the Association
1134
+ for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Ses-
1135
+ sions, Association for Computational Linguistics, Prague, Czech Republic, pp. 177–180.
1136
+ https://aclanthology.org/P07-2045.
1137
+ Lee,
1138
+ Jinhyuk,
1139
+ Wonjin
1140
+ Yoon,
1141
+ Sungdong
1142
+ Kim,
1143
+ Donghyeon
1144
+ Kim,
1145
+ Sunkyu
1146
+ Kim,
1147
+ Chan
1148
+ Ho
1149
+ So,
1150
+ and
1151
+ Jaewoo
1152
+ Kang
1153
+ (2019),
1154
+ BioBERT:
1155
+ a
1156
+ pre-trained
1157
+ biomedical
1158
+ language
1159
+ repre-
1160
+ sentation
1161
+ model
1162
+ for
1163
+ biomedical
1164
+ text
1165
+ mining,
1166
+ Bioinformatics
1167
+ 36
1168
+ (4),
1169
+ pp.
1170
+ 1234–1240.
1171
+ https://doi.org/10.1093/bioinformatics/btz682.
1172
+ Li, Xinxing and Edward Lin (2020), A 43 language multilingual punctuation prediction neural
1173
+ network model., INTERSPEECH, pp. 1067–1071.
1174
+ Lison, Pierre and J¨org Tiedemann (2016), OpenSubtitles2016: Extracting large parallel corpora
1175
+ from movie and TV subtitles, Proceedings of the Tenth International Conference on Language
1176
+ Resources and Evaluation (LREC’16), European Language Resources Association (ELRA),
1177
+ Portoroˇz, Slovenia, pp. 923–929. https://aclanthology.org/L16-1147.
1178
+ Masiello-Ruiz, Jose Manuel, Jos´e Luis L´opez Cuadrado, and Paloma Mart´ınez (2021), Participation
1179
+ of hulat-uc3m in sepp-nlg 2021 shared task (short paper), Swiss Text Analytics Conference.
1180
+ Shared task on Sentence End and Punctuation Prediction in NLG Text.
1181
+ Oostdijk, N., M. Reynaert, V. Hoste, and I. Schuurman (2013), ”the construction of a 500 mil-
1182
+ lion word reference corpus of contemporary written dutch”, Essential Speech and Language
1183
+ Technology for Dutch: Results by the STEVIN-programme, Springer Verlag.
1184
+ Oostdijk, Nelleke, Wim Goedertier, Frank van Eynde, Louis Boves, Jean-Pierre Martens, Michael
1185
+ Moortgat, and Harald Baayen (2002), Experiences from the spoken Dutch corpus project,
1186
+ Proceedings of the Third International Conference on Language Resources and Evaluation
1187
+ (LREC’02), European Language Resources Association (ELRA), Las Palmas, Canary Islands
1188
+ - Spain. http://www.lrec-conf.org/proceedings/lrec2002/pdf/98.pdf.
1189
+ P˘ai¸s, Vasile and Dan Tufi¸s (2022), Capitalization and punctuation restoration: a survey, Artificial
1190
+ Intelligence Review 55 (3), pp. 1681–1722, Springer.
1191
+
1192
+ Pennington, Jeffrey, Richard Socher, and Christopher Manning (2014), GloVe: Global vectors for
1193
+ word representation, Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-
1194
+ guage Processing (EMNLP), Association for Computational Linguistics, Doha, Qatar, pp. 1532–
1195
+ 1543. https://aclanthology.org/D14-1162.
1196
+ Petasis, Georgios, Frantz Vichot, Francis Wolinski, Georgios Paliouras, Vangelis Karkaletsis, and
1197
+ Constantine D. Spyropoulos (2001), Using machine learning to maintain rule-based named-
1198
+ entity recognition and classification systems, Proceedings of the 39th Annual Meeting of the As-
1199
+ sociation for Computational Linguistics, Association for Computational Linguistics, Toulouse,
1200
+ France, pp. 426–433. https://aclanthology.org/P01-1055.
1201
+ Shazeer, Noam and Mitchell Stern (2018), Adafactor: Adaptive learning rates with sublinear mem-
1202
+ ory cost, in Dy, Jennifer and Andreas Krause, editors, Proceedings of the 35th International
1203
+ Conference on Machine Learning, Vol. 80 of Proceedings of Machine Learning Research, PMLR,
1204
+ pp. 4596–4604.
1205
+ Stolcke, A. and E. Shriberg (1996), Automatic linguistic segmentation of conversational speech,
1206
+ Proceeding of Fourth International Conference on Spoken Language Processing. ICSLP ’96,
1207
+ Vol. 2, pp. 1005–1008 vol.2.
1208
+ Sunkara, Monica, Srikanth Ronanki, Kalpit Dixit, Sravan Bodapati, and Katrin Kirchhoff (2020),
1209
+ Robust prediction of punctuation and truecasing for medical ASR, Proceedings of the First
1210
+ Workshop on Natural Language Processing for Medical Conversations, Association for Compu-
1211
+ tational Linguistics, Online, pp. 53–62. https://aclanthology.org/2020.nlpmc-1.8.
1212
+ Susanto, Raymond Hendy, Hai Leong Chieu, and Wei Lu (2016), Learning to capitalize with
1213
+ character-level recurrent neural networks: An empirical study, Proceedings of the 2016 Con-
1214
+ ference on Empirical Methods in Natural Language Processing, Association for Computational
1215
+ Linguistics, Austin, Texas, pp. 2090–2095. https://aclanthology.org/D16-1225.
1216
+ Tiedemann, J¨org (2012), Parallel data, tools and interfaces in OPUS, Proceedings of the Eighth
1217
+ International Conference on Language Resources and Evaluation (LREC’12), European Lan-
1218
+ guage Resources Association (ELRA), Istanbul, Turkey, pp. 2214–2218.
1219
+ http://www.lrec-
1220
+ conf.org/proceedings/lrec2012/pdf/463 Paper.pdf.
1221
+ Tilk, Ottokar and Tanel Alum¨ae (2016), Bidirectional recurrent neural network with attention mech-
1222
+ anism for punctuation restoration, INTERSPEECH.
1223
+ Tuggener, Don and Ahmad Aghaebrahimian (2021), The Sentence End and Punctuation Predic-
1224
+ tion in NLG Text (SEPP-NLG) Shared Task 2021, Proceedings of the Swiss Text Analytics
1225
+ Conference 2021.
1226
+ Van Dyck, Bob, Bagher BabaAli, and Dirk Van Compernolle (2021), A Hybrid ASR System
1227
+ for Southern Dutch, Computational Linguistics in the Netherlands Journal 11, pp. 27–34.
1228
+ https://clinjournal.org/clinj/article/view/119.
1229
+ Vandeghinste, Vincent and Bram Bult´e (2019), Linguistic proxies of readability: Comparing easy-
1230
+ to-read and regular newspaper dutch, Computational Linguistics in the Netherlands Journal
1231
+ 9, pp. 81–100. https://www.clinjournal.org/clinj/article/view/97.
1232
+ Vandeghinste, Vincent, Bob Van Dyck, Mathieu De Coster, and Maud Goddefroy (2022), BeCoS cor-
1233
+ pus: Belgian Covid-19 Sign language corpus. A corpus for training Sign Language Recognition
1234
+ and Translation, Computational Linguistics in the Netherlands Journal.
1235
+
1236
+ Vandeghinste, Vincent, Lyan Verwimp, Joris Pelemans, and Patrick Wambacq (2018), A comparison
1237
+ of different punctuation prediction approaches in a translation context, Proceedings of the 21st
1238
+ Annual Conference of the European Association for Machine Translation: 28-30 May 2018,
1239
+ Universitat d’Alacant, Alacant, Spain, European Association for Machine Translation, pp. 269–
1240
+ 278.
1241
+ Vaswani,
1242
+ Ashish,
1243
+ Noam Shazeer,
1244
+ Niki Parmar,
1245
+ Jakob Uszkoreit,
1246
+ Llion Jones,
1247
+ Aidan N.
1248
+ Gomez,
1249
+ Lukasz
1250
+ Kaiser,
1251
+ and
1252
+ Illia
1253
+ Polosukhin
1254
+ (2017),
1255
+ Attention
1256
+ is
1257
+ all
1258
+ you
1259
+ need.
1260
+ https://arxiv.org/abs/1706.03762.
1261
+ Wittenburg,
1262
+ Peter,
1263
+ Hennie
1264
+ Brugman,
1265
+ Albert
1266
+ Russel,
1267
+ Alex
1268
+ Klassmann,
1269
+ and
1270
+ Han
1271
+ Sloet-
1272
+ jes (2006), ELAN: a professional framework for multimodality research, Proceedings of
1273
+ the Fifth International Conference on Language Resources and Evaluation (LREC’06),
1274
+ European
1275
+ Language
1276
+ Resources
1277
+ Association
1278
+ (ELRA),
1279
+ Genoa,
1280
+ Italy.
1281
+ http://www.lrec-
1282
+ conf.org/proceedings/lrec2006/pdf/ pdf.pdf.
1283
+ Appendix
1284
+ In this appendix we present more detailed classification evaluation results, including precision and
1285
+ recall.
1286
+ class
1287
+ precision
1288
+ recall
1289
+ F1-score
1290
+ samples
1291
+ 0
1292
+ 0.992584
1293
+ 0.994595
1294
+ 0.993588
1295
+ 9627605
1296
+ .
1297
+ 0.960450
1298
+ 0.962452
1299
+ 0.961450
1300
+ 433554
1301
+ ,
1302
+ 0.816974
1303
+ 0.804882
1304
+ 0.810883
1305
+ 379759
1306
+ ?
1307
+ 0.871368
1308
+ 0.826812
1309
+ 0.848506
1310
+ 13494
1311
+ -
1312
+ 0.619905
1313
+ 0.367690
1314
+ 0.461591
1315
+ 27341
1316
+ :
1317
+ 0.718636
1318
+ 0.602076
1319
+ 0.655212
1320
+ 18305
1321
+ accuracy
1322
+ 0.983874
1323
+ 10500058
1324
+ macro avg
1325
+ 0.829986
1326
+ 0.759751
1327
+ 0.788538
1328
+ 10500058
1329
+ weighted avg
1330
+ 0.983302
1331
+ 0.983874
1332
+ 0.983492
1333
+ 10500058
1334
+ Table 9: Monolingual Europarl model tested on Nl EuroParl data.
1335
+ class
1336
+ precision
1337
+ recall
1338
+ F1-score
1339
+ samples
1340
+ 0
1341
+ 0.982554
1342
+ 0.989277
1343
+ 0.985904
1344
+ 73926815
1345
+ .
1346
+ 0.858432
1347
+ 0.852403
1348
+ 0.855407
1349
+ 4941897
1350
+ ,
1351
+ 0.754981
1352
+ 0.689276
1353
+ 0.720634
1354
+ 3127454
1355
+ ?
1356
+ 0.732037
1357
+ 0.646400
1358
+ 0.686558
1359
+ 410416
1360
+ -
1361
+ 0.849020
1362
+ 0.629105
1363
+ 0.722703
1364
+ 331849
1365
+ :
1366
+ 0.740604
1367
+ 0.659131
1368
+ 0.697497
1369
+ 590946
1370
+ accuracy
1371
+ 0.964436
1372
+ 83329377
1373
+ macro avg
1374
+ 0.819604
1375
+ 0.744266
1376
+ 0.778117
1377
+ 83329377
1378
+ weighted avg
1379
+ 0.963170
1380
+ 0.964436
1381
+ 0.963641
1382
+ 83329377
1383
+ Table 10: Monolingual SoNaR model tested on Nl SoNaR.
1384
+
1385
+ class
1386
+ precision
1387
+ recall
1388
+ F1-score
1389
+ samples
1390
+ 0
1391
+ 0.992625
1392
+ 0.994700
1393
+ 0.993662
1394
+ 9627605
1395
+ .
1396
+ 0.960790
1397
+ 0.956852
1398
+ 0.958817
1399
+ 433554
1400
+ ,
1401
+ 0.815222
1402
+ 0.810991
1403
+ 0.813101
1404
+ 379759
1405
+ ?
1406
+ 0.867011
1407
+ 0.772047
1408
+ 0.816778
1409
+ 13494
1410
+ -
1411
+ 0.657312
1412
+ 0.358070
1413
+ 0.463597
1414
+ 27341
1415
+ :
1416
+ 0.708049
1417
+ 0.613166
1418
+ 0.657201
1419
+ 18305
1420
+ accuracy
1421
+ 0.983884
1422
+ 10500058
1423
+ macro avg
1424
+ 0.833501
1425
+ 0.750971
1426
+ 0.783859
1427
+ 10500058
1428
+ weighted avg
1429
+ 0.983364
1430
+ 0.983884
1431
+ 0.983499
1432
+ 10500058
1433
+ Table 11: Multilingual EP model tested on Nl Europarl data
1434
+ class
1435
+ precision
1436
+ recall
1437
+ F1-score
1438
+ samples
1439
+ 0
1440
+ 0.983286
1441
+ 0.990781
1442
+ 0.987020
1443
+ 8982463
1444
+ .
1445
+ 0.900062
1446
+ 0.812584
1447
+ 0.854089
1448
+ 588253
1449
+ ,
1450
+ 0.713272
1451
+ 0.732957
1452
+ 0.722980
1453
+ 356718
1454
+ ?
1455
+ 0.739526
1456
+ 0.614814
1457
+ 0.671428
1458
+ 59631
1459
+ -
1460
+ 0.727932
1461
+ 0.529030
1462
+ 0.612744
1463
+ 32828
1464
+ :
1465
+ 0.725112
1466
+ 0.694275
1467
+ 0.709358
1468
+ 49708
1469
+ accuracy
1470
+ 0.966042
1471
+ 10069601
1472
+ macro avg
1473
+ 0.798198
1474
+ 0.729074
1475
+ 0.759603
1476
+ 10069601
1477
+ weighted avg
1478
+ 0.965309
1479
+ 0.966042
1480
+ 0.965441
1481
+ 10069601
1482
+ Table 12: Multilingual EP+SoNaR tested on Nl, Europarl + Nl SoNaR data.
1483
+
-tE1T4oBgHgl3EQfoQTL/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
09E1T4oBgHgl3EQf5AUq/content/tmp_files/2301.03506v1.pdf.txt ADDED
@@ -0,0 +1,738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ This article has been published in Nature Physics: Vila-Costa, A., Gonzalez-Silveira, M.,
2
+ Rodríguez-Tinoco, C. et al. Emergence of equilibrated liquid regions within the glass. Nat. Phys.
3
+ (2022). https://doi.org/10.1038/s41567-022-01791-w
4
+
5
+ Experimental evidence of a crossover between cooperative relaxation and liquid growth
6
+ dynamics
7
+ Ana Vila-Costa, Marta Gonzalez-Silveira$, Cristian Rodríguez-Tinoco, Marta Rodríguez-López,
8
+ Javier Rodríguez-Viejo$
9
+ Departament de Física. Facultat de Ciències, Universitat Autònoma de Barcelona, 08193,
10
+ Bellaterra, Spain
11
+ Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB,
12
+ Bellaterra, 08193, Barcelona, Spain
13
+ Abstract:
14
+ In stark contrast with the conventional understanding of the glass transition, where the
15
+ transition from glass to liquid appears as a dynamic process where atoms/molecules
16
+ cooperatively relax into the equilibrium phase, we experimentally show that the nature of the
17
+ glass transition depends at a given temperature on the ratio between the relaxation time of the
18
+ glass, 𝜏𝑔𝑙𝑎𝑠𝑠, taken as its transformation time, and the alpha relaxation time, 𝜏𝛼. Although the
19
+ relaxation of liquid-cooled glasses is not totally synchronous, due to the existence of a
20
+ distribution of relaxation times, there has been no clear observation of phase separation.
21
+ However, at temperatures at which 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼 is large, high mobility regions nucleate into the
22
+ liquid phase that subsequently grow by dynamic facilitation before – or while - cooperative glass
23
+ relaxation sets into play. On the contrary, at temperatures associated to smaller 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼 the
24
+ glass transition proceeds by cooperative relaxation dynamics all-across the material. This
25
+ behavior is independent of the experimental procedure or protocol to produce the glass.
26
+
27
+ $Corresponding authors: [email protected], [email protected]
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Understanding the physics of glass formation upon cooling a liquid and its converse effect, the
37
+ transition to a supercooled liquid upon heating the glass, is still a challenge despite the intense
38
+ experimental and theoretical research of the last 100 years 1. The main difficulty stems from the
39
+ apparent disagreement between the insignificant changes of structure and the concomitant
40
+ huge variations of the dynamics across the glass transition. Whether this transition is at its core
41
+ a thermodynamic phenomenon with a hidden phase transition below the experimentally
42
+ observed at the glass transition temperature, Tg, or it is a dynamic one related to the kinetic
43
+ arrest of atoms/molecules at Tg is still an unsolved question2. A methodical experimental study
44
+ of the glass transition is also challenging, due to the limited time scale range we can
45
+ experimentally access.
46
+ Glasses can be seen as a mosaic of regions each one characterized by a different relaxation time,
47
+ resulting from the original distribution of relaxation times in the liquid state3. Since glasses are
48
+ out-of-equilibrium systems, they will evolve towards equilibrium, and therefore towards a new
49
+ distribution of relaxation times, when the glass is annealed at a certain temperature. Whether
50
+ the relaxation times will become slower or faster will be determined by the annealing
51
+ temperature being, respectively, below (ageing) or above (rejuvenation4,5, anti-aging6 or
52
+ devitrification) the limiting fictive temperature of the glass, Tf 7. This temperature is directly
53
+ related to the thermodynamic stability of the glass and can be calculated as the temperature at
54
+ which the state variable (enthalpy or density) has the same value for the glass and for the
55
+ extrapolated equilibrium liquid 8,9. While it has been recognized that glasses do not show a
56
+ unique, macroscopic Tf, but rather a microscopic dispersion of a mosaic of fictive temperatures4,
57
+ it is a useful parameter to globally define the stability of a glass. Each of these mosaic regions
58
+ conforming the glass will relax according to its mobility and the external temperature,
59
+ producing, globally, a stretching relaxation signature with an exponent beta related to the
60
+ distribution of relaxation times 3. Mean field models like the Tool-Narayanaswamy-Moynihan
61
+ (TNM) are based on this approximation to simulate the evolution of glasses under a specific
62
+ thermal history 10–12. However, this model is too simple since these regions are not isolated. One
63
+ also has to consider mobility transport, as predicted by the kinetic facilitation models, that
64
+ pushes/induces the relaxation in adjacent zones13,14. Considering both the relaxation of the
65
+
66
+ different regions and the mobility transport, the glass is expected to relax progressively towards
67
+ the equilibrium liquid, in a cooperative and practically homogeneous way. This type of relaxation
68
+ is the one expected in liquid-cooled glasses and models based on this approach fit well enough
69
+ the available experimental data 15. However, recent works based on theoretical developments
70
+ and simulations introduce one more mechanism for the transition from glass to liquid at
71
+ temperatures above the limiting fictive temperature of the glass. Wolynes et al., based on the
72
+ combination of Random First Order Theory (RFOT)16,17 and Mode Coupling Theory (MCT)18,
73
+ expose that we must consider the formation of entropy drops in the glass, small mobile glassy
74
+ regions that by statistical fluctuations relax fully into the equilibrated liquid and once relaxed,
75
+ propagate the relaxation into the less mobile adjacent regions via a kinetic facilitation process4.
76
+ This relaxation would spread as a flame, accelerating the transition of the glass into the liquid.
77
+ The spreading of this equilibrated liquid into the adjacent regions would be faster than the time
78
+ required for each of the individual regions to relax, dominating the transition of the whole glass
79
+ into the liquid. Other authors have explored this alternative view of the glass transition by
80
+ performing different type of simulations. In this way, Douglass and Harrowell, use the facilitated
81
+ kinetic Ising model to study the relaxation of the glass into the supercooled liquid and the
82
+ existence of high mobility regions is introduced as inherent dynamic heterogeneities 19.
83
+ Gutiérrez and Garrahan use local excitations to initiate the transition in the kinetically
84
+ constrained model when simulating ultrastable glasses 20. Lulli et al. introduce equilibrated
85
+ higher temperature regions in a model based on a distinguishable-particle lattice, where the
86
+ authors follow the spatial profiles of particle displacement and their interactions to study the
87
+ relaxation of the glass 21. Jack and Berthier use a triangular plaquette model based on spin
88
+ variables considering simple interactions to reproduce the relaxation of glasses equilibrated at
89
+ different temperatures (i.e. of different stability)22. They find that the transition in stable glasses
90
+ takes place via the nucleation and growth of equilibrated liquid drops, the same transformation
91
+ mechanism proposed by Wolynes et al4. Moreover, using the Avrami formalism23 they
92
+ successfully reproduce the dynamics of the transition. On the contrary, they find that glasses
93
+ equilibrated at higher temperatures, relax via a relaxation with a broad range of relaxation
94
+ times, as expected for this type of glasses. Lastly, Fullerton and Berthier 24 used the Swap Monte
95
+ Carlo approach to generate in-silico glasses of ultra-high stability. The transition of this type of
96
+ glasses into the liquid state takes place via the formation of liquid patches that grow until
97
+ consuming the static glass matrix, following again an Avrami-like kinetics. In all these models,
98
+ the requirement to observe these differentiated liquid regions is generally a big contrast in
99
+ mobility between the glass and the equilibrium liquid at that temperature. This can be an
100
+ explanation as why these liquid drops have not been observed experimentally in liquid-cooled
101
+
102
+ glasses up to now, although according to Guiselin et al. 25, even close to Tg, fast equilibrated
103
+ regions would form at the tail of the distribution of relaxation times, as shown in a recent
104
+ simulation study where equilibrated configurations of a supercooled liquid with 𝜏𝛼 ≈ 100 𝑠
105
+ where produced by a Swap Monte Carlo algorithm.
106
+ This theoretical framework, with a clear phase separation between the liquid and the remaining
107
+ untransformed glass, has been experimentally observed in thin films of vapor-deposited
108
+ ultrastable glasses, where the free surface exhibits larger mobility, and, hence, acts as a seed
109
+ plane for a liquid front propagation following the kinetic facilitation concept 26–28. The same has
110
+ been possible for the bulk glass transition in ultrastable glasses either by measuring very thick
111
+ films (several micrometers 29) or by arresting the mobility of the surface 30 and avoiding in this
112
+ way the formation of a propagating front 5,31. Ultrastable glasses are prepared by means of
113
+ Physical Vapor Deposition (PVD), which allows the obtention of glasses with outstanding kinetic
114
+ and thermodynamic stability (i.e. higher transformation temperatures and very low fictive
115
+ temperatures, respectively) 32–35, only attainable after hundreds or thousands of years of ageing
116
+ of a conventional glass 27, defined as a glass obtained by cooling the liquid at q=-10 K/min. The
117
+ requirements to prepare amorphous solids with such unique properties are a sufficiently slow
118
+ deposition rate and a deposition temperature high enough to allow the exploration of low
119
+ energy equilibrium states 27,36,37. Experimentally, it has been found that this temperature is
120
+ around 0.85Tg for most organic molecules38 for deposition rates around 0.1-0.2 nm/s, being Tg
121
+ the glass transition temperature of the conventional glass. For these ultrastable glasses, the ratio
122
+ between the average relaxation time of the glass and that of an equilibrated liquid drop at
123
+ temperatures close to Tg, (𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼), is expected to be very large, several orders of magnitude.
124
+ It has been previously shown that 𝜏𝑔𝑙𝑎𝑠𝑠(T) can be understood as the time required to
125
+ completely transform the glass into liquid at a given temperature 39,40 . We note that at Tf,
126
+ 𝜏𝑔𝑙𝑎𝑠𝑠
127
+ 𝜏𝛼
128
+ ≈ 1. When an ultrastable glass is heated up to temperatures far above its fictive
129
+ temperature, the emergence and growth of these liquid drops is apparently much faster than
130
+ the relaxation of the glass and, therefore would dominate the transition of the ultrastable glass
131
+ into the liquid. This is indeed what has been observed by Rodríguez-Viejo and coworkers, where
132
+ ultrastable vapor deposited TPD (N,N′-Bis(3-methylphenyl)-N,N′-diphenylbenzidine) thin film
133
+ glasses capped with TCTA (Tris(4-carbazoyl-9-ylphenyl)amine) were shown to transform into the
134
+ liquid by the nucleation and growth of equilibrated liquid regions when submitted to isothermal
135
+ treatments above the conventional glass transition temperature5.
136
+
137
+ However, according to models and simulations, a glass with low stability, i.e one cooled from
138
+ the liquid at standard rates, could also experience the bulk transition into the equilibrated
139
+ supercooled liquid by forming localized liquid droplets at spots with short relaxation times
140
+ provided there is sufficient mobility contrast with the adjacent regions 4,21. Although there is not
141
+ yet experimental evidence of this behavior, the measurement strategy would be to shift the
142
+ transition to the supercooled liquid to temperatures much higher than its limiting fictive
143
+ temperature, so the contrast in mobility between the liquid drops and the adjacent glass could
144
+ be high enough for the formation and propagation of these liquid regions to be faster than the
145
+ intrinsic relaxation of the surrounding glass. This assumption was already verified for surface
146
+ front transformation, where experiments by Sadtchenko et al.41 and Rodriguez-Tinoco et al.26
147
+ showed that, at sufficient high heating rates and, hence, by sufficiently shifting the
148
+ devitrification temperature of the glass, a liquid-cooled glass would also transform via front
149
+ propagation.
150
+ In this article, we demonstrate experimentally that the bulk glass transition in liquid-cooled
151
+ glasses can also take place via the formation of localized liquid regions instead of a cooperative
152
+ relaxation under specific experimental conditions. We also observe a transition between these
153
+ two mechanisms depending on the transformation temperature and the initial stability of the
154
+ glass. We study the glass transition in both vapor-deposited and liquid-cooled glasses of
155
+ different stabilities by carrying isothermal treatments above Tf. We show how all studied glasses
156
+ can rejuvenate via the formation and growth of liquid regions given enough contrast in mobility
157
+ between the glass and the equilibrated liquid, which in our case, translates into performing the
158
+ annealing at high temperature above the crossover between 𝜏𝑔𝑙𝑎𝑠𝑠 and 𝜏𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = (180 ±
159
+ 60)𝜏𝛼. When the transformation takes place below this crossover it develops through gradual
160
+ softening, that is via a progressive relaxation of the whole glass due to the small contrast in
161
+ mobility between nearby regions.
162
+ Results and discussion
163
+ We prepare TPD glasses (Tg=333 K on heating/cooling at 10 K/min) from the liquid state and
164
+ from the vapor-phase to test the presence of phase separation during the transition to the super
165
+ cooled liquid (SCL) depending on the stability of the glass and on the isothermal treatment above
166
+ Tf. The glasses we analyze are: i) vapor deposited glasses grown at two different deposition
167
+ temperatures: Tdep=285 K (0.85Tg), for the ultrastable glass (Tf=292 K) and Tdep=330 K (0.99Tg), a
168
+ glass that grows in equilibrium with the supercooled liquid and has Tf=330 K. We cap both sides
169
+ of the TPD glasses with TCTA (Tg= 428 K) to inhibit the formation of a liquid front at
170
+
171
+ surfaces/interfaces 30,31; ii) liquid-cooled glass: we deposit in the liquid state, 5 K above Tg
172
+ (Tdep=338K), we then cool it down to room temperature and then we age the resulting glass at
173
+ Tann=319 K (Tg-14 K) for 96 h until it is completely equilibrated at that temperature (Tf=319K). We
174
+ cap it afterwards with TCTA to avoid the formation of the liquid front on the surface during the
175
+ final upscan (see figure 1). Since the sample is directly deposited in the liquid state well above
176
+ Tg, this approach allows us to generalize the observation of phase separation during the glass to
177
+ liquid transition to both vapor-deposited and liquid-cooled glasses. The samples are directly
178
+ deposited onto the membrane of a nanocalorimeter which allows us to apply the thermal
179
+ protocol shown in figure 1 right after growth without breaking vacuum. After deposition the
180
+ glasses are taken to a certain temperature above the Tf of that specific glass and remain there
181
+ for different times. During this annealing treatment, the glass partially rejuvenates. We then
182
+ cool down the sample at approximately -500 K/s and perform a subsequent fast heating
183
+ (β≈3.5x104 K/s) scan with the nanocalorimeter. The heat capacity traces of the final fast upscan
184
+ are therefore representative of the thermal history of the glass after the isothermal treatment.
185
+ The fast cooling/fast heating attained with our custom-made nanocalorimetric chips is a key
186
+ point to resolve the heat capacity overshoots of glassy zones with different stabilities. That is, if
187
+ some liquid regions are formed during the previous isotherm, they will become glass regions of
188
+ very low stability because of the fast cooling rate employed5. In this case, two glass transition
189
+ signatures will be observed during heating, one at lower temperature for the very low stability
190
+ glass and one at higher temperature, corresponding to the untransformed (or partially relaxed)
191
+ glass during the isotherm.
192
+
193
+ Figure 1. a) Thermal treatment performed on the different samples. After sample preparation,
194
+ samples are annealed at Tann for different times. After cooling them down at ~-500 K/s, heat
195
+ capacity data is recorded at a heating rate of 3.5x104 K/s. Different samples under study: b)
196
+ ultrastable vapor deposited glass grown at Tdep=285 K (0.85Tg); c) low stability vapor deposited
197
+
198
+ CH3
199
+ HaC
200
+ Temperature
201
+ a)
202
+ TCTA
203
+ TPD
204
+ heating
205
+ scan
206
+ Annealing
207
+ b)
208
+ Ultrastableglass
209
+ C
210
+ Lowstableglass
211
+ 3.5x104 K/s
212
+ Tdep=285K
213
+ Tdep=330K
214
+ Tg= 333 K
215
+ sample
216
+ prepa-
217
+ fast
218
+ ration
219
+ cooling
220
+ d)
221
+ ~500K/s
222
+ Cooled from the liguid +
223
+ Agedglass
224
+ aged 96h at 319 K
225
+ Timeglass grown at Tdep=330 K (0.99Tg); d) glass obtained after depositing 5 K above Tg, cooled down
226
+ to 319 K and aged there until complete stabilization (96h).
227
+
228
+ Figure 2 shows the specific heat curves for a TPD glass deposited at Tdep=330 K (Tf=330 K) after
229
+ isothermal treatments at 341K (Tg+8K) and 347 K (Tg+14K) for different times. The as-deposited
230
+ glass, grown in equilibrium with the supercooled liquid at Tdep, is comparable to a glass obtained
231
+ by cooling the liquid at a cooling rate around 1 K/min. The transformation of this glass shows
232
+ remarkable differences depending on the annealing temperature. Annealing at Tann=341 K
233
+ results in a shift of the glass transition peak towards lower temperatures as time increases,
234
+ indicating a progressive relaxation of the glass towards the equilibrium liquid at that specific
235
+ annealing temperature. On the contrary, at Tann=347 K we see both the relaxation of the as-
236
+ deposited glass, by the shift of the original peak to lower temperatures, and the formation of
237
+ distinct liquid regions in the glass that are manifested through the apparition of a second peak
238
+ at lower temperature5 identified by a green arrow in Figure 2a and a cartoon representing the
239
+ formation and growth of the liquid drops. We would like to emphasize the relevance of what is
240
+ shown in figure 2a. The same glass can experience different transformation mechanisms during
241
+ the glass transition depending on the temperature at which the transition takes place.
242
+ Remarkably, even that both temperatures differ just by 6 K, the contrast in mobility between
243
+ liquid and glass is apparently different enough at these two temperatures to show distinct
244
+ outputs when the transformation is partially fulfilled.
245
+
246
+
247
+ Figure 2. a) Specific heat traces obtained at a scanning rate of 3x104 K/s after different annealing
248
+ treatments of samples deposited at 0.99Tg. The annealing temperatures and times are indicated
249
+ in the legend. The endothermic peak that appears at lower temperatures is an indication of the
250
+ formation of liquid patches in the glass during the annealing treatment. b) curves corresponding
251
+ to the alpha relaxation time of the liquid (blue) 42, the relaxation time of the glass (green), which
252
+
253
+ 10
254
+ 4,0-
255
+ a)
256
+ Tdep=330K
257
+ Tdep=330K
258
+ b)
259
+ Tann=341K
260
+ Tann=347K
261
+ Specific Heat (J/g/K)
262
+ 3,5
263
+ ad
264
+ 106
265
+ 0.5s
266
+ ad
267
+ 1s
268
+ 3,0
269
+ 3s
270
+ 10s
271
+ 5s
272
+ 2,5-
273
+ 30s
274
+ 10
275
+ 2
276
+ 2,0
277
+ 6
278
+ 1,5
279
+ 10
280
+ 1,0-
281
+ 0
282
+ 320
283
+ 340
284
+ 360
285
+ 380
286
+ 400
287
+ 420
288
+ 370380390400410
289
+ 440
290
+ 370380390400410
291
+ Temperature (K)
292
+ Temperature(K)
293
+ Temperature (K)depends on the limiting fictive temperature of the glass (Tf=330 K) and has been calculated
294
+ according to Rodriguez-Tinoco et al39 (green), the line corresponding to the crossover relaxation
295
+ time calculated as 𝜏𝑔𝑙𝑎𝑠𝑠 = (180 ± 60)𝜏𝛼 (grey). In orange, the temperature regions for which
296
+ a cooperative relaxation mechanism is expected for the glass transition. In green, the
297
+ temperature region where we expect to find the nucleation and growth of liquid regions during
298
+ the glass transition. The cartoons represent the two transformation mechanisms.
299
+
300
+
301
+ We propose the appearance of equilibrated regions can be rationalized from the ratio between
302
+ the relaxation time of the glass and the alpha relaxation time of the liquid (𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼) at the
303
+ temperature of the isothermal treatment. If this ratio is large, the nucleation and growth of
304
+ liquid drops dominates the transition5 since on average the relaxation of the glass is slower than
305
+ the rate at which the liquid emerges and consumes the glass. On the contrary, small ratios are
306
+ an indication that a cooperative heterogenous dynamics across the sample is fast enough to be
307
+ the main active mechanism during the transition. To further analyze this assumption and provide
308
+ a numeric estimation, we represent in figure 2b the experimental transformation times of the
309
+ glass deposited at Tdep=0.99Tg as a function of temperature (green circles). A detailed
310
+ explanation on how to calculate these times can be found in the methods section. In the same
311
+ graph, we have also plotted the alpha relaxation time (blue line) and the
312
+ relaxation/transformation time of the glass (green line), calculated as explained elsewhere39 and
313
+ briefly addressed at the methods section. In this particular case we see a change of mechanism
314
+ in a very small range of temperatures, so we assume that the crossover temperature between
315
+ the two regimes, gradual softening (orange colored) and formation of distinctive liquid regions
316
+ (green colored), should be at a temperature between these two. For the annealing at 341 K,
317
+ 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼 ≈ 60, while at Tann=347 K, 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼 ≈ 300. As a rough estimation, we take the
318
+ average between these two values as the crossover ratio. Figure 2b shows as a grey line this
319
+ crossover relaxation time, 𝜏𝑔𝑙𝑎𝑠𝑠,𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = (180 ± 60)𝜏𝛼. We use this value as a predictor to
320
+ identify the temperature required to observe the formation of isolated liquid regions during the
321
+ glass transition for a specific glass irrespective of the initial state of the glass. The transformation
322
+ time at 341 K falls to the left of the crossover line, while the one at 347 K will be at the right side,
323
+ showing at each temperature different transformation mechanisms.
324
+ The temperature of the crossover is somewhat ill-defined because of the difficulty to establish
325
+ in this region a clear difference between both mechanisms in the heat capacity traces and
326
+ therefore we represent it by a broad white-graded area (see figure 2b). The cartoons (together
327
+
328
+ with background color) in figure 2b clearly illustrate the impact of the ratio
329
+ 𝜏𝑔𝑙𝑎𝑠𝑠
330
+ 𝜏𝛼 on the
331
+ transformation, and schematically represent the transformation at both sides, showing regions
332
+ of liquids drops at the right (darker blue) within a glassy matrix (softer blue), while in the left
333
+ region the transformation is spatially less resolved.
334
+
335
+
336
+
337
+ Figure 3. a) Specific heat traces after different annealing treatments of samples deposited at
338
+ 1.05Tg, fast cooled and aged at 319K for 4 days. The annealing temperatures and times are
339
+ indicated in the legend. Left pannel: The overlap between the curve corresponding to a sample
340
+ deposited at 328K and the one annealed for 5h at 328 K indicates that after this time, the glass
341
+ has fully transformed and reached equilibrium. b) curves corresponding to the alpha relaxation
342
+ time of the liquid (blue) 42, the relaxation time of the glass (purple), and the line corresponding
343
+ to the crossover relaxation time calculated as 𝜏𝑔𝑙𝑎𝑠𝑠,𝑐𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = (180 ± 60)𝜏𝛼 (grey). Violet
344
+ circles correspond to experimental data.
345
+
346
+ A similar behavior has been observed in a glass cooled from the liquid. Figure 3a shows the
347
+ specific heat traces of a glass deposited 5 K above Tg (338 K), cooled down and aged at 319 K for
348
+ 96 h. This treatment led to full equilibration of the glass at this temperature, i.e. Tf=319 K, before
349
+ performing the isothermal treatment at 347 K (Tg+14 K) and at Tg-5 K (328 K). At both
350
+ temperatures the glass is expected to evolve towards the supercooled liquid, which means
351
+ towards faster relaxation times 7. As can be seen in the calorimetric traces, during the annealing
352
+ at 347 K, distinguishable liquid regions are formed as part of the transition of the glass into the
353
+ supercooled liquid. On the contrary, when the annealing is performed at 328 K, there is a
354
+ continuous shift of the glass transition overshoot, with no distinguishable fast-cooled glassy
355
+ regions, and the transition takes place exclusively via a cooperative relaxation process (gradual
356
+ softening). In figure 3b we represent the relaxation times of the liquid and the glass (for a glass
357
+
358
+ Tdep=338K&aged96hat319K
359
+ 10
360
+ Tdep=338K&aged96hat319K
361
+ laxation/transformationtime
362
+ Tann=328K
363
+ Tann=347K
364
+ 8
365
+ Specific heat (J/K/g)
366
+ as-aged
367
+ as-aged
368
+ 45min
369
+ 18s
370
+ 2h
371
+ 30s
372
+ 6
373
+ 5h
374
+ 1min30s
375
+ Tdep=328K
376
+ 6
377
+ a)
378
+ b)
379
+ Rel
380
+ 320
381
+ 340
382
+ 360380400420440
383
+ 360
384
+ 380
385
+ 400
386
+ 420360
387
+ 380
388
+ 400
389
+ 420
390
+ Temperature (K)
391
+ Temperature (K)
392
+ Temperature (K)with Tf=319K), the transformation times and the crossover relaxation time as in figure 2b. As can
393
+ be seen in the figure, the transformation times at 328 K (cooperative heterogenous dynamics
394
+ on the whole sample) and 347 K (localized heterogenous dynamics + facilitation) fall respectively
395
+ at left and right of the crossover line (𝜏𝑔𝑙𝑎𝑠𝑠,��𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟 = (180 ± 60)𝜏𝛼), consistent with the
396
+ transition mechanism observed during the annealing treatments (figure 3a) and providing
397
+ solidity to the assumption that this crossover curve is independent of the characteristics of the
398
+ glass. According to our estimation, for this particular glass, since its stability is high (Tf=319 K),
399
+ the annealing temperatures required to exclusively see the cooperative relaxation would be
400
+ below 338 K. In fact, the higher the stability of the glass, the lower the crossover temperature.
401
+ This is even clearer in the case of the ultrastable glass. Figure 4a shows the calorimetric traces
402
+ for a sample vapor-deposited at Tdep=285 K (0.85 Tg), which is the temperature at which the
403
+ maximum kinetic and thermodynamic stability is attained 31,43, after annealing at 347 K (Tg+14
404
+ K) for different times. At this temperature the ratio 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼 ≈ 2 ∙ 106 and the transformation
405
+ is clearly dominated by the nucleation and growth of liquid patches in the glass 5. Looking at a
406
+ similar scheme than in figures 2b and 3b, one can see in the inset of figure 4b that we would
407
+ need to attain T<300 K (33 K below Tg) with unreachable transformation times above 1020𝜏𝛼 to
408
+ transform the glass by the cooperative gradual softening.
409
+
410
+
411
+ Figure 4. a) Specific heat traces after different annealing treatments of samples deposited at
412
+ 0.85Tg (285 K) and annealed at 347 K. The annealing times are indicated in the legend. b) curves
413
+ corresponding to the alpha relaxation time of the liquid (blue) 42, the relaxation time of the glass
414
+ (black), and the line corresponding to the crossover relaxation time calculated as 𝜏𝑔𝑙𝑎𝑠𝑠 =
415
+ (180 ± 60)𝜏𝛼 (grey). The inset shows the same curves but in a lower temperature range, so the
416
+ crossover point can be depicted.
417
+
418
+
419
+ elaxation/transformationtime (s)
420
+ 15
421
+ b)
422
+ 1042
423
+ ad
424
+ 10
425
+ Tdep=285K
426
+ a
427
+ 30min
428
+ Tann=347K
429
+ 1032
430
+ 1h30min
431
+ 6
432
+ 10
433
+ 10
434
+ 3h
435
+ 1022
436
+ 4h
437
+ 5h
438
+ 1012
439
+ 290295300305
440
+ 4
441
+ 6h30min
442
+ Temperature (K)
443
+ 8h15min
444
+ 2
445
+ 10
446
+ Rel
447
+ 380
448
+ 400
449
+ 420
450
+ 460
451
+ 320
452
+ 340
453
+ 360
454
+ 380
455
+ 400
456
+ 360
457
+ 440
458
+ 420
459
+ 440
460
+ Temperature (K)
461
+ Temperature (K)The crossover line could be rationalized by considering the intrinsic dynamical heterogeneity of
462
+ the supercooled liquid state. Even though the characteristic time of the relaxation of a liquid is
463
+ monitored via a single value of structural relaxation for each temperature, the true relaxation
464
+ proceeds via non-stretched exponential decay of dynamic correlations in spontaneous density
465
+ fluctuations. The relaxation dynamics of the SCL is typically assessed by dielectric spectroscopy,
466
+ where this relaxation is manifested as a peak in the complex part of the permittivity of the
467
+ sample (dielectric loss). While the maximum of this peak is regarded as the (main) relaxation
468
+ time of the system, its width is strongly influenced by the dynamical heterogeneities in the SCL.
469
+ As a consequence, even after a time τα, parts of the SCL are still not relaxed, corresponding to
470
+ the low frequency side of the dielectric loss, which for most glass-formers, but in particular for
471
+ TPD, spreads along two orders of magnitude above the maximum of the peak (alpha relaxation
472
+ value)44. Interestingly, this value is consistent with the observation of the crossover time of
473
+ (180 ± 60)𝜏𝛼. Under this view, we could interpret that if the relaxation time of the glass is
474
+ inside the distribution of relaxation times of the liquid, the whole system relaxes as a SCL would
475
+ do, i.e., via heterogeneous relaxation mechanism with no nucleation of liquid clusters.
476
+ The relaxation time of the glass at the crossover temperature may have been the major handicap
477
+ for observing experimentally these liquid regions during the glass transition. The lower the
478
+ stability of the glass, the higher the crossover temperature and, therefore, the faster the
479
+ transformation time of the glass. In the case of the glass deposited at 0.99Tg, for instance, the
480
+ crossover occurs for transformation times of the order of a few seconds. For a conventional glass
481
+ cooled at -10 K/min with 𝜏𝛼 ≈ 100 𝑠 at Tg ‘nucleation and growth’ behavior would be identified
482
+ only at temperatures above 359 K, with transformation times around several ms. Since
483
+ conventional calorimetry is unable to work in these short time scales, most of the experiments
484
+ up to now were limited to temperatures near Tg (at the left side of the crossover) and therefore,
485
+ only the cooperative relaxation mechanism had been observed so far. Now with the general
486
+ availability of fast scanning calorimetry short time scales are within reach and we challenge
487
+ other experimental groups to carry out measurements far from equilibrium to test the
488
+ occurrence of similar behavior in other glassy systems.
489
+ Our work provides conclusive experimental evidence to test theories of the glass transition and
490
+ is compatible with models that include heterogeneous dynamics and dynamic facilitation and
491
+ predict the formation of distinct liquid regions when there exists a large contrast between the
492
+ mobility of the equilibrated liquid and the glass. We have also shown that the ratio of 𝜏𝑔𝑙𝑎𝑠𝑠/𝜏𝛼
493
+ at a given temperature appears to be a good indicator to predict the mechanism of the
494
+ transformation. Importantly, the existence of the two regimes identified in this work is
495
+
496
+ independent of the experimental procedure or protocol to produce the glass but their
497
+ exploration may require the use of ultrafast experimental techniques to identify the liquid
498
+ regions.
499
+
500
+ Acknowledgements
501
+ JRV
502
+ and
503
+ MGS
504
+ acknowledge
505
+ Grant
506
+ MAT2016-79759-R
507
+ funded
508
+ by
509
+ MCIN/AEI/
510
+ 10.13039/501100011033 and “ERDF A way of making Europe”, and Grant PID2020-117409RB-
511
+ I00 funded by MCIN/AEI/ 10.13039/501100011033. CRT is a Serra Húnter Fellow. The ICN2 was
512
+ funded by the CERCA programme / Generalitat de Catalunya. The ICN2 was supported by the
513
+ Severo Ochoa Centres of Excellence Programme, funded by the Spanish Research Agency (AEI,
514
+ Grant no. SEV-2017-0706). All the authors acknowledge L. Abad and IMB-CNM for the
515
+ fabrication of the nanocalorimeters.
516
+
517
+ References
518
+ 1.
519
+ Angell, C. A., Ngai, K. L., McKenna, G. B., McMillan, P. F. & Martin, S. W. Relaxation in
520
+ glassforming liquids and amorphous solids. J. Appl. Phys. 88, 3113–3157 (2000).
521
+ 2.
522
+ Biroli, G. & Garrahan, J. P. Perspective: The glass transition. J. Chem. Phys. 138, 12A301
523
+ (2013).
524
+ 3.
525
+ Lubchenko, V. Theory of the structural glass transition: a pedagogical review.
526
+ http://dx.doi.org/10.1080/00018732.2015.1057979 64, 283–443 (2015).
527
+ 4.
528
+ Wolynes, P. G. Spatiotemporal structures in aging and rejuvenating glasses. Proc. Natl.
529
+ Acad. Sci. U. S. A. 106, 1353–8 (2009).
530
+ 5.
531
+ Vila-Costa, A. et al. Nucleation and Growth of the Supercooled Liquid Phase Control
532
+ Glass Transition in Bulk Ultrastable Glasses. Phys. Rev. Lett. 124, (2020).
533
+ 6.
534
+ Lüttich, M. et al. Anti-Aging in Ultrastable Metallic Glasses. Phys. Rev. Lett. 120, 135504
535
+ (2018).
536
+ 7.
537
+ Zhao, J., Simon, S. L. & McKenna, G. B. Using 20-million-year-old amber to test the
538
+ super-Arrhenius behaviour of glass-forming systems. Nat. Commun. 4, (2013).
539
+ 8.
540
+ Badrinarayanan, P., Zheng, W., Li, Q. & Simon, S. L. The glass transition temperature
541
+
542
+ versus the fictive temperature. J. Non. Cryst. Solids 353, 2603–2612 (2007).
543
+ 9.
544
+ Moynihan, C. T., Lee, S.-K., Tatsumisago, M. & Minami, T. Estimation of activation
545
+ energies for structural relaxation and viscous flow from DTA and DSC experiments.
546
+ Thermochim. Acta 280–281, 153–162 (1996).
547
+ 10.
548
+ AQ, T. Relation Between inelastic deformability and thermal expansion in its annealing
549
+ range. JAm Ceram Soc 29, 240 (1946).
550
+ 11.
551
+ Narayanaswamy, S. A Model o f Structural Relaxation in Glass. JAm Ceram Soc 54, 591
552
+ (1971).
553
+ 12.
554
+ Moynihan, C. et al. STRUCTURAL RELAXATION IN VITREOUS MATERIALS. Ann. N. Y.
555
+ Acad. Sci. 279, 15–35 (1976).
556
+ 13.
557
+ Garrahan, J. P. & Chandler, D. Geometrical explanation and scaling of dynamical
558
+ heterogeneities in glass forming systems. Phys. Rev. Lett. 89, 357041–357044 (2002).
559
+ 14.
560
+ Chandler, D. & Garrahan, J. P. Dynamics on the way to forming glass: Bubbles in space-
561
+ time. Annu. Rev. Phys. Chem. 61, 191–217 (2010).
562
+ 15.
563
+ Keys, A. S., Garrahan, J. P. & Chandler, D. Calorimetric glass transition explained by
564
+ hierarchical dynamic facilitation. Proc. Natl. Acad. Sci. U. S. A. 110, 4482–4487 (2013).
565
+ 16.
566
+ Lubchenko, V. & Wolynes, P. G. Theory of structural glasses and supercooled liquids.
567
+ Annu. Rev. Phys. Chem. 58, 235–266 (2007).
568
+ 17.
569
+ Kirkpatrick, T. R., Thirumalai, D. & Wolynes, P. G. Scaling concepts for the dynamics of
570
+ viscous liquids near an ideal glassy state. Phys. Rev. A 40, 1045–1054 (1989).
571
+ 18.
572
+ Janssen, L. M. C. Mode-coupling theory of the glass transition: A primer. Front. Phys. 6,
573
+ 1–18 (2018).
574
+ 19.
575
+ Douglass, I. & Harrowell, P. Can a stable glass be superheated Modelling the kinetic
576
+ stability of coated glassy films. J. Chem. Phys. 138, 12A516-undefined (2013).
577
+ 20.
578
+ Gutiérrez, R. & Garrahan, J. P. Front propagation versus bulk relaxation in the annealing
579
+ dynamics of a kinetically constrained model of ultrastable glasses. J. Stat. Mech. Theory
580
+ Exp. 2016, 074005-undefined (2016).
581
+ 21.
582
+ Lulli, M., Lee, C. S., Deng, H. Y., Yip, C. T. & Lam, C. H. Spatial Heterogeneities in
583
+ Structural Temperature Cause Kovacs’ Expansion Gap Paradox in Aging of Glasses. Phys.
584
+
585
+ Rev. Lett. 124, 095501-undefined (2020).
586
+ 22.
587
+ Jack, R. L. & Berthier, L. The melting of stable glasses is governed by nucleation-and-
588
+ growth dynamics. J. Chem. Phys. 144, 244506-undefined (2016).
589
+ 23.
590
+ Avrami, M. Kinetics of Phase Change. I General Theory. J. Chem. Phys. 7, 1103–1112
591
+ (1939).
592
+ 24.
593
+ Fullerton, C. J. & Berthier, L. Density controls the kinetic stability of ultrastable glasses.
594
+ EPL 119, 36003-undefined (2017).
595
+ 25.
596
+ Guiselin, B., Scalliet, C. & Berthier, L. Microscopic origin of excess wings in relaxation
597
+ spectra of supercooled liquids. Nat. Phys. 2022 1–5 (2022) doi:10.1038/s41567-022-
598
+ 01508-z.
599
+ 26.
600
+ Rodríguez-Tinoco, C. et al. Surface-Bulk Interplay in Vapor-Deposited Glasses: Crossover
601
+ Length and the Origin of Front Transformation. Phys. Rev. Lett. 123, (2019).
602
+ 27.
603
+ Kearns, K. L. et al. Hiking down the energy landscape: progress toward the Kauzmann
604
+ temperature via vapor deposition. J. Phys. Chem. B 112, 4934–42 (2008).
605
+ 28.
606
+ Ràfols-Ribé, J., Gonzalez-Silveira, M., Rodríguez-Tinoco, C. & Rodríguez-Viejo, J. The role
607
+ of thermodynamic stability in the characteristics of the devitrification front of vapour-
608
+ deposited glasses of toluene. Phys. Chem. Chem. Phys. 19, 11089–11097 (2017).
609
+ 29.
610
+ Kearns, K. L., Ediger, M. D., Huth, H. & Schick, C. One Micrometer Length Scale Controls
611
+ Kinetic Stability of Low-Energy Glasses. J. Phys. Chem. Lett. 1, 388–392 (2010).
612
+ 30.
613
+ Sepúlveda, A., Swallen, S. F. & Ediger, M. D. Manipulating the properties of stable
614
+ organic glasses using kinetic facilitation. J. Chem. Phys. 138, 12A517 (2013).
615
+ 31.
616
+ Ràfols-Ribé, J. et al. Kinetic arrest of front transformation to gain access to the bulk
617
+ glass transition in ultrathin films of vapour-deposited glasses. Phys. Chem. Chem. Phys.
618
+ 20, 29989–29995 (2018).
619
+ 32.
620
+ Swallen, S. F. et al. Organic glasses with exceptional thermodynamic and kinetic
621
+ stability. Science 315, 353–6 (2007).
622
+ 33.
623
+ León-Gutierrez, E. et al. In situ nanocalorimetry of thin glassy organic films. J. Chem.
624
+ Phys. 129, 181101 (2008).
625
+ 34.
626
+ Leon-Gutierrez, E., Sepúlveda, A., Garcia, G., Clavaguera-Mora, M. T. & Rodríguez-Viejo,
627
+
628
+ J. Stability of thin film glasses of toluene and ethylbenzene formed by vapor deposition:
629
+ an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 12, 14693–8 (2010).
630
+ 35.
631
+ Leon-Gutierrez, E., Sepúlveda, A., Garcia, G., Clavaguera-Mora, M. T. & Rodríguez-Viejo,
632
+ J. Correction: Stability of thin film glasses of toluene and ethylbenzene formed by vapor
633
+ deposition: an in situ nanocalorimetric study. Phys. Chem. Chem. Phys. 18, 8244–8245
634
+ (2016).
635
+ 36.
636
+ Hellman, F. Surface‐induced ordering: A model for vapor‐deposition growth of
637
+ amorphous materials. Appl. Phys. Lett. 64, 1947 (1998).
638
+ 37.
639
+ Beasley, M. S., Bishop, C., Kasting, B. J. & Ediger, M. D. Vapor-Deposited Ethylbenzene
640
+ Glasses Approach ‘ideal Glass’ Density. J. Phys. Chem. Lett. 10, 4069–4075 (2019).
641
+ 38.
642
+ Rodriguez-Tinoco, C., Gonzalez-Silveira, M., Ramos, M. A. & Rodriguez-Viejo, J.
643
+ Ultrastable glasses: new perspectives for an old problem. La Riv. del Nuovo Cim. 2022
644
+ 1–82 (2022) doi:10.1007/S40766-022-00029-Y.
645
+ 39.
646
+ Rodríguez-Tinoco, C., Ràfols-Ribé, J., González-Silveira, M. & Rodríguez-Viejo, J.
647
+ Relaxation dynamics of glasses along a wide stability and temperature range. Sci. Rep.
648
+ 6, 1–8 (2016).
649
+ 40.
650
+ Sepúlveda, A., Tylinski, M., Guiseppi-Elie, A., Richert, R. & Ediger, M. D. Role of fragility
651
+ in the formation of highly stable organic glasses. Phys. Rev. Lett. 113, 1–5 (2014).
652
+ 41.
653
+ Cubeta, U. S. & Sadtchenko, V. Glass softening kinetics in the limit of high heating rates.
654
+ J. Chem. Phys. 150, 094508-undefined (2019).
655
+ 42.
656
+ Walters, D. M., Richert, R. & Ediger, M. D. Thermal stability of vapor-deposited stable
657
+ glasses of an organic semiconductor. J. Chem. Phys. 142, 134504 (2015).
658
+ 43.
659
+ Dalal, S. S., Walters, D. M., Lyubimov, I., de Pablo, J. J. & Ediger, M. D. Tunable
660
+ molecular orientation and elevated thermal stability of vapor-deposited organic
661
+ semiconductors. Proc. Natl. Acad. Sci. 112, 4227–4232 (2015).
662
+ 44.
663
+ Rodríguez-Tinoco, C., Rams-Baron, M., Rodríguez-Viejo, J. & Paluch, M. Emergence of a
664
+ substrate-temperature-dependent dielectric process in a prototypical vapor deposited
665
+ hole-transport glass. Sci. Reports 2018 81 8, 1–10 (2018).
666
+ 45.
667
+ Lopeandía, A. F. et al. Sensitive power compensated scanning calorimeter for analysis
668
+ of phase transformations in small samples. Rev. Sci. Instrum. 76, 065104 (2005).
669
+
670
+ 46.
671
+ Rodríguez-Viejo, J. & Lopeandía, A. F. Quasi-adiabatic, Membrane-Based, Highly
672
+ Sensitive Fast Scanning Nanocalorimetry. in Fast Scanning Calorimetry 105–149
673
+ (Springer International Publishing, 2016). doi:10.1007/978-3-319-31329-0_3.
674
+ 47.
675
+ Johari, G. P. Comment on “Glass transition in pure and doped amorphous solid water:
676
+ An ultrafast microcalorimetry study” [J. Chem. Phys. 125, 094501 (2006)]. J. Chem.
677
+ Phys. 127, 157101 (2007).
678
+ 48.
679
+ Cavagna, A. Supercooled liquids for pedestrians. Phys. Rep. 476, 51–124 (2009).
680
+ 49.
681
+ Wojnarowska, Z. et al. Broadband dielectric relaxation study at ambient and elevated
682
+ pressure of molecular dynamics of pharmaceutical: indomethacin. J. Phys. Chem. B 113,
683
+ 12536–45 (2009).
684
+ 50.
685
+ Busch, R., Bakke, E. & Johnson, W. L. Viscosity of the supercooled liquid and relaxation
686
+ at the glass transition of the Zr46.75Ti8.25Cu7.5Ni10Be27.5 bulk metallic glass forming
687
+ alloy. Acta Mater. 46, 4725–4732 (1998).
688
+ 51.
689
+ Angell, C. A. Entropy and Fragility in Supercooling Liquids. J. Res. Natl. Inst. Stand.
690
+ Technol. 102, 171 (1997).
691
+
692
+
693
+ Methods:
694
+ TCTA, with a Tg 91 K above the one of TPD (Tg=333 K), is a good candidate to arrest the mobility
695
+ of the TPD surfaces, as has been shown previously 31. So, in order to access the bulk
696
+ transformation of the TPD glass, a 13 nm TCTA layer has been deposited at the bottom and the
697
+ top of the TPD layers, with thicknesses around 65 nm. The TPD/TCTA sandwich has been
698
+ deposited on the active zone of the membrane based calorimetric chips by means of physical
699
+ vapor deposition. The deposition chamber has a N2 trap to improve the vacuum and to act as a
700
+ heat sink for the fast cooling of the samples. The base pressure is of the order of 10-8 mbar. Two
701
+ evaporators and two shutters allow the sequential evaporation of the two materials without
702
+ breaking the vacuum. The thickness is controlled by a previously calibrated quartz crystal
703
+ monitor. The temperature control during deposition and annealing treatment is performed with
704
+ the calorimetric chips, by providing a specific intensity, which will heat the Pt circuit on the
705
+ membrane. Heat scans are performed by introducing a short pulse of intensity in the chips,
706
+ which will induce a constant heating ramp. In this work, pulses of 35 mA have been used, which
707
+
708
+ result in heating rates of around 3.5·104 K/s. Data of the resistivity of the chip as a function of
709
+ time can be processed to obtain the heat capacity as function of temperature. More information
710
+ about the technique can be found in 45,46 . Specific heat data for TPD has been obtained first
711
+ subtracting the heat capacity contribution of glassy TCTA to the heat capacity curves and dividing
712
+ them by the TPD mass.
713
+ In order to calculate the relaxation/transformation time of the glass we use two different
714
+ approaches as explained elsewhere 39. In the first approach, we employ the expression 𝜏1𝛽1 =
715
+ 𝜏2𝛽2
716
+ 47 to obtain the value of the glass relaxation time from the heating rate of the experiment,
717
+ assigning this value to the onset temperature of the glass transition. As reference we use a value
718
+ for the relaxation time of the glass of 100 s for a heating rate of 10 K/min 48,49 . In the second
719
+ approach, we calculate the transformation time from the width of the transformation peak, and
720
+ the corresponding value of the heating rate, assigning it to the temperature at the maximum of
721
+ the transformation peak: ttrans(Tmax) = ΔT/β, where ΔT is the width of the transformation peak
722
+ and β the value of the heating rate during the transformation. Both approaches yield
723
+ comparable results. Previous works have already considered this equivalence 39,50. The
724
+ transformation/relaxation time curve as function of temperature corresponds to the equation
725
+ 𝜏𝑔 = 𝜏𝑔0exp [
726
+ 𝜉(𝑇𝑓
727
+ ′)𝑇0
728
+ (𝑇−𝑇0)] , which is a generalization of the well-known Vogel-Fulcher-Tamman, VFT,
729
+ equation 51, aimed at describing the dynamics of supercooled liquids and glasses with different
730
+ thermal stability. In this equation all the parameters have an analogous meaning as in VFT
731
+ equation. In this case, however, D has been substituted by a linear function of the limiting fictive
732
+ temperature of the glass, 𝜉(𝑇𝑓
733
+ ′) = 𝐴𝑇𝑓
734
+ ′ + 𝐵. In a supercooled liquid the fictive temperature Tf = T
735
+ at all temperatures, from the definition of Tf. More information of the validity of this equation
736
+ can be found in 39.
737
+
738
+
09E1T4oBgHgl3EQf5AUq/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
0NE2T4oBgHgl3EQfMwbp/content/tmp_files/2301.03729v1.pdf.txt ADDED
@@ -0,0 +1,1521 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Evaluating the Transferability of Machine-Learned Force Fields
2
+ for Material Property Modeling
3
+ Shaswat Mohantya,1, SangHyuk Yoob,1, Keonwook Kangb, Wei Cai∗,a
4
+ aDepartment of Mechanical Engineering, Stanford University, CA 94305-4040, USA
5
+ bSchool of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
6
+ Abstract
7
+ Machine-learned force fields have generated significant interest in recent years as a tool
8
+ for molecular dynamics (MD) simulations, with the aim of developing accurate and
9
+ efficient models that can replace classical interatomic potentials. However, before these
10
+ models can be confidently applied to materials simulations, they must be thoroughly
11
+ tested and validated. The existing tests on the radial distribution function and mean-
12
+ squared displacements are insufficient in assessing the transferability of these models.
13
+ Here we present a more comprehensive set of benchmarking tests for evaluating the
14
+ transferability of machine-learned force fields. We use a graph neural network (GNN)-
15
+ based force field coupled with the OpenMM package to carry out MD simulations
16
+ for Argon as a test case. Our tests include computational X-ray photon correlation
17
+ spectroscopy (XPCS) signals, which capture the density fluctuation at various length
18
+ scales in the liquid phase, as well as phonon density-of-state in the solid phase and the
19
+ liquid-solid phase transition behavior. Our results show that the model can accurately
20
+ capture the behavior of the solid phase only when the configurations from the solid
21
+ phase are included in the training dataset. This underscores the importance of appro-
22
+ priately selecting the training data set when developing machine-learned force fields.
23
+ The tests presented in this work provide a necessary foundation for the development
24
+ and application of machine-learned force fields for materials simulations.
25
+ Key words:
26
+ Graph Neural Network, Machine-learned Force Field, X-ray photon
27
+ correlation spectroscopy, Optical contrast, Phonon Density of States
28
+ Highlights
29
+ • Development of a suite of benchmarking tests, including X-ray photon correlation
30
+ spectroscopy for machine-learned force fields (code available).
31
+ ∗Corresponding author
32
+ Email address: [email protected] (Wei Cai)
33
+ 1Equal contribution
34
+ Preprint submitted to Computer Physics Communications
35
+ January 11, 2023
36
+ arXiv:2301.03729v1 [cs.LG] 10 Jan 2023
37
+
38
+ • Phonon density of states and melting point calculations are necessary tests for
39
+ the solid phase.
40
+ • Training data should include both solid and liquid configurations to accurately
41
+ model material behavior.
42
+ 1. Introduction
43
+ Molecular dynamics (MD) is a powerful tool for studying the equilibrium and trans-
44
+ port properties of many-body systems with applications in diverse fields such as ma-
45
+ terials science [1, 2, 3], polymer chemistry [4, 5, 6], biochemistry [7] and medical sci-
46
+ ence [8, 9, 10]. In MD simulations, the motion of the atoms is driven by interatomic
47
+ forces, which are evaluated using interatomic potentials. However, there are limitations
48
+ to traditional molecular dynamics simulations, including a limited length scale, a lim-
49
+ ited time scale, and insufficient force field accuracy. In recent years, machine learning
50
+ techniques have been used to address these limitations, with the goal of accelerating
51
+ molecular dynamics simulations and improving force field accuracy. Machine learning
52
+ has been used to predict atomic trajectories [11, 12] with the ultimate aim of bridging
53
+ the timescale gap between MD simulations and experiments [13, 14]. However, these
54
+ techniques often require retraining the model for different system sizes, making it chal-
55
+ lenging to apply to large systems, which are often necessary for property predictions.
56
+ As a result, there is significant interest in developing scalable machine-learning methods
57
+ for MD simulations.
58
+ Graph-based deep learning techniques have proven effective in developing accurate
59
+ and scalable force fields that can be trained on data from small simulation cells and
60
+ then applied to larger systems. Graph neural networks (GNN) can accurately predict
61
+ atomic forces with a computational cost that scales linearly with the number of atoms,
62
+ making them well-suited for large-scale simulations. Recently, GNN-based force fields
63
+ have been used to predict MD trajectories using approaches such as SchNet [15], and
64
+ DeepMD [11, 16, 17]. These force fields, when trained on high-quality ab initio data,
65
+ can perform large-scale simulations at an accuracy comparable to that of ab initio model
66
+ but only at a small fraction of the cost [18, 19, 20]. However, before GNN force fields
67
+ (or any machine-learned force fields) can be confidently deployed, their transferability
68
+ to configurations beyond the training data set must be established. Currently, most
69
+ existing benchmark tests on machine-learned force fields are limited to the radial distri-
70
+ bution function and self-diffusivity in the liquid phase. As we show below, these tests
71
+ are insufficient for establishing their reliability for materials modeling.
72
+ To this end, we present a series of benchmarking tests, comparing the predictions
73
+ of GNN-based force fields [21] to those of the original model that produces the training
74
+ data. As an example, the original model is the classical Lennard-Jones interatomic
75
+ potential for Argon. The purpose of choosing such a simple model as a benchmark in
76
+ this work is to provide a baseline to evaluate the transferability of machine-learned force
77
+ fields without incurring significant computational costs. Using such a simple model, a
78
+ 2
79
+
80
+ large amount of data can be easily generated for training and comparison purposes. The
81
+ findings from this study pave the road for future tests for machine-learned force fields
82
+ fitted to ab initio data which are much more expensive to generate. In addition to the
83
+ radial distribution function and self-diffusivity, we compare the computational X-ray
84
+ photon correlation spectroscopy (XPCS) signals [22], which capture density fluctuations
85
+ at different length scales in the liquid phase. We further show that a model trained
86
+ exclusively on liquid configurations fails to accurately capture the vibrational frequency
87
+ distribution in the solid phase. This deficiency is fixed only after the model is trained
88
+ on configurations sampled from both the liquid and solid phases. These findings raise
89
+ a concern about the transferability of the GNN-based force field and underscore the
90
+ importance of ensuring that the training data adequately cover the areas of interest in
91
+ the configurations space.
92
+ The paper is structured as follows. In Section 2 we discuss the preparation of training
93
+ data, the GNN model details, and the hyperparameters used for training the model.
94
+ Additionally, we present the metrics that will be used to analyze the performance of
95
+ the GNN-MD simulations against the MD simulations using the original model. In
96
+ Section 3, we present the results of these benchmark tests. We summarize our findings
97
+ in Section 4.
98
+ 2. Model details
99
+ GNN-based models provide a linearly scalable force field that has the potential to
100
+ be used in ab initio molecular dynamics (AIMD) simulations. However, verifying a
101
+ model against direct ab initio simulations are computationally expensive, especially for
102
+ larger systems. To address this issue, we will focus on conducting benchmarking tests
103
+ on a GNN force field that is trained on forces generated using the classical Lennard-
104
+ Jones interatomic potential. This will allow us to analyze the model’s performance
105
+ without the added computational cost of using ab initio data. We assume that the
106
+ transferability of the GNN model can be assessed when trained on forces from either
107
+ classical interatomic potentials or ab initio data, with comparable results.
108
+ 2.1. Preparation of reference data
109
+ We prepared a 256-atom configuration of Argon (Ar), described by the Lennard-
110
+ Jones (LJ) interatomic potential used in our earlier work [22], by using LAMMPS [23].
111
+ VLJ(r) = 4ϵ
112
+ ��σ
113
+ r
114
+ �12
115
+
116
+ �σ
117
+ r
118
+ �6�
119
+ ,
120
+ (1)
121
+ where ϵ = 0.0103 eV, σ = 3.40 ˚A. The density of the system used is ρ = 0.858 amu/˚A3
122
+ (0.844 in LJ unit system). The cut-off radius of the neighbor list is 8.5 ˚A (2.5 in LJ
123
+ unit system). Periodic Boundary Conditions (PBC) were applied in all three directions.
124
+ The initial positions of atoms were generated according to a perfect face-centered cu-
125
+ bic (FCC) lattice and the velocities were assigned random values corresponding to a
126
+ temperature of 10 K. To reach the state of thermal equilibrium, the Nos-Hoover NPT
127
+ 3
128
+
129
+ ensemble and the NVT ensemble were applied sequentially. The equilibration simula-
130
+ tion was performed for about 2.156 ns, with a timestep of 10.78 fs. Simulations under
131
+ both ensembles used a thermostat with a collision frequency of 0.02 /ps, a chain length
132
+ of 5, and 5 MTK [24] loops were used. For pressure control under the NPT ensemble, a
133
+ barostat with a collision frequency of 0.2 /ps was used. After implementing this proto-
134
+ col of initial equilibration, the thermostat temperature (NVT simulation) was increased
135
+ with a linear ramp from 10 K to 105 K over the 2.156 ns trajectory, during which
136
+ atomic configurations were saved every 100 timesteps. This same process is repeated
137
+ ten times with different initialization of velocities to generate a total of 20000 configu-
138
+ rations. Additionally, the configuration at the end of the initial equilibration protocol
139
+ is used as the initial state to run the analysis trajectory by using LAMMPS for the MD
140
+ results and the Atomic Simulation Environment [25] and OpenMM [26] script for the
141
+ GNN-MD simulation, respectively.
142
+ 2.2. GNN model
143
+ Our benchmarking tests are carried out on the GNN-based force field following the
144
+ GNN structure and training procedure of Li et al. [21]. For completeness, we present
145
+ a brief description of the GNN model in this section. For the GNN-based force pre-
146
+ dictor, the atomic configurations are first converted into graphs that encode the local
147
+ atomic environment. Here, each atom acts as a node, and the vectors towards neigh-
148
+ boring atoms within a cut-off radius act as edges in the graph. The node information
149
+ includes the atomic position and force vector. The edge information includes the dis-
150
+ tance between neighboring atoms and the unit vector toward the neighbors. A brief
151
+ description of each step in the GNN force field prediction is enlisted below. A more
152
+ detailed description of the model can be found in [21].
153
+ • Encoding layer
154
+ The feature v(l)
155
+ i
156
+ is an array of size h and represents the encoded node feature
157
+ at the lth message-passing layer. The reference node encoding, v(0)
158
+ i , is created
159
+ by passing the atomic species information si through an encoding multi-layer
160
+ perceptron (MLP), eN, such that v(0)
161
+ i
162
+ = eN(si). The feature e(l)
163
+ ij is also an array
164
+ of size h represents the encoded edge feature at the lth message-passing layer. The
165
+ reference edge feature is also created through an MLP, eE, where e(l)
166
+ ij = eE(qij, dij).
167
+ Here, for a given pair of atoms[i,j], the unit vector and the distance between
168
+ them are denoted by qij and dij, respectively. The superscript l is the index of
169
+ the message-passing layer, which varies from 0 to n and denotes how many layers
170
+ the features have passed through. At the encoding step, dij is represented by the
171
+ radial basis functions, following the implementation of Schnet [15].
172
+ • Message passing layer
173
+ The encoded features, v(l)
174
+ i
175
+ and e(l)
176
+ ij , are passed through the message passing layer
177
+ m(l)
178
+ j→i. The equation of the message-passing layer is as follows,
179
+ m(l)
180
+ j→i = Φ(l) �
181
+ v(l−1)
182
+ j
183
+ + e(l−1)
184
+ ij
185
+ + v(l−1)
186
+ i
187
+
188
+ ⊙ v(l−1)
189
+ j
190
+ ,
191
+ ∀j ∈ N(i),
192
+ (2)
193
+ 4
194
+
195
+ where Φ(l) denotes a MLP with the activation function being the Gaussian Error
196
+ Linear Units (GELU) function [27]. As an input of Φ(l), the edge features and
197
+ node features are added up as a vector sum since their dimensions are the same.
198
+ ⊙ refers to elemental multiplication, and j is the index of the set of neighbors
199
+ N(i) of the ith node.
200
+ Each message from j-th atom aggregates into M (l)
201
+ i
202
+ and the new node feature v(l)
203
+ i
204
+ is computed by the following equations.
205
+ M (l)
206
+ i
207
+ =
208
+
209
+ ∀j∈N(i)
210
+ m(l)
211
+ j→i,
212
+ (3)
213
+ v(l)
214
+ i
215
+ = Θ(l) �
216
+ v(l−1)
217
+ i
218
+ + M (l)
219
+ i
220
+
221
+ + v(l−1)
222
+ i
223
+ .
224
+ (4)
225
+ Here, Θ(l) is the node update MLP function at the lth layer. Eq. (4) shows that
226
+ the node features are updated recursively. However, the edge features are not
227
+ updated recursively [21]. Instead, the edge features at every level are computed
228
+ directly from the reference edge encoding through an MLP function, A(l), i.e.,
229
+ e(l)
230
+ ij = A(l)(e(0)
231
+ ij ).
232
+ • Decoding layer
233
+ At the last step of the neural network, the updated node feature is decoded into
234
+ the interatomic forces fi by executing a forward pass through the decoding MLP.
235
+ Although we present our benchmarking tests on a model trained on pair potential, the
236
+ GNN model is not constrained to a force field derived from a pair potential form. The
237
+ GNN architecture used here is also capable of learning a force field derived from ab
238
+ initio data [21].
239
+ 2.3. Details of the training
240
+ We set the number of encoding features and latent features as h = 128 and used
241
+ n = 4 message-passing layers in the GNN. The cut-off radius for converting atomic
242
+ configuration to graph is 7.5 ˚A, which is 1 ˚A smaller than that in the LJ potential.
243
+ The effects of the cutoff radius will be studied in the future. The loss function for the
244
+ training contains the L1 distance between the reference force fi and the predicted force
245
+ ˆfi, as well as a penalty function, as follows.
246
+ L = 1
247
+ N
248
+ N
249
+
250
+ i=1
251
+ ���fi − ˆfi
252
+ ���
253
+ 1 + λ
254
+ �����
255
+ 1
256
+ N
257
+ N
258
+
259
+ i=1
260
+ ˆfi
261
+ �����
262
+ 1
263
+ ,
264
+ (5)
265
+ where N is the number of atoms in the reference data. The force on the center of mass
266
+ from an interatomic potential is expected to be zero. However, the GNN model does not
267
+ compute the forces from the derivative of a potential function, we are not guaranteed a
268
+ zero force on the center of mass. We minimize the magnitude of the total force on the
269
+ entire system to prevent divergent dynamics of the center of mass by adding a penalty
270
+ 5
271
+
272
+ function to the loss function. The regularization parameter, λ, is set to 0.01 during
273
+ the training. As described earlier, we used 20,000 atomic configurations as our training
274
+ dataset. The dataset is shuffled and split into the train and test set with a 90:10 ratio.
275
+ During training, we carry out standard normalization of the atomic forces such that
276
+ the mean atomic force is zero and the variance is unity. We used PyTorch 1.11.0,
277
+ PyTorch-lightning 1.6.3, DGL 0.8.1 and Scikit-learn 0.24.2 packages to train
278
+ and test the model. We use the Adam optimizer with an exponential learning rate
279
+ scheme (from 3 × 10−4 to 1 × 10−7) during the training of the force field. The total
280
+ number of epochs is set to 30 and we choose the trained model parameter (weights and
281
+ biases) at the last epoch as the force calculator for our GNN-MD simulation.
282
+ 2.4. Metrics for model performance
283
+ Here we list the static and dynamic metrics that will be used to compare the per-
284
+ formance of the GNN-MD simulations against the MD simulations. To examine the
285
+ structure of the liquid phase we will study the pair distribution function. To examine
286
+ the dynamics of the liquid phase, we evaluate the self-diffusivity and carry out the
287
+ computational XPCS analysis on the MD trajectory. The relations to compute the
288
+ properties such as the radial distribution function, the structure factor, and the com-
289
+ putational XPCS signal, are described only briefly in A.2 and A.3 (see [22] for more
290
+ details), since the focus of this paper is to establish the accuracy of the GNN-MD in
291
+ capturing the dynamics and structure of the simulation. To evaluate the model perfor-
292
+ mance in the solid phase, we compute the phonon density of states (PDOS), and the
293
+ melting point by using the interface method. Further details on the key equations we
294
+ solve to obtain the numerical results are given in A.
295
+ 3. Numerical Results
296
+ The MD and GNN-MD simulations discussed in this section are carried out on a
297
+ 256-atom and a 4000-atom system to test the scalability and transferability of the GNN
298
+ force field which was trained on 256-atom configurations. The training samples for the
299
+ 256 and 4000 atoms system are obtained from MD simulations using LAMMPS [23]. While
300
+ in the previous work [21] only liquid configurations are included in the training data,
301
+ here we train two models: Model A is trained only using liquid configurations and
302
+ Model B is trained using both liquid and solid configurations (see Section 2.1 for the
303
+ procedure of preparing these configurations). The results presented in Sections 3.1, 3.2,
304
+ and 3.3, corresponds to Model B. However, Model A gives similar results for the tests
305
+ in these sections; hence they are omitted here for brevity. On the other hand, Model A
306
+ and Model B give different results for some of the tests involving the solid phase, and
307
+ both will be presented in Section 3.4.
308
+ The initial configuration for the testing MD and GNN-MD simulations are prepared
309
+ using the initial relaxation protocol. The final trajectory for the analysis is then run
310
+ using the same NVT ensemble as in the final relaxation step.
311
+ However, the total
312
+ simulation time extends to 539 ps with a timestep of 10.78 fs. The simulation frames
313
+ 6
314
+
315
+ are stored at 107.8 fs intervals for our analysis. In comparison to MD simulations using
316
+ the LJ potential, the GNN-MD is 101 times slower, because the atomic forces from the
317
+ LJ potential can be computed very quickly. We reiterate that the focus of this work is
318
+ to use the LJ potential as an example to test the transferability of the GNN force field
319
+ in capturing the static and dynamic properties of the material system that it is trained
320
+ on.
321
+ 3.1. Accuracy of force prediction
322
+ We test the atomic forces predicted atomic forces against the calculated atomic
323
+ forces from the Lennard-Jones potential for 1,000 sampled configurations of our 256-
324
+ atom simulation. These configurations are different from the ones used for the training
325
+ of the GNN force field. We see that the predicted forces are well correlated with the
326
+ actual forces across all atoms and all configurations, as shown in Fig. 1(a) (parity plot).
327
+ The coefficient of determination, R2, is almost 1.0 (1−R2 ≈ 10−4) which shows how well
328
+ correlated the predicted force is to the actual forces computed from LAMMPS by using
329
+ the Lennard-Jones force field. The generalizability of the force field to a 4000-atom
330
+ system is captured by the parity plot shown in Fig. 1(b), where the quality of the force
331
+ prediction remains qualitatively the same.
332
+ (a)
333
+ (b)
334
+ (c)
335
+ Figure 1: Parity plot for the predicted forces and the actual forces for the (a) 256 atom and (b) 4000
336
+ atom system. (c) Distribution of the absolute error of the predicted forces for the 256 atom and 4000
337
+ atom system over the configurations of analysis.
338
+ Figure 1(c) shows the distribution of the absolute error of the predicted forces, for the
339
+ 256-atom (distribution of atomic force components over 1,000 configurations) and the
340
+ 4000-atom (distribution of atomic force components over 100 configurations) system.
341
+ The standard deviation of the force error is 0.15 meV/˚A. We see that the absolute error
342
+ distribution is the same irrespective of the system size, which indicates the error of the
343
+ trained model and is independent of the size of the system. This establishes the quality
344
+ of the trained model consistent with previous report [21].
345
+ 3.2. Structure of liquid phase
346
+ Here we examine the orientation-averaged radial distribution function, g(r), as de-
347
+ fined in A.2. We average the g(r) over 100 configurations that are sampled every 5.34 ps
348
+ 7
349
+
350
+ 0.3
351
+ 0.2
352
+ A
353
+ 0.1
354
+ (eV
355
+ 0
356
+ -0.1
357
+ - - R2 = 1.0
358
+ F
359
+ -0.2
360
+ -0.3
361
+ -0.4
362
+ -0.4
363
+ -0.3
364
+ -0.2
365
+ -0.1
366
+ 0
367
+ 0.1
368
+ 0.2
369
+ 0.3
370
+ F
371
+ (eV/A)
372
+ pred0.4
373
+ 0.3
374
+ 0.2
375
+ A
376
+ 0.1
377
+ (eV
378
+ ref
379
+ -0.1
380
+ - - R² = 1.0
381
+ F
382
+ -0.2
383
+ -0.3
384
+ -0.4
385
+ -0.4
386
+ -0.2
387
+ 0
388
+ 0.2
389
+ 0.4
390
+ F
391
+ (eV /A)
392
+ pred0.03
393
+ 256 atom
394
+ 0.025
395
+ 4000 atom
396
+ 0.02
397
+ Probability
398
+ 0.015
399
+ 0.01
400
+ 0.005
401
+ 0
402
+ -0.5
403
+ 0
404
+ 0.5
405
+ Absolute Error
406
+ (meV/A)from our simulation. Figure 2(a) shows that the g(r) obtained from the MD and GNN-
407
+ MD simulation are in close agreement for the (small) system it is trained on, confirming
408
+ the previous observation [21]. We further find that g(r) between the MD and GNN-MD
409
+ simulation agree well with each other even for the larger simulation cell containing 4000
410
+ atoms, as shown in Fig. 2(b). We also observe that the orientation-averaged structure
411
+ factor, S(q) (not shown here), which can be obtained from the Fourier transform of g(r),
412
+ agrees between MD and GNN-MD simulations, for both the 256-atom and 4000-atom
413
+ systems.
414
+ 0
415
+ 0.5
416
+ 1
417
+ 1.5
418
+ 2
419
+ 2.5
420
+ 3
421
+ 3.5
422
+ 0
423
+ 0.5
424
+ 1
425
+ 1.5
426
+ 2
427
+ 2.5
428
+ 3
429
+ (a)
430
+ 0
431
+ 1
432
+ 2
433
+ 3
434
+ 4
435
+ 0
436
+ 0.5
437
+ 1
438
+ 1.5
439
+ 2
440
+ 2.5
441
+ 3
442
+ (b)
443
+ Figure 2: The g(r) over 100 configurations for the (a) 256 atoms and (b) 4000 atoms MD and GNN-MD
444
+ simulation.
445
+ 3.3. Dynamics of liquid phase
446
+ Given that atomic trajectories in MD simulations are chaotic, small differences in
447
+ atomic forces can lead to large divergences in the atomic trajectories at a later time.
448
+ Therefore, we don’t expect the atomic trajectories in MD and GNN-MD to agree well
449
+ with each other. However, for the GNN-based force field to be useful, the statistical
450
+ properties of the atomic trajectories need to be consistent with those of the original
451
+ MD model. A commonly tested statistical property is the self-diffusivity obtained from
452
+ the mean-squared displacement (MSD) as described in A. Figure 1 shows that the MSD
453
+ predicted by the GNN model is consistent with that from the original MD model. For
454
+ the 256-atom system, the MSD from GNN-MD agrees very well with the MD model
455
+ for the first 150 ps, after which the difference grows somewhat larger, as shown in
456
+ Fig. 3(a). For the 4000-atom system, the MSD from GNN-MD agrees very well with
457
+ the MD model for the first 300 ps, after which the difference also grows somewhat
458
+ larger, as shown in Fig. 3(b).
459
+ 8
460
+
461
+ 0
462
+ 100
463
+ 200
464
+ 300
465
+ 400
466
+ 500
467
+ 600
468
+ 0
469
+ 200
470
+ 400
471
+ 600
472
+ 800
473
+ 1000
474
+ 1200
475
+ 1400
476
+ (a)
477
+ 0
478
+ 100
479
+ 200
480
+ 300
481
+ 400
482
+ 500
483
+ 600
484
+ -200
485
+ 0
486
+ 200
487
+ 400
488
+ 600
489
+ 800
490
+ 1000
491
+ 1200
492
+ 1400
493
+ (b)
494
+ Figure 3: The mean-squared displacement (MSD) for the (a) 256 atoms and the (b) 4000 atoms from
495
+ the MD and GNN-MD simulation over the 539 ps trajectory at 100 K.
496
+ The MSD curves from the entire (∼ 539 ps) trajectories are fitted to straight
497
+ (dashed) lines to obtain the predicted self-diffusivity D (see Fig. 3). The agreement
498
+ between MD and GNN-MD is within 10% for the 256-atom system, and within 5% for
499
+ the 4000-atom system, at the temperature of 100 K. The level of agreement for the
500
+ 4000-atom system is maintained at all temperatures from 95 K to 110 K, and appears
501
+ to improve with increasing temperature, as shown in Table 1.
502
+ Temperature
503
+ D (µm2/s)
504
+ MD
505
+ GNN-MD
506
+ Relative Error (%)
507
+ 95 K
508
+ 3254.70
509
+ 3096.14
510
+ 4.87
511
+ 100 K
512
+ 3673.08
513
+ 3802.89
514
+ 3.53
515
+ 110 K
516
+ 5010.12
517
+ 4979.92
518
+ 0.60
519
+ Table 1: The self-diffusivity calculated from the MSD for the 4000 atom system at different tem-
520
+ peratures using the MD and GNN-MD simulation. The MSD for all temperatures can be found in
521
+ Fig. 11.
522
+ In addition to the bulk diffusivity, we also test the GNN-based force field by carrying
523
+ out the XPCS analysis.
524
+ This allows us to quantify the density fluctuations arising
525
+ from atomic motion at different length scales. Figure 4 shows two computed XPCS
526
+ speckle patterns from snapshots of the MD and GNN-MD trajectories, respectively.
527
+ The speckle patterns are computed for all saved configurations (∼ 107.8 fs apart) in
528
+ the atomic trajectories so that the time correlation at each pixel can be obtained.
529
+ 9
530
+
531
+ -2.21
532
+ 0
533
+ 2.21
534
+ -2.21
535
+ 0
536
+ 2.21
537
+ 1
538
+ 2
539
+ 3
540
+ 4
541
+ 5
542
+ 6
543
+ 7
544
+ 8
545
+ 9
546
+ 10
547
+ (a)
548
+ -2.21
549
+ 0
550
+ 2.21
551
+ -2.21
552
+ 0
553
+ 2.21
554
+ 1
555
+ 2
556
+ 3
557
+ 4
558
+ 5
559
+ 6
560
+ 7
561
+ 8
562
+ 9
563
+ 10
564
+ (b)
565
+ Figure 4: The speckle patterns of scattered intensity I(q) on a spherical slice (81 × 81 pixels) in the
566
+ q-space for (a) MD and (b) GNN-MD simulation.
567
+ Figure 5 shows that the decay of the time correlation of the speckle averaged over
568
+ all wave-vectors close to a given q = |q|, agrees well between MD and GNN-MD, for
569
+ both the 256-atom system and the 4000-atom system. If the system dynamics is purely
570
+ diffusive, then g2(q, τ) should decay exponentially.
571
+ 0
572
+ 50
573
+ 100
574
+ 150
575
+ 200
576
+ 250
577
+ 300
578
+ 350
579
+ 1
580
+ 1.2
581
+ 1.4
582
+ 1.6
583
+ 1.8
584
+ 2
585
+ (a)
586
+ 0
587
+ 50
588
+ 100
589
+ 150
590
+ 200
591
+ 250
592
+ 300
593
+ 350
594
+ 1
595
+ 1.2
596
+ 1.4
597
+ 1.6
598
+ 1.8
599
+ 2
600
+ (b)
601
+ Figure 5: The g2(q, τ) at q = 1.844 ± 0.029 ˚A−1 over the first 3.5574 ps for the (a) 256 atoms and the
602
+ (b) 4000 atoms MD and GNN-MD simulation at 100 K.
603
+ Figure 5 compares the time correlation for q = 1.844 ± 0.029 ˚A−1 (probing the
604
+ length scale corresponding to the first nearest neighbor). We have also carried out
605
+ the same computation for all wave-vector magnitudes from q = 0.461 ± 0.029 ˚A−1
606
+ to q = 1.844 ± 0.029 ˚A−1 and observed close agreement between MD and GNN-MD
607
+ 10
608
+
609
+ models. In all cases, we see that the g2(q, t) decays as a single exponential after the
610
+ initial sub-diffusive dynamics associated with caging effects [22], as is expected for liquid
611
+ Ar.
612
+ 0
613
+ 0.5
614
+ 1
615
+ 1.5
616
+ 2
617
+ 2.5
618
+ 3
619
+ 3.5
620
+ 2
621
+ 4
622
+ 6
623
+ 8
624
+ 10
625
+ 12
626
+ 14
627
+ (a)
628
+ 0
629
+ 0.5
630
+ 1
631
+ 1.5
632
+ 2
633
+ 2.5
634
+ 3
635
+ 3.5
636
+ 2
637
+ 4
638
+ 6
639
+ 8
640
+ 10
641
+ 12
642
+ 14
643
+ (b)
644
+ Figure 6: The Γ(q) as a function of q2 for the (a) 256 atoms and the (b) 4000 atoms MD and GNN-MD
645
+ simulation at 100 K.
646
+ From g2(q, τ), we extract the rate of exponential decay Γ(q) in the long time limit,
647
+ which reveals the dispersion relation in the liquid [22]. Figure 6 shows that the Γ(q)
648
+ function obtained from MD and GNN-MD are in good agreement. Interestingly, the
649
+ agreement appears better in the 4000-atom system than in the 256-atom system on
650
+ which the GNN-base force field is trained. Additionally, we found that the dispersion
651
+ relation from the GNN-MD simulation agrees well with MD simulation results for all
652
+ temperatures of 95 K, 100 K, and 110 K (see Fig. 13).
653
+ 0
654
+ 5
655
+ 10
656
+ 15
657
+ 20
658
+ 25
659
+ 0
660
+ 0.2
661
+ 0.4
662
+ 0.6
663
+ 0.8
664
+ 1
665
+ (a)
666
+ 0
667
+ 5
668
+ 10
669
+ 15
670
+ 20
671
+ 25
672
+ 0
673
+ 0.2
674
+ 0.4
675
+ 0.6
676
+ 0.8
677
+ 1
678
+ (b)
679
+ Figure 7: The optical contrast β∆(q) as a function of X-ray pulse width (∆τ) for the (a) 256 atoms
680
+ and the (b) 4000 atoms MD and GNN-MD simulation for |q| = 1.844 ± 0.029 ˚A−1 at 100 K.
681
+ 11
682
+
683
+ In addition to the dynamics obtained from the XPCS speckle fluctuations, we also
684
+ test the statistical distribution of the X-ray speckles by evaluating the optical contrast in
685
+ the q-range |q| = 1.844± 0.029 ˚A−1 for varying pulse widths, ∆τ, of the incident X-ray.
686
+ Figure 7 shows that the optical contrast obtained from MD and GNN-MD models are
687
+ in close agreement. The optical contrast β∆(q) is expected to decrease with increasing
688
+ pulse width, ∆τ, where the time at which β∆(q) decreases to half of its maximum value
689
+ gives an estimate of the correlation time. Table 2 lists the correlation time obtained
690
+ at three temperatures, where the estimates from MD and GNN-MD models agree well
691
+ with each other (time resolution of 0.11 ps).
692
+ Temperature
693
+ Correlation time (ps)
694
+ MD
695
+ GNN-MD
696
+ Relative Error (%)
697
+ 95 K
698
+ 2.16
699
+ 2.25
700
+ ∼ 4.17
701
+ 100 K
702
+ 2.05
703
+ 2.05
704
+ ∼ 0.0
705
+ 110 K
706
+ 1.83
707
+ 1.83
708
+ ∼ 0.0
709
+ Table 2: The correlation time (time taken for β∆(q) to drop to 0.5) for the 4000 atom system at
710
+ different temperatures using the MD and GNN-MD simulation. The β∆(q) as a function of ∆τ for all
711
+ temperatures can be found in Fig. 14.
712
+ 3.4. Solid phase and melting
713
+ In order to test the model performance in the solid phase, we performed MD and
714
+ GNN-MD simulations of a face-centered cubic (FCC) lattice at 20 K, which is below
715
+ the melting temperature. The resulting pair distribution function g(r) captures the
716
+ amplitude of thermal vibration in the solid phase. Figure 8 shows that the GNN-MD
717
+ captures the g(r) of the solid phase accurately even for Model A, which is the GNN-
718
+ based force field trained exclusively on liquid configurations. Similar results for the
719
+ predicted g(r) of the solid phase are observed using Model B (not shown).
720
+ 0
721
+ 0.5
722
+ 1
723
+ 1.5
724
+ 2
725
+ 2.5
726
+ 3
727
+ 3.5
728
+ 4
729
+ 0
730
+ 2
731
+ 4
732
+ 6
733
+ 8
734
+ 10
735
+ Figure 8: The predicted pair distribution function g(r) of the solid phase at 20 K using Model A,
736
+ which is trained only using liquid configurations.
737
+ To further test the capability of the model to capture solid phase configurations, we
738
+ estimate the melting point of the system by using the solid-liquid interface method [28].
739
+ 12
740
+
741
+ The solid half is initialized as an FCC lattice and is equilibrated at 20 K, whereas,
742
+ the liquid half is equilibrated at 100 K to yield the initial configuration, as shown in
743
+ Fig. 9(a).
744
+ (a)
745
+ 20
746
+ 40
747
+ 60
748
+ 80
749
+ 100
750
+ -0.2
751
+ -0.1
752
+ 0
753
+ 0.1
754
+ 0.2
755
+ 0.3
756
+ (b)
757
+ Figure 9: (a) The solid-liquid interface used for the melting point estimation simulation and (b) the
758
+ interface velocity at different temperatures for Model A and Model B.
759
+ The solid-liquid interface is maintained at 100 K, 61.36 K, and 20 K across three
760
+ different simulations. The interface will move into the liquid or solid phase depending
761
+ on whether the temperature is below or above the melting point. To quantify these
762
+ transitions we estimate the velocity of the solid-liquid interface. Our results show a
763
+ linear dependence of the interface velocity with the simulation temperature, as shown
764
+ in Fig. 9(b). Here the melting point corresponds to the temperature where the interface
765
+ velocity is zero. We obtain the melting point from the regular MD simulation to be
766
+ 55.2 K, whereas the melting point from the GNN-MD is: 56.4 K from Model A and
767
+ 55.8 K from Model B. (The differences here are below the error bar ∼ 1.34 K.) This
768
+ demonstrates that the GNN force field is able to capture the solid-liquid phase transition
769
+ with sufficient accuracy. It is somewhat surprising that this level of agreement can be
770
+ reached even for Model A, which is trained on liquid configurations only.
771
+ To see whether Model A can capture all the properties of the solid phase without
772
+ being trained on any solid configurations, we performed further tests. First, we examine
773
+ the distribution of the eigenfrequencies of a perfect FCC crystal. The eigenfrequencies
774
+ can be obtained by first diagonalizing the Hessian matrix, H, and then dividing the
775
+ eigenvalues by the atomic mass m and taking the square root. The distribution of the
776
+ eigenfrequencies provides an estimate of the phonon density of states (PDOS) in the
777
+ crystal, as shown in Fig 10. For this analysis, we use a simulation cell with 2048 atoms,
778
+ such that the H is defined over 6144 degrees of freedom. The details of the calculations
779
+ 13
780
+
781
+ can be found in A.4.
782
+ (a)
783
+ (b)
784
+ Figure 10: The phonon density of states obtained from Lennard-Jones force field computation and the
785
+ GNN force field trained on: (a) exclusively liquid configurations (Model A), and (b) solid and liquid
786
+ configurations (Model B).
787
+ The Hessian matrix computed using the Lennard-Jones potential (HLJ) is perfectly
788
+ symmetric whereas the one computed from the GNN force field ( ˜HGNN) is only ap-
789
+ proximately symmetrical. Here we use the ∼ sign to indicate that the matrix is not
790
+ exactly symmetrical. Before computing the eigenfrequencies we need to symmetrize
791
+ the Hessian matrix by Hs
792
+ GNN = 1
793
+ 2
794
+
795
+ ˜HGNN + ˜HT
796
+ GNN
797
+
798
+ . Figure 10(a) shows that the PDOS
799
+ computed from GNN Model A (trained on liquid configurations only) exhibits an ap-
800
+ preciable difference from the reference LJ model. The agreement with the reference LJ
801
+ model becomes significantly improved for GNN Model B (trained on both liquid and
802
+ solid configurations), as shown in Fig. 10(b).
803
+ The lack of perfect symmetry in the Hessian matrix is a type of error in the GNN-
804
+ based force field considered here, in which the atomic forces are not obtained from the
805
+ partial derivatives of a potential energy function. To quantify this error, we define a
806
+ symmetricity measure S for any square matrix (see A.4) such that S = 1 if the matrix
807
+ is perfectly symmetric.
808
+ Configuration
809
+ Training Data
810
+ Liquid (Model A)
811
+ Solid and Liquid (Model B)
812
+ Solid
813
+ 0.785
814
+ 0.949
815
+ Liquid
816
+ 0.984
817
+ 0.984
818
+ Table 3: The symmetricity, S( ˜HGNN), of the Hessian matrix of GNN Model A (trained on liquid
819
+ configuration only) and Model B (trained on both liquid and solid configurations) when tested on a
820
+ solid configuration (at ∼ 20 K) and a liquid configuration (at ∼ 100 K).
821
+ Table 3 shows the symmetricity of the Hessian matrix from Model A and Model
822
+ 14
823
+
824
+ 0.1
825
+ MD
826
+ GNN - MD
827
+ 0.08
828
+ (a.u.)
829
+ 0.06
830
+ PDOS
831
+ 0.04
832
+ 0.02
833
+ 0
834
+ 0
835
+ 0.2
836
+ 0.4
837
+ 0.6
838
+ 0.8
839
+ 1
840
+ 1.2
841
+ Vo (THz)0.1
842
+ MD
843
+ GNN - MD
844
+ 0.08
845
+ (a.u.)
846
+ 0.06
847
+ PDOS
848
+ 0.04
849
+ 0.02
850
+ 0
851
+ 0
852
+ 0.2
853
+ 0.4
854
+ 0.6
855
+ 0.8
856
+ 1
857
+ 1.2
858
+ Vo
859
+ (THz)B evaluated on a solid (perfect FCC crystal) and on a randomly chosen liquid con-
860
+ figuration. The symmetricity on the liquid configuration is 0.984 for both Model A
861
+ and Model B, which is considered acceptable in this study. The symmetricity on the
862
+ solid configuration is only 0.785 for Model A, which is correlated with its poor pre-
863
+ diction of the PDOS of the perfect crystal (Fig. 10(a)). On the other hand, after the
864
+ solid configurations are included in the training set, Model B gives a symmetricity of
865
+ 0.949 for the solid configuration, which is correlated with the improved prediction of
866
+ the PDOS of the perfect crystal (Fig. 10(b)). Therefore, our results demonstrate the
867
+ need for a comprehensive set of tests to evaluate the transferability of machine-learned
868
+ force fields, and the importance of including both liquid and solid configurations in the
869
+ training dataset.
870
+ 4. Conclusions
871
+ This paper discusses the comprehensive lists of tests needed to check the transfer-
872
+ ability of a neural network force field. We carry out our benchmarking tests on the
873
+ GNN-based force field presented in [21]. Our analysis is based on a reference system
874
+ of liquid Argon by modeling it as a Lennard-Jones fluid. The typical tests for a force
875
+ field include validating the radial distribution function and mean-squared displacement.
876
+ However, in this paper, we present additional tests to validate the dynamics from the
877
+ GNN force field by carrying out the computational XPCS analysis. These tests are
878
+ carried out at different system sizes and temperatures to further establish the transfer-
879
+ ability of the GNN force field.
880
+ In addition to testing the liquid behavior, we present a few solid-phase tests such
881
+ as melting point estimation, which are not usually validated for machine-learned force
882
+ fields. Notably, most solid and liquid phase tests were passed by the force field trained
883
+ on just liquid configurations, however, estimating the phonon density of states required
884
+ solid configurations in the training dataset. This form of dataset engineering is neces-
885
+ sary for the force field to be able to capture both solid and liquid behavior. In summary,
886
+ these benchmarking tests provide a more comprehensive check on the transferability of
887
+ the GNN-based force fields.
888
+ On having established the transferability of the GNN force field, efforts can now
889
+ be made to train the model from AIMD calculations for systems that are not well
890
+ modeled by traditional MD force fields. This resulting GNN-AIMD promises the force
891
+ field accuracy of AIMD and can be used for larger atomic systems which is not possible
892
+ using traditional AIMD (due to computational expense) and traditional MD (due to
893
+ the inaccuracy in the force field).
894
+ Conflict of Interest
895
+ The authors declare no competing interests.
896
+ 15
897
+
898
+ Data Access
899
+ All data is available in the main text and the Supplementary appendices. Further
900
+ information about the computation can be obtained on request from the corresponding
901
+ author. The library for the testbed of machine-learned force fields can be found at
902
+ TB-MLFF. The code on the XPCS and XSVS analysis is obtained from the C-XPCS
903
+ library.
904
+ Acknowledgements
905
+ S.M. and W.C. acknowledge support from the Precourt Pioneering Project of Stan-
906
+ ford University. S.Y. was supported by Korea Institute for Advancement of Technology
907
+ (KIAT) grant funded by the Korea Government (MOTIE) (P0017304, Human Resource
908
+ Development Program for Industrial Innovation). K.K. acknowledges support from the
909
+ National Research Foundation of Korea (NRF) grant funded by the Korean government
910
+ (MSIT) (NRF- 2022R1A2C2011266).
911
+ References
912
+ [1] Ankit Agrawal and Alok Choudhary. Deep materials informatics: Applications of
913
+ deep learning in materials science. MRS Communications, 9(3):779–792, 2019.
914
+ [2] Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain, Francesca Tavazza,
915
+ Ryan Cohn, Cheol Woo Park, Alok Choudhary, Ankit Agrawal, Simon JL Billinge,
916
+ et al. Recent advances and applications of deep learning methods in materials
917
+ science. npj Computational Materials, 8(1):1–26, 2022.
918
+ [3] Liyuan Huang and Chen Ling. Practicing deep learning in materials science: An
919
+ evaluation for predicting the formation energies. Journal of Applied Physics, 128
920
+ (12):124901, 2020.
921
+ [4] Jeffrey G Ethier, Rohan K Casukhela, Joshua J Latimer, Matthew D Jacobsen,
922
+ Allen B Shantz, and Richard A Vaia.
923
+ Deep learning of binary solution phase
924
+ behavior of polystyrene. ACS Macro Letters, 10(6):749–754, 2021.
925
+ [5] Anand Chandrasekaran, Chiho Kim, Shruti Venkatram, and Rampi Ramprasad. A
926
+ deep learning solvent-selection paradigm powered by a massive solvent/nonsolvent
927
+ database for polymers. Macromolecules, 53(12):4764–4769, 2020.
928
+ [6] Farzaneh Shayeganfar and Rouzbeh Shahsavari. Deep learning method to accel-
929
+ erate discovery of hybrid polymer-graphene composites. Scientific Reports, 11(1):
930
+ 1–9, 2021.
931
+ [7] Nezar Ismet Sino, Rabah N Farhan, and Mohammed E Seno. Review of deep learn-
932
+ ing algorithms in computational biochemistry. In Journal of Physics: Conference
933
+ Series, volume 1804, page 012135. IOP Publishing, 2021.
934
+ 16
935
+
936
+ [8] Chandradeep Bhatt, Indrajeet Kumar, V Vijayakumar, Kamred Udham Singh,
937
+ and Abhishek Kumar. The state of the art of deep learning models in medical
938
+ science and their challenges. Multimedia Systems, 27(4):599–613, 2021.
939
+ [9] Kenji Suzuki. Overview of deep learning in medical imaging. Radiological physics
940
+ and technology, 10(3):257–273, 2017.
941
+ [10] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image
942
+ analysis. Annual review of biomedical engineering, 19:221–248, 2017.
943
+ [11] Han Wang, Linfeng Zhang, Jiequn Han, and E Weinan.
944
+ Deepmd-kit: A deep
945
+ learning package for many-body potential energy representation and molecular
946
+ dynamics. Computer Physics Communications, 228:178–184, 2018.
947
+ [12] Tianze Zheng, Weihao Gao, and Chong Wang. Learning large-time-step molecular
948
+ dynamics with graph neural networks. arXiv preprint arXiv:2111.15176, 2021.
949
+ [13] Hung N Do, Jinan Wang, Apurba Bhattarai, and Yinglong Miao. Glow: A work-
950
+ flow integrating gaussian-accelerated molecular dynamics and deep learning for free
951
+ energy profiling. Journal of Chemical Theory and Computation, 18(3):1423–1436,
952
+ 2022.
953
+ [14] Danny Perez, Blas P Uberuaga, Yunsic Shim, Jacques G Amar, and Arthur F
954
+ Voter. Accelerated molecular dynamics methods: introduction and recent devel-
955
+ opments. Annual Reports in computational chemistry, 5:79–98, 2009.
956
+ [15] Kristof T Sch¨utt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and
957
+ K-R M¨uller. Schnet–a deep learning architecture for molecules and materials. The
958
+ Journal of Chemical Physics, 148(24):241722, 2018.
959
+ [16] Aris Marcolongo, Tobias Binninger, Federico Zipoli, and Teodoro Laino. Simulat-
960
+ ing diffusion properties of solid-state electrolytes via a neural network potential:
961
+ performance and training scheme. ChemSystemsChem, 2(3):e1900031, 2020.
962
+ [17] IA Balyakin and AA Rempel. Machine learning interatomic potential for molten
963
+ tizrhfnb. In AIP Conference Proceedings, volume 2313, page 030037. AIP Publish-
964
+ ing LLC, 2020.
965
+ [18] Justin S Smith, Roman Zubatyuk, Benjamin Nebgen, Nicholas Lubbers, Kipton
966
+ Barros, Adrian E Roitberg, Olexandr Isayev, and Sergei Tretiak. The ani-1ccx
967
+ and ani-1x data sets, coupled-cluster and density functional theory properties for
968
+ molecules. Scientific data, 7(1):1–10, 2020.
969
+ [19] Steven Dajnowicz, Garvit Agarwal, James M Stevenson, Leif D Jacobson, Farhad
970
+ Ramezanghorbani, Karl Leswing, Richard A Friesner, Mathew D Halls, and Robert
971
+ Abel. High-dimensional neural network potential for liquid electrolyte simulations.
972
+ The Journal of Physical Chemistry B, 2022.
973
+ 17
974
+
975
+ [20] Shaswat Mohanty, James Stevenson, Andrea Browning, Leif Jacobson, Karl
976
+ Leswing, Mathew Halls, and Mohammad Atif Faiz Afzal. Development of scal-
977
+ able and generalizable machine learned force field for polymers. 2023.
978
+ [21] Zijie Li, Kazem Meidani, Prakarsh Yadav, and Amir Barati Farimani. Graph neural
979
+ networks accelerated molecular dynamics. The Journal of Chemical Physics, 156
980
+ (14):144103, 2022.
981
+ [22] Shaswat Mohanty, Christopher B. Cooper, Hui Wang, Mengning Liang, and Wei
982
+ Cai. Computational approaches to model x-ray photon correlation spectroscopy
983
+ from molecular dynamics.
984
+ Modelling and Simulation in Materials Science and
985
+ Engineering, 8 2022.
986
+ [23] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
987
+ P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
988
+ M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton. LAMMPS - a flexible
989
+ simulation tool for particle-based materials modeling at the atomic, meso, and
990
+ continuum scales. Comp. Phys. Comm., 271:108171, 2022.
991
+ [24] Glenn J Martyna and Mark E Tuckerman. A reciprocal space based method for
992
+ treating long range interactions in ab initio and force-field-based calculations in
993
+ clusters. The Journal of chemical physics, 110(6):2810–2821, 1999.
994
+ [25] Ask Hjorth Larsen, Jens Jrgen Mortensen, Jakob Blomqvist, Ivano E. Castelli,
995
+ Rune Christensen, Marcin Duak, Jesper Friis, Michael N. Groves, Bjrk Hammer,
996
+ Cory Hargus, Eric D. Hermes, Paul C. Jennings, Peter Bjerre Jensen, James Ker-
997
+ mode, John R. Kitchin, Esben Leonhard Kolsbjerg, Joseph Kubal, Kristen Kaas-
998
+ bjerg, Steen Lysgaard, Jn Bergmann Maronsson, Tristan Maxson, Thomas Olsen,
999
+ Lars Pastewka, Andrew Peterson, Carsten Rostgaard, Jakob Schitz, Ole Schtt,
1000
+ Mikkel Strange, Kristian S. Thygesen, Tejs Vegge, Lasse Vilhelmsen, Michael Wal-
1001
+ ter, Zhenhua Zeng, and Karsten W. Jacobsen. The atomic simulation environmenta
1002
+ python library for working with atoms. Journal of Physics: Condensed Matter, 29:
1003
+ 273002, 6 2017.
1004
+ [26] Peter Eastman, Jason Swails, John D. Chodera, Robert T. McGibbon, Yutong
1005
+ Zhao, Kyle A. Beauchamp, Lee Ping Wang, Andrew C. Simmonett, Matthew P.
1006
+ Harrigan, Chaya D. Stern, Rafal P. Wiewiora, Bernard R. Brooks, and Vijay S.
1007
+ Pande. Openmm 7: Rapid development of high performance algorithms for molec-
1008
+ ular dynamics. PLOS Computational Biology, 13:e1005659, 7 2017.
1009
+ [27] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2016. URL
1010
+ https://arxiv.org/abs/1606.08415.
1011
+ [28] Li-Fang Zhu, Jan Janssen, Shoji Ishibashi, Fritz K¨ormann, Blazej Grabowski, and
1012
+ J¨org Neugebauer. A fully automated approach to calculate the melting temperature
1013
+ of elemental crystals. Computational Materials Science, 187:110065, 2021.
1014
+ 18
1015
+
1016
+ [29] Edward Prince and Arthur James Cochran Wilson. International tables for crys-
1017
+ tallography, volume 100. Kluwer., 2004.
1018
+ [30] Henry N Chapman, Anton Barty, Michael J Bogan, S´ebastien Boutet, Matthias
1019
+ Frank, Stefan P Hau-Riege, Stefano Marchesini, Bruce W Woods, Saˇsa Bajt,
1020
+ W Henry Benner, et al. Femtosecond diffractive imaging with a soft-x-ray free-
1021
+ electron laser. Nature Physics, 2(12):839–843, 2006.
1022
+ [31] E Jakeman.
1023
+ Photon correlation.
1024
+ In Photon correlation and light beating spec-
1025
+ troscopy, pages 75–149. Springer, 1974.
1026
+ 19
1027
+
1028
+ A. Analysis Details
1029
+ A.1. Mean-squared Displacement
1030
+ Mean squared displacement (MSD) is a metric used in statistical mechanics to mea-
1031
+ sure the diffusive motion of the material system being simulated. The MSD is the most
1032
+ commonly used metric to measure the spatial deviation as a function of time. The
1033
+ MSD is an ensemble average and is computed using the position (r ∈ Rd where d is
1034
+ the dimensionality of the position),
1035
+ MSD(τ) = ⟨(r(τ) − r(0))2⟩ = 1
1036
+ N
1037
+ N
1038
+
1039
+ i=1
1040
+ (ri(τ) − ri(0))2.
1041
+ (6)
1042
+ For a purely diffusive motion, such as the dynamics of Brownian motion, the MSD is
1043
+ related to the diffusivity, D, by,
1044
+ MSD(τ) = 2dDτ.
1045
+ (7)
1046
+ For the liquid simulations, the MSD varies linearly with time after the initial slow
1047
+ dynamics (attributed to the sub-diffusive motion brought about by the caging effect).
1048
+ As a consequence, the MSD is analyzed for t > 1 ps.
1049
+ A.2. Basics of structural analysis
1050
+ An important structural measure of a collection of atoms is the pair distribution
1051
+ function, g(r, t), defined by,
1052
+ g(r, t) =
1053
+ 1
1054
+ Nρ0
1055
+
1056
+ i
1057
+
1058
+ j
1059
+ j̸=i
1060
+ δ(r − (ri(t) − rj(t))),
1061
+ (8)
1062
+ where ρ0 is the bulk atomic density of the sample, N is the total number atoms, and
1063
+ ri (and rj) is the atomic position in the simulation box. Although the convention is
1064
+ to exclude the correlation between the atom and itself (i.e. i = j) from the definition
1065
+ of g(r, t), in the following it is more convenient to introduce an alternative definition,
1066
+ ˜g(r, t), where such a constraint is removed.
1067
+ ˜g(r, t) =
1068
+ 1
1069
+ Nρ0
1070
+
1071
+ i
1072
+
1073
+ j
1074
+ δ(r − (ri(t) − rj(t))) = g(r, t) + 1
1075
+ ρ0
1076
+ δ(r)
1077
+ (9)
1078
+ When all atoms are of the same type, the Fourier transform of ρ0 ˜g(r, t) is the structure
1079
+ factor, ˜S(q, t),
1080
+ ˜S(q, t) = 1
1081
+ N
1082
+
1083
+ i
1084
+
1085
+ j
1086
+ e−iq·[ri(t)−rj(t)],
1087
+ (10)
1088
+ where q is the scattered wave-vector. When the sample contains atoms of different
1089
+ types, the definition of the structure factor is generalized to the following
1090
+ S(q, t) =
1091
+ 1
1092
+
1093
+ j fj(q)2
1094
+
1095
+ i
1096
+
1097
+ j
1098
+ fi(q)fj(q) e��iq·[ri(t)−rj(t)].
1099
+ (11)
1100
+ 20
1101
+
1102
+ Here fi(q) is the X-ray atomic form factor of atom i. The X-ray atomic form factor
1103
+ can be obtained by the Fourier transform of the electron density field for a given type
1104
+ of atom. For many elements, the atomic form factor can be well parameterized by a
1105
+ sum of Gaussians [29].
1106
+ A.3. Basics of XPCS and scattering statistics
1107
+ We then consider the time correlation function of the intensity of the XPCS speckles
1108
+ that we observe. The normalized auto-correlation function helps in studying the dy-
1109
+ namics of the simulation. The auto-correlation is denoted by g2(τ), since it is a second
1110
+ order correlation and is given by,
1111
+ g2(q, τ) = ⟨I(q, t)I(q, t + τ)⟩/⟨I⟩2
1112
+ (12)
1113
+ I(q, τ) ∝ S(q, τ)
1114
+ (13)
1115
+ Another metric that helps us in studying the dynamic characteristics for the simu-
1116
+ lation is the intermediate scattering function, f(q, τ), described as,
1117
+ f(q, τ) = 1
1118
+ N
1119
+ ��
1120
+ i̸=j
1121
+ e(iq(ri(0)−rj(τ))
1122
+
1123
+ t
1124
+ (14)
1125
+ For a simple diffusive process following Brownian motion, the intermediate scatter-
1126
+ ing function reduces to a single exponential, F(q, τ) = f(q,τ)
1127
+ f(q,0) = e−Γτ, where Γ = Dq2
1128
+ [30].
1129
+ Since the time auto-correlation (g2(q, τ)) is related to the f(q, τ) by the Siegert
1130
+ relation [31], it can also be represented as a single exponential under the assumption of
1131
+ Brownian dynamics,
1132
+ g2(q, τ) = 1 + β(q)|F(q, τ)|2
1133
+ = 1 + β(q) exp[−2Γ(q)τ]
1134
+ (15)
1135
+ g2(q, τ) − 1 = G(q, τ) ∝ exp[−2Γ(q)τ]
1136
+ (16)
1137
+ where Γ(q) is the relaxation rate and the factor of 2 arises from the Siegert relation
1138
+ which relates the intensity auto-correlation function to the electric field correlation
1139
+ function [31].
1140
+ Furthermore, the auto-correlation of the speckle at q is denoted by g2(q, τ) and it
1141
+ is non-dimensionalized by the square of its mean at τ = 0, as given below for infinites-
1142
+ imally short pulses,
1143
+ g2(q, τ) = ⟨I(q, t) I(q, t + τ)⟩t
1144
+ ⟨I(q, t)⟩2
1145
+ t
1146
+ = ⟨S(q, t) S(q, t + τ)⟩t
1147
+ ⟨S(q, t)⟩2
1148
+ t
1149
+ ,
1150
+ (17)
1151
+ where ⟨·⟩t represents the time-averaged value of the enclosed entity. Experimentally,
1152
+ the X-ray pulses always have a finite duration. Hence the intensity should be replaced
1153
+ 21
1154
+
1155
+ by the time-averaged X-ray intensity, I∆(q), over the exposure duration of ∆τ,
1156
+ I∆(q) =
1157
+ � t+∆τ
1158
+ t
1159
+ I(q, t) dt.
1160
+ (18)
1161
+ In this case,
1162
+ g2(q, τ) = ⟨I∆(q, t) I∆(q, t + τ)⟩t
1163
+ ⟨I∆(q, t)⟩2
1164
+ t
1165
+ .
1166
+ (19)
1167
+ For a X-ray speckle pattern obtained from a single X-ray pulse, the optical contrast
1168
+ β(q) is defined by the variance of the intensity divided by the square of its mean [22].
1169
+ While β(q) is given by the scattering intensity distribution I(q) from an infinitesimally
1170
+ short pulse, we denote the optical contrast from an X-ray pulse of finite duration ∆t as
1171
+ β∆(q) where,
1172
+ β∆(q) = ⟨I∆(q)2⟩q − ⟨I∆(q)⟩2
1173
+ q
1174
+ ⟨I∆(q)⟩2
1175
+ q
1176
+ ,
1177
+ (20)
1178
+ where ⟨·⟩q represents the average over all detector pixels that satisfy q − dq/2 ≤ |q| <
1179
+ q + dq/2, for a small dq. For an ergodic and isotropic system, the distribution of pixel
1180
+ intensity at around a particular q is the same in q-space and t, so that
1181
+ ⟨I∆(q)⟩q ≈ ⟨I∆(q)⟩t,
1182
+ ⟨I∆(q)2⟩q ≈ ⟨I∆(q)2⟩t.
1183
+ (21)
1184
+ This means that we can also define an optical contrast β0(q) from the time variation
1185
+ of the intensity at a single q, i.e,
1186
+ β0(q) = g2(q, τ = 0) − 1.
1187
+ (22)
1188
+ For an ergodic and isotropic system, β∆(q) and β0(q) should be equal. The detailed
1189
+ discussion on the XPCS relations and the statistics of X-ray speckles, the computational
1190
+ algorithm and its implementation can be found in [22].
1191
+ A.4. Hessian matrix and phonon density of states
1192
+ To estimate the phonon density of states (PDOS) we examine the eigenvalues of the
1193
+ Hessian matrix, H, of our relaxed system. The H is defined as,
1194
+ Hij =
1195
+
1196
+ ∂xj
1197
+ �∂U
1198
+ ∂xi
1199
+
1200
+ ,
1201
+ (23)
1202
+ = − ∂fi
1203
+ ∂xj
1204
+ ,
1205
+ (24)
1206
+ where U is the potential energy and fi is the atomic force component corresponding to
1207
+ the ith degree of freedom (i goes from 1 to 3N). We can approximate this derivative
1208
+ numerically by a central difference scheme,
1209
+ Hij = fi(xj − ∆x) − fi(xj + ∆x)
1210
+ 2∆x
1211
+ ,
1212
+ (25)
1213
+ 22
1214
+
1215
+ where ∆x = 3.405 × 10−6 ˚A(10−6 in LJ unit). If λn represents the eigenvalues of H
1216
+ then the eigenfrequencies νn can be obtained from
1217
+ νn = 1
1218
+
1219
+
1220
+ λn
1221
+ m .
1222
+ (26)
1223
+ The distribution of the νn gives us the PDOS in arbitrary units. The Hessian matrix
1224
+ H is expected to be symmetric for a conservative force field that is derived from an
1225
+ interatomic potential. Consistency or symmetricity requires,
1226
+ ∂fi
1227
+ ∂xj
1228
+ = ∂fj
1229
+ ∂xi
1230
+ .
1231
+ (27)
1232
+ The Hessian matrix computed using the Lennard-Jones potential (HLJ) is perfectly
1233
+ symmetric whereas the one computed from the GNN force field ( ˜HGNN) is only nearly
1234
+ symmetric. We define a measure for symmetricity, S, for a matrix A as
1235
+ S(A) = ||As||2 − ||Aa||2
1236
+ ||As||2 + ||Aa||2
1237
+ ,
1238
+ (28)
1239
+ where,
1240
+ As = A + AT
1241
+ 2
1242
+ ,
1243
+ (29)
1244
+ Aa = A − AT
1245
+ 2
1246
+ .
1247
+ (30)
1248
+ The symmetricity is such that −1 ≤ S(A) ≤ 1, where S(A) = 1 for a perfectly sym-
1249
+ metric matrix and S(A) = −1 for a perfectly anti-symmetric matrix.
1250
+ 23
1251
+
1252
+ B. Analysis at different temperatures
1253
+ In this appendix, we show the results corroborating our findings that have been
1254
+ presented in main text. We present simulation results corresponding to the 4000 atoms
1255
+ case which is run at 95 K, 100 K, and 110 K.
1256
+ 0
1257
+ 100
1258
+ 200
1259
+ 300
1260
+ 400
1261
+ 500
1262
+ 600
1263
+ 0
1264
+ 200
1265
+ 400
1266
+ 600
1267
+ 800
1268
+ 1000
1269
+ 1200
1270
+ 1400
1271
+ (a)
1272
+ 0
1273
+ 100
1274
+ 200
1275
+ 300
1276
+ 400
1277
+ 500
1278
+ 600
1279
+ -200
1280
+ 0
1281
+ 200
1282
+ 400
1283
+ 600
1284
+ 800
1285
+ 1000
1286
+ 1200
1287
+ 1400
1288
+ (b)
1289
+ 0
1290
+ 100
1291
+ 200
1292
+ 300
1293
+ 400
1294
+ 500
1295
+ 600
1296
+ -200
1297
+ 0
1298
+ 200
1299
+ 400
1300
+ 600
1301
+ 800
1302
+ 1000
1303
+ 1200
1304
+ (c)
1305
+ 0
1306
+ 100
1307
+ 200
1308
+ 300
1309
+ 400
1310
+ 500
1311
+ 600
1312
+ 0
1313
+ 500
1314
+ 1000
1315
+ 1500
1316
+ 2000
1317
+ (d)
1318
+ Figure 11: The mean-squared displacement (MSD) for the (a) 256 atoms at 100 K and the 4000 atoms
1319
+ at (b) 100 K, (c) 95 K, and (d) 110 K, MD and GNN-MD simulation over the 539 ps trajectory.
1320
+ We see that the MSD is in close agreement between the MD and GNN-MD simula-
1321
+ tions, as shown in Fig. 11, irrespective of the temperature at which the simulations are
1322
+ carried out.
1323
+ 24
1324
+
1325
+ 0
1326
+ 50
1327
+ 100
1328
+ 150
1329
+ 200
1330
+ 250
1331
+ 300
1332
+ 350
1333
+ 1
1334
+ 1.2
1335
+ 1.4
1336
+ 1.6
1337
+ 1.8
1338
+ 2
1339
+ (a)
1340
+ 0
1341
+ 50
1342
+ 100
1343
+ 150
1344
+ 200
1345
+ 250
1346
+ 300
1347
+ 350
1348
+ 1
1349
+ 1.2
1350
+ 1.4
1351
+ 1.6
1352
+ 1.8
1353
+ 2
1354
+ (b)
1355
+ 0
1356
+ 50
1357
+ 100
1358
+ 150
1359
+ 200
1360
+ 250
1361
+ 300
1362
+ 350
1363
+ 1
1364
+ 1.2
1365
+ 1.4
1366
+ 1.6
1367
+ 1.8
1368
+ 2
1369
+ (c)
1370
+ 0
1371
+ 50
1372
+ 100
1373
+ 150
1374
+ 200
1375
+ 250
1376
+ 300
1377
+ 1
1378
+ 1.2
1379
+ 1.4
1380
+ 1.6
1381
+ 1.8
1382
+ 2
1383
+ (d)
1384
+ Figure 12: The g2(q, τ) at q = 1.844 ± 0.029 ˚A−1 over the first ∼ 3.56 ps for the (a) 256 atoms (25
1385
+ tracked atoms) at 100 K and the 4000 atoms (45 tracked atoms) at (b) 100 K, (c) 95 K and (d) 110
1386
+ K, MD and GNN-MD simulation.
1387
+ We observe that the decay in g2(q, τ) between the MD and the GNN-MD simulation
1388
+ is also in agreement at all three temperatures.
1389
+ 25
1390
+
1391
+ 0
1392
+ 0.5
1393
+ 1
1394
+ 1.5
1395
+ 2
1396
+ 2.5
1397
+ 3
1398
+ 3.5
1399
+ 2
1400
+ 4
1401
+ 6
1402
+ 8
1403
+ 10
1404
+ 12
1405
+ 14
1406
+ (a)
1407
+ 0
1408
+ 0.5
1409
+ 1
1410
+ 1.5
1411
+ 2
1412
+ 2.5
1413
+ 3
1414
+ 3.5
1415
+ 2
1416
+ 4
1417
+ 6
1418
+ 8
1419
+ 10
1420
+ 12
1421
+ 14
1422
+ (b)
1423
+ 0
1424
+ 0.5
1425
+ 1
1426
+ 1.5
1427
+ 2
1428
+ 2.5
1429
+ 3
1430
+ 3.5
1431
+ 600
1432
+ 800
1433
+ 1000
1434
+ 1200
1435
+ 1400
1436
+ 1600
1437
+ 1800
1438
+ (c)
1439
+ 0
1440
+ 0.5
1441
+ 1
1442
+ 1.5
1443
+ 2
1444
+ 2.5
1445
+ 3
1446
+ 3.5
1447
+ 2
1448
+ 4
1449
+ 6
1450
+ 8
1451
+ 10
1452
+ 12
1453
+ 14
1454
+ (d)
1455
+ Figure 13: The Γ(q) as a function of q2 for the (a) 256 atoms at 100 K and the 4000 atoms at (b) 100
1456
+ K, (c) 95 K, and (d) 110 K, MD and GNN-MD simulation.
1457
+ We examine the Γ(q) as a function of q2 for different temperatures and see a very
1458
+ close agreement between the MD and GNN-MD simulations.
1459
+ 26
1460
+
1461
+ 0
1462
+ 5
1463
+ 10
1464
+ 15
1465
+ 20
1466
+ 25
1467
+ 0
1468
+ 0.2
1469
+ 0.4
1470
+ 0.6
1471
+ 0.8
1472
+ 1
1473
+ (a)
1474
+ 0
1475
+ 5
1476
+ 10
1477
+ 15
1478
+ 20
1479
+ 25
1480
+ 0
1481
+ 0.2
1482
+ 0.4
1483
+ 0.6
1484
+ 0.8
1485
+ 1
1486
+ (b)
1487
+ 0
1488
+ 5
1489
+ 10
1490
+ 15
1491
+ 20
1492
+ 25
1493
+ 0
1494
+ 0.2
1495
+ 0.4
1496
+ 0.6
1497
+ 0.8
1498
+ 1
1499
+ (c)
1500
+ 0
1501
+ 5
1502
+ 10
1503
+ 15
1504
+ 20
1505
+ 25
1506
+ 0
1507
+ 0.2
1508
+ 0.4
1509
+ 0.6
1510
+ 0.8
1511
+ 1
1512
+ (d)
1513
+ Figure 14: The β∆(q) as a function of ∆τ for the (a) 256 atoms at 100 K and the 4000 atoms at (b)
1514
+ 100 K, (c) 95 K and (d) 110 K, MD and GNN-MD simulation for |q| = 1.844 ± 0.029 ˚A−1.
1515
+ In addition to the previous analysis, we also examine the XSVS analysis by plot-
1516
+ ting the optical contrast, β∆(q), as a function of the exposure time ∆τ. The decay in
1517
+ the optical contrast is also in agreement irrespective of the temperature of the simula-
1518
+ tion which shows that the GNN force field approximates the Lennard-Jones potential
1519
+ sufficiently to capture the dynamics on liquid phase.
1520
+ 27
1521
+
0NE2T4oBgHgl3EQfMwbp/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19E1T4oBgHgl3EQfRwPe/content/tmp_files/2301.03058v1.pdf.txt ADDED
@@ -0,0 +1,304 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03058v1 [math.AG] 8 Jan 2023
2
+ GROMOV ELLIPTICITY AND SUBELLIPTICITY
3
+ SHULIM KALIMAN AND MIKHAIL ZAIDENBERG
4
+ Abstract. We establish the equivalence of Gromov ellipticity and
5
+ subellipticity in the algebraic category.
6
+ Contents
7
+ Introduction
8
+ 1
9
+ 0.1.
10
+ Ellipticity versus subellipticity
11
+ 1
12
+ 0.2.
13
+ Examples of elliptic varieties
14
+ 3
15
+ 0.3.
16
+ Ellipticity versus rationality
17
+ 3
18
+ 1.
19
+ Composing and extending sprays
20
+ 3
21
+ 1.1.
22
+ Composition of sprays
23
+ 4
24
+ 1.2.
25
+ Extension lemma
26
+ 5
27
+ 1.3.
28
+ Proof of the main theorem
29
+ 6
30
+ References
31
+ 6
32
+ Introduction
33
+ 0.1. Ellipticity versus subellipticity. We are working over an alge-
34
+ braically closed field K of characteristic zero; and An = An
35
+ K stands for
36
+ the affine n-space over K. All varieties and vector bundles in this note
37
+ are algebraic; a variety is always reduced and irreducible. Abusing the
38
+ language, in this paper the terms spray and (sub)ellipticity stand for
39
+ algebraic spray resp. algebraic (sub)ellipticity.
40
+ The notion of ellipticity was introduced, both in analytic and al-
41
+ gebraic setting, in [Gro89, Sect. 0.5 and 3.5.A]. In the Localization
42
+ Lemma (see [Gro89, Sect. 3.5.B]) Gromov actually considers a local
43
+ version of ellipticity. The subellipticity (implicitly present in [Gro89,
44
+ Sec. 3.5]) was introduced in [For02]; see [For17, Sect. 5.1] and [For20]
45
+ for a historical account. Recall these notions.
46
+ A spray of rank r over a smooth algebraic variety X is a triple
47
+ (E, p, s) consisting of a vector bundle p: E → X of rank r and a
48
+ Date: 06.01.2023.
49
+ 1
50
+
51
+ 2
52
+ SHULIM KALIMAN AND MIKHAIL ZAIDENBERG
53
+ morphism s: E → X such that s|Z = p|Z where Z ⊆ E stands for
54
+ the zero section of p. This spray is dominating at x ∈ X if the restric-
55
+ tion s|Ex : Ex → X to the fiber Ex = p−1(x) is dominant at the origin
56
+ 0x = Z ∩ Ex of the vector space Ex. The variety X is called elliptic if
57
+ it admits a spray (E, p, s) which is dominating at each point x ∈ X.
58
+ A local spray (E, p, s) with values in X at a point x ∈ X consists of
59
+ a vector bundle p: E → U over a neighborhood U of x and a morphism
60
+ s: E → X such that s|ZU = p|ZU where ZU stands for the zero section
61
+ of p: E → U. One says that X is locally elliptic if for any x ∈ X there
62
+ is a local spray in a neighborhood of x dominating at x. The variety
63
+ X is called subelliptic if it admits a family of sprays (Ei, pi, si) defined
64
+ over the whole X which is dominating at each point x ∈ X, that is,
65
+ TxX =
66
+ n
67
+
68
+ i=1
69
+ dsi(T0i,xEi,x)
70
+ ∀x ∈ X.
71
+ Thus, an elliptic variety is both locally elliptic and subelliptic. In this
72
+ note we establish the converse implications.
73
+ Theorem 0.1. For a smooth algebraic variety X the following are
74
+ equivalent:
75
+ • X is elliptic;
76
+ • X is subelliptic;
77
+ • X is locally elliptic.
78
+ Theorem 0.1 answers a question in [For17, p. 230]. The equivalence
79
+ of the first two properties is well known for homogeneous spaces of
80
+ a linear algebraic group, see [For20, Proposition 6.7]. It is unknown
81
+ however whether this equivalence also holds in the analytic category;
82
+ cf. [Kus20].
83
+ Comparing Theorem 0.1 with [LT17, Theorem 1] and [For20, Corol-
84
+ lary 6.6] we deduce the following results, see [LT17] and [For20] for the
85
+ terminology.
86
+ Corollary 0.2. For a smooth algebraic manifold X the following con-
87
+ ditions are equivalent:
88
+ (a) X is elliptic;
89
+ (b) X is locally elliptic;
90
+ (c) X is subelliptic;
91
+ (d) X satisfies Gromov’s condition aEll1;
92
+ (e) X satisfies the algebraic homotopy Runge principle.
93
+ See [For20, Sec. 6.2] for relations of (d) and (e) to approximation,
94
+ interpolation and Oka-Grauert h-Principle in the algebraic setting.
95
+
96
+ GROMOV ELLIPTICITY AND SUBELLIPTICITY
97
+ 3
98
+ As another immediate corollary we mention the following version of
99
+ [Kus22, Corollary 1.5], see also [For20, Corollary 6.26].
100
+ Corollary 0.3. The universal cover of a smooth (sub)elliptic variety
101
+ is an elliptic algebraic variety.
102
+ 0.2. Examples of elliptic varieties. Recall that a variety X of di-
103
+ mension ≥ 2 is flexible if through any smooth point x ∈ X pass one-
104
+ dimensional orbits of Ga-actions on X whose velocity vectors spend
105
+ the tangent space TxX, see [AFKKZ13]. It is known that every smooth
106
+ flexible variety is elliptic, see [Gro89, 0.5.B] and [For17, Proposition
107
+ 5.6.22(C)]; cf. also [AFKKZ13, Appendix]. There are numerous ex-
108
+ amples of flexible varieties; see e.g. [AFKKZ13] and survey articles
109
+ [CPPZ21] and [Arz22].
110
+ The complement of a closed subset Y of codimension ≥ 2 in a flexible
111
+ smooth quasi-affine variety X of dimension ≥ 2 is again flexible, see
112
+ [FKZ16, Theorem 1.1]. In particular, X \ Y is elliptic.
113
+ Recall that an algebraic variety X of dimension n belongs to class
114
+ A0 if it can be covered by a finite number of copies of An. It belongs
115
+ to class A if it is the complement of a closed subvariety of codimension
116
+ at least 2 in a variety of class A0. Any variety of class A is subelliptic,
117
+ see [For17, Proposition 6.4.5]. By Theorem 0.1 it is elliptic.
118
+ For example, the Grassmann manifold X = G(k, n) of k-dimensional
119
+ subspaces in An belongs to class A0. Hence X \ Y is elliptic for any
120
+ closed subset Y ⊆ X of codimention ≥ 2, see [For17, Corollary 5.6.18(D)].
121
+ This answers a question in [ibid].
122
+ Furthermore, a variety of class A blown up along a smooth closed
123
+ subvariety is subelliptic. The same concerns a smooth locally stably
124
+ flexible variety, see [LT17], [KKT18] and [For17, Theorem 6.4.8]. By
125
+ Theorem 0.1 all these varieties are elliptic. See also [Gro89, Sec. 3.4(F)]
126
+ for further potential examples.
127
+ 0.3. Ellipticity versus rationality. By definition, any smooth (sub)elliptic
128
+ variety is dominated by an affine space, hence is unirational and ratio-
129
+ nally connected. Notice, however, that there are examples of flexible
130
+ and so, elliptic smooth affine varieties that are not stably rational, see
131
+ [Pop11, Example 1.22]. Gromov asked in [Gro89] whether any ratio-
132
+ nal projective variety is elliptic. The same question can be asked for
133
+ unirational projective varieties, see [BKK13].
134
+ 1. Composing and extending sprays
135
+ In this section X stands for a smooth algebraic variety. We develop
136
+ here several technical tools for the proof of Theorem 0.1.
137
+
138
+ 4
139
+ SHULIM KALIMAN AND MIKHAIL ZAIDENBERG
140
+ 1.1. Composition of sprays. The composition (E1∗E2, p1∗p2, s1∗s2)
141
+ of two given sprays (E1, p1, s1) and (E2, p2, s2) over X is defined via1
142
+ E1 ∗ E2 = {(e1, e2) ∈ E1 × E2 | e1 ∈ p−1(X), s1(e1) = p2(e2)} = s∗
143
+ 1(E2),
144
+ p1 ∗ p2(e1, e2) = p1(e1),
145
+ s1 ∗ s2(e1, e2) = s2(e2),
146
+ see [Gro89, 1.3.B]. One considers also the iterated composition
147
+ (E, p, s) = (E1 ∗ . . . ∗ Em, p1 ∗ . . . ∗ pm, s1 ∗ . . . ∗ sm)
148
+ of a sequence of m sprays (Ei, pi, si) over X, see [ibid] or [For17, Def-
149
+ inition 6.3.5]. Clearly, p: E → X is a fiber bundle whose general fiber
150
+ is isomorphic to an affine space AN viewed as a variety. In general,
151
+ p: E → X does not admit a vector bundle structure. However, it ad-
152
+ mits a natural section σ: X → E (which plays a role of zero section)
153
+ such that s|σ(X) = p|σ(X), see [For17, Definition 6.3.5].
154
+ If pi : Ei → X are trivial vector bundles for all i, then the composition
155
+ (E, p, s) is a spray over X with a trivial vector bundle p: E → X, see
156
+ [For17, Lemma 6.3.1]. Furthermore, we have the following fact.
157
+ Proposition 1.1. Consider the composition (E, p, s) = (E1 ∗ E2, p1 ∗
158
+ p2, s1 ∗ s2) of sprays (E1, p1, s1) and (E2, p2, s2) over X. If (E2, p2, s2)
159
+ is of rank 1, then (E, p, s) is a spray over X.
160
+ Proof. By the preceding it suffices to show that p: E → X is a vector
161
+ bundle. The pullback via the projection p1 : E1 → X yields an isomor-
162
+ phism Pic(X) ∼= Pic(E1), see [Mag75, Theorem 5]. Therefore, the line
163
+ bundle s∗
164
+ 1(E2) → E1 is isomorphic to p∗
165
+ 1(L1) for a line bundle L1 → X.
166
+ Choose an affine open cover {Ui} of X which is trivializing simulta-
167
+ neously for p1: E1 → X and for L1 → X and consider the cylinders
168
+ Yi := p−1
169
+ 1 (Ui) ≃ Ui × Ar and p∗
170
+ 1(L|Ui) ≃ Ui × Ar × A1. Up to these triv-
171
+ ializations the composition p∗
172
+ 1(L1|Ui) → Ui coincides with the standard
173
+ projection pr1: Ui × Ar+1 → Ui. The transition function ϕi,j between
174
+ p∗
175
+ 1(L1|Ui) → Ui and p∗
176
+ 1(L1|Uj) → Uj over Ui ∩ Uj is of the form
177
+ ϕi,j : (x, v, t) �→ (x, fi,j(x, v), gi,j(x, v)t),
178
+ (x, v, t) ∈ (Ui ∩Uj)×Ar ×A1
179
+ where
180
+ fi,j ∈ GL(r, O(Ui ∩ Uj))
181
+ and
182
+ gi,j ∈ O∗(Yi ∩ Yj) = p∗
183
+ 1(O∗(Ui ∩ Uj)),
184
+ that is, the functions gi,j(x, v) = gi,j(x) do not depend on v ∈ Ar.
185
+ Finally ϕi,j ∈ GL(r+1, O(Ui∩Uj)), which proves that p = p1∗p2 : E →
186
+ X is a vector bundle.
187
+
188
+ 1Abusing notation, we do not distinguish between a vector bundle and its total
189
+ space.
190
+
191
+ GROMOV ELLIPTICITY AND SUBELLIPTICITY
192
+ 5
193
+ Corollary 1.2. The composition (E, p, s) of r rank 1 sprays (Li, qi, si)
194
+ over X is a spray of rank r over X. If the family (Li, qi, si) is domi-
195
+ nating, then also the spray (E, p, s) is.
196
+ Proof. The first assertion is immediate from Proposition 1.1; see [For17,
197
+ Lemma 6.3.6] for the second.
198
+
199
+ 1.2. Extension lemma. The following lemma and its proof follow
200
+ closely Gromov’s Localization Lemma and its proof, see [Gro89, 3.5.B].
201
+ Lemma 1.3. Let U ⊆ X be a dense open subset and (E, p, s) be a local
202
+ spray on U with values in X dominating at a point x ∈ U. Then there
203
+ exists a spray ( ˜E, ˜p, ˜s) on X dominating at x.
204
+ Proof. Shrinking U we may suppose that
205
+ • U = X \ supp(D) where D is a reduced effective divisor on X,
206
+ and
207
+ • p: E = U × Ar → U is a trivial vector bundle on U.
208
+ We extend p: E → U to a trivial vector bundle p′: E′ = X × Ar → X
209
+ on X. Let ˜p: ˜E = E′ ⊗ OX(−nD) → X where n ∈ N. Thus, ˜E is a
210
+ direct sum of r samples of the line bundle OX(−nD). We have
211
+ Hom(OX(−nD), OX) = Hom(OX, OX(nD)) = H0(X, OX(nD)).
212
+ Pick a section σ ∈ H0(X, OX(D)) with div(σ) = D. Then σn defines a
213
+ homomorphism of line bundles OX(−nD) → OX identical on X which
214
+ vanishes to order n on ˜p−1(supp(D)) and restricts to an isomorphism
215
+ over U. The direct sum of these homomorphisms yields a homomor-
216
+ phism of vector bundles ψ: ˜E → E′ identical on X with similar prop-
217
+ erties. Extend s to a rational map s′: E′ ��� X. Then for all n ≫ 1
218
+ the composition ˜s = s′ ◦ ψ: ˜E → X is a morphism such that s| ˜Z = ˜p| ˜Z
219
+ where ˜Z is the zero section of ˜p: ˜E → X. The resulting spray ( ˜E, ˜p, ˜s)
220
+ on X is clearly dominating at x.
221
+
222
+ The following corollary is immediate. It is implicitly present in the
223
+ proof of the Localization Lemma in [Gro89, 3.5.B], cf. also [Gro89,
224
+ 3.5.B′] and [For17, Proposition 6.4.2].
225
+ Corollary 1.4. If X is locally elliptic, then it is subelliptic.
226
+ Next we deduce the following useful fact.
227
+ Lemma 1.5. Any subelliptic smooth variety X admits a dominating
228
+ family of sprays of rank 1.
229
+ Proof. Let (Ei, pi, si) be a dominating family of sprays over X. For a
230
+ point x ∈ X we can find a neighborhood U such that pi|U : Ei|U → U
231
+
232
+ 6
233
+ SHULIM KALIMAN AND MIKHAIL ZAIDENBERG
234
+ is a trivial bundle of rank, say ri. Choose a decomposition Ei|U =
235
+ �ri
236
+ j=1 Li,j where pi,j = pi|Li,j : Li,j → U are trivial line bundles. Let-
237
+ ting si,j = s|Li,j : Li,j → X yields a family of local rank 1 sprays
238
+ (Li,j, pi,j, si,j)j=1,...,ri on U. It is easily seen that this family is domi-
239
+ nating at x. Shrinking U and proceeding in the same way as in the
240
+ proof of Lemma 1.3 we extend the latter family to a family of rank 1
241
+ sprays (˜Li,j, ˜pi,j, ˜si,j)j=1,...,ri on the whole X which is still dominating
242
+ at x. In this way we can construct a family (˜Li,j, ˜pi,j, ˜si,j)i,j which is
243
+ dominating at each point of X.
244
+
245
+ 1.3. Proof of the main theorem. In view of Corollary 1.4 the follow-
246
+ ing proposition ends the proof of Theorem 0.1 from the Introduction.
247
+ Proposition 1.6. Let X be a smooth algebraic variety. If X is subel-
248
+ liptic, then it is elliptic.
249
+ Proof. By Corollary 1.2 it suffices to construct a dominating family of
250
+ rank 1 sprays on X. However, Lemma 1.5 provides such a family.
251
+
252
+ References
253
+ [Arz22] I. Arzhantsev, Automorphisms of algebraic varieties and infinite transitiv-
254
+ ity, arXiv:2212.13616 (2022).
255
+ [AFKKZ13] I. V. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, and
256
+ M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162:4
257
+ (2013), 767–823.
258
+ [BKK13] F. Bogomolov, I. Karzhemanov, and K. Kuyumzhiyan, Unirationality and
259
+ existence of infinitely transitive models. In: Birational Geometry, Rational Curves,
260
+ and Arithmetic, pp. 77–92. Springer, 2013.
261
+ [CPPZ21] I. Cheltsov, J. Park, Yu. Prokhorov, and M. Zaidenberg, Cylinders in
262
+ Fano varieties. EMS Surv. Math. Sci. 8, 39–105 (2021).
263
+ [FKZ16] H. Flenner, S. Kaliman, and M. Zaidenberg, A Gromov-Winkelmann type
264
+ theorem for flexible varieties. J. Eur. Math. Soc. (JEMS) 18:11 (2016), 2483–2510.
265
+ [For02] F. Forstneric, The Oka principle for sections of subelliptic submersions.
266
+ Math. Z. 241:3 (2002), 527–551.
267
+ [For17] F. Forstneric, Stein manifolds and holomorphic mappings. The homotopy
268
+ principle in complex analysis. Second edition. Springer-Verlag, Berlin-Heidelberg,
269
+ 2017.
270
+ [For20] F. Forstneric, Recent developments on Oka manifolds. arXiv:2006.07888
271
+ (2020).
272
+ [Gro89] M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles,
273
+ J. Amer. Math. Soc. 2 (1989), 851–897. MR1001851. DOI10.2307/1990897.
274
+ [KKT18] S. Kaliman, F. Kutzschebauch, and T. T. Truong, On subelliptic mani-
275
+ folds. Israel J. Math. 228:1 (2018), 229–247.
276
+ [Kus20] Y. Kusakabe. Oka complements of countable sets and nonelliptic Oka man-
277
+ ifolds. Proc. Amer. Math. Soc. 148:3 (2020), 1233–1238.
278
+
279
+ GROMOV ELLIPTICITY AND SUBELLIPTICITY
280
+ 7
281
+ [Kus22] Y.
282
+ Kusakabe.
283
+ On
284
+ the
285
+ fundamental
286
+ groups
287
+ of
288
+ subelliptic
289
+ varieties.
290
+ arXiv:2212.07085 (2022).
291
+ [LT17] F. L´arusson and T. T. Truong, Algebraic subellipticity and dominability of
292
+ blow-ups of affine spaces. Documenta Mathematica 22 (2017), 151–163.
293
+ [Mag75] A. Magid, The Picard sequence of a fibration. Proc. Amer. Maths. Soc.
294
+ 53:1 (1975), 37–40.
295
+ [Pop11] V. L. Popov, On the Makar-Limanov, Derksen invariants, and finite auto-
296
+ morphism groups of algebraic varieties. In: Affine algebraic geometry, 289–311.
297
+ CRM Proc. Lecture Notes 54, Amer. Math. Soc., Providence, RI, 2011. Zbl
298
+ 1242.14044, MR 2768646.
299
+ University of Miami, Department of Mathematics, Coral Gables, FL
300
+ 33124, USA
301
+ Email address: [email protected]
302
+ Univ. Grenoble Alpes, CNRS, IF, 38000 Grenoble, France
303
+ Email address: [email protected]
304
+
19E1T4oBgHgl3EQfRwPe/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,363 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf,len=362
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
3
+ page_content='03058v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
4
+ page_content='AG] 8 Jan 2023 GROMOV ELLIPTICITY AND SUBELLIPTICITY SHULIM KALIMAN AND MIKHAIL ZAIDENBERG Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
5
+ page_content=' We establish the equivalence of Gromov ellipticity and subellipticity in the algebraic category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
6
+ page_content=' Contents Introduction 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
7
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
8
+ page_content=' Ellipticity versus subellipticity 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
9
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
10
+ page_content=' Examples of elliptic varieties 3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
11
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
12
+ page_content=' Ellipticity versus rationality 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
13
+ page_content=' Composing and extending sprays 3 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
14
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
15
+ page_content=' Composition of sprays 4 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
16
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
17
+ page_content=' Extension lemma 5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
18
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
19
+ page_content=' Proof of the main theorem 6 References 6 Introduction 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
20
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
21
+ page_content=' Ellipticity versus subellipticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
22
+ page_content=' We are working over an alge- braically closed field K of characteristic zero;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
23
+ page_content=' and An = An K stands for the affine n-space over K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
24
+ page_content=' All varieties and vector bundles in this note are algebraic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
25
+ page_content=' a variety is always reduced and irreducible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
26
+ page_content=' Abusing the language, in this paper the terms spray and (sub)ellipticity stand for algebraic spray resp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
27
+ page_content=' algebraic (sub)ellipticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
28
+ page_content=' The notion of ellipticity was introduced, both in analytic and al- gebraic setting, in [Gro89, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
29
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
30
+ page_content='5 and 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
31
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
32
+ page_content='A].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
33
+ page_content=' In the Localization Lemma (see [Gro89, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
34
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
35
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
36
+ page_content='B]) Gromov actually considers a local version of ellipticity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
37
+ page_content=' The subellipticity (implicitly present in [Gro89, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
38
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
39
+ page_content='5]) was introduced in [For02];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
40
+ page_content=' see [For17, Sect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
41
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
42
+ page_content='1] and [For20] for a historical account.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
43
+ page_content=' Recall these notions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
44
+ page_content=' A spray of rank r over a smooth algebraic variety X is a triple (E, p, s) consisting of a vector bundle p: E → X of rank r and a Date: 06.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
45
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
46
+ page_content='2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
47
+ page_content=' 1 2 SHULIM KALIMAN AND MIKHAIL ZAIDENBERG morphism s: E → X such that s|Z = p|Z where Z ⊆ E stands for the zero section of p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
48
+ page_content=' This spray is dominating at x ∈ X if the restric- tion s|Ex : Ex → X to the fiber Ex = p−1(x) is dominant at the origin 0x = Z ∩ Ex of the vector space Ex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
49
+ page_content=' The variety X is called elliptic if it admits a spray (E, p, s) which is dominating at each point x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
50
+ page_content=' A local spray (E, p, s) with values in X at a point x ∈ X consists of a vector bundle p: E → U over a neighborhood U of x and a morphism s: E → X such that s|ZU = p|ZU where ZU stands for the zero section of p: E → U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
51
+ page_content=' One says that X is locally elliptic if for any x ∈ X there is a local spray in a neighborhood of x dominating at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
52
+ page_content=' The variety X is called subelliptic if it admits a family of sprays (Ei, pi, si) defined over the whole X which is dominating at each point x ∈ X, that is, TxX = n � i=1 dsi(T0i,xEi,x) ∀x ∈ X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
53
+ page_content=' Thus, an elliptic variety is both locally elliptic and subelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
54
+ page_content=' In this note we establish the converse implications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
55
+ page_content=' Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
56
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
57
+ page_content=' For a smooth algebraic variety X the following are equivalent: X is elliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
58
+ page_content=' X is subelliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
59
+ page_content=' X is locally elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
60
+ page_content=' Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
61
+ page_content='1 answers a question in [For17, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
62
+ page_content=' 230].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
63
+ page_content=' The equivalence of the first two properties is well known for homogeneous spaces of a linear algebraic group, see [For20, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
64
+ page_content='7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
65
+ page_content=' It is unknown however whether this equivalence also holds in the analytic category;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
66
+ page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
67
+ page_content=' [Kus20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
68
+ page_content=' Comparing Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
69
+ page_content='1 with [LT17, Theorem 1] and [For20, Corol- lary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
70
+ page_content='6] we deduce the following results, see [LT17] and [For20] for the terminology.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
71
+ page_content=' Corollary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
72
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
73
+ page_content=' For a smooth algebraic manifold X the following con- ditions are equivalent: (a) X is elliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
74
+ page_content=' (b) X is locally elliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
75
+ page_content=' (c) X is subelliptic;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
76
+ page_content=' (d) X satisfies Gromov’s condition aEll1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
77
+ page_content=' (e) X satisfies the algebraic homotopy Runge principle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
78
+ page_content=' See [For20, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
79
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
80
+ page_content='2] for relations of (d) and (e) to approximation, interpolation and Oka-Grauert h-Principle in the algebraic setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
81
+ page_content=' GROMOV ELLIPTICITY AND SUBELLIPTICITY 3 As another immediate corollary we mention the following version of [Kus22, Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
82
+ page_content='5], see also [For20, Corollary 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
83
+ page_content='26].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
84
+ page_content=' Corollary 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
85
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
86
+ page_content=' The universal cover of a smooth (sub)elliptic variety is an elliptic algebraic variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
87
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
88
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
89
+ page_content=' Examples of elliptic varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
90
+ page_content=' Recall that a variety X of di- mension ≥ 2 is flexible if through any smooth point x ∈ X pass one- dimensional orbits of Ga-actions on X whose velocity vectors spend the tangent space TxX, see [AFKKZ13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
91
+ page_content=' It is known that every smooth flexible variety is elliptic, see [Gro89, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
92
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
93
+ page_content='B] and [For17, Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
94
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
95
+ page_content='22(C)];' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
96
+ page_content=' cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
97
+ page_content=' also [AFKKZ13, Appendix].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
98
+ page_content=' There are numerous ex- amples of flexible varieties;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
99
+ page_content=' see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
100
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
101
+ page_content=' [AFKKZ13] and survey articles [CPPZ21] and [Arz22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
102
+ page_content=' The complement of a closed subset Y of codimension ≥ 2 in a flexible smooth quasi-affine variety X of dimension ≥ 2 is again flexible, see [FKZ16, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
103
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
104
+ page_content=' In particular, X \\ Y is elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
105
+ page_content=' Recall that an algebraic variety X of dimension n belongs to class A0 if it can be covered by a finite number of copies of An.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
106
+ page_content=' It belongs to class A if it is the complement of a closed subvariety of codimension at least 2 in a variety of class A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
107
+ page_content=' Any variety of class A is subelliptic, see [For17, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
108
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
109
+ page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
110
+ page_content=' By Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
111
+ page_content='1 it is elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
112
+ page_content=' For example, the Grassmann manifold X = G(k, n) of k-dimensional subspaces in An belongs to class A0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
113
+ page_content=' Hence X \\ Y is elliptic for any closed subset Y ⊆ X of codimention ≥ 2, see [For17, Corollary 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
114
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
115
+ page_content='18(D)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
116
+ page_content=' This answers a question in [ibid].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
117
+ page_content=' Furthermore, a variety of class A blown up along a smooth closed subvariety is subelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
118
+ page_content=' The same concerns a smooth locally stably flexible variety, see [LT17], [KKT18] and [For17, Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
119
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
120
+ page_content='8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
121
+ page_content=' By Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
122
+ page_content='1 all these varieties are elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
123
+ page_content=' See also [Gro89, Sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
124
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
125
+ page_content='4(F)] for further potential examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
126
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
127
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
128
+ page_content=' Ellipticity versus rationality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
129
+ page_content=' By definition, any smooth (sub)elliptic variety is dominated by an affine space, hence is unirational and ratio- nally connected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
130
+ page_content=' Notice, however, that there are examples of flexible and so, elliptic smooth affine varieties that are not stably rational, see [Pop11, Example 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
131
+ page_content='22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
132
+ page_content=' Gromov asked in [Gro89] whether any ratio- nal projective variety is elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
133
+ page_content=' The same question can be asked for unirational projective varieties, see [BKK13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
134
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
135
+ page_content=' Composing and extending sprays In this section X stands for a smooth algebraic variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
136
+ page_content=' We develop here several technical tools for the proof of Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
137
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
138
+ page_content=' 4 SHULIM KALIMAN AND MIKHAIL ZAIDENBERG 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
139
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
140
+ page_content=' Composition of sprays.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
141
+ page_content=' The composition (E1∗E2, p1∗p2, s1∗s2) of two given sprays (E1, p1, s1) and (E2, p2, s2) over X is defined via1 E1 ∗ E2 = {(e1, e2) ∈ E1 × E2 | e1 ∈ p−1(X), s1(e1) = p2(e2)} = s∗ 1(E2), p1 ∗ p2(e1, e2) = p1(e1), s1 ∗ s2(e1, e2) = s2(e2), see [Gro89, 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
142
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
143
+ page_content='B].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
144
+ page_content=' One considers also the iterated composition (E, p, s) = (E1 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
147
+ page_content=' ∗ Em, p1 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
149
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
150
+ page_content=' ∗ pm, s1 ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
151
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
152
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
153
+ page_content=' ∗ sm) of a sequence of m sprays (Ei, pi, si) over X, see [ibid] or [For17, Def- inition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
154
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
155
+ page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
156
+ page_content=' Clearly, p: E → X is a fiber bundle whose general fiber is isomorphic to an affine space AN viewed as a variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
157
+ page_content=' In general, p: E → X does not admit a vector bundle structure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
158
+ page_content=' However, it ad- mits a natural section σ: X → E (which plays a role of zero section) such that s|σ(X) = p|σ(X), see [For17, Definition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
159
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
160
+ page_content='5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
161
+ page_content=' If pi : Ei → X are trivial vector bundles for all i, then the composition (E, p, s) is a spray over X with a trivial vector bundle p: E → X, see [For17, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
162
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
163
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
164
+ page_content=' Furthermore, we have the following fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
165
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
166
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
167
+ page_content=' Consider the composition (E, p, s) = (E1 ∗ E2, p1 ∗ p2, s1 ∗ s2) of sprays (E1, p1, s1) and (E2, p2, s2) over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
168
+ page_content=' If (E2, p2, s2) is of rank 1, then (E, p, s) is a spray over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
169
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
170
+ page_content=' By the preceding it suffices to show that p: E → X is a vector bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
171
+ page_content=' The pullback via the projection p1 : E1 → X yields an isomor- phism Pic(X) ∼= Pic(E1), see [Mag75, Theorem 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
172
+ page_content=' Therefore, the line bundle s∗ 1(E2) → E1 is isomorphic to p∗ 1(L1) for a line bundle L1 → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
173
+ page_content=' Choose an affine open cover {Ui} of X which is trivializing simulta- neously for p1: E1 → X and for L1 → X and consider the cylinders Yi := p−1 1 (Ui) ≃ Ui × Ar and p∗ 1(L|Ui) ≃ Ui × Ar × A1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
174
+ page_content=' Up to these triv- ializations the composition p∗ 1(L1|Ui) → Ui coincides with the standard projection pr1: Ui × Ar+1 → Ui.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
175
+ page_content=' The transition function ϕi,j between p∗ 1(L1|Ui) → Ui and p∗ 1(L1|Uj) → Uj over Ui ∩ Uj is of the form ϕi,j : (x, v, t) �→ (x, fi,j(x, v), gi,j(x, v)t), (x, v, t) ∈ (Ui ∩Uj)×Ar ×A1 where fi,j ∈ GL(r, O(Ui ∩ Uj)) and gi,j ∈ O∗(Yi ∩ Yj) = p∗ 1(O∗(Ui ∩ Uj)), that is, the functions gi,j(x, v) = gi,j(x) do not depend on v ∈ Ar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
176
+ page_content=' Finally ϕi,j ∈ GL(r+1, O(Ui∩Uj)), which proves that p = p1∗p2 : E → X is a vector bundle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
177
+ page_content=' □ 1Abusing notation, we do not distinguish between a vector bundle and its total space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
178
+ page_content=' GROMOV ELLIPTICITY AND SUBELLIPTICITY 5 Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
179
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
180
+ page_content=' The composition (E, p, s) of r rank 1 sprays (Li, qi, si) over X is a spray of rank r over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
181
+ page_content=' If the family (Li, qi, si) is domi- nating, then also the spray (E, p, s) is.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
182
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
183
+ page_content=' The first assertion is immediate from Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
184
+ page_content='1;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
185
+ page_content=' see [For17, Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
186
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
187
+ page_content='6] for the second.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
188
+ page_content=' □ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
189
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
190
+ page_content=' Extension lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
191
+ page_content=' The following lemma and its proof follow closely Gromov’s Localization Lemma and its proof, see [Gro89, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
192
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
193
+ page_content='B].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
194
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
195
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
196
+ page_content=' Let U ⊆ X be a dense open subset and (E, p, s) be a local spray on U with values in X dominating at a point x ∈ U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
197
+ page_content=' Then there exists a spray ( ˜E, ˜p, ˜s) on X dominating at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
198
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
199
+ page_content=' Shrinking U we may suppose that U = X \\ supp(D) where D is a reduced effective divisor on X, and p: E = U × Ar → U is a trivial vector bundle on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
200
+ page_content=' We extend p: E → U to a trivial vector bundle p′: E′ = X × Ar → X on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
201
+ page_content=' Let ˜p: ˜E = E′ ⊗ OX(−nD) → X where n ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
202
+ page_content=' Thus, ˜E is a direct sum of r samples of the line bundle OX(−nD).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
203
+ page_content=' We have Hom(OX(−nD), OX) = Hom(OX, OX(nD)) = H0(X, OX(nD)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
204
+ page_content=' Pick a section σ ∈ H0(X, OX(D)) with div(σ) = D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
205
+ page_content=' Then σn defines a homomorphism of line bundles OX(−nD) → OX identical on X which vanishes to order n on ˜p−1(supp(D)) and restricts to an isomorphism over U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
206
+ page_content=' The direct sum of these homomorphisms yields a homomor- phism of vector bundles ψ: ˜E → E′ identical on X with similar prop- erties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
207
+ page_content=' Extend s to a rational map s′: E′ ��� X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
208
+ page_content=' Then for all n ≫ 1 the composition ˜s = s′ ◦ ψ: ˜E → X is a morphism such that s| ˜Z = ˜p| ˜Z where ˜Z is the zero section of ˜p: ˜E → X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
209
+ page_content=' The resulting spray ( ˜E, ˜p, ˜s) on X is clearly dominating at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
210
+ page_content=' □ The following corollary is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
211
+ page_content=' It is implicitly present in the proof of the Localization Lemma in [Gro89, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
212
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
213
+ page_content='B], cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
214
+ page_content=' also [Gro89, 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
215
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
216
+ page_content='B′] and [For17, Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
217
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
218
+ page_content='2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
219
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
220
+ page_content='4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
221
+ page_content=' If X is locally elliptic, then it is subelliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
222
+ page_content=' Next we deduce the following useful fact.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
223
+ page_content=' Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
224
+ page_content='5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
225
+ page_content=' Any subelliptic smooth variety X admits a dominating family of sprays of rank 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
226
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
227
+ page_content=' Let (Ei, pi, si) be a dominating family of sprays over X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
228
+ page_content=' For a point x ∈ X we can find a neighborhood U such that pi|U : Ei|U → U 6 SHULIM KALIMAN AND MIKHAIL ZAIDENBERG is a trivial bundle of rank, say ri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
229
+ page_content=' Choose a decomposition Ei|U = �ri j=1 Li,j where pi,j = pi|Li,j : Li,j → U are trivial line bundles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
230
+ page_content=' Let- ting si,j = s|Li,j : Li,j → X yields a family of local rank 1 sprays (Li,j, pi,j, si,j)j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
231
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
232
+ page_content=',ri on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
233
+ page_content=' It is easily seen that this family is domi- nating at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
234
+ page_content=' Shrinking U and proceeding in the same way as in the proof of Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
235
+ page_content='3 we extend the latter family to a family of rank 1 sprays (˜Li,j, ˜pi,j, ˜si,j)j=1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
236
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
237
+ page_content=',ri on the whole X which is still dominating at x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
238
+ page_content=' In this way we can construct a family (˜Li,j, ˜pi,j, ˜si,j)i,j which is dominating at each point of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
239
+ page_content=' □ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
240
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
241
+ page_content=' Proof of the main theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
242
+ page_content=' In view of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
243
+ page_content='4 the follow- ing proposition ends the proof of Theorem 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
244
+ page_content='1 from the Introduction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
245
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
246
+ page_content='6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
247
+ page_content=' Let X be a smooth algebraic variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
248
+ page_content=' If X is subel- liptic, then it is elliptic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
249
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
250
+ page_content=' By Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
251
+ page_content='2 it suffices to construct a dominating family of rank 1 sprays on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
252
+ page_content=' However, Lemma 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
253
+ page_content='5 provides such a family.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
254
+ page_content=' □ References [Arz22] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
255
+ page_content=' Arzhantsev, Automorphisms of algebraic varieties and infinite transitiv- ity, arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
256
+ page_content='13616 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
257
+ page_content=' [AFKKZ13] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
258
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
259
+ page_content=' Arzhantsev, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
260
+ page_content=' Flenner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
261
+ page_content=' Kaliman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
262
+ page_content=' Kutzschebauch, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
263
+ page_content=' Zaidenberg, Flexible varieties and automorphism groups, Duke Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
264
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
265
+ page_content=' 162:4 (2013), 767–823.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
266
+ page_content=' [BKK13] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
267
+ page_content=' Bogomolov, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
268
+ page_content=' Karzhemanov, and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
269
+ page_content=' Kuyumzhiyan, Unirationality and existence of infinitely transitive models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
270
+ page_content=' In: Birational Geometry, Rational Curves, and Arithmetic, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
271
+ page_content=' 77–92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
272
+ page_content=' Springer, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
273
+ page_content=' [CPPZ21] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
274
+ page_content=' Cheltsov, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
275
+ page_content=' Park, Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
276
+ page_content=' Prokhorov, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
277
+ page_content=' Zaidenberg, Cylinders in Fano varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
278
+ page_content=' EMS Surv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
279
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
280
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
281
+ page_content=' 8, 39–105 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
282
+ page_content=' [FKZ16] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
283
+ page_content=' Flenner, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
284
+ page_content=' Kaliman, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
285
+ page_content=' Zaidenberg, A Gromov-Winkelmann type theorem for flexible varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
286
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
287
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
288
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
289
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
290
+ page_content=' (JEMS) 18:11 (2016), 2483–2510.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
291
+ page_content=' [For02] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
292
+ page_content=' Forstneric, The Oka principle for sections of subelliptic submersions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
293
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
294
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
295
+ page_content=' 241:3 (2002), 527–551.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
296
+ page_content=' [For17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
297
+ page_content=' Forstneric, Stein manifolds and holomorphic mappings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
298
+ page_content=' The homotopy principle in complex analysis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
299
+ page_content=' Second edition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
300
+ page_content=' Springer-Verlag, Berlin-Heidelberg, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
301
+ page_content=' [For20] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
302
+ page_content=' Forstneric, Recent developments on Oka manifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
303
+ page_content=' arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
304
+ page_content='07888 (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
305
+ page_content=' [Gro89] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
306
+ page_content=' Gromov, Oka’s principle for holomorphic sections of elliptic bundles, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
307
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
308
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
309
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
310
+ page_content=' 2 (1989), 851–897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
311
+ page_content=' MR1001851.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
312
+ page_content=' DOI10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
313
+ page_content='2307/1990897.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
314
+ page_content=' [KKT18] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
315
+ page_content=' Kaliman, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
316
+ page_content=' Kutzschebauch, and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
317
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
318
+ page_content=' Truong, On subelliptic mani- folds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
319
+ page_content=' Israel J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
320
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
321
+ page_content=' 228:1 (2018), 229–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
322
+ page_content=' [Kus20] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
323
+ page_content=' Kusakabe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
324
+ page_content=' Oka complements of countable sets and nonelliptic Oka man- ifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
325
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
326
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
327
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
328
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
329
+ page_content=' 148:3 (2020), 1233–1238.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
330
+ page_content=' GROMOV ELLIPTICITY AND SUBELLIPTICITY 7 [Kus22] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
331
+ page_content=' Kusakabe.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
332
+ page_content=' On the fundamental groups of subelliptic varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
333
+ page_content=' arXiv:2212.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
334
+ page_content='07085 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
335
+ page_content=' [LT17] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
336
+ page_content=' L´arusson and T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
337
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
338
+ page_content=' Truong, Algebraic subellipticity and dominability of blow-ups of affine spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
339
+ page_content=' Documenta Mathematica 22 (2017), 151–163.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
340
+ page_content=' [Mag75] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
341
+ page_content=' Magid, The Picard sequence of a fibration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
342
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
343
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
344
+ page_content=' Maths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
345
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
346
+ page_content=' 53:1 (1975), 37–40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
347
+ page_content=' [Pop11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
348
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
349
+ page_content=' Popov, On the Makar-Limanov, Derksen invariants, and finite auto- morphism groups of algebraic varieties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
350
+ page_content=' In: Affine algebraic geometry, 289–311.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
351
+ page_content=' CRM Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
352
+ page_content=' Lecture Notes 54, Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
353
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
354
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
355
+ page_content=', Providence, RI, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
356
+ page_content=' Zbl 1242.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
357
+ page_content='14044, MR 2768646.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
358
+ page_content=' University of Miami, Department of Mathematics, Coral Gables, FL 33124, USA Email address: kaliman@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
359
+ page_content='miami.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
360
+ page_content='edu Univ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
361
+ page_content=' Grenoble Alpes, CNRS, IF, 38000 Grenoble, France Email address: mikhail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
362
+ page_content='zaidenberg@univ-grenoble-alpes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
363
+ page_content='fr' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/19E1T4oBgHgl3EQfRwPe/content/2301.03058v1.pdf'}
39FQT4oBgHgl3EQfHTWW/content/tmp_files/2301.13248v1.pdf.txt ADDED
@@ -0,0 +1,1071 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A platform for trapped cryogenic electrons, anions and
2
+ cations for fundamental physics and chemical studies
3
+
4
+ L. O. A. Azevedo1, R. J. S. Costa1, W. Wolff1, A. N. Oliveira2, R.L. Sacramento1, D.M. Silveira1, C. L. Cesar1*
5
+
6
+ 1Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941–909, Brazil
7
+ 2INMETRO, Caxias, 219999, Brazil
8
+
9
+ Abstract:
10
+ Cryogenic cations, electrons and anions are ubiquitous in space, participate on star
11
+ formation chemistry and are relevant to studies on the origin of molecular biology
12
+ homochirality. We report on a system to directly generate and trap these species in
13
+ the laboratory. Laser ablation of a solid target (LiH) facing a sublimating Ne matrix
14
+ generates cryogenic electrons, anions, and cations. Axial energy distributions (of 𝐞!,
15
+ 𝐇± and 𝐋𝐢±) peaked at 0–25 meV are obtained in a Penning trap at 90 mT and 0.5 eV
16
+ barrier. Anions can be guided and turned neutral with low recoil energy by near–
17
+ threshold photodetachment. An immediate prospect for this 𝐇! source is to load
18
+ hydrogen atoms into the ALPHA antihydrogen trap at CERN towards direct
19
+ spectroscopic comparison of both conjugated species beyond 13 significant figures.
20
+ The production is scalable and adaptable to different species including deuterium and
21
+ tritium, relevant for neutrino mass and fusion research.
22
+
23
+ Introduction
24
+
25
+ Sources and traps of cold negative and positive species are needed to study the low-
26
+ temperature species themselves and the reactions between trapped charged particles and
27
+ neutral species1. Crucial requirements on both, sources and traps, represent a significant
28
+ challenge due to specific limitations and conditions on a variety of setups. Here, we report
29
+ source and trap with innovative methods with an integrated mass discriminator, describing
30
+ the elements and quantitatively assessing their performance. Many of the innovations and
31
+ findings are of general interest, as briefly presented for diverse applications.
32
+
33
+ Measurements of the 1S–2S transition frequency in antihydrogen ( H& ) by the ALPHA
34
+ collaboration at 12 significant figures2,3 entered uncharted territory in the comparison of
35
+ charge conjugated species, a test of the Charge–Parity–Time (CPT) symmetry. We foresee
36
+ the need to perform laser spectroscopy of H in the same trap4 as H& to achieve aimed
37
+ precisions of 15 significant figures in search of explanations for the matter–antimatter
38
+ asymmetry in the Universe. In the same trap and reference frame, both species could be
39
+ studied under the same conditions enabling better control over systematic effects, such as
40
+ trap magnetic fields and laser power causing AC Stark shift –. The H& research program also
41
+ involves probing the gravitational acceleration5,6. Antihydrogen is produced – from its
42
+ constituents, antiproton and positron – and studied in challenging conditions, such as an
43
+ exquisite ultra–high–vacuum (UHV) environment to avoid annihilation to background gas.
44
+
45
+ Thus, it is not always possible to readily use normal matter techniques to load the antimatter
46
+ trap with matter species. For example, H has been trapped and subjected to high–precision
47
+ laser spectroscopy at MIT7 and Amsterdan8 in a trap that required a superfluid liquid helium
48
+ covered cell, conditions incompatible with the H& trap at CERN. Therefore, innovative
49
+ techniques are required for loading H in the H& trap and the developments presented here
50
+ can be readily adapted as a solution.
51
+
52
+ The samples of H! produced by our system are within the temperature of the antiproton and
53
+ positron samples used by the ALPHA experiment for H& synthesis. The H! can be produced
54
+ and trapped adjacent to the main apparatus, and after the UHV condition is regained, the
55
+ anions will be guided into the composed, Penning and magnetic, ALPHA trap. They can be
56
+ further cooled by evaporative cooling by themselves or with pre–cooled electrons. Then, a
57
+ laser pulse, with photon energy near the photodetachment threshold9 of H!(0.754 eV), will
58
+ neutralize the anions imparting low recoil energy. For example, a laser at 1575 nm will leave
59
+ 0.2 K of recoil energy – less than the typical temperature or energy dispersion of the ion
60
+ sample – to the neutral H. The fraction of resulting atoms with energy below 0.5 K will remain
61
+ trapped in the superposed magnetic trap.
62
+
63
+ Moreover, the developments with H& research have spurred a renewed interest in hydrogen
64
+ trapping and spectroscopy by many groups. New techniques to produce cold hydrogen10-13
65
+ are being investigated with interests ranging from wavefunction in gravity quantum
66
+ reflection14, to scientific metrology – in tests of Quantum Electrodynamics, proton radius
67
+ puzzle, and search for variation of fundamental constants – and to produce larger Bose–
68
+ Einstein condensates. The system presented offers an alternative, study model, or a proof–
69
+ of–principle for some of these studies. For example, the generation of cold H from H! is the
70
+ charge conjugated process from one proposed experiment15,16 for measuring gravity with H&.
71
+
72
+ The present demonstration, starting from laser ablation of LiH and generating H!, Li! and
73
+ Li#H$
74
+ ! does not show, a priori, a specificity that would prevent it from being applicable to
75
+ other simple species, such as D! and T!. An example of such a specificity is the case of the
76
+ MIT and Amsterdan H traps that could not trap17 D because of its slightly higher binding
77
+ energy to liquid helium. A proposal for neutrino mass measurement18,19 requires quasi–
78
+ trapped tritium for the experiment to be performed in a magnetic field. Many low–energy
79
+ atomic processes involving deuterium are relevant in fusion research20 for a copious
80
+ production of D!. The source here described, adapted for T! and D!, might find use for these
81
+ studies.
82
+
83
+ Lastly, the interaction of low energy ions and electrons with neutral atoms and molecules is
84
+ important from astrophysics to the origin of biological molecules21-23. It would thus be
85
+ desirable to have a platform to generate various cryogenic species in a direct way. Producing
86
+
87
+ and trapping slow anions is not trivial. Stray or contact electric fields can easily generate
88
+ thousands of kelvins, since an energy of only 26 meV is equivalent to 300 K in temperature
89
+ scale. Difference of work functions in metals can reach 1 V. Patch or domain potentials within
90
+ an electrode24 can reach 250 mV. Anions are typically created at energies25 of many eV or
91
+ keV. Various methods have been employed for further cooling ionized species: – entrainment
92
+ in buffer gas26,27; – resistive cooling28; – direct sympathetically cooling29 and LC mediated
93
+ sympathetic cooling30; – direct laser cooling for species, such as cations31 and proposed for
94
+ molecular anions32, with nearly closed optical transitions.
95
+
96
+ At the ALPHA experiment, where the H& trapping rate depends strongly on a low positron
97
+ cloud temperature, the final cooling to ~20 K relies on evaporative cooling33. In summary,
98
+ there are many different techniques being explored and developed to produce cold charged
99
+ samples due to their scientific relevance. Here, we report on a platform to directly generate:
100
+ (i) electrons with a perspective for a cryogenic polarized electron beam; (ii) simple
101
+ molecular ions at temperatures compatible with interstellar media chemistry; (iii) hydrogen
102
+ anions suitable for antihydrogen research in a method adaptable to deuterium and tritium
103
+ research. It may also serve as an attractive initial step towards samples in the cold and
104
+ ultracold regime.
105
+
106
+ Experimental Setup and Procedures
107
+
108
+ The method is based on the Matrix Isolation Sublimation (MISu) technique34–37 and
109
+ variations. In MISu, beams of atoms and molecules can be produced either in a fast pulse (in
110
+ ~10–100 µs) or in a quasi–continuous beam depending on the sublimation regime. The
111
+ implantation of different atoms into the rare–gas matrix, typically via laser ablation of solid
112
+ precursor such as pellets of LiH, Ca, Cr, graphite, can lead to the formation of molecules
113
+ within the matrix. As previously reported37, we produced LinCam molecules from alternating
114
+ laser ablation of a Li and a Ca pellet. Since electrons should not attach to the Ne atoms, it was
115
+ initially thought that implanting electrons together with atoms and molecules would lead to
116
+ the formation of different anionic species in the matrix. As a faster variation, we found that
117
+ the laser ablated species impinging onto the Ne matrix already generate low–energy
118
+ electrons and atomic or molecular ions.
119
+
120
+ The sapphire substrate, upon which we deposit the neon matrix, is coated on both sides with
121
+ NiCr resistive film. The back film is used as a resistor to apply a sublimating heat pulse while
122
+ the front film serves as a mirror and provides a way to bias the sapphire with a positive or
123
+ negative voltage. This bias can be used to repel or attract the species to the matrix during the
124
+ ablation process and/or during the sublimation phase.
125
+
126
+
127
+ In figure 1 we present the basic setup used in this study. A two–stage closed cycle cryostat
128
+ with 1 W of cooling power at 4 K is used. An UHV environment can be achieved below 6.9 K,
129
+ where the saturated vapor pressure of Ne is predicted to be ~7.5x10-10 Torr and falls 12
130
+ orders of magnitude at 4 K if one had a vacuum tight enclosure. This UHV condition is not
131
+ met during the matrix growth or sublimation, and it takes milliseconds for the Ne gas to
132
+ cryopump back to the walls. Due to a poor thermal link in the present setup, the trap
133
+ electrodes region only reaches ~6.5 K while the main chamber is at ~4 K. The sapphire
134
+ substrate is thermally anchored to the “4K plate” through a designed thermal link that allows
135
+ it to reach 3.2 K and be heated for the sublimation process without warming the whole
136
+ experimental cell. The Ne gas delivery tube is brought into the cryostat with a first thermal
137
+ link at the 1st stage (40 K nominal) and its exit is above 16 K, to avoid plugging, and directed
138
+ towards the sapphire. The laser reflections on the interfaces, vacuum–matrix and matrix–
139
+ sapphire, cause interference fringes that allow monitoring the matrix thickness down to the
140
+ atomic monolayer as well as performing Doppler–sensitive spectroscopy of neutral Li atoms
141
+ as they sublimate from the matrix into vacuum.
142
+
143
+
144
+ Figure 1. a) A diagram of the basic setup is shown. The sapphire (“Sapph”) where the Ne matrix is deposited, as the gas is delivered
145
+ through the tube, and the inner chamber are thermally anchored at the 2nd stage 4 K cryohead surrounded by a “40K” black–
146
+ body shield. The spectroscopy laser monitors the matrix thickness and the Li atoms absorption. A pulsed laser at 532 or 1064 nm
147
+ (in dashed green) promotes ablation from a LiH pellet imparting atoms, molecules, electrons, and ions onto the Ne matrix. Two
148
+ magnets, “Mag.Sap.” and “Trap coil”, for guiding (dotted blue arrows) and trapping are placed around the sapphire and the trap
149
+ region. An aperture avoids excess Ne gas towards the cell bottom and trap region. The Penning–Malmberg trap uses six ring
150
+ electrodes (E0–E5), glued externally to a grounded copper tube that reaches 6.5 K, and is followed by a channeltron CEM detector.
151
+ The CEM is loosely thermally anchored to the “40K” stage. b) Axial profiles of the magnetic field (red line) and a configuration,
152
+ for cations, of the potentials for a dump at E4 (black solid line going in time to the lowered dotted curves) for a trap initially
153
+ centered around E3.
154
+
155
+ During or after the matrix growth a single, or multiple, laser ablation pulses onto the
156
+ appropriate solid precursor – mainly LiH during this study – release and implant neutral and
157
+ Laser 670.8nm
158
+ Ablation Laser
159
+ 532nm or 1064 nm
160
+ lens
161
+ E0
162
+ E1
163
+ E2 E3 E4
164
+ E5
165
+ CEM
166
+ Vacuum Isolation
167
+ 40K Shield
168
+ Trap coil
169
+ a)
170
+ 4K Shield
171
+ E0
172
+ E1
173
+ E2
174
+ E3
175
+ E4
176
+ E5
177
+ V(z)
178
+ B(z)
179
+ 50
180
+ 100
181
+ 150
182
+ 200
183
+ - 2
184
+ 0
185
+ 2
186
+ 4
187
+ - 25
188
+ 0
189
+ 25
190
+ 50
191
+ 75
192
+ Position z (mm)
193
+ V(z)
194
+ (V)
195
+ B(z)
196
+ (mT)
197
+ b)
198
+ T~4K
199
+ Sapph
200
+ Ne Tube
201
+ LiH
202
+ Mag.Sap.
203
+ Apert.
204
+
205
+ charged particles into the matrix or reflect from it. The matrix can be sublimated at different
206
+ times with respect to the ablation pulses. We have employed many variations on these timing
207
+ parameters and laser pulse energies. For ablation we mostly employed a doubled Nd:YAG at
208
+ 532 nm, with a few mJ in 5 ns pulses. This flashlamp pumped laser became unreliable and
209
+ we switched to a diode laser pumped Nd:YAG at 1064 nm with up to 1.5 mJ using a tighter
210
+ focusing for similar fluences. The front sapphire terminal can be monitored for the charge
211
+ deposited into (or released from) the matrix, acting as a capacitor, during the ablation (or
212
+ sublimation) process. Through laser ablation, enough charge can be deposited to achieve
213
+ many volts of space charge or to thermally explode the matrix. Both the ablation process and
214
+ space charge variations can affect the results. We monitored the matrix size, the deposited
215
+ charge, and the sapphire temperature change due to the ablation and sublimation. Adjusting
216
+ these parameters and the very critical timing for switching the trapping electrodes potentials,
217
+ we have conducted hundreds of experimental cycles in a robust manner.
218
+
219
+ A dry superconducting coil (“Mag. Sap.” in Fig. 1) placed around the sapphire generates a
220
+ field of ~41 mT in a configuration to guide the particles into the trap region. The Penning–
221
+ Malmberg trap, in the horizontal direction, is composed of six similar electrodes, named E0–
222
+ E5, of 17.4 mm of inner diameter and 20 mm length each. The magnetic field at the trap is
223
+ generated by an external resistive coil (“Trap coil” in Fig. 1) which produces 92 mT on axis,
224
+ around E3–E4, at 100 A. Such a short coil was dictated by space constraints and resulted in
225
+ a highly non-uniform field. This leads to magnetic mirroring reflections if we dump the
226
+ particles from electrodes E2–E3. Due to heating, the coil can only be left energized for ~1.5
227
+ second, limiting the trapping time. The resulting field from the two coils generates a guiding
228
+ magnetic field that leads the particles from the source making a turn into the trap. Along the
229
+ guiding lines, the field reach values as low as 1.5 mT, which is enough for guiding low energy
230
+ and low mass species.
231
+
232
+ For detection of the charged species, we use a Channel Electron Multiplier (CEM), a Magnum
233
+ Channeltron from Photonis Inc, to the right of electrode E5 in Fig.1. We set the voltages in
234
+ the CEM to attract either negative or positive charges before each experiment. For cations,
235
+ the cone of the CEM is set at -2 kV while the anode is grounded via a load resistor of 1 kΩ.
236
+ For anions, the cone is set at +0.4 kV while the anode is connected to +2.4 kV via a 1.2 MΩ
237
+ resistor. In both configurations the output is capacitively coupled out of the cryostat and into
238
+ a radio–frequency pre–amplifier which is directly recorded by an oscilloscope at 40 GSa/s,
239
+ with up to 5 ms acquisition, and analysed by a peak detection routine above a certain
240
+ threshold. To prevent excess black–body heat coming from the CEM into the trap we partially
241
+ anchor the wires to the CEM at the 40 K heat shield, at the known expense of a higher
242
+ detector's resistance resulting in longer recharging times. With a high detection rate, we had
243
+ to deal with saturation of the cold detector. Particularly, using a fast dump configuration for
244
+
245
+ a time–of–flight mass discrimination (ToF) for negative particles, the first coming electron
246
+ signal can saturate the CEM that ends up detecting very few H! afterwards.
247
+
248
+ Experimental Results
249
+
250
+ Initial experiments involved using a homemade time–of–flight mass spectrometer (ToF–MS)
251
+ to detect the different species emanating from the sapphire (see figure 1). The details of this
252
+ ToF–MS can be found in ref37. The region where the ions are extracted is large and the ToF–
253
+ MS resolution is poor, but sufficient to discriminate electrons from H! and Li!. A typical
254
+ mass spectrum of the raw data and histogram is shown in figure 2. The extraction
255
+ accelerating potential was switched on at 50 µs after ablation. The electrons are detected
256
+ immediately after the extraction pulse, followed by the heavier species with clear presence
257
+ of H!, Li! and molecular anions. As expected from the ablation of LiH we generated both Li
258
+ and H ionized species, with both signs of charge, as well as neutral atoms, and molecules.
259
+
260
+
261
+ Figure 2. Initial ToF–MS results, in the absence of the trap. The accelerating electric field is switched on at t=50 µs after the
262
+ ablation laser pulse onto the sublimating Ne matrix. The electrons appear immediately, followed by the heavier species. The top
263
+ graph (a) shows the data collected from the oscilloscope in a single realization. The red dots are peaks identified by the LabView
264
+ routine. The bottom histogram (b), with mass identification up to Li! or LiH!and showing heavier masses, is an accumulation of
265
+ 35 runs. The fraction of counts for different species depends on timing.
266
+
267
+ In a MISu procedure the trapping experiment is as follows: (i) the Ne matrix is grown and
268
+ laser ablation generates and implants atoms, molecules, ions and electrons into the matrix;
269
+ (ii) both magnets are energized and the Ne matrix is sublimated with a heat pulse starting at
270
+ time t=0, sometimes the last electrode E5 is energized from the beginning; (iii) at time t1 the
271
+ entrance trap electrode (E2, for example), or both E2 and E5, is switched on and hold the
272
+ (a)
273
+ 0
274
+ 1.0
275
+ 2.0
276
+ 3.0
277
+ Signal (V)
278
+ (b)
279
+ e-
280
+ H-
281
+ Li-/LiH-
282
+ 50
283
+ 60
284
+ 70
285
+ 80
286
+ 90
287
+ 100
288
+ 200
289
+ 400
290
+ 600
291
+ 800
292
+ Time (μs)
293
+ Counts
294
+
295
+ trapped ions; (iv) the trapping potentials are manipulated and then lowered at different
296
+ times and rates and the ions detected in the CEM.
297
+
298
+ The raw data for cations of a trapping sequence is shown in figure 3. During the slow
299
+ sublimation (heat pulse starts at t=0), the spectroscopy laser (purple trace) continuously
300
+ scanning (at 2 kHz) around the D2 resonance in Li (670.776 nm) records the atoms’
301
+ absorption after they are released from the matrix. With E5 = 5 V during sublimation, the
302
+ energy barrier prevents any cation from reaching the CEM. At t=1080 µs the entrance
303
+ electrode E2 is switched, during 20 µs, to 5 V closing the trap. At time t=3500 µs the exit
304
+ electrode E5 is linearly brought, during 800 µs, to 0 V and the ions are detected in the CEM
305
+ as shown in the blue histogram.
306
+
307
+ Figure 3. Trapping of cations using the MISu procedure. A matrix is grown while 6 ablation pulses deposit atoms and charged
308
+ particles into it. At t=0, a current is applied to the sapphire’s NiCr film resistor causing a slow sublimation of the matrix. The laser
309
+ transmission is shown in purple and presents information on the matrix thickness and atomic absorption. The E5 electrode (black
310
+ trace) is set at 5 V since t=0. The E2 electrode (red dashed trace) is switched to 5 V at t=1080 µs trapping particles between E2
311
+ and E5. At t=3500 µs, E5 is linearly brought to 0 V and cations are allowed to scape towards the CEM. The cations count is shown
312
+ in the blue histogram. The appearance of signal at the end of, and after, the ramp is compatible with very low energy ions, despite
313
+ a small propagation delay of the ions to the detector. The small signal of ions at t~1100 µs results from the energy gained by the
314
+ switching of E2 that pushes ions over the E5 barrier.
315
+
316
+ Several studies were performed using the MISu procedure described above, with positive
317
+ and negative charges. The critical optimization parameters include the times between the
318
+ beginning of the sublimation pulse, the ablation pulse, and the trap closing. Figure 4 shows
319
+ results for cations done lowering the trap barrier (electrode E4) at a much lower rate than
320
+ Laser signal
321
+ Arbitrary Vertical Scale
322
+ Electrode 2 Potential (V)
323
+ Electrode 5 Potential (V)
324
+ Histogram Counts
325
+ 0
326
+ 1000
327
+ 2000
328
+ 3000
329
+ 4000
330
+ 5000
331
+ 0
332
+ 2
333
+ 4
334
+ 6
335
+ 8
336
+ 10
337
+ 12
338
+ 0
339
+ 20
340
+ 40
341
+ 60
342
+ 80
343
+ 100
344
+ Time (μs)
345
+ Electrodes Voltage (V)
346
+ Counts
347
+
348
+ in figure 3, taking 2500 µs to go from 1 V to 0 V. In this case, the propagation delay to the
349
+ CEM is of smaller relevance during the ramp down. An energy distribution, incorporating the
350
+ counts after the ramp down into the first bin, is shown as an inset of the figure. Notice that
351
+ time and energy are not linear near the end of the ramp as there is a small potential at the
352
+ central (E3) electrode region. The peak of the distribution is in the first bin (0 to 25 meV)
353
+ which accounts for 32% of the total counts shown. Among the various manipulations we
354
+ included squeezing the trap into a single electrode to rid the trap of species with masses
355
+ higher than 10.
356
+
357
+
358
+ Figure 4. Results with cations (H" and Li") from the accumulation of 5 runs. A matrix (~1 µm) was grown over 20 s with 40
359
+ ablation pulses. The sublimation heat pulse started at t=0 and the Li atoms were seen (not shown in the graph) sublimating from
360
+ ~4.5 – 8 ms. An extra ablation pulse is given at t=6140 µs and E2 rose to 5 V from 6200 – 6250 µs closing the trap between E2–
361
+ E5. The sample was later squeezed between E2–E4 and E4 was brought to 1 V. The histogram (in blue) from the final slow linear
362
+ dump (from 8000–10500 µs) of E4 from 1 V is shown above in solid black. In the inset the time distribution is mapped into an
363
+ energy distribution with the counts after the ramp down being incorporated in the first bin (0 – 25 meV).
364
+
365
+ The result of the studies above with negative charges showed that electrons dominated the
366
+ counts. To improve the anions’ yield, we developed a variation on MISu which consists of
367
+ applying a single ablation pulse during the sublimation of the Ne matrix. In figure 5, the
368
+ results of such an experiment for negative charged particles is shown. In this case the trap
369
+ was manipulated as in figure 4 above, going from an initial trap in E2–E5 to a squeezed E2–
370
+ E4 and then E4 slowly dumped from -2 V while E2 was kept at -5 V. The time distribution
371
+ can be folded into an energy distribution shown in the inset with bins of 25 meV.
372
+
373
+ 0
374
+ 100
375
+ 200
376
+ 300
377
+ 400
378
+ 500
379
+ 600
380
+ 0
381
+ 200
382
+ 400
383
+ 600
384
+ 800
385
+ 1000
386
+ 1200
387
+ Energy (meV)
388
+ Counts
389
+ Electrode 4 Voltage
390
+ Histogram Counts
391
+ 8000
392
+ 9000
393
+ 10000
394
+ 11000
395
+ 0
396
+ 50
397
+ 100
398
+ 150
399
+ 200
400
+ 250
401
+ 0
402
+ 200
403
+ 400
404
+ 600
405
+ 800
406
+ 1000
407
+ Time (μs)
408
+ Counts
409
+ Barrier Voltage (mV)
410
+
411
+
412
+ Figure 5. Histogram (in blue) from final dump of electrons and anions (about 1/4 e!and 3/4 H!) from a trap between E2–E4 after
413
+ similar manipulations as in figure 4. This data represents the accumulation of 21 runs at a reduced laser energy. The matrix was
414
+ 80 nm thick. The sublimation heat pulse starts at t=0 and a single ablation pulse is given at t=6140 µs and E2 rises to -5 V from
415
+ 6200 – 6250 µs closing the trap between E2–E5. The sample is later squeezed between E2–E4 and E4 is brought to -2 V. The
416
+ histogram from the final slow linear dump (from 8000–10500 µs) of E4 from -2 V is shown above. The inset shows the
417
+ corresponding energy distribution, with a nearly exponential decay shape, with the counts after the ramp down being
418
+ incorporated in the first bin (0 – 25 meV).
419
+
420
+
421
+ To determine which species were trapped, we employed a ToF discrimination in the small
422
+ space available, far from the ideal Wiley–McLaren38 condition. By trapping the particles in a
423
+ single electrode, e.g., E2–E4 with E2 at ±5 V and E4 at ±1 V, we can quickly lower E4 to ±0.2
424
+ V while raising E3 to ±0.4 V (where the ± applies to positive or negative particles) imposing
425
+ a wiggling acceleration region from E2 to E4 (see Methods for details). The particles are
426
+ accelerated towards the channeltron and have some short length of free flight. The condition
427
+ is not ideal but enough to discriminate e!, H! and Li!/LiH!, though not Li! from LiH!. Due
428
+ to the short length of the trap coil we cannot employ this technique at electrodes farther
429
+ from the detector. The result of this ToF discriminator is shown in figure 6, using the same
430
+ matrix and ablation conditions as in figure 5. The ToF discrimination shows electrons and
431
+ hydrogen anions as majority, followed by a small fraction of Li! or LiH! for those conditions.
432
+ For this procedure we had to considerably decrease the ablation laser energy to avoid
433
+ saturating the detector with the e! signal. Details on the simulation are presented in
434
+ Methods but it is relevant to mention that it is a simple 1D simulation along the axis; that it
435
+ does not consider the large finite time for the “quick ramp down”, which typically has a 1.2
436
+ µs time decay; and that it uses an energy distribution that would reproduce figure 5.
437
+
438
+ 0
439
+ 200
440
+ 400
441
+ 600
442
+ 800
443
+ 0
444
+ 50
445
+ 100
446
+ 150
447
+ 200
448
+ 250
449
+ 300
450
+ Energy (meV)
451
+ Counts
452
+ Electrode 4 Voltage
453
+ Histogram Counts
454
+ 8000
455
+ 9000
456
+ 10000
457
+ 11000
458
+ 0
459
+ 50
460
+ 100
461
+ 150
462
+ 200
463
+ 0
464
+ 500
465
+ 1000
466
+ 1500
467
+ 2000
468
+ Time (μs)
469
+ Counts
470
+ Barrier Voltage (-mV)
471
+
472
+
473
+
474
+ Figure 6. ToF discrimination for negative species showing e! , H! and Li! (or LiH! ) in the same trapping conditions and
475
+ manipulations as in figure 5 but now doing a quick ramp down from the trap with E1= -10 V, E2 = -5 V, E3=0 V, E4= -2 V to an
476
+ acceleration ramp with E1=-10 V, E2= -5 V, E3 = -0.2 V, E4= -0.1V and E5 = 0 V. The experimental data from an accumulation of
477
+ 21 runs is shown in blue while a simulated histogram for the species identified is shown with a red envelope. In this figure, t=0 is
478
+ the beginning of the quick ramp down, taken as instantaneous in the simulation. The ablation laser energy was considerably
479
+ decreased to avoid saturation of the CEM with the e! signal. See text for more discussion on the “quick ramp down” and Methods
480
+ for the simulation.
481
+
482
+ Due to some saturation of the CEM with the electron signal in the ToF, we employed another
483
+ method to get a ratio of H! to e! under these conditions. The electrons arrive at the trap
484
+ region almost immediately after the ablation in this variation while the H!‘s take about 100
485
+ µs. By measuring that the electrons trapped number would not change from 60 to 90 µs, after
486
+ ablation and before the arrival time of the H!, we can compare the trapped distribution for
487
+ slow ramps for samples comprised only of electrons to samples trapped at the best time for
488
+ H!. The result is shown in figure 7. The ratio of the areas (~3.6) represents that, at its optimal
489
+ timing, H! is trapped 2.6 times more efficiently than e! and with a similar energy
490
+ distribution.
491
+
492
+ e-
493
+ H-
494
+ Li-
495
+ 0
496
+ 10
497
+ 20
498
+ 30
499
+ 40
500
+ 50
501
+ 0
502
+ 50
503
+ 100
504
+ 150
505
+ 200
506
+ Time (μs)
507
+ Counts
508
+
509
+
510
+ Figure 7. Comparison of slow dumps for a sample trapped at earlier times (60–90 µs after ablation) comprised only of e!‘s (in
511
+ red), to sample comprised of e! and H! (in blue) trapped at the proper H! trapping time 100 µs after ablation. In these
512
+ conditions, the ratio of integrated counts results in 2.6 times more H!‘s than e!‘s trapped at the optimized H! trapping time.
513
+ The energy distributions are similar.
514
+
515
+ Another interesting manipulation, able to discriminate masses, is to make the trap unstable to
516
+ certain species by changing the electrostatic potentials and the magnetic field. For a harmonic
517
+ Penning trap to be stable39 the cyclotron frequency, 𝜔% = 𝑞
518
+ &
519
+ $, and the axial frequency,
520
+ 𝜔' ~ 1/√𝑚 , should relate as 𝜔% > √2 𝜔'. The condition relates the confining potential shape
521
+ (in 𝜔'), the magnetic field (B) and the particle mass (m) and charge (q). Squeezing and deepening
522
+ the electrostatic potentials – alternating -10 V and +10 V in electrodes E3, E4 and E5 – we can
523
+ easily make the trap unstable for species other than e! and H! even at the maximum current of
524
+ 100 A in the trap magnet. Under this quasi-harmonic trap configuration even H! becomes
525
+ unstable under ~55 A and we performed a study on the trapped particles number as function of
526
+ the current. Due to a hardware limitation, we could only set the trap magnet current just before
527
+ sublimation and could not separate the guiding and initial trap loading processes from the trap
528
+ instabilities. To keep the magnetic field guiding lines configuration unchanged, the sapphire
529
+ magnet current was changed in the same proportion as the trap magnet current. In figure 8 the
530
+ result of this study is shown.
531
+
532
+ The data clearly shows a decrease of the number trapped as the current decreases until a cutoff
533
+ near 55 A where H! becomes unstable and the residual counts at lower currents are due to e!.
534
+ Two models attempt to capture the qualitative behavior. A first one, in purple, supposes a simple
535
+ axial 1D model for ions already in a harmonic trap resulting in a step function separating the
536
+ regions of stability and instability. The other consider the entrance aperture transmission of the
537
+ Electrode 4 voltage
538
+ Counts with Η- and e-
539
+ Counts with only e-
540
+ 20000
541
+ 21000
542
+ 22000
543
+ 23000
544
+ 24000
545
+ 25000
546
+ 0
547
+ 10
548
+ 20
549
+ 30
550
+ 40
551
+ 0
552
+ 100
553
+ 200
554
+ 300
555
+ 400
556
+ 500
557
+ Time (μs)
558
+ Counts
559
+ Barrier Voltage (-mV)
560
+
561
+ trap, and trap stability also considering the finite electrodes diameters. At the entrance aperture
562
+ the magnetic field is small, at a ratio of ~1/13 of that in the trap center, and the radius of
563
+ curvature of the cyclotron motion may exceed the entrance opening. Inside the trap one may
564
+ have instability or simply a large cyclotron plus magnetron motion that gets to the electrode walls
565
+ and lead to losses. Monte-Carlo simulations, using an axial energy distribution like the
566
+ exponential one in figure 5 inset (despite different conditions and manipulations for this data set
567
+ to that of figure 5) and different perpendicular energy distribution lead to the other curves in
568
+ figure 8. The details on the models are presented in Methods.
569
+
570
+ The good agreement of the last model, without adjustable parameters other than the arbitrary
571
+ scaling number for the total counts at 100 A, suggests that this method may be further developed
572
+ as a diagnostic tool for the radial density distribution – requiring validating studies with an
573
+ imaging detector, or employing an axially displaced photodetachment laser beam, and higher
574
+ data statistics – or the transverse energy distribution. These are two identified parameters
575
+ affecting the curves.
576
+
577
+
578
+ Figure 8. Trap loading and survival of H! in the trap due to a varying magnetic field. The data is shown as grey dots, representing
579
+ individual realizations, and the blue dots are the average of the grey dots values for the corresponding current. Two models are
580
+ shown. The purple line represents a simple axial 1D model concerning only the (harmonic) axial and cyclotron frequencies relation
581
+ for stability. The red lines guide the eyes through the results of a Monte-Carlo model considering the entrance aperture of trap
582
+ region, at magnetic fields much lower (~1/13) than in the trap, and the survival of the particles in the trap given its diameter for
583
+ different radial energy distributions. The axial energy distribution is taken as an exponential decay as in figure 5 and the transverse
584
+ energy distributions are taken as exponential decays but with different energy scales. In the continuous, dashed, and dotted red
585
+ lines the transverse energy scale is 1/12, 2, or 20 times the axial energy scale, respectively. Magnetic mirroring effects are taken
586
+ into effect in the energy rescaling between the trap entrance aperture to the trap center. The models do not include a full particle
587
+ tracing but only consider the particles at the entrance aperture and the trap center. See text and Methods for further discussion.
588
+
589
+ 55 A
590
+ 20
591
+ 40
592
+ 60
593
+ 80
594
+ 100
595
+ 0
596
+ 500
597
+ 1000
598
+ 1500
599
+ Trap Coil Current (A)
600
+ Counts
601
+
602
+
603
+ The results shown in figures 2–8 above are just a subset of the possibilities with this technique.
604
+ For instance, we produced trapped H! from ablation on TiH2 and performed a few runs with a
605
+ H2, instead of Ne, matrix. In the present trap we can make all atomic masses above 7 (Li), or
606
+ higher, to be unstable just by squeezing and deepening the potentials, thus making the axial
607
+ frequency to go over the stability condition compared to the cyclotron frequency. Light particles,
608
+ like electrons can be expelled from the trap by a fast (~1 µs, in the case of e!) opening–and–
609
+ closing of the trap barrier, but this required adding some extra complexity to our hardware and
610
+ software and we performed just a few validating tests. Therefore, one could select a range of
611
+ masses to keep in the trap for studies such as molecular formation. Splitting the ablation laser,
612
+ one could simultaneously ablate different targets to produce molecules already in the collision
613
+ with the sublimating plume or one could press a sintered composite material with the different
614
+ precursors into a single ablation target. We have also produced a cryogenic beam of electrons
615
+ from electrostatic sublimation, i.e., we can switch on and off a beam of electrons, and
616
+ subsequently trap them, just by applying a potential to the sapphire substrate without
617
+ sublimating a matrix that was previously implanted via laser ablation.
618
+
619
+ Discussion
620
+
621
+ In a next generation of the apparatus, with a longer trap magnet – and more uniform field – we
622
+ will be able to achieve much better mass discrimination and more relevant: stack samples in a
623
+ very simple manner. Even if we keep only 6 electrodes, we could trap between E0–E3, then move
624
+ the sample into E3–E5, trap again in E0–E3, then accumulate in E3–E5, and repeat the process.
625
+ Using a MISu variation we were able to trap over one thousand H!‘s after a single ablation pulse.
626
+ With a diode pumped laser operating at high frequency and higher magnetic fields the system
627
+ can be scaled up by orders of magnitude to large amounts of trapped species. Trapping heavier
628
+ atomic and molecular ion species at large numbers will also require higher magnetic fields.
629
+
630
+ This trap holding time was limited by the trap coil’s heating at ~1 s time scale. In a test, we held
631
+ a sample up to 1.5 s obtaining ~1000 counts in final dump of that realization. In a next realization
632
+ we plan to use a superconducting coil which, together with a better thermal anchor in the
633
+ trapping region, should enable long holding times and thus to achieve thermalization and
634
+ perform evaporative cooling of the trapped samples achieving a few kelvins of temperature.
635
+
636
+ The system is very rich and has many adjustable parameters that affect the outcome. Despite
637
+ that, we were able to achieve a robust operation. Moreover, the system still holds many
638
+ intriguing and open questions. Why we trap only few H! ‘s in the typical MISu procedure. Is the
639
+ H! not penetrating the matrix, or being stripped of its extra electron as it enters the solid Ne, or
640
+ being ionized under the matrix’s high electric fields? Using a variation, we were able to
641
+
642
+ circumvent the problem and produce large amounts of H!, but it would be important to better
643
+ understand this process. We also observed production of these charged species using a H2 matrix,
644
+ instead of a Ne matrix, but were not able to do a full exploration on different parameters.
645
+
646
+ We want to explore the conditions to produce ions at the typical atomic temperatures of kelvins.
647
+ The MISu technique generates an intense Li beam at a few kelvins, and below, despite Li having
648
+ a positive (expelling) energy40 of 0.25 eV (~2900 K) in Ne. This is a strong argument why we
649
+ expect to produce ions coming from the matrix at these low temperatures as well, even with
650
+ space charge effects with the ions. The trap closing procedure itself imparts large energy to a
651
+ fraction of the ions under the rising electrodes potentials and this is clearly seen in figure 3. If
652
+ these high energy ions would exchange some energy, the “high energy” from our samples could
653
+ be coming from the dynamic trapping procedure (one gets 1.6 eV average energy from a trap
654
+ switching to 5 eV, supposing a uniformly distributed flux of ions over the electrodes region). In
655
+ the contrary direction, the ratio of magnetic fields of 41 mT below the sapphire, where collisions
656
+ with the Ne gas may not be relevant anymore, to 92 mT in the trap gives some artificial cooling
657
+ of the measured axial energy since the transverse energy for particles following the field lines
658
+ will scale with the magnetic field at the expense of the axial energy. We plan to use laser
659
+ spectroscopy on suitable cations, such as Ca+ to study the real temperature of the ions’ sample
660
+ and see in which step of the procedure the sample is gaining energy. At one earlier construction,
661
+ with different sapphire attaching plates and without all the tools and the trap, we saw time
662
+ delaying evidence of being able to control and produce a charged sample at speeds comparable
663
+ to the atomic speeds.
664
+
665
+ In the present case we still have a large amount of Ne and ions of the opposite charge that
666
+ come to the direction of the trap. This condition can be mitigated. As for the opposite charges,
667
+ or stacking, we could easily setup the system with different ablation targets and build a
668
+ nested Penning trap configuration for positive and negative species trapped side–by–side
669
+ ready to study molecular recombination, as it is done with H& formation by mixing p9‘s into a
670
+ e(cloud.
671
+
672
+ With the electrostatic sublimation of electrons from the matrix, we speculate on producing a low
673
+ energy spin–polarized beam of electrons. If the matrix is at 3 K and would be subjected to a 4 T
674
+ field, a spin thermalized electron sample could be 80% polarized. Such a simple low–energy
675
+ polarized electrons’ source could be very attractive to biochemical experiments, especially with
676
+ respect to the issue of biology homochirality41,42, and to fundamental quantum collisional
677
+ processes.43
678
+
679
+
680
+ We believe the data is quite a strong proof–of–principle for what is needed to load H atoms
681
+ in the H& ALPHA experiment trap. The system here presented is at a more advanced stage
682
+ than other alternatives44,45 proposed. As for applications with large amounts of ions, such as
683
+ with tritium or deuterium, we believe the system is scalable. The use of higher power
684
+ ablation lasers and at high rates, together with higher guiding magnetic fields, would
685
+ improve the numbers by orders of magnitude.
686
+
687
+ Conclusions and Prospects
688
+
689
+ We have demonstrated a platform to produce cryogenic (below 25 meV) beams or trapped
690
+ samples of electrons, anions, and cations. The system was first designed to produce H! towards
691
+ loading the H& trap in the ALPHA experiment at CERN and we find it meets the necessary criteria
692
+ of numbers, energy range, and UHV conditions after trapping and waiting the matrix gas to
693
+ cryopump, for this application. The system should work equally well for T!/T, perhaps suitable
694
+ for a neutrino mass experiment, and for D!/D for studies relevant to fusion research. Trapped
695
+ anions and cations, or in a beam, can be used to study chemistry at astrophysical conditions, such
696
+ as in star formation. The system can generate an electrically controlled electron beam which we
697
+ speculate might be suitable for spin polarization with applications towards studies of chirality
698
+ with relevance to biochemistry. Based on the present data and previous studies on MISu, the
699
+ system is quite versatile and general in the sense of being able to produce different species of
700
+ atomic and molecular neutrals, anions, and cations.
701
+
702
+ Acknowledgements This work was supported by: CNPq, FAPERJ, and RENAFAE (Brazilian agencies). We thank Profs.
703
+ Massimo Xi Liu, from USP-São Carlos, and Vitoria Barthem, from UFRJ, for depositing the NiCr resistive films, first
704
+ and second batches respectively.
705
+
706
+ Author Contributions The initial conception was proposed by CLC. All the authors participated in the design and
707
+ implementation at various stages. LOAA, primarily, and RJSC were responsible for the experimental runs. Data
708
+ processing was performed by LOAA. The initial manuscript was written by CLC and edited and improved by WW,
709
+ DMS, RLS, and LOAA.
710
+
711
+ Reprints and permissions information is available online at www.nature.com/reprints. Readers are welcome to
712
+ comment on the online version of the paper. Correspondence and requests for materials should be addressed to
713
714
+
715
+
716
+ Data availability statement The datasets generated during and/or analysed during the current study are available
717
+ from CLC or LOAA ([email protected] , [email protected]) on reasonable request.
718
+
719
+ Competing financial interests The authors declare no competing financial interests.
720
+ 1 M. Tomza et al., Cold hybrid ion-atom systems, Rev. Mod. Phys. 91, 035001 (2019)
721
+ 2 M. Ahmadi, et al. Characterization of the 1S-2S transition in antihydrogen, Nature 557, 71 (2018)
722
+ 3 C. J. Baker, et al. Precision spectroscopy of the 1S-2S transition in antihydrogen: hyperfine structure and CPT
723
+ invariance, submitted (2022)
724
+ 4 C. L. Cesar, A sensitive detection method for high resolution spectroscopy of trapped antihydrogen, hydrogen and
725
+ other trapped species, J. Phys. B 49, 074001 (2016)
726
+ 5 C. L. Cesar, Trapping and spectroscopy of hydrogen, Hyp. Interact. 109, 293 (1997)
727
+ 6 Charman, A. Description and first application of a new technique to measure the gravitational mass of
728
+ antihydrogen. Nat Commun 4, 1785 (2013)
729
+ 7 C. L. Cesar et al., Two-Photon Spectroscopy of Trapped Atomic Hydrogen, Phys. Rev. Lett. 77, 255 (1996)
730
+ 8 I. D. Setija et al., Optical cooling of atomic hydrogen in a magnetic trap, Phys. Rev. Lett. 70, 2257 (1993)
731
+ 9 K. R. Lykke, K. K. Murray, and W. C. Lineberger, Threshold photodetachment of H-, Phys. Rev. A 43, 6101 (1991)
732
+ 10 S. Scheidegger et al, Barrier-discharge source of cold hydrogen atoms in supersonic beams: Stark effect in the
733
+ 1s–2s transition, J. Phys. B: At. Mol. Opt. Phys. 55, 155002 (2022)
734
+ 11 C. Killian, Towards the first demonstration of gravitational quantum states of atoms with a cryogenic hydrogen
735
+ beam, presentation at the Grasian Workshop, Turku, 2022 (unpublished)
736
+ 12 O. Amit and T. Udem, Status and plans for the Garching Hydrogen experiments, presentation at the GRASIAN
737
+ Workshop, Turku, 2022 (unpublished)
738
+ 13 S. Vasiliev, H trapping experiments in Turku, presentation at the Grasian Workshop, Turku, 2022 (unpublished)
739
+ 14 V.V. Nesvizhevsky et al, Quantum states of neutrons in the Earth’s gravitational field, Nature 415, 297 (2002)
740
+ 15 P. Pérez, et al., The GBAR antimatter gravity experiment, Hyp. Interact. 233, 21 (2015)
741
+ 16 O. Rousselle, Quantum interference measurement of the free fall of anti-hydrogen, Eur. Phys. J. D 76, 209 (2022)
742
+ 17 J. M. Doyle, Energy distribution measurements of magnetically trapped spin polarized atomic hydrogen:
743
+ evaporative cooling and surface sticking, MIT PhD thesis, 1991 (unpublished)
744
+ 18 D. M. Asner, R. F. Bradley, et al., Single-Electron Detection and Spectroscopy via Relativistic Cyclotron Radiation,
745
+ Phys. Rev. Lett. 114, 162501 (2015)
746
+ 19 J. A. Formaggio, A. L. C. de Gouvêa, R.G. H. Robertson, Direct measurements of neutrino mass, Phys. Rep. 914, 1
747
+ (2021)
748
+ 20 M. Bacal and M. Wada, Negative ion source operation with deuterium, Plasma Sources Sci. Technol. 29, 033001
749
+ (2020)
750
+ 21 A.Dalgarno and R.A.McCRAY, The formation of interstellar molecules from negative ions, Astrophysical Journal
751
+ 181, 95 (1973)
752
+ 22 A. G. G. M. Tielens, The molecular universe, Rev. Mod. Phys. 85, 1021 (2013)
753
+ 23 T. J. Millar, C. Walsh, and T. A. Field, Negative Ions in Space, Chem. Rev. 117(3), 1765 (2017)
754
+ 24 S. Robertson, Z. Sternovsky, and B. Walch, Reduction of asymmetry transport in the annular Penning trap, Phys.
755
+ Plasmas 11, 1753 (2004)
756
+ 25 D. Faircloth and S. Lawrie, An overview of negative hydrogen ion sources for accelerators, New J. Phys. 20
757
+ 025007 (2018)
758
+ 26 Feldker, T., Fürst, H., Hirzler, H. et al. Buffer gas cooling of a trapped ion to the quantum regime. Nat. Phys. 16,
759
+ 413–416 (2020)
760
+ 27 T. Yang, et al., Isomer-specific kinetics of the C + H2O reaction at the temperature of interstellar clouds, Sci. Adv.
761
+ 7, 1 (2021)
762
+ 28 D. J. Wineland and H. G. Dehmelt, Principles of the stored ion calorimeter, J. Appl. Phys. 46, 919 (1975)
763
+
764
+ 29 F. Diedrich, J. C. Bergquist, W. M. Itano, and D. J. Wineland, Laser Cooling to the Zero-Point Energy of Motion,
765
+ Phys. Rev. Lett. 62, 403 (1989)
766
+ 30 M. Bohman et al., Sympathetic cooling of a trapped proton mediated by an LC circuit, Nature 596, 514 (2021)
767
+ 31 J. Eschner et al., Laser cooling of trapped ions, J. Opt. Soc. Am. B 20, 1003 (2003)
768
+ 32 P. Yzombard, et al., Laser Cooling of Molecular Anions, Phys. Rev. Lett. 114, 213001 (2015)
769
+ 33 G. B. Andresen, et al., Evaporative cooling of antiprotons to cryogenic temperatures, Phys. Rev. Lett. 105,
770
+ 013003 (2010)
771
+ 34 R. Lambo, C. C. Rodegheri, et al., Spectroscopy of low–energy atoms released from solid noble–gas matrix:
772
+ Proposal for a trap loading technique, Phys. Rev. A 76, 061401(R)
773
+ 35 R. L. Sacramento, et al., Source of slow lithium atoms from Ne or H2 matrix isolation sublimation, J. Chem. Phys.
774
+ 136, 154202 (2012)
775
+ 36 R. L. Sacramento, et al., Matrix Isolation Sublimation: an apparatus for producing cryogenic beams of atoms and
776
+ molecules, Rev. Sci. Instrum. 86, 073109 (2015)
777
+ 37 A. N. Oliveira, et al., Heteronuclear molecules from matrix isolation sublimation and atomic diffusion, J. Chem.
778
+ Phys. 149, 084201 (2018)
779
+ 38 W. C. Wiley and I. H. McLaren, Time-of-Flight Mass Spectrometer with Improved Resolution, Rev. Sci. Instrum.
780
+ 26, 1150 (1955)
781
+ 39 G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II, Springer Series on Atomic, Optical, and Plasma
782
+ Physics 54 (2009)
783
+ 40 M. E. Fajardo, Matrix isolation spectroscopy of metal atoms generated by laser ablation. II. The Li/Ne, Li/D2, and
784
+ Li/H2 systems, J. Chem. Phys. 98, 110 (1993)
785
+ 41 S. Mayer and J. Kessler, Experimental Verification of Electron Optic Dichroism, Phys. Rev. Lett. 74, 4803 (1995)
786
+ 42 M. Kettner, V. V. Maslyuk, D. Nürenberg, et al., Chirality-Dependent Electron Spin Filtering by Molecular
787
+ Monolayers of Helicenes, J. Phys. Chem. Lett. 9, 2025 (2018)
788
+ 43 M. Dapor, Polarized electron beams elastically scattered by atoms as a tool for testing fundamental predictions
789
+ of quantum mechanics, Sci. Reports 8, 5370 (2018)
790
+ 44 S. A. Jones, An ion trap source of cold atomic hydrogen via photodissociation of the BaH+ molecular ion, New J.
791
+ Phys. 24, 023016 (2022)
792
+ 45 W. A. Bertsche et al., A low energy H− beamline for the ALPHA antihydrogen experiment, J. Phys.: Conf. Ser.
793
+ 2244, 012080 (2022)
794
+
795
+ Methods / Supplementary Material:
796
+
797
+ Time-of-Flight mass discrimination (ToF-MD) of trapped species
798
+
799
+ Once the ions are trapped, we have implemented a potential ramp to discriminate the masses.
800
+ A Wiley-McLaren38 configuration would require a free-flight region twice as long as the
801
+ accelerating region. Within our trap space constrain, we could switch from a trap configuration
802
+ with potentials (in V) 𝐸2 = 5, 𝐸3 = 0, 𝐸4 = 1 and 𝐸5 = 0 to the configuration of 𝐸2 = 5, 𝐸3 =
803
+ 0.2, 𝐸4 = 0.1 and 𝐸5 = 0 (or 𝐸2 = 5, 𝐸3 = 0.4, 𝐸4 = 0.2 and 𝐸5 = 0) as shown in figure 8
804
+ below.
805
+
806
+ For initial estimates of this ToF-MD functionality we used a simple analytical function that
807
+ approximately simulate each electrode potential and added their values to represent different
808
+ trap configurations. The simplest function, with just 3 adjustable parameters, is given by:
809
+
810
+ 𝑉(𝑧) = ∑
811
+ 𝑓) 𝐴# GErf K
812
+ *'(('!'!")
813
+ .'
814
+ L + Erf K
815
+ *'!('!'!")
816
+ .'
817
+ LN
818
+ /
819
+ #01
820
+ ,
821
+
822
+
823
+ where 𝐴#, 𝑧1# represent the applied voltage amplitude and the center position of the 𝑛23
824
+ electrode. The geometrical factor 𝑓) ≈ 0.47, 𝛿𝑧 ≈ 7 mm, and 𝑑𝑧 ≈ 11 mm is the length of the
825
+ electrode (10 mm) plus the distance between electrodes (1 mm). From the above expression the
826
+ electric field can be analytically obtained.
827
+
828
+ The configuration for the ToF-MD, with precise potentials, is shown in figure 9 below. Notice that
829
+ the electric field is not ideally uniform in the acceleration region but shows wiggling, and the free-
830
+ flight region is small compared to the acceleration one.
831
+
832
+
833
+ Figure 9. ToF mass discrimination potentials (depicted for the case of anions). The dashed curve is the initial trap around E3 (E2=5
834
+ V, E3=0, E4=1 V, E5=0) before the potentials are switched to the ToF configuration (E2=5 V, E3=0.2 V, E4=0.1 V, E5=0) shown in
835
+ solid line. The negative potential at z > 200 mm is due to the CEM.
836
+
837
+ The simulation considered a 1D system, along the trap axes, concerning only the electrostatic
838
+ field produced by the electrodes and CEM detector and not the magnetic field. According to the
839
+ energy distribution in figure 6, we place ions at the returning points in the trap, in both ends,
840
+ given its energy and let each ion evolve inside the trap for a random time between 0 and half of
841
+ the period of axial oscillation for that energy. This new state of each ion is the corresponding
842
+ initial state for the second part of the simulation where the trap is switched instantaneously to
843
+ the ToF configuration. The actual driving hardware takes about 1.2 µs to reach 90% of the set
844
+ value and this would cause extra spreading in the detection time distribution, but it was not
845
+ considered in the simulation. The results are sufficient for discriminating our species of interest
846
+ for this work.
847
+ E2
848
+ E3
849
+ E4
850
+ E5
851
+ 100
852
+ 120
853
+ 140
854
+ 160
855
+ 180
856
+ 200
857
+ -0.4
858
+ -0.2
859
+ 0.0
860
+ 0.2
861
+ 0.4
862
+ 0.6
863
+ 0.8
864
+ 1.0
865
+ Position z (mm)
866
+ V(z)
867
+ (-V)
868
+
869
+
870
+ For the ToF-MD simulations shown in figure 6 we used an interpolation for the electrodes’ voltage
871
+ configuration, 𝑉456!78(𝑧), given by a finite element package solver instead of the analytical
872
+ potential described above. The time-of-flight is given by the usual integration 𝑡456!78 =
873
+
874
+ 9
875
+ : #
876
+ ${<!= >%&'()*(')}
877
+ '+
878
+ '!
879
+ 𝑑𝑧, where 𝑧1 is the position at the time of switch, 𝑧@ is a position near the
880
+ CEM – where particles at rest would take less than 0.2 µs to reach the CEM – and 𝜖 is the total
881
+ energy the particle has immediately after the switch, i.e., its initial kinetic energy (when it was in
882
+ the trap) plus the potential energy in ToF configuration: 𝑞 𝑉456!78(𝑧1).
883
+
884
+ Magnetic field variation study
885
+
886
+ To analyze the stability of H! and the losses by collisions in the trap entrance as we change the
887
+ trapping/guiding magnetic field, we repeated for different magnetic field conditions the
888
+ following steps: a matrix of about ~370 nm is grown; the currents on the magnets are set to the
889
+ desired value (at maximum, 100 A in the trap magnet and 2.5 A in the sapphire coil); during a
890
+ slow sublimation, a single laser ablation hits the LiH target; the trap loading potential, with the
891
+ electrode configuration (in V) E0=0, E1=0, E2=-5, E3=0, E4=0, E5=-5, is closed 100 µs after the
892
+ ablation; the sample is adiabatically squeezed by changing the electrodes configuration (in V) to
893
+ E0=0, E1=0, E2=0, E3=-10, E4=10, E5=-10 and waiting for 1 ms; particles with energies above
894
+ ~700 meV are released by changing the electrode configuration (in V) to E0=0, E1=0, E2=0, E3=-
895
+ 10, E4=0, E5=-1; after 500 µs the remaining trapped particles are slowly released and detected.
896
+ The data is shown in figure 8.
897
+
898
+ Some assumptions were made for constructing the models (1D and 3D) to qualitatively describe
899
+ the survival of H! after this process. A uniform magnetic field along all the trap volume was
900
+ considered, as the trap is just one electrode wide, taking the mean value of field in the region.
901
+ We considered the trap to be harmonic for energies < 700 meV since the axial oscillation
902
+ frequency changes less than 2% within this energy range, hence the equations for the stability
903
+ inside the trap are exact. The simple axial 1D model only considered the stability criteria of the
904
+ relation of the cyclotron and axial frequencies. For the 3D models, we considered an axial (z)
905
+ exponential decaying energy distribution as measured in Figure 5. The transverse energy
906
+ distribution was also considered exponential but with different decay values and it was initially
907
+ mapped only on 𝑣A. The initial position of the anions in the xy-plane inside the trap (𝑥1) imitates
908
+ a uniforme surface distribution but mapped only in 𝑥 with probability proportional to 𝑥.
909
+
910
+ The axial and transverse energies are drawn for a particle inside the trap. Considering the
911
+ transverse energy adiabatic propagation in magnetic field – where the transverse energy scales
912
+ with magnetic field at the expense of axial energy – we map both the transverse and axial
913
+ energies to the entrance (𝜖2,CD and 𝜖',CD) of the trap region (just left of E0). If
914
+ <,,./
915
+ <0,./ >
916
+ &1234
917
+ &./ ≈
918
+ 12.85, where 𝐵EFGH and 𝐵CD are the magnetic fields at the trap and at the entrance, the particle
919
+
920
+ is considered in the Monte-Carlo since it will not reflect magnetically. If 𝜖2,CD > 172 meV the
921
+ cyclotron radius is greater then the entrance radius and we consider the particle lost at the
922
+ entrance. If the particle enters the trap, given the drawn initial position (𝑥1) and transverse
923
+ energy inside the trap (𝜖2,EFGH, supposed initially along 𝑦), we calculate the maximum radius46 of
924
+ the particle as the sum of the magnetron and cyclotron radii for this particle for each current
925
+ considered. If this maximum radius, for each current, is larger than the electrode radius this
926
+ particle is lost in the trap. Finally, if the current is bellow ~55 𝐴, the trap is unstable and no H!
927
+ would be trapped.
928
+
929
+ The shapes of the curves resulting from these simulations have a dependence with the transverse
930
+ energy distribution (see Figure 8). Figure 10 shows the histograms of distributions for the
931
+ particles that survived the losses considered for the trap at 100 A consisting of the transverse
932
+ and axial energies (𝜖2,EFGH and 𝜖',EFGH) distributions and initial position (𝑥1) considering three
933
+ different initial distributions for the transverse energy.
934
+
935
+
936
+ Figure 10. Histograms from the Monte-Carlo Simulations of the surviving particles inside the trap for a trap coil current of 100 A
937
+ for the 3D model with different exponential energy scales for the transverse energy distribution: (a) 2 times greater than in the
938
+ axial distribution, (b) 12 times smaller and (c) 20 times greater. In all three cases an exponential decaying axial energy distribution
939
+ was assumed in the beginning, but some low energy particles are magnetically reflected and thus considered not trapped. Notice
940
+ (a,I)
941
+ 0
942
+ 200
943
+ 400
944
+ 600
945
+ 800
946
+ 1000
947
+ 0
948
+ 5000
949
+ 10000
950
+ 15000
951
+ 20000
952
+ Energy (meV)
953
+ Transverse Energy Inside Trap
954
+ (a,II)
955
+ 0
956
+ 100 200 300 400 500 600 700
957
+ 0
958
+ 2000
959
+ 4000
960
+ 6000
961
+ 8000
962
+ 10000
963
+ 12000
964
+ Axial energy (meV)
965
+ Axial Energy Inside Trap
966
+ (a,III)
967
+ 0
968
+ 1
969
+ 2
970
+ 3
971
+ 4
972
+ 5
973
+ 6
974
+ 0
975
+ 2000
976
+ 4000
977
+ 6000
978
+ 8000
979
+ 10000
980
+ 12000
981
+ 14000
982
+ Initial Position (mm)
983
+ Initial Position (x axis)
984
+ (b,I)
985
+ 0
986
+ 20
987
+ 40
988
+ 60
989
+ 80
990
+ 100
991
+ 0
992
+ 10000
993
+ 20000
994
+ 30000
995
+ 40000
996
+ 50000
997
+ Energy (meV)
998
+ (b,II)
999
+ 0
1000
+ 100 200 300 400 500 600 700
1001
+ 0
1002
+ 5000
1003
+ 10000
1004
+ 15000
1005
+ 20000
1006
+ Axial energy (meV)
1007
+ (b,III)
1008
+ 0
1009
+ 1
1010
+ 2
1011
+ 3
1012
+ 4
1013
+ 5
1014
+ 6
1015
+ 0
1016
+ 5000
1017
+ 10000
1018
+ 15000
1019
+ 20000
1020
+ 25000
1021
+ Initial Position (mm)
1022
+ (c,I)
1023
+ 0
1024
+ 500
1025
+ 1000
1026
+ 1500
1027
+ 2000
1028
+ 0
1029
+ 1000
1030
+ 2000
1031
+ 3000
1032
+ 4000
1033
+ 5000
1034
+ 6000
1035
+ 7000
1036
+ Energy (meV)
1037
+ (c,II)
1038
+ 0
1039
+ 100 200 300 400 500 600 700
1040
+ 0
1041
+ 1000
1042
+ 2000
1043
+ 3000
1044
+ 4000
1045
+ 5000
1046
+ 6000
1047
+ Axial energy (meV)
1048
+ (c,III)
1049
+ 0
1050
+ 1
1051
+ 2
1052
+ 3
1053
+ 4
1054
+ 5
1055
+ 6
1056
+ 0
1057
+ 1000
1058
+ 2000
1059
+ 3000
1060
+ 4000
1061
+ 5000
1062
+ 6000
1063
+ Initial Position (mm)
1064
+
1065
+ the very large loss at the highest transverse energy distribution from the total of 150000 particles, simulated at each case. See
1066
+ text for discussion.
1067
+
1068
+ 46 M Kretzschmar, Particle motion in a Penning trap, Eur. J. Phys. 12 240 (1991)
1069
+
1070
+
1071
+
39FQT4oBgHgl3EQfHTWW/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
59FAT4oBgHgl3EQfnB39/content/tmp_files/2301.08627v1.pdf.txt ADDED
@@ -0,0 +1,892 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08627v1 [cs.CY] 20 Jan 2023
2
+ “This Applies to the Real World”: Student Perspectives on
3
+ Integrating Ethics into a Computer Science Assignment
4
+ Julie Jarzemsky
5
6
+ University of Colorado Boulder
7
+ Joshua Paup
8
9
+ University of Colorado Boulder
10
+ Casey Fiesler
11
+ casey.fi[email protected]
12
+ University of Colorado Boulder
13
+ ABSTRACT
14
+ There is a growing movement in undergraduate computer science
15
+ (CS) programs to embed ethics across CS classes rather than re-
16
+ lying solely on standalone ethics courses. One strategy is creat-
17
+ ing assignments that encourage students to reflect on ethical is-
18
+ sues inherent to the code they write. Building off prior work that
19
+ has surveyed students after doing such assignments in class, we
20
+ conducted focus groups with students who reviewed a new intro-
21
+ ductory ethics-based CS assignment. In this experience report, we
22
+ present a case study describing our process of designing an ethics-
23
+ based assignment and proposing the assignment to students for
24
+ feedback. Participants in our focus groups not only shared feed-
25
+ back on the assignment, but also on the integration of ethics into
26
+ coding assignments in general, revealing the benefits and challenges
27
+ of this work from a student perspective. We also generated novel
28
+ ethics-oriented assignment concepts alongside students. Deriving
29
+ from tech controversies that participants felt most affected by, we
30
+ created a bank of ideas as a starting point for further curriculum
31
+ development.
32
+ CCS CONCEPTS
33
+ • Social and professional topics;
34
+ KEYWORDS
35
+ ethics, introductoryprogramming, CS1, social impact, assignments,
36
+ university, undergraduate, content, focus groups, content modera-
37
+ tion
38
+ ACM Reference Format:
39
+ Julie Jarzemsky, Joshua Paup, and Casey Fiesler. 2023. “This Applies to
40
+ the Real World”: Student Perspectives on Integrating Ethics into a Com-
41
+ puter Science Assignment. In Proceedings of the 54th ACM Technical Sym-
42
+ posium on Computer Science Education V. 1 (SIGCSE 2023), March 15–18, 2023,
43
+ Toronto, ON, Canada. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569846
44
+ 1
45
+ INTRODUCTION
46
+ Rising awareness of the harm and injustice that technology can
47
+ inflict upon people and society has led to calls for increased cri-
48
+ tique and interrogation of current practices within the tech indus-
49
+ try [3, 8, 25], as well as proposals to expand the inclusion of con-
50
+ cepts such as ethics, social impact, and justice within computer
51
+ science and other technology-related education programs [11, 21,
52
+ This work is licensed under a Creative Commons Attribu-
53
+ tion International 4.0 License.
54
+ SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada.
55
+ © 2023 Copyright held by the owner/author(s).
56
+ ACM ISBN 978-1-4503-9431-4/23/03.
57
+ https://doi.org/10.1145/3545945.3569846
58
+ 22, 31]. Though in the U.S., the Accreditation Board for Engineer-
59
+ ing and Technology requires computer science curricula to edu-
60
+ cate about the impacts of computing [1]. Solutions for accomplish-
61
+ ing this vary. For example, many undergraduate CS programs sat-
62
+ isfy this requirement with standalone ethics courses [16], which
63
+ though an important component of ethics education [11], have the
64
+ drawback of being potentially disconnected from technical con-
65
+ tent.
66
+ In addition to these standalone ethics classes, there is also now a
67
+ growing movement within universities to embed ethics across the
68
+ entire CS curriculum [2, 6, 12], with one common strategy being in-
69
+ corporating ethical and social context into technical assignments.
70
+ Recent examples from prior work have situated assignments in the
71
+ context of ethical dilemmas such as ad personalization, college ad-
72
+ missions algorithms, bias in criminal justice systems, and privacy
73
+ [6, 9, 10, 18, 26]. These efforts also go beyond learning about ethics
74
+ in general to instilling a responsibility within CS students to con-
75
+ sider the impacts of the code they write. This is a step towards
76
+ what Amy Ko calls a “critical literacy of computing,” beyond “just
77
+ an ethics requirement for CS majors...recasting computing itself
78
+ in moral, ethical, and social terms” [21].
79
+ To contribute to these efforts, we created a programming as-
80
+ signment for an introductory CS class centered on the topic of
81
+ automated content moderation. After creating the initial version
82
+ of this assignment, we conducted focus groups with students at
83
+ our university to gather detailed feedback on the assignment and
84
+ the ethical discussions it prompted. The focus groups enabled us
85
+ to expand on previous work that surveyed introductory comput-
86
+ ing students on their attitudes towards ethics based assignments
87
+ [10], in order to gather more detailed feedback that both provided
88
+ guidance for iterating on the assignment, and ideas that will help
89
+ guide the integration of ethics into CS curriculum in a way that
90
+ centers student engagement.
91
+ 2
92
+ CREATING THE ASSIGNMENT
93
+ We began our process by reviewing literature and existing ethics-
94
+ based assignments, discussing assignment concepts with colleagues,
95
+ and creating a list of social issues that the assignment could focus
96
+ on. We ultimately decided to focus on automated content moder-
97
+ ation, given its abundance of both related technical skills and eth-
98
+ ical considerations, as well as the authors’ own observations of
99
+ discussions in a standalone ethics class that were highly engaging
100
+ to students. We noted that much of the literature about the tech-
101
+ nical challenges of automated content moderation involve issues
102
+ such as hate speech detection [28, 32], but due to the obvious po-
103
+ tential for harm we did not want to ask students to write code that
104
+ directly involved hate speech. We instead considered the shape of
105
+
106
+ the problem in terms of automated language detection and bad ac-
107
+ tors, and created a hypothetical problem: writing and reasoning
108
+ about a content moderation system for a cat-run social media plat-
109
+ form. The following context was provided for the assignment:
110
+ Catter is a social media platform built by and for cats.
111
+ The cats’ platformhas recently been getting spammed
112
+ by dogs, so they have decided to remove all mentions
113
+ of dogs from their platform entirely. However, cats
114
+ are not great at programming. They need your help
115
+ in removing all of the dog content from their plat-
116
+ form.
117
+ We used Python for our assignment since this is a common lan-
118
+ guage for intro-level courses. The assignment covers file input and
119
+ output, parsing text using regular expressions, functions, loops,
120
+ conditionals, and using a natural language processing library (Python’s
121
+ NLTK library).
122
+ The assignment asks students to write several iterations of a
123
+ content moderator for Catter. First, students must simply detect
124
+ whether a string has the word “dog” in it, scan a file to remove all
125
+ posts with occurrences of “dog,” and write the filtered content to
126
+ a new file. In the next section, the dogs in our hypothetical sce-
127
+ nario learn to bypass this filter, and the students are asked to up-
128
+ date their system to detect a list of words, including slang such
129
+ as “doggos” and “dawg.” They are asked to read in a file that con-
130
+ tains this list, then use their previous code to remove all posts with
131
+ those words. Finally, the dogs start posting negative comments
132
+ about cats, bringing in the need for the NLTK sentiment analyzer.
133
+ The last part requires the students to remove any posts containing
134
+ the word “cat” that the analyzer marks as having a negative sen-
135
+ timent. These different steps are designed to illustrate challenges
136
+ a real developer might face when moderating content with code:
137
+ wrestling with users who “outsmart” the algorithm so their con-
138
+ tent gets posted–regardless of whether they are bad actors or are
139
+ themselves wrestling with systematic errors in the system.
140
+ In order to encourage students to consider the nuances within
141
+ content moderation beyond this hypothetical scenario, and to ex-
142
+ amine the decisions they made in their own code, we followed the
143
+ coding exercise with a reflection section. In this part of the assign-
144
+ ment, students watch Maarten Sap’s talk on Social Bias Frames,
145
+ which shows how binary keyword matching, like the students were
146
+ required to code, can miss sexist, racist or otherwise hateful speech
147
+ [29]. The assignment asks for written responses to questions that
148
+ prompt students to critique the way that the code they wrote mod-
149
+ erates content. We chose to include written reflections because pre-
150
+ vious work suggests that integrating reflections is critical in en-
151
+ couraging students to consider their ethical own responsibility in
152
+ creating technology [4]. The reflection questions also broaden the
153
+ discussion, asking students to provide a news article related to the
154
+ topic of content moderation. Our aim here was to expand on real
155
+ world connections, which has been shown to have a positive effect
156
+ on student engagement [13, 23], including increasing participation
157
+ amongst underrepresented groups in computing [19].
158
+ 3
159
+ EVALUATION METHODS
160
+ To evaluate the design of the assignment, we created a plan for 90-
161
+ minute focus groups with 3-5 participants each, all of whom had
162
+ already taken an intro programming course. These groups partici-
163
+ pated in the following tasks:
164
+ (1) Pre-questionnaire about content moderation
165
+ (2) Review of coding portion of assignment
166
+ (3) Group discussion and individual surveys on coding portion:
167
+ (a) Reactions to the assignment
168
+ (b) How they would complete it
169
+ (c) Any changes they would suggest
170
+ (4) Review of reflection portion
171
+ (5) Group discussion and individual surveys on reflection por-
172
+ tion
173
+ (6) Brainstorm new assignment ideas centered around ethical
174
+ dilemmas
175
+ (a) Generated list of tech controversies
176
+ (b) Discussed how these controversies tie in with CS topics
177
+ One key goal for the group discussion and questionnaires was
178
+ to gauge whether and how this assignment made participants con-
179
+ sider ethical dilemmas within content moderation, through the cod-
180
+ ing alone or with the supplementary reflection. For the final brain-
181
+ storming session where the students thought about how we might
182
+ integrate ethics into programming assignments more broadly, we
183
+ drew from our own assignment creation process, starting with list-
184
+ ing social issues the assignment could be based on. We created the
185
+ list by asking participants “What controversies or impacts of tech-
186
+ nology have you either heard about or been personally affected
187
+ by?” which they responded to by posting on a shared Google Jam-
188
+ board. Afterwards, we asked participants to choose one contro-
189
+ versy that impacts them or other students the most. Finally, we
190
+ presented the students with a list of CS topics and asked how they
191
+ might tie in with the list of tech controversies they created.
192
+ We ran one pilot focus group with members of our lab, and af-
193
+ ter the study was approved by the university’s institutional review
194
+ board, began recruiting participants, looking for anyone who had
195
+ taken an introductory programming course at our large, predom-
196
+ inantly white, public university in the United States. The recruit-
197
+ ment materials, which were shared with computer science profes-
198
+ sors and through flyers on campus, mentioned only that partici-
199
+ pants would be evaluating CS curriculum. We did not mention that
200
+ the assignment involved ethics to reduce selection bias of students
201
+ who had a specific interest in ethics.
202
+ We ultimately had a total of 16 individual participants, with 2-5
203
+ participants per group. Our participants were majority white, with
204
+ a roughly even split between men and women. The focus groups
205
+ included the following participants:
206
+ • Group 1 (P1-3): a freshman, sophomore, and junior, all CS
207
+ majors
208
+ • Group 2 (P4-7): a freshman CS major, two juniors with dual
209
+ majors in CS and applied math and economics, and a grad-
210
+ uate student CS major
211
+ • Group 3 (P8-10): a junior and sophomore information sci-
212
+ ence majors, and a senior with dual majors in CS and me-
213
+ chanical engineering
214
+ • Group 4 (P11-12): two graduate student CS majors
215
+ • Group 5 (P13-16): a freshman aerospace engineering major,
216
+ a senior CS major, a graduate student information science
217
+ major,and a graduate student CS major
218
+
219
+ We adapted the plan as we ran the groups, shortening the sec-
220
+ tion about how the assignment would be solved in exchange for
221
+ more time for reflecting on how the assignment prompted ethical
222
+ reasoning and on integrating ethics in general.
223
+ Following the focus groups, we conducted a thematic analysis
224
+ of the transcripts [7]. Two of the authors highlighted anything of
225
+ note in the transcripts and created a list of themes from these high-
226
+ lights. We then performed a second round of coding for those spe-
227
+ cific themes and finally we wrote memos about each theme, which
228
+ we synthesized into our findings and discussion. During this pro-
229
+ cess, all authors met to discuss and iterate on themes. Our findings
230
+ below represent the synthesis of these themes, including represen-
231
+ tative quotes.
232
+ 4
233
+ FINDINGS
234
+ From the focus groups, we gained perspective on the strengths and
235
+ weaknesses of the assignment and for student opinions integrating
236
+ ethics in general. We also created a bank of new CS assignment
237
+ ideas integrated with ethical topics that the students in our groups
238
+ cared about.
239
+ 4.1
240
+ Strengths of the assignment
241
+ Using a hypothetical scenario within the assignment was success-
242
+ ful from our observations and from our participants’ perspectives.
243
+ Starting with the scenario of a social media site for cats neutralized
244
+ the subject of content moderation, which can include politically
245
+ or emotionally charged subjects such as misinformation and hate
246
+ speech. However, the hypothetical still promoted discussion on a
247
+ topic that can be uncomfortable for students, as well as educators,
248
+ to talk about, by allowing them to bring up these issues themselves.
249
+ Participants responded in the questionnaires that the pretend sce-
250
+ nario was helpful for easing into reflection on content moderation
251
+ before jumping into controversial real world issues. The groups
252
+ readily connected the fake scenario to real issues, with the benefit
253
+ that students conjured up these issues organically, instead of the
254
+ assignment feeding them specific situations.
255
+ The assignment brought to mind real-world issues in content
256
+ moderation, even prior to reviewing Sap’s video and the reflection
257
+ questions. When asked if the coding piece made participants think
258
+ differently about content moderation, some responded that it did,
259
+ bringing up issues like censorship, Facebook filtering out content,
260
+ bias in automated systems, and misinformation. In group discus-
261
+ sion, when asked what the implications of the cats’ moderator are,
262
+ participants immediately tied the hypothetical situation to reality.
263
+ Many thought the content moderator resembled “echo chambers”
264
+ within real social media platforms, which limit content to only
265
+ include opinions the user agrees with. Another theme discussed
266
+ across groups was over-moderation of content. One participant
267
+ gave the example of YouTube removing benign comments, which
268
+ negatively affects both the content creators and the commenters.
269
+ They also reasoned about the fairness of moderation systems de-
270
+ fined by companies, with P16 reflecting that removal of content is
271
+ “not within the users’ power, the power is in the platform,” and an-
272
+ other participant responding that “the gatekeepers are often a small
273
+ group of executives. There aren’t many regulations that companies
274
+ need to follow.”
275
+ The assignment caused P14 to reconsider third-party tools she
276
+ used in other courses, saying that the assignment “shows you that
277
+ you might be given a function, or a tool, but how much do you just
278
+ put your blind trust in it? In my class, we were given a lot of like
279
+ functions that we would have to put together into our program but
280
+ that we didn’t write ourselves. But [it] makes you wonder ‘how was
281
+ this written? How does it work?’ even if it’s supposed to be a black
282
+ box type thing...you can’t just go and completely put your trust in
283
+ like the sentiment analyzer or the AI program that’s supposed to be
284
+ moderating it.” For them, the assignment spurred critical ethical
285
+ thinking about their coding.
286
+ All groups were able to create a feasible plan for completing
287
+ the code within a short time-frame. Most participants agreed that
288
+ the assignment would be appropriate for an intro-level course, but
289
+ some gauged its difficulty as mid or even high-level. The next sec-
290
+ tion outlines modifications we could make to the assignment to
291
+ address the difficulty level, as well as other improvements partici-
292
+ pants suggested.
293
+ 4.2
294
+ Suggestions for improving the assignment
295
+ To reduce the difficulty of the assignment to an introductory level,
296
+ participants suggested alternatives to regular expressions for the
297
+ keyword matching or ways to provide more support, such as code
298
+ examples using regular expressions for students to work off of.
299
+ Participants also thought installing the NLTK library and under-
300
+ standing sentiment analysis would be difficult for intro-level stu-
301
+ dents. The sentiment analysis requirement could be removed from
302
+ the coding section but be kept as a discussion topic within the re-
303
+ flection. Depending on the difficulty level and other aspects of the
304
+ course, making these kinds of adjustments could be critical; prior
305
+ work has noted that for programming assignments that integrate
306
+ ethics, when the students are struggling too much with the techni-
307
+ cal content, they focus less on the contextual aspects [10].
308
+ Participants also offered ideas for additions to the coding re-
309
+ quirements. P10 proposed requiring students to give each other
310
+ example phrases that could break their partner’s moderator, and
311
+ then build something to handle those phrases. This method, which
312
+ is known as “Build it, Break it, Fix it” within cybersecurity com-
313
+ petitions, has been used in other ethics-oriented technical assign-
314
+ ments [15]. P16 recommended creating a display of phrases that
315
+ were moderated out, and creating a tagging system to categorize
316
+ moderated phrases. Research on empowering real creators over
317
+ moderation of their content has shown demand for features like
318
+ this [17]. These ideas could be added to a follow-up assignment or
319
+ to modify the existing assignment for a higher-level course.
320
+ Participants also provided constructive feedback about how stu-
321
+ dents given this assignment would reflect on the ethics of content
322
+ moderation. We observed from our analysis that discussion was
323
+ heavily biased towards the negative effects of content moderation
324
+ with little discussion of cases where it could be beneficial. One
325
+ topic rarely mentioned within the focus groups was the impact of
326
+ false negatives, when harmful phrases pass through a moderator
327
+ undetected. This may be partially due to participants’ pre-existing
328
+ beliefs about content moderation, but the scenario in the assign-
329
+ ment could be adjusted to show how a lack of moderation can
330
+ have negative impacts just as over-moderation can. For example,
331
+
332
+ the assignment could include examples of posts that are reason-
333
+ able to moderate out, rather than the cats’ current strategy leaning
334
+ towards censorship. P15 recommended incorporating fake facts or
335
+ news that dogs have spread, like providing false information about
336
+ a vet clinic to steer cats away from getting health care. Based on
337
+ this feedback we were able to make a number of improvements on
338
+ the assignment which we will cover in more detail after the find-
339
+ ings.
340
+ 4.3
341
+ Opinions on integrating ethics
342
+ Aside from gathering feedback on this specific assignment through
343
+ the focus groups, we also aimed to gauge students’ opinions of in-
344
+ tegrating ethical concepts in general. Their reactions to including
345
+ an ethical reflection within this assignment were mostly positive
346
+ (though we acknowledge the possibility of response bias within the
347
+ study, given the topic). All but two participants responded in the
348
+ questionnaire that they think Sap’s video and the reflection belong
349
+ within a CS class. They thought it would prompt students to think
350
+ about the direct impacts of technology they are contributing to,
351
+ something “many students up until this assignment may never have
352
+ been challenged about,” according to one participant. They stressed
353
+ the importance of reflecting on impacts, one writing: “Implications
354
+ of algorithms and ethics should be part of CS curriculum. People
355
+ creating the problems should also be fixing them or at least know
356
+ about them.”
357
+ Participants also mentioned the potential of the real world con-
358
+ text to spark interest in more advanced topics. It “makes students
359
+ think more about applications out in the real world...maybe if peo-
360
+ ple are interested, you could point them to the class for natural lan-
361
+ guage processing, [for] down the road,” one remarked. Another re-
362
+ sponded that “contextualizing” the assignment “provides extra mo-
363
+ tivation/understanding and maybe career insight,” suggesting that
364
+ including a context could motivate students to continue pursuing
365
+ careers within technology.
366
+ However, participants did raise concerns about the integration
367
+ of these topics into technical assignments. Some expressed that
368
+ they would rather study ethics outside of CS curriculum, and prefer
369
+ it be in a standalone course. “If I am expecting and wanting a class
370
+ to be technical in nature, I would likely be unhappy writing a paper
371
+ since it is not what I signed up for,” P6 explained. Others mentioned
372
+ they would see the reflection portion of the assignment as a “grade
373
+ bump.” P8, who had previously experienced ethics content in an
374
+ economics course, said they did not have to reason deeply about
375
+ conflicts to complete the assignment. It is a challenge to determine
376
+ how to grade whether a student has really thought through the im-
377
+ pacts of the technology in question. Provoking meaningful think-
378
+ ing while not adding too much additional work is a fine line to
379
+ tread.
380
+ Students are already working hard to learn the technical skills of
381
+ programming, so adding extra work could become a burden rather
382
+ than an opportunity to reflect and learn. For our assignment specif-
383
+ ically, building a fair moderation system seemed too difficult to ac-
384
+ complish for some participants. Many expressed that real-world
385
+ content moderation systems are so flawed that we are better off
386
+ with no moderation at all. This presents a challenge for integrat-
387
+ ing ethics: how can we incorporate ethics without only focusing
388
+ on discussions of harmful technologies, but also create solutions
389
+ to these difficult problems?
390
+ Another concern a small number of participants raised was that
391
+ ethics-oriented assignments carry the risk of inappropriately im-
392
+ posing a particular set of values on students. “Make the students
393
+ think about this on their own, rather than trying to influence their
394
+ opinions,” suggested one student. Another raised concerns about
395
+ conformity; that students would side with the opinion that the ma-
396
+ jority of the class was expressing rather than speak their own mind.
397
+ Ethics can be a thorny subject, and uncharted territory for some
398
+ CS instructors, but the effort to incorporate them is worth it. We
399
+ explain suggestions for facing these barriers in the discussion.
400
+ 4.4
401
+ New assignment ideas
402
+ One other product of the groups was ideas for new ethics-based
403
+ assignments. Collaborating with students proved to be a fruitful
404
+ method for creating assignment ideas. Participants generated a list
405
+ of tech controversies they felt most affected by, then connected
406
+ these controversies with assignment ideas and corresponding con-
407
+ cepts covered in CS curriculum. Several of these assignment ideas
408
+ from our participants can be found in Table 1.
409
+ One group agreed that the worst of the tech controversies was
410
+ addiction to social media and “doom-scrolling,” when a user gets
411
+ stuck endlessly scrolling through content. They proposed a sorting
412
+ algorithm assignment, P15 saying “you are recommendedcontent on
413
+ TikTok based off of how relevant it is to you, but also how popular
414
+ it is, right? So...how do you decide what is sorted to the top?” An-
415
+ other group suggested an assignment to create a user interface or
416
+ experience to either increase or decrease screen time.
417
+ Others situated sorting algorithms in the context of search re-
418
+ sults for news, and how this could influence a users’ opinions over
419
+ time. P8 suggested graph algorithms for determining relevance,
420
+ drawing from an example she had seen in another course, where
421
+ she determined sort order based on how many connections a node
422
+ had to other nodes in a graph.
423
+ Another idea came from a blood type matching algorithm P7
424
+ was required to write for an algorithms class she had taken. She
425
+ thought it could be expanded to have ethical reasoning about or-
426
+ gan donor matching. The algorithm could “take into account how
427
+ long someone’s been on the organ waiting list, how fresh the organ is,
428
+ and then assign it based on age,” according to this participant. We
429
+ could see a scenario where students create different versions of the
430
+ system and run tests for various groups, discussing the trade-offs
431
+ in fairness for each system.
432
+ Another common controversy was data collection and privacy.
433
+ Participants and the first author discussed one assignment idea to
434
+ develop an object-oriented design or a database representing user
435
+ data that highlights how much information platforms gather on
436
+ their users. The assignment could incorporate discussions of how
437
+ engineers manage data, especially in cases where it needs to be
438
+ erased for privacy reasons. Participants also mentioned the pro-
439
+ cess of data extraction. P2 remarked that a system “could have your
440
+ favorite TV show be known just by what you’ve been clicking...your
441
+ race, gender, and name.” Perhaps students could develop and reason
442
+ about systems that infer information about a user based on pieces
443
+ of data they have collected. Targeted ads also came up, a subject
444
+
445
+ Table 1: The first column represents a controversy in the
446
+ tech industry that our participants identified, followed by
447
+ an assignment idea that could be developed around that con-
448
+ troversy in the second column, and the assignment’s corre-
449
+ sponding CS topic in the third column.
450
+ Context
451
+ Assignment Idea
452
+ CS Topic
453
+ Algorithms for
454
+ organ donor
455
+ matching
456
+ Sort recipients using differ-
457
+ ent algorithms and discuss
458
+ trade-offs between them
459
+ Sorting algo-
460
+ rithms
461
+ Addiction to
462
+ social media
463
+ Create a program that de-
464
+ cides how social media
465
+ posts are ordered
466
+ Conditionals,
467
+ trees, graphs
468
+ Addiction to
469
+ social media
470
+ Design UI/UX that increases
471
+ or decreases screen time
472
+ UI/UX design
473
+ Dark patterns
474
+ on the web
475
+ Design a system to make it
476
+ difficult or easy to unsub-
477
+ scribe from an email list or
478
+ opt out of cookies
479
+ UI/UX design
480
+ Influence of
481
+ search engines
482
+ on what news
483
+ stories users
484
+ see
485
+ Use various search or sort
486
+ algorithms to create a list
487
+ of ordered results of news
488
+ stories
489
+ Sorting algo-
490
+ rithms, search al-
491
+ gorithms, object-
492
+ oriented pro-
493
+ gramming
494
+ Misuse of user
495
+ data and right
496
+ to be forgotten
497
+ Compare data storage meth-
498
+ ods and the complexities of
499
+ keeping data private and
500
+ ensuring complete deletion
501
+ Memory alloca-
502
+ tion and man-
503
+ agement, object-
504
+ oriented pro-
505
+ gramming
506
+ User data and
507
+ privacy
508
+ Write a program that infers
509
+ information about a user
510
+ based on existing user data
511
+ Conditionals,
512
+ variable
513
+ Usability and
514
+ inclusivity in
515
+ web forms
516
+ Compare from different
517
+ users’ perspectives how in-
518
+ clusive different web forms
519
+ are in terms of race, gender,
520
+ sexuality
521
+ UI/UX design,
522
+ personas
523
+ Mental health
524
+ impacts of so-
525
+ cial media apps
526
+ Create an image filter that
527
+ changes the sentiment of
528
+ the image
529
+ Image process-
530
+ ing, could use
531
+ machine learn-
532
+ ing
533
+ which has already been incorporated into CS assignments by other
534
+ researchers [10].
535
+ 5
536
+ IMPROVEMENTS TO THE ASSIGNMENT
537
+ In considering both the specific feedback from participants and
538
+ their reflections about this type of assignment in general, we iter-
539
+ ated on our original assignment. After observing the participants
540
+ think through how they would complete the coding portion of the
541
+ assignment, we modified the wording of the instructions to make
542
+ them easier to read. Instead of using a paragraph of text to lay out
543
+ instructions, we detailed out steps in a list and made it more clear
544
+ what each function in the skeleton code should do. Because many
545
+ participants noted the NLTK toolkit as the most challenging part
546
+ of the assignment, and that it would be useful to have more back-
547
+ ground information, we added a more detailed explanation of the
548
+ output and a link to a guide on using this library. We also removed
549
+ a question from the reflection section about comparing binary to
550
+ structured toxic speech detection that some participants found dif-
551
+ ficult to answer given the 3-minute video.
552
+ We also received suggestions for extending the assignment, and
553
+ included these in the resources we are providing to instructors who
554
+ want to use the assignment. These extensions included adding a
555
+ tagging system to moderate posts, allowing users to input certain
556
+ words they would like to moderate, creating a display of posts that
557
+ were flagged for removal, and including a pair programming activ-
558
+ ity where students would try and break each others’ moderation
559
+ systems, then modify code to solve for those cases.
560
+ In addition to the changes we implemented, we have ideas for
561
+ other adaptations to the assignment. The feedback indicated the
562
+ need to balance out the scenario so that students understand the
563
+ potential benefits of content moderation. The participants gave us
564
+ specific suggestions on how we might do this: by including exam-
565
+ ples where the dogs were posting misinformation that could be
566
+ detrimental to the cats’ lives, for example. For the reflection, the ex-
567
+ ample detailed in the video is offensive to women. Students could
568
+ be asked to provide examples of how other groups are affected by
569
+ false negatives or positives in content moderation. Scholarly works
570
+ about bias against marginalized groups in speech toxicity detec-
571
+ tion systems could also be discussed [14, 27, 30]. Instructors us-
572
+ ing this assignment could consider using in-class discussion rather
573
+ than written responses for the reflection piece of the assignment.
574
+ This would address students’ aversion to being required to do writ-
575
+ ten work within a technical assignment. We also observed benefits
576
+ in the focus group of having a group discussion. The group discus-
577
+ sion allowed participants to hear each others’ viewpoints instead
578
+ of reflecting individually. Opting for a discussion would also take
579
+ out the need for class staff to grade written responses.
580
+ 6
581
+ DISCUSSION
582
+ We believe CS educators can empower students to become more
583
+ proactive in considering social impacts of their work. Embedding
584
+ ethics topics and discussions throughout computer science course-
585
+ work can help accomplish this, and has other positive side effects.
586
+ Including ethics-based assignments can bolstercultural competency
587
+ when it brings up issues such as racial or gender bias in AI, prepar-
588
+ ing students to be more inclusive and equitable when they enter
589
+ an industry known for the opposite [33]. Previous work also shows
590
+ that including a real-world context can increase retention of under-
591
+ represented groups in computing [19]. Our participants reported
592
+ our assignment to be more interesting and memorable than a stan-
593
+ dard programming assignment, reinforcing findings from previous
594
+ work that integrating ethics improves engagement [10].
595
+ Despite these benefits, we also recognize that embedding ethics
596
+ can be daunting. In this section, we give recommendations in creat-
597
+ ing ethics-based assignments. We explain why gathering feedback
598
+ was useful for us, give strategies for tackling controversial subject
599
+ matter, and measure the trade-offs of hypothetical vs. real scenar-
600
+ ios for sensitive subjects.
601
+ Through our focus groups, we tested the effectiveness of embed-
602
+ ding ethics within our new CS assignment. The participants’ feed-
603
+ back positively reinforced our methods of embedding ethics and
604
+ gave us ideas for improving the assignment. The feedback helped
605
+
606
+ us gauge whether including a reflection in addition to embedding
607
+ the coding situation in an ethical scenario was necessary. We found
608
+ that the reflection was worth including.
609
+ Prior to the reflection part of our assignment, few participants
610
+ acknowledged the potential benefits of content moderation or con-
611
+ sidered the impacts of false negatives, when content that should be
612
+ removed passes through a moderation system undetected. The dis-
613
+ cussions in the focus groups revealed that the scenario in our cod-
614
+ ing portion highlighted the impacts of false positives, when benign
615
+ content is flagged for removal, and failed to draw attention to false
616
+ negatives. This may also be due to participants’ experiences with
617
+ content moderation outside of the focus groups, since both false
618
+ positives and false negatives in content moderation often dispro-
619
+ portionately impact people from marginalized groups, such as peo-
620
+ ple of color [14, 24]. Participants in our groups, which reflected the
621
+ population of our predominantly white university, may have never
622
+ personally experienced the negative effects of false negatives. In a
623
+ study of an ethics-related assignment, Klassen and Fiesler found
624
+ that when speculating about ethics in the classroom, students and
625
+ instructors may fail to consider perspectives outside of their own;
626
+ as an instructor in their study said, “People tend to lean on their
627
+ own experiences pretty heavily in speculation, and don’t, unless
628
+ they’re very carefully prompted, consider broader context” [20].
629
+ Including a reflection is an opportunity to “carefully prompt” stu-
630
+ dents to consider other perspectives.
631
+ In the focus groups we were also able to test out using a hy-
632
+ pothetical situation, which we found to be effective. However, in-
633
+ structors do need to be careful about their transitions to real issues
634
+ from the hypothetical. In our case, at least one participant found
635
+ the transition from the cats’ platform into more charged topics like
636
+ racist hate speech “too sudden.” There is also the risk that students
637
+ will fail to bridge the gap between the hypothetical situation and
638
+ the severity of the ethical impact in real life. While we did not ob-
639
+ serve this to be the case for our assignment, we believe it’s impor-
640
+ tant to ensure that students are not getting a watered-down rep-
641
+ resentation of the ethical issue being addressed by an assignment.
642
+ We found the benefits of using a hypothetical scenario worth these
643
+ extra considerations, because this approach removed barriers in
644
+ considering ethics for those averse to controversial discussions.
645
+ Running the focus groups provided us with valuable feedback
646
+ and we recommend gathering feedback to anyone creating ethics-
647
+ based CS assignments. Without hearing from our participants, we
648
+ would have remained unaware of the blind spots we had to issues
649
+ with our assignment. Some of the improvements listed above came
650
+ directly from students in our groups. We got suggestions for con-
651
+ fronting barriers they perceived students would have with ethics-
652
+ based content. We also generated a wealth of ideas for more ethics-
653
+ oriented assignments, spending only 30 minutes or less in each of
654
+ the ���ve focus groups. The tactic we used to facilitate brainstorm-
655
+ ing, starting from tech controversies and then drawing connec-
656
+ tions to CS topics, flowed more easily than simply asking students
657
+ if they had ideas for ethics-based CS assignments. The engagement
658
+ in the brainstorming activity was also encouraging; participants
659
+ were active in generating ideas and applying them to CS topics.
660
+ Once we had student feedback showing their concerns with
661
+ ethics-based content, we could create some mitigation strategies.
662
+ Some participants shared concerns about ethics-oriented assign-
663
+ ments imposing a particular belief onto them about a particular
664
+ technology. One article on integrating ethics states that “a good
665
+ technology ethics course teaches students how to think, not what
666
+ to think, about their role in the development and deployment of
667
+ technology.” [5]. Consider the whole picture of any ethical context
668
+ you integrate and keep questions posed to students open-ended.
669
+ We made edits along these lines to our focus group script after pi-
670
+ loting it with a group from our lab. In place of “Do you think that
671
+ the moderation system you implemented is harmful?” we asked
672
+ “What are the implications of the moderation system?”.
673
+ Finally, we strongly encourage CS educators to utilize the re-
674
+ sources around them when designing similar assignments. Our
675
+ content moderator assignment materials are publicly available.1
676
+ There are also many open source ethics-based CS assignments cre-
677
+ ated by other educators, such as those developed as part of Mozilla’s
678
+ Responsible Computing Challenge [2]. We also invite educators to
679
+ use the ideas generated by our participants to create new assign-
680
+ ments that fit into their courses. Educators looking to test their as-
681
+ signments could use teaching assistants to pilot assignments, there-
682
+ fore making them collaborators in the process as well, in place of
683
+ running more time-consuming focus groups. Providing in-depth
684
+ feedback could also be presented as an extra-credit opportunity
685
+ for students. Incorporating ethics may seem daunting, but can be
686
+ accomplished, as others have suggested, by starting small and col-
687
+ laborating between disciplines, adapting existing assignments to
688
+ include an ethics-oriented context [10].
689
+ 7
690
+ CONCLUSION
691
+ Rather than relying on a standalone course for teaching the ethi-
692
+ cal implications of the technology students will produce, there is
693
+ a growing movement to embed ethics throughout the entire com-
694
+ puter science curriculum. In this experience report, we demoed an
695
+ assignment to five small groups of participants that reflected on the
696
+ design and implications of a content moderation system for a cat-
697
+ driven social media platform. Discussions with these participants
698
+ revealed students’ opinions about integrating ethics into course-
699
+ work, feedback on the assignment itself, and ideas for future as-
700
+ signments. With these findings in mind, we recommend that CS
701
+ educators creating ethics-based assignments make use of student
702
+ or TA feedback to improve assignments, use strategies to limit im-
703
+ position of biases on the ethical dilemma, consider using hypothet-
704
+ ical scenarios in their assignments, and embrace resources around
705
+ them. The benefits of integrating ethics into CS curriculum, includ-
706
+ ing better student engagement as well as preparing them to create
707
+ technology with societal impacts in mind, are worth the effort of
708
+ creating ethics-based assignments.
709
+ 8
710
+ ACKNOWLEDGMENTS
711
+ This research was supported by Omidyar Network as well as the
712
+ Responsible Computer Science Challenge (with funding from Mozilla,
713
+ Omidyar Network, Schmidt Futures, and Craig Newmark Philan-
714
+ thropies). We would like to thank our participants and the Inter-
715
+ net Rules Lab for their feedback on this project, particularly Ella
716
+ Sarder, Johnny Sreenan, and Camryn Kelley.
717
+ 1https://www.internetruleslab.com/ethicsbased-computer-science-assignments#content-mod
718
+
719
+ REFERENCES
720
+ [1] 2021.
721
+ Criteria for Accrediting
722
+ Computing Programs, 2021
723
+ – 2022.
724
+ https://www.abet.org/accreditation/accreditation-criteria/criteria-for-accrediting-computing-programs-2021-2022/
725
+ [2] 2021.
726
+ Responsible
727
+ Computer
728
+ Science
729
+ Challenge
730
+ -
731
+ Resources.
732
+ https://foundation.mozilla.org/en/what-we-fund/awards/responsible-computer-science-challenge/resources/
733
+ [3] Ruha Benjamin. 2019. Race after technology: Abolitionist tools for the new jim
734
+ code. Polity.
735
+ [4] Noelle Brown, Koriann South, and Eliane S Wiese. 2022.
736
+ The Short-
737
+ est Path to Ethics in AI: An Integrated Assignment Where Human
738
+ Concerns Guide Technical Decisions. In Proceedings of the 2022 ACM
739
+ Conference
740
+ on
741
+ International
742
+ Computing
743
+ Education
744
+ Research
745
+ V.
746
+ 1.
747
+ As-
748
+ sociation
749
+ for
750
+ Computing
751
+ Machinery,
752
+ New
753
+ York,
754
+ NY,
755
+ USA,
756
+ 344–355.
757
+ https://doi-org.colorado.idm.oclc.org/10.1145/3501385.3543978
758
+ [5] Emanuelle Burton, Judy Goldsmith, and Nicholas Mattei. 2018. How to teach
759
+ computer ethics through science fiction. Commun. ACM 61, 8 (2018), 54–64.
760
+ [6] Mary Elaine Califf and Mary Goodwin. 2005. Effective Incorporation of Ethics
761
+ into Courses That Focus on Programming. SIGCSE Bull. 37, 1 (feb 2005), 347–351.
762
+ https://doi.org/10.1145/1047124.1047464
763
+ [7] Victoria Clarke, Virginia Braun, and Nikki Hayfield. 2015. Thematic analysis.
764
+ Qualitative psychology: A practical guide to research methods 222, 2015 (2015),
765
+ 222–248.
766
+ [8] Sasha Costanza-Chock. 2020. Design justice: Community-led practices to build
767
+ the worlds we need. The MIT Press.
768
+ [9] Janet Davis and Henry M Walker. 2011. Incorporating social issues of comput-
769
+ ing in a small, liberal arts college: a case study. In Proceedings of the 42nd ACM
770
+ technical symposium on Computer science education. Association for Computing
771
+ Machinery, 69–74.
772
+ [10] Casey Fiesler, Mikhaila Friske, Natalie Garrett, Felix Muzny, Jessie J Smith, and
773
+ Jason Zietz. 2021. Integrating Ethics into Introductory Programming Classes. In
774
+ Proceedings of the 52nd ACM Technical Symposium on Computer Science Educa-
775
+ tion. Association for Computing Machinery, 1027–1033.
776
+ [11] Casey Fiesler, Natalie Garrett, and Nathan Beard. 2020. What do we teach when
777
+ we teach tech ethics? a syllabi analysis. In Proceedings of the 51st ACM Technical
778
+ Symposium on Computer Science Education. Association for Computing Machin-
779
+ ery, 289–295.
780
+ [12] Barbara J Grosz, David Gray Grant, Kate Vredenburgh, Jeff Behrends, Lily Hu,
781
+ Alison Simmons, and Jim Waldo. 2019. Embedded EthiCS: integrating ethics
782
+ across CS education. Commun. ACM 62, 8 (2019), 54–61.
783
+ [13] Mark Guzdial. 2009. Education Teaching computing to everyone. Commun. ACM
784
+ 52, 5 (2009), 31–33.
785
+ [14] Oliver L Haimson, Daniel Delmonaco, Peipei Nie, and Andrea Wegner. 2021. Dis-
786
+ proportionate removals and differing content moderation experiences for con-
787
+ servative, transgender, and black social media users: Marginalization and mod-
788
+ eration gray areas. Proceedings of the ACM on Human-Computer Interaction 5,
789
+ CSCW2 (2021), 1–35.
790
+ [15] Shlomi Hod, Karni Chagal-Feferkorn, Niva Elkin-Koren, and Avigdor Gal. 2022.
791
+ Data science meets law. Commun. ACM 65, 2 (2022), 35–39.
792
+ [16] Rick Homkes and Robert A Strikwerda. 2009. Meeting the ABET program out-
793
+ come for issues and responsibilities: an evaluation of CS, IS, and IT programs. In
794
+ Proceedings of the 10th ACM conference on SIG-information technology education.
795
+ Association for Computing Machinery, 133–137.
796
+ [17] Shagun Jhaver, Quan Ze Chen, Detlef Knauss, and Amy X Zhang. 2022. Design-
797
+ ing Word Filter Tools for Creator-led Comment Moderation. In CHI Conference
798
+ on Human Factors in Computing Systems. ACM, 1–21.
799
+ [18] Shalini Kesar. 2016. Including teaching ethics into pedagogy: Preparing informa-
800
+ tion systems students to meet global challenges of real business settings. ACM
801
+ SIGCAS Computers and Society 45, 3 (2016), 432–437.
802
+ [19] Nazish Zaman Khan and Andrew Luxton-Reilly. 2016. Is computing for social
803
+ good the solution to closing the gender gap in computer science?. In Proceed-
804
+ ings of the Australasian Computer Science Week Multiconference. Association for
805
+ Computing Machinery, 1–5.
806
+ [20] Shamika Klassen and Casey Fiesler. 2022. Run Wild a Little With Your Imagina-
807
+ tion: Ethical Speculation in Computing Education with Black Mirror. In Proceed-
808
+ ings of the 53rd ACM Technical Symposium on Computer Science Education V. 1.
809
+ Association for Computing Machinery, 836–842.
810
+ [21] Amy J. Ko, Alannah Oleson, Neil Ryan, Yim Register, Benjamin Xie, Mina
811
+ Tari, Matthew Davidson, Stefania Druga, and Dastyni Loksa. 2020. It is Time
812
+ for More Critical CS Education.
813
+ Commun. ACM 63, 11 (Oct 2020), 31–33.
814
+ https://doi.org/10.1145/3424000
815
+ [22] Kevin Lin. 2022. CS Education for the Socially-Just Worlds We Need: The Case
816
+ for Justice-Centered Approaches to CS in Higher Education. In Proceedings of the
817
+ 53rd ACM Technical Symposium on Computer Science Education V. 1. Association
818
+ for Computing Machinery, 265–271.
819
+ [23] Hilarie Nickerson, Catharine Brand, and Alexander Repenning. 2015. Grounding
820
+ computational thinking skill acquisition through contextualized instruction. In
821
+ Proceedings of the eleventh annual International Conference on International Com-
822
+ puting Education Research. Association for Computing Machinery, 207–216.
823
+ [24] A
824
+ Ohlheiser.
825
+ 2021.
826
+ Welcome
827
+ to
828
+ TikTok’s
829
+ end-less
830
+ cycle
831
+ of
832
+ censorship
833
+ and
834
+ mistakes.
835
+ https://www.technologyreview.com/2021/07/13/1028401/tiktok-censorship-mistakes-glitches-apologies-endless-cycle/
836
+ [25] Cathy O’Neil. 2016. Weapons of math destruction: How big data increases inequal-
837
+ ity and threatens democracy. Broadway books.
838
+ [26] Jean J Ryoo, Jane Margolis, Clifford H Lee, Cueponcaxochitl DM Sandoval, and
839
+ Joanna Goode. 2013. Democratizing computer science knowledge: Transforming
840
+ the face of computer science through public high school education. Learning,
841
+ Media and Technology 38, 2 (2013), 161–181.
842
+ [27] Maarten Sap, Dallas Card, Saadia Gabriel, Yejin Choi, and Noah A Smith. 2019.
843
+ The risk of racial bias in hate speech detection. In Proceedings of the 57th annual
844
+ meeting of the association for computational linguistics. ACL, 1668–1678.
845
+ [28] Maarten Sap, Saadia Gabriel, Lianhui Qin, Dan Jurafsky,Noah A Smith, and Yejin
846
+ Choi. 2019. Social Bias Frames: Reasoning about Social and Power Implications
847
+ of Language. arXiv preprint arXiv:1911.03891 (2019).
848
+ [29] Maarten
849
+ Sap,
850
+ Saadia
851
+ Gabriel,
852
+ Lianhui
853
+ Qin,
854
+ Dan
855
+ Jurafsky,
856
+ Noah
857
+ A
858
+ Smith,
859
+ and
860
+ Yejin
861
+ Choi.
862
+ 2020.
863
+ Social
864
+ Bias
865
+ Frames:
866
+ Reason-
867
+ ing
868
+ about
869
+ Social
870
+ and
871
+ Power
872
+ Implications
873
+ of
874
+ Language.
875
+ (2020).
876
+ https://slideslive.com/38928840/social-bias-frames-reasoning-about-social-and-power-implications-of-language
877
+ Association for Computational Linguistics.
878
+ [30] Dias Oliva Thiago, Antonialli Dennys Marcelo, and Alessandra Gomes. 2021.
879
+ Fighting hate speech, silencing drag queens? artificial intelligence in content
880
+ moderation and risks to lgbtq voices online. Sexuality & culture 25, 2 (2021),
881
+ 700–732.
882
+ [31] Sepehr Vakil. 2018.
883
+ Ethics, identity, and political vision: Toward a justice-
884
+ centered approach to equity in computer science education. Harvard Educational
885
+ Review 88, 1 (2018), 26–52.
886
+ [32] James Vincent. 2016. Twitter taught Microsoft’s AI chatbot to be a racist asshole
887
+ in less than a day. The Verge 24, 3 (2016), 2016.
888
+ [33] Alicia Nicki Washington. 2020. When twice as good isn’t enough: The case
889
+ for cultural competence in computing. In Proceedings of the 51st ACM technical
890
+ symposium on computer science education. Association for Computing Machin-
891
+ ery, 213–219.
892
+
59FAT4oBgHgl3EQfnB39/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NAzT4oBgHgl3EQfgfyv/content/tmp_files/2301.01470v1.pdf.txt ADDED
@@ -0,0 +1,856 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Data-Driven Model Identification via
2
+ Hyperparameter Optimization for the
3
+ Autonomous Racing System
4
+ Hyunki Seong1, Chanyoung Chung2∗, and David Hyunchul Shim1
5
+ Abstract— In this letter, we propose a model identifica-
6
+ tion method via hyperparameter optimization (MIHO). Our
7
+ method is able to identify the parameters of the paramet-
8
+ ric models in a data-driven manner. We utilize MIHO for
9
+ the dynamics parameters of the AV-21, the full-scaled au-
10
+ tonomous race vehicle, and integrate them into our model-
11
+ based planning and control systems. In experiments, the
12
+ models with the optimized parameters demonstrate the
13
+ generalization ability of the vehicle dynamics model. We
14
+ further conduct extensive field tests to validate our model-
15
+ based system. The tests show that our race systems lever-
16
+ age the learned model dynamics well and successfully
17
+ perform obstacle avoidance and high-speed driving over
18
+ 200km/h at the Indianapolis Motor Speedway and Las Vegas
19
+ Motor Speedway. The source code for MIHO and videos of
20
+ the tests are available at https://github.com/hynkis/MIHO.
21
+ Index Terms— Model identification, hyperparameter opti-
22
+ mization, autonomous vehicle
23
+ I. INTRODUCTION
24
+ U
25
+ nderstanding the system model is essential for robotic
26
+ applications, especially high-speed safety-critical au-
27
+ tonomous systems. Unlike low-speed driving, various dynam-
28
+ ics elements such as chassis, tires, or engines become cru-
29
+ cial to implement high-speed autonomy. Model-based optimal
30
+ control [1], [2] is well-suited for handling those factors and is
31
+ widely used to design dynamics system control. By leveraging
32
+ physics-based parametric dynamics models, It optimizes driv-
33
+ ing maneuvers with respect to a designed objective function
34
+ and enables safe and reliable control system design.
35
+ Despite the success of the model-based approach in robotics,
36
+ the model-based algorithm has two fundamental challenges:
37
+ model fidelity and tractability. The performance of model-
38
+ based approaches relies heavily on the accuracy of the model.
39
+ However, identifying accurate models is often laborious or in-
40
+ tractable because of their large search space and non-linearity.
41
+ This work was supported by Institute of Information communica-
42
+ tions Technology Planning Evaluation (IITP) grant funded by the Korea
43
+ government(MSIT) (2021-0-00029, Development of Indoor Autonomous
44
+ Drone for Performing Multiple Missions Based on Artificial Intelligence)
45
+ ∗Corresponding author
46
+ 1 The authors are with the School of Electrical Engineering, Korea
47
+ Advanced Institute of Science and Technology, Daejeon, South Korea.
48
49
+ 2 Chanyoung Chung is with the JPL Science Division, NASA, Califor-
50
+ nia, USA. (email: [email protected])
51
+ Besides model accuracy, models also need to be computa-
52
+ tionally feasible considering the real-time control applications.
53
+ High-fidelity but highly complex models are difficult to inte-
54
+ grate into real-time safety-critical driving systems.
55
+ To tackle those challenges, conventional approaches, includ-
56
+ ing the Prediction Error Method, are used to identify model
57
+ parameters [3]. However, those methods often require the
58
+ model structure to be linear or in a specific mathematical
59
+ form, which might not be feasible for the design of the
60
+ real-time autonomous driving system. On the other hand,
61
+ in several recent works, data-driven approaches using neural
62
+ networks, Gaussian processes, or Bayesian methods have been
63
+ actively employed for nonlinear system dynamics modeling
64
+ and have shown promising results [4]. In [5], they proposed
65
+ a simple neural network to replace a single-track vehicle
66
+ model and used it to generate feedforward control signals.
67
+ Similarly, in [6], they designed Deep Neural Networks (DNN)
68
+ as a model approximator to identify the vehicle dynamics
69
+ model in an end-to-end learning fashion. However, while DNN
70
+ is an efficient way to approximate nonlinear systems, it is
71
+ difficult to integrate with non-learning model-based methods,
72
+ which are reliable in real-world applications. Furthermore, it
73
+ is challenging to ensure the validity of the DNN model in
74
+ unseen driving scenarios without large-scale field tests.
75
+ In this letter, we propose a data-driven model identifica-
76
+ tion method via hyperparameter optimization (MIHO) for a
77
+ high-speed autonomous driving system. Our key idea is to
78
+ leverage a data-driven parameter optimization approach from
79
+ machine learning to identify physics-based parametric models
80
+ without any structural model requirement. To this end, we
81
+ adopt a novel hyperparameter optimization (HPO) method
82
+ that has an efficient exploration and exploitation strategy.
83
+ Using the proposed method, we estimate the parameters of
84
+ the integrable parametric dynamics models for a full-scaled
85
+ autonomous racecar system, Dallara AV-21 (Fig. 1), at the
86
+ Indy Autonomous Challenge (IAC) [7]. We validate our
87
+ proposed approach by integrating identified models into the
88
+ high-speed autonomous system and conducting extensive field
89
+ experiments, including over 200km/h autonomous driving
90
+ and obstacle avoidance scenarios in the Indianapolis Motor
91
+ Speedway (IMS) and Las Vegas Motor Speedway (LVMS).
92
+ In summary, our technical contributions are as follows:
93
+ • We propose a data-driven model identification method via
94
+ hyperparameter optimization.
95
+ arXiv:2301.01470v1 [cs.RO] 4 Jan 2023
96
+
97
+ • We design model-based planning and control systems
98
+ incorporating the learned vehicle dynamics models.
99
+ • We integrate the systems with learned model parameters
100
+ into the full-scaled autonomous race vehicle and exten-
101
+ sively validate them during the IAC.
102
+ II. MODEL IDENTIFICATION VIA HYPERPARAMETER
103
+ OPTIMIZATION
104
+ The more accurately the system dynamics are described, the
105
+ greater the nonlinearity and number of parameters required
106
+ for the dynamics model. Therefore, an efficient parameter
107
+ estimation approach is necessary to find the parameter con-
108
+ figuration of such a complex model. In this letter, we propose
109
+ a model identification method via hyperparameter optimization
110
+ (MIHO) to learn the optimal model parameter configuration by
111
+ a data-driven approach. Hyperparameter optimization (HPO) is
112
+ the problem of selecting an optimal hyperparameter configura-
113
+ tion required for neural network training in the machine learn-
114
+ ing field [8]. A hyperparameter is a parameter that controls
115
+ the training process. HPO optimizes the hyperparameter con-
116
+ figuration by evaluating the performance of the configuration
117
+ during the model training process. Since one course of neural
118
+ network training requires a substantial time, HPO focuses
119
+ on the balanced exploration and exploitation strategy for the
120
+ efficient optimal hyperparameter selection. [8]. Motivated by
121
+ the balanced strategy, we design MIHO by adopting the HPO
122
+ to the model identification problem. First, we regard a model
123
+ parameter configuration p as a set of hyperparameters of a
124
+ nonlinear dynamics model f. Then, we identify the parameter
125
+ configuration by evaluating the following objective function
126
+ inspired by the standard supervised learning problem:
127
+ L =
128
+ 1
129
+ |D|
130
+
131
+ (x,y)∈D
132
+ ∥y − f(x; p)∥2,
133
+ (1)
134
+ where x, y denote the sampled input and output data of the
135
+ model f from a given dataset D. By minimizing this learning
136
+ objective, we find an optimized model parameter configuration
137
+ p∗ that has the minimum model error with the observed model
138
+ output y. The model f has no limitation on its formula or form.
139
+ Thus, our method is able to be used for arbitrary parametric
140
+ models, such as a combination of polynomial or mathematical
141
+ terms, as well as analytic physics-based models.
142
+ We implement MIHO incorporating a bandit-based HPO
143
+ algorithm, Hyperband [9], as summarized in Algorithm 1. It is
144
+ Algorithm 1 MIHO Algorithm based on Hyperband
145
+ Input: R, η, D
146
+ 1: smax ← ⌊logη(R)⌋, B = (smax + 1)R
147
+ 2: for s ∈ {smax, smax − 1, ..., 0} do
148
+ 3:
149
+ n = ⌈ B
150
+ R
151
+ ηs
152
+ (s+1)⌉, r = Rη−s
153
+ 4:
154
+ P = get model param config(n)
155
+ 5:
156
+ for j ∈ {0, ..., s} do
157
+ 6:
158
+ nj = ⌊nη−j⌋, rj = rηj
159
+ 7:
160
+ L = {eval with mutation(p, rj, D) : p ∈ P}
161
+ 8:
162
+ P = select top k config(P, L, ⌊nj/η⌋)
163
+ Output: Optimized parameters p∗ with the smallest loss.
164
+ Fig. 1.
165
+ Overview of our autonomous driving system in the AV-21. Our
166
+ learned model parameters are embedded in the planning and control
167
+ modules that are covered in this letter (highlighted in blue). Several input
168
+ variables are omitted for clarity.
169
+ a variation of a random search algorithm with explore-exploit
170
+ theory to find the optimal hyperparameter configuration based
171
+ on an evaluation loss. The algorithm needs two arguments:
172
+ R, the maximum amount of resource (e.g., the number of
173
+ evaluation iterations) that can be allocated to a single config-
174
+ uration, and η, a value that determines the proportion of the
175
+ discarded configurations. The two arguments derive smax + 1
176
+ combinations (called ”brackets” in [9]) of the values n and r,
177
+ which enables various ratios of exploration and exploitation
178
+ for finding the optimal parameter configuration. Hyperband
179
+ compares the evaluation loss of each sampled configuration
180
+ and allocates more resources to the configurations with lower
181
+ evaluation losses, excluding the configurations with higher
182
+ losses. It repeats the sampling and exclusion processes until
183
+ the last configuration remains to obtain the optimal set of
184
+ hyperparameters. To adjust the HPO algorithm to the model
185
+ parameter optimization, we add the Gaussian mutation [10]
186
+ during the evaluation to explore the new neighbor parameters
187
+ that might have less model loss. Unlike the original HPO,
188
+ which only allocates more resources ri, our approach, MIHO,
189
+ adds noise perturbation at the selected parameter configuration
190
+ p after the resource allocation as:
191
+ pmut = p + σ ⊙ ϵ,
192
+ ϵ ∼ N(0, I),
193
+ (2)
194
+ where σ is the standard deviation of the exploration noise that
195
+ is annealed over the course of the evaluation [11]. We define
196
+ the following three functions for the HPO process in MIHO:
197
+ • get model param config(n): a function that returns a set
198
+ of n i.i.d model parameter configurations from the normal
199
+ distribution pre-defined over the configuration space.
200
+ • eval with mutation(p, rj, D): a function that receives a
201
+ parameter configuration p, an allocated resource rj, and
202
+ a dataset D as arguments. Using the dataset, this function
203
+ evaluates an initial configuration and mutates it for the
204
+ allocated rj iterations by Eq. 2. If a mutated configuration
205
+ pmut has a less loss than the initial one, the function
206
+ replaces p with pmut. It returns the final loss after
207
+ spending the allocated resources.
208
+ • select top k config(P, L, k): a function that receives a
209
+ set of hyperparameter configurations P with their corre-
210
+ sponding evaluation losses L and returns the top k high-
211
+ performing configurations (here, k = ⌊nj/η⌋).
212
+
213
+ Planning
214
+ Control
215
+ Full-scale Racecar
216
+ Reference
217
+ Lateral
218
+ Trajectory
219
+ Control
220
+ K
221
+ Tt,Tb
222
+ Velocity
223
+ Vx,des
224
+ Longitudinal
225
+ Throttle / Brake
226
+ Planner
227
+ Control
228
+ (axr)
229
+ ControlIII. VEHICLE DYNAMICS MODEL
230
+ A. Tire Dynamics Model
231
+ Tire dynamics is one of the factors that significantly affect
232
+ the nonlinearity of driving dynamics. Especially the lateral
233
+ tire model is crucial to design stable path-tracking control in
234
+ high-speed driving. The tire model [12] can be described as a
235
+ function of the slip angle αi, slip ratio ρx,i, inclination angle
236
+ θi, tire load Fz,i, and current velocity vx,i, which has a lateral
237
+ tire force F ∗
238
+ y,i of each tire (i ∈ {LF, LR, RF, RR}) as,
239
+ F ∗
240
+ y,i = ftire(αi, ρx,i, θi, Fz,i, vx,i).
241
+ (3)
242
+ Although the model has high fidelity with various dynamics
243
+ perspectives, it has low suitability for designing the controller
244
+ of high-speed driving, which requires real-time performance.
245
+ Therefore, we first define a tire model with dimension-
246
+ reductionthat can be applied to model-based control design
247
+ within an acceptable complexity. We then optimize the model’s
248
+ parameter configuration to represent the overall tire charac-
249
+ teristic of a given dataset using our MIHO algorithm. We
250
+ follow the Pacejka tire model [13] to define the tire dynamics.
251
+ While the prior work neglect offsets, we formulate a tire model
252
+ Fy,i = ft,i(αi; pt,i) containing offset parameters Sx,i, Sy,i
253
+ to describe the asymmetric tire characteristic determined to
254
+ maximize cornering performance on an oval track:
255
+ Fy,i = Di sin(Ci arctan(Bi(αi + Sx,i))) + Sy,i,
256
+ (4)
257
+ where
258
+ the
259
+ tire
260
+ model
261
+ parameter
262
+ configuration
263
+ pt,i
264
+ =
265
+ {Bi, Ci, Di, Sx,i, Sy,i} is identified by minimizing the follow-
266
+ ing tire model objective with a given dataset Dt,i as
267
+ Lt,i =
268
+ 1
269
+ |Dt,i|
270
+
271
+ (αi,F ∗
272
+ y,i)∈Dt,i
273
+ ∥F ∗
274
+ y,i − ft,i(α; pt,i)∥2.
275
+ (5)
276
+ B. Engine Torque Model
277
+ The powertrain system of our racecar consists of an internal
278
+ combustion engine, transmission, and wheels. The racecar is a
279
+ rear-wheel-drive vehicle whose traction force Fx,r is generated
280
+ by engine-based driveline dynamics. We model the equation
281
+ of the longitudinal dynamics [14] as follows:
282
+ max = Fx,r − Cdv2
283
+ x − Cr,
284
+ (6)
285
+ where m is the vehicle mass, vx is the longitudinal velocity,
286
+ Cd denotes the drag coefficient, and Cr denotes the rolling
287
+ resistance. Following a prior work [15], the traction force can
288
+ be expressed as:
289
+ Fx,r = max,r = Teηtigi0
290
+ Rw
291
+ ,
292
+ (7)
293
+ where ax,r denotes the traction acceleration, ηt denotes the
294
+ efficiency of the transmission, ig, i0 denote the transmission
295
+ ratio of the current gear and final reducer, and Rw denotes
296
+ the wheel radius. Te = fe(we, τt) is the engine torque map
297
+ in terms of the engine speed we and throttle command τt.
298
+ Due to the high complexity of the engine characteristic, the
299
+ torque map is expressed as an experimental lookup table
300
+ based on engine torque curves of specific throttle opening
301
+ commands. Although the engine torque model can be obtained
302
+ by the engine dynamometer testing [16], it could suffer from
303
+ modeling error because the dynamometer testing is done in a
304
+ static environment without longitudinal experiment. Therefore,
305
+ we build the engine torque map that integrates the dyno data
306
+ with learned torque curves based on our data-driven model
307
+ identification approach. We express an engine torque curve
308
+ Te,τt = fτt(we; pτt) of a throttle command τt as a 3rd order
309
+ polynomial function of the engine speed we as:
310
+ Te,τt = pτt,0 + pτt,1we + pτt,2w2
311
+ e + pτt,3w3
312
+ e,
313
+ (8)
314
+ where pτt = {pτt,0, pτt,1, pτt,2, pτt,3} is the torque model
315
+ parameter configuration. Using the resultant traction acceler-
316
+ ations ax,r while driving, the engine torque output T ∗
317
+ e,τt is
318
+ obtained by Eq. 7. Then, pτt is learned by minimizing the
319
+ following engine model objective with a given dataset Dτt:
320
+ Lτt =
321
+ 1
322
+ |Dτt|
323
+
324
+ (we,T ∗
325
+ e,τt)∈Dτt
326
+ ∥T ∗
327
+ e,τt − fτt(we; pτt)∥2.
328
+ (9)
329
+ To stabilize the learning process, we normalize the engine
330
+ speed in the range [0,1] with the maximum engine speed.
331
+ IV. MODEL-BASED PLANNING AND CONTROL
332
+ In this session, we introduce a model-based planning and
333
+ control algorithm that uses the learned model parameters. We
334
+ exploit the learned tire parameters to design a dynamics-aware
335
+ velocity planning and model-based lateral controller (Fig. 1).
336
+ We also integrate the engine dyno data with the learned engine
337
+ torque model to construct an engine lookup table.
338
+ A. Dynamics-aware Velocity Planning
339
+ During high-speed racing, cornering with high velocity
340
+ generates lateral acceleration at the roll axis, which causes
341
+ significant load transfer on each wheel. Since the tire load
342
+ governs the maximum performance of the tire, a model-based
343
+ velocity strategy accounting for the real-time wheel load is
344
+ necessary to maximize the tire performance without losing
345
+ tire grip. We introduce a dynamics-aware velocity planning
346
+ algorithm that derives the velocity plans with maximum tire
347
+ performance based on the learned tire dynamics. We first
348
+ compute the real-time vertical tire load Fz,i affected by the
349
+ lateral load transfer ∆Wf [17]. The diagram of the load
350
+ transfer at the roll axis is illustrated in the left of Fig. 2. The
351
+ load transfer is computed by the roll couple Croll = ms ˙vyha,
352
+ where ms is the sprung mass, ˙vy is the lateral acceleration,
353
+ and ha is the roll height. As the learned tire model describes
354
+ the characteristic for the nominal tire load ¯Fz,i, we compute
355
+ the maximum lateral force of each tire F max
356
+ y,i
357
+ in terms of the
358
+ tire load ratio with peak value of the tire model as:
359
+ F max
360
+ y,i
361
+ = µFz,i
362
+ ¯Fz,i
363
+ F peak
364
+ y,i
365
+ ,
366
+ (10)
367
+ where µ is a tire performance factor to control the confidence
368
+ and maximum performance of the tire model, Fz,i
369
+ ¯
370
+ Fz,i is the tire
371
+ load ratio. The maximum lateral acceleration is determined by
372
+ the following lateral motion dynamics [13]:
373
+ ay,max = 1
374
+ m(F max
375
+ y,r
376
+ + F max
377
+ y,f cos(δ) − mvx ˙ψ),
378
+ (11)
379
+
380
+ Fig. 2.
381
+ Left: Lateral load transfer generation by the lateral acceleration
382
+ at the roll axis. Right: Overall diagram of the vehicle model.
383
+ where δ is the steering angle and ˙ψ is the yaw rate. Then a
384
+ desired maximum velocity vx,des is planned according to the
385
+ curvature κ of a reference path from a planning module [18]:
386
+ vx,des =
387
+
388
+ ay,max/κ.
389
+ (12)
390
+ B. Throttle and Brake Control
391
+ The planned desired velocity is fed to a feedback control
392
+ module [19] to compute the traction force. However, as shown
393
+ in Fig 1, another low-level controller to transform the traction
394
+ force to the throttle command is required to control the racecar
395
+ with nonlinear driveline dynamics. We design the throttle and
396
+ brake control system following [20]. Fig. 3 shows the details of
397
+ the low-level control system. We exploit the integrated engine
398
+ torque map to convert the desired engine torque Te,des to the
399
+ desired throttle command τt,des. As the torque map is built as
400
+ a lookup table, we search the desired throttle with respect to
401
+ a given engine speed and desired torque. The inverse brake
402
+ model is a module to convert the braking force to the brake
403
+ pedal command, which is activated if Fx,r is negative. The
404
+ brake model is also attained by our proposed MIHO, but
405
+ details are omitted to conserve space.
406
+ C. Model-based Path Tracking Control
407
+ We follow the lateral vehicle dynamics of [14] illustrated
408
+ in the right of Fig 2. The lateral model is derived from the
409
+ objective of tracking a reference trajectory. We implement path
410
+ tracking control by stabilizing a velocity-dependent chassis
411
+ model in terms of the error state variables ξ and control u.
412
+ ξ = [ey, ˙ey, eψ, ˙eψ]T ,
413
+ u = δ,
414
+ (13)
415
+ where ey, eψ denote the position and orientation error with
416
+ respect to a given path trajectory. The lateral model contains
417
+ tire-related model parameters such as the cornering stiffnesses
418
+ of the front and rear tires Cα,f, Cα,r. Since the lateral dynam-
419
+ ics is obtained from the bicycle model, the front and rear tire
420
+ models are optimized according to Eq 4, but the sum of the left
421
+ and right tire forces is used as the model output. The cornering
422
+ stiffnesses then can be approximated as follows [14]:
423
+ Cαf ≈ Bf × Cf × Df,
424
+ Cαr ≈ Br × Cr × Dr.
425
+ (14)
426
+ Based on the lateral vehicle model, we design the Linear
427
+ Quadratic Regulator with the following optimization problem:
428
+ min
429
+ u
430
+ � ∞
431
+ 0
432
+ (ξT Qξ + uT Ru)dt,
433
+ (15)
434
+ where Q, R denote gain matrices for LQR. For the real-time
435
+ control performance, we compute the state feedback optimal
436
+ LQR gains over piecewise velocity intervals offline [21].
437
+ Fig. 3.
438
+ Throttle and brake control system.
439
+ V. EVALUATION
440
+ A. Analysis for Model Identification
441
+ 1) Tire Dynamics Model: Fig. 4 illustrates the learned tire
442
+ models with datasets provided as the tire property files (*.tir).
443
+ The files contain tire force and moment characteristics with
444
+ high fidelity [22]. For model identification, we sampled 3000
445
+ data for each tire using the property files in various tire state
446
+ conditions such as tire load, camber angle, slip angle, and
447
+ slip ratio. As illustrated in the left and middle of Fig. 4, the
448
+ learned models show good fitness to the tire characteristic
449
+ distribution. We further investigated the tire model with the
450
+ driving data collected during track racing. The right of Fig.
451
+ 4 illustrates the front tire model of the single-track bicycle
452
+ dynamics learned by the provided tire property data comparing
453
+ it with the driving data that is not used for learning. The
454
+ learned model shows the generalization ability for the overall
455
+ data distribution represented by blue dots. However, since we
456
+ obtained the model by offline optimization and focused on
457
+ the representativeness of data, the model needs more accuracy
458
+ in some edge cases near the peaks of the lateral force. To
459
+ handle those cases, an online parameter optimization can be
460
+ used by parallelizing the HPO process in MIHO, and we will
461
+ implement it in future work.
462
+ 2) Engine Torque Model: Fig. 5 illustrates the learned engine
463
+ torque curves and integrated engine map. The data for the
464
+ engine map was provided by engine dynamometer testing.
465
+ For better reliability, we incorporated our data-driven engine
466
+ torque models with the dyno data, especially for the throttle
467
+ pedals 5, 15, and 20%, where the dynamometer had shown in-
468
+ sufficient accuracy of torque measurements. The result shows
469
+ that the learned torque curves are able to represent the change
470
+ of the maximum torque according to the throttle commands.
471
+ Moreover, the learned models also fit the torque curves that
472
+ change with nonlinearity in terms of engine speed. We inte-
473
+ grated the learned torque models with the provided dyno data
474
+ and interpolated the torque data to construct an engine lookup
475
+ table. The blue area on the right of Fig 5 shows the interpolated
476
+ region by the learned torque curves. Our vehicle utilized the
477
+ learned region in racing scenarios such as pit-in/out, obstacle
478
+ avoidance, and driving within 100km/h (Fig. 7).
479
+ B. Control Performance in Indy Autonomous Challenge
480
+ Our model-based planning and control algorithms were
481
+ deployed in the full-scale racecar platform. Moreover, we
482
+ extensively validated our learned model parameter-based al-
483
+ gorithms in the real-world race tracks, IMS and LVMS. The
484
+ algorithms successfully performed various race scenarios, such
485
+
486
+ eu
487
+ msi.
488
+ H
489
+ yf
490
+ Reference
491
+ V,
492
+ F.
493
+ xr
494
+ lf
495
+ Z
496
+ +AW,
497
+ Tf
498
+ AW
499
+ X
500
+ (a)
501
+ (b)Te,des
502
+ Throttle
503
+ Inverse
504
+ Wheel
505
+ Transmission
506
+ command
507
+ Engine Map
508
+ (tt)
509
+ Gear number
510
+ Engine speed
511
+ (G)
512
+ (we)
513
+ Brake
514
+ Inverse
515
+ command
516
+ Brake Model
517
+ (tb)Fig. 4.
518
+ Learned tire models with the provided tire data (Left: left-front and right-front, Middle: left-rear and right-rear). Right: Learned front tire
519
+ dynamics of the single-track bicycle model and the distribution of the collected data on the track.
520
+ Fig. 5.
521
+ Learned engine torque curves and the integrated engine map.
522
+ as obstacle avoidance and high-speed autonomous driving over
523
+ 200km/h on the race tracks (Fig. 6).
524
+ 1) Obstacle Avoidance in IMS: Fig. 7 shows the quantitative
525
+ results of the obstacle avoidance mission. In the mission,
526
+ obstacles are located before the first-corner section, where the
527
+ velocity plan is critical for avoiding collision while keeping
528
+ close to the racing line. For the sake of safety, we set
529
+ the tire performance factor µ as 0.7. Our dynamics-aware
530
+ velocity planner was able to allow the racecar to maximize
531
+ the velocity while regulating the lateral acceleration within the
532
+ learned maximum tire performance during the rapid avoidance
533
+ maneuvers. The obstacle avoidance was initiated in high-speed
534
+ driving at 100km/h, and steering commands were computed
535
+ up to -10 degrees to follow a generated collision-free reference
536
+ trajectory. The sharp steering command could cause significant
537
+ lateral acceleration higher than 9.0m/s2 in our vehicle, which
538
+ might cause critical tire grip loss. However, our tire model-
539
+ based velocity planner inferred the allowable maximum lateral
540
+ acceleration based on the real-time tire load. As a result, it was
541
+ able to plan safe desired velocities within lateral acceleration
542
+ allowance capable of preserving the tire grip performance.
543
+ 2) High-Speed Autonomous Driving in LVMS: Furthermore,
544
+ we extensively validated the control performance based on the
545
+ optimized model parameters at the Tri-Oval Superspeedway,
546
+ LVMS. Fig. 8 illustrates the quantitative results of the lateral
547
+ and longitudinal control while our vehicle raced more than
548
+ nine laps (23km). Our path-tracking algorithm shows robust
549
+ control performance leveraging the learned tire parameters.
550
+ The largest position and orientation errors were 0.6m and
551
+ −2.2 degrees, respectively. In addition, the AV-21 succeeded
552
+ high-speed autonomous driving at above 144km/h (with a top
553
+ speed of 217.4km/h), where the dynamic scenario had yet to
554
+ be visited and adjusted before this track experiment. These
555
+ results demonstrate that MIHO can optimize and provide
556
+ appropriate prior dynamics models offline for the design of
557
+ model-based control before deployment. However, the charac-
558
+ teristic of vehicle dynamics changed and affected the control
559
+ performance over high-speed driving. As shown in the bottom
560
+ of Fig. 8, the tire temperatures were increased after reaching
561
+ the unseen velocity range. In addition, after visiting the range
562
+ of over 144km/h, our low-level controller computed throttle
563
+ commands of over 50% with the engine range consisting only
564
+ of the provided dyno data. Those factors might have an effect
565
+ on the velocity error in the velocity range [42, 52]m/s of Fig
566
+ 8. Nevertheless, the control system can be improved with an
567
+ extended data-driven engine map for throttle control at high-
568
+ speed. We also point out that our method has the potential
569
+ to be processed online by parallelizing the HPO process [9],
570
+ which enables the method to identify the model in real-time
571
+ during deployment. The online MIHO could be incorporated
572
+ with the offline model optimization introduced in this work,
573
+ and we leave it as an important future work.
574
+ VI. CONCLUSION
575
+ We present MIHO, a data-driven model identification
576
+ method
577
+ via
578
+ hyperparameter
579
+ optimization.
580
+ Our
581
+ approach
582
+ showed the ability to optimize the parameters of the dy-
583
+ namics models, such as the tire models and engine torque
584
+ curves. Furthermore, the model-based planning and control
585
+ system with the learned model parameters demonstrated stable
586
+ performance in the real-world track environments, IMS and
587
+ LVMS. In future works, we will implement the online HPO
588
+ method and integrate it with the offline method of this work
589
+ to iteratively infer the changing parameters of the vehicle
590
+ dynamics while on track.
591
+ REFERENCES
592
+ [1] F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal control. John Wiley
593
+ & Sons, 2012.
594
+ [2] C. Jung, S. Lee, H. Seong, A. Finazzi, and D. H. Shim, “Game-theoretic
595
+ model predictive control with data-driven identification of vehicle model
596
+ for head-to-head autonomous racing,” arXiv preprint arXiv:2106.04094,
597
+ 2021.
598
+
599
+ Lateral Tire Model (LF, LR)
600
+ Lateral Tire Model (RF, RR)
601
+ Lateral Tire Model (Front)
602
+ 6
603
+ Data (LF)
604
+ Data (RF)
605
+ Driving data
606
+ Data (LR)
607
+ Data (RR)
608
+ Learned (Front)
609
+ Learned (LF)
610
+ Learned (RF)
611
+ 4
612
+ Learned (LR)
613
+ Learned (RR)
614
+ Lateral Tire Force [kN]
615
+ Lateral Tire Force [kN]
616
+ [kN]
617
+ 2
618
+ 0
619
+ 0
620
+ -2
621
+ -2
622
+ -4
623
+ -4
624
+ -6
625
+ -0.3
626
+ -0.2
627
+ -0.1
628
+ 0.0
629
+ 0.1
630
+ 0.2
631
+ 0.3
632
+ 0.3
633
+ -0.2
634
+ -0.1
635
+ 0.0
636
+ 0.1
637
+ 0.2
638
+ 0.3
639
+ 0.3
640
+ -0.2
641
+ -0.1
642
+ 0.0
643
+ 0.1
644
+ 0.2
645
+ 0.3
646
+ Side Slip Angle [rad]
647
+ Side Slip Angle [rad]
648
+ Side Slip Angle [rad]Engine torque [N /m]
649
+ 80
650
+ 0
651
+ 300
652
+ 60
653
+ 200
654
+ 100
655
+ 7000
656
+ 100
657
+ 6000
658
+ ¥3
659
+ 5000
660
+ 400
661
+ 00
662
+ 20.0
663
+ 17.5
664
+ Integrated
665
+ 15.0
666
+ 12.5
667
+ 3500
668
+ 3000
669
+ 10.0
670
+ Engine Torque Map
671
+ 2500
672
+ 7.5
673
+ Engine speed [RPM]
674
+ 2000
675
+ 1500
676
+ 5.0
677
+ 1000
678
+ 2.5
679
+ Data (interpolated):
680
+ by learned models
681
+ Learned Engine Torque Model
682
+ by dyno data
683
+ Data:
684
+ Tt,5
685
+ Tt,15
686
+ Tt,20
687
+ Learned model
688
+ J Tt,15Fig. 6.
689
+ Left: Team KAIST’s successful obstacle avoidance at IMS. The bottom illustrates the point cloud data and traveled trajectory during
690
+ avoidance. Right: Our AV-21 drove more than nine laps (23km) at the Tri-Oval Superspeedway of LVMS.
691
+ Fig. 7.
692
+ Results of the velocity control, lateral accelerations, and
693
+ steering angles during the obstacle avoidance mission at the IMS.
694
+ [3] A. K. Tangirala, Principles of system identification: theory and practice.
695
+ Crc Press, 2018.
696
+ [4] S. L. Brunton and J. N. Kutz, Data-driven science and engineering: Ma-
697
+ chine learning, dynamical systems, and control.
698
+ Cambridge University
699
+ Press, 2022.
700
+ [5] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
701
+ J. C. Gerdes, “Neural network vehicle models for high-performance
702
+ automated driving,” Science robotics, vol. 4, no. 28, p. eaaw1975, 2019.
703
+ [6] L. Hermansdorfer, R. Trauth, J. Betz, and M. Lienkamp, “End-to-end
704
+ neural network for vehicle dynamics modeling,” in 2020 6th IEEE
705
+ Congress on Information Science and Technology (CiSt).
706
+ IEEE, 2021,
707
+ pp. 407–412.
708
+ [7] Energy Systems Network, “Indy autonomous challenge,” 2022. [Online].
709
+ Available: www.indyautonomouschallenge.com
710
+ [8] M. Feurer and F. Hutter, “Hyperparameter optimization,” in Automated
711
+ machine learning.
712
+ Springer, Cham, 2019, pp. 3–33.
713
+ [9] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar,
714
+ “Hyperband: A novel bandit-based approach to hyperparameter opti-
715
+ mization,” The Journal of Machine Learning Research, vol. 18, no. 1,
716
+ pp. 6765–6816, 2017.
717
+ [10] S. Mirjalili, “Genetic algorithm,” in Evolutionary algorithms and neural
718
+ networks.
719
+ Springer, 2019, pp. 43–55.
720
+ [11] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
721
+ simulated annealing,” science, vol. 220, no. 4598, pp. 671–680, 1983.
722
+ [12] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in
723
+ vehicle dynamics studies,” SAE Transactions, pp. 190–204, 1987.
724
+ [13] J. Kabzan, M. I. Valls, V. J. Reijgwart, H. F. Hendrikx, C. Ehmke,
725
+ M. Prajapat, A. B¨uhler, N. Gosala, M. Gupta, R. Sivanesan et al.,
726
+ “Amz driverless: The full autonomous racing system,” Journal of Field
727
+ Robotics, vol. 37, no. 7, pp. 1267–1294, 2020.
728
+ [14] R. Rajamani, Vehicle dynamics and control.
729
+ Springer Science &
730
+ Business Media, 2011.
731
+ [15] L. Li, Z. Zhu, X. Wang, Y. Yang, C. Yang, and J. Song, “Identification
732
+ Fig. 8.
733
+ Results of the errors, velocity control, throttle/brake controls,
734
+ and temperature of the right-rear and right-front tires in LVMS.
735
+ of a driver’s starting intention based on an artificial neural network for
736
+ vehicles equipped with an automated manual transmission,” Proceedings
737
+ of the Institution of Mechanical Engineers, Part D: Journal of Automo-
738
+ bile Engineering, vol. 230, no. 10, pp. 1417–1429, 2016.
739
+ [16] J. S. Killedar, Dynamometer: theory and application to engine testing.
740
+ Xlibris Corporation, 2012.
741
+ [17] D. Seward, Race car design.
742
+ Bloomsbury Publishing, 2017.
743
+ [18] D. Lee, C. Jung, A. Finazzi, H. Seong, and D. H. Shim, “Resilient
744
+ navigation and path planning system for high-speed autonomous race
745
+ car,” arXiv preprint arXiv:2207.12232, 2022.
746
+ [19] J. C. Doyle, B. A. Francis, and A. R. Tannenbaum, Feedback control
747
+ theory.
748
+ Courier Corporation, 2013.
749
+ [20] K. Hedrick et al., “Brake system modeling, control and integrated
750
+ brake/throttle switching phase i,” 1997.
751
+ [21] J. Spisak, A. Saba, N. Suvarna, B. Mao, C. T. Zhang, C. Chang,
752
+ S. Scherer, and D. Ramanan, “Robust modeling and controls for racing
753
+ on the edge,” arXiv preprint arXiv:2205.10841, 2022.
754
+ [22] A. Schmeitz, “Mf-tyre/mf-swift,” Delft: TNO, 2013.
755
+
756
+ Counter-clockwise
757
+ forward
758
+ -200 -
759
+ Top speed
760
+ reached
761
+ (217.4 km/h)
762
+ -400
763
+ [m]
764
+ 009-
765
+ Obstacles
766
+ -800 -
767
+ Driving direction
768
+ Traveled trajectory
769
+ 0
770
+ 500
771
+ X [m]Velocities (Vx,des, Vx [m/s])
772
+ 3525050
773
+ x.des
774
+ 280
775
+ 290
776
+ 300
777
+ 310
778
+ 320
779
+ Lateral Accelerations (ay,max, ay,abs [m/s2])
780
+ 10
781
+ 8
782
+ max
783
+ 6
784
+ ay,abs
785
+ 4
786
+ 2
787
+ 0
788
+ 280
789
+ 290
790
+ 300
791
+ 310
792
+ 320
793
+ Steering Angle (s [degree])
794
+ 5
795
+ 0
796
+ -5
797
+ -10
798
+ 280
799
+ 290
800
+ 300
801
+ 310
802
+ 320
803
+ Time [sec]
804
+ Obstacle avoidanceErrors (ey[m], e[degree])
805
+ 1
806
+ 0
807
+ -1
808
+ 500
809
+ 600
810
+ 700
811
+ 800
812
+ 900
813
+ Velocities (Vx,des, Vx [m/s])
814
+ 60
815
+ 60.39 m/s (217.4 km/h)
816
+ .des
817
+ 50
818
+ 40
819
+ 30
820
+ 20
821
+ 10
822
+ 0
823
+ 500
824
+ 600
825
+ 700
826
+ 800
827
+ 900
828
+ Throttle & Brake Commands (Tt, Tb [-])
829
+ 0.6
830
+ 0.67 (67 % Throttle)
831
+ 0.5
832
+ 0.4
833
+ 0.3
834
+ 0.2
835
+ 0.1
836
+ 0
837
+ 500
838
+ 600
839
+ 700
840
+ 800
841
+ 900
842
+ Tire Temperature(tRR, tRF [C])
843
+ 80
844
+ RR
845
+ 60
846
+ 40
847
+ 20
848
+ 0
849
+ -20
850
+ 500
851
+ 600
852
+ 700
853
+ 800
854
+ 900
855
+ Time [sec]
856
+ Unseen dynamic scenario
8NAzT4oBgHgl3EQfgfyv/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,441 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf,len=440
2
+ page_content='Data-Driven Model Identification via Hyperparameter Optimization for the Autonomous Racing System Hyunki Seong1, Chanyoung Chung2∗, and David Hyunchul Shim1 Abstract— In this letter, we propose a model identifica- tion method via hyperparameter optimization (MIHO).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
3
+ page_content=' Our method is able to identify the parameters of the paramet- ric models in a data-driven manner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
4
+ page_content=' We utilize MIHO for the dynamics parameters of the AV-21, the full-scaled au- tonomous race vehicle, and integrate them into our model- based planning and control systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
5
+ page_content=' In experiments, the models with the optimized parameters demonstrate the generalization ability of the vehicle dynamics model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
6
+ page_content=' We further conduct extensive field tests to validate our model- based system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
7
+ page_content=' The tests show that our race systems lever- age the learned model dynamics well and successfully perform obstacle avoidance and high-speed driving over 200km/h at the Indianapolis Motor Speedway and Las Vegas Motor Speedway.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
8
+ page_content=' The source code for MIHO and videos of the tests are available at https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
9
+ page_content='com/hynkis/MIHO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
10
+ page_content=' Index Terms— Model identification, hyperparameter opti- mization, autonomous vehicle I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
11
+ page_content=' INTRODUCTION U nderstanding the system model is essential for robotic applications, especially high-speed safety-critical au- tonomous systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
12
+ page_content=' Unlike low-speed driving, various dynam- ics elements such as chassis, tires, or engines become cru- cial to implement high-speed autonomy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
13
+ page_content=' Model-based optimal control [1], [2] is well-suited for handling those factors and is widely used to design dynamics system control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
14
+ page_content=' By leveraging physics-based parametric dynamics models, It optimizes driv- ing maneuvers with respect to a designed objective function and enables safe and reliable control system design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
15
+ page_content=' Despite the success of the model-based approach in robotics, the model-based algorithm has two fundamental challenges: model fidelity and tractability.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
16
+ page_content=' The performance of model- based approaches relies heavily on the accuracy of the model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
17
+ page_content=' However, identifying accurate models is often laborious or in- tractable because of their large search space and non-linearity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
18
+ page_content=' This work was supported by Institute of Information communica- tions Technology Planning Evaluation (IITP) grant funded by the Korea government(MSIT) (2021-0-00029, Development of Indoor Autonomous Drone for Performing Multiple Missions Based on Artificial Intelligence) ∗Corresponding author 1 The authors are with the School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
19
+ page_content=' (email: hynkis@kaist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
20
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
21
+ page_content='kr;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
22
+ page_content='geninfty@kaist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
23
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
24
+ page_content='kr) 2 Chanyoung Chung is with the JPL Science Division, NASA, Califor- nia, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
25
+ page_content=' (email: chanyoung.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
26
+ page_content='chung@jpl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
27
+ page_content='nasa.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
28
+ page_content='gov) Besides model accuracy, models also need to be computa- tionally feasible considering the real-time control applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
29
+ page_content=' High-fidelity but highly complex models are difficult to inte- grate into real-time safety-critical driving systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
30
+ page_content=' To tackle those challenges, conventional approaches, includ- ing the Prediction Error Method, are used to identify model parameters [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
31
+ page_content=' However, those methods often require the model structure to be linear or in a specific mathematical form, which might not be feasible for the design of the real-time autonomous driving system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
32
+ page_content=' On the other hand, in several recent works, data-driven approaches using neural networks, Gaussian processes, or Bayesian methods have been actively employed for nonlinear system dynamics modeling and have shown promising results [4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
33
+ page_content=' In [5], they proposed a simple neural network to replace a single-track vehicle model and used it to generate feedforward control signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
34
+ page_content=' Similarly, in [6], they designed Deep Neural Networks (DNN) as a model approximator to identify the vehicle dynamics model in an end-to-end learning fashion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
35
+ page_content=' However, while DNN is an efficient way to approximate nonlinear systems, it is difficult to integrate with non-learning model-based methods, which are reliable in real-world applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
36
+ page_content=' Furthermore, it is challenging to ensure the validity of the DNN model in unseen driving scenarios without large-scale field tests.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
37
+ page_content=' In this letter, we propose a data-driven model identifica- tion method via hyperparameter optimization (MIHO) for a high-speed autonomous driving system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
38
+ page_content=' Our key idea is to leverage a data-driven parameter optimization approach from machine learning to identify physics-based parametric models without any structural model requirement.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
39
+ page_content=' To this end, we adopt a novel hyperparameter optimization (HPO) method that has an efficient exploration and exploitation strategy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
40
+ page_content=' Using the proposed method, we estimate the parameters of the integrable parametric dynamics models for a full-scaled autonomous racecar system, Dallara AV-21 (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
41
+ page_content=' 1), at the Indy Autonomous Challenge (IAC) [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
42
+ page_content=' We validate our proposed approach by integrating identified models into the high-speed autonomous system and conducting extensive field experiments, including over 200km/h autonomous driving and obstacle avoidance scenarios in the Indianapolis Motor Speedway (IMS) and Las Vegas Motor Speedway (LVMS).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
43
+ page_content=' In summary, our technical contributions are as follows: We propose a data-driven model identification method via hyperparameter optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
44
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
45
+ page_content='01470v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
46
+ page_content='RO] 4 Jan 2023 We design model-based planning and control systems incorporating the learned vehicle dynamics models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
47
+ page_content=' We integrate the systems with learned model parameters into the full-scaled autonomous race vehicle and exten- sively validate them during the IAC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
48
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
49
+ page_content=' MODEL IDENTIFICATION VIA HYPERPARAMETER OPTIMIZATION The more accurately the system dynamics are described, the greater the nonlinearity and number of parameters required for the dynamics model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
50
+ page_content=' Therefore, an efficient parameter estimation approach is necessary to find the parameter con- figuration of such a complex model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
51
+ page_content=' In this letter, we propose a model identification method via hyperparameter optimization (MIHO) to learn the optimal model parameter configuration by a data-driven approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
52
+ page_content=' Hyperparameter optimization (HPO) is the problem of selecting an optimal hyperparameter configura- tion required for neural network training in the machine learn- ing field [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
53
+ page_content=' A hyperparameter is a parameter that controls the training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
54
+ page_content=' HPO optimizes the hyperparameter con- figuration by evaluating the performance of the configuration during the model training process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
55
+ page_content=' Since one course of neural network training requires a substantial time, HPO focuses on the balanced exploration and exploitation strategy for the efficient optimal hyperparameter selection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
56
+ page_content=' [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
57
+ page_content=' Motivated by the balanced strategy, we design MIHO by adopting the HPO to the model identification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
58
+ page_content=' First, we regard a model parameter configuration p as a set of hyperparameters of a nonlinear dynamics model f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
59
+ page_content=' Then, we identify the parameter configuration by evaluating the following objective function inspired by the standard supervised learning problem: L = 1 |D| � (x,y)∈D ∥y − f(x;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
60
+ page_content=' p)∥2, (1) where x, y denote the sampled input and output data of the model f from a given dataset D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
61
+ page_content=' By minimizing this learning objective, we find an optimized model parameter configuration p∗ that has the minimum model error with the observed model output y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
62
+ page_content=' The model f has no limitation on its formula or form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
63
+ page_content=' Thus, our method is able to be used for arbitrary parametric models, such as a combination of polynomial or mathematical terms, as well as analytic physics-based models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
64
+ page_content=' We implement MIHO incorporating a bandit-based HPO algorithm, Hyperband [9], as summarized in Algorithm 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
65
+ page_content=' It is Algorithm 1 MIHO Algorithm based on Hyperband Input: R, η, D 1: smax ← ⌊logη(R)⌋, B = (smax + 1)R 2: for s ∈ {smax, smax − 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
66
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
67
+ page_content=', 0} do 3: n = ⌈ B R ηs (s+1)⌉, r = Rη−s 4: P = get model param config(n) 5: for j ∈ {0, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
68
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
69
+ page_content=', s} do 6: nj = ⌊nη−j⌋, rj = rηj 7: L = {eval with mutation(p, rj, D) : p ∈ P} 8: P = select top k config(P, L, ⌊nj/η⌋) Output: Optimized parameters p∗ with the smallest loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
70
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
71
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
72
+ page_content=' Overview of our autonomous driving system in the AV-21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
73
+ page_content=' Our learned model parameters are embedded in the planning and control modules that are covered in this letter (highlighted in blue).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
74
+ page_content=' Several input variables are omitted for clarity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
75
+ page_content=' a variation of a random search algorithm with explore-exploit theory to find the optimal hyperparameter configuration based on an evaluation loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
76
+ page_content=' The algorithm needs two arguments: R, the maximum amount of resource (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
77
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
78
+ page_content=', the number of evaluation iterations) that can be allocated to a single config- uration, and η, a value that determines the proportion of the discarded configurations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
79
+ page_content=' The two arguments derive smax + 1 combinations (called ”brackets” in [9]) of the values n and r, which enables various ratios of exploration and exploitation for finding the optimal parameter configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
80
+ page_content=' Hyperband compares the evaluation loss of each sampled configuration and allocates more resources to the configurations with lower evaluation losses, excluding the configurations with higher losses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
81
+ page_content=' It repeats the sampling and exclusion processes until the last configuration remains to obtain the optimal set of hyperparameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
82
+ page_content=' To adjust the HPO algorithm to the model parameter optimization, we add the Gaussian mutation [10] during the evaluation to explore the new neighbor parameters that might have less model loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
83
+ page_content=' Unlike the original HPO, which only allocates more resources ri, our approach, MIHO, adds noise perturbation at the selected parameter configuration p after the resource allocation as: pmut = p + σ ⊙ ϵ, ϵ ∼ N(0, I), (2) where σ is the standard deviation of the exploration noise that is annealed over the course of the evaluation [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
84
+ page_content=' We define the following three functions for the HPO process in MIHO: get model param config(n): a function that returns a set of n i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
85
+ page_content='i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
86
+ page_content='d model parameter configurations from the normal distribution pre-defined over the configuration space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
87
+ page_content=' eval with mutation(p, rj, D): a function that receives a parameter configuration p, an allocated resource rj, and a dataset D as arguments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
88
+ page_content=' Using the dataset, this function evaluates an initial configuration and mutates it for the allocated rj iterations by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
89
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
90
+ page_content=' If a mutated configuration pmut has a less loss than the initial one, the function replaces p with pmut.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
91
+ page_content=' It returns the final loss after spending the allocated resources.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
92
+ page_content=' select top k config(P, L, k): a function that receives a set of hyperparameter configurations P with their corre- sponding evaluation losses L and returns the top k high- performing configurations (here, k = ⌊nj/η⌋).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
93
+ page_content=' Planning Control Full-scale Racecar Reference Lateral Trajectory Control K Tt,Tb Velocity Vx,des Longitudinal Throttle / Brake Planner Control (axr) ControlIII.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
94
+ page_content=' VEHICLE DYNAMICS MODEL A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
95
+ page_content=' Tire Dynamics Model Tire dynamics is one of the factors that significantly affect the nonlinearity of driving dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
96
+ page_content=' Especially the lateral tire model is crucial to design stable path-tracking control in high-speed driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
97
+ page_content=' The tire model [12] can be described as a function of the slip angle αi, slip ratio ρx,i, inclination angle θi, tire load Fz,i, and current velocity vx,i, which has a lateral tire force F ∗ y,i of each tire (i ∈ {LF, LR, RF, RR}) as, F ∗ y,i = ftire(αi, ρx,i, θi, Fz,i, vx,i).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
98
+ page_content=' (3) Although the model has high fidelity with various dynamics perspectives, it has low suitability for designing the controller of high-speed driving, which requires real-time performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
99
+ page_content=' Therefore, we first define a tire model with dimension- reductionthat can be applied to model-based control design within an acceptable complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
100
+ page_content=' We then optimize the model’s parameter configuration to represent the overall tire charac- teristic of a given dataset using our MIHO algorithm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
101
+ page_content=' We follow the Pacejka tire model [13] to define the tire dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
102
+ page_content=' While the prior work neglect offsets, we formulate a tire model Fy,i = ft,i(αi;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
103
+ page_content=' pt,i) containing offset parameters Sx,i, Sy,i to describe the asymmetric tire characteristic determined to maximize cornering performance on an oval track: Fy,i = Di sin(Ci arctan(Bi(αi + Sx,i))) + Sy,i, (4) where the tire model parameter configuration pt,i = {Bi, Ci, Di, Sx,i, Sy,i} is identified by minimizing the follow- ing tire model objective with a given dataset Dt,i as Lt,i = 1 |Dt,i| � (αi,F ∗ y,i)∈Dt,i ∥F ∗ y,i − ft,i(α;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
104
+ page_content=' pt,i)∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
105
+ page_content=' (5) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
106
+ page_content=' Engine Torque Model The powertrain system of our racecar consists of an internal combustion engine, transmission, and wheels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
107
+ page_content=' The racecar is a rear-wheel-drive vehicle whose traction force Fx,r is generated by engine-based driveline dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
108
+ page_content=' We model the equation of the longitudinal dynamics [14] as follows: max = Fx,r − Cdv2 x − Cr, (6) where m is the vehicle mass, vx is the longitudinal velocity, Cd denotes the drag coefficient, and Cr denotes the rolling resistance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
109
+ page_content=' Following a prior work [15], the traction force can be expressed as: Fx,r = max,r = Teηtigi0 Rw , (7) where ax,r denotes the traction acceleration, ηt denotes the efficiency of the transmission, ig, i0 denote the transmission ratio of the current gear and final reducer, and Rw denotes the wheel radius.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
110
+ page_content=' Te = fe(we, τt) is the engine torque map in terms of the engine speed we and throttle command τt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
111
+ page_content=' Due to the high complexity of the engine characteristic, the torque map is expressed as an experimental lookup table based on engine torque curves of specific throttle opening commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
112
+ page_content=' Although the engine torque model can be obtained by the engine dynamometer testing [16], it could suffer from modeling error because the dynamometer testing is done in a static environment without longitudinal experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
113
+ page_content=' Therefore, we build the engine torque map that integrates the dyno data with learned torque curves based on our data-driven model identification approach.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
114
+ page_content=' We express an engine torque curve Te,τt = fτt(we;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
115
+ page_content=' pτt) of a throttle command τt as a 3rd order polynomial function of the engine speed we as: Te,τt = pτt,0 + pτt,1we + pτt,2w2 e + pτt,3w3 e, (8) where pτt = {pτt,0, pτt,1, pτt,2, pτt,3} is the torque model parameter configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
116
+ page_content=' Using the resultant traction acceler- ations ax,r while driving, the engine torque output T ∗ e,τt is obtained by Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
117
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
118
+ page_content=' Then, pτt is learned by minimizing the following engine model objective with a given dataset Dτt: Lτt = 1 |Dτt| � (we,T ∗ e,τt)∈Dτt ∥T ∗ e,τt − fτt(we;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
119
+ page_content=' pτt)∥2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
120
+ page_content=' (9) To stabilize the learning process, we normalize the engine speed in the range [0,1] with the maximum engine speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
121
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
122
+ page_content=' MODEL-BASED PLANNING AND CONTROL In this session, we introduce a model-based planning and control algorithm that uses the learned model parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
123
+ page_content=' We exploit the learned tire parameters to design a dynamics-aware velocity planning and model-based lateral controller (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
124
+ page_content=' 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
125
+ page_content=' We also integrate the engine dyno data with the learned engine torque model to construct an engine lookup table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
126
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
127
+ page_content=' Dynamics-aware Velocity Planning During high-speed racing, cornering with high velocity generates lateral acceleration at the roll axis, which causes significant load transfer on each wheel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
128
+ page_content=' Since the tire load governs the maximum performance of the tire, a model-based velocity strategy accounting for the real-time wheel load is necessary to maximize the tire performance without losing tire grip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
129
+ page_content=' We introduce a dynamics-aware velocity planning algorithm that derives the velocity plans with maximum tire performance based on the learned tire dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
130
+ page_content=' We first compute the real-time vertical tire load Fz,i affected by the lateral load transfer ∆Wf [17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
131
+ page_content=' The diagram of the load transfer at the roll axis is illustrated in the left of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
132
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
133
+ page_content=' The load transfer is computed by the roll couple Croll = ms ˙vyha, where ms is the sprung mass, ˙vy is the lateral acceleration, and ha is the roll height.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
134
+ page_content=' As the learned tire model describes the characteristic for the nominal tire load ¯Fz,i, we compute the maximum lateral force of each tire F max y,i in terms of the tire load ratio with peak value of the tire model as: F max y,i = µFz,i ¯Fz,i F peak y,i , (10) where µ is a tire performance factor to control the confidence and maximum performance of the tire model, Fz,i ¯ Fz,i is the tire load ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
135
+ page_content=' The maximum lateral acceleration is determined by the following lateral motion dynamics [13]: ay,max = 1 m(F max y,r + F max y,f cos(δ) − mvx ˙ψ), (11) Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
136
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
137
+ page_content=' Left: Lateral load transfer generation by the lateral acceleration at the roll axis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
138
+ page_content=' Right: Overall diagram of the vehicle model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
139
+ page_content=' where δ is the steering angle and ˙ψ is the yaw rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
140
+ page_content=' Then a desired maximum velocity vx,des is planned according to the curvature κ of a reference path from a planning module [18]: vx,des = � ay,max/κ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
141
+ page_content=' (12) B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
142
+ page_content=' Throttle and Brake Control The planned desired velocity is fed to a feedback control module [19] to compute the traction force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
143
+ page_content=' However, as shown in Fig 1, another low-level controller to transform the traction force to the throttle command is required to control the racecar with nonlinear driveline dynamics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
144
+ page_content=' We design the throttle and brake control system following [20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
145
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
146
+ page_content=' 3 shows the details of the low-level control system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
147
+ page_content=' We exploit the integrated engine torque map to convert the desired engine torque Te,des to the desired throttle command τt,des.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
148
+ page_content=' As the torque map is built as a lookup table, we search the desired throttle with respect to a given engine speed and desired torque.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
149
+ page_content=' The inverse brake model is a module to convert the braking force to the brake pedal command, which is activated if Fx,r is negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
150
+ page_content=' The brake model is also attained by our proposed MIHO, but details are omitted to conserve space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
151
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
152
+ page_content=' Model-based Path Tracking Control We follow the lateral vehicle dynamics of [14] illustrated in the right of Fig 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
153
+ page_content=' The lateral model is derived from the objective of tracking a reference trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
154
+ page_content=' We implement path tracking control by stabilizing a velocity-dependent chassis model in terms of the error state variables ξ and control u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
155
+ page_content=' ξ = [ey, ˙ey, eψ, ˙eψ]T , u = δ, (13) where ey, eψ denote the position and orientation error with respect to a given path trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
156
+ page_content=' The lateral model contains tire-related model parameters such as the cornering stiffnesses of the front and rear tires Cα,f, Cα,r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
157
+ page_content=' Since the lateral dynam- ics is obtained from the bicycle model, the front and rear tire models are optimized according to Eq 4, but the sum of the left and right tire forces is used as the model output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
158
+ page_content=' The cornering stiffnesses then can be approximated as follows [14]: Cαf ≈ Bf × Cf × Df, Cαr ≈ Br × Cr × Dr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
159
+ page_content=' (14) Based on the lateral vehicle model, we design the Linear Quadratic Regulator with the following optimization problem: min u � ∞ 0 (ξT Qξ + uT Ru)dt, (15) where Q, R denote gain matrices for LQR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
160
+ page_content=' For the real-time control performance, we compute the state feedback optimal LQR gains over piecewise velocity intervals offline [21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
161
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
162
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
163
+ page_content=' Throttle and brake control system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
164
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
165
+ page_content=' EVALUATION A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
166
+ page_content=' Analysis for Model Identification 1) Tire Dynamics Model: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
167
+ page_content=' 4 illustrates the learned tire models with datasets provided as the tire property files (*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
168
+ page_content='tir).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
169
+ page_content=' The files contain tire force and moment characteristics with high fidelity [22].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
170
+ page_content=' For model identification, we sampled 3000 data for each tire using the property files in various tire state conditions such as tire load, camber angle, slip angle, and slip ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
171
+ page_content=' As illustrated in the left and middle of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
172
+ page_content=' 4, the learned models show good fitness to the tire characteristic distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
173
+ page_content=' We further investigated the tire model with the driving data collected during track racing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
174
+ page_content=' The right of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
175
+ page_content=' 4 illustrates the front tire model of the single-track bicycle dynamics learned by the provided tire property data comparing it with the driving data that is not used for learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
176
+ page_content=' The learned model shows the generalization ability for the overall data distribution represented by blue dots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
177
+ page_content=' However, since we obtained the model by offline optimization and focused on the representativeness of data, the model needs more accuracy in some edge cases near the peaks of the lateral force.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
178
+ page_content=' To handle those cases, an online parameter optimization can be used by parallelizing the HPO process in MIHO, and we will implement it in future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
179
+ page_content=' 2) Engine Torque Model: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
180
+ page_content=' 5 illustrates the learned engine torque curves and integrated engine map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
181
+ page_content=' The data for the engine map was provided by engine dynamometer testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
182
+ page_content=' For better reliability, we incorporated our data-driven engine torque models with the dyno data, especially for the throttle pedals 5, 15, and 20%, where the dynamometer had shown in- sufficient accuracy of torque measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
183
+ page_content=' The result shows that the learned torque curves are able to represent the change of the maximum torque according to the throttle commands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
184
+ page_content=' Moreover, the learned models also fit the torque curves that change with nonlinearity in terms of engine speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
185
+ page_content=' We inte- grated the learned torque models with the provided dyno data and interpolated the torque data to construct an engine lookup table.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
186
+ page_content=' The blue area on the right of Fig 5 shows the interpolated region by the learned torque curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
187
+ page_content=' Our vehicle utilized the learned region in racing scenarios such as pit-in/out, obstacle avoidance, and driving within 100km/h (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
188
+ page_content=' 7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
189
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
190
+ page_content=' Control Performance in Indy Autonomous Challenge Our model-based planning and control algorithms were deployed in the full-scale racecar platform.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
191
+ page_content=' Moreover, we extensively validated our learned model parameter-based al- gorithms in the real-world race tracks, IMS and LVMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
192
+ page_content=' The algorithms successfully performed various race scenarios, such eu msi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
193
+ page_content=' H yf Reference V, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
194
+ page_content=' xr lf Z +AW, Tf AW X (a) (b)Te,des Throttle Inverse Wheel Transmission command Engine Map (tt) Gear number Engine speed (G) (we) Brake Inverse command Brake Model (tb)Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
195
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
196
+ page_content=' Learned tire models with the provided tire data (Left: left-front and right-front, Middle: left-rear and right-rear).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
197
+ page_content=' Right: Learned front tire dynamics of the single-track bicycle model and the distribution of the collected data on the track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
198
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
199
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
200
+ page_content=' Learned engine torque curves and the integrated engine map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
201
+ page_content=' as obstacle avoidance and high-speed autonomous driving over 200km/h on the race tracks (Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
202
+ page_content=' 6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
203
+ page_content=' 1) Obstacle Avoidance in IMS: Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
204
+ page_content=' 7 shows the quantitative results of the obstacle avoidance mission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
205
+ page_content=' In the mission, obstacles are located before the first-corner section, where the velocity plan is critical for avoiding collision while keeping close to the racing line.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
206
+ page_content=' For the sake of safety, we set the tire performance factor µ as 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
207
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
208
+ page_content=' Our dynamics-aware velocity planner was able to allow the racecar to maximize the velocity while regulating the lateral acceleration within the learned maximum tire performance during the rapid avoidance maneuvers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
209
+ page_content=' The obstacle avoidance was initiated in high-speed driving at 100km/h, and steering commands were computed up to -10 degrees to follow a generated collision-free reference trajectory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
210
+ page_content=' The sharp steering command could cause significant lateral acceleration higher than 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
211
+ page_content='0m/s2 in our vehicle, which might cause critical tire grip loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
212
+ page_content=' However, our tire model- based velocity planner inferred the allowable maximum lateral acceleration based on the real-time tire load.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
213
+ page_content=' As a result, it was able to plan safe desired velocities within lateral acceleration allowance capable of preserving the tire grip performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
214
+ page_content=' 2) High-Speed Autonomous Driving in LVMS: Furthermore, we extensively validated the control performance based on the optimized model parameters at the Tri-Oval Superspeedway, LVMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
215
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
216
+ page_content=' 8 illustrates the quantitative results of the lateral and longitudinal control while our vehicle raced more than nine laps (23km).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
217
+ page_content=' Our path-tracking algorithm shows robust control performance leveraging the learned tire parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
218
+ page_content=' The largest position and orientation errors were 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
219
+ page_content='6m and −2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
220
+ page_content='2 degrees, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
221
+ page_content=' In addition, the AV-21 succeeded high-speed autonomous driving at above 144km/h (with a top speed of 217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
222
+ page_content='4km/h), where the dynamic scenario had yet to be visited and adjusted before this track experiment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
223
+ page_content=' These results demonstrate that MIHO can optimize and provide appropriate prior dynamics models offline for the design of model-based control before deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
224
+ page_content=' However, the charac- teristic of vehicle dynamics changed and affected the control performance over high-speed driving.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
225
+ page_content=' As shown in the bottom of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
226
+ page_content=' 8, the tire temperatures were increased after reaching the unseen velocity range.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
227
+ page_content=' In addition, after visiting the range of over 144km/h, our low-level controller computed throttle commands of over 50% with the engine range consisting only of the provided dyno data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
228
+ page_content=' Those factors might have an effect on the velocity error in the velocity range [42, 52]m/s of Fig 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
229
+ page_content=' Nevertheless, the control system can be improved with an extended data-driven engine map for throttle control at high- speed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
230
+ page_content=' We also point out that our method has the potential to be processed online by parallelizing the HPO process [9], which enables the method to identify the model in real-time during deployment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
231
+ page_content=' The online MIHO could be incorporated with the offline model optimization introduced in this work, and we leave it as an important future work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
232
+ page_content=' VI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
233
+ page_content=' CONCLUSION We present MIHO, a data-driven model identification method via hyperparameter optimization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
234
+ page_content=' Our approach showed the ability to optimize the parameters of the dy- namics models, such as the tire models and engine torque curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
235
+ page_content=' Furthermore, the model-based planning and control system with the learned model parameters demonstrated stable performance in the real-world track environments, IMS and LVMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
236
+ page_content=' In future works, we will implement the online HPO method and integrate it with the offline method of this work to iteratively infer the changing parameters of the vehicle dynamics while on track.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
237
+ page_content=' REFERENCES [1] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
238
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
239
+ page_content=' Lewis, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
240
+ page_content=' Vrabie, and V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
241
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
242
+ page_content=' Syrmos, Optimal control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
243
+ page_content=' John Wiley & Sons, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
244
+ page_content=' [2] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
245
+ page_content=' Jung, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
246
+ page_content=' Lee, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
247
+ page_content=' Seong, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
248
+ page_content=' Finazzi, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
249
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
250
+ page_content=' Shim, “Game-theoretic model predictive control with data-driven identification of vehicle model for head-to-head autonomous racing,” arXiv preprint arXiv:2106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
251
+ page_content='04094, 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
252
+ page_content=' Lateral Tire Model (LF, LR) Lateral Tire Model (RF, RR) Lateral Tire Model (Front) 6 Data (LF) Data (RF) Driving data Data (LR) Data (RR) Learned (Front) Learned (LF) Learned (RF) 4 Learned (LR) Learned (RR) Lateral Tire Force [kN] Lateral Tire Force [kN] [kN] 2 0 0 2 2 4 4 6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
253
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
254
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
255
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
256
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
257
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
258
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
259
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
260
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
261
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
262
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
263
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
264
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
265
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
266
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
267
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
268
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
269
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
270
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
271
+ page_content='1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
272
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
273
+ page_content='3 Side Slip Angle [rad] Side Slip Angle [rad] Side Slip Angle [rad]Engine torque [N /m] 80 0 300 60 200 100 7000 100 6000 ¥3 5000 400 00 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
274
+ page_content='0 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
275
+ page_content='5 Integrated 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
276
+ page_content='0 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
277
+ page_content='5 3500 3000 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
278
+ page_content='0 Engine Torque Map 2500 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
279
+ page_content='5 Engine speed [RPM] 2000 1500 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
280
+ page_content='0 1000 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
281
+ page_content='5 Data (interpolated): by learned models Learned Engine Torque Model by dyno data Data: Tt,5 Tt,15 Tt,20 Learned model J Tt,15Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
282
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
283
+ page_content=' Left: Team KAIST’s successful obstacle avoidance at IMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
284
+ page_content=' The bottom illustrates the point cloud data and traveled trajectory during avoidance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
285
+ page_content=' Right: Our AV-21 drove more than nine laps (23km) at the Tri-Oval Superspeedway of LVMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
286
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
287
+ page_content=' 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
288
+ page_content=' Results of the velocity control, lateral accelerations, and steering angles during the obstacle avoidance mission at the IMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
289
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
290
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
291
+ page_content=' Tangirala, Principles of system identification: theory and practice.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
292
+ page_content=' Crc Press, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
293
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
294
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
295
+ page_content=' Brunton and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
296
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
297
+ page_content=' Kutz, Data-driven science and engineering: Ma- chine learning, dynamical systems, and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
298
+ page_content=' Cambridge University Press, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
299
+ page_content=' [5] N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
300
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
301
+ page_content=' Spielberg, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
302
+ page_content=' Brown, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
303
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
304
+ page_content=' Kapania, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
305
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
306
+ page_content=' Kegelman, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
307
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
308
+ page_content=' Gerdes, “Neural network vehicle models for high-performance automated driving,” Science robotics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
309
+ page_content=' 4, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
310
+ page_content=' 28, p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
311
+ page_content=' eaaw1975, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
312
+ page_content=' [6] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
313
+ page_content=' Hermansdorfer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
314
+ page_content=' Trauth, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
315
+ page_content=' Betz, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
316
+ page_content=' Lienkamp, “End-to-end neural network for vehicle dynamics modeling,” in 2020 6th IEEE Congress on Information Science and Technology (CiSt).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
317
+ page_content=' IEEE, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
318
+ page_content=' 407–412.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
319
+ page_content=' [7] Energy Systems Network, “Indy autonomous challenge,” 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
320
+ page_content=' [Online].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
321
+ page_content=' Available: www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
322
+ page_content='indyautonomouschallenge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
323
+ page_content='com [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
324
+ page_content=' Feurer and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
325
+ page_content=' Hutter, “Hyperparameter optimization,” in Automated machine learning.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
326
+ page_content=' Springer, Cham, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
327
+ page_content=' 3–33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
328
+ page_content=' [9] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
329
+ page_content=' Li, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
330
+ page_content=' Jamieson, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
331
+ page_content=' DeSalvo, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
332
+ page_content=' Rostamizadeh, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
333
+ page_content=' Talwalkar, “Hyperband: A novel bandit-based approach to hyperparameter opti- mization,” The Journal of Machine Learning Research, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
334
+ page_content=' 18, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
335
+ page_content=' 1, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
336
+ page_content=' 6765–6816, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
337
+ page_content=' [10] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
338
+ page_content=' Mirjalili, “Genetic algorithm,” in Evolutionary algorithms and neural networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
339
+ page_content=' Springer, 2019, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
340
+ page_content=' 43–55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
341
+ page_content=' [11] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
342
+ page_content=' Kirkpatrick, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
343
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
344
+ page_content=' Gelatt Jr, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
345
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
346
+ page_content=' Vecchi, “Optimization by simulated annealing,” science, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
347
+ page_content=' 220, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
348
+ page_content=' 4598, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
349
+ page_content=' 671–680, 1983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
350
+ page_content=' [12] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
351
+ page_content=' Bakker, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
352
+ page_content=' Nyborg, and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
353
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
354
+ page_content=' Pacejka, “Tyre modelling for use in vehicle dynamics studies,” SAE Transactions, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
355
+ page_content=' 190–204, 1987.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
356
+ page_content=' [13] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
357
+ page_content=' Kabzan, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
358
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
359
+ page_content=' Valls, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
360
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
361
+ page_content=' Reijgwart, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
362
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
363
+ page_content=' Hendrikx, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
364
+ page_content=' Ehmke, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
365
+ page_content=' Prajapat, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
366
+ page_content=' B¨uhler, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
367
+ page_content=' Gosala, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
368
+ page_content=' Gupta, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
369
+ page_content=' Sivanesan et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
370
+ page_content=', “Amz driverless: The full autonomous racing system,” Journal of Field Robotics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
371
+ page_content=' 37, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
372
+ page_content=' 7, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
373
+ page_content=' 1267–1294, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
374
+ page_content=' [14] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
375
+ page_content=' Rajamani, Vehicle dynamics and control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
376
+ page_content=' Springer Science & Business Media, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
377
+ page_content=' [15] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
378
+ page_content=' Li, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
379
+ page_content=' Zhu, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
380
+ page_content=' Wang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
381
+ page_content=' Yang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
382
+ page_content=' Yang, and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
383
+ page_content=' Song, “Identification Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
384
+ page_content=' 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
385
+ page_content=' Results of the errors, velocity control, throttle/brake controls, and temperature of the right-rear and right-front tires in LVMS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
386
+ page_content=' of a driver’s starting intention based on an artificial neural network for vehicles equipped with an automated manual transmission,” Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automo- bile Engineering, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
387
+ page_content=' 230, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
388
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
389
+ page_content=' 1417–1429, 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
390
+ page_content=' [16] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
391
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
392
+ page_content=' Killedar, Dynamometer: theory and application to engine testing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
393
+ page_content=' Xlibris Corporation, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
394
+ page_content=' [17] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
395
+ page_content=' Seward, Race car design.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
396
+ page_content=' Bloomsbury Publishing, 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
397
+ page_content=' [18] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
398
+ page_content=' Lee, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
399
+ page_content=' Jung, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
400
+ page_content=' Finazzi, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
401
+ page_content=' Seong, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
402
+ page_content=' H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
403
+ page_content=' Shim, “Resilient navigation and path planning system for high-speed autonomous race car,” arXiv preprint arXiv:2207.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
404
+ page_content='12232, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
405
+ page_content=' [19] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
406
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
407
+ page_content=' Doyle, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
408
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
409
+ page_content=' Francis, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
410
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
411
+ page_content=' Tannenbaum, Feedback control theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
412
+ page_content=' Courier Corporation, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
413
+ page_content=' [20] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
414
+ page_content=' Hedrick et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
415
+ page_content=', “Brake system modeling, control and integrated brake/throttle switching phase i,” 1997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
416
+ page_content=' [21] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
417
+ page_content=' Spisak, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
418
+ page_content=' Saba, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
419
+ page_content=' Suvarna, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
420
+ page_content=' Mao, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
421
+ page_content=' T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
422
+ page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
423
+ page_content=' Chang, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
424
+ page_content=' Scherer, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
425
+ page_content=' Ramanan, “Robust modeling and controls for racing on the edge,” arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
426
+ page_content='10841, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
427
+ page_content=' [22] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
428
+ page_content=' Schmeitz, “Mf-tyre/mf-swift,” Delft: TNO, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
429
+ page_content=' Counter-clockwise forward 200 - Top speed reached (217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
430
+ page_content='4 km/h) 400 [m] 009- Obstacles 800 - Driving direction Traveled trajectory 0 500 X [m]Velocities (Vx,des, Vx [m/s]) 3525050 x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
431
+ page_content='des 280 290 300 310 320 Lateral Accelerations (ay,max, ay,abs [m/s2]) 10 8 max 6 ay,abs 4 2 0 280 290 300 310 320 Steering Angle (s [degree]) 5 0 5 10 280 290 300 310 320 Time [sec] Obstacle avoidanceErrors (ey[m], e[degree]) 1 0 1 500 600 700 800 900 Velocities (Vx,des, Vx [m/s]) 60 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
432
+ page_content='39 m/s (217.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
433
+ page_content='4 km/h) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
434
+ page_content='des 50 40 30 20 10 0 500 600 700 800 900 Throttle & Brake Commands (Tt, Tb [-]) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
435
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
436
+ page_content='67 (67 % Throttle) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
437
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
438
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
439
+ page_content='3 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
440
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
441
+ page_content='1 0 500 600 700 800 900 Tire Temperature(tRR, tRF [C]) 80 RR 60 40 20 0 20 500 600 700 800 900 Time [sec] Unseen dynamic scenario' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8NAzT4oBgHgl3EQfgfyv/content/2301.01470v1.pdf'}
9dFRT4oBgHgl3EQfqjdh/content/tmp_files/2301.13617v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
9dFRT4oBgHgl3EQfqjdh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
A9AzT4oBgHgl3EQfhv18/content/tmp_files/2301.01489v1.pdf.txt ADDED
@@ -0,0 +1,2530 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Measuring the maximally allowed polarization states of the isotropic stochastic
2
+ gravitational wave background with the ground-based detectors
3
+ Hidetoshi Omiya∗ and Naoki Seto†
4
+ Department of Physics, Kyoto University, Kyoto 606-8502, Japan
5
+ (Dated: January 5, 2023)
6
+ We discuss the polarizational study of isotropic gravitational wave backgrounds with the second
7
+ generation detector network, paying special attention to the impacts of adding LIGO-India. The
8
+ backgrounds can be characterized by at most five spectral components (three parity-even ones
9
+ and two parity-odd ones).
10
+ They can be algebraically decomposed through the difference of the
11
+ corresponding overlap reduction functions defined for the individual spectra. We newly identify two
12
+ interesting relations between the overlap reduction functions, and these relations generally hamper
13
+ the algebraic decomposition in the low frequency regime f ≲ 30Hz. We also find that LIGO-India
14
+ can significantly improve the network sensitives to the odd spectral components.
15
+ I.
16
+ INTRODUCTION
17
+ A stochastic gravitational wave background is one
18
+ of the primary targets of gravitational wave detectors.
19
+ There exist a large number of theoretical predictions for
20
+ generation processes such as an inflationary expansion
21
+ [1–4], a phase transition [5, 6], and distant unresolved bi-
22
+ naries [7, 8] (for other sources, see [9, 10]). Many of these
23
+ backgrounds were generated in strong gravity regimes or
24
+ high energy states and could be a good probe for physics
25
+ in an extreme environment. Note also that these back-
26
+ grounds are expected to be highly isotropic.
27
+ In General Relativity (GR), we only have the two ten-
28
+ sor degrees of freedom, the + and × modes. In contrast,
29
+ some alternative theories of gravity predict additional po-
30
+ larization modes; the two vector (x and y) modes and
31
+ the two scalar (b and l) modes [11]. Therefore, through
32
+ a polarization study of background, we might detect a
33
+ signature of modification to GR [12, 13] (see [14–19] for
34
+ studies on the polarization of gravitational waves from
35
+ compact binary). Furthermore, even if GR is not mod-
36
+ ified at present, a parity violation process in the early
37
+ universe could generate an asymmetry between right- and
38
+ left-handed polarization patterns [20–27].
39
+ The cross-correlation analysis is an efficient method for
40
+ detecting a weak gravitational wave background [28–30].
41
+ By taking products of data streams of noise-independent
42
+ detector pairs, we can gradually improve the sensitivity
43
+ to a background by increasing observational time. When
44
+ the gravitational wave frequency is much longer than the
45
+ arm lengths of detectors [31], the two scalar modes are
46
+ observationally non-separable, and we can generally mea-
47
+ sure the five background spectra IT , IV , IS, WT , and WV .
48
+ The three spectra IT , IV , and IS represent the total in-
49
+ tensity of the tensor, vector, and scalar modes.
50
+ The
51
+ remaining two spectra WT and WV correspond to the
52
+ Stokes “V” parameters which probe the degrees of circu-
53
+ lar polarization of the tensor and vector modes. In this
54
55
56
+ paper, we utilize W for the “V” parameter to avoid con-
57
+ fusion with the vector modes. Since the spectra IT , IV ,
58
+ and IS transform as parity even quantities and the WT
59
+ and WV transform as parity odd quantities, we refer to
60
+ the former three as parity even spectra and the later two
61
+ as parity odd spectra.
62
+ At the correlation analysis, we can measure linear com-
63
+ binations of the five spectra with the five coefficients
64
+ known as the overlap reduction functions (ORFs). The
65
+ ORFs characterize the sensitivities to the corresponding
66
+ spectra and depend on gravitational wave frequency as
67
+ well as the relative configuration of the two pairwise de-
68
+ tectors. We apply the parity even/odd classification also
69
+ to the five ORFs.
70
+ For probing the existence of the anomalous polariza-
71
+ tion spectra IV , IS, WT , and WV , we desire to clean the
72
+ contribution from the standard spectrum IT (see also [32]
73
+ for a maximum likelihood analysis). In addition, we pre-
74
+ fer to break down the four anomalous modes and measure
75
+ them separately. Our strategy in this paper is to utilize
76
+ the difference between the five ORFs and algebraically
77
+ decompose the five spectra by taking appropriate linear
78
+ combinations of the correlation products from multiple
79
+ pairs (originally proposed in [33]). We mainly study the
80
+ prospects of this algebraic scheme with the second gener-
81
+ ation detector network. We pay special attention to the
82
+ impacts of adding LIGO-India as the fifth detector.
83
+ In the middle of our study, we newly identify two de-
84
+ generate relations between the ORFs. The first one is
85
+ for the three even ORFs, and the second one is for the
86
+ two odd ORFs. These two relations generally limit the
87
+ performance of the algebraic decomposition in the low
88
+ frequency regime f ≲ 30Hz. On the other hand, LIGO-
89
+ India can largely mitigate the damage associated with
90
+ the degeneracy for the even ORFs, because of its rela-
91
+ tively remote location from the two other LIGO detec-
92
+ tors. Furthermore, LIGO-India can significantly improve
93
+ the sensitivities to the odd spectra.
94
+ This paper is organized as follows. In Sec. II, we re-
95
+ view the polarization decomposition of an isotropic back-
96
+ ground and present the analytical expressions for the as-
97
+ sociated ORFs. We also explain our two new findings
98
+ arXiv:2301.01489v1 [astro-ph.CO] 4 Jan 2023
99
+
100
+ 2
101
+ with respect to the ORFs. In Sec. III, we concretely study
102
+ the geometry of the second generation terrestrial detec-
103
+ tor network, including LIGO-India. In Sec. IV, we review
104
+ the correlation analysis, primarily focusing on the evalu-
105
+ ation of the signal-to-noise ratio. In Sec. V, we explain
106
+ the algebraic decomposition scheme for multiple spectral
107
+ components. In Secs. VI and VII, we apply this scheme
108
+ to the second generation ground-based detector network.
109
+ We discuss how the sensitivity depends on the target po-
110
+ larization spectra and the network combinations. Finally,
111
+ in Sec. VIII, we summarize our paper.
112
+ II.
113
+ BASIC QUANTITIES
114
+ Following our preceding work [31] on formal aspects,
115
+ we first review the basic ingredients for the correlated
116
+ signals of stochastic backgrounds with ground-based de-
117
+ tectors. Since our universe is highly isotropic and homo-
118
+ geneous, the monopole components of the backgrounds
119
+ are assumed to be our primary target. In addition, be-
120
+ cause the observed speed of gravitational wave vg is close
121
+ to the speed of light c, we set vg = c.
122
+ In Sec. II A, we describe the polarization states of
123
+ the isotropic backgrounds and introduce the five relevant
124
+ spectra IT , IV , IS, WT , and WV . In Sec. II B, we discuss
125
+ the ORFs which characterize the correlated response of
126
+ pairwise detectors to the backgrounds. In Sec. II C, we
127
+ give analytic expressions of the ORFs for the ground-
128
+ based detectors. In Secs. II D and II E, we discuss their
129
+ asymptotic behaviors. In Secs. II F and II G, we report
130
+ our two new findings on the ORFs.
131
+ A.
132
+ Polarization states of a stochastic gravitational
133
+ wave background
134
+ We start with the plane wave decomposition of the
135
+ metric perturbation hij generated by the gravitational
136
+ waves
137
+ hij(t, x) =
138
+
139
+ P
140
+
141
+ df
142
+
143
+ dΩ
144
+ × ˜hP (f, Ω)eP,ij(Ω)e−2πif(t−Ω·x/c) ,
145
+ (1)
146
+ where Ω is the unit vector for the propagation direction,
147
+ normalized by
148
+
149
+ dΩ = 4π. Here, eP (P = +, ×, x, y, b
150
+ and l) represent the polarization tensors given by
151
+ e+ = m ⊗ m − n ⊗ n ,
152
+ e× = m ⊗ n + n ⊗ m ,
153
+ ex = Ω ⊗ m + m ⊗ Ω ,
154
+ ey = Ω ⊗ n + n ⊗ Ω ,
155
+ eb =
156
+
157
+ 3(m ⊗ m + n ⊗ n) ,
158
+ el =
159
+
160
+ 3(Ω ⊗ Ω)
161
+ (2)
162
+ with the orthonormal vectors m and n in addition to Ω
163
+ (see [34] for geometrical interpretation of these modes).
164
+ Note that our definitions for eb and el are different from
165
+ the conventional one such as used in [13] (see also Ap-
166
+ pendix in [35]). They are written by the standard polar
167
+ coordinates (θ, φ) as
168
+ Ω =
169
+
170
+
171
+ sin θ cos φ
172
+ sin θ sin φ
173
+ cos θ
174
+
175
+ � ,
176
+ (3)
177
+ m =
178
+
179
+
180
+ cos θ cos φ
181
+ cos θ sin φ
182
+ − sin θ
183
+
184
+ � ,
185
+ (4)
186
+ n =
187
+
188
+
189
+ − sin φ
190
+ cos φ
191
+ 0
192
+
193
+ � .
194
+ (5)
195
+ In Eq. (2), the labels P = +, × correspond to the ten-
196
+ sor (T) modes, P = x, y to the vector (V ) modes, and
197
+ P = b, l to the scalar (S) modes. Note that GR predicts
198
+ only the tensor modes. However, numerous alternative
199
+ theories of gravity allow the existence of the remaining
200
+ V and S modes.
201
+ For a stochastic background, the expansion coefficients
202
+ ˜hP can be regarded as random quantities.
203
+ Their sta-
204
+ tistical properties are specified by the power spectrum
205
+ matrix ⟨˜hP (f, Ω)˜h∗
206
+ P ′(f ′, Ω)⟩ with no correlation between
207
+ T, V and S modes for statistically isotropic backgrounds
208
+ [31]. In the case of the tensor modes (P, P ′ = +, ×), the
209
+ matrix can be written in terms of the Stokes parameters
210
+ as [36]
211
+ ⟨˜hP (f, Ω)˜h∗
212
+ P ′(f ′, Ω′)⟩ =1
213
+ 2δΩΩ′δ(f − f ′)
214
+ ×
215
+
216
+ IT + QT
217
+ UT − iWT
218
+ UT + iWT
219
+ IT − QT
220
+
221
+ P P ′
222
+ .
223
+ (6)
224
+ In the standard literature of polarization, the chiral
225
+ asymmetry is usually denoted as the Stokes “V ” param-
226
+ eter. In this paper, we apply the notation V to repre-
227
+ sent the vector modes, and use W for the chiral asymme-
228
+ try. Note that the combinations QT ± iUT do not have
229
+ isotropic components, as understood from their transfor-
230
+ mation properties [31, 36]. We thus drop them hereafter.
231
+ In Eq.
232
+ (6), we use the coefficients ˜hP (f, Ω) for the
233
+ linear polarization bases (e+, e×). However, the physi-
234
+ cal meaning of the W parameter becomes transparent by
235
+ introducing the circular (right- and left-handed) polar-
236
+ ization bases given by
237
+ eT
238
+ R =
239
+ 1
240
+
241
+ 2 (e+ + ie×) ,
242
+ eT
243
+ L =
244
+ 1
245
+
246
+ 2 (e+ − ie×) ,
247
+ (7)
248
+ with the corresponding coefficients
249
+ ˜hT
250
+ R(f, Ω) =
251
+ 1
252
+
253
+ 2
254
+
255
+ ˜h+(f, Ω) − i˜h×(f, Ω)
256
+
257
+ ,
258
+ (8)
259
+ ˜hT
260
+ L(f, Ω) =
261
+ 1
262
+
263
+ 2
264
+
265
+ ˜h+(f, Ω) + i˜h×(f, Ω)
266
+
267
+ .
268
+ (9)
269
+
270
+ 3
271
+ We then have
272
+ IT = ⟨˜hT
273
+ R˜hT ∗
274
+ R ⟩ + ⟨˜hT
275
+ L˜hT ∗
276
+ L ⟩ ,
277
+ (10)
278
+ WT = ⟨˜hT
279
+ R˜hT ∗
280
+ R ⟩ − ⟨˜hT
281
+ L˜hT ∗
282
+ L ⟩ ,
283
+ (11)
284
+ omitting apparent delta functions.
285
+ These expressions
286
+ show that the spectra IT and WT characterize the to-
287
+ tal and asymmetry of the amplitudes of the right- and
288
+ left-handed polarization patterns of the tensor modes.
289
+ Since the parity transformation interchanges the right-
290
+ and left-handed waves, we resultantly have I′
291
+ T = IT and
292
+ W ′
293
+ T = −WT (′ representing parity transformed quanti-
294
+ ties).
295
+ For the vector modes, we can repeat almost the same
296
+ arguments as Eqs. (6)-(9) and obtain
297
+ IV = ⟨˜hV
298
+ R˜hV ∗
299
+ R ⟩ + ⟨˜hV
300
+ L ˜hV ∗
301
+ L ⟩ ,
302
+ (12)
303
+ WV = ⟨˜hV
304
+ R˜hV ∗
305
+ R ⟩ − ⟨˜hV
306
+ L ˜hV ∗
307
+ L ⟩
308
+ (13)
309
+ with the correspondences I′
310
+ V = IV and W ′
311
+ V = −WV for
312
+ the parity transformation.
313
+ For the scalar modes (P, P ′ = b, l), considering their
314
+ potential correlation, we can generally put
315
+ ⟨˜hP (f, Ω)˜h∗
316
+ P ′(f ′, Ω′)⟩ =1
317
+ 2δΩΩ′δ(f − f ′)
318
+ ×
319
+
320
+ Ib
321
+ CS
322
+ C∗
323
+ S
324
+ Il
325
+
326
+ P P ′ .
327
+ (14)
328
+ described by the four real parameters in the power spec-
329
+ tra. In reality, as long as the low frequency approxima-
330
+ tion is valid (f ≪ (2πL/c)−1, L: the arm length), only
331
+ the combination
332
+ IS ≡ 1
333
+ 2(Ib + Il − CS − C∗
334
+ S) ,
335
+ (15)
336
+ appears in the correlation analysis [31]. Therefore, in the
337
+ following, we keep only IS for the scalar modes. Because
338
+ of its spin-0 nature, we also have I′
339
+ S = IS for the parity
340
+ transformation.
341
+ Up to now, we see that an isotropic background is
342
+ characterized by the five quantities IT , IV , IS, WT , and
343
+ WV . Here, we introduce another commonly used repre-
344
+ sentation for the magnitudes of these spectra. In GR,
345
+ the amplitude IT (f) can be simply related to the energy
346
+ density of the background. More specifically, with the
347
+ Hubble parameter H0, we have the relation
348
+ ΩIT
349
+ GW (f) =
350
+ �32π3
351
+ 3H2
352
+ 0
353
+
354
+ f 3IT (f)
355
+ (16)
356
+ for the energy density of the background per logarithmic
357
+ frequency (normalized by critical density of universe) [28,
358
+ 29]. In a modified theory of gravity, the relation (16) for
359
+ the energy density might be invalid [37]. However, we
360
+ are not directly interested in the actual energy density
361
+ of the backgrounds, and thus continue to use Eq. (16) as
362
+ the definition of ΩIT
363
+ GW (f). Similarly, we use the effective
364
+ energy densities
365
+ ΩIV
366
+ GW (f) ≡
367
+ �32π3
368
+ 3H2
369
+ 0
370
+
371
+ f 3IV (f) ,
372
+ (17)
373
+ ΩIS
374
+ GW (f) ≡
375
+ �32π3
376
+ 3H2
377
+ 0
378
+
379
+ f 3IS(f) ,
380
+ (18)
381
+ ΩWT
382
+ GW (f) ≡
383
+ �32π3
384
+ 3H2
385
+ 0
386
+
387
+ f 3WT (f) ,
388
+ (19)
389
+ ΩWV
390
+ GW (f) ≡
391
+ �32π3
392
+ 3H2
393
+ 0
394
+
395
+ f 3WV (f) .
396
+ (20)
397
+ If the left handed modes dominate the right handed ones,
398
+ we have ΩWT
399
+ GW (f) < 0 (and ΩWV
400
+ GW (f) < 0).
401
+ B.
402
+ Correlation Analysis
403
+ Now we discuss how to detect the five spectral com-
404
+ ponents by using multiple interferometers.
405
+ In the low
406
+ frequency regime (f ≪ (2πL/c)−1), the response of an
407
+ interferometer A (at the position xA) can be modeled
408
+ as [31]
409
+ hA(f) = Dij
410
+ A˜hij(f, xA) ,
411
+ (21)
412
+ with the beam pattern function
413
+ DA = uA ⊗ uA − vA ⊗ vA
414
+ 2
415
+ .
416
+ (22)
417
+ Here, ˜hij(f, xA) is the metric perturbation of the back-
418
+ ground at the detector, and the two unit vectors uA and
419
+ vA represent the two arm directions of the detector.
420
+ By correlating data streams of multiple detectors, we
421
+ can statistically amplify the background signals relative
422
+ to the detector noises (closely discussed in Sec. IV). We
423
+ denote the correlation product of two detector A and B
424
+ by
425
+ CAB(f) ≡ ⟨hA(f)h∗
426
+ B(f)⟩
427
+ (23)
428
+ (again omitting delta functions).
429
+ Leaving only the
430
+ monopole components of the background, we obtain
431
+ CAB(f) = 4π
432
+ 5
433
+
434
+
435
+
436
+ P =T,V,S
437
+ γIP IP +
438
+
439
+ P =T,V
440
+ γWP WP
441
+
442
+ � .
443
+ (24)
444
+ Here, γIP and γWP are the ORFs which characterize the
445
+ correlated response of two detectors to the relevant com-
446
+ ponents of an isotropic background.
447
+ They are written
448
+ as
449
+ γIP
450
+ AB(f) ≡ DA,ijDB,klΓIP
451
+ ijkl ,
452
+ (25)
453
+ γWP
454
+ AB (f) ≡ DA,ijDB,klΓWP
455
+ ijkl ,
456
+ (26)
457
+
458
+ 4
459
+ β
460
+ σA
461
+ σB
462
+ A
463
+ B
464
+ FIG. 1. The relative geometry of the ground-based detector
465
+ pair A and B. The two detectors are on the same great circle
466
+ and their detector planes are tangential to the earth sphere.
467
+ The opening angle β is measured from the center of the Earth.
468
+ The angles σA and σB correspond to the orientations of the
469
+ bisectors of the two arms (dotted line) measured counter clock
470
+ wisely relative to the great circle.
471
+ with the angular integrals
472
+ ΓIT
473
+ ijkl = 5
474
+
475
+
476
+ dΩ(e+,ije+,kl + e×,ije×,kl)eiyΩ· ˆ
477
+ d ,
478
+ (27)
479
+ ΓIV
480
+ ijkl = 5
481
+
482
+
483
+ dΩ(ex,ijex,kl + ey,ijey,kl)eiyΩ· ˆ
484
+ d ,
485
+ (28)
486
+ ΓIS
487
+ ijkl = 5
488
+
489
+
490
+ dΩ(eb,ijeb,kl + el,ijel,kl)eiyΩ· ˆ
491
+ d ,
492
+ (29)
493
+ ΓWT
494
+ ijkl = − 5i
495
+
496
+
497
+ dΩ(e+,ije×,kl − e×,ije+,kl)eiyΩ· ˆ
498
+ d , (30)
499
+ ΓWV
500
+ ijkl = − 5i
501
+
502
+
503
+ dΩ(ex,ijey,kl − ey,ijex,kl)eiyΩ· ˆ
504
+ d .
505
+ (31)
506
+ Here, we put d ≡ |xA − xB|, ˆd ≡ (xA − xB)/d and
507
+ y = 2πfd/c.
508
+ As already in Eq. (24), we will use the label P for the
509
+ polarization modes P = (T, V, S), extending it from the
510
+ original patterns P = (+, ×, x, y, b, l). In addition, we
511
+ introduce the label Q to represent all the ��ve spectral
512
+ modes (IT , IV , IS, WT , WV ) of interest.
513
+ For notational
514
+ simplicity, we also omit the labels for the detectors in
515
+ obvious cases.
516
+ C.
517
+ ORFs for ground-based detectors
518
+ Now we focus on the ground-based detectors that are
519
+ assumed to be tangential to the Earth sphere of the ra-
520
+ dius RE = 6400km. As shown in Fig. 1, the relative
521
+ geometry of two interferometers A and B are fully char-
522
+ acterized by three angles β, σA and σB (following the
523
+ convention in [28]). The angle β represents the opening
524
+ angle between the two detectors, measured from the cen-
525
+ ter of the Earth, and we have d = 2RE sin(β/2). Mean-
526
+ while, the angle σA shows the orientation of the bisector
527
+ of the two arms of the detector A measured counterclock-
528
+ wise relative to the great circle joining the two detectors.
529
+ The angle σB is defined similarly. Below, instead of σA
530
+ and σB, we use the angles ∆ and δ
531
+ ∆ ≡ σA + σB
532
+ 2
533
+ ,
534
+ δ ≡ σA − σB
535
+ 2
536
+ ,
537
+ (32)
538
+ following the standard convention.
539
+ The close expressions of the ORFs are presented in [31]
540
+ as
541
+ γIP = ΘP
542
+ ∆(y, β) cos 4∆ + ΘP
543
+ δ (y, β) cos 4δ ,
544
+ (P = T, V, S) ,
545
+ (33)
546
+ γWP = ΞP (y, β) sin 4∆ ,
547
+ (P = T, V ) .
548
+ (34)
549
+ Here the angles δ and ∆ appear only in the forms
550
+ cos 4δ, cos 4∆, and sin 4∆, reflecting certain symmetries
551
+ [38]. The coefficients ΞP , ΘP
552
+ ∆, and ΘP
553
+ δ are given by
554
+ ΘT
555
+ ∆(y, β) = − sin4
556
+ �β
557
+ 2
558
+
559
+ j0(y)
560
+ − 5
561
+ 56(−9 + 8 cos β + cos 2β)j2(y)
562
+
563
+ 1
564
+ 896(169 + 108 cos β + 3 cos 2β)j4(y) , (35)
565
+ ΘV
566
+ ∆(y, β) = − sin4
567
+ �β
568
+ 2
569
+
570
+ j0(y)
571
+ +
572
+ 5
573
+ 112(−9 + 8 cos β + cos 2β)j2(y)
574
+ +
575
+ 1
576
+ 224(169 + 108 cos β + 3 cos 2β)j4(y) , (36)
577
+ ΘS
578
+ ∆(y, β) = − sin4
579
+ �β
580
+ 2
581
+
582
+ j0(y)
583
+ + 5
584
+ 56(−9 + 8 cos β + cos 2β)j2(y)
585
+
586
+ 3
587
+ 448(169 + 108 cos β + 3 cos 2β)j4(y) , (37)
588
+ ΘT
589
+ δ (y, β) = cos4
590
+ �β
591
+ 2
592
+ � �
593
+ j0(y) + 5
594
+ 7j2(y) +
595
+ 3
596
+ 112j4(y)
597
+
598
+ ,
599
+ (38)
600
+ ΘV
601
+ δ (y, β) = cos4
602
+ �β
603
+ 2
604
+ � �
605
+ j0(y) − 5
606
+ 14j2(y) − 3
607
+ 28j4(y)
608
+
609
+ ,
610
+ (39)
611
+ ΘS
612
+ δ (y, β) = cos4
613
+ �β
614
+ 2
615
+ � �
616
+ j0(y) − 5
617
+ 7j2(y) + 9
618
+ 56j4(y)
619
+
620
+ ,
621
+ (40)
622
+ ΞT (y, β) = sin
623
+ �β
624
+ 2
625
+ � �
626
+ (1 − cos β)j1(y) − 7 + 3 cos β
627
+ 8
628
+ j3(y)
629
+
630
+ ,
631
+ (41)
632
+ ΞV (y, β) = 1
633
+ 2 sin
634
+ �β
635
+ 2
636
+ � �
637
+ (1 − cos β)j1(y) + 7 + 3 cos β
638
+ 2
639
+ j3(y)
640
+
641
+ (42)
642
+ with the spherical Bessel functions jn(y).
643
+
644
+ 5
645
+ D.
646
+ Asymptotic Behaviors at y → ∞
647
+ In this subsection, we briefly discuss the asymptotic
648
+ profiles of the ORFs at y → ∞, based on Eqs. (33)-(42).
649
+ For the spherical Bessel functions, at large y, we have
650
+ the following correspondences
651
+ j2l(y) ∝ sin y
652
+ y
653
+ ,
654
+ j2l+1(y) ∝ cos y
655
+ y
656
+ ,
657
+ (43)
658
+ Then, we can put
659
+ γIP → CIP
660
+ sin y
661
+ y
662
+ ,
663
+ γWP → CWP
664
+ cos y
665
+ y
666
+ (44)
667
+ with the coefficients CIP and CWP presented shortly.
668
+ Roughly speaking, these relations show the phase offset of
669
+ ∼ π/2 (as in the combination of sin y and cos y), depend-
670
+ ing on the two parity types of the background spectra IP
671
+ and W P .
672
+ We can readily evaluate the coefficients CIP and CWP
673
+ as follows;
674
+ CIT =
675
+ 5
676
+ 128
677
+
678
+ 8 cos4
679
+ �β
680
+ 2
681
+
682
+ cos 4δ
683
+ − (cos 2β − 28 cos β + 35) cos 4∆
684
+
685
+ ,
686
+ (45)
687
+ CIV = 5
688
+ 8 cos2
689
+ �β
690
+ 2
691
+ � �
692
+ 2 cos2
693
+ �β
694
+ 2
695
+
696
+ cos 4δ
697
+ − (cos β − 3) cos 4∆
698
+
699
+ ,
700
+ (46)
701
+ CIS = 15
702
+ 8 cos4
703
+ �β
704
+ 2
705
+
706
+ (cos 4δ − cos 4∆) ,
707
+ (47)
708
+ CWT = − 5
709
+ 16
710
+
711
+ − sin
712
+ �3β
713
+ 2
714
+
715
+ + 7 sin
716
+ �β
717
+ 2
718
+ ��
719
+ sin 4∆ , (48)
720
+ CWV = 5
721
+ 2 sin
722
+ �β
723
+ 2
724
+
725
+ cos2
726
+ �β
727
+ 2
728
+
729
+ sin 4∆ .
730
+ (49)
731
+ We have CWT · CWV ≤ 0. Notice that CWT and CWV
732
+ vanish at β = 0. Two detectors on a plane are appar-
733
+ ently mirror symmetric, and thus blind to the parity odd
734
+ polarizations.
735
+ E.
736
+ Asymptotic Behaviors at y → 0
737
+ At the opposite limit, y → 0, we have
738
+ γIT,V,S(y) → 2DA,ijDij
739
+ B
740
+ (50)
741
+ = − sin4
742
+ �β
743
+ 2
744
+
745
+ cos 4∆ + cos4
746
+ �β
747
+ 2
748
+
749
+ cos 4δ ,
750
+ (51)
751
+ γWT (y) → 2 sin3
752
+ �β
753
+ 2
754
+
755
+ y sin 4∆ ,
756
+ (52)
757
+ γWV (y) → sin3
758
+ �β
759
+ 2
760
+
761
+ y sin 4∆ .
762
+ (53)
763
+ The first expression shows the degeneracy of the parity
764
+ even ORFs. Meanwhile, the parity odd ORFs vanish at
765
+ y → 0, due to the parity symmetry of a network at the
766
+ same place with d = 0 [31]. Thus, a network becomes
767
+ blind to the parity odd polarizations for small y.
768
+ F.
769
+ Trinity degeneracy of even ORFs at the
770
+ sub-leading order O(y2)
771
+ At
772
+ the
773
+ sub-leading
774
+ order
775
+ O(y2)
776
+ (or
777
+ equivalently
778
+ O(f 2)), we can easily confirm a cancellation for the three
779
+ even ORFs and have
780
+ γIT (y) − 4γIV (y) + 3γIS(y) = O(y4) .
781
+ (54)
782
+ This trinity degeneracy will later play an important role
783
+ in the spectral decomposition of the three even spectra.
784
+ G.
785
+ Degeneracy of odd ORFs at 13Hz
786
+ For detectors on the Earth, we can put y = ζ sin(β/2)
787
+ with ζ ≡ 4πREf/c. In Fig. 2, we present a contour plot
788
+ for the ratio between the odd ORFs
789
+ γWT
790
+ γWV
791
+ = ΞT (y, β)
792
+ ΞV (y, β) ≡ Θ(ζ, β).
793
+ (55)
794
+ At the left end, we can see the limit limζ→0 Θ(ζ, β) = 2
795
+ following from Eqs. (52) and (53).
796
+ Surprisingly, the function Θ depends very weakly on β
797
+ around ζ = 3.57, as shown with the almost vertical con-
798
+ tour Θ = 1.26 in Fig. 2. Indeed, along this contour, the
799
+ variation of ζ is within ±0.01. Later, we will find that the
800
+ odd spectral decomposition practically collapses around
801
+ ζ = 3.57, corresponding to f = 13Hz for the Earth’s
802
+ radius RE = 6400km.
803
+ This anathematic frequency is
804
+ intrinsic to ground-based detectors.
805
+ In space, we might realize a detector network com-
806
+ posed by multiple LISA-like units orbiting around the
807
+ Sun [39, 40] (see also [41]).
808
+ For their typical orbital
809
+ configuration, we need at least three separated units
810
+ for fully decomposing the five polarization spectra, and
811
+ these units contact with a virtual sphere of radius 1.15
812
+ a.u. [35, 42, 43] (see also [44]). In this case, the anathe-
813
+ matic frequency becomes 0.57mHz.
814
+ III.
815
+ SECOND GENERATION DETECTOR
816
+ NETWORK
817
+ From now on, we mainly discuss the ground-based de-
818
+ tector networks composed by the following five second
819
+ generation interferometers; LIGO-Handford (H), LIGO-
820
+ India (I), KAGRA (K), LIGO-Livingston (L) and Virgo
821
+ (V). We present their basic angular parameters in Ta-
822
+ ble I.
823
+
824
+ 6
825
+ 0
826
+ 1
827
+ 2
828
+ 3
829
+ 4
830
+ 5
831
+ 0.0
832
+ 0.5
833
+ 1.0
834
+ 1.5
835
+ 2.0
836
+ 2.5
837
+ 3.0
838
+ ζ
839
+ β
840
+ 0
841
+ 1.00
842
+ 1.26
843
+ 1.50
844
+ 1.75
845
+ 1.99
846
+ FIG. 2. The contour plot for the ratio Θ(ζ, β). We have the
847
+ limit limζ→0 Θ = 2 and almost vertical contour line around
848
+ ζ = 3.575 (corresponding to 13Hz for ground-based detec-
849
+ tors).
850
+ TABLE I. The latitudes, longitudes, and orientations of the
851
+ five ground-based detectors in units of degree. The angle α is
852
+ the orientation angle of the bisector of the two arms measured
853
+ from the local east at each detectora.
854
+ detector
855
+ latitude
856
+ longitude
857
+ α
858
+ KAGRA(K)
859
+ 36.41
860
+ 137.31
861
+ 74.60
862
+ LIGO-I(I)
863
+ 19.61
864
+ 77.03
865
+ 162.62
866
+ LIGO-H(H)
867
+ 46.45
868
+ -119.41
869
+ 171.00
870
+ LIGO-L(L)
871
+ 30.56
872
+ -90.8
873
+ 242.17
874
+ Virgo(V)
875
+ 43.63
876
+ 10.50
877
+ 115.57
878
+ a https://git.ligo.org/
879
+ From these five interferometers, we can make 5C2 = 10
880
+ pairs and introduce the abstract index u to represent
881
+ these ten pairs {HI, HK, · · · , LV}. Their relative geomet-
882
+ rical parameters are presented in Table II.
883
+ Since
884
+ each
885
+ pair
886
+ has
887
+ the
888
+ five
889
+ ORFs
890
+ γQ
891
+ u (f)
892
+ (Q; IT , IV , IS, WT , WV ),
893
+ the total number of ORFs
894
+ is 50. In Fig. 3, we present all of them at a clip. Later,
895
+ we will come to deal with the sums of their products
896
+ such as �
897
+ u γQ
898
+ u (f)γQ′
899
+ u (f), and the collective behaviours
900
+ of these large number of ORFs would be important
901
+ there.
902
+ As explained in Sec. II.E, at f = 0, we have the de-
903
+ generacies γIT
904
+ u
905
+ = γIV
906
+ u
907
+ = γIS
908
+ u
909
+ and γWT
910
+ u
911
+ = γWV
912
+ u
913
+ =
914
+ 0.
915
+ In Fig. 3, we can easily identify the three conspicuous
916
+ curves starting from γQ
917
+ u ≃ −0.9 at f = 0. These are the
918
+ even ORFs of the HL pair. This pair is designed to have
919
+ a large overlap with cos 4δ ≃ −1. In Fig. 4, its five ORFs
920
+ are presented, showing loose oscillation patterns due to
921
+ the small separation angle β. The small angle β also sup-
922
+ presses the amplitudes of the odd ORFs, in contrast to
923
+ the even ones (see Sec. II D and II E).
924
+ Meanwhile, the HI and IL pairs have large separation
925
+ KI
926
+ KH
927
+ KL
928
+ KV
929
+ IH
930
+ IL
931
+ IV
932
+ HL
933
+ HV
934
+ LV
935
+ 0
936
+ 50
937
+ 100
938
+ 150
939
+ -1.0
940
+ -0.5
941
+ 0.0
942
+ 0.5
943
+ f[Hz]
944
+ Even ORFs
945
+ KI
946
+ KH
947
+ KL
948
+ KV
949
+ IH
950
+ IL
951
+ IV
952
+ HL
953
+ HV
954
+ LV
955
+ 0
956
+ 50
957
+ 100
958
+ 150
959
+ -1.0
960
+ -0.5
961
+ 0.0
962
+ 0.5
963
+ f[Hz]
964
+ Odd ORFs
965
+ FIG. 3. All the 50 ORFs formed from the five interfeometers
966
+ H, I, K, L and V. In the upper panel, the three curves starting
967
+ from −0.9 correspond to the HL pair.
968
+ angles β and thus provide relatively large value
969
+ y ∝ f sin(β/2)
970
+ (56)
971
+ for a given frequency f. This will help us to use the higher
972
+ order correction terms of the variables y (e.g., breaking
973
+ the spectral degeneracy). Together with the preferred rel-
974
+ ative orientation |sin 4∆|∼ 1, these pairs also have good
975
+ sensitivities to the odd parity spectra WT and WV .
976
+ As examples of typical pairs, in Fig. 5, we show the
977
+ ORFs of the LV-pair. In the bottom panel, we compare
978
+ the asymptotic profiles discussed in Sec. II.D. At f ≳
979
+ 80Hz (y ≳ 4π), they show reasonable agreements with
980
+ the original curves. Accordingly, in the upper panel, we
981
+ can see the phase offset ∼ π/2 between the odd and even
982
+ ORFs there.
983
+ In Table III, we present the asymptotic
984
+ coefficients CQ for the ten pairs.
985
+ IV.
986
+ CORRELATION ANALYSIS WITH
987
+ GROUND-BASED DETECTORS
988
+ Up to this point, we only considered the response of
989
+ detectors to stochastic backgrounds. In reality, the data
990
+ streams of the detectors are contaminated by the detec-
991
+ tor noises. As we see below, the correlation analysis is
992
+ a powerful framework to coherently amplify the back-
993
+ ground signals relative to the noises [28, 29].
994
+ Under the existence of the detector noises, the outputs
995
+
996
+ 7
997
+ TABLE II. (Upper right) The opening angle β (in units of degree) of the detector pairs, measured from the center of the Earth.
998
+ (Lower left) The values of (cos 4δ, cos 4∆, sin 4∆).
999
+ KAGRA
1000
+ LIGO-I
1001
+ LIGO-H
1002
+ LIGO-L
1003
+ Virgo
1004
+ KAGRA
1005
+ *
1006
+ 54.89
1007
+ 72.37
1008
+ 99.27
1009
+ 86.52
1010
+ LIGO-I
1011
+ (-0.41,0.63,0.78)
1012
+ *
1013
+ 112.28
1014
+ 128.47
1015
+ 59.79
1016
+ LIGO-H
1017
+ (0.99,-0.34,0.94)
1018
+ (0.75,0.47,-0.88)
1019
+ *
1020
+ 27.22
1021
+ 79.62
1022
+ LIGO-L
1023
+ (-1.00,0.19,-0.98)
1024
+ (-0.80,-0.06,1.00)
1025
+ (-1.00,-0.40,-0.91)
1026
+ *
1027
+ 76.76
1028
+ Virgo
1029
+ (-0.60,0.87,0.50)
1030
+ (-0.99,0.14,-0.99)
1031
+ (-0.43,-0.80,-0.60)
1032
+ (-0.31,0.86,-0.50)
1033
+ *
1034
+ TABLE III. The expansion coefficients (CIT , CIV ,CIS) (upper right) and (CWT , CWV ) (lower left).
1035
+ KAGRA
1036
+ LIGO-I
1037
+ LIGO-H
1038
+ LIGO-L
1039
+ Virgo
1040
+ KAGRA
1041
+ *
1042
+ (-0.54,0.43,-1.22)
1043
+ (0.48,0.15,1.06)
1044
+ (-0.34,-0.06,-0.39)
1045
+ (-1.1,0.64,-0.77)
1046
+ LIGO-I
1047
+ (-0.54,0.70)
1048
+ *
1049
+ (-0.80,0.40,0.05)
1050
+ (0.11,-0.06,-0.05)
1051
+ (-0.29,-0.53,-1.20)
1052
+ LIGO-H
1053
+ (-0.93,0.90)
1054
+ (1.55,-0.57)
1055
+ *
1056
+ (-0.11,-1.62,-1.00)
1057
+ (0.86,-1.02,0.24)
1058
+ LIGO-L
1059
+ (1.48,-0.78)
1060
+ (-2.04,0.42)
1061
+ (0.28,-0.51)
1062
+ *
1063
+ (-0.97,0.77,-0.83)
1064
+ Virgo
1065
+ (-0.63,0.45)
1066
+ (0.77,-0.93)
1067
+ (0.68,-0.57)
1068
+ (0.54,-0.48)
1069
+ *
1070
+ Tensor even
1071
+ Vector even
1072
+ Scalar even
1073
+ Tensor odd
1074
+ Vector odd
1075
+ 0
1076
+ 50
1077
+ 100
1078
+ 150
1079
+ 200
1080
+ 250
1081
+ 300
1082
+ -0.8
1083
+ -0.6
1084
+ -0.4
1085
+ -0.2
1086
+ 0.0
1087
+ 0.2
1088
+ 0.4
1089
+ f[Hz]
1090
+ ORFs
1091
+ FIG. 4.
1092
+ All the five ORFs of the HL pair with y
1093
+ =
1094
+ 6.3(f/100Hz). The solid lines correspond to the even ORFs.
1095
+ The dashed lines show the odd ones.
1096
+ of two detectors A and B can be modeled as
1097
+ sA(f) = hA(f) + nA(f) ,
1098
+ sB(f) = hB(f) + nB(f) .
1099
+ (57)
1100
+ Here, hA,B are the signals from stochastic backgrounds
1101
+ (see Eq. (21)) and nA,B are the detector noises. In this
1102
+ paper, we assume the noises nA,B to be stationary, Gaus-
1103
+ sian, and mutually independent. In addition, the signals
1104
+ are assumed to be much smaller than the noises, namely
1105
+ |hA,B|≪ |nA,B| (the weak signal condition). Then the
1106
+ covariance of the detector noises is given by
1107
+ ⟨nA(f)n∗
1108
+ B(f ′)⟩ = δAB
1109
+ 2 NA(f)δ(f − f ′) ,
1110
+ (58)
1111
+ where NA is the noise power spectrum.
1112
+ As a preparation of the correlation analysis, let us take
1113
+ the product of the two outputs of pairwise detectors (u =
1114
+ AB) as (again omitting the delta functions)
1115
+ µu(f) ≡ Re[sA(f)s∗
1116
+ B(f)] .
1117
+ (59)
1118
+ Here we extracted the real part. This is because, we know
1119
+ the following relation
1120
+ ⟨sA(f)s∗
1121
+ B(f)⟩ = ⟨hA(f)hB(f)⟩ + ⟨hA(f)nB(f)⟩
1122
+ (60)
1123
+ + ⟨nA(f)hB(f)⟩ + ⟨nA(f)nB(f)⟩]
1124
+ = ⟨hA(f)hB(f)⟩
1125
+ (61)
1126
+ = Cu(f) ∈ Real
1127
+ (62)
1128
+ for the expectation value (using the statistical indepen-
1129
+ dence between hA,B and nA,B). As we see shortly, this
1130
+ projection can reduce the associated noise level [45].
1131
+ The variance can be calculated similarly. Under the
1132
+ weak signal condition (|hA(f)|≪ |nA(f)|), we have
1133
+ Nu(f) = ⟨µ2
1134
+ u⟩ − ⟨µu⟩2 ∼ ⟨µ2
1135
+ u⟩
1136
+ =1
1137
+ 4 ⟨(sAs∗
1138
+ B + s∗
1139
+ AsB)(f)(sAs∗
1140
+ B + s∗
1141
+ AsB)(f)⟩
1142
+ ∼1
1143
+ 2 ⟨nA(f)n∗
1144
+ B(f)n∗
1145
+ A(f)nB(f)⟩
1146
+ =1
1147
+ 8NA(f)NB(f)
1148
+ (63)
1149
+ with
1150
+
1151
+ Nu(f) ≫ ⟨µu(f)⟩. Note that we have the addi-
1152
+ tional factor 2−1 due to the real projection (59).
1153
+ The basic idea of the correlation analysis is to coher-
1154
+ ently amplify the background signal relative to the noise,
1155
+ by using a large number of Fourier modes, after a long
1156
+ observational time. We now explain this by deriving Eqs.
1157
+ (66) and (67).
1158
+ To deal with the frequency dependence, we first divide
1159
+ the Fourier modes into N bins (B1, B2, · · · , Bρ, · · · , BN)
1160
+ characterized by the central frequencies fρ and a fixed
1161
+ width δf [45]. We take δf to be much smaller than fρ,
1162
+ such that involved quantities (e.g. IP (f), W P (f), and
1163
+ γIP ,WP (f)) are nearly the same in each bin. Meanwhile,
1164
+ we also set the width δf to be much larger than the
1165
+ frequency resolution T −1
1166
+ obs determined by the observation
1167
+
1168
+ 8
1169
+ Tensor even
1170
+ Vector even
1171
+ Scalar even
1172
+ Tensor odd
1173
+ Vector odd
1174
+ 0
1175
+ 50
1176
+ 100
1177
+ 150
1178
+ 200
1179
+ -0.2
1180
+ -0.1
1181
+ 0.0
1182
+ 0.1
1183
+ 0.2
1184
+ f[Hz]
1185
+ ORFs
1186
+ Even
1187
+ CIT
1188
+ Sin (y)
1189
+ y
1190
+ Odd
1191
+ CWT
1192
+ Cos (y)
1193
+ y
1194
+ 0
1195
+ 50
1196
+ 100
1197
+ 150
1198
+ 200
1199
+ -0.3
1200
+ -0.2
1201
+ -0.1
1202
+ 0.0
1203
+ 0.1
1204
+ 0.2
1205
+ 0.3
1206
+ f[Hz]
1207
+ ORF
1208
+ Tensor
1209
+ FIG. 5. The ORFs of the LV pair with y = 16.65(f/100Hz).
1210
+ (Top) All the five ORFs. The solid lines correspond the even
1211
+ ORFs.
1212
+ The dashed lines are the odd ones.
1213
+ (Bottom) The
1214
+ ORFs for the two tensor modes IT and WT . The solid ones
1215
+ are the original expressions, and the dotted lines show their
1216
+ asymptotic profiles Eq. (44) with the coefficients (CIT , CWT )
1217
+ given in Table III.
1218
+ time Tobs (i.e. the number of the modes Tobsδf ≫ 1 in
1219
+ each bin).
1220
+ Now, we sum up the product µu in each bin as
1221
+ µρ
1222
+ u =
1223
+
1224
+ f∈Bρ
1225
+ Re[sA(f)sB(f)∗]
1226
+
1227
+
1228
+ f∈Bρ
1229
+ Re[hA(f)hB(f)∗ + nA(f)nB(f)∗]
1230
+ (64)
1231
+ ≃ ⟨µρ
1232
+ u⟩ +
1233
+
1234
+ f∈Bρ
1235
+ Re[nA(f)nB(f)∗] .
1236
+ (65)
1237
+ In Eq. (64), the first term comes from the background
1238
+ and can be coherently amplified.
1239
+ On the other hand,
1240
+ the second term is due to the noises and is not amplified
1241
+ because of its incoherence.
1242
+ Let us calculate the expectation value and the variance
1243
+ of the compressed estimator µρ
1244
+ u.
1245
+ From Eqs.
1246
+ (23) and
1247
+ (24), the expectation value ⟨µρ
1248
+ u⟩ is given by
1249
+ ⟨µρ
1250
+ u⟩ =
1251
+
1252
+ f∈Bρ
1253
+ Re[⟨hA(f)hB(f)∗⟩]
1254
+ ∼8π
1255
+ 5 Tobsδf
1256
+
1257
+
1258
+
1259
+ P =T,V,S
1260
+ γIP
1261
+ u (fρ)IP (fρ)
1262
+ +
1263
+
1264
+ P =T,V
1265
+ γWP
1266
+ u
1267
+ (fc)WP (fc)
1268
+
1269
+ � .
1270
+ (66)
1271
+ The variance is given by the second term in Eq. (64) as
1272
+ N ρ
1273
+ u = ⟨µρ2
1274
+ u ⟩ − ⟨µρ
1275
+ u⟩2
1276
+ ∼1
1277
+ 2
1278
+
1279
+ f
1280
+
1281
+ f ′
1282
+ ⟨nA(f)n∗
1283
+ A(f ′)⟩ ⟨nB(f)n∗
1284
+ B(f ′)⟩
1285
+ ∼Tobsδf
1286
+ 8
1287
+ NA(fρ)NB(fρ)
1288
+ (67)
1289
+ with no noise correlation between different pairs (e.g.,
1290
+ between HK and HL). The last line is obtained by sub-
1291
+ stitution of Eq. (58). These expressions show that ex-
1292
+ pectation value ⟨µρ
1293
+ u⟩ is proportional to the number of
1294
+ the Fourier modes Tobsδf but the variance
1295
+
1296
+ N ρ
1297
+ u is pro-
1298
+ portional to √Tobsδf. For Tobsδf ≫ 1, the background
1299
+ signal is relatively amplified to the noise, as expected.
1300
+ Combining Eqs. (66) and (67), we obtain the SNR of
1301
+ each bin as
1302
+ SNRρ2
1303
+ u = ⟨µρ
1304
+ u⟩2
1305
+ N ρ
1306
+ u
1307
+ ∼ 2
1308
+ �16π
1309
+ 5
1310
+ �2
1311
+ Tobsδf
1312
+ NA(fρ)NB(fρ)
1313
+
1314
+
1315
+
1316
+ P =T,V,S
1317
+ γIP
1318
+ u (fρ)IP (fρ)
1319
+ +
1320
+
1321
+ P =T,V
1322
+ γWP
1323
+ u
1324
+ (fρ)WP (fρ)
1325
+
1326
+
1327
+ 2
1328
+ .
1329
+ (68)
1330
+ Quadratically summing up all the frequency bin, we ob-
1331
+ tain total SNR for the detector pair u as
1332
+ SNR2
1333
+ u =
1334
+
1335
+ ρ
1336
+ SNRρ2
1337
+ u
1338
+ = 2Tobs
1339
+ �16π
1340
+ 5
1341
+ �2
1342
+ ×
1343
+
1344
+ df
1345
+ ��
1346
+ P =T,V,S γP
1347
+ u IP + �
1348
+ T,V γWP
1349
+ u
1350
+ WP
1351
+ �2
1352
+ NA(f)NB(f)
1353
+ .
1354
+ (69)
1355
+ In this paper, we assume that all detectors have the
1356
+ noise spectrum NAL identical to the design sensitivity of
1357
+ the advanced LIGO [46] (see Fig. 6 for NAL(f)). Con-
1358
+ sidering the current status of the LVK-network, this as-
1359
+ sumption looks unrealistic. However, it is virtually diffi-
1360
+ cult for a largely less sensitive detector to make an effec-
1361
+ tive contribution to the network, and we expect that our
1362
+
1363
+ 9
1364
+ 5
1365
+ 10
1366
+ 50
1367
+ 100
1368
+ 500
1369
+ 1000
1370
+ 5000
1371
+ 1.×10-24
1372
+ 1.×10-23
1373
+ 1.×10-22
1374
+ 1.×10-21
1375
+ 1.×10-20
1376
+ f[Hz]
1377
+ NALIGO ( f ) [Hz-1/2]
1378
+ FIG. 6. Noise power spectrum of advanced LIGO, taken from
1379
+ [46]. The spike around 9Hz is due to the resonance of the
1380
+ anti-vibration components.
1381
+ assumption will eventually become a reasonable approx-
1382
+ imation.
1383
+ Note that it is, in principle, straightforward
1384
+ to taking into account the difference between detector
1385
+ noise spectra for the rest of this paper.
1386
+ For simplic-
1387
+ ity, unless otherwise stated, we also assume flat spectra
1388
+ ΩQ
1389
+ GW (f) ∝ f 0 for the injected backgrounds.
1390
+ In the upper right panel of Table IV, we present SNRu
1391
+ for ΩIT
1392
+ GW = 10−8, setting other four spectra at zero. Sim-
1393
+ ilarly, in the lower left part, we show SNRu only with
1394
+ the non-vanishing compoent ΩWT
1395
+ GW = 10−8 (ignoring the
1396
+ physical requirement |ΩWT
1397
+ GW |≤ ΩIT
1398
+ GW ). In the ten detec-
1399
+ tor pairs, the HL pair has the best sensitivity to IT , but
1400
+ the worst sensitivity to WT .
1401
+ This is due to the small
1402
+ separation angle β = 27◦ of the HL pair, as pointed out
1403
+ earlier in Sec. II D. In contrast, the IL pair has the worst
1404
+ sensitivity to IT but the best sensitivity to WT with the
1405
+ largest separation angle β = 128◦.
1406
+ For a background purely made by IT , we have the net-
1407
+ work sensitivity
1408
+ SNR2
1409
+ IT = 2Tobs
1410
+ �16π
1411
+ 5
1412
+ �2 �
1413
+ df
1414
+
1415
+ u
1416
+
1417
+ γIT
1418
+ u
1419
+ �2 I2
1420
+ T
1421
+ N 2
1422
+ AL(f)
1423
+ .
1424
+ (70)
1425
+ For the HIKLV network and a flat spectrum, we numer-
1426
+ ically have
1427
+ SNRIT = 19.0
1428
+
1429
+ ΩIT
1430
+ GW
1431
+ 10−8
1432
+ � �Tobs
1433
+ 3yr
1434
+ �1/2
1435
+ (≡ SNR0) ,
1436
+ (71)
1437
+ which gives the maximum sensitivity to IT achieved by
1438
+ the five detectors. In Eq. (71), we introduced the nota-
1439
+ tion SNR0 in order to use this result as a reference value
1440
+ in our study below.
1441
+ V.
1442
+ SEPARATION OF THE FIVE COMPONENTS
1443
+ As shown in Eq. (66), the expectation value of a single
1444
+ segment ⟨µρ
1445
+ u(f)⟩ is given as the linear combination of
1446
+ the five spectra Q = {IT , IV , IS, WT , WV }. For testing
1447
+ alternative gravity theories, we would like to handle them
1448
+ separately.
1449
+ Such a method has been discussed in the
1450
+ literature (IT and WT in [33, 36], and IT , IV , and IS in
1451
+ [47]). Its basic strategy is to take the appropriate linear
1452
+ combinations of the cross correlation signals µρ
1453
+ u(f) and
1454
+ algebraically isolate the background spectra.
1455
+ To this end, we need at least 5 detector pairs. This
1456
+ can be satisfied by 4 or more detectors, which provide 6
1457
+ or more pairs (not equal to 5). Thus the spectral decom-
1458
+ position is actually an overdetermined problem.
1459
+ Our first objective in this section is to present a simple
1460
+ expression for the signal-to noise ratios SNRρ
1461
+ Q after the
1462
+ algebraic spectral decomposition. However, as outlined
1463
+ in Sec.
1464
+ VA, under the orthodox approach, we have a
1465
+ technical difficulty at deriving the simplified expression
1466
+ SNRρ
1467
+ Q. Thus, basically following the arguments in Ref.
1468
+ [36], we provide the desired expression that is not proven
1469
+ in a precise mathematical sense.
1470
+ A.
1471
+ Orthodox Approach
1472
+ As an example, let us consider the five detector net-
1473
+ work with 10 data set µρ
1474
+ u (u = 1, · · · , 10). Each segment
1475
+ contains the five polarization spectra as in Eq. (66). Us-
1476
+ ing the difference between the ORFs, we can isolate a
1477
+ specific spectrum Q (e.g., IV ) by algebraically cancelling
1478
+ other four spectra (e.g., IT , IS, WT , WV ). Then we ob-
1479
+ tain the six linear combinations of the original data µρ
1480
+ u.
1481
+ In contrast to the original ten data µρ
1482
+ u, the resultant
1483
+ six combinations have correlated detector noises. We can
1484
+ newly generate six noise orthogonal combinations, as a
1485
+ standard eigenvalue decomposition for the 6 × 6 noise
1486
+ matrix. Then, quadratically adding the six orthogonal
1487
+ elements, we obtain the network SNR for the target spec-
1488
+ trum Q. We can formally put
1489
+ (SNRρ
1490
+ Q)2 = 2Tobsδf
1491
+ �16π
1492
+ 5
1493
+ �2 Q(f)2XQ(f)
1494
+ N 2
1495
+ AL(f)
1496
+ .
1497
+ (72)
1498
+ Here the factor XQ(f) is given by the 50 ORFs, and can
1499
+ be effectively regarded as the square of a compiled ORF.
1500
+ Unfortunately, following the above line of argument,
1501
+ we could not analytically obtain the simplified symmet-
1502
+ rical form for the factor XQ(f) even with Mathematica.
1503
+ B.
1504
+ Alternative Approach
1505
+ In Ref.
1506
+ [36], a convenient construction scheme was
1507
+ deduced for the factor XQ, on the basis of the likeli-
1508
+ hood study for the multiple spectra (closely related to
1509
+ the Fisher matrix analyses). Here we concisely provide
1510
+ their final expression (see [36] for detail).
1511
+
1512
+ 10
1513
+ TABLE IV. The upper right corresponds to SNRAB for ΩIT
1514
+ GW = 10−8 setting other four spectra at zero. The lower left is only
1515
+ with ΩWV
1516
+ GW = 10−8.
1517
+ KAGRA
1518
+ LIGO-I
1519
+ LIGO-H
1520
+ LIGO-L
1521
+ Virgo
1522
+ KAGRA
1523
+ *
1524
+ 2.16
1525
+ 2.42
1526
+ 1.38
1527
+ 4.47
1528
+ LIGO-I
1529
+ 2.32
1530
+ *
1531
+ 2.79
1532
+ 0.34
1533
+ 3.27
1534
+ LIGO-H
1535
+ 3.67
1536
+ 5.07
1537
+ *
1538
+ 15.4
1539
+ 3.51
1540
+ LIGO-L
1541
+ 5.09
1542
+ 6.33
1543
+ 1.04
1544
+ *
1545
+ 3.83
1546
+ VIRGO
1547
+ 2.28
1548
+ 3.22
1549
+ 2.56
1550
+ 2.07
1551
+ *
1552
+ We first compose a 5 × 5 matrix F as
1553
+ F QQ′ ≡
1554
+ np
1555
+
1556
+ u=1
1557
+ γQ
1558
+ u γQ′
1559
+ u
1560
+ .
1561
+ (73)
1562
+ Next, we take its inverse matrix
1563
+ Σ ≡ F −1 .
1564
+ (74)
1565
+ Then, we presume the following relation for the factor
1566
+ XQ
1567
+ XQ =
1568
+ 1
1569
+ ΣQQ(f).
1570
+ (75)
1571
+ Below, we mention some circumstance evidences for its
1572
+ validity.
1573
+ For decomposing only two spectra (e.g., IT and WT ),
1574
+ we can analytically confirmed that this relation is ac-
1575
+ tually true for an arbitrary number of detectors.
1576
+ For
1577
+ the five spectral decomposition with ten detector pairs,
1578
+ we numerically generated the 50 ORFs randomly in the
1579
+ range [−1, 1] and evaluated the both sides of Eq. (75)
1580
+ with Mathematica.
1581
+ We repeated this experiments for
1582
+ many times and confirmed equality within numerical ac-
1583
+ curacy. Note that, with Mathematica, we need much less
1584
+ computational resources at numerical evaluation than at
1585
+ corresponding symbolic processing.
1586
+ We hereafter use relation (75) and put
1587
+ (SNRρ
1588
+ Q)2 = δf
1589
+ f ZQ(f)
1590
+
1591
+ ΩQ
1592
+ GW (f)
1593
+ 10−8
1594
+ �2 �Tobs
1595
+ 3yr
1596
+
1597
+ ,
1598
+ (76)
1599
+ where we defined (e.g., with Eqs. (17) and (72))
1600
+ ZQ(f) ≡ 3.7 × 10−82XQ(f)
1601
+ � f
1602
+ 1Hz
1603
+ �−5 �NAL(f)
1604
+ 1Hz−1
1605
+ �−2
1606
+ .
1607
+ (77)
1608
+ Here we used H0 = 70km s−1 Mpc−1.
1609
+ This function
1610
+ ZQ(f) shows the contribution of background signals from
1611
+ various frequencies.
1612
+ After the frequency integral, we obtain
1613
+ (SNRQ)2 =
1614
+ � ∞
1615
+ 0
1616
+ df
1617
+ f ZQ(f)
1618
+
1619
+ ΩQ
1620
+ GW (f)
1621
+ 10−8
1622
+ �2 �Tobs
1623
+ 3yr
1624
+
1625
+ . (78)
1626
+ VI.
1627
+ STATISTICAL LOSS ASSOCIATED WITH
1628
+ THE MODE SEPARATION
1629
+ We now examine the matrices F and Σ, in particular
1630
+ the role of their off-diagonal elements.
1631
+ A.
1632
+ Reduction Factors
1633
+ For simplicity, we first deal with the two component
1634
+ analysis with the spectra IT and Q′ (Q′ = IV , IS or WT ).
1635
+ The 2 × 2 matrix F is given by
1636
+ F =
1637
+ � �np
1638
+ u=1 γIT
1639
+ u γIT
1640
+ u
1641
+ �np
1642
+ u=1 γIT
1643
+ u γQ′
1644
+ u
1645
+ �np
1646
+ u=1 γIT
1647
+ u γQ′
1648
+ u
1649
+ �np
1650
+ u=1 γQ′
1651
+ u γQ′
1652
+ u
1653
+
1654
+ ,
1655
+ (79)
1656
+ and we have
1657
+ XIT =
1658
+ 1
1659
+ ΣIT IT
1660
+ = (1 − R2
1661
+ IT Q′)
1662
+ np
1663
+
1664
+ u=1
1665
+ γIT
1666
+ u γIT
1667
+ u
1668
+ ,
1669
+ (80)
1670
+ XQ′ =
1671
+ 1
1672
+ ΣQ′Q′ = (1 − R2
1673
+ IT Q′)
1674
+ np
1675
+
1676
+ u=1
1677
+ γQ′
1678
+ u γQ′
1679
+ u
1680
+ .
1681
+ (81)
1682
+ Here we defined the coefficient RIT Q′ by
1683
+ RIT Q′ ≡
1684
+ �np
1685
+ u=1 γIT
1686
+ u γQ′
1687
+ u
1688
+
1689
+ �nt
1690
+ u=1
1691
+
1692
+ γIT
1693
+ u
1694
+ �2�
1695
+ �np
1696
+ u=1
1697
+
1698
+ γQ′
1699
+ u
1700
+ �2 .
1701
+ (82)
1702
+ From Cauchy-Schwartz inequality, we have |RIT Q′|≤ 1
1703
+ with equality only for two parallel vectors {γIT
1704
+ u } and
1705
+ {γQ′
1706
+ u }. The coefficient RIT Q′ represents the correlation
1707
+ between the two spectra and reduces SNRs after the spec-
1708
+ tral decomposition through the factor (1 − R2
1709
+ IT Q′) (see
1710
+ Eqs. (72) and (80)). This factor shows the statistical
1711
+ loss associated with the decomposition.
1712
+ So far, we discussed two component decomposition.
1713
+ When the number nQ of the target spectral components
1714
+ is larger than two (nQ > 2), we can similarly define the
1715
+ reduction factor 1 − R2
1716
+ Qi (i = 1, · · · , nQ) by
1717
+ 1 − R2
1718
+ Qi =
1719
+ XQi(f)
1720
+
1721
+ u γQi
1722
+ u γQi
1723
+ u
1724
+ =
1725
+ 1
1726
+ (F −1)QiQiF QiQi .
1727
+ (83)
1728
+ Note that we omitted the subscripts other than the com-
1729
+ ponent of interest for the notational simplicity.
1730
+ If the
1731
+
1732
+ 11
1733
+ HIKLV
1734
+ HKLV
1735
+ HLV
1736
+ 0
1737
+ 50
1738
+ 100
1739
+ 150
1740
+ 200
1741
+ 0.0
1742
+ 0.2
1743
+ 0.4
1744
+ 0.6
1745
+ 0.8
1746
+ 1.0
1747
+ f[Hz]
1748
+ 1-RIT IV
1749
+ 2
1750
+ HIKLV
1751
+ HKLV
1752
+ HLV
1753
+ 0
1754
+ 50
1755
+ 100
1756
+ 150
1757
+ 200
1758
+ 0.0
1759
+ 0.2
1760
+ 0.4
1761
+ 0.6
1762
+ 0.8
1763
+ 1.0
1764
+ f[Hz]
1765
+ 1-RIT IS
1766
+ 2
1767
+ FIG. 7. The reduction factors 1−R2
1768
+ IT IV (upper) and 1−R2
1769
+ IT IS
1770
+ (lower) respectively for the two component analyses {IT , IV }
1771
+ and {IT , IS}.
1772
+ vectors {γQi
1773
+ u } (i = 1, · · · , nQ) are close to linearly depen-
1774
+ dent, the matrix F becomes nearly singular, and we could
1775
+ have |(F −1)QiQiF QiQi|≫ 1, resulting in a large signal
1776
+ loss 1 − R2
1777
+ Qi ≪ 1. In this relation, our two new findings
1778
+ in Sec. II could play interesting roles, as explained in the
1779
+ next subsection.
1780
+ B.
1781
+ Numerical Results
1782
+ In Fig. 7, we show the reduction factor (1 − R2
1783
+ IT ) for
1784
+ the two component models {IT , IV } (upper) and {IT , IS}
1785
+ (lower). As shown in Eq. (51), we have the degeneracy
1786
+ limf→0{γIT
1787
+ u } = {γIV
1788
+ u } = {γIS
1789
+ u } and need the sub-leading
1790
+ correction O(f 2) to decompose the two spectra. We thus
1791
+ have a significant suppression (1 − R2
1792
+ IT ) ≲ 0.1 at f ≲
1793
+ 10Hz.
1794
+ In Fig. 8, we examined the hypothetical case for de-
1795
+ composing the two odd spectra {WT , WV }. Their ORFs
1796
+ are parallel at the low frequency limit and nearly parallel
1797
+ around the anathematic frequency 13Hz. We thus have
1798
+ the siginificant signal reduction below 13Hz, as in Fig. 8.
1799
+ Next we move to examine the decomposition of more
1800
+ than two spectra nQ > 2. In Fig. 9, we show the reduc-
1801
+ HIKLV
1802
+ HKLV
1803
+ HLV
1804
+ 0
1805
+ 50
1806
+ 100
1807
+ 150
1808
+ 200
1809
+ 0.0
1810
+ 0.2
1811
+ 0.4
1812
+ 0.6
1813
+ 0.8
1814
+ 1.0
1815
+ f[Hz]
1816
+ 1-RWT WV
1817
+ 2
1818
+ FIG. 8. The reduction factors 1−R2
1819
+ WT WV for the hypothetical
1820
+ two component analysis {WT , WV }.
1821
+ ITIVIS(HIKLV)
1822
+ ITIVIS(HKLV)
1823
+ ITIVIS(HLV)
1824
+ ITIVISWTWV(HIKLV)
1825
+ 50
1826
+ 100
1827
+ 150
1828
+ 200
1829
+ 0.0
1830
+ 0.2
1831
+ 0.4
1832
+ 0.6
1833
+ 0.8
1834
+ 1.0
1835
+ f[Hz]
1836
+ 1-RIT
1837
+ 2
1838
+ FIG. 9. The reduction factors 1 − R2
1839
+ TT for the three and five
1840
+ component analyses.
1841
+ HIKLV
1842
+ HKLV
1843
+ HLV
1844
+ 0
1845
+ 50
1846
+ 100
1847
+ 150
1848
+ 200
1849
+ 0.0
1850
+ 0.2
1851
+ 0.4
1852
+ 0.6
1853
+ 0.8
1854
+ 1.0
1855
+ f[Hz]
1856
+ 1-RIT WT
1857
+ 2
1858
+ FIG. 10. The reduction factors 1 − R2
1859
+ IT WT for the two com-
1860
+ ponent analysis {IT , WT }.
1861
+
1862
+ 12
1863
+ tion factor (1−R2
1864
+ IT ) at separating the three even spectra
1865
+ {IT , IV , IS}. In contrast to the two component cases in
1866
+ Fig. 7, the strong suppression 1 − R2
1867
+ IT ≲ 0.1 continues
1868
+ up to 20Hz. This is because the trinity degeneracy (54)
1869
+ works still at the sub-leading order O(f 2). We thus need
1870
+ the higher corrections O(f 4) to isolate the three spectra.
1871
+ In fact, even for a detector network not tangential to a
1872
+ sphere, we still have det F = O(f 4) for the 3 × 3 matrix
1873
+ F of the three even spectra {IT , IV , IS}.
1874
+ Note that the LIGO-India plays a key role for the usage
1875
+ of the higher order terms O(f 4) (or more appropriately
1876
+ O(y4) for the perturbative expansion). In Fig. 9, we can
1877
+ clearly see the resulting improvement around 20-40Hz.
1878
+ Here the mechanism around Eq. (56) works efficiently,
1879
+ in particular, with the HI and IL pairs.
1880
+ In Fig. 10, we present the result for the two tensorial
1881
+ spectra {IT , WT }. Since their ORFs {γIT
1882
+ u } and {γWT
1883
+ u
1884
+ }
1885
+ are generally not parallel, the reduction is not significant.
1886
+ If we use the HIKLV pair, the reduction factor is no less
1887
+ than 0.8.
1888
+ VII.
1889
+ SIGNAL TO NOISE RATIO
1890
+ A.
1891
+ Results for the HIKLV Network
1892
+ Now we discuss the signal-to-noise ratios SNRQ after
1893
+ the spectral decomposition and the associated frequency
1894
+ profiles ZQ(f) defined in Eq. (77). We start with the
1895
+ results for the HIKLV network and flat spectra ΩQ
1896
+ GW =
1897
+ const.
1898
+ In Fig. 11, we show the profile ZIT (f) for IT . The
1899
+ sharp dip around 10Hz is caused by the noise spike in
1900
+ Fig.
1901
+ 5.
1902
+ The uppermost blue line shows the result for
1903
+ the simplest case only with IT (no reduction factor). Its
1904
+ peak is around 25Hz with the integrated value SNRIT
1905
+ (see Eq. (71))
1906
+ SNR0 = 19.0
1907
+
1908
+ ΩIT
1909
+ GW
1910
+ 10−8
1911
+ � �Tobs
1912
+ 3yr
1913
+ �1/2
1914
+ .
1915
+ (84)
1916
+ We use this expression to normalize the signals SNRQ
1917
+ in different settings, as presented in Tables V and VI.
1918
+ In Fig. 11, the four lines other than the blue one show
1919
+ the profiles ZIT (f) after decomposing multiple spectra.
1920
+ Their fractional differences from the blue lines represent
1921
+ the corresponding reduction factor (1 − R2
1922
+ IT ).
1923
+ At the decomposition of IT and WT (dashed orange
1924
+ line in Fig. 12), the statistical loss is inconspicuous with
1925
+ the total value SNRIT /SNR0 = 0.99 (see Table V). How-
1926
+ ever, we need to pay a significant cost to isolate the three
1927
+ even spectra IT , IV and IS. The total signal decreases
1928
+ down to SNRIT /SNR0 = 0.47 and the peak of the profile
1929
+ ZIT (f) moves up to ∼ 40Hz.
1930
+ In Figure 12 and Table VI, we show the results for the
1931
+ odd tensor spectrum WT . Similarly to Fig. 11, we can
1932
+ isolate it from IT with almost no loss of the integrated
1933
+ signal SNRWT (see Table VI). When we separate WT and
1934
+ IT only
1935
+ ITWT
1936
+ ITIV
1937
+ ITIVIS
1938
+ ITIVISWTWV
1939
+ 5
1940
+ 10
1941
+ 50
1942
+ 100
1943
+ 1. × 10-12
1944
+ 1. × 10-9
1945
+ 1. × 10-6
1946
+ 0.000
1947
+ 1
1948
+ 1000
1949
+ f[Hz]
1950
+ ZIT(f)
1951
+ FIG. 11.
1952
+ The factor ZIT (f) showing the signal strength
1953
+ defined in Eq. (77) for the HIKLV network. The blue and
1954
+ orange curves are nearly overlapped. The ratio between the
1955
+ blue and other curves corresponds to the reduction factor 1−
1956
+ R2
1957
+ IT due to the signal correlation. The sharp dip around 9Hz
1958
+ is due to the noise spectrum NAL(f).
1959
+ WT only
1960
+ ITWT
1961
+ WTWV
1962
+ ITIVISWTWV
1963
+ 5
1964
+ 10
1965
+ 50
1966
+ 100
1967
+ 1. × 10-8
1968
+ 1. × 10-4
1969
+ 1
1970
+ f[Hz]
1971
+ ZWT(f)
1972
+ FIG. 12. The factor ZWT (f) showing the signal strength de-
1973
+ fined in Eq. (77) for the HIKLV network. The green and the
1974
+ red curves have the sharp dips around 13Hz.
1975
+ WV , the anathematic frequency 13Hz clearly appears,
1976
+ as shown by the green and red lines, and the function
1977
+ ZWT (f) is significantly suppressed below ∼ 20Hz.
1978
+ In
1979
+ contrast to ZIT (f), the peak of the profile ZWT (f) stays
1980
+ around 25Hz.
1981
+ B.
1982
+ LIGO-India
1983
+ Next we discuss the impacts of adding LIGO-India to
1984
+ the detector network. As shown in Table V, for the single
1985
+ spectral search IT , LIGO-India increases the total signal
1986
+ SNRIT by only 3%. However, together with KAGRA, it
1987
+ makes a notable contribution to improve the sensitivity
1988
+ to the odd spectra WT (see Table VI). In addition, as
1989
+ explained earlier, LIGO-India also helps us to use the
1990
+ higher order terms O(f 4) for decomposing the three even
1991
+ spectra. For the five spectral search, we can double both
1992
+
1993
+ 13
1994
+ HIKLV
1995
+ HKLV
1996
+ HILV
1997
+ 5
1998
+ 10
1999
+ 50
2000
+ 100
2001
+ 1. × 10-13
2002
+ 1. × 10-8
2003
+ 0.000
2004
+ 100.000
2005
+ f[Hz]
2006
+ ZIT(f)
2007
+ HIKLV
2008
+ HKLV
2009
+ HILV
2010
+ 5
2011
+ 10
2012
+ 50
2013
+ 100
2014
+ 1. × 10-11
2015
+ 1. × 10-8
2016
+ 1. × 10-5
2017
+ 0.01
2018
+ 10
2019
+ f[Hz]
2020
+ ZWT(f)
2021
+ FIG. 13. The top and bottom panels respectively show ZIT (f)
2022
+ and ZIT (f) for three networks. The dotted lines in the upper
2023
+ panel are proportional to f 2 and f −2.
2024
+ SNRIT and SNRWT by adding the LIGO-India detector.
2025
+ C.
2026
+ Power-law Models
2027
+ So far, we have assumed that the background has flat
2028
+ spectra ΩQ
2029
+ GW = const. Now, we briefly discuss a power-
2030
+ law form ΩQ
2031
+ GW ∝ f α in the frequency regime in interest.
2032
+ The integrated signal SNRQ in Eq. (78) has the dom-
2033
+ inant contribution around the frequency where the func-
2034
+ tion ZQ(f) is tangential to a curve f −2α. As deduced
2035
+ from Fig. 13, for the five spectral decompositions with
2036
+ the HIKLV network, the tangential frequencies are 40Hz
2037
+ for IT and 25Hz for WT , as long as the index α is in
2038
+ the range [−1, 1]. Therefore, the total signals are very
2039
+ roughly given as
2040
+ SNRIT ∼ 19 × 0.4
2041
+
2042
+ ΩIT
2043
+ GW (40Hz)
2044
+ 10−8
2045
+ � �Tobs
2046
+ 3yr
2047
+ �1/2
2048
+ (85)
2049
+ SNRWT ∼ 19 × 0.39
2050
+
2051
+ ΩWT
2052
+ GW (25Hz)
2053
+ 10−8
2054
+ � �Tobs
2055
+ 3yr
2056
+ �1/2
2057
+ .(86)
2058
+ TABLE V. Ratio SNRIT /SNR0 after the spectral isolation.
2059
+ All five components of LHV is missing since LHV has only
2060
+ three independent detector pairs. We assumed a flat spectrum
2061
+ ΩIT
2062
+ GW = const.
2063
+ background components
2064
+ KILHV
2065
+ KLHV
2066
+ LHV
2067
+ IT only
2068
+ 1
2069
+ 0.97
2070
+ 0.91
2071
+ IT , WT
2072
+ 0.99
2073
+ 0.96
2074
+ 0.91
2075
+ IT , IV
2076
+ 0.63
2077
+ 0.57
2078
+ 0.47
2079
+ IT , IS
2080
+ 0.89
2081
+ 0.82
2082
+ 0.74
2083
+ IT , IV , IS
2084
+ 0.47
2085
+ 0.33
2086
+ 0.22
2087
+ All five
2088
+ 0.40
2089
+ 0.20
2090
+ *
2091
+ TABLE VI. Ratio SNRWT /SNR0 after the spectral isolation.
2092
+ We assume flat spectra and omit the factor ΩWT
2093
+ GW /ΩIT
2094
+ GW for
2095
+ simplicity.
2096
+ background components
2097
+ KILHV
2098
+ KLHV
2099
+ LHV
2100
+ WT only
2101
+ 0.62
2102
+ 0.40
2103
+ 0.18
2104
+ WT , IT
2105
+ 0.62
2106
+ 0.39
2107
+ 0.18
2108
+ WT , WV
2109
+ 0.43
2110
+ 0.20
2111
+ 0.06
2112
+ All five
2113
+ 0.39
2114
+ 0.17
2115
+ *
2116
+ VIII.
2117
+ SUMMARY
2118
+ In this paper, we studied the prospects for the polar-
2119
+ izational study of isotropic stochastic gravitational wave
2120
+ backgrounds by correlating second generation detectors.
2121
+ In the long-wave approximation, the backgrounds are
2122
+ generally characterized by the five spectra IT,V,S and
2123
+ WT,V . The modes other than IT can appear in modi-
2124
+ fied theories of gravity.
2125
+ For correlation analysis, the ORFs play key roles. In
2126
+ this paper, we newly identified two simple relations be-
2127
+ hind them. The first one is the trinity degeneracy (54)
2128
+ between the three even ORFs at the sub-leading order
2129
+ O(f 2). The second one is the degeneracy between the
2130
+ two odd ORFs around the specific frequency 13Hz.
2131
+ For each detector pair, the correlation product is given
2132
+ as a linear combination of the five spectra. To closely
2133
+ examine theories of gravitation, we desire to separate
2134
+ the five spectra clearly.
2135
+ We thus examined their alge-
2136
+ braic decomposition using the difference between the in-
2137
+ volved ORFs. Here we generally need to handle an over-
2138
+ determined problem. By extending an analytic frame-
2139
+ work in the literature, we derived the formal expression
2140
+ (78) for the optimal SNRs after the spectral decomposi-
2141
+ tion.
2142
+ Then, assuming an identical noise curve for the five
2143
+ detectors and flat background spectra, we discussed the
2144
+ statistical loss of sensitivities accompanied by the decom-
2145
+ position. This loss is closely related to the off-diagonal
2146
+ elements of the matrix F QQ′ ∝ �np
2147
+ i=1 γQ
2148
+ u γQ′
2149
+ u .
2150
+ In this context, our two findings are quite useful for
2151
+ following the singular behaviors at the decomposition.
2152
+ On the one hand, when simultaneously dealing with the
2153
+
2154
+ 14
2155
+ three even spectra, due to the higher order degeneracy of
2156
+ their ORFs, we have a large signal reduction below 20Hz,
2157
+ unlike the two spectral decomposition (such as IT − IV
2158
+ and IT − IS). On the other hand, it is very difficult to
2159
+ separate the two odd spectra below ∼ 20Hz, including
2160
+ the anathematic frequency 13Hz.
2161
+ Given the structure
2162
+ of the covariance matrix F, these limitations will also
2163
+ appear in the likelihood or Fisher matrix analyses.
2164
+ We also discussed the advantage of adding the LIGO-
2165
+ India detector to the ground-based detector network. As
2166
+ shown in Tables V and VI, it can largely increase the
2167
+ sensitivities to the odd spectra and will also help us to
2168
+ decompose multiple spectra. Here the HI and LI pairs
2169
+ are particularly useful with the large separation angles
2170
+ β.
2171
+ In this paper, we have mainly considered the sec-
2172
+ ond generation ground-based detectors.
2173
+ However, our
2174
+ method is general enough to be straightforwardly applied
2175
+ to the third generation ground-based detectors (such as
2176
+ ET [48] and CE [49], see also
2177
+ [50]) and partially to
2178
+ space borne detectors (LISA [39], TAIJI [40], and Tian-
2179
+ Qin [41]). The former will cover a lower frequency regime
2180
+ than that of the second generation ones and will be more
2181
+ severely affected by the limitations associated with our
2182
+ two findings.
2183
+ ACKNOWLEDGMENTS
2184
+ We would like to thank M. Ando and S. Bose for valu-
2185
+ able comments. This work is supported by JSPS Kakenhi
2186
+ Grant-in-Aid for Scientific Research (Nos. 17H06358 and
2187
+ 19K03870). HO is supported by Grant-in-Aid for JSPS
2188
+ Fellows JP22J14159.
2189
+ Appendix A: optimal SNR for the ground-based
2190
+ detectors
2191
+ Assuming the flat spectrum of the background and us-
2192
+ ing Eq. (78), we can evaluate the SNR for each spectra
2193
+ after the decomposition. As a reference, we provide nu-
2194
+ merical results for the five spectral components. For the
2195
+ HKLV-network, we obtain
2196
+ SNRIT = 3.94
2197
+
2198
+ ΩIT
2199
+ GW
2200
+ 10−8
2201
+ � �Tobs
2202
+ 3yr
2203
+ �1/2
2204
+ (A1)
2205
+ SNRIV = 2.75
2206
+
2207
+ ΩIV
2208
+ GW
2209
+ 10−8
2210
+ � �Tobs
2211
+ 3yr
2212
+ �1/2
2213
+ (A2)
2214
+ SNRIS = 6.81
2215
+
2216
+ ΩIS
2217
+ GW
2218
+ 10−8
2219
+ � �Tobs
2220
+ 3yr
2221
+ �1/2
2222
+ (A3)
2223
+ SNRWT = 3.14
2224
+
2225
+ ΩWT
2226
+ GW
2227
+ 10−8
2228
+ � �Tobs
2229
+ 3yr
2230
+ �1/2
2231
+ (A4)
2232
+ SNRWV = 4.07
2233
+
2234
+ ΩWV
2235
+ GW
2236
+ 10−8
2237
+ � �Tobs
2238
+ 3yr
2239
+ �1/2
2240
+ .
2241
+ (A5)
2242
+ For the HIKLV-network, we have
2243
+ SNRIT = 7.53
2244
+
2245
+ ΩIT
2246
+ GW
2247
+ 10−8
2248
+ � �Tobs
2249
+ 3yr
2250
+ �1/2
2251
+ (A6)
2252
+ SNRIV = 6.14
2253
+
2254
+ ΩIV
2255
+ GW
2256
+ 10−8
2257
+ � �Tobs
2258
+ 3yr
2259
+ �1/2
2260
+ (A7)
2261
+ SNRIS = 9.74
2262
+
2263
+ ΩIS
2264
+ GW
2265
+ 10−8
2266
+ � �Tobs
2267
+ 3yr
2268
+ �1/2
2269
+ (A8)
2270
+ SNRWT = 7.50
2271
+
2272
+ ΩWT
2273
+ GW
2274
+ 10−8
2275
+ � �Tobs
2276
+ 3yr
2277
+ �1/2
2278
+ (A9)
2279
+ SNRWV = 8.27
2280
+
2281
+ ΩWV
2282
+ GW
2283
+ 10−8
2284
+ � �Tobs
2285
+ 3yr
2286
+ �1/2
2287
+ .
2288
+ (A10)
2289
+ [1] A. A. Starobinsky, Spectrum of relict gravitational radi-
2290
+ ation and the early state of the universe, JETP Lett. 30,
2291
+ 682 (1979).
2292
+ [2] R. Easther, J. T. Giblin, and E. A. Lim, Gravitational
2293
+ wave production at the end of inflation, Phys. Rev. Lett.
2294
+ 99, 221301 (2007).
2295
+ [3] S. Kuroyanagi, T. Chiba, and N. Sugiyama, Precision
2296
+ calculations of the gravitational wave background spec-
2297
+ trum from inflation, Phys. Rev. D 79, 103501 (2009),
2298
+ arXiv:0804.3249 [astro-ph].
2299
+ [4] J. L. Cook and L. Sorbo, Particle production dur-
2300
+ ing inflation and gravitational waves detectable by
2301
+ ground-based interferometers, Phys. Rev. D 85, 023534
2302
+ (2012), [Erratum: Phys.Rev.D 86, 069901 (E) (2012)],
2303
+ arXiv:1109.0022 [astro-ph.CO].
2304
+ [5] M. Kamionkowski, A. Kosowsky, and M. S. Turner, Grav-
2305
+ itational radiation from first order phase transitions,
2306
+ Phys. Rev. D 49, 2837 (1994), arXiv:astro-ph/9310044.
2307
+ [6] C. Caprini, R. Durrer, and G. Servant, Gravitational
2308
+ wave generation from bubble collisions in first-order
2309
+ phase transitions: An analytic approach, Phys. Rev. D
2310
+ 77, 124015 (2008), arXiv:0711.2593 [astro-ph].
2311
+ [7] A. J. Farmer and E. Phinney, The gravitational wave
2312
+ background from cosmological compact binaries, Mon.
2313
+ Not. Roy. Astron. Soc. 346, 1197 (2003), arXiv:astro-
2314
+ ph/0304393.
2315
+ [8] X.-J. Zhu, E. J. Howell, D. G. Blair, and Z.-H. Zhu,
2316
+ On the gravitational wave background from compact bi-
2317
+ nary coalescences in the band of ground-based interfer-
2318
+ ometers, Mon. Not. Roy. Astron. Soc. 431, 882 (2013),
2319
+
2320
+ 15
2321
+ arXiv:1209.0595 [gr-qc].
2322
+ [9] N. Christensen, Stochastic Gravitational Wave Back-
2323
+ grounds,
2324
+ Rept.
2325
+ Prog.
2326
+ Phys.
2327
+ 82,
2328
+ 016903
2329
+ (2019),
2330
+ arXiv:1811.08797 [gr-qc].
2331
+ [10] S. Kuroyanagi, T. Chiba, and T. Takahashi, Probing
2332
+ the Universe through the Stochastic Gravitational Wave
2333
+ Background, JCAP 11, 038, arXiv:1807.00786 [astro-
2334
+ ph.CO].
2335
+ [11] E. Berti et al., Testing General Relativity with Present
2336
+ and Future Astrophysical Observations, Class. Quant.
2337
+ Grav. 32, 243001 (2015), arXiv:1501.07274 [gr-qc].
2338
+ [12] C. Corda, Primordial production of massive relic gravi-
2339
+ tational waves from a weak modification of General Rel-
2340
+ ativity, Astropart. Phys. 30, 209 (2008), arXiv:0812.0483
2341
+ [gr-qc].
2342
+ [13] T. Callister, A. S. Biscoveanu, N. Christensen, M. Isi,
2343
+ A. Matas, O. Minazzoli, T. Regimbau, M. Sakellariadou,
2344
+ J. Tasson, and E. Thrane, Polarization-based Tests of
2345
+ Gravity with the Stochastic Gravitational-Wave Back-
2346
+ ground, Phys. Rev. X 7, 041058 (2017), arXiv:1704.08373
2347
+ [gr-qc].
2348
+ [14] K. Chatziioannou, N. Yunes, and N. Cornish, Model-
2349
+ Independent Test of General Relativity: An Extended
2350
+ post-Einsteinian Framework with Complete Polarization
2351
+ Content, Phys. Rev. D 86, 022004 (2012), [Erratum:
2352
+ Phys.Rev.D 95, 129901 (2017)], arXiv:1204.2585 [gr-qc].
2353
+ [15] M. Isi and A. J. Weinstein, Probing gravitational wave
2354
+ polarizations with signals from compact binary coales-
2355
+ cences, (2017), arXiv:1710.03794 [gr-qc].
2356
+ [16] H. Takeda, A. Nishizawa, K. Nagano, Y. Michimura,
2357
+ K. Komori, M. Ando, and K. Hayama, Prospects for
2358
+ gravitational-wave polarization tests from compact bi-
2359
+ nary mergers with future ground-based detectors, Phys.
2360
+ Rev. D 100, 042001 (2019), arXiv:1904.09989 [gr-qc].
2361
+ [17] Y. Hagihara, N. Era, D. Iikawa, A. Nishizawa, and
2362
+ H. Asada, Constraining extra gravitational wave polar-
2363
+ izations with Advanced LIGO, Advanced Virgo and KA-
2364
+ GRA and upper bounds from GW170817, Phys. Rev. D
2365
+ 100, 064010 (2019), arXiv:1904.02300 [gr-qc].
2366
+ [18] H. Takeda, S. Morisaki, and A. Nishizawa, Pure polariza-
2367
+ tion test of GW170814 and GW170817 using waveforms
2368
+ consistent with modified theories of gravity, Phys. Rev.
2369
+ D 103, 064037 (2021), arXiv:2010.14538 [gr-qc].
2370
+ [19] H. Takeda,
2371
+ S. Morisaki, and A. Nishizawa, Search
2372
+ for scalar-tensor mixed polarization modes of grav-
2373
+ itational waves, Phys. Rev. D 105, 084019 (2022),
2374
+ arXiv:2105.00253 [gr-qc].
2375
+ [20] A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmolog-
2376
+ ical signature of new parity violating interactions, Phys.
2377
+ Rev. Lett. 83, 1506 (1999), arXiv:astro-ph/9812088.
2378
+ [21] S. H. S. Alexander, M. E. Peskin, and M. M. Sheikh-
2379
+ Jabbari, Leptogenesis from gravity waves in models of
2380
+ inflation, Phys. Rev. Lett. 96, 081301 (2006), arXiv:hep-
2381
+ th/0403069.
2382
+ [22] T. Kahniashvili, G. Gogoberidze, and B. Ratra, Polar-
2383
+ ized cosmological gravitational waves from primordial
2384
+ helical turbulence, Phys. Rev. Lett. 95, 151301 (2005),
2385
+ arXiv:astro-ph/0505628.
2386
+ [23] M. Satoh, S. Kanno, and J. Soda, Circular Polarization
2387
+ of Primordial Gravitational Waves in String-inspired In-
2388
+ flationary Cosmology, Phys. Rev. D 77, 023526 (2008),
2389
+ arXiv:0706.3585 [astro-ph].
2390
+ [24] P. Adshead and M. Wyman, Chromo-Natural Inflation:
2391
+ Natural inflation on a steep potential with classical
2392
+ non-Abelian gauge fields, Phys. Rev. Lett. 108, 261302
2393
+ (2012), arXiv:1202.2366 [hep-th].
2394
+ [25] E. Dimastrogiovanni, M. Fasiello, and T. Fujita, Primor-
2395
+ dial Gravitational Waves from Axion-Gauge Fields Dy-
2396
+ namics, JCAP 01, 019, arXiv:1608.04216 [astro-ph.CO].
2397
+ [26] J.
2398
+ Ellis,
2399
+ M.
2400
+ Fairbairn,
2401
+ M.
2402
+ Lewicki,
2403
+ V.
2404
+ Vaskonen,
2405
+ and A. Wickens, Detecting circular polarisation in the
2406
+ stochastic gravitational-wave background from a first-
2407
+ order cosmological phase transition, JCAP 10, 032,
2408
+ arXiv:2005.05278 [astro-ph.CO].
2409
+ [27] S. Okano and T. Fujita, Chiral Gravitational Waves Pro-
2410
+ duced in a Helical Magnetogenesis Model, JCAP 03, 026,
2411
+ arXiv:2005.13833 [astro-ph.CO].
2412
+ [28] E. E. Flanagan, The Sensitivity of the laser interferome-
2413
+ ter gravitational wave observatory (LIGO) to a stochas-
2414
+ tic background, and its dependence on the detector ori-
2415
+ entations, Phys. Rev. D 48, 2389 (1993), arXiv:astro-
2416
+ ph/9305029.
2417
+ [29] B. Allen and J. D. Romano, Detecting a stochastic
2418
+ background of gravitational radiation:
2419
+ Signal process-
2420
+ ing strategies and sensitivities, Phys. Rev. D 59, 102001
2421
+ (1999), arXiv:gr-qc/9710117.
2422
+ [30] J. D. Romano and N. J. Cornish, Detection meth-
2423
+ ods for stochastic gravitational-wave backgrounds:
2424
+ a
2425
+ unified
2426
+ treatment,
2427
+ Living
2428
+ Rev.
2429
+ Rel.
2430
+ 20,
2431
+ 2
2432
+ (2017),
2433
+ arXiv:1608.06889 [gr-qc].
2434
+ [31] H. Omiya and N. Seto, Correlation analysis for isotropic
2435
+ stochastic gravitational wave backgrounds with maxi-
2436
+ mally allowed polarization degrees, Phys. Rev. D 104,
2437
+ 064021 (2021), arXiv:2107.12001 [astro-ph.CO].
2438
+ [32] R. Abbott et al. (KAGRA, Virgo, LIGO Scientific),
2439
+ Upper limits on the isotropic gravitational-wave back-
2440
+ ground from Advanced LIGO and Advanced Virgo’s
2441
+ third observing run, Phys. Rev. D 104, 022004 (2021),
2442
+ arXiv:2101.12130 [gr-qc].
2443
+ [33] N. Seto, Quest for circular polarization of gravitational
2444
+ wave background and orbits of laser interferometers in
2445
+ space, Phys. Rev. D 75, 061302(R) (2007), arXiv:astro-
2446
+ ph/0609633.
2447
+ [34] C. Will, Theory and experiment in gravitational physics
2448
+ (1993).
2449
+ [35] H. Omiya and N. Seto, Searching for anomalous polar-
2450
+ ization modes of the stochastic gravitational wave back-
2451
+ ground with LISA and Taiji, Phys. Rev. D 102, 084053
2452
+ (2020), arXiv:2010.00771 [gr-qc].
2453
+ [36] N.
2454
+ Seto
2455
+ and
2456
+ A.
2457
+ Taruya,
2458
+ Polarization
2459
+ analysis
2460
+ of
2461
+ gravitational-wave backgrounds from the correlation sig-
2462
+ nals of ground-based interferometers:
2463
+ Measuring a
2464
+ circular-polarization mode, Phys. Rev. D 77, 103001
2465
+ (2008), arXiv:0801.4185 [astro-ph].
2466
+ [37] M.
2467
+ Isi
2468
+ and
2469
+ L.
2470
+ C.
2471
+ Stein,
2472
+ Measuring
2473
+ stochastic
2474
+ gravitational-wave
2475
+ energy
2476
+ beyond
2477
+ general
2478
+ relativity,
2479
+ Phys. Rev. D 98, 104025 (2018), arXiv:1807.02123
2480
+ [gr-qc].
2481
+ [38] N. Seto and A. Taruya, Measuring a Parity Violation
2482
+ Signature in the Early Universe via Ground-based Laser
2483
+ Interferometers, Phys. Rev. Lett. 99, 121101 (2007),
2484
+ arXiv:0707.0535 [astro-ph].
2485
+ [39] P. Amaro-Seoane et al. (LISA), Laser Interferometer
2486
+ Space Antenna, (2017), arXiv:1702.00786 [astro-ph.IM].
2487
+ [40] W.-R. Hu and Y.-L. Wu, The Taiji Program in Space
2488
+ for gravitational wave physics and the nature of gravity,
2489
+ Natl. Sci. Rev. 4, 685 (2017).
2490
+
2491
+ 16
2492
+ [41] J. Luo et al. (TianQin), TianQin: a space-borne gravi-
2493
+ tational wave detector, Class. Quant. Grav. 33, 035010
2494
+ (2016), arXiv:1512.02076 [astro-ph.IM].
2495
+ [42] N. Seto, Measuring Parity Asymmetry of Gravitational
2496
+ Wave Backgrounds with a Heliocentric Detector Network
2497
+ in the mHz Band, Phys. Rev. Lett. 125, 251101 (2020),
2498
+ arXiv:2009.02928 [gr-qc].
2499
+ [43] G.-C. Liu and K.-W. Ng, Overlap reduction functions for
2500
+ a polarized stochastic gravitational-wave background in
2501
+ the Einstein Telescope-Cosmic Explorer and the LISA-
2502
+ Taiji networks, (2022), arXiv:2210.16143 [gr-qc].
2503
+ [44] N. Seto, Gravitational Wave Background Search by Cor-
2504
+ relating Multiple Triangular Detectors in the mHz Band,
2505
+ Phys. Rev. D 102, 123547 (2020), arXiv:2010.06877 [gr-
2506
+ qc].
2507
+ [45] N. Seto, Prospects for direct detection of circular po-
2508
+ larization of gravitational-wave background, Phys. Rev.
2509
+ Lett. 97, 151101 (2006), arXiv:astro-ph/0609504.
2510
+ [46] M. E. S. G. Lisa Barsotti, Peter Fritschel, Advanced ligo
2511
+ anticipated sensitivity curves, (2018).
2512
+ [47] A. Nishizawa, A. Taruya, K. Hayama, S. Kawamura, and
2513
+ M.-a. Sakagami, Probing non-tensorial polarizations of
2514
+ stochastic gravitational-wave backgrounds with ground-
2515
+ based laser interferometers, Phys. Rev. D 79, 082002
2516
+ (2009), arXiv:0903.0528 [astro-ph.CO].
2517
+ [48] M. Punturo et al., The Einstein Telescope:
2518
+ A third-
2519
+ generation gravitational wave observatory, Class. Quant.
2520
+ Grav. 27, 194002 (2010).
2521
+ [49] D. Reitze et al., Cosmic Explorer: The U.S. Contribu-
2522
+ tion to Gravitational-Wave Astronomy beyond LIGO,
2523
+ Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833
2524
+ [astro-ph.IM].
2525
+ [50] L. Amalberti, N. Bartolo, and A. Ricciardone, Sensitivity
2526
+ of third-generation interferometers to extra polarizations
2527
+ in the stochastic gravitational wave background, Phys.
2528
+ Rev. D 105, 064033 (2022), arXiv:2105.13197 [astro-
2529
+ ph.CO].
2530
+
A9AzT4oBgHgl3EQfhv18/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
AdAzT4oBgHgl3EQfF_tg/content/tmp_files/2301.01020v1.pdf.txt ADDED
@@ -0,0 +1,862 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Supervised Acoustic Embeddings And Their Transferability Across
2
+ Languages
3
+ Sreepratha Ram
4
+ UAE University
5
6
+ Hanan Aldarmaki
7
+ MBZUAI
8
9
+ Abstract
10
+ In speech recognition, it is essential to model
11
+ the phonetic content of the input signal while
12
+ discarding irrelevant factors such as speaker
13
+ variations and noise, which is challenging in
14
+ low-resource settings.
15
+ Self-supervised pre-
16
+ training has been proposed as a way to
17
+ improve both supervised and unsupervised
18
+ speech recognition, including frame-level fea-
19
+ ture representations and Acoustic Word Em-
20
+ beddings (AWE) for variable-length segments.
21
+ However, self-supervised models alone cannot
22
+ learn perfect separation of the linguistic con-
23
+ tent as they are trained to optimize indirect ob-
24
+ jectives. In this work, we experiment with dif-
25
+ ferent pre-trained self-supervised features as
26
+ input to AWE models and show that they work
27
+ best within a supervised framework. Models
28
+ trained on English can be transferred to other
29
+ languages with no adaptation and outperform
30
+ self-supervised models trained solely on the
31
+ target languages.
32
+ Keywords— Unsupervised ASR, Transfer Learn-
33
+ ing, Acoustic Word Embeddings
34
+ 1
35
+ Introduction
36
+ With supervised speech recognition systems get-
37
+ ting more robust and accurate due to the avail-
38
+ ability of large amounts of labeled data and com-
39
+ putational power (Gulati et al., 2020; Baevski
40
+ et al., 2020b), more attention is now given to low-
41
+ resource languages for which training data are lim-
42
+ ited or non-existent (Aldarmaki et al., 2022). Un-
43
+ supervised pre-training using unlabeled speech can
44
+ be leveraged to improve both supervised and un-
45
+ supervised models; for instance, speech represen-
46
+ tations pre-trained on large amounts of unlabeled
47
+ speech from multiple languages have been shown
48
+ to improve ASR performance for low-resource lan-
49
+ guages (Kawakami et al., 2020; Conneau et al.,
50
+ 2020).
51
+ While most supervised ASR models operate at
52
+ the level of phones, word-level segmental ASR
53
+ where variable-length segments are modeled and
54
+ embedded into fixed-dimensional vectors have also
55
+ been explored with relative success (Abdel-Hamid
56
+ et al., 2013; He and Fosler-Lussier, 2015). In a
57
+ similar vein, Acoustic Word Embeddings (AWEs)
58
+ have been proposed as a way to efficiently compare
59
+ variable-length speech segments in low-resource
60
+ settings (Peng et al., 2020; Kamper et al., 2020).
61
+ Unlike written words, spoken words naturally con-
62
+ tain speaker and phonetic variability that makes
63
+ them more difficult to model in a latent space with-
64
+ out supervision. Self-supervised pre-training and
65
+ cross-lingual transfer are two possible approaches
66
+ to make unsupervised models more robust to non-
67
+ linguistic variations in the input signal.
68
+ In this work, we investigate the performance of
69
+ self-supervised training of AWE models versus su-
70
+ pervised training with zero-shot cross-lingual trans-
71
+ fer. We experiment with different types of acoustic
72
+ features and measure their performance separately
73
+ and within the AWE models. While we find that
74
+ pre-trained acoustic features improve the perfor-
75
+ mance of self-supervised AWE models to some
76
+ extent, a larger improvement can be achieved when
77
+ the AWE models are trained in a supervised manner
78
+ using small amount of labeled data from a different
79
+ language. This zero-shot cross-lingual transfer is
80
+ observed consistently across different languages,
81
+ and particularly with the use of pre-trained feature
82
+ representations. Our results suggest that supervised
83
+ training with zero-shot cross-lingual transfer is a
84
+ more effective approach for low-resource speech
85
+ models compared with purely self-supervised train-
86
+ ing1.
87
+ 2
88
+ Background & Related Work
89
+ Spoken language is often modeled using short
90
+ fixed-length frames of 10 to 30 ms duration, which
91
+ 1We provide python training and evaluation scripts
92
+ for replicating our experiments:
93
+ https://github.com/h-
94
+ aldarmaki/acoustic_embeddings
95
+ arXiv:2301.01020v1 [cs.CL] 3 Jan 2023
96
+
97
+ results in variable-length word segments. Dynamic
98
+ Time Warping (DTW) is an early technique that
99
+ uses dynamic programming to compare variable-
100
+ length segments by finding optimal frame-wise
101
+ alignment. DTW is rather inefficient, which mo-
102
+ tivates embedding variable-length segments into
103
+ vectors of fixed size that can be compared using
104
+ more efficient metrics such as cosine or Euclidean
105
+ distance (Levin et al., 2013). Different types of
106
+ Acoustic Word Embeddings (AWE) have been pro-
107
+ posed. As these techniques are generally meant for
108
+ low-resource languages, they are typically trained
109
+ in a self-supervised manner, most commonly us-
110
+ ing an auto-encoder network with reconstruction
111
+ loss (Chung et al., 2016; Holzenberger et al., 2018).
112
+ Compared with direct comparison via DTW, these
113
+ AWEs generally result in similar or slightly supe-
114
+ rior performance while being far more efficient
115
+ (Holzenberger et al., 2018). Peng et al. (2020)
116
+ describes an alternative training strategy using cor-
117
+ respondence auto-encoders, which relies on word
118
+ pairs extracted via unsupervised spoken term dis-
119
+ covery, and further improvements can be achieved
120
+ using contrastive learning and multi-lingual adap-
121
+ tation (Jacobs et al., 2021).
122
+ The above models use static acoustic features
123
+ (e.g. MFCCs) as input. van Staden and Kam-
124
+ per (2021) shows that using pre-trained features
125
+ like CPC (van den Oord et al., 2018) improves the
126
+ performance of unsupervised AWE models. Pre-
127
+ trained features have been repeatedly shown to im-
128
+ prove performance in supervised downstream tasks
129
+ (Yang et al., 2021). In addition, pre-trained features
130
+ have been shown to transfer across languages. For
131
+ instance, a modified version of CPC (MCPC) is de-
132
+ scribed in Riviere et al. (2020), which demonstrates
133
+ that pre-training these features on Egnlish results
134
+ in improved phone classification accuracy for other
135
+ languages. Other types of pre-trained features, such
136
+ as wav2vec 2.0 (Baevski et al., 2020a) have been
137
+ shown to improve both supervised and unsuper-
138
+ vised ASR performance (Baevski et al., 2021), and
139
+ multi-lingual training of these features (i.e. XLSR-
140
+ 53) can lead to improvements across many lan-
141
+ guages compared to monolingual pre-training (Con-
142
+ neau et al., 2020).
143
+ 3
144
+ Objectives & Methodology
145
+ The objective of this study is to investigate the effec-
146
+ tiveness and trasnsferability of pre-trained acoustic
147
+ features when used as input to acoustic word em-
148
+ beddings. To that end, we compare self-supervised
149
+ AWEs trained directly on the target languages ver-
150
+ sus zero-shot cross-lingual transfer of supervised
151
+ AWEs trained on a different source language. To
152
+ our knowledge, the combination of pre-trained fea-
153
+ tures with AWE models has not been fully investi-
154
+ gated; most AWE models are trained with stan-
155
+ dard acoustic features like MFCCs, while self-
156
+ supervised features are typically evaluated within
157
+ supervised models fine-tuned for the target lan-
158
+ guages. Furthermore, zero-shot cross-lingual trans-
159
+ fer of supervised AWEs has not been the focus of
160
+ previous works in this area, which mainly focused
161
+ on improving self-supervised AWEs.
162
+ For the purpose of this evaluation, we use a rela-
163
+ tively simple architecture for the embedding model
164
+ and we fix the hyper-parameters based on prelimi-
165
+ nary validation results for English self-supervised
166
+ AWEs2. We do not do any further tuning of the
167
+ self-supervised or the supervised models. We use
168
+ English as the source language, and evaluate zero-
169
+ shot transfer on four other languages: French, Ger-
170
+ man, Spanish, and Arabic, with the latter used as
171
+ a challenge set since it contains more variability
172
+ and noise. No labeled data were used for the target
173
+ languages with the exception of word boundaries
174
+ which were obtained via force alignment. We eval-
175
+ uate mainly using minimal-pair ABX error rates
176
+ to measure phonetic discriminability and speaker
177
+ invariance. We also cluster the embedded words
178
+ and measure how often different occurrences of the
179
+ same words end up in the same cluster.
180
+ 4
181
+ Experimental Settings
182
+ 4.1
183
+ Model Architecture
184
+ Our AWE model consists of a multi-layer bidirec-
185
+ tional LSTM encoder, followed by a uni-directional
186
+ LSTM decoder, similar to Chung et al. (2016) and
187
+ (Holzenberger et al., 2018). The encoder takes a se-
188
+ quence of T acoustic features representing one spo-
189
+ ken word. The forward and backward states of the
190
+ last hidden layer of the encoder are concatenated
191
+ and used as an embedding of the given word, call
192
+ it hT . The decoder generates the target sequence
193
+ one step at a time, conditioned on hT and the out-
194
+ put at the previous time step, similar to Chung and
195
+ 2We observed that self-supervised models were very sen-
196
+ sitive to the choice of architecture and hyper-parameters, so
197
+ we fixed these in favor of self-supervised models. As shown
198
+ in later sections, we still got better results with the supervised
199
+ models, which shows that they are more robust and easier to
200
+ optimize on top of being more effective.
201
+
202
+ Glass (2018). In the self-supervised setting, the
203
+ target sequence is the same as the input sequence,
204
+ so the model is trained as an auto-encoder with
205
+ MSE loss. In the supervised setting, the target is a
206
+ sequence of phonemes representing the input word,
207
+ and the model is trained by minimizing the nega-
208
+ tive log-likelihood. We used 2-layer networks with
209
+ 100 hidden units for most models, which results
210
+ in embeddings of size 200. We also used dropout
211
+ with probability 0.3 on the input features, similar to
212
+ the denoising networks used in Chung et al. (2016).
213
+ More details of the parameters and training process
214
+ can be found in the Appendix.
215
+ 4.2
216
+ Feature Extraction
217
+ For easier reproduciblity, we used the s3prl toolkit3
218
+ for extracting all features. We used the pre-trained
219
+ s3prl upstream models; among the many pretrained
220
+ self supervised speech representations available,
221
+ modified CPC, Wav2Wec2 and XLSR-53 were cho-
222
+ sen based on superior DTW-based ABX scores4.
223
+ All pre-trained models, with the exception of
224
+ XLSR, have been exclusively pre-trained on En-
225
+ glish data. XLSR-53 was pre-trained on unlabeled
226
+ speech from 53 languages, including all target lan-
227
+ guages in our experiments. As observed by other
228
+ researchers (Bartelds et al., 2022), the performance
229
+ of features extracted from transformer-based mod-
230
+ els is largely dependent on the choice of layer; we
231
+ used the last hidden layer for modified CPC, the
232
+ second to last hidden layer for Wav2Vec2 and the
233
+ central hidden layer (layer 12) for XLSR-53. Aver-
234
+ aging all layers gave reasonable results, but these
235
+ choices led to the best performance. For MFCC fea-
236
+ tures, we also used the s3prl implementation, which
237
+ includes 13 static features as well as dynamic delta
238
+ and delta-delta coefficients.
239
+ 4.3
240
+ Data
241
+ We used the Librispeech (Panayotov et al., 2015)
242
+ and Multilingual Librispeech (Pratap et al., 2020)
243
+ datasets for English (en), French (fr), German (de),
244
+ and Spanish (es). We used the dev sets for train-
245
+ ing, and test sets for evaluation (dev-clean and test-
246
+ clean for English). We obtained the word bound-
247
+ aries automatically by forced alignment. For Ara-
248
+ bic (ar), we used the dev and test sets of MGB2
249
+ 3https://github.com/s3prl/s3prl
250
+ 4We did experiment with other features like APC, VQ-
251
+ APC, and VQ-Wav2Vec, and got similar or inferior perfor-
252
+ mance to MCPC and Wav2Vec2. We opted to omit these for
253
+ brevity.
254
+ (Ali et al., 2016). This dataset is expected to be
255
+ more challenging as it contains a diversity of di-
256
+ alects as well as various noise conditions. See the
257
+ Appendix for more details on the datasets and the
258
+ word alignment process.
259
+ 4.4
260
+ Evaluation Scheme
261
+ We constructed Minimal-Pair ABX tasks, as de-
262
+ scribed in Schatz et al. (2013). ABX tasks are
263
+ typically used to measure phoneme discrimination
264
+ in zero-resource settings, and they consist of two
265
+ segments, A and B, that differ by a minimal con-
266
+ trast (e.g. one phoneme difference), and a third
267
+ segment X that matches either A or B. A distance
268
+ measure such as DTW or cosine is used to find
269
+ the closest match. We used two variants of this
270
+ task: within-speaker ABX, where all three words
271
+ are spoken by the same speaker, and cross-speaker
272
+ ABX, where X is spoken by a different speaker.
273
+ We automatically extracted the words from each
274
+ test set; we selected A and B by finding word pairs
275
+ that have the same length5 and Levenshtein edit
276
+ distance of 1 or 2, which roughly corresponds to a
277
+ difference of one or two phonemes most of the time.
278
+ For Arabic, the dataset did not have speaker ids, so
279
+ all three words could be from different speakers.
280
+ In addition, due to the lower quality of the sound
281
+ recordings and the presence of noise in this dataset,
282
+ the word alignment quality is much lower than the
283
+ other languages, so the automatic process resulted
284
+ in many invalid segments. To have a more reliable
285
+ test set for Arabic, we manually checked the valid-
286
+ ity of the extracted words and kept 954 validated
287
+ word pairs for evaluation.
288
+ We also used clustering for complementary eval-
289
+ uation. We clustered the embeddings using K-
290
+ Means with K being the number of unique words
291
+ in the test set. We calculated the accuracy of clus-
292
+ tering as the percentage of words that match their
293
+ cluster label, which is the word id of the majority of
294
+ segments in each cluster. This allows us to measure
295
+ if the embeddings of the same words are similar
296
+ enough to be clustered together.
297
+ 5
298
+ Results
299
+ Table 1 shows ABX error rates using the input
300
+ features directly (with DTW as distance metric),
301
+ self-supervised AWEs trained on each language,
302
+ 5Since automatic word alignments tend to be inaccurate
303
+ around the boundaries, we only used words that have at least
304
+ five characters.
305
+
306
+ en
307
+ fr
308
+ de
309
+ es
310
+ ar
311
+ within
312
+ across
313
+ within
314
+ across
315
+ within
316
+ across
317
+ within
318
+ across
319
+ across
320
+ Using DTW
321
+ MFCC
322
+ 9.98
323
+ 19.85
324
+ 12.59
325
+ 24.82
326
+ 11.46
327
+ 25.03
328
+ 11.83
329
+ 25.27
330
+ 40.98
331
+ wav2vec
332
+ 8.51
333
+ 11.15
334
+ 9.95
335
+ 15.61
336
+ 9.01
337
+ 15.08
338
+ 10.13
339
+ 15.46
340
+ 37.42
341
+ MCPC
342
+ 7.80
343
+ 11.74
344
+ 9.96
345
+ 17.09
346
+ 9.22
347
+ 15.85
348
+ 11.14
349
+ 18.03
350
+ 38.99
351
+ XLSR-53
352
+ 9.45
353
+ 13.72
354
+ 10.97
355
+ 16.77
356
+ 10.89
357
+ 15.76
358
+ 14.31
359
+ 19.31
360
+ 40.15
361
+ Self-Supervised AWEs in each language
362
+ MFCC
363
+ 12.30
364
+ 19.12
365
+ 16.63
366
+ 25.06
367
+ 16.71
368
+ 25.99
369
+ 16.58
370
+ 25.21
371
+ 43.92
372
+ wav2vec
373
+ 6.63
374
+ 9.27
375
+ 9.94
376
+ 13.19
377
+ 10.56
378
+ 15.09
379
+ 12.25
380
+ 15.23
381
+ 38.16
382
+ MCPC
383
+ 7.66
384
+ 9.53
385
+ 11.64
386
+ 16.19
387
+ 10.24
388
+ 15.30
389
+ 13.25
390
+ 16.29
391
+ 41.09
392
+ XLSR-53
393
+ 10.61
394
+ 12.19
395
+ 13.72
396
+ 16.19
397
+ 12.59
398
+ 15.73
399
+ 17.10
400
+ 20.14
401
+ 37.00
402
+ Supervised AWEs trained on English
403
+ MFCC
404
+ 3.83
405
+ 4.57
406
+ 10.77
407
+ 15.32
408
+ 9.16
409
+ 13.06
410
+ 11.49
411
+ 16.56
412
+ 38.15
413
+ wav2vec
414
+ 1.38
415
+ 1.14
416
+ 6.59
417
+ 9.44
418
+ 4.98
419
+ 7.32
420
+ 7.32
421
+ 10.12
422
+ 34.80
423
+ MCPC
424
+ 2.49
425
+ 2.51
426
+ 8.13
427
+ 12.23
428
+ 6.66
429
+ 10.68
430
+ 9.89
431
+ 13.99
432
+ 39.20
433
+ XLSR-53
434
+ 0.93
435
+ 0.79
436
+ 4.12
437
+ 5.71
438
+ 1.92
439
+ 2.83
440
+ 5.05
441
+ 6.21
442
+ 31.76
443
+ Table 1: ABX error rates (%) within and across speakers for each language
444
+ en
445
+ fr
446
+ de
447
+ es
448
+ ar
449
+ Self-Supervised AWEs for each language
450
+ MFCC
451
+ 47.3
452
+ 48.4
453
+ 45.0
454
+ 54.3
455
+ 30.9
456
+ wav2vec
457
+ 66.1
458
+ 59.9
459
+ 59.5
460
+ 67.5
461
+ 35.9
462
+ MCPC
463
+ 57.2
464
+ 53.6
465
+ 53.9
466
+ 60.4
467
+ 33.5
468
+ XLSR-53
469
+ 52.0
470
+ 52.2
471
+ 54.9
472
+ 55.0
473
+ 31.0
474
+ Supervised AWEs trained on English
475
+ MFCC
476
+ 68.5
477
+ 52.7
478
+ 56.7
479
+ 61.1
480
+ 33.4
481
+ wav2vec
482
+ 82.3
483
+ 64.8
484
+ 69.3
485
+ 71.1
486
+ 38.8
487
+ MCPC
488
+ 74.5
489
+ 56.4
490
+ 62.7
491
+ 66.2
492
+ 35.6
493
+ XLSR-53
494
+ 84.3
495
+ 69.1
496
+ 78.1
497
+ 75.8
498
+ 41.8
499
+ Table 2: K-Means Clustering Accuracy (%)
500
+ and supervised AWEs trained on English. Cosine
501
+ similarity is the metric used in the latter two set-
502
+ tings. Confirming previous results (Riviere et al.,
503
+ 2020), we do observe that pre-trained acoustic fea-
504
+ tures like Modified CPC and Wav2Vec2, which are
505
+ trained exclusively on English unlabeled speech,
506
+ transfer well across languages. These pre-trained
507
+ features consistently outperformed MFCC features
508
+ for all languages, particularly in cross-speaker eval-
509
+ uation. Unsurprisingly, the English language has
510
+ the best ABX scores overall simply because the
511
+ pre-trained features used are all trained on English.
512
+ The results for self-supervised AWE models are
513
+ mixed, but generally they are in the same range
514
+ as DTW performance, which also conforms with
515
+ previously published results (Holzenberger et al.,
516
+ 2018).
517
+ With supervised training, we see significant re-
518
+ duction in errors rates for all languages. The lowest
519
+ error rates are achieved on the English test set, as
520
+ expected. More notably, the largest reduction in
521
+ error rates is achieved with the XLSR features. It is
522
+ also interesting to note that XLSR features were not
523
+ impressive in the self-supervised setting compared
524
+ with other features; Wav2Vec2 and MCPC, which
525
+ were trained on English only, gave better results
526
+ in the self-supervised framework for all test lan-
527
+ guages. The advantage of using these cross-lingual
528
+ features was only evident in the supervised and
529
+ transfer learning setting, where they consistently
530
+ outperformed all other features. For Arabic, the
531
+ error rates are higher overall due to the nature of
532
+ the dataset, but we still observe the lowest error
533
+ rate in the transfer learning setting.
534
+ Finally, we see in table 2 that the clustering ac-
535
+ curacy results are consistent with the ABX results,
536
+ where supervised models trained on English con-
537
+ sistently gave higher accuracy compared with self-
538
+ supervised models trained on the target languages.
539
+ 6
540
+ Conclusions
541
+ Our results demonstrate the superior effectiveness
542
+ of zero-shot transfer learning of acoustic word em-
543
+ beddings compared with self-supervised training
544
+ in the target languages. This is particularly use-
545
+ ful for low-resource languages for which data may
546
+ not be available for supervised or self-supervised
547
+
548
+ training. The mechanism of this transfer is mainly
549
+ through the reduction in speaker variability which
550
+ is far easier to achieve via supervised training. In
551
+ addition, supervised training makes the most out
552
+ of pre-trained features, where we see further re-
553
+ duction in error rates that far exceed the reduction
554
+ observed in self-supervised settings. The presence
555
+ of noise naturally results in larger error rates; fur-
556
+ ther investigations are needed to demonstrate the
557
+ transferability of noise robustness in a similar man-
558
+ ner.
559
+ Acknowledgement
560
+ This work was supported by grant no. 31T139
561
+ at United Arab Emirates University and partially
562
+ funded under UAEU-ZU Joint Research Grant
563
+ G00003715 (Fund No.: 12T034) through Emirates
564
+ Center for Mobility Research.
565
+ References
566
+ Ossama Abdel-Hamid, Li Deng, Dong Yu, and Hui
567
+ Jiang. 2013.
568
+ Deep segmental neural networks for
569
+ speech recognition.
570
+ Hanan Aldarmaki, Asad Ullah, Sreepratha Ram, and
571
+ Nazar Zaki. 2022. Unsupervised automatic speech
572
+ recognition: A review. Speech Communication.
573
+ Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui,
574
+ Hamdy Mubarak, Steve Renals, and Yifan Zhang.
575
+ 2016. The mgb-2 challenge: Arabic multi-dialect
576
+ broadcast media recognition. In 2016 IEEE Spoken
577
+ Language Technology Workshop (SLT), pages 279–
578
+ 284. IEEE.
579
+ Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and
580
+ Michael Auli. 2021. Unsupervised speech recogni-
581
+ tion. arXiv preprint arXiv:2105.11084.
582
+ Alexei Baevski, Henry Zhou, Abdel rahman Mohamed,
583
+ and Michael Auli. 2020a. wav2vec 2.0: A frame-
584
+ work for self-supervised learning of speech represen-
585
+ tations. ArXiv, abs/2006.11477.
586
+ Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed,
587
+ and Michael Auli. 2020b. wav2vec 2.0: A frame-
588
+ work for self-supervised learning of speech represen-
589
+ tations. Advances in Neural Information Processing
590
+ Systems, 33:12449–12460.
591
+ Martijn Bartelds, Wietse de Vries, Faraz Sanal, Caitlin
592
+ Richter, Mark Liberman, and Martijn Wieling. 2022.
593
+ Neural representations for modeling variation in
594
+ speech. Journal of Phonetics, 92:101137.
595
+ Mathieu Bernard and Hadrien Titeux. 2021. Phonem-
596
+ izer: Text to phones transcription for multiple lan-
597
+ guages in python. Journal of Open Source Software,
598
+ 6(68):3958.
599
+ Yu-An Chung and James Glass. 2018. Speech2vec: A
600
+ sequence-to-sequence framework for learning word
601
+ embeddings from speech. Proc. Interspeech 2018,
602
+ pages 811–815.
603
+ Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen,
604
+ Hung-Yi Lee, and Lin-Shan Lee. 2016.
605
+ Audio
606
+ word2vec: Unsupervised learning of audio segment
607
+ representations using sequence-to-sequence autoen-
608
+ coder. Interspeech 2016, pages 765–769.
609
+ Alexis Conneau, Alexei Baevski, Ronan Collobert,
610
+ Abdelrahman Mohamed, and Michael Auli. 2020.
611
+ Unsupervised cross-lingual representation learn-
612
+ ing
613
+ for
614
+ speech
615
+ recognition.
616
+ arXiv
617
+ preprint
618
+ arXiv:2006.13979.
619
+ Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki
620
+ Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo
621
+ Wang, Zhengdong Zhang, Yonghui Wu, et al. 2020.
622
+ Conformer: Convolution-augmented transformer for
623
+ speech recognition. Proc. Interspeech 2020, pages
624
+ 5036–5040.
625
+ Yanzhang He and Eric Fosler-Lussier. 2015. Segmen-
626
+ tal conditional random fields with deep neural net-
627
+ works as acoustic models for first-pass word recog-
628
+ nition. In Sixteenth Annual Conference of the Inter-
629
+ national Speech Communication Association.
630
+ Nils Holzenberger, Mingxing Du, Julien Karadayi,
631
+ Rachid Riad, and Emmanuel Dupoux. 2018. Learn-
632
+ ing word embeddings: Unsupervised methods for
633
+ fixed-size representations of variable-length speech
634
+ segments.
635
+ Proc. Interspeech 2018, pages 2683–
636
+ 2687.
637
+ Christiaan Jacobs, Yevgen Matusevych, and Herman
638
+ Kamper. 2021.
639
+ Acoustic word embeddings for
640
+ zero-resource languages using self-supervised con-
641
+ trastive learning and multilingual adaptation.
642
+ In
643
+ 2021 IEEE Spoken Language Technology Workshop
644
+ (SLT), pages 919–926. IEEE.
645
+ Herman Kamper, Yevgen Matusevych, and Sharon
646
+ Goldwater. 2020.
647
+ Multilingual acoustic word em-
648
+ bedding models for processing zero-resource lan-
649
+ guages. In ICASSP 2020-2020 IEEE International
650
+ Conference on Acoustics, Speech and Signal Pro-
651
+ cessing (ICASSP), pages 6414–6418. IEEE.
652
+ Kazuya Kawakami, Luyu Wang, Chris Dyer, Phil Blun-
653
+ som, and Aaron van den Oord. 2020.
654
+ Learning
655
+ robust and multilingual speech representations. In
656
+ Findings of the Association for Computational Lin-
657
+ guistics: EMNLP 2020, pages 1182–1192.
658
+ Keith Levin, Katharine Henry, Aren Jansen, and Karen
659
+ Livescu. 2013. Fixed-dimensional acoustic embed-
660
+ dings of variable-length segments in low-resource
661
+ settings.
662
+ In 2013 IEEE Workshop on Automatic
663
+ Speech Recognition and Understanding, pages 410–
664
+ 415. IEEE.
665
+
666
+ Michael McAuliffe, Michaela Socolof, Sarah Mi-
667
+ huc, Michael Wagner, and Morgan Sonderegger.
668
+ 2017.
669
+ Montreal forced aligner:
670
+ Trainable text-
671
+ speech alignment using kaldi.
672
+ Proc. Interspeech
673
+ 2017, pages 498–502.
674
+ Vassil Panayotov, Guoguo Chen, Daniel Povey, and
675
+ Sanjeev Khudanpur. 2015. Librispeech: an asr cor-
676
+ pus based on public domain audio books. In 2015
677
+ IEEE international conference on acoustics, speech
678
+ and signal processing (ICASSP), pages 5206–5210.
679
+ IEEE.
680
+ Puyuan Peng, Herman Kamper, and Karen Livescu.
681
+ 2020. A correspondence variational autoencoder for
682
+ unsupervised acoustic word embeddings. Advances
683
+ in neural information processing systems.
684
+ Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel
685
+ Synnaeve, and Ronan Collobert. 2020.
686
+ MLS: A
687
+ large-scale multilingual dataset for speech research.
688
+ Morgane Riviere, Armand Joulin, Pierre-Emmanuel
689
+ Mazaré, and Emmanuel Dupoux. 2020.
690
+ Unsuper-
691
+ vised pretraining transfers well across languages.
692
+ In ICASSP 2020-2020 IEEE International Confer-
693
+ ence on Acoustics, Speech and Signal Processing
694
+ (ICASSP), pages 7414–7418. IEEE.
695
+ Thomas Schatz, Vijayaditya Peddinti, Francis Bach,
696
+ Aren Jansen, Hynek Hermansky, and Emmanuel
697
+ Dupoux. 2013.
698
+ Evaluating speech features with
699
+ the minimal-pair abx task: Analysis of the classi-
700
+ cal mfc/plp pipeline. In INTERSPEECH 2013: 14th
701
+ Annual Conference of the International Speech Com-
702
+ munication Association, pages 1–5.
703
+ Aaron van den Oord, Yazhe Li, and Oriol Vinyals.
704
+ 2018. Representation learning with contrastive pre-
705
+ dictive coding. arXiv e-prints, pages arXiv–1807.
706
+ Lisa van Staden and Herman Kamper. 2021. A compar-
707
+ ison of self-supervised speech representations as in-
708
+ put features for unsupervised acoustic word embed-
709
+ dings. In 2021 IEEE Spoken Language Technology
710
+ Workshop (SLT), pages 927–934. IEEE.
711
+ Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang,
712
+ Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin,
713
+ Andy T Liu, Jiatong Shi, Xuankai Chang, Guan-
714
+ Ting Lin, et al. 2021. Superb: Speech processing
715
+ universal performance benchmark.
716
+ arXiv preprint
717
+ arXiv:2105.01051.
718
+ A
719
+ Appendix
720
+ A.1
721
+ Dataset Details
722
+ A.2
723
+ Model Architecture &
724
+ Hyper-Parameters
725
+ The architecture described in section 4.1 was mod-
726
+ eled after other acoustic word embedding mod-
727
+ els (Chung et al., 2016; Chung and Glass, 2018;
728
+ Holzenberger et al., 2018) with slight variations
729
+ Dataset
730
+ test
731
+ dev
732
+ English
733
+ 52,576
734
+ 54,402
735
+ French
736
+ 90,958
737
+ 83,560
738
+ German
739
+ 121,713
740
+ 122,903
741
+ Spanish
742
+ 88,417
743
+ 87,417
744
+ Arabic
745
+ 62,745
746
+ 57,532
747
+ Table 3: Total number of words in each dataset
748
+ in details. We found that this particular configura-
749
+ tion worked best across different acoustic features,
750
+ whereas other choices gave mixed results. For ex-
751
+ ample, using GRUs instead of LSTMs worked well
752
+ with pre-trained features but was worse for MFCCs.
753
+ The decoding process described in Holzenberger
754
+ et al. (2018), where positional encodings are used
755
+ instead of previous outputs also resulted in infe-
756
+ rior performance. We also found that using teacher
757
+ forcing instead of the model’s previous output as
758
+ input to the decoder hurt the performance. Finally,
759
+ using two layers was crucial to get results in line
760
+ with DTW perforamnce for most self-supervised
761
+ models. The only exception is the self-supervised
762
+ model with XLSR features which resulted in un-
763
+ stable training with 2 layers. We found it to work
764
+ much better with a single layer network and slightly
765
+ larger embedding size. Generally, larger embed-
766
+ dings sizes improved performance to some extent,
767
+ but the improvements were smaller beyond the
768
+ values that we have chosen; furthermore, using
769
+ smaller sizes is more advantageous in terms of
770
+ computational efficiency. We did not perform any
771
+ hyper-parameter tuning for the target languages
772
+ since we are working within the premise of low-
773
+ resource settings where validation data may not be
774
+ available.
775
+ Table 4 shows the number of parameters for each
776
+ model. Since the decoder is only used for training
777
+ and can be discarded after that, we only show the
778
+ number of encoder parameters.
779
+ A.3
780
+ Training Details
781
+ The supervised models were trained with NLL loss,
782
+ and the training targets are sequences of phonemes
783
+ obtained using the Phonemizer package 6 (Bernard
784
+ and Titeux, 2021). This choice seemed more sen-
785
+ sible at first, but we found that using sequences
786
+ of characters instead of phonemes worked equally
787
+ well.
788
+ The model was implemented using PyTorch and
789
+ 6https://github.com/bootphon/phonemizer
790
+
791
+ Model
792
+ input
793
+ hidden
794
+ no.of parameters
795
+ Self-Supervised
796
+ MFCC
797
+ 39
798
+ 100
799
+ 354,400
800
+ Wav2Vec
801
+ 768
802
+ 100
803
+ 937,600
804
+ MCPC
805
+ 256
806
+ 100
807
+ 528,000
808
+ XLSR-53
809
+ 1024
810
+ 250
811
+ 1,411,200
812
+ Supervised
813
+ MFCC
814
+ 39
815
+ 100
816
+ 354,400
817
+ Wav2Vec
818
+ 768
819
+ 100
820
+ 937,600
821
+ MCPC
822
+ 256
823
+ 100
824
+ 528,000
825
+ XLSR-53
826
+ 1024
827
+ 100
828
+ 1,142,400
829
+ Table 4: Input size, hidden layer size, and total number
830
+ of encoder parameters for each model.
831
+ trained on NVIDIA K80 GPU as provided in AWS
832
+ p2.xlarge instances. For optimization, we found
833
+ that adam optimizer worked for all features except
834
+ MFCCs, for which SGD with cyclical or step learn-
835
+ ing rate schedule was more stable.
836
+ Table 3 shows the number of words in each
837
+ dataset.
838
+ The word alignments were obtained
839
+ via force alignment using The Montreal Forced
840
+ Aligner7 (McAuliffe et al., 2017) for English, Ger-
841
+ man, French, and Spanish. The Montreal aligner
842
+ uses an ASR engine, and since these datasets are
843
+ relatively clean, the alignments are generally accu-
844
+ rate. For Arabic, the best option was the aeneas
845
+ toolkit8, which relies on a TTS engine to align the
846
+ synthesized words with the actual audio segments.
847
+ We used Amazon Polly TTS for higher quality, but
848
+ overall the alignments were not as accurate as the
849
+ other datasets, which we believe is due to the low
850
+ quality of the recordings, presence of noise, and
851
+ high variability in accents. The low clustering accu-
852
+ racy could be partially attributed to the inaccurate
853
+ labeling of the segments as a result of this. For
854
+ ABX evaluation on the Arabic set, we manually
855
+ filtered the segments that had somewhat accurate
856
+ boundaries; the chosen pairs still contained high
857
+ level of noise conditions, such as background mu-
858
+ sic and interfering speech.
859
+ 7https://github.com/MontrealCorpusTools/Montreal-
860
+ Forced-Aligner
861
+ 8www.readbeyond.it/aeneas
862
+
AdAzT4oBgHgl3EQfF_tg/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,477 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf,len=476
2
+ page_content='Supervised Acoustic Embeddings And Their Transferability Across Languages Sreepratha Ram UAE University sree_ram@uaeu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
3
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
4
+ page_content='ae Hanan Aldarmaki MBZUAI hanan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
5
+ page_content='aldarmaki@mbzuai.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
6
+ page_content='ac.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
7
+ page_content='ae Abstract In speech recognition, it is essential to model the phonetic content of the input signal while discarding irrelevant factors such as speaker variations and noise, which is challenging in low-resource settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
8
+ page_content=' Self-supervised pre- training has been proposed as a way to improve both supervised and unsupervised speech recognition, including frame-level fea- ture representations and Acoustic Word Em- beddings (AWE) for variable-length segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
9
+ page_content=' However, self-supervised models alone cannot learn perfect separation of the linguistic con- tent as they are trained to optimize indirect ob- jectives.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
10
+ page_content=' In this work, we experiment with dif- ferent pre-trained self-supervised features as input to AWE models and show that they work best within a supervised framework.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
11
+ page_content=' Models trained on English can be transferred to other languages with no adaptation and outperform self-supervised models trained solely on the target languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
12
+ page_content=' Keywords— Unsupervised ASR, Transfer Learn- ing, Acoustic Word Embeddings 1 Introduction With supervised speech recognition systems get- ting more robust and accurate due to the avail- ability of large amounts of labeled data and com- putational power (Gulati et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
13
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
14
+ page_content=' Baevski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
15
+ page_content=', 2020b), more attention is now given to low- resource languages for which training data are lim- ited or non-existent (Aldarmaki et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
16
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
17
+ page_content=' Un- supervised pre-training using unlabeled speech can be leveraged to improve both supervised and un- supervised models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
18
+ page_content=' for instance, speech represen- tations pre-trained on large amounts of unlabeled speech from multiple languages have been shown to improve ASR performance for low-resource lan- guages (Kawakami et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
19
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
20
+ page_content=' Conneau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
21
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
22
+ page_content=' While most supervised ASR models operate at the level of phones, word-level segmental ASR where variable-length segments are modeled and embedded into fixed-dimensional vectors have also been explored with relative success (Abdel-Hamid et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
23
+ page_content=', 2013;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
24
+ page_content=' He and Fosler-Lussier, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
25
+ page_content=' In a similar vein, Acoustic Word Embeddings (AWEs) have been proposed as a way to efficiently compare variable-length speech segments in low-resource settings (Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
26
+ page_content=', 2020;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
27
+ page_content=' Kamper et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
28
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
29
+ page_content=' Unlike written words, spoken words naturally con- tain speaker and phonetic variability that makes them more difficult to model in a latent space with- out supervision.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
30
+ page_content=' Self-supervised pre-training and cross-lingual transfer are two possible approaches to make unsupervised models more robust to non- linguistic variations in the input signal.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
31
+ page_content=' In this work, we investigate the performance of self-supervised training of AWE models versus su- pervised training with zero-shot cross-lingual trans- fer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
32
+ page_content=' We experiment with different types of acoustic features and measure their performance separately and within the AWE models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
33
+ page_content=' While we find that pre-trained acoustic features improve the perfor- mance of self-supervised AWE models to some extent, a larger improvement can be achieved when the AWE models are trained in a supervised manner using small amount of labeled data from a different language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
34
+ page_content=' This zero-shot cross-lingual transfer is observed consistently across different languages, and particularly with the use of pre-trained feature representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
35
+ page_content=' Our results suggest that supervised training with zero-shot cross-lingual transfer is a more effective approach for low-resource speech models compared with purely self-supervised train- ing1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
36
+ page_content=' 2 Background & Related Work Spoken language is often modeled using short fixed-length frames of 10 to 30 ms duration, which 1We provide python training and evaluation scripts for replicating our experiments: https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
37
+ page_content='com/h- aldarmaki/acoustic_embeddings arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
38
+ page_content='01020v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
39
+ page_content='CL] 3 Jan 2023 results in variable-length word segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
40
+ page_content=' Dynamic Time Warping (DTW) is an early technique that uses dynamic programming to compare variable- length segments by finding optimal frame-wise alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
41
+ page_content=' DTW is rather inefficient, which mo- tivates embedding variable-length segments into vectors of fixed size that can be compared using more efficient metrics such as cosine or Euclidean distance (Levin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
42
+ page_content=', 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
43
+ page_content=' Different types of Acoustic Word Embeddings (AWE) have been pro- posed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
44
+ page_content=' As these techniques are generally meant for low-resource languages, they are typically trained in a self-supervised manner, most commonly us- ing an auto-encoder network with reconstruction loss (Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
45
+ page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
46
+ page_content=' Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
47
+ page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
48
+ page_content=' Compared with direct comparison via DTW, these AWEs generally result in similar or slightly supe- rior performance while being far more efficient (Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
49
+ page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
50
+ page_content=' Peng et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
51
+ page_content=' (2020) describes an alternative training strategy using cor- respondence auto-encoders, which relies on word pairs extracted via unsupervised spoken term dis- covery, and further improvements can be achieved using contrastive learning and multi-lingual adap- tation (Jacobs et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
52
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
53
+ page_content=' The above models use static acoustic features (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
54
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
55
+ page_content=' MFCCs) as input.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
56
+ page_content=' van Staden and Kam- per (2021) shows that using pre-trained features like CPC (van den Oord et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
57
+ page_content=', 2018) improves the performance of unsupervised AWE models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
58
+ page_content=' Pre- trained features have been repeatedly shown to im- prove performance in supervised downstream tasks (Yang et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
59
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
60
+ page_content=' In addition, pre-trained features have been shown to transfer across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
61
+ page_content=' For instance, a modified version of CPC (MCPC) is de- scribed in Riviere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
62
+ page_content=' (2020), which demonstrates that pre-training these features on Egnlish results in improved phone classification accuracy for other languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
63
+ page_content=' Other types of pre-trained features, such as wav2vec 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
64
+ page_content='0 (Baevski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
65
+ page_content=', 2020a) have been shown to improve both supervised and unsuper- vised ASR performance (Baevski et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
66
+ page_content=', 2021), and multi-lingual training of these features (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
67
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
68
+ page_content=' XLSR- 53) can lead to improvements across many lan- guages compared to monolingual pre-training (Con- neau et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
69
+ page_content=', 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
70
+ page_content=' 3 Objectives & Methodology The objective of this study is to investigate the effec- tiveness and trasnsferability of pre-trained acoustic features when used as input to acoustic word em- beddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
71
+ page_content=' To that end, we compare self-supervised AWEs trained directly on the target languages ver- sus zero-shot cross-lingual transfer of supervised AWEs trained on a different source language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
72
+ page_content=' To our knowledge, the combination of pre-trained fea- tures with AWE models has not been fully investi- gated;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
73
+ page_content=' most AWE models are trained with stan- dard acoustic features like MFCCs, while self- supervised features are typically evaluated within supervised models fine-tuned for the target lan- guages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
74
+ page_content=' Furthermore, zero-shot cross-lingual trans- fer of supervised AWEs has not been the focus of previous works in this area, which mainly focused on improving self-supervised AWEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
75
+ page_content=' For the purpose of this evaluation, we use a rela- tively simple architecture for the embedding model and we fix the hyper-parameters based on prelimi- nary validation results for English self-supervised AWEs2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
76
+ page_content=' We do not do any further tuning of the self-supervised or the supervised models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
77
+ page_content=' We use English as the source language, and evaluate zero- shot transfer on four other languages: French, Ger- man, Spanish, and Arabic, with the latter used as a challenge set since it contains more variability and noise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
78
+ page_content=' No labeled data were used for the target languages with the exception of word boundaries which were obtained via force alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
79
+ page_content=' We eval- uate mainly using minimal-pair ABX error rates to measure phonetic discriminability and speaker invariance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
80
+ page_content=' We also cluster the embedded words and measure how often different occurrences of the same words end up in the same cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
81
+ page_content=' 4 Experimental Settings 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
82
+ page_content='1 Model Architecture Our AWE model consists of a multi-layer bidirec- tional LSTM encoder, followed by a uni-directional LSTM decoder, similar to Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
83
+ page_content=' (2016) and (Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
84
+ page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
85
+ page_content=' The encoder takes a se- quence of T acoustic features representing one spo- ken word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
86
+ page_content=' The forward and backward states of the last hidden layer of the encoder are concatenated and used as an embedding of the given word, call it hT .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
87
+ page_content=' The decoder generates the target sequence one step at a time, conditioned on hT and the out- put at the previous time step, similar to Chung and 2We observed that self-supervised models were very sen- sitive to the choice of architecture and hyper-parameters, so we fixed these in favor of self-supervised models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
88
+ page_content=' As shown in later sections, we still got better results with the supervised models, which shows that they are more robust and easier to optimize on top of being more effective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
89
+ page_content=' Glass (2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
90
+ page_content=' In the self-supervised setting, the target sequence is the same as the input sequence, so the model is trained as an auto-encoder with MSE loss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
91
+ page_content=' In the supervised setting, the target is a sequence of phonemes representing the input word, and the model is trained by minimizing the nega- tive log-likelihood.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
92
+ page_content=' We used 2-layer networks with 100 hidden units for most models, which results in embeddings of size 200.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
93
+ page_content=' We also used dropout with probability 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
94
+ page_content='3 on the input features, similar to the denoising networks used in Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
95
+ page_content=' (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
96
+ page_content=' More details of the parameters and training process can be found in the Appendix.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
97
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
98
+ page_content='2 Feature Extraction For easier reproduciblity, we used the s3prl toolkit3 for extracting all features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
99
+ page_content=' We used the pre-trained s3prl upstream models;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
100
+ page_content=' among the many pretrained self supervised speech representations available, modified CPC, Wav2Wec2 and XLSR-53 were cho- sen based on superior DTW-based ABX scores4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
101
+ page_content=' All pre-trained models, with the exception of XLSR, have been exclusively pre-trained on En- glish data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
102
+ page_content=' XLSR-53 was pre-trained on unlabeled speech from 53 languages, including all target lan- guages in our experiments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
103
+ page_content=' As observed by other researchers (Bartelds et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
104
+ page_content=', 2022), the performance of features extracted from transformer-based mod- els is largely dependent on the choice of layer;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
105
+ page_content=' we used the last hidden layer for modified CPC, the second to last hidden layer for Wav2Vec2 and the central hidden layer (layer 12) for XLSR-53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
106
+ page_content=' Aver- aging all layers gave reasonable results, but these choices led to the best performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
107
+ page_content=' For MFCC fea- tures, we also used the s3prl implementation, which includes 13 static features as well as dynamic delta and delta-delta coefficients.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
108
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
109
+ page_content='3 Data We used the Librispeech (Panayotov et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
110
+ page_content=', 2015) and Multilingual Librispeech (Pratap et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
111
+ page_content=', 2020) datasets for English (en), French (fr), German (de), and Spanish (es).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
112
+ page_content=' We used the dev sets for train- ing, and test sets for evaluation (dev-clean and test- clean for English).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
113
+ page_content=' We obtained the word bound- aries automatically by forced alignment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
114
+ page_content=' For Ara- bic (ar), we used the dev and test sets of MGB2 3https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
115
+ page_content='com/s3prl/s3prl 4We did experiment with other features like APC, VQ- APC, and VQ-Wav2Vec, and got similar or inferior perfor- mance to MCPC and Wav2Vec2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
116
+ page_content=' We opted to omit these for brevity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
117
+ page_content=' (Ali et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
118
+ page_content=', 2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
119
+ page_content=' This dataset is expected to be more challenging as it contains a diversity of di- alects as well as various noise conditions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
120
+ page_content=' See the Appendix for more details on the datasets and the word alignment process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
121
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
122
+ page_content='4 Evaluation Scheme We constructed Minimal-Pair ABX tasks, as de- scribed in Schatz et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
123
+ page_content=' (2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
124
+ page_content=' ABX tasks are typically used to measure phoneme discrimination in zero-resource settings, and they consist of two segments, A and B, that differ by a minimal con- trast (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
125
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
126
+ page_content=' one phoneme difference), and a third segment X that matches either A or B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
127
+ page_content=' A distance measure such as DTW or cosine is used to find the closest match.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
128
+ page_content=' We used two variants of this task: within-speaker ABX, where all three words are spoken by the same speaker, and cross-speaker ABX, where X is spoken by a different speaker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
129
+ page_content=' We automatically extracted the words from each test set;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
130
+ page_content=' we selected A and B by finding word pairs that have the same length5 and Levenshtein edit distance of 1 or 2, which roughly corresponds to a difference of one or two phonemes most of the time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
131
+ page_content=' For Arabic, the dataset did not have speaker ids, so all three words could be from different speakers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
132
+ page_content=' In addition, due to the lower quality of the sound recordings and the presence of noise in this dataset, the word alignment quality is much lower than the other languages, so the automatic process resulted in many invalid segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
133
+ page_content=' To have a more reliable test set for Arabic, we manually checked the valid- ity of the extracted words and kept 954 validated word pairs for evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
134
+ page_content=' We also used clustering for complementary eval- uation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
135
+ page_content=' We clustered the embeddings using K- Means with K being the number of unique words in the test set.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
136
+ page_content=' We calculated the accuracy of clus- tering as the percentage of words that match their cluster label, which is the word id of the majority of segments in each cluster.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
137
+ page_content=' This allows us to measure if the embeddings of the same words are similar enough to be clustered together.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
138
+ page_content=' 5 Results Table 1 shows ABX error rates using the input features directly (with DTW as distance metric), self-supervised AWEs trained on each language, 5Since automatic word alignments tend to be inaccurate around the boundaries, we only used words that have at least five characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
139
+ page_content=' en fr de es ar within across within across within across within across across Using DTW MFCC 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
140
+ page_content='98 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
141
+ page_content='85 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
142
+ page_content='59 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
143
+ page_content='82 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
144
+ page_content='46 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
145
+ page_content='03 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
146
+ page_content='83 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
147
+ page_content='27 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
148
+ page_content='98 wav2vec 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
149
+ page_content='51 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
150
+ page_content='15 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
151
+ page_content='95 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
152
+ page_content='61 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
153
+ page_content='01 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
154
+ page_content='08 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
155
+ page_content='13 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
156
+ page_content='46 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
157
+ page_content='42 MCPC 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
158
+ page_content='80 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
159
+ page_content='74 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
160
+ page_content='96 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
161
+ page_content='09 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
162
+ page_content='22 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
163
+ page_content='85 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
164
+ page_content='14 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
165
+ page_content='03 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
166
+ page_content='99 XLSR-53 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
167
+ page_content='45 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
168
+ page_content='72 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
169
+ page_content='97 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
170
+ page_content='77 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
171
+ page_content='89 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
172
+ page_content='76 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
173
+ page_content='31 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
174
+ page_content='31 40.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
175
+ page_content='15 Self-Supervised AWEs in each language MFCC 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
176
+ page_content='30 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
177
+ page_content='12 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
178
+ page_content='63 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
179
+ page_content='06 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
180
+ page_content='71 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
181
+ page_content='99 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
182
+ page_content='58 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
183
+ page_content='21 43.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
184
+ page_content='92 wav2vec 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
185
+ page_content='63 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
186
+ page_content='27 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
187
+ page_content='94 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
188
+ page_content='19 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
189
+ page_content='56 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
190
+ page_content='09 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
191
+ page_content='25 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
192
+ page_content='23 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
193
+ page_content='16 MCPC 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
194
+ page_content='66 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
195
+ page_content='53 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
196
+ page_content='64 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
197
+ page_content='19 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
198
+ page_content='24 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
199
+ page_content='30 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
200
+ page_content='25 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
201
+ page_content='29 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
202
+ page_content='09 XLSR-53 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
203
+ page_content='61 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
204
+ page_content='19 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
205
+ page_content='72 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
206
+ page_content='19 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
207
+ page_content='59 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
208
+ page_content='73 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
209
+ page_content='10 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
210
+ page_content='14 37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
211
+ page_content='00 Supervised AWEs trained on English MFCC 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
212
+ page_content='83 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
213
+ page_content='57 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
214
+ page_content='77 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
215
+ page_content='32 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
216
+ page_content='16 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
217
+ page_content='06 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
218
+ page_content='49 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
219
+ page_content='56 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
220
+ page_content='15 wav2vec 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
221
+ page_content='38 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
222
+ page_content='14 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
223
+ page_content='59 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
224
+ page_content='44 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
225
+ page_content='98 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
226
+ page_content='32 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
227
+ page_content='32 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
228
+ page_content='12 34.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
229
+ page_content='80 MCPC 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
230
+ page_content='49 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
231
+ page_content='51 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
232
+ page_content='13 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
233
+ page_content='23 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
234
+ page_content='66 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
235
+ page_content='68 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
236
+ page_content='89 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
237
+ page_content='99 39.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
238
+ page_content='20 XLSR-53 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
239
+ page_content='93 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
240
+ page_content='79 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
241
+ page_content='12 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
242
+ page_content='71 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
243
+ page_content='92 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
244
+ page_content='83 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
245
+ page_content='05 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
246
+ page_content='21 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
247
+ page_content='76 Table 1: ABX error rates (%) within and across speakers for each language en fr de es ar Self-Supervised AWEs for each language MFCC 47.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
248
+ page_content='3 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
249
+ page_content='4 45.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
250
+ page_content='0 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
251
+ page_content='3 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
252
+ page_content='9 wav2vec 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
253
+ page_content='1 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
254
+ page_content='9 59.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
255
+ page_content='5 67.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
256
+ page_content='5 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
257
+ page_content='9 MCPC 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
258
+ page_content='2 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
259
+ page_content='6 53.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
260
+ page_content='9 60.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
261
+ page_content='4 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
262
+ page_content='5 XLSR-53 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
263
+ page_content='0 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
264
+ page_content='2 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
265
+ page_content='9 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
266
+ page_content='0 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
267
+ page_content='0 Supervised AWEs trained on English MFCC 68.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
268
+ page_content='5 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
269
+ page_content='7 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
270
+ page_content='7 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
271
+ page_content='1 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
272
+ page_content='4 wav2vec 82.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
273
+ page_content='3 64.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
274
+ page_content='8 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
275
+ page_content='3 71.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
276
+ page_content='1 38.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
277
+ page_content='8 MCPC 74.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
278
+ page_content='5 56.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
279
+ page_content='4 62.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
280
+ page_content='7 66.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
281
+ page_content='2 35.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
282
+ page_content='6 XLSR-53 84.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
283
+ page_content='3 69.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
284
+ page_content='1 78.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
285
+ page_content='1 75.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
286
+ page_content='8 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
287
+ page_content='8 Table 2: K-Means Clustering Accuracy (%) and supervised AWEs trained on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
288
+ page_content=' Cosine similarity is the metric used in the latter two set- tings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
289
+ page_content=' Confirming previous results (Riviere et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
290
+ page_content=', 2020), we do observe that pre-trained acoustic fea- tures like Modified CPC and Wav2Vec2, which are trained exclusively on English unlabeled speech, transfer well across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
291
+ page_content=' These pre-trained features consistently outperformed MFCC features for all languages, particularly in cross-speaker eval- uation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
292
+ page_content=' Unsurprisingly, the English language has the best ABX scores overall simply because the pre-trained features used are all trained on English.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
293
+ page_content=' The results for self-supervised AWE models are mixed, but generally they are in the same range as DTW performance, which also conforms with previously published results (Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
294
+ page_content=', 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
295
+ page_content=' With supervised training, we see significant re- duction in errors rates for all languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
296
+ page_content=' The lowest error rates are achieved on the English test set, as expected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
297
+ page_content=' More notably, the largest reduction in error rates is achieved with the XLSR features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
298
+ page_content=' It is also interesting to note that XLSR features were not impressive in the self-supervised setting compared with other features;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
299
+ page_content=' Wav2Vec2 and MCPC, which were trained on English only, gave better results in the self-supervised framework for all test lan- guages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
300
+ page_content=' The advantage of using these cross-lingual features was only evident in the supervised and transfer learning setting, where they consistently outperformed all other features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
301
+ page_content=' For Arabic, the error rates are higher overall due to the nature of the dataset, but we still observe the lowest error rate in the transfer learning setting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
302
+ page_content=' Finally, we see in table 2 that the clustering ac- curacy results are consistent with the ABX results, where supervised models trained on English con- sistently gave higher accuracy compared with self- supervised models trained on the target languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
303
+ page_content=' 6 Conclusions Our results demonstrate the superior effectiveness of zero-shot transfer learning of acoustic word em- beddings compared with self-supervised training in the target languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
304
+ page_content=' This is particularly use- ful for low-resource languages for which data may not be available for supervised or self-supervised training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
305
+ page_content=' The mechanism of this transfer is mainly through the reduction in speaker variability which is far easier to achieve via supervised training.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
306
+ page_content=' In addition, supervised training makes the most out of pre-trained features, where we see further re- duction in error rates that far exceed the reduction observed in self-supervised settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
307
+ page_content=' The presence of noise naturally results in larger error rates;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
308
+ page_content=' fur- ther investigations are needed to demonstrate the transferability of noise robustness in a similar man- ner.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
309
+ page_content=' Acknowledgement This work was supported by grant no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
310
+ page_content=' 31T139 at United Arab Emirates University and partially funded under UAEU-ZU Joint Research Grant G00003715 (Fund No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
311
+ page_content=' : 12T034) through Emirates Center for Mobility Research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
312
+ page_content=' References Ossama Abdel-Hamid, Li Deng, Dong Yu, and Hui Jiang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
313
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
314
+ page_content=' Deep segmental neural networks for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
315
+ page_content=' Hanan Aldarmaki, Asad Ullah, Sreepratha Ram, and Nazar Zaki.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
316
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
317
+ page_content=' Unsupervised automatic speech recognition: A review.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
318
+ page_content=' Speech Communication.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
319
+ page_content=' Ahmed Ali, Peter Bell, James Glass, Yacine Messaoui, Hamdy Mubarak, Steve Renals, and Yifan Zhang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
320
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
321
+ page_content=' The mgb-2 challenge: Arabic multi-dialect broadcast media recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
322
+ page_content=' In 2016 IEEE Spoken Language Technology Workshop (SLT), pages 279– 284.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
323
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
324
+ page_content=' Alexei Baevski, Wei-Ning Hsu, Alexis Conneau, and Michael Auli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
325
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
326
+ page_content=' Unsupervised speech recogni- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
327
+ page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
328
+ page_content='11084.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
329
+ page_content=' Alexei Baevski, Henry Zhou, Abdel rahman Mohamed, and Michael Auli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
330
+ page_content=' 2020a.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
331
+ page_content=' wav2vec 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
332
+ page_content='0: A frame- work for self-supervised learning of speech represen- tations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
333
+ page_content=' ArXiv, abs/2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
334
+ page_content='11477.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
335
+ page_content=' Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
336
+ page_content=' 2020b.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
337
+ page_content=' wav2vec 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
338
+ page_content='0: A frame- work for self-supervised learning of speech represen- tations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
339
+ page_content=' Advances in Neural Information Processing Systems, 33:12449–12460.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
340
+ page_content=' Martijn Bartelds, Wietse de Vries, Faraz Sanal, Caitlin Richter, Mark Liberman, and Martijn Wieling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
341
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
342
+ page_content=' Neural representations for modeling variation in speech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
343
+ page_content=' Journal of Phonetics, 92:101137.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
344
+ page_content=' Mathieu Bernard and Hadrien Titeux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
345
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
346
+ page_content=' Phonem- izer: Text to phones transcription for multiple lan- guages in python.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
347
+ page_content=' Journal of Open Source Software, 6(68):3958.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
348
+ page_content=' Yu-An Chung and James Glass.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
349
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
350
+ page_content=' Speech2vec: A sequence-to-sequence framework for learning word embeddings from speech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
351
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
352
+ page_content=' Interspeech 2018, pages 811–815.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
353
+ page_content=' Yu-An Chung, Chao-Chung Wu, Chia-Hao Shen, Hung-Yi Lee, and Lin-Shan Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
354
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
355
+ page_content=' Audio word2vec: Unsupervised learning of audio segment representations using sequence-to-sequence autoen- coder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
356
+ page_content=' Interspeech 2016, pages 765–769.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
357
+ page_content=' Alexis Conneau, Alexei Baevski, Ronan Collobert, Abdelrahman Mohamed, and Michael Auli.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
358
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
359
+ page_content=' Unsupervised cross-lingual representation learn- ing for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
360
+ page_content=' arXiv preprint arXiv:2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
361
+ page_content='13979.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
362
+ page_content=' Anmol Gulati, James Qin, Chung-Cheng Chiu, Niki Parmar, Yu Zhang, Jiahui Yu, Wei Han, Shibo Wang, Zhengdong Zhang, Yonghui Wu, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
363
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
364
+ page_content=' Conformer: Convolution-augmented transformer for speech recognition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
365
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
366
+ page_content=' Interspeech 2020, pages 5036–5040.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
367
+ page_content=' Yanzhang He and Eric Fosler-Lussier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
368
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
369
+ page_content=' Segmen- tal conditional random fields with deep neural net- works as acoustic models for first-pass word recog- nition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
370
+ page_content=' In Sixteenth Annual Conference of the Inter- national Speech Communication Association.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
371
+ page_content=' Nils Holzenberger, Mingxing Du, Julien Karadayi, Rachid Riad, and Emmanuel Dupoux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
372
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
373
+ page_content=' Learn- ing word embeddings: Unsupervised methods for fixed-size representations of variable-length speech segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
374
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
375
+ page_content=' Interspeech 2018, pages 2683– 2687.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
376
+ page_content=' Christiaan Jacobs, Yevgen Matusevych, and Herman Kamper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
377
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
378
+ page_content=' Acoustic word embeddings for zero-resource languages using self-supervised con- trastive learning and multilingual adaptation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
379
+ page_content=' In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 919–926.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
380
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
381
+ page_content=' Herman Kamper, Yevgen Matusevych, and Sharon Goldwater.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
382
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
383
+ page_content=' Multilingual acoustic word em- bedding models for processing zero-resource lan- guages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
384
+ page_content=' In ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Pro- cessing (ICASSP), pages 6414–6418.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
385
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
386
+ page_content=' Kazuya Kawakami, Luyu Wang, Chris Dyer, Phil Blun- som, and Aaron van den Oord.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
387
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
388
+ page_content=' Learning robust and multilingual speech representations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
389
+ page_content=' In Findings of the Association for Computational Lin- guistics: EMNLP 2020, pages 1182–1192.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
390
+ page_content=' Keith Levin, Katharine Henry, Aren Jansen, and Karen Livescu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
391
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
392
+ page_content=' Fixed-dimensional acoustic embed- dings of variable-length segments in low-resource settings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
393
+ page_content=' In 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, pages 410– 415.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
394
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
395
+ page_content=' Michael McAuliffe, Michaela Socolof, Sarah Mi- huc, Michael Wagner, and Morgan Sonderegger.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
396
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
397
+ page_content=' Montreal forced aligner: Trainable text- speech alignment using kaldi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
398
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
399
+ page_content=' Interspeech 2017, pages 498–502.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
400
+ page_content=' Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
401
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
402
+ page_content=' Librispeech: an asr cor- pus based on public domain audio books.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
403
+ page_content=' In 2015 IEEE international conference on acoustics, speech and signal processing (ICASSP), pages 5206–5210.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
404
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
405
+ page_content=' Puyuan Peng, Herman Kamper, and Karen Livescu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
406
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
407
+ page_content=' A correspondence variational autoencoder for unsupervised acoustic word embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
408
+ page_content=' Advances in neural information processing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
409
+ page_content=' Vineel Pratap, Qiantong Xu, Anuroop Sriram, Gabriel Synnaeve, and Ronan Collobert.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
410
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
411
+ page_content=' MLS: A large-scale multilingual dataset for speech research.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
412
+ page_content=' Morgane Riviere, Armand Joulin, Pierre-Emmanuel Mazaré, and Emmanuel Dupoux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
413
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
414
+ page_content=' Unsuper- vised pretraining transfers well across languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
415
+ page_content=' In ICASSP 2020-2020 IEEE International Confer- ence on Acoustics, Speech and Signal Processing (ICASSP), pages 7414–7418.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
416
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
417
+ page_content=' Thomas Schatz, Vijayaditya Peddinti, Francis Bach, Aren Jansen, Hynek Hermansky, and Emmanuel Dupoux.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
418
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
419
+ page_content=' Evaluating speech features with the minimal-pair abx task: Analysis of the classi- cal mfc/plp pipeline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
420
+ page_content=' In INTERSPEECH 2013: 14th Annual Conference of the International Speech Com- munication Association, pages 1–5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
421
+ page_content=' Aaron van den Oord, Yazhe Li, and Oriol Vinyals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
422
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
423
+ page_content=' Representation learning with contrastive pre- dictive coding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
424
+ page_content=' arXiv e-prints, pages arXiv–1807.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
425
+ page_content=' Lisa van Staden and Herman Kamper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
426
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
427
+ page_content=' A compar- ison of self-supervised speech representations as in- put features for unsupervised acoustic word embed- dings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
428
+ page_content=' In 2021 IEEE Spoken Language Technology Workshop (SLT), pages 927–934.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
429
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
430
+ page_content=' Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu, Jiatong Shi, Xuankai Chang, Guan- Ting Lin, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
431
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
432
+ page_content=' Superb: Speech processing universal performance benchmark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
433
+ page_content=' arXiv preprint arXiv:2105.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
434
+ page_content='01051.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
435
+ page_content=' A Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
436
+ page_content='1 Dataset Details A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
437
+ page_content='2 Model Architecture & Hyper-Parameters The architecture described in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
438
+ page_content='1 was mod- eled after other acoustic word embedding mod- els (Chung et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
439
+ page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
440
+ page_content=' Chung and Glass, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
441
+ page_content=' Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
442
+ page_content=', 2018) with slight variations Dataset test dev English 52,576 54,402 French 90,958 83,560 German 121,713 122,903 Spanish 88,417 87,417 Arabic 62,745 57,532 Table 3: Total number of words in each dataset in details.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
443
+ page_content=' We found that this particular configura- tion worked best across different acoustic features, whereas other choices gave mixed results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
444
+ page_content=' For ex- ample, using GRUs instead of LSTMs worked well with pre-trained features but was worse for MFCCs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
445
+ page_content=' The decoding process described in Holzenberger et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
446
+ page_content=' (2018), where positional encodings are used instead of previous outputs also resulted in infe- rior performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
447
+ page_content=' We also found that using teacher forcing instead of the model’s previous output as input to the decoder hurt the performance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
448
+ page_content=' Finally, using two layers was crucial to get results in line with DTW perforamnce for most self-supervised models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
449
+ page_content=' The only exception is the self-supervised model with XLSR features which resulted in un- stable training with 2 layers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
450
+ page_content=' We found it to work much better with a single layer network and slightly larger embedding size.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
451
+ page_content=' Generally, larger embed- dings sizes improved performance to some extent, but the improvements were smaller beyond the values that we have chosen;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
452
+ page_content=' furthermore, using smaller sizes is more advantageous in terms of computational efficiency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
453
+ page_content=' We did not perform any hyper-parameter tuning for the target languages since we are working within the premise of low- resource settings where validation data may not be available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
454
+ page_content=' Table 4 shows the number of parameters for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
455
+ page_content=' Since the decoder is only used for training and can be discarded after that, we only show the number of encoder parameters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
456
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
457
+ page_content='3 Training Details The supervised models were trained with NLL loss, and the training targets are sequences of phonemes obtained using the Phonemizer package 6 (Bernard and Titeux, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
458
+ page_content=' This choice seemed more sen- sible at first, but we found that using sequences of characters instead of phonemes worked equally well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
459
+ page_content=' The model was implemented using PyTorch and 6https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
460
+ page_content='com/bootphon/phonemizer Model input hidden no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
461
+ page_content='of parameters Self-Supervised MFCC 39 100 354,400 Wav2Vec 768 100 937,600 MCPC 256 100 528,000 XLSR-53 1024 250 1,411,200 Supervised MFCC 39 100 354,400 Wav2Vec 768 100 937,600 MCPC 256 100 528,000 XLSR-53 1024 100 1,142,400 Table 4: Input size, hidden layer size, and total number of encoder parameters for each model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
462
+ page_content=' trained on NVIDIA K80 GPU as provided in AWS p2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
463
+ page_content='xlarge instances.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
464
+ page_content=' For optimization, we found that adam optimizer worked for all features except MFCCs, for which SGD with cyclical or step learn- ing rate schedule was more stable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
465
+ page_content=' Table 3 shows the number of words in each dataset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
466
+ page_content=' The word alignments were obtained via force alignment using The Montreal Forced Aligner7 (McAuliffe et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
467
+ page_content=', 2017) for English, Ger- man, French, and Spanish.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
468
+ page_content=' The Montreal aligner uses an ASR engine, and since these datasets are relatively clean, the alignments are generally accu- rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
469
+ page_content=' For Arabic, the best option was the aeneas toolkit8, which relies on a TTS engine to align the synthesized words with the actual audio segments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
470
+ page_content=' We used Amazon Polly TTS for higher quality, but overall the alignments were not as accurate as the other datasets, which we believe is due to the low quality of the recordings, presence of noise, and high variability in accents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
471
+ page_content=' The low clustering accu- racy could be partially attributed to the inaccurate labeling of the segments as a result of this.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
472
+ page_content=' For ABX evaluation on the Arabic set, we manually filtered the segments that had somewhat accurate boundaries;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
473
+ page_content=' the chosen pairs still contained high level of noise conditions, such as background mu- sic and interfering speech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
474
+ page_content=' 7https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
475
+ page_content='com/MontrealCorpusTools/Montreal- Forced-Aligner 8www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
476
+ page_content='readbeyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
477
+ page_content='it/aeneas' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AdAzT4oBgHgl3EQfF_tg/content/2301.01020v1.pdf'}
DtE1T4oBgHgl3EQfEQNL/content/tmp_files/2301.02887v1.pdf.txt ADDED
@@ -0,0 +1,224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02887v1 [math.DG] 7 Jan 2023
2
+ ORBIFOLDS AND MANIFOLD QUOTIENTS
3
+ WITH UPPER CURVATURE BOUNDS
4
+ CHRISTIAN LANGE
5
+ Abstract. We characterize Riemannian orbifolds with an upper curvature bound in the
6
+ Alexandrov sense as reflectofolds, i.e. Riemannian orbifolds all of whose local groups are
7
+ generated by reflections, with the same upper bound on the sectional curvature. Combined
8
+ with a result by Lytchak–Thorbergsson this implies that a quotient of a Riemannian manifold
9
+ by a closed group of isometries has locally bounded curvature (from above) in the Alexandrov
10
+ sense if and only if it is a reflectofold.
11
+ 1. Introduction
12
+ Let M be a Riemannian manifold and let G be a closed group of isometries of M. Then the
13
+ quotient space M/G is a metric space whose metric properties are often related to properties
14
+ of the action in an interesting way, see e.g. [GLLM22, LT10]. Usually, this quotient is not a
15
+ Riemannian manifold, but an Alexandrov space with curvature locally bounded from below.
16
+ Nevertheless, it is stratified by Riemannian manifolds and the so-called principle stratum is
17
+ open and dense [AB15]. Lytchak and Thorbergsson have shown that the sectional curvature
18
+ of this principle stratum is bounded from above in the neighborhood of a point if and only
19
+ if this neighborhood in M/G is a Riemannian orbifold, i.e. a metric space which is locally
20
+ isometric to the quotient of a Riemannian manifold by an isometric action of a finite group
21
+ [LT10, Theorem 1.1]. However, the curvature of such a quotient is in general still locally
22
+ unbounded from above in the Alexandrov sense. For instance, the quotient of R2 by a finite
23
+ cyclic group of rotations around the origin is isometric to the Euclidean cone over a circle of
24
+ radius 2π/k for some k > 1 and exhibits infinite positive curvature at the tip of the cone.
25
+ Infinitesimally, the only exceptions of this phenomenon one can think of are quotients of Rn
26
+ by finite reflection groups [Hu90]. In this case the quotient is isometric to a Weyl chamber
27
+ of the corresponding reflection group and thus flat. Globally, these examples correspond to
28
+ so-called reflectofolds, i.e. Riemannian orbifolds all of whose local groups are reflection groups
29
+ [Da11]. In particular, reflectofolds are Riemannian manifolds in their interior. In fact, metric
30
+ spaces with two-sided curvature bounds are always Riemannian manifolds (perhaps of low
31
+ regularity) in their interior [BN93], cf. [BBI01, Theorem 10.10.13]. Here we confirm that
32
+ for the whole quotient space no other examples than reflectofolds locally have a two-sided
33
+ curvature bound.
34
+ Theorem 1.1. The curvature of a Riemannian orbifold is locally bounded from above in the
35
+ Alexandrov sense if and only if it is a reflectofold.
36
+ In this case, locally, the curvature is
37
+ bounded from above by k in the Alexandrov sense if and only if the sectional curvature is
38
+ bounded from above by k.
39
+ 1
40
+
41
+ 2
42
+ C. LANGE
43
+ In the manifold case this statement is due to Alexandrov [Al51] based on earlier work by
44
+ Cartan [Ca28]. Our proof of Theorem 1.1 works by induction on the dimension and uses the
45
+ fact that tangent spaces of metric spaces with curvature bounded from above are CAT(0),
46
+ see Theorem 2.2. The main step is to prove Lemma 2.3 which characterizes CAT(0) spaces
47
+ among quotient spaces Rn/Γ for finite subgroups Γ < O(n).
48
+ Namely, such a quotient is
49
+ CAT(0) if and only if Γ is generated by reflections, in which case the quotient is isometric
50
+ to a Weyl chamber of Γ if Γ is nontrivial. The strategy of the proof is related to the one in
51
+ [La16, Section 4] and [La19, Lemma 4.17].
52
+ Based on the result by Lytchak–Thorbergsson [LT10, Theorem 1.1] we state the following
53
+ corollary.
54
+ Corollary 1.2. Let M be a Riemannian manifold and let G be a closed group of isometeries
55
+ of M. Let p ∈ M be a point with isotropy Gp. Set ¯p = Gp ∈ M/G. Then the following are
56
+ equivalent:
57
+ (i) The curvature of M/G is bounded from above in a neighborhood of ¯p in the Alexandrov
58
+ sense.
59
+ (ii) A neighborhood of ¯p in M/G is a reflectofold.
60
+ (iii) The action of Gp on TpM is polar and and the corresponding polar group Π is gen-
61
+ erated by reflections.
62
+ Here the action of Gp on TpM is called polar if there exists a subspace Σ ⊆ TpM that
63
+ meets all orbits of the Gp-action and meets them always orthogonally. The polar group Π is
64
+ defined to be the quotient of the subgroup that leaves Σ invariant modulo the subgroup that
65
+ fixes Σ pointwise. It acts naturally on Σ. In particular, condition (iii) is satisfied, if Gp is
66
+ connected [GZ12, Proposition 1.4] and if Gp is Coxeter polar like the isotropy representations
67
+ of a symmetric space. For more details on polar action we refer to the survey [GZ12].
68
+ 2. Quotients with upper curvature bounds
69
+ 2.1. Spaces with upper curvature bounds. We say that a metric space X is D-geodesic
70
+ for some D > 0 if all points of distance less than Dk are connected by a geodesic. Let Dk be
71
+ the diameter of the complete model plane of constant curvature k. We say that X is CAT(k)
72
+ if it is Dk-geodesic and all geodesic triangles in X of perimeter less than 2Dk satisfy the
73
+ CAT(k) comparison condition, see [BH99, II.1]. We say that X has curvature bounded from
74
+ above by k in the Alexandrov sense if it is locally CAT(k). This definition is motivated by
75
+ the following result of Alexandrov. A proof can also be found in [BH99, Theorem 1A.6].
76
+ Theorem 2.1 (Alexandrov, [Al51]). A Riemannian manifold has curvature bounded from
77
+ above by k in the Alexandrov sense if and only if its sectional curvature is bounded from above
78
+ by k.
79
+ For a metric space X with curvature bounded from above in the Alexandrov sense we
80
+ denote the (completion of the) space of directions at a point p ∈ X by ΣpX and the tangent
81
+ cone of X at p, which is isometric to the Euclidean cone over the space of directions ΣpX, by
82
+ TpX, cf. [BH99, II 3]. A proof of the following statement, first outlined by Kleiner and Leeb
83
+ [KL97], can be found in [BH99, II 3.19].
84
+ Theorem 2.2 (Nikolaev, [N95]). If a metric space has curvature bounded from above in the
85
+ Alexandrov sense, then all spaces of directions are CAT(1) and all tangent spaces are CAT(0).
86
+
87
+ ORBIFOLDS AND MANIFOLD QUOTIENTS WITH UPPER CURVATURE BOUNDS
88
+ 3
89
+ 2.2. Riemannian orbifolds. A Riemannian n-orbifold O can be defined as a length space
90
+ which is locally isometric to the quotient of a Riemannian n-manifold by an isometric action
91
+ of a finite group [La20]. The isotropy group of the preimage of a point p ∈ O in such a
92
+ manifold chart under the finite group action is uniquely defined up to conjugation in O(n),
93
+ and it is called the local group of O at p. The set of points with trivial local group is called
94
+ the regular part of O. From the local model it is easy to see that the regular part is open
95
+ and dense. Hence, if the curvature of a Riemannian orbifold is bounded from above by k in
96
+ the Alexandrov sense, then the sectional curvature of its regular part must satisify the same
97
+ curvature bound by Theorem 2.1. Moreover, since the regular part is dense, the sectional
98
+ curvature bound must be satisfied everywhere.
99
+ 2.3. Proof of Theorem 1.1 and Corollary 1.2. The space of directions of a Riemannian
100
+ orbifold O at a point p ∈ O with local group Γp is isometric to Sn−1/Γp, where Sn−1 denotes
101
+ the unit sphere in Rn, and the tangent cone of O at p is isometric to Rn/Γp. Therefore, the
102
+ statement in Theorem 1.1 that local groups are generated by reflections if the curvature is
103
+ bounded from above in the Alexandrov sense is a consequence of the following lemma.
104
+ Lemma 2.3. Let Γ < O(n) be a finite subgroup such that Rn/Γ is CAT(0).
105
+ Then Γ is
106
+ generated by reflections.
107
+ Proof. We prove the claim by induction on n. For n = 1 the claim is obvious.
108
+ Assume that the claim holds for some n ∈ N and let Γ < O(n + 1) be a finite subgroup
109
+ such that Rn+1/Γ is CAT(0). Then Σ0(Rn+1/Γ) = Sn/Γ is CAT(1) by Theorem 2.2. Hence,
110
+ for any v ∈ Sn we have that Tv(Sn/Γ) = TvSn/Γv = Rn/Γv is CAT(0) and so for any v ∈ Sn
111
+ the isotropy group Γv is generated by reflections by our induction assumption.
112
+ We set Γ′ = ⟨Γv | v ∈ Sn⟩. By construction Γ′ is a normal subgroup of Γ generated by
113
+ reflections. The induced action of Γ/Γ′ on Sn/Γ′ is isometric and free, see [La19, Lemma 4.16].
114
+ We first suppose that Γ′ is nontrivial. In this case Rn+1/Γ′ is isometric to a Weyl chamber
115
+ [Hu90] and so the quotient Sn/Γ′ is contractible. This implies Γ = Γ′ since a nontrivial finite
116
+ group cannot act freely on a finite dimensional complex (although it can act without fixed
117
+ points [FR59]). Alternatively, we can also argue geometrically as follows. The group Γ leaves
118
+ the subspace
119
+ V = Fix(Γ′) = {v ∈ Rn | gv = v for all g ∈ Γ′} ∼= Rk
120
+ and its orthogonal complement invariant. Since Γ′ is nontrivial we have that k > 0. Then ∆ =
121
+ Sn−k/Γ′ is a (strictly convex) spherical simplex [Hu90]. The join splitting Sn = Sk−1 ∗ Sn−k
122
+ induces a splitting Sn/Γ′ = Sk−1 ∗ ∆ of its Γ′-quotient whose subspaces Sk−1 and ∆ are
123
+ invariant under the Γ/Γ′ action. Since the barycenter of ∆ is fixed by Γ/Γ′, we again conclude
124
+ that Γ = Γ′.
125
+ Hence, we can assume that Γ′ is trivial. In this case Γ acts freely on Sn. Therefore, for any
126
+ nontrivial g ∈ Γ there exists a periodic geodesic on Sn which together with its orientiation
127
+ is preserved by g. Suppose that there is such a nontrivial g. Then a corresponding invariant
128
+ geodesic projects onto a periodic geodesic of Sn/Γ of length < 2π, again because the action of
129
+ Γ on Sn is free. This contradicts the fact that Sn/Γ is CAT(1), see [AKP19, Proposition 2.2.7],
130
+ and so Γ has to be trivial as well in this case. The claim follows.
131
+
132
+ This completes the proof of the if direction of Theorem 1.1.
133
+ The proof of the only if
134
+ direction is based on the fact that the quotient Rn/Γ of Rn by a reflection group Γ < O(n)
135
+
136
+ 4
137
+ C. LANGE
138
+ is isometric to a Weyl chamber in Rn [Hu90]. If a finite group Γp acts isometrically on a
139
+ Riemannian manifold M fixing a point p ∈ M such that the induced action of Γp on TpM is
140
+ generated by reflections, then a small r-neighborhood of the image of p in M/Γp is isometric to
141
+ the image under the exponential map expp : TpM → M of the intersection of a corresponding
142
+ Weyl chamber with a small r-neighborhood of 0 ∈ TpM. The claim now follows from the
143
+ observation that for sufficiently small r > 0 this image is a convex subset of M, which is an
144
+ easy exercise in Riemannian geometry.
145
+ Proof of Corollary 1.2. To prove Corollary 1.2 we first observe that an upper curvature bound
146
+ in the Alexandrov sense for a neighborhood U in M/G implies an upper bound on the sectional
147
+ curvature of the intersection of U with the principle stratum of M/G by Theorem 2.1. In
148
+ this case U is a Riemannian orbifold by [LT10, Theorem 1.1] and hence a reflectofold by
149
+ Theorem 1.1. The reverse implication also follows from Theorem 1.1.
150
+ The other equivalence follows from [LT10, Theorem 1.1] together with the observation that
151
+ the quotient Σ/Π of a section Σ of the polar action of Gp on TpM modulo the polar group Π
152
+ is isometric to the tangent cone of the orbifold M/G at p
153
+
154
+ Acknowledgements.
155
+ The author thanks Claudio Gorodoski for discussions about polar
156
+ actions and the members of the LMU geometry seminar for useful questions and comments.
157
+ References
158
+ [AKP19]
159
+ S. Alexander, V. Kapovitch and A. Petrunin, An invitation to Alexandrov geometry. CAT(0)
160
+ spaces. SpringerBriefs in Mathematics. Springer, Cham, 2019. xii+88 pp.
161
+ [AB15]
162
+ M. Alexandrino and R. Bettiol, Lie groups and geometric aspects of isometric actions. Springer,
163
+ Cham, 2015. x+213 pp.
164
+ [Al51]
165
+ A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications. (Russian)
166
+ Trudy Mat. Inst. Steklov. 38 (1951), 5–23.Izdat. Akad. Nauk SSSR, Moscow.
167
+ [BN93]
168
+ V. N. Berestovskij and I. G. Nikolaev, Multidimensional generalized Riemannian spaces. Geom-
169
+ etry, IV, 165–243, 245–250, Encyclopaedia Math. Sci., 70, Springer, Berlin, 1993.
170
+ [BH99]
171
+ M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Grundlehren der mathema-
172
+ tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319. Springer-Verlag,
173
+ Berlin, 1999. xxii+643 pp.
174
+ [BBI01]
175
+ D. Burago, Y. Burago and S. Ivanov, A course in metric geometry. Graduate Studies in Mathe-
176
+ matics, 33. American Mathematical Society, Providence, RI, 2001.
177
+ [Ca28]
178
+ É. Cartan, Leçons sur la géométrie des espaces de Riemann. Gauthier-Villars, Paris, 1928, 2nd
179
+ edition 1951.
180
+ [Da11]
181
+ M. W. Davis, Lectures on orbifolds and reflection groups, in Transformation groups and moduli
182
+ spaces of curves, 63–93, Adv. Lect. Math. (ALM), 16, Int. Press, Somerville, MA, 2011.
183
+ [GL15]
184
+ C. Gorodski and A. Lytchak, Representations whose minimal reduction has a toric identity com-
185
+ ponent. Proc. Amer. Math. Soc. 143 (2015), no. 1, 379–386.
186
+ [GLLM22]
187
+ C. Gorodski, C. Lange, A Lytchak and R. A. E. Mendes, A diameter gap for quotients of the
188
+ unit sphere. J. Eur. Math. Soc. (2022), DOI 10.4171/JEMS/1272.
189
+ [GL16]
190
+ C. Gorodski and A. Lytchak, Isometric actions on spheres with an orbifold quotient. Math. Ann.
191
+ 365 (2016), no. 3-4, 1041–1067.
192
+ [GZ12]
193
+ K. Grove and W. Ziller, Polar manifolds and actions. J. Fixed Point Theory Appl. 11 (2012), no.
194
+ 2, 279–313.
195
+ [Hu90]
196
+ J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Math-
197
+ ematics, vol. 29, Cambridge University Press, Cambridge, 1990.
198
+ [KL97]
199
+ B. Kleiner and B. Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings.
200
+ Inst. Hautes Études Sci. Publ. Math. No. 86 (1997), 115–197 (1998).
201
+
202
+ ORBIFOLDS AND MANIFOLD QUOTIENTS WITH UPPER CURVATURE BOUNDS
203
+ 5
204
+ [La16]
205
+ C. Lange, Characterization of finite groups generated by reflections and rotations. J. Topol. 9
206
+ (2016), no. 4, 1109–1129.
207
+ [La19]
208
+ C. Lange, When is the underlying space of an orbifold a manifold? Trans. Amer. Math. Soc. 372
209
+ (2019), no. 4, 2799–2828.
210
+ [La20]
211
+ C. Lange, Orbifolds from a metric viewpoint. Geom. Dedicata, 209 (2020), 43–57.
212
+ [LT10]
213
+ A. Lytchak and G. Thorbergsson, Curvature explosion in quotients and applications. J. Differ-
214
+ ential Geom. 85 (2010), no. 1, 117–139.
215
+ [N95]
216
+ I. Nikolaev, The tangent cone of an Aleksandrov space of curvature ≤ k. Manuscripta Math. 86
217
+ (1995), no. 2, 137–147.
218
+ [FR59]
219
+ E. Floyd and R. W. Richardson, An action of a finite group on an n-cell without stationary
220
+ points. Bull. Amer. Math. Soc. 65 (1959), 73–76.
221
+ Ludwig-Maximilians-Universität München, Mathematisches Institut
222
+ Theresienst. 39, 80333 München, Germany
223
224
+
DtE1T4oBgHgl3EQfEQNL/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,302 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf,len=301
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
3
+ page_content='02887v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
4
+ page_content='DG] 7 Jan 2023 ORBIFOLDS AND MANIFOLD QUOTIENTS WITH UPPER CURVATURE BOUNDS CHRISTIAN LANGE Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
5
+ page_content=' We characterize Riemannian orbifolds with an upper curvature bound in the Alexandrov sense as reflectofolds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
6
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
7
+ page_content=' Riemannian orbifolds all of whose local groups are generated by reflections, with the same upper bound on the sectional curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
8
+ page_content=' Combined with a result by Lytchak–Thorbergsson this implies that a quotient of a Riemannian manifold by a closed group of isometries has locally bounded curvature (from above) in the Alexandrov sense if and only if it is a reflectofold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
9
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
10
+ page_content=' Introduction Let M be a Riemannian manifold and let G be a closed group of isometries of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
11
+ page_content=' Then the quotient space M/G is a metric space whose metric properties are often related to properties of the action in an interesting way, see e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
12
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
13
+ page_content=' [GLLM22, LT10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
14
+ page_content=' Usually, this quotient is not a Riemannian manifold, but an Alexandrov space with curvature locally bounded from below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
15
+ page_content=' Nevertheless, it is stratified by Riemannian manifolds and the so-called principle stratum is open and dense [AB15].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
16
+ page_content=' Lytchak and Thorbergsson have shown that the sectional curvature of this principle stratum is bounded from above in the neighborhood of a point if and only if this neighborhood in M/G is a Riemannian orbifold, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
17
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
18
+ page_content=' a metric space which is locally isometric to the quotient of a Riemannian manifold by an isometric action of a finite group [LT10, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
19
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
20
+ page_content=' However, the curvature of such a quotient is in general still locally unbounded from above in the Alexandrov sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
21
+ page_content=' For instance, the quotient of R2 by a finite cyclic group of rotations around the origin is isometric to the Euclidean cone over a circle of radius 2π/k for some k > 1 and exhibits infinite positive curvature at the tip of the cone.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
22
+ page_content=' Infinitesimally, the only exceptions of this phenomenon one can think of are quotients of Rn by finite reflection groups [Hu90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
23
+ page_content=' In this case the quotient is isometric to a Weyl chamber of the corresponding reflection group and thus flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
24
+ page_content=' Globally, these examples correspond to so-called reflectofolds, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
25
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
26
+ page_content=' Riemannian orbifolds all of whose local groups are reflection groups [Da11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
27
+ page_content=' In particular, reflectofolds are Riemannian manifolds in their interior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
28
+ page_content=' In fact, metric spaces with two-sided curvature bounds are always Riemannian manifolds (perhaps of low regularity) in their interior [BN93], cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
29
+ page_content=' [BBI01, Theorem 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
30
+ page_content='10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
31
+ page_content='13].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
32
+ page_content=' Here we confirm that for the whole quotient space no other examples than reflectofolds locally have a two-sided curvature bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
33
+ page_content=' Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
34
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
35
+ page_content=' The curvature of a Riemannian orbifold is locally bounded from above in the Alexandrov sense if and only if it is a reflectofold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
36
+ page_content=' In this case, locally, the curvature is bounded from above by k in the Alexandrov sense if and only if the sectional curvature is bounded from above by k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
37
+ page_content=' 1 2 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
38
+ page_content=' LANGE In the manifold case this statement is due to Alexandrov [Al51] based on earlier work by Cartan [Ca28].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
39
+ page_content=' Our proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
40
+ page_content='1 works by induction on the dimension and uses the fact that tangent spaces of metric spaces with curvature bounded from above are CAT(0), see Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
41
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
42
+ page_content=' The main step is to prove Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
43
+ page_content='3 which characterizes CAT(0) spaces among quotient spaces Rn/Γ for finite subgroups Γ < O(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
44
+ page_content=' Namely, such a quotient is CAT(0) if and only if Γ is generated by reflections, in which case the quotient is isometric to a Weyl chamber of Γ if Γ is nontrivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
45
+ page_content=' The strategy of the proof is related to the one in [La16, Section 4] and [La19, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
46
+ page_content='17].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
47
+ page_content=' Based on the result by Lytchak–Thorbergsson [LT10, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
48
+ page_content='1] we state the following corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
49
+ page_content=' Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
50
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
51
+ page_content=' Let M be a Riemannian manifold and let G be a closed group of isometeries of M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
52
+ page_content=' Let p ∈ M be a point with isotropy Gp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
53
+ page_content=' Set ¯p = Gp ∈ M/G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
54
+ page_content=' Then the following are equivalent: (i) The curvature of M/G is bounded from above in a neighborhood of ¯p in the Alexandrov sense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
55
+ page_content=' (ii) A neighborhood of ¯p in M/G is a reflectofold.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
56
+ page_content=' (iii) The action of Gp on TpM is polar and and the corresponding polar group Π is gen- erated by reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
57
+ page_content=' Here the action of Gp on TpM is called polar if there exists a subspace Σ ⊆ TpM that meets all orbits of the Gp-action and meets them always orthogonally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
58
+ page_content=' The polar group Π is defined to be the quotient of the subgroup that leaves Σ invariant modulo the subgroup that fixes Σ pointwise.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
59
+ page_content=' It acts naturally on Σ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
60
+ page_content=' In particular, condition (iii) is satisfied, if Gp is connected [GZ12, Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
61
+ page_content='4] and if Gp is Coxeter polar like the isotropy representations of a symmetric space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
62
+ page_content=' For more details on polar action we refer to the survey [GZ12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
63
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
64
+ page_content=' Quotients with upper curvature bounds 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
65
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
66
+ page_content=' Spaces with upper curvature bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
67
+ page_content=' We say that a metric space X is D-geodesic for some D > 0 if all points of distance less than Dk are connected by a geodesic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
68
+ page_content=' Let Dk be the diameter of the complete model plane of constant curvature k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
69
+ page_content=' We say that X is CAT(k) if it is Dk-geodesic and all geodesic triangles in X of perimeter less than 2Dk satisfy the CAT(k) comparison condition, see [BH99, II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
70
+ page_content='1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
71
+ page_content=' We say that X has curvature bounded from above by k in the Alexandrov sense if it is locally CAT(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
72
+ page_content=' This definition is motivated by the following result of Alexandrov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
73
+ page_content=' A proof can also be found in [BH99, Theorem 1A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
74
+ page_content='6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
75
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
76
+ page_content='1 (Alexandrov, [Al51]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
77
+ page_content=' A Riemannian manifold has curvature bounded from above by k in the Alexandrov sense if and only if its sectional curvature is bounded from above by k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
78
+ page_content=' For a metric space X with curvature bounded from above in the Alexandrov sense we denote the (completion of the) space of directions at a point p ∈ X by ΣpX and the tangent cone of X at p, which is isometric to the Euclidean cone over the space of directions ΣpX, by TpX, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
79
+ page_content=' [BH99, II 3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
80
+ page_content=' A proof of the following statement, first outlined by Kleiner and Leeb [KL97], can be found in [BH99, II 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
81
+ page_content='19].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
82
+ page_content=' Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
83
+ page_content='2 (Nikolaev, [N95]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
84
+ page_content=' If a metric space has curvature bounded from above in the Alexandrov sense, then all spaces of directions are CAT(1) and all tangent spaces are CAT(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
85
+ page_content=' ORBIFOLDS AND MANIFOLD QUOTIENTS WITH UPPER CURVATURE BOUNDS 3 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
86
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
87
+ page_content=' Riemannian orbifolds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
88
+ page_content=' A Riemannian n-orbifold O can be defined as a length space which is locally isometric to the quotient of a Riemannian n-manifold by an isometric action of a finite group [La20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
89
+ page_content=' The isotropy group of the preimage of a point p ∈ O in such a manifold chart under the finite group action is uniquely defined up to conjugation in O(n), and it is called the local group of O at p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
90
+ page_content=' The set of points with trivial local group is called the regular part of O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
91
+ page_content=' From the local model it is easy to see that the regular part is open and dense.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
92
+ page_content=' Hence, if the curvature of a Riemannian orbifold is bounded from above by k in the Alexandrov sense, then the sectional curvature of its regular part must satisify the same curvature bound by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
93
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
94
+ page_content=' Moreover, since the regular part is dense, the sectional curvature bound must be satisfied everywhere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
95
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
96
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
97
+ page_content=' Proof of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
98
+ page_content='1 and Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
99
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
100
+ page_content=' The space of directions of a Riemannian orbifold O at a point p ∈ O with local group Γp is isometric to Sn−1/Γp, where Sn−1 denotes the unit sphere in Rn, and the tangent cone of O at p is isometric to Rn/Γp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
101
+ page_content=' Therefore, the statement in Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
102
+ page_content='1 that local groups are generated by reflections if the curvature is bounded from above in the Alexandrov sense is a consequence of the following lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
103
+ page_content=' Lemma 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
104
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
105
+ page_content=' Let Γ < O(n) be a finite subgroup such that Rn/Γ is CAT(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
106
+ page_content=' Then Γ is generated by reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
107
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
108
+ page_content=' We prove the claim by induction on n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
109
+ page_content=' For n = 1 the claim is obvious.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
110
+ page_content=' Assume that the claim holds for some n ∈ N and let Γ < O(n + 1) be a finite subgroup such that Rn+1/Γ is CAT(0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
111
+ page_content=' Then Σ0(Rn+1/Γ) = Sn/Γ is CAT(1) by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
112
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
113
+ page_content=' Hence, for any v ∈ Sn we have that Tv(Sn/Γ) = TvSn/Γv = Rn/Γv is CAT(0) and so for any v ∈ Sn the isotropy group Γv is generated by reflections by our induction assumption.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
114
+ page_content=' We set Γ′ = ⟨Γv | v ∈ Sn⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
115
+ page_content=' By construction Γ′ is a normal subgroup of Γ generated by reflections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
116
+ page_content=' The induced action of Γ/Γ′ on Sn/Γ′ is isometric and free, see [La19, Lemma 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
117
+ page_content='16].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
118
+ page_content=' We first suppose that Γ′ is nontrivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
119
+ page_content=' In this case Rn+1/Γ′ is isometric to a Weyl chamber [Hu90] and so the quotient Sn/Γ′ is contractible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
120
+ page_content=' This implies Γ = Γ′ since a nontrivial finite group cannot act freely on a finite dimensional complex (although it can act without fixed points [FR59]).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
121
+ page_content=' Alternatively, we can also argue geometrically as follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
122
+ page_content=' The group Γ leaves the subspace V = Fix(Γ′) = {v ∈ Rn | gv = v for all g ∈ Γ′} ∼= Rk and its orthogonal complement invariant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
123
+ page_content=' Since Γ′ is nontrivial we have that k > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
124
+ page_content=' Then ∆ = Sn−k/Γ′ is a (strictly convex) spherical simplex [Hu90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
125
+ page_content=' The join splitting Sn = Sk−1 ∗ Sn−k induces a splitting Sn/Γ′ = Sk−1 ∗ ∆ of its Γ′-quotient whose subspaces Sk−1 and ∆ are invariant under the Γ/Γ′ action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
126
+ page_content=' Since the barycenter of ∆ is fixed by Γ/Γ′, we again conclude that Γ = Γ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
127
+ page_content=' Hence, we can assume that Γ′ is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
128
+ page_content=' In this case Γ acts freely on Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
129
+ page_content=' Therefore, for any nontrivial g ∈ Γ there exists a periodic geodesic on Sn which together with its orientiation is preserved by g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
130
+ page_content=' Suppose that there is such a nontrivial g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
131
+ page_content=' Then a corresponding invariant geodesic projects onto a periodic geodesic of Sn/Γ of length < 2π, again because the action of Γ on Sn is free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
132
+ page_content=' This contradicts the fact that Sn/Γ is CAT(1), see [AKP19, Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
133
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
134
+ page_content='7], and so Γ has to be trivial as well in this case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
135
+ page_content=' The claim follows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
136
+ page_content=' □ This completes the proof of the if direction of Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
137
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
138
+ page_content=' The proof of the only if direction is based on the fact that the quotient Rn/Γ of Rn by a reflection group Γ < O(n) 4 C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
139
+ page_content=' LANGE is isometric to a Weyl chamber in Rn [Hu90].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
140
+ page_content=' If a finite group Γp acts isometrically on a Riemannian manifold M fixing a point p ∈ M such that the induced action of Γp on TpM is generated by reflections, then a small r-neighborhood of the image of p in M/Γp is isometric to the image under the exponential map expp : TpM → M of the intersection of a corresponding Weyl chamber with a small r-neighborhood of 0 ∈ TpM.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
141
+ page_content=' The claim now follows from the observation that for sufficiently small r > 0 this image is a convex subset of M, which is an easy exercise in Riemannian geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
142
+ page_content=' Proof of Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
143
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
144
+ page_content=' To prove Corollary 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
145
+ page_content='2 we first observe that an upper curvature bound in the Alexandrov sense for a neighborhood U in M/G implies an upper bound on the sectional curvature of the intersection of U with the principle stratum of M/G by Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
146
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
147
+ page_content=' In this case U is a Riemannian orbifold by [LT10, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
148
+ page_content='1] and hence a reflectofold by Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
149
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
150
+ page_content=' The reverse implication also follows from Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
151
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
152
+ page_content=' The other equivalence follows from [LT10, Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
153
+ page_content='1] together with the observation that the quotient Σ/Π of a section Σ of the polar action of Gp on TpM modulo the polar group Π is isometric to the tangent cone of the orbifold M/G at p □ Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
154
+ page_content=' The author thanks Claudio Gorodoski for discussions about polar actions and the members of the LMU geometry seminar for useful questions and comments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
155
+ page_content=' References [AKP19] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
156
+ page_content=' Alexander, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
157
+ page_content=' Kapovitch and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
158
+ page_content=' Petrunin, An invitation to Alexandrov geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
159
+ page_content=' CAT(0) spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
160
+ page_content=' SpringerBriefs in Mathematics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
161
+ page_content=' Springer, Cham, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
162
+ page_content=' xii+88 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
163
+ page_content=' [AB15] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
164
+ page_content=' Alexandrino and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
165
+ page_content=' Bettiol, Lie groups and geometric aspects of isometric actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
166
+ page_content=' Springer, Cham, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
167
+ page_content=' x+213 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
168
+ page_content=' [Al51] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
169
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
170
+ page_content=' Alexandrov, A theorem on triangles in a metric space and some of its applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
171
+ page_content=' (Russian) Trudy Mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
172
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
173
+ page_content=' Steklov.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
174
+ page_content=' 38 (1951), 5–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
175
+ page_content='Izdat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
176
+ page_content=' Akad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
177
+ page_content=' Nauk SSSR, Moscow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
178
+ page_content=' [BN93] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
179
+ page_content=' N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
180
+ page_content=' Berestovskij and I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
181
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
182
+ page_content=' Nikolaev, Multidimensional generalized Riemannian spaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
183
+ page_content=' Geom- etry, IV, 165–243, 245–250, Encyclopaedia Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
184
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
185
+ page_content=', 70, Springer, Berlin, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
186
+ page_content=' [BH99] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
187
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
188
+ page_content=' Bridson, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
189
+ page_content=' Haefliger, Metric spaces of non-positive curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
190
+ page_content=' Grundlehren der mathema- tischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 319.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
191
+ page_content=' Springer-Verlag, Berlin, 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
192
+ page_content=' xxii+643 pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
193
+ page_content=' [BBI01] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
194
+ page_content=' Burago, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
195
+ page_content=' Burago and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
196
+ page_content=' Ivanov, A course in metric geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
197
+ page_content=' Graduate Studies in Mathe- matics, 33.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
198
+ page_content=' American Mathematical Society, Providence, RI, 2001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
199
+ page_content=' [Ca28] É.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
200
+ page_content=' Cartan, Leçons sur la géométrie des espaces de Riemann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
201
+ page_content=' Gauthier-Villars, Paris, 1928, 2nd edition 1951.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
202
+ page_content=' [Da11] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
203
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
204
+ page_content=' Davis, Lectures on orbifolds and reflection groups, in Transformation groups and moduli spaces of curves, 63–93, Adv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
205
+ page_content=' Lect.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
206
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
207
+ page_content=' (ALM), 16, Int.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
208
+ page_content=' Press, Somerville, MA, 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
209
+ page_content=' [GL15] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
210
+ page_content=' Gorodski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
211
+ page_content=' Lytchak, Representations whose minimal reduction has a toric identity com- ponent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
212
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
213
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
214
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
215
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
216
+ page_content=' 143 (2015), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
217
+ page_content=' 1, 379–386.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
218
+ page_content=' [GLLM22] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
219
+ page_content=' Gorodski, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
220
+ page_content=' Lange, A Lytchak and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
221
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
222
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
223
+ page_content=' Mendes, A diameter gap for quotients of the unit sphere.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
224
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
225
+ page_content=' Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
226
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
227
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
228
+ page_content=' (2022), DOI 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
229
+ page_content='4171/JEMS/1272.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
230
+ page_content=' [GL16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
231
+ page_content=' Gorodski and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
232
+ page_content=' Lytchak, Isometric actions on spheres with an orbifold quotient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
233
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
234
+ page_content=' Ann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
235
+ page_content=' 365 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
236
+ page_content=' 3-4, 1041–1067.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
237
+ page_content=' [GZ12] K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
238
+ page_content=' Grove and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
239
+ page_content=' Ziller, Polar manifolds and actions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
240
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
241
+ page_content=' Fixed Point Theory Appl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
242
+ page_content=' 11 (2012), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
243
+ page_content=' 2, 279–313.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
244
+ page_content=' [Hu90] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
245
+ page_content=' E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
246
+ page_content=' Humphreys, Reflection groups and Coxeter groups.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
247
+ page_content=' Cambridge Studies in Advanced Math- ematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
248
+ page_content=' 29, Cambridge University Press, Cambridge, 1990.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
249
+ page_content=' [KL97] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
250
+ page_content=' Kleiner and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
251
+ page_content=' Leeb, Rigidity of quasi-isometries for symmetric spaces and Euclidean buildings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
252
+ page_content=' Inst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
253
+ page_content=' Hautes Études Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
254
+ page_content=' Publ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
255
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
256
+ page_content=' No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
257
+ page_content=' 86 (1997), 115–197 (1998).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
258
+ page_content=' ORBIFOLDS AND MANIFOLD QUOTIENTS WITH UPPER CURVATURE BOUNDS 5 [La16] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
259
+ page_content=' Lange, Characterization of finite groups generated by reflections and rotations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
260
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
261
+ page_content=' Topol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
262
+ page_content=' 9 (2016), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
263
+ page_content=' 4, 1109–1129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
264
+ page_content=' [La19] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
265
+ page_content=' Lange, When is the underlying space of an orbifold a manifold?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
266
+ page_content=' Trans.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
267
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
268
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
269
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
270
+ page_content=' 372 (2019), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
271
+ page_content=' 4, 2799–2828.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
272
+ page_content=' [La20] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
273
+ page_content=' Lange, Orbifolds from a metric viewpoint.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
274
+ page_content=' Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
275
+ page_content=' Dedicata, 209 (2020), 43–57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
276
+ page_content=' [LT10] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
277
+ page_content=' Lytchak and G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
278
+ page_content=' Thorbergsson, Curvature explosion in quotients and applications.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
279
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
280
+ page_content=' Differ- ential Geom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
281
+ page_content=' 85 (2010), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
282
+ page_content=' 1, 117–139.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
283
+ page_content=' [N95] I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
284
+ page_content=' Nikolaev, The tangent cone of an Aleksandrov space of curvature ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
285
+ page_content=' Manuscripta Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
286
+ page_content=' 86 (1995), no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
287
+ page_content=' 2, 137–147.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
288
+ page_content=' [FR59] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
289
+ page_content=' Floyd and R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
290
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
291
+ page_content=' Richardson, An action of a finite group on an n-cell without stationary points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
292
+ page_content=' Bull.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
293
+ page_content=' Amer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
294
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
295
+ page_content=' Soc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
296
+ page_content=' 65 (1959), 73–76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
297
+ page_content=' Ludwig-Maximilians-Universität München, Mathematisches Institut Theresienst.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
298
+ page_content=' 39, 80333 München, Germany Email address: lange@math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
299
+ page_content='lmu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
300
+ page_content='de, clange.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
301
+ page_content='math@gmail.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
302
+ page_content='com' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE1T4oBgHgl3EQfEQNL/content/2301.02887v1.pdf'}
GNAzT4oBgHgl3EQfxP7V/content/tmp_files/2301.01736v1.pdf.txt ADDED
@@ -0,0 +1,537 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01736v1 [math.DS] 4 Jan 2023
2
+ Non-singular actions of infinite-dimensional groups and
3
+ polymorphisms
4
+ Yury A.Neretin1,2
5
+ Let Z be a probabilistic measure space with measure ζ, R× be the group of positive
6
+ reals, let t be the coordinate on R×. A polymorphism of Z is a measure π on Z × Z × R×
7
+ such that for any measurable A, B ⊂ Z we have π(A × Z × R×) = ζ(A) and
8
+
9
+ t dπ(z, u, t)
10
+ over Z ×B ×R× is ζ(B). The set of all polymorphisms has a natural semigroup structure,
11
+ the group of all non-singular transformations is dense in this semigroup. We discuss a
12
+ problem of closure in polymorphisms for certain types of infinite dimensional (’large’)
13
+ groups and show that a non-singular action of a group generates a representation of its
14
+ train (category of double cosets) by polymorphisms.
15
+ Let Z = (Z, ζ) be a Lebesgue probabilistic measure space with a non-atomic
16
+ measure. It is well-known that the group of all measure preserving transforma-
17
+ tions of Z has a natural compactification, which is a metrizable semigroup with
18
+ separately continuous multiplication (this arises to E. Hopf, [6], 1954). Its points
19
+ (’polymorphisms’, the term from [36]) are Borel measures π on Z × Z, whose push-
20
+ forwards under projections of Z × Z to the first and second factors coincide with
21
+ ζ, for details, see, e.g. [10], [36], [37], [13], Sect. VIII.4. Such objects play differ-
22
+ ent roles. They are a kind of multivalued transformations of measure spaces and
23
+ have the same rights as usual transformations, see, e.g., [10], [36]. They can be
24
+ intertwiners between dynamical systems (joinings), see, e.g., [31], [9], [4], [32].
25
+ Closures of groups in polymorphisms is an interesting and non-trivial topic,
26
+ starting from the group Z, see, e.g, [9], [5], [34]. The subject of the present note
27
+ are closures of actions of infinite-dimensional groups. The first result of this kind
28
+ was obtained by Nelson [11], who showed that the closure of the orthogonal group
29
+ O(∞) acting on the space with Gaussian measure is the semigroup of all contractive
30
+ operators.
31
+ Similar constructions related to non-singular transformations are well known in
32
+ ergodic theory, see [10], [3]. The matter of author’s interest are unitary representa-
33
+ tions related to non-singular actions, a definition of polymorphisms relevant to this
34
+ situation was proposed in [12].
35
+ 1. Polymorphisms. We consider only Lebesgue measure spaces, see [30], i.e.,
36
+ spaces, which are equivalent to a union of some interval in R and an at most count-
37
+ able collection of atoms having non-zero measure. For a space Z = (Z, ζ) with
38
+ a continuous (non-atomic) measure ζ we denote by Ams(Z) (an abbreviation of
39
+ ’automorphisms of a measure space’) the group of all measure preserving transfor-
40
+ mations, by Gms(Z) the group of all non-singular transformations; in both cases
41
+ transformations are defined up sets of zero measure. Recall that a transformation
42
+ g : Z → Z is non-singular if g and g−1 send sets of zero measure to sets of zero
43
+ measure.
44
+ Denote by R× the multiplicative group of positive reals, denote by t the coordi-
45
+ nate on it. Let (X, ξ), (Y, υ) be probabilistic Lebesgue spaces.
46
+ 1Supported by the grant FWF P31591.
47
+ 2This note is an extended Section 2 of preprint https://arxiv.org/abs/2202.12978.
48
+ 1
49
+
50
+ 2
51
+ Definition 1. ([12]) A polymorphism p : X ։ Y is a measure on X ×Y ×R× such
52
+ that
53
+ 1. The pushforward of p under the projection X × Y × R× → X is the measure
54
+ ξ.
55
+ 2. The pushforward of the measure t · p under the projection to Y coincides with
56
+ measure υ.
57
+ Denote by Pol(X, Y ) the space of all polymorphisms X ։ Y .
58
+ Example. Let q ∈ Gms(X, ξ). Consider the map X → X × X × R× defined by
59
+ x �→
60
+
61
+ x, q(x), q′(x)
62
+
63
+ ,
64
+ where q′ is the Radon–Nikodym derivative of q.
65
+ Then the pushforward of the
66
+ measure ξ under this map is a polymorphism X ։ X.
67
+
68
+ Topology.
69
+ Let pj, p ∈ Pol(X, Y ).
70
+ Consider measurable subsets A ⊂ X,
71
+ B ⊂ Y .
72
+ Restrict p to A × B × R× and take its pushforward under the map
73
+ A × B × R× → R×. Denote the resulting measure on R× by p[A × B]. We say that
74
+ a sequence pj ∈ Pol(M, N) converges to p, if for any measurable subsets A ⊂ M,
75
+ B ⊂ N we have weak convergences of measures
76
+ pj[A × B] → p[A × B],
77
+ t · pj[A × B] → t · p[A × B].
78
+ It is easy to show (see [18], Theorem 5.3) that the group Gms(M) is dense in
79
+ Pol(M).
80
+ Remark. Spaces Pol(X, Y ) are not compact. I do not know, is it reasonable to
81
+ compactify them.
82
+
83
+ Continuous polymorphisms. Denote by M▽(R×) the set of all positive finite
84
+ Borel measures σ on R× such that t · σ is finite. This set is a semigroup, a product
85
+ is a convolution ∗ of measures on the group R×. Clearly, a measurable function
86
+ (x, y) → sx,y from X × Y to M▽ determines a certain measure s on X × Y × R×.
87
+ Namely, for measurable sets A ⊂ X, B ⊂ Y , C ⊂ R× we assume
88
+ s(A × B × R×) =
89
+
90
+ A×B
91
+ sx,y(C) dξ(x) dυ(y).
92
+ We also must assume that
93
+
94
+ X
95
+ sx,y(R×) dυ(y) = 1,
96
+
97
+ Y
98
+
99
+ R× t dsx,y(t) dξ(x) = 1,
100
+ under this condition we get an element of Pol(X, Y ).
101
+ Let continuous polymorphisms u ∈ Pol(X, Y ), v ∈ Pol(Y, Z) be determined by
102
+ functions (x, y) �→ ux,y, (y, z) �→ vy,z. Then their product w = v ⋄ u ∈ Pol(X, Z) is
103
+ determined by the function
104
+ wx,z =
105
+
106
+ Y
107
+ ux,y ∗ vy,z dυ(y).
108
+ This is a formula for a product of integral operators, where the usual multiplication
109
+ is replaced by a convolution.
110
+ Product of polymorphisms. It is easy to see, that continuous polymorphisms
111
+ are dense in Pol(X, Y ). It can be shown that the multiplication ⋄ extends to a
112
+ separately continuous map
113
+ Pol(X, Y ) × Pol(Y, Z) → Pol(X, Z)
114
+
115
+ 3
116
+ and this operation is associative (see [18], Theorem 5.5, Theorem 5.9), i.e., for any
117
+ Lebesgue spaces X, Y , Z, U and for any
118
+ p ∈ Pol(X, Y ),
119
+ q ∈ Pol(Y, Z),
120
+ r ∈ Pol(Z, U),
121
+ we have (r ⋄ q) ⋄ p = r ⋄ (q ⋄ p).
122
+ So we get a category Pol whose objects are Lebesgue probabilistic measure spaces
123
+ and morphisms are polymorphisms.
124
+ Remarks. a) For other ways to define the multiplication of polymorphisms, see
125
+ [18], however it seems that the definition by continuity is most convenient.
126
+ b) Informally, polymorphisms are ’maps’ X → Y , which spread points of X
127
+ along Y and the Radon–Nikodym derivative also is spread.
128
+
129
+ Involution. Finally, we define an involution on the category Pol. For p ∈
130
+ Pol(X, Y ) we consider its pushforward p′ under the map (x, y, t) �→ (y, x, t−1) and
131
+ define p⋆ ∈ Pol(X, Y ) as the measure t · p′. Then
132
+ (q ⋄ p)⋆ = p⋆ ⋄ q⋆.
133
+ Description of closures of some infinite-dimensional groups in polymorphisms
134
+ were obtained in [14], [17], [20]. The purpose of this paper is to formulate a general
135
+ statement on this topic.
136
+ 2. Multiplicativity. M-subgroups and M-families. Let G be a separable
137
+ topological group (not necessary metrizable). Let ρ be a unitary representation of
138
+ G in a Hilbert space H (we consider only separable Hilbert spaces). For any closed
139
+ subgroup K ⊂ G we denote by HK the subspace of K-fixed vectors, by P K the
140
+ orthogonal projection to HK. For two subgroups K, L ⊂ G we define operators
141
+ �ρK,L(g) : HL → HK
142
+ by
143
+ �ρK,L(g) := P Kρ(g)
144
+ ���
145
+ HL.
146
+ It is easy to see that
147
+ p ∈ K, q ∈ L
148
+ =⇒
149
+ �ρK,L(pgq) = �ρK,L(g).
150
+ So �ρK,L(·) actually depends on a double coset g := K · g · L. Denote the space of
151
+ all double cosets by K\G/L. Next, we define a weaker equivalence on G,
152
+ g ∼ g′ ⇔ �ρK,L(g) = �ρK,L(g′), for all unitary representations ρ.
153
+ Denote by [K\G/L] the set of all equivalence classes.
154
+ Definition 2. A subgroup K ⊂ G is an M-subgroup in G (or a pair (G, K) satisfy
155
+ multiplicativity) if for each g, h ∈ [K\G/K] there is an element g ◦ h ∈ [K\G/K]
156
+ such that for any unitary representation ρ of G we have
157
+ ρK,K(g) ρK,K(h) = ρK,K(g ◦ h).
158
+ Since a product of operators is associative, the ◦-product in [K\G/K] also is
159
+ associative.
160
+ Remarks. 1) In all known cases there is an explicit sequence qj ∈ K such that
161
+ for any unitary representation ρ of G we have a weak operator convergence of ρ(qj)
162
+ to P K (existence of such sequences is usual for topological groups independently of
163
+ M-property); moreover, usually ◦-product can be defined as limj→∞ K · gqjh · K in
164
+
165
+ 4
166
+ the quotient topological space [K\G/K], where g, h are representatives of double
167
+ cosets.
168
+ 2) Our definition does not exclude trivial situations. For instance, it can hap-
169
+ pened that G has no nontrivial unitary representations. Then any K ⊂ G is an M-
170
+ subgroup, a semigroup [K\G/K] exists and consists of one element. If G = SL(n, R)
171
+ and K is a noncompact subgroup, then for any unitary representation we have
172
+ HK = 0 and again we come to a one-point semigroup. Also, M-property automat-
173
+ ically holds if K is a normal subgroup in G. Then K\G/K is the quotient group
174
+ G/K.
175
+ 3) Let G be a locally compact group and K be a compact subgroup.
176
+ Then
177
+ measures on K\G/K are in one-to-one correspondence with measures on G invari-
178
+ ant with respect to left and right shifts by elements of K, such measures form a
179
+ convolution semigroup. Semigroups of this type are widely used in representation
180
+ theory as tools or objects of interest in their own right (as Hecke(–Iwahori) algebras
181
+ or affine Hecke(–Iwahori) algebras). But sets K\G/K have no natural semigroup
182
+ structure.
183
+
184
+ Next, let we have a subgroup K = K0 ⊂ G and a family of subgroups Kα ⊂ K,
185
+ α ranges in some set A. Let us denote
186
+ HKα =: Hα,
187
+ P Kα =: Pα,
188
+ �ρKα,Kβ(·) =: �ρα,β(·).
189
+ Definition 3. A family {Kα} is an M-family (or a family satisfying to multiplica-
190
+ tivity), if for each α, β, γ ∈ A for any g ∈ [Kα\G/Kβ], h ∈ [Kα\G/Kβ] there is
191
+ an element g ◦ h such that for any unitary representation ρ of G we have
192
+ �ρα,β(g) �ρβ,α(h) = �ρα,γ(g ◦ h).
193
+ Since a product of operators is associative, ◦-product also is associative. So we
194
+ get a category (train Tr(G, {Kα}) of pair (G, K)). Its objects are α ∈ A and sets
195
+ of morphisms are
196
+ Mor(β, α) = [Kα\G/Kβ].
197
+ 3. Examples of M-families.
198
+ 1⋆. Infinite-dimensional real classical groups. Let G = GL(∞, R) be the group of
199
+ invertible real infinite matrices g such that g − 1 has only finite number of nonzero
200
+ elements. Let K = O(∞) be the subgroup consisting of orthogonal matrices. Let
201
+ Kα ⊂ K be the stabilizer of first α elements of the basis. Then {K}α ⊂ G is an
202
+ M-family.
203
+ Variant 1⋆
204
+ + (which is de facto almost equivalent to the previous case). Let G be
205
+ the group of invertible operators in real ℓ2, which can be represented in the form
206
+ U(1 + T ), where U is an orthogonal operator and T is a Hilbert–Schmidt operator.
207
+ Subgroup Kα are defined in the same way. See [27], [29], [28], [13], Sect. IX.3-4,
208
+ [15], [16].
209
+ 2⋆. Infinite symmetric groups. Denote by S∞ the group of finitely supported
210
+ permutations of N, by S∞ the group of all permutations. Let G be the product of
211
+ n copies of S∞, where n ⩾ 1. Let K be the diagonal, so K ≃ S∞. Let {Kα} be
212
+ point-wise stabilizers of sets {1, . . . , α}.
213
+ Variant 2⋆
214
+ +. Consider the product of n copies of S∞. Let G consist of tuples
215
+ (g1, . . . , gn) such that gig−1
216
+ j
217
+ ∈ S∞ for all i, j.
218
+ Subgroups {Kα} are point-wise
219
+ stabilizers of sets {1, . . . , α}.
220
+
221
+ 5
222
+ Variant 2⋆
223
+ ++. Let G, K be as in the first case. Let Ω be the set of all subsets
224
+ ⊂ N consisting of odd numbers. For ω ∈ Ω we define Kω as the point-wise stabilizer
225
+ of the set ω. See [26], [28], [19].
226
+ 3⋆. Infinite-dimensional matrix groups over finite fields. Let Fq be a finite field,
227
+ let V be the space of sequences (x1, x2, . . . ) such that all but a finite number of
228
+ elements are zero. Let G be the group of all linear transformations of V . Let K = G
229
+ and Kα be the stabilizer of the first α elements of the basis. See [28], [21].
230
+ 4⋆. Groups of transformations of measure spaces. Let Z be a probabilistic non-
231
+ atomic measure space. Let G = Gms(Z), K = Ams(Z). For any finite partition h
232
+ of Z we consider the subgroup Kh ⊂ K consisting of transformations preserving this
233
+ partition. In this case we get the category of all polymorphisms of finite measure
234
+ spaces. See [12], [13], Sect. VIII.4, Chapter X, [14].
235
+ 5⋆. Groups acting on trees and R-trees. Consider a tree T (a graph without
236
+ cycles) such that each vertex is contained in a countable family of edges. Let G be
237
+ the group of its automorphisms, K be a stabilizer of a vertex, say w. Subgroups Kα
238
+ are stabilizers of finite subtrees containing w. See [25], [13], Sect. VIII.6 (Remarks),
239
+ [23].
240
+ 6⋆. Oligomorphic groups. Let G = K be the group of automorphisms of the
241
+ Rado graph (see, e.g., [2]). Subgroups KI are stabilizers of finite subgraphs I. See
242
+ [35], [1].
243
+ Remarks. 1) Examples 1⋆–6⋆ are representatives of families of similar pairs
244
+ G ⊃ K (see references); known families are relatively wide in the cases 1⋆–2⋆ and
245
+ relatively small in the case 3⋆. In all cases there are explicit descriptions of train
246
+ categories, usually we come to non-standard algebraic structures.
247
+ 2) First examples of M-subgroups were discovered by Ismagilov [7], [8]. They
248
+ correspond to actions of groups on trees and R-trees (but he did not observed a
249
+ presence of trees).
250
+ 3) For the case of the Rado graph objects of the train are finite graphs and
251
+ morphisms I → J are isomorphisms of complete subgraphs A ⊂ I to complete
252
+ subgraphs B ⊂ J. The authors of [1] use another language, but our statement
253
+ easily follows from [35], [1].
254
+ On the other hand, the group of order preserving
255
+ bijections of Q is oligomorphic, but it has no train.
256
+ 4) For representatives of types 1⋆, 2⋆, 4⋆ for cases discussed until 1996 ([27], [26],
257
+ [12], [13]) sets [Kα\G/Kβ] coincide with Kα\G/Kβ or with maximal Hausdorff
258
+ quotients of G with respect to equivalence g ≃ pgq, where p ∈ Kα, q ∈ Kβ; I do
259
+ not know such statements for more general cases. On the other hand, for cases 3⋆,
260
+ 6⋆ spaces [Kα\G/Kβ] and Kα\G/Kβ can be essentially different (as it was firstly
261
+ shown in [28]).
262
+ 4. The statement of the paper. Let G be a separable topological group,
263
+ {Kα} be an M-family of subgroups. Consider an action of G by nonsingular trans-
264
+ formations τ(g) of a Lebesgue probabilistic space (Z, ζ). Let K act by measure
265
+ preserving transformations.
266
+ For each α denote by (Zα, ζα) the quotient of (Z, ζ) by the action of the group
267
+ Kα. Namely, consider the sigma-algebra Σα of all Kα-invariant measurable subsets3
268
+ 3A measurable subset A ⊂ Z is invariant if the symmetric differences A △ g(A) have zero
269
+ measure for all elements g of the group.
270
+
271
+ 6
272
+ in Z. Also consider the space Hα consisting of Kα-fixed functions in L2(Z, ζ). For
273
+ each A ∈ Σα we assign its indicator function IA(z). Since L2 is separable, we can
274
+ choose a dense countable subset IAj in the space of all functions IA, where A ranges
275
+ in Σα. Consider the sigma-algebra Σ′
276
+ α generated by Aj. According Rohlin [30], it
277
+ determines a measurable partition of Z. Denote by Zα the quotient space with
278
+ respect to this partition. We have a canonical map Z → Zα and therefore we get a
279
+ measure, say ζα, on Zα.
280
+ Let (X, ξ), (Y, υ) be probabilistic measure spaces, let π : X → Y be a map
281
+ such that for each measurable B ⊂ Y we have ξ(π−1(B)) = υ(B). We define a
282
+ polymorphism l[π] : X ։ Y as the image of ξ under the map X → X × Y × R×
283
+ given by x �→ (x, π(x), 1), see [18], Subsect. 3.10.
284
+ Since we have a canonical map Z → Zα, we have a canonical polymorphism
285
+ lα : Z ։ Zα.
286
+ Theorem 4. Let G be a separable topological group, {Kα}α∈A be an M-family
287
+ of subgroups. Consider an action of G by nonsingular transformations τ(g) of a
288
+ Lebesgue probabilistic space Z. Let K act by measure preserving transformations.
289
+ For any α, β ∈ A we define
290
+ Tα,β(g) = l∗
291
+ ατ(g)lβ ∈ Pol(Zα, Zβ).
292
+ Then T is a functor from the train Tr(G, {Kα}α∈A) to the category of polymor-
293
+ phisms; i.e., Tα,β(g) depends only on a double coset [Kα\G/Kβ] containing g and
294
+ for any g ∈ [Kα\G/Kβ], h ∈ [Kβ\G/Kγ] we have
295
+ Tα,β(g) ⋄ Tβ,γ(h) = Tα,γ(h ◦ g).
296
+ We need some preliminaries.
297
+ 5. Mellin–Markov transform of polymorphisms. For a Lebesgue space Z
298
+ denote by L∞−(Z) the space of bounded measurable functions on Z equipped with
299
+ the following convergence: ϕj → ϕ if essential supremums of |ϕj| are uniformly
300
+ bounded and the sequence ϕj converges to ϕ in measure, see [18],
301
+ Let r+is ∈ C ranges in the strip Π : 0 ⩽ r ⩽ 1. For p ∈ Pol(X, Y ) and r+is ∈ Π,
302
+ we define a bilinear form Br+is : L∞−(X) × L∞−(Y ) → C by
303
+ Br+is[p](ϕ, ψ) =
304
+ ��
305
+ X×Y ×R×
306
+ ϕ(x) ψ(y) tr+is dp(x, y, t).
307
+ We define operators
308
+ Tr+is(p) : L1/r(Y ) → L1/r(X)
309
+ (Mellin–Markov transform of p) by the duality
310
+ (1)
311
+
312
+ X
313
+ ϕ(x) · Tr+is(p)ψ(x) dξ(x) = Br+is[p](ϕ, ψ)
314
+ for any ϕ ∈ L∞−(X), ψ ∈ L∞−(Y ). Then ∥Tr+is(p)∥L1/r ⩽ 1 for r > 0. Also
315
+ T0+is(p) is a continuous operator L∞−(Y ) → L∞−(X), see [18], Theorem 6.3.
316
+ Example. Let g ∈ Gms(Z) be considered as a polymorphism. Then
317
+ (2)
318
+ Tr+is(g)ϕ(z) = ϕ(g(z)) g′(z)r+is.
319
+
320
+ 7
321
+ A polymorphism p is uniquely determined by its Mellin–Markov transform ([18],
322
+ Theorem 6.12). For any p ∈ Pol(M, N), q ∈ Pol(N, K) we have (see [18], Theorem
323
+ 6.14)
324
+ Tr+is(q) Tr+is(p) = Tr+is(p ⋄ q).
325
+ This transform is holomorphic in r + is in the following sense: for any bounded
326
+ measurable functions ϕ, ψ the matrix element r + is �→ Br+is(ϕ, ψ) is holomorphic
327
+ in the strip 0 < r < 1 and continuous in the closed strip 0 ⩽ r ⩽ 1.
328
+ Pointwise convergence of forms
329
+ Br+is[pj](ϕ, ψ) → Br+is[p](ϕ, ψ)
330
+ in the closed strip Π implies convergence of polymorphisms pj → p ([18], Theorem
331
+ 6.14).
332
+ 6.
333
+ Proof of Theorem 4.
334
+ For α ∈ A we denote by L2(Z)α the subspace
335
+ consisting of Kα-fixed functions in L2(Z).
336
+ First, we notice that Mellin–Markov transforms T1/2+is[lα] are usual Markov
337
+ operators (see, e.g, [18], Subsect. 3.9) and they do not depend on the parameter s.
338
+ The operator T1/2+is[l∗
339
+ αlα] is the operator of orthogonal projection Pα : L2(Z) →
340
+ L2(Z)α or equivalently, the operator of conditional expectation, see [18], Subsect.
341
+ 3.10. We denote
342
+ (3)
343
+ mα := l∗
344
+ αlα.
345
+ The operator T1/2+is[lα] : L2(Zα) → L2(Z) is an operator of isometric embed-
346
+ ding, its image coincides with L2(Z)α. The operator
347
+ T1/2+is[l∗
348
+ α]
349
+ ���
350
+ L2(Z)α : L2(Z)α → L2(Zα)
351
+ is unitary and
352
+ T1/2+is[l∗
353
+ α]
354
+ ���
355
+ (L2(Z)α)⊥ = 0.
356
+ Second, we slightly reformulate the M-property. In notation of Sect. 2, we define
357
+ operators �ρα,β(g) in H by
358
+ �ρα,β(g) = Pαρ(g)Pβ.
359
+ These operators have the following block form
360
+ �ρα,β(g) =
361
+ ��ρα,β(g)
362
+ 0
363
+ 0
364
+ 0
365
+
366
+ : Hβ ⊕ H⊥
367
+ β → Hα ⊕ H⊥
368
+ α .
369
+ Clearly, these operators depend only on double cosets and the M-property can be
370
+ written in the form
371
+ (4)
372
+ �ρα,β(g) �ρβ,γ(h) = �ρα,γ(g ◦ h).
373
+ In the same way we define polymorphisms
374
+ �Tα,β(g) := mατ(g)mβ ∈ Pol(Z, Z).
375
+ The conclusion of the theorem can be reformulated in the form
376
+ (5)
377
+ �Tα,β(g) ⋄ �Tβ,γ(h) = �Tα,γ(h ◦ g).
378
+
379
+ 8
380
+ Applying the Mellin-Markov transform to both sides of the hypothetic equality
381
+ (5) we get an equivalent equality
382
+ (6)
383
+ �Tr+is(mα) Tr+is(g) �Tr+is(mβ) Tr+is(h) �Tr+is(mγ) =
384
+ = �Tr+is(mα) Tr+is(h ◦ g) �Tr+is(mγ),
385
+ where operators Tr+is(g) are given by (2), and g ◦ h denotes an arbitrary represen-
386
+ tative of the product of double cosets. Setting r = 1/2 we come to a hypothetic
387
+ equality of operators in L2(Z):
388
+ Pα T1/2+is(g) Pβ T1/2+is(h)Pγ = Pα T1/2+is(h ◦ g) Pγ.
389
+ But this is the identity (4). So (6) holds on the line r = 1/2. By holomorphy of
390
+ the Mellin–Markov transform, this holds in the whole strip Π. This implies (5).
391
+ 7.
392
+ Closures of groups in polymorphisms.
393
+ Let G, {Kα}, τ(·) be as in
394
+ Theorem 4. Assume that for any Kα there is a sequence qj ∈ Kα such that for any
395
+ unitary representation π of Kα the sequence π(qj) converges to the projector Pα
396
+ in the weak operator topology. Applying the Mellin–Markov transform we observe
397
+ that mα := l∗
398
+ αlα ∈ Pol(Z, Z) is contained in the closure of Kα in polymorphisms.
399
+ So all elements
400
+ mα τ(g) mβ ∈ Pol(Z, Z)
401
+ are contained in the closure of G in Pol(Z, Z).
402
+ The following statement allows to obtain estimates of the closure of G in poly-
403
+ morphisms if we know explicit description of the action of the train (as in [14],
404
+ [17]).
405
+ Proposition 5. Let G, {Kα}, τ(·) be as above. Assume that there is a chain of
406
+ subgroups Kγ1 ⊃ Kγ2 ⊃ . . . such that for any unitary representation of G in any
407
+ Hilbert space H the subspace ∪Hγj is dense4. Then a polymorphism r ∈ Pol(Z, Z)
408
+ is contained in the closure of G if and only if for any γj the element mγj r mγj is
409
+ contained in the closure of G for all j.
410
+ Proof. Only ⇐ needs in proof. Let us show that r is the limit of mγj r mγj. It
411
+ is sufficient to prove a pointwise convergence of corresponding forms Br+is, i.e.,
412
+ Br+is[m∗
413
+ αrm∗
414
+ β](ϕ, ψ) → Br+is[r](ϕ, ψ)
415
+ Applying the Mellin–Markov transform, we get
416
+ Br+is[m∗
417
+ αrm∗
418
+ β](ϕ, ψ) = Br+is[r](Pγjϕ, Pγjψ).
419
+ So we must verify convergence
420
+ (7)
421
+ Br+is[r](Pγjϕ, Pγjψ) → Br+is[r](ϕ, ψ),
422
+ where ϕ, ψ are bounded functions. The sequences Pγjϕ, Pγjψ are bounded martin-
423
+ gales, so they converge a.s and in the L1-sense (see, e.g., [33], Theorems VIII.4.1-2).
424
+ By the density of ∪L2(Z)γj, our sequences converge to ϕ, ψ in L2, and therefore
425
+ we have a.s. convergences Pγjϕ → ϕ, Pγjψ → ψ.
426
+ Formula (7) contains integrations over measures trr on Z × Z × R×, where
427
+ 0 ⩽ r ⩽ 1.
428
+ By the definition of polymorphisms, these measures are finite and
429
+ their pushforwards to two copies of Z are absolutely continuous with respect to ζ.
430
+ Therefore the sequence Pγjϕ ∈ L∞− converges a.s. as a sequence on a measure
431
+ 4Examples in Sect. 3 satisfy this condition except 2⋆
432
+ ++.
433
+
434
+ 9
435
+ space (Z ×Z ×R×, trr). Now (7) follows from the Lebesgue dominated convergence
436
+ theorem.
437
+
438
+ 8. Some questions. The main question is examinations of explicit non-singular
439
+ actions. This note is abstractionist and we add some abstractionist remarks.
440
+ 1) Apparently, there is a version of Theorem 4 for spaces with σ-finite measures.
441
+ But this requires some modification of a notion of polymorphisms.
442
+ 2) According [24], any non-singular action of S∞ is equivalent to a measure
443
+ preserving action. So for K = S∞ we can omit the condition ’K acts by measure
444
+ preserving transformations’. Apparently, this case is not unique.
445
+ References
446
+ [1] Ben Yaacov I., Ibarluc´ıa T., Tsankov T. Eberlein oligomorphic groups. Trans. Amer. Math.
447
+ Soc. 370 (2018), no. 3, 2181-2209.
448
+ [2] Cameron P. J. Oligomorphic groups and homogeneous graphs. In Graph symmetry (Montreal,
449
+ PQ, 1996) (G. Hahn, G. Sabidussi, eds.), 23-74, 497, Kluwer Acad. Publ., Dordrecht, 1997.
450
+ [3] Danilenko A. I., Silva C. E. Ergodic Theory:
451
+ Nonsingular Transformations. Preprint
452
+ https://arxiv.org/abs/0803.2424, version 28.07.2022.
453
+ [4] Glasner E. Ergodic theory via joinings. American Mathematical Society, Providence, RI, 2003
454
+ [5] Janvresse ´E., Prikhod’ko A. A., de la Rue T., Ryzhikov V.V. Weak limits of powers of
455
+ Chacon’s automorphism, Ergodic Theory Dynam. Systems, 35:1 (2015), 128-141.
456
+ [6] Hopf E. The general temporally discrete Markoff process, J. Rational Mech. Anal., 3 (1954),
457
+ 13-45.
458
+ [7] Ismagilov R. S. Elementary spherical functions on the group SL(2, P ) over a field P , which
459
+ is not locally compact, with respect to the subgroup of matrices with integral elements, Izv.
460
+ Math., 1:2 (1967), 349-380.
461
+ [8] Ismagilov R. S., The representations SL(2, P ), where P is not locally compact, Funct. Anal.
462
+ Appl., 7:4 (1973), 328-329.
463
+ [9] King J. The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic
464
+ Theory Dynam. Systems, 6:3 (1986), 363-384.
465
+ [10] Krengel U. Ergodic theorems. Walter de Gruyter, Berlin, 1985.
466
+ [11] Nelson E., The free Markoff field, J. Funct. Anal. 12 (1973) 211-227.
467
+ [12] Neretin Yu. A. Categories of bistochastic measures and representations of some infinite-
468
+ dimensional groups. Russian Acad. Sci. Sb. Math. 75 (1993), no. 1, 197-219.
469
+ [13] Neretin Yu.A. Categories of symmetries and infinite-dimensional groups. Lond. Math. Soc.
470
+ Monogr., New Ser. 16. Oxford: Oxford Univ. Press 1996;
471
+ [14] Neretin Yu. A. Spreading maps (polymorphisms), symmetries of Poisson processes, and
472
+ matching summation. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
473
+ 292 (2002), 62-91; reprinted in J. Math. Sci. (N.Y.) 126 (2005), no. 2, 1077-1094.
474
+ [15] Neretin Yu. A. Multi-operator colligations and multivariate characteristic functions. Anal.
475
+ Math. Phys. 1 (2011), no. 2-3, 121-138.
476
+ [16] Neretin Yu. A. Sphericity and multiplication of double cosets for infinite-dimensional classical
477
+ groups. Funct. Anal. Appl. 45 (2011), no. 3, 225-239.
478
+ [17] Neretin Yu. Symmetries of Gaussian measures and operator colligations. J. Funct. Anal. 263
479
+ (2012), no. 3, 782-802.
480
+ [18] Neretin Yu. A. On the boundary of the group of transformations that leave a measure quasi-
481
+ invariant. Sb. Math. 204 (2013), no. 7-8, 1161-1194.
482
+ [19] Neretin Yu. A. Infinite symmetric groups and combinatorial constructions of topological field
483
+ theory type. Russian Math. Surveys 70 (2015), no. 4, 715-773.
484
+ [20] Neretin, Yu. A. Wishart-Pickrell distributions and closures of group actions. Zap. Nauchn.
485
+ Sem. POMI 448 (2016), 236-245; English transl. in J. Math. Sci. (N.Y.) 224 (2017), no. 2,
486
+ 328-334.
487
+ [21] Neretin, Yu. A. Groups GL(∞) over finite fields and multiplications of double cosets. J.
488
+ Algebra 585 (2021), 370-421.
489
+ [22] Neretin Yu. A. Virtual permutations and polymorhisms. https://arxiv.org/abs/2202.12978
490
+
491
+ 10
492
+ [23] Neretin Yu. A. Groups of isometries of ultrametric Urysohn spaces and their unitary repre-
493
+ sentations. https://arxiv.org/abs/2212.02607.
494
+ [24] Nessonov N. A nonsingular action of the full symmetric group admits an equivalent invariant
495
+ measure. Zh. Mat. Fiz. Anal. Geom. 16 (2020), no. 1, 46-54.
496
+ [25] Olshanski G. I. New ”large” groups of type I. J. Soviet Math., 18:1 (1982), 22-39.
497
+ [26] Olshanskii G. I., Unitary representations of (G, K)-pairs that are connected with the infinite
498
+ symmetric group S(∞), Leningrad Math. J., 1:4 (1990), 983-1014.
499
+ [27] Olshanski G. I. Unitary representations of infinite-dimensional pairs (G, K) and the formal-
500
+ ism of R. Howe. in Representation of Lie groups and related topics, 269-463, Adv. Stud.
501
+ Contemp. Math., 7, Gordon and Breach, New York, 1990.
502
+ [28] Olshanski G. I. On semigroups related to infinite-dimensional groups. in Topics in represen-
503
+ tation theory, 67-101, Adv. Soviet Math., 2, Amer. Math. Soc., Providence, RI, 1991.
504
+ [29] Pickrell D. Separable representations for automorphism groups of infinite symmetric spaces.
505
+ J. Funct. Anal. 90 (1990), no. 1, 1-26.
506
+ [30] Rohlin V. A. On the fundamental ideas of measure theory. (Russian) Mat. Sbornik N.S.
507
+ 25(67), (1949), 107-150; English transl. Amer. Math. Soc. Translation 1952, (1952). no. 71.
508
+ [31] Rudolph D. J. Fundamentals of measurable dynamics. Ergodic theory on Lebesgue spaces.
509
+ The Clarendon Press, Oxford University Press, New York, 1990.
510
+ [32] Ryzhikov
511
+ V.
512
+ V.
513
+ Self-joinings
514
+ and
515
+ generic
516
+ extensions
517
+ of
518
+ ergodic
519
+ systems.
520
+ Preprint,
521
+ https://arxiv.org/abs/2210.15276.
522
+ [33] Shiryaev A. N. Probability. Springer-Verlag, New York, 1996.
523
+ [34] Solecki S. Generic measure preserving transformations and the closed groups they generate.
524
+ Preprint, arXiv:2103.09429.
525
+ [35] Tsankov T. Unitary representations of oligomorphic groups. Geom. Funct. Anal. 22 (2012),
526
+ no. 2, 528-555.
527
+ [36] Vershik A. M. Multivalued measure-preserving mappings (polymorphisms) and Markov op-
528
+ erators, Zap. Nauchn. Sem. LOMI 72 (1977), 26-61; English transl. in J. Soviet Math., 23:3
529
+ (1983), 2243-2266.
530
+ [37] Vershik A. M. Polymorphisms, Markov processes, and quasi-similarity. Discrete Contin. Dyn.
531
+ Syst. 13 (2005), no. 5, 1305-1324.
532
+ Math. Dept., University of Vienna;
533
+ Institute for Information Transmission Problems;
534
+ MechMath Dept., Moscow State University;
535
536
+ URL: http://mat.univie.ac.at/∼neretin/
537
+
GNAzT4oBgHgl3EQfxP7V/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
HdE1T4oBgHgl3EQfFgNH/content/tmp_files/2301.02902v1.pdf.txt ADDED
@@ -0,0 +1,797 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Inertial effects on rectification and diffusion of active Brownian particles in an
2
+ asymmetric channel
3
+ Narender Khatri1, ∗ and Raymond Kapral1, †
4
+ 1Chemical Physics Theory Group, Department of Chemistry,
5
+ University of Toronto, Toronto, Ontario M5S 3H6, Canada
6
+ (Dated: January 10, 2023)
7
+ Micro- and nano-swimmers moving in a fluid solvent confined by structures that produce entropic
8
+ barriers are often described by overdamped active Brownian particle dynamics, where viscous effects
9
+ are large and inertia plays no role.
10
+ However, inertial effects should be considered for confined
11
+ swimmers moving in media where viscous effects are no longer dominant. Here, we study how inertia
12
+ affects the rectification and diffusion of self-propelled particles in a two-dimensional asymmetric
13
+ channel.
14
+ We show that most of the particles accumulate at the channel walls as the masses of
15
+ the particles increase. Furthermore, the average particle velocity has a maximum as a function of
16
+ the mass, indicating that particles with an optimal mass M ∗
17
+ op can be sorted from a mixture with
18
+ particles of other masses. In particular, we find that the effective diffusion coefficient exhibits an
19
+ enhanced diffusion peak as a function of the mass, which is a signature of the accumulation of most
20
+ of the particles at the channel walls. The dependence of M ∗
21
+ op on the rotational diffusion rate, self-
22
+ propulsion force, aspect ratio of the channel, and active torque is also determined. The results of
23
+ this study could stimulate the development of strategies for controlling the diffusion of self-propelled
24
+ particles in entropic ratchet systems.
25
+ I.
26
+ INTRODUCTION
27
+ Many biological microorganisms, as well as artificial
28
+ active particles, take free energy from their environments
29
+ and convert it under nonequilibrium conditions into per-
30
+ sistent motion. The mechanisms that underlie such ac-
31
+ tive motion and the dynamical properties of these sys-
32
+ tems are diverse and have been studied extensively [1–
33
+ 15].
34
+ For the most part, the biological and synthetic ac-
35
+ tive agents mentioned above have micrometer or sub-
36
+ micrometer dimensions and move in viscous environ-
37
+ ments under conditions where inertia does not play an
38
+ important role.
39
+ In such circumstances, the active dy-
40
+ namics is often described by the overdamped Langevin or
41
+ continuum models that neglect inertia. Inertia cannot al-
42
+ ways be neglected, and an increasing body of research [16]
43
+ considers the effects of inertia on active particle motion
44
+ and describes the new phenomena that arise as a result
45
+ of its inclusion. While the systems where inertial effects
46
+ are important are diverse, some examples include sys-
47
+ tems that support a temperature gradient across coexist-
48
+ ing phases [17], vibrobots [18–20], active particle motion
49
+ in low-density media, such as gases [21], plasmas [22–
50
+ 24], superfluids [25], and active aerosols [26], etc. Such
51
+ inertia-dominated active particles are termed micro- and
52
+ nano-flyers rather than swimmers [16].
53
+ The rectification of artificial active particles in con-
54
+ fined environments in the absence of external forces has
55
+ attracted interest [27–32]. Geometrical confinement con-
56
+ trols the volume of phase space that is accessible to the
57
+ ∗ Corresponding author: [email protected]
58
+ † Corresponding author: [email protected]
59
+ active particles, resulting in entropic barriers that signif-
60
+ icantly influence their transport properties [33–37]. As
61
+ well, confined environments possessing spatial ratchet
62
+ asymmetry give rise to an entropic ratchet potential
63
+ that can induce active directed transport in the system
64
+ [27, 31].
65
+ We investigate the underdamped dynamics of self-
66
+ propelled particles confined by a two-dimensional asym-
67
+ metric channel.
68
+ We use a minimal underdamped
69
+ Langevin model for the dynamics of the self-propelled
70
+ particles that accounts for inertia.
71
+ The collisional dy-
72
+ namics of particles with the channel walls are modeled by
73
+ sliding-reflecting boundary conditions [27, 31, 38]. We fo-
74
+ cus on how inertial effects influence the rectification and
75
+ diffusion of active particles in the asymmetric channel.
76
+ The article is organized as follows: in Sec. II, we in-
77
+ troduce the underdamped Langevin model used to de-
78
+ scribe the dynamics of the active particles in the two-
79
+ dimensional asymmetric channel.
80
+ Section III discusses
81
+ the effects of inertia on the spatial distribution of par-
82
+ ticles, while Sec. IV presents results on the rectification
83
+ and effective diffusion in the channel. The main conclu-
84
+ sions of the article are given in Sec. V.
85
+ II.
86
+ MODEL
87
+ The system is confined to a two-dimensional asym-
88
+ metric channel with periodicity L (see Fig. 1), and, as
89
+ in other studies [16], a minimal underdamped Langevin
90
+ model is used to describe the active dynamics under con-
91
+ ditions where inertia is important. The coupled Langevin
92
+ equations for an active particle with position r = (x, y),
93
+ orientation ˆn = (cos θ, sin θ), mass M, and moment of
94
+ arXiv:2301.02902v1 [cond-mat.soft] 7 Jan 2023
95
+
96
+ 2
97
+ FIG. 1.
98
+ Schematic illustration of an active (self-propelled)
99
+ Brownian particle of mass M and moment of inertia I con-
100
+ fined in a two-dimensional triangular channel with periodicity
101
+ L. The active force F0 = F0ˆn, angle θ, active torque T0, local
102
+ width of the channel 2 w(x), and local length of a cell of the
103
+ channel ∆(y) are indicated. The shape of the channel struc-
104
+ ture is prescribed by Eq. (2). The particle cannot penetrate
105
+ through the channel walls, which are considered rigid; how-
106
+ ever, the particle is free to rotate and slide along the walls.
107
+ inertia I read
108
+ M ¨r(t) = −γt ˙r(t) + F0ˆn(t) + γt
109
+
110
+ 2Dt ξ(t),
111
+ I ¨θ(t) = −γr ˙θ(t) + T0 + γr
112
+
113
+ 2Dr ζ(t).
114
+ (1)
115
+ Here γt and γr are the translational and rotational fric-
116
+ tion coefficients, Dt and Dr are the translational and
117
+ rotational diffusion constants, and F0 and T0 are the ac-
118
+ tive force and torque, respectively. The random variables
119
+ ξ(t) and ζ(t) are the Gaussian white noise terms with zero
120
+ mean and unit variances given by ⟨ξ(t)⊗ξ(t′)⟩ = δ(t−t′)1
121
+ and ⟨ζ(t)ζ(t′)⟩ = δ(t − t′), respectively, where 1 is the
122
+ unit matrix.
123
+ Such a set of coupled Langevin equa-
124
+ tions can serve as models for a variety of active sys-
125
+ tems, including systems subject to athermal noise [39–
126
+ 42], if {γt, γr, Dt, Dr} are regarded as independent pa-
127
+ rameters, and Dt and Dr control the strength of noise
128
+ terms. For systems with thermal noises that satisfy the
129
+ fluctuation-dissipation relation, the Einstein relations ap-
130
+ ply, Dt = kBT/γt and Dr = kBT/γr. The set of coupled
131
+ Langevin equations (1) is a simplified version of a more
132
+ general set of coupled Langevin equations that applies
133
+ to asymmetric particles and accounts for translation-
134
+ rotation coupling [43]. The set of general underdamped
135
+ coupled Langevin equations for chemically-active colloids
136
+ has been derived using fluctuating chemohydrodynam-
137
+ ics [44] and molecular theory [45], where expressions for
138
+ the active force and torque are given.
139
+ The two-dimensional asymmetric and spatially peri-
140
+ odic channel shown in Fig. 1 is specified as follows: for
141
+ the upper wall, we have
142
+ wu(x) =
143
+
144
+ wmin,
145
+ x = 0
146
+ wmax − (wmax − wmin) x
147
+ L,
148
+ 0 < x ≤ L,
149
+ (2)
150
+ where L is the periodicity of the channel, and wmin and
151
+ wmax refer to the minimum and maximum half-widths of
152
+ the channel, respectively. The dimensionless aspect ratio
153
+ of the channel is ϵ = wmin/wmax, where we set wmax = 1
154
+ throughout the work. The local length of a cell of the
155
+ channel is given by ∆(y) = (wmax −|y|)L/(wmax −wmin),
156
+ where y is bounded between the lower and upper walls.
157
+ Due to the symmetry about the principal axis of the
158
+ channel, the lower wall is described by wl(x) = −wu(x).
159
+ Consequently, 2 w(x) = wu(x)−wl(x) corresponds to the
160
+ local width of the channel.
161
+ When a particle encounters a channel wall, it is elas-
162
+ tically reflected [31, 38, 46, 47], and its orientation θ is
163
+ unchanged during the collision (sliding-reflecting bound-
164
+ ary conditions [27, 38, 48]). So, the particle slides along
165
+ the channel walls until a fluctuation in the orientation
166
+ vector ˆn causes it to change so that it may move away
167
+ from the wall.
168
+ For translational motion described by Eqs. (1), inertial
169
+ effects dominate frictional effects for times t ≪ M/γt ≡
170
+ τv, while for orientational motion, they are important
171
+ for times t ≪ I/γr ≡ τω, where τv and τω are the
172
+ characteristic times for linear and angular velocity relax-
173
+ ation, respectively. For active particles in a bulk medium,
174
+ these times may be compared to the reorientation time
175
+ τr = 1/Dr that determines the time scale on which orien-
176
+ tation vector ˆn decays, and the time τa = 2a/v0 it takes
177
+ a particle with speed v0 to move a distance equal to the
178
+ particle diameter 2a.
179
+ For the present study, where the dynamics takes place
180
+ in a periodic channel, we are interested in the effects
181
+ of inertia on time scales that reflect the motion on the
182
+ length scale L of the periodic channel.
183
+ We define the
184
+ characteristic diffusion time τ = L2/Dt, which gauges the
185
+ time the particle takes to diffuse one period of the channel
186
+ length.
187
+ This characteristic diffusion time is related to
188
+ τv by τv/τ =
189
+
190
+ τv/τth
191
+ �2, where τth = L/vth with vth =
192
+
193
+ kBT/M the thermal speed.
194
+ Given these considerations, we use a dimensionless de-
195
+ scription where lengths are scaled by the periodicity of
196
+ the channel L, r′ = r/L, and time by τ, t′ = t/τ, analo-
197
+ gous to that in Refs. [37, 49], so that Eqs. (1) read,
198
+ M ∗¨r(t) = − ˙r(t) + f0ˆn(t) +
199
+
200
+ 2 ξ(t),
201
+ I∗¨θ(t) = − ˙θ(t) + t0 +
202
+
203
+ 2α ζ(t),
204
+ (3)
205
+ and we dispensed with the primes in writing this coupled
206
+ set of equations. The dimensionless mass and moment
207
+ of inertia are given by M ∗ = τv/τ = MDt/(γtL2) and
208
+ I∗ = τω/τ = IDt/(γrL2), respectively.
209
+ In these vari-
210
+ ables, the dimensionless mass M ∗ depends on physical
211
+ mass M as well as Dt, γt, and L. Similarly, I∗ depends on
212
+ the moment of inertia I as well as Dt, γr, and L. The di-
213
+ mensionless active force and torque are f0 = F0L/(Dtγt)
214
+ and t0 = T0L2/(Dtγr), respectively, and the parameter
215
+ α = Drτ.
216
+ In the following sections, we present results for the
217
+ average velocity, effective diffusion coefficient, and other
218
+ properties obtained from simulations of the coupled
219
+ Langevin equations (3) in the channel
220
+ [50]. At t = 0,
221
+ the particles are uniformly distributed with random
222
+ orientations in a periodic cell of the channel located
223
+ between x = 0 and x = 1. The results are obtained from
224
+
225
+ 3
226
+ averages over 104 stochastic trajectories.
227
+ III.
228
+ SPATIAL DISTRIBUTION
229
+ −1
230
+ 0
231
+ 1
232
+ 0.01
233
+ 1
234
+ 100
235
+ y
236
+ Pst(y)
237
+ M ∗ = 0.001
238
+ M ∗ = 1
239
+ M ∗ = 1000
240
+ M ∗ = 0.001
241
+ M ∗ = 1
242
+ M ∗ = 1000
243
+ f0 = 5, I∗ = 0.001
244
+ t0 = 0
245
+ α = 0.1, ǫ = 0.1
246
+ (a)
247
+ (b)
248
+ (c)
249
+ (d)
250
+ FIG. 2. The steady state distribution of particles, mapped
251
+ into a single cell of the channel, is depicted in (a)-(c) for
252
+ different values of M ∗. The corresponding normalized prob-
253
+ ability densities Pst(y) along the y direction are depicted in
254
+ (d). The parameters are: I∗ = 0.001, f0 = 5, t0 = 0, α = 0.1,
255
+ and ϵ = 0.1.
256
+ In order to analyze the effects of inertia on the rec-
257
+ tification and diffusion of self-propelled particles in an
258
+ asymmetric channel, we first consider the spatial dis-
259
+ tribution of particles mapped onto a single cell of the
260
+ channel. Figure 2 shows the steady state distribution of
261
+ particles and the corresponding normalized probability
262
+ density Pst(y) along the y direction for different values
263
+ of M ∗. For M ∗ → 0 in the overdamped limit, the dis-
264
+ tribution of particles is inhomogeneous, and most of the
265
+ particles tend to accumulate near the left corners of the
266
+ cell (see Fig. 2(a) and the Pst(y) plots in (d)). The in-
267
+ homogeneous distribution of particles can be ascribed to
268
+ the active motion due to broken detailed balance and
269
+ the presence of the spatial asymmetry imposed by the
270
+ shape of the channel [27, 31]. It is interesting to see that
271
+ on increasing M ∗ further, most of the particles quickly
272
+ accumulate at the channel walls; while the rest of the
273
+ particles adopt the shape of a funnel about the principal
274
+ axis of the channel at the middle region due to narrow
275
+ bottleneck openings (see Fig. 2(b)). Most of the parti-
276
+ cles accumulate at the left corners of the cell, and the
277
+ distribution of particles is symmetric about the principal
278
+ axis of the channel (see the Pst(y) plots, especially the
279
+ curve for M ∗ = 1). Such an observation provides evi-
280
+ dence that the rectification of particles in an asymmetric
281
+ channel can be enhanced by increasing M ∗. For strongly
282
+ underdamped situations where M ∗ → ∞, the qualitative
283
+ behavior of the distribution of particles and the corre-
284
+ sponding Pst(y) are very similar; however, the rectifi-
285
+ cation and diffusion of particles approach zero because
286
+ inertia dominates the self-propulsion mechanism [51].
287
+ −1
288
+ 0
289
+ 1
290
+ 0.01
291
+ 1
292
+ 100
293
+ y
294
+ P(y)
295
+ t = 0
296
+ t = 0.5
297
+ Steady State
298
+ t = 0
299
+ t = 0.5
300
+ t = 1
301
+ (a)
302
+ (b)
303
+ (c)
304
+ (d)
305
+ FIG. 3.
306
+ The time evolution of the distribution of parti-
307
+ cles with M ∗ = 1 is shown in (a)-(c) at increasing times,
308
+ t = 0, 0.5, 1, respectively.
309
+ The normalized probability den-
310
+ sity P(y) versus y is plotted in (d).
311
+ The parameters are:
312
+ I∗ = 0.001, f0 = 5, t0 = 0, α = 0.1, and ϵ = 0.1.
313
+ The probability density evolution to its steady state
314
+ distribution is shown in Fig. 3 for a system with M ∗ = 1
315
+ and parameters as in Fig. 2.
316
+ At t = 0, particles are
317
+ distributed uniformly inside the periodic cell consistent
318
+ with thermodynamic equilibrium [33–35, 46, 52]. As time
319
+ increases to t = 0.5, the distribution becomes inhomoge-
320
+ neous: particles near the channel walls quickly begin ac-
321
+ cumulating there, and the funnel-shaped distribution of
322
+ particles in the middle region of the cell starts to develop.
323
+ At a yet later time t = 1, the funnel-shaped distribution
324
+ sharpens, and particles have continued to accumulate at
325
+ the walls. The distribution at this time closely resembles
326
+ the steady state distribution shown in Fig. 2(b). Note
327
+ that the probability of accumulation at the left corners
328
+ of the cell is much higher than in other regions, which is
329
+ reflected in the structure of the probability density P(y)
330
+ in Fig. 3(d).
331
+ IV.
332
+ RECTIFICATION AND EFFECTIVE
333
+ DIFFUSION
334
+ Figure 4 shows the dependence of the average velocity
335
+ v and effective diffusion coefficient Deff on M ∗ for differ-
336
+ ent values of the self-propulsion force f0. We observe that
337
+ the particles exhibit rectification (v ̸= 0) in the positive
338
+ x direction; v is positive due to the chosen shape of the
339
+ channel. If the shape of the channel were inverted with
340
+ respect to the y axis, then the magnitude of rectification
341
+ would remain the same, but v would lie in the negative
342
+ x direction. In the small M ∗ limit, the channel asym-
343
+ metry affects the particle dynamics more strongly since
344
+ most of the particles accumulate at the channel walls (see
345
+ Figs. 2 and 3), resulting in an increase in v with M ∗. In
346
+ the strongly underdamped limit, when M ∗ → ∞, inertia
347
+ dominates self-propulsion resulting in a rapid decay of v
348
+ and Deff with M ∗. Therefore, as one might expect, v has
349
+ a peak at an optimal mass M ∗
350
+ op; thus, in a mixture, recti-
351
+
352
+ 4
353
+ 0.001
354
+ 0.01
355
+ 0.1
356
+ 1
357
+ 10
358
+ 100
359
+ 1000
360
+ 25
361
+ 50
362
+ M ∗
363
+ Deff
364
+ 0
365
+ 0.5
366
+ 1
367
+ v
368
+ f0 = 1
369
+ f0 = 5
370
+ f0 = 10
371
+ 0.001
372
+ 1
373
+ 1000
374
+ 0.5
375
+ 1
376
+ 1.5
377
+ α = 0.1, I∗ = 0.001
378
+ t0 = 0, ǫ = 0.1
379
+ (a)
380
+ (b)
381
+ FIG. 4. Average velocity v as a function of M ∗ is shown in
382
+ (a) for different values of the self-propulsion force f0. The
383
+ corresponding effective diffusion coefficient Deff is shown in
384
+ (b). The inset plots Deff versus M ∗ for f0 = 1 on an expanded
385
+ scale to show its structure. Here and below, the solid lines
386
+ are guides to the eye, and the statistical errors for v and Deff
387
+ are smaller than the symbol sizes. The other parameters are:
388
+ I∗ = 0.001, t0 = 0, α = 0.1, and ϵ = 0.1.
389
+ 0.001
390
+ 0.01
391
+ 0.1
392
+ 1
393
+ 10
394
+ 100
395
+ 1000
396
+ 5
397
+ 10
398
+ 15
399
+ M ∗
400
+ Deff
401
+ 0
402
+ 0.3
403
+ 0.6
404
+ v
405
+ α = 0.1
406
+ α = 1
407
+ α = 10
408
+ 0.001
409
+ 1
410
+ 1000
411
+ 1
412
+ 2
413
+ f0 = 5, I∗ = 0.001
414
+ t0 = 0, ǫ = 0.1
415
+ (a)
416
+ (b)
417
+ FIG. 5. Average velocity v and effective diffusion coefficient
418
+ Deff as a function of M ∗ are plotted in (a) and (b), respec-
419
+ tively, for different values of the scaled rotational diffusion
420
+ rate α.
421
+ The inset in (b) shows Deff versus M ∗ for α = 1
422
+ and α = 10 on an expanded scale. The other parameters are:
423
+ I∗ = 0.001, t0 = 0, f0 = 5, and ϵ = 0.1.
424
+ fied particles with M ∗
425
+ op will have a higher speed compared
426
+ to particles with other M ∗ values. The peak is more pro-
427
+ nounced as f0 increases, and the value of the optimal
428
+ mass can be controlled by changing f0. For the effective
429
+ diffusion coefficient, we see that Deff initially decreases
430
+ with increasing M ∗, but on increasing M ∗ further, Deff
431
+ exhibits an enhanced diffusion peak, which is a signature
432
+ of the accumulation of most of the particles at the chan-
433
+ nel walls [38]. As expected, Deff increases monotonically
434
+ with f0. As f0 → 0, the motion of self-propelled parti-
435
+ cles approaches that of passive Brownian motion; thus,
436
+ v will tend to zero, and the enhanced diffusion peak will
437
+ no longer be present (see the inset of Fig. 4(b)).
438
+ The variation of v and Deff with M ∗ for different val-
439
+ ues of the rotational diffusion rate α is shown in Fig. 5.
440
+ The qualitative trends for different α are the same as
441
+ those described above for different f0; however, the peak
442
+ is more pronounced as α decreases, and now M ∗
443
+ op can be
444
+ changed by tuning α. As expected, Deff decreases mono-
445
+ tonically with increasing α.
446
+ In particular, as α → ∞
447
+ where reorientation is rapid, the self-propelled motion
448
+ tends to passive Brownian motion, v tends to zero, and
449
+ the enhanced diffusion peak vanishes (see the inset of
450
+ Fig. 5(b)).
451
+ 0.001
452
+ 0.01
453
+ 0.1
454
+ 1
455
+ 10
456
+ 100
457
+ 1000
458
+ 0
459
+ 5
460
+ 10
461
+ 15
462
+ M ∗
463
+ Deff
464
+ 0
465
+ 0.3
466
+ 0.6
467
+ v
468
+ t0 = 0
469
+ t0 = 1
470
+ t0 = 10
471
+ 0.001
472
+ 1
473
+ 1000
474
+ 0
475
+ 0.5
476
+ f0 = 5, α = 0.1
477
+ I∗ = 0.001, ǫ = 0.1
478
+ (a)
479
+ (b)
480
+ FIG. 6. Average velocity v and effective diffusion coefficient
481
+ Deff as a function of M ∗ are plotted in (a) and (b), respec-
482
+ tively, for different values of the active torque t0. The inset
483
+ in (b) shows Deff versus M ∗ for t0 = 1 and t0 = 10 on an ex-
484
+ panded scale. The parameters are: I∗ = 0.001, α = 0.1, f0 =
485
+ 5, and ϵ = 0.1.
486
+ Figure 6 shows v and Deff versus M ∗ for different val-
487
+ ues of the active torque t0. Again one observes that the
488
+ qualitative trends are the same as those discussed above,
489
+ and the values of M ∗
490
+ op can also be changed by changes in
491
+ the active torque t0.
492
+ Finally, we point out that the qualitative behavior of
493
+ v and Deff versus M ∗ remains the same for different val-
494
+ ues of the moment of inertia I∗ and aspect ratio of the
495
+
496
+ 5
497
+ channel ϵ. In addition, M ∗
498
+ op is found to be independent
499
+ of I∗, and it is only weakly dependent on ϵ.
500
+ 0.1
501
+ 1
502
+ 10
503
+ 0.01
504
+ 0.1
505
+ 1
506
+ α
507
+ M ∗
508
+ op
509
+ 2
510
+ 5
511
+ 10
512
+ 0.1
513
+ 0.2
514
+ 0.5
515
+ 1
516
+ f0
517
+ M ∗
518
+ op
519
+ 0.1
520
+ 0.2
521
+ 0.5
522
+ 0.4
523
+ 0.6
524
+ 0.8
525
+ ǫ
526
+ M ∗
527
+ op
528
+ 0.1
529
+ 1
530
+ 100.001
531
+ 0.01
532
+ 0.1
533
+ 1
534
+ t0
535
+ M ∗
536
+ op
537
+ (a)
538
+ (b)
539
+ (c)
540
+ (d)
541
+ FIG. 7. Dependence of M ∗
542
+ op on the rotational diffusion rate
543
+ α (a), self-propulsion force f0 (b), aspect ratio of the channel
544
+ ϵ (c), and active torque t0 (d). The moment of inertia I∗ =
545
+ 0.001.
546
+ The dependence of M ∗
547
+ op on the rotational diffusion rate
548
+ α, self-propulsion force f0, aspect ratio of the channel ϵ,
549
+ and active torque t0 is shown in Fig. 7. For fixed values of
550
+ f0, ϵ, and t0, M ∗
551
+ op decreases monotonically with α (panel
552
+ (a)). From panel (b), for fixed values of α, ϵ, and t0, M ∗
553
+ op
554
+ varies nonmonotonically with f0 with the appearance of
555
+ a peak. Note that M ∗
556
+ op is weakly dependent on ϵ (panel
557
+ (c), observe change in the ordinate scale); for fixed values
558
+ of α, f0, and t0, M ∗
559
+ op has a minimum. Lastly, from panel
560
+ (d), M ∗
561
+ op monotonically decreases with t0 for fixed values
562
+ of α, f0, and ϵ.
563
+ V.
564
+ REMARKS AND CONCLUSION
565
+ This study of the rectification and diffusion of self-
566
+ propelled particles in a two-dimensional asymmetric
567
+ channel showed that the inclusion of inertia leads to sev-
568
+ eral distinctive features. In particular, most of the parti-
569
+ cles accumulate at the channel walls with increasing par-
570
+ ticle mass, while the remaining particles are distributed
571
+ in a funnel-shaped region about the principal axis of the
572
+ channel.
573
+ This effect leads to enhanced rectification of
574
+ heavier particles. The presence of a maximum in the ef-
575
+ fective diffusion coefficient as a function of the mass is
576
+ also a consequence of the accumulation of most of the
577
+ particles at the channel walls.
578
+ Furthermore, for vari-
579
+ ous parameter values, the average particle velocity has a
580
+ maximum as a function of the mass, indicating that par-
581
+ ticles with an optimal mass M ∗
582
+ op drift faster than other
583
+ particles; hence, they can be sorted from a mixture with
584
+ particles of different masses.
585
+ While the Langevin model (1) can describe a wide va-
586
+ riety of physical systems whose active agents are powered
587
+ by various mechanisms and are subject to either thermal
588
+ or athermal noise [16], it is instructive to discuss possible
589
+ experimental realizations of the rectification effects de-
590
+ scribed above. The asymmetric channels we considered
591
+ can be constructed by microprinting on a substrate, and
592
+ the effects of inertia can be determined from measure-
593
+ ments of the average velocity and effective diffusion co-
594
+ efficient [53–55]. From the results presented in the text,
595
+ one can see that the effects of inertia described above will
596
+ manifest themselves only for certain values of the system
597
+ parameters, in particular, the particle mass, friction coef-
598
+ ficients, diffusion constants, self-propulsion force, solvent
599
+ viscosity, etc. The ability to control all of these parame-
600
+ ters within desirable ranges places limits on the physical
601
+ systems.
602
+ A class of systems that may be of interest in this con-
603
+ text are aerosols [26], where diffusiophoresis has been
604
+ used to separate micrometer-scale particles [56, 57]. As
605
+ an example, consider identically-sized active particles
606
+ with radii a ∼ 200 nm, mass M ∼ 10−15 kg, mo-
607
+ ment of inertia I ∼ 10−31 kg m2 in air at room tem-
608
+ perature and pressure p = 104 − 105 Pa.
609
+ The vis-
610
+ cosity is given by η ∼ 10−5 kg/(m s), independent of
611
+ pressure, with translational and rotational friction coeffi-
612
+ cients, γt ∼ 10−11 kg/s and γr ∼ 10−24 kg m2/s, respec-
613
+ tively. The active force lies in the range F0 ∼ 0.1−1 pN,
614
+ and the active torque is taken to be zero. The transla-
615
+ tional and rotational noise strengths are then determined
616
+ by the values of Dt and Dr, respectively. The ratchet
617
+ channel parameters are L = 10 µm, wmax = 10 µm, and
618
+ ϵ = 0.1.
619
+ For thermal noise, the Einstein relations hold, and
620
+ Dt = kBT/γt ∼ 10−9 m2/s and Dr = kBT/γr ∼ 103 s−1.
621
+ In the dimensionless units introduced earlier, we have
622
+ τ ∼ 0.1 s, M ∗ ∼ 10−3, I∗ ∼ 10−6, f0 ∼ 102 − 103, and
623
+ α ∼ 102. From these parameter values, we can see that
624
+ the regime where inertial effects play a role cannot be
625
+ accessed.
626
+ For athermal noise, take Dt ∼ 10−8 − 10−6 m2/s and
627
+ Dr ∼ 103 s−1. We then have τ ∼ 10−2 − 10−4 s, M ∗ ∼
628
+ 0.01 − 1, I∗ ∼ 10−5 − 10−3, f0 ∼ 100 − 0.1, and α ∼ 10 −
629
+ 0.1. Under these conditions, the interesting regime where
630
+ inertial effects lead to an optimal mass can be reached,
631
+ provided the system is driven by external noise sources.
632
+ These results could stimulate the development of
633
+ strategies for controlling the diffusion of active particles
634
+ in entropic ratchet systems. Moreover, since the rectifi-
635
+ cation of particles strongly depends on their mass, the
636
+ model could be used to design lab-on-a-chip devices and
637
+ artificial channels for the mass-based separation of par-
638
+ ticles.
639
+ VI.
640
+ ACKNOWLEDGMENT
641
+ This
642
+ work
643
+ was
644
+ supported
645
+ in
646
+ part
647
+ by
648
+ the
649
+ Nat-
650
+ ural
651
+ Sciences
652
+ and
653
+ Engineering
654
+ Research
655
+ Coun-
656
+ cil
657
+ (NSERC)
658
+ of
659
+ Canada
660
+ and
661
+ Compute
662
+ Canada
663
+ (www.computecanada.ca).
664
+
665
+ 6
666
+ [1] E. Lauga and T. R. Powers, Rep. Prog. Phys. 72, 096601
667
+ (2009).
668
+ [2] S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1,
669
+ 323 (2010).
670
+ [3] P. Romanczuk, M. B¨ar, W. Ebeling, B. Lindner, and
671
+ L. Schimansky-Geier, Eur. Phys. J. Special Topics 202,
672
+ 1 (2012).
673
+ [4] M. E. Cates, Rep. Prog. Phys. 75, 042601 (2012).
674
+ [5] R. Kapral, J. Chem. Phys. 138, 020901 (2013).
675
+ [6] I. S. Aronson, Comptes Rendus Physique 14, 518 (2013).
676
+ [7] W. Wang, W. Duan, S. Ahmed, A. Sen, and T. E. Mal-
677
+ louk, Acc. Chem. Res. 48, 1938 (2015).
678
+ [8] J. Elgeti, R. G. Winkler, and G. Gompper, Rep. Prog.
679
+ Phys. 78, 056601 (2015).
680
+ [9] A. Z¨ottl and H. Stark, J. Phys. Condens. Matter 28,
681
+ 253001 (2016).
682
+ [10] C. Bechinger, R. D. Leonardo, H. L¨owen, C. Reichhardt,
683
+ G. Volpe, and G. Volpe, Rev. Mod. Phys. 88, 045006
684
+ (2016).
685
+ [11] P. Illien, R. Golestanian, and A. Sen, Chem. Soc. Rev.
686
+ 46, 5508 (2017).
687
+ [12] R. J. Archer, A. J. Parnell, A. I. Campbell, J. R. Howse,
688
+ and S. J. Ebbens, Adv. Sci. 5, 1700528 (2018).
689
+ [13] P. Gaspard and R. Kapral, Adv. Phys. X 4, 1602480
690
+ (2019).
691
+ [14] P. Gaspard and R. Kapral, Research 2020, 9739231
692
+ (2020).
693
+ [15] G. Gompper, R. G. Winkler, T. Speck, A. Solon, C. Nar-
694
+ dini, F. Peruani, H. L¨owen, R. Golestanian, U. B. Kaupp,
695
+ L. Alvarez, et al., J. Phys.: Condens. Matter 32, 193001
696
+ (2020).
697
+ [16] For a review, see H. L¨owen, J. Chem. Phys. 152, 040901
698
+ (2020).
699
+ [17] S. Mandal, B. Liebchen, and H. L¨owen, Phys. Rev. Lett.
700
+ 123, 228001 (2019).
701
+ [18] C. Scholz, S. D’Silva, and T. P¨oschel, New J. Phys. 18,
702
+ 123001 (2016).
703
+ [19] H. Torres, V. M. Freixas, and D. Perez, Rev. Cubana
704
+ F´ısica 33, 39 (2016).
705
+ [20] C. Scholz, S. Jahanshahi, A. Ldov, and H. L¨owen, Nat.
706
+ Commun. 9, 5156 (2018).
707
+ [21] A. R. Sprenger,
708
+ S. Jahanshahi,
709
+ A. V. Ivlev,
710
+ and
711
+ H. L¨owen, Phys. Rev. E 103, 042601 (2021).
712
+ [22] G. E. Morfill and A. V. Ivlev, Rev. Mod. Phys. 81, 1353
713
+ (2009).
714
+ [23] K. Arkar, M. M. Vasiliev, O. F. Petrov, E. A. Kononov,
715
+ and F. M. Trukhachev, Molecules 26, 561 (2021).
716
+ [24] W. Li, D. Huang, C. Reichhardt, C. J. O. Reichhardt,
717
+ and Y. Feng, arXiv:2210.01895.
718
+ [25] G. V. Kolmakov and I. S. Aranson, Phys. Rev. Research
719
+ 3, 013188 (2021).
720
+ [26] C. A. Rohde, K. M. Charipar, P. Johns, A. G. Porter,
721
+ N. J. Greybush, and J. Fontana, Opt. Express 30, 42276
722
+ (2022).
723
+ [27] P. K. Ghosh, V. R. Misko, F. Marchesoni, and F. Nori,
724
+ Phys. Rev. Lett. 110, 268301 (2013).
725
+ [28] X. Ao, P. K. Ghosh, Y. Li, G. Schmid, P. H¨anggi, and
726
+ F. Marchesoni, Eur. Phys. J. Special Topics 223, 3227
727
+ (2014).
728
+ [29] Y. Li, P. K. Ghosh, F. Marchesoni, and B. Li, Phys. Rev.
729
+ E 90, 062301 (2014).
730
+ [30] B. Q. Ai, Y. F. He, and W. R. Zhong, J. Chem. Phys.
731
+ 141, 194111 (2014).
732
+ [31] C. J. O. Reichhardt and C. Reichhardt, Annu. Rev. Con-
733
+ dens. Matter Phys. 8, 51 (2017).
734
+ [32] K. Bisht and R. Marathe, Phys. Rev. E 101, 042409
735
+ (2020).
736
+ [33] R. Zwanzig, J. Phys. Chem. 96, 3926 (1992).
737
+ [34] D. Reguera and J. M. Rubi, Phys. Rev. E 64, 061106
738
+ (2001).
739
+ [35] P. Kalinay and J. K. Percus, Phys. Rev. E 74, 041203
740
+ (2006).
741
+ [36] N. Khatri and P. S. Burada, Phys. Rev. E 102, 012137
742
+ (2020).
743
+ [37] N. Khatri and P. S. Burada, Phys. Rev. E 104, 044109
744
+ (2021).
745
+ [38] N. Khatri and P. S. Burada, Phys. Rev. E 105, 024604
746
+ (2022).
747
+ [39] H. C. Berg, E. coli in Motion (Springer-Verlag, New
748
+ York, 2004).
749
+ [40] Y. Fily and M. C. Marchetti, Phys. Rev. Lett. 108,
750
+ 235702 (2012).
751
+ [41] J. Palacci, S. Sacanna, A. P. Steinberg, D. J. Pine, and
752
+ P. M. Chaikin, Science 339, 936 (2013).
753
+ [42] M. C. Marchetti, Y. Fily, S. Henkes, A. Patch, and D. Yl-
754
+ lanes, Current Opinion in Colloid & Interface Science 21,
755
+ 34 (2016).
756
+ [43] J. M. Martins and R. Wittkowski, Phys. Rev. E 106,
757
+ 034616 (2022).
758
+ [44] P. Gaspard and R. Kapral, J. Chem. Phys. 148, 134104
759
+ (2018).
760
+ [45] B. Robertson, J. Schofield, P. Gaspard, and R. Kapral,
761
+ J. Chem. Phys. 153, 124104 (2020).
762
+ [46] N. Khatri and P. S. Burada, J. Chem. Phys. 151, 094103
763
+ (2019).
764
+ [47] N. Khatri and P. S. Burada, J. Stat. Mech. 2021, 073202
765
+ (2021).
766
+ [48] J. Zhang, J. Fan, and F. Fei, Phys. Fluids 22, 122005
767
+ (2010).
768
+ [49] A. Slapik, J. Luczka, P. H¨anggi, and J. Spiechowicz,
769
+ Phys. Rev. Lett. 122, 070602 (2019).
770
+ [50] The coupled Langevin equations (3) were simulated using
771
+ the standard stochastic Euler algorithm [58, 59] with slid-
772
+ ing reflecting boundary conditions at the channel walls.
773
+ [51] The strongly underdamped limit may not be accessed
774
+ easily for many physical systems; however, to better il-
775
+ lustrate the trends of the transport properties, we have
776
+ included results for very large M ∗ in the plots.
777
+ [52] M. H. Jacobs, Diffusion Processes (Springer, New York,
778
+ 1967).
779
+ [53] G. Mahmud, C. J. Campbell, K. J. M. Bishop, Y. A.
780
+ Komarova, O. Chaga, S. Soh, S. Huda, K. Kandere-
781
+ Grzybowska, and B. A. Grzybowski, Nat. Phys. 5, 606
782
+ (2009).
783
+ [54] C. Holz, D. Opitz, J. Mehlich, B. J. Ravoo, and B. Maier,
784
+ Nano Lett. 9, 4553 (2009).
785
+ [55] S. Matthias and F. M¨uller, Nature (London) 424, 53
786
+ (2003).
787
+ [56] S. P. Bakanov and V. I. Roldughin, Aerosol Sci. Tech. 7,
788
+ 249 (1987).
789
+ [57] V. G. Chernyak, S. A. Starikov, and S. A. Beresnev, J.
790
+ Appl. Mech. Tech. Phys. 42, 445 (2001).
791
+
792
+ 7
793
+ [58] F. Toschi and M. Sega, Flowing Matter (Springer Open,
794
+ Berlin, 2019).
795
+ [59] G. Volpe, S. Gigan, and G. Volpe, Am. J. Phys. 82, 659
796
+ (2014).
797
+
HdE1T4oBgHgl3EQfFgNH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9E2T4oBgHgl3EQfpAhk/content/tmp_files/2301.04024v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9E2T4oBgHgl3EQfpAhk/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ItA0T4oBgHgl3EQfCP98/content/tmp_files/2301.01987v1.pdf.txt ADDED
@@ -0,0 +1,2041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01987v1 [cs.IT] 5 Jan 2023
2
+ 1
3
+ Energy Efficient Semantic Communication over
4
+ Wireless Networks with Rate Splitting
5
+ Zhaohui Yang, Mingzhe Chen, Zhaoyang Zhang, and Chongwen Huang
6
+ Abstract—In this paper, the problem of wireless resource
7
+ allocation and semantic information extraction for energy effi-
8
+ cient semantic communications over wireless networks with rate
9
+ splitting is investigated. In the considered model, a base station
10
+ (BS) first extracts semantic information from its large-scale data,
11
+ and then transmits the small-sized semantic information to each
12
+ user which recovers the original data based on its local common
13
+ knowledge. At the BS side, the probability graph is used to extract
14
+ multi-level semantic information. In the downlink transmission,
15
+ a rate splitting scheme is adopted, while the private small-sized
16
+ semantic information is transmitted through private message
17
+ and the common knowledge is transmitted through common
18
+ message. Due to limited wireless resource, both computation
19
+ energy and transmission energy are considered. This joint
20
+ computation and communication problem is formulated as an
21
+ optimization problem aiming to minimize the total communica-
22
+ tion and computation energy consumption of the network under
23
+ computation, latency, and transmit power constraints. To solve
24
+ this problem, an alternating algorithm is proposed where the
25
+ closed-form solutions for semantic information extraction ratio
26
+ and computation frequency are obtained at each step. Numerical
27
+ results verify the effectiveness of the proposed algorithm.
28
+ Index Terms—Rate splitting multiple access, semantic commu-
29
+ nication, energy efficient design.
30
+ I. INTRODUCTION
31
+ The rapid development of emerging applications such as
32
+ digital twin, edge learning, and metaverse requires wireless
33
+ networks to support high transmission data rate, ultra low
34
+ latency, and seamless connectivity [1]–[4]. However, due to
35
+ limited wireless resources such as frequency and time, con-
36
+ ventional orthogonal multiple access schemes cannot support
37
+ massive connectivity concern for next-generation wireless
38
+ communication networks [5]. Through using the same time
39
+ This work was supported in part by National Natural Science Foundation
40
+ of China under Grant 61725104 and U20A20158, and National Key R&D
41
+ Program of China under Grant 2018YFB1801104 and 2020YFB1807101. The
42
+ work of Prof. Huang was supported by the China National Key R&D Program
43
+ under Grant 2021YFA1000500, National Natural Science Foundation of
44
+ China under Grant 62101492, Zhejiang Provincial Natural Science Foundation
45
+ of China under Grant LR22F010002, National Natural Science Fund for
46
+ Excellent Young Scientists Fund Program (Overseas), Zhejiang University
47
+ Education Foundation Qizhen Scholar Foundation, and Fundamental Research
48
+ Funds for the Central Universities under Grant 2021FZZX001-21.
49
+ Z. Yang is with Zhejiang Lab, Hangzhou, Zhejiang, 311121, China. Z.
50
+ Yang, Z. Zhang, and C. Huang are with the College of Information Sci-
51
+ ence and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang
52
+ 310027, China, and Zhejiang Provincial Key Lab of Information Processing,
53
+ Communication and Networking (IPCAN), Hangzhou, Zhejiang, 310007,
54
+ China. (e-mails: yang [email protected], ning [email protected], chong-
55
56
+ M. Chen is with the Department of Electrical and Computer Engineering
57
+ and Institute for Data Science and Computing, University of Miami, Coral
58
+ Gables, FL, 33146 USA (e-mail:[email protected])
59
+ or frequency resource, multiple users can be served in non-
60
+ orthogonal multiple access (NOMA) [6]–[11], where users can
61
+ be split in the power or code domain. Since additional users
62
+ can be served with superposition coding at the transmitter
63
+ and successive interference cancellation (SIC) at the receiver,
64
+ the spectral efficiency of NOMA is generally higher than
65
+ conventional orthogonal multiple access schemes.
66
+ In downlink NOMA transmission, the receiver side decodes
67
+ the interference for all received strong messages [11]. Thus,
68
+ the computation capacity of NOMA decoding is generally
69
+ high. To balance the decoding tradeoff of intended signal
70
+ and interference signal, the concept of rate splitting multiple
71
+ access (RSMA) was introduced in [12]–[15]. For downlink
72
+ RSMA transmission, the transmission message intended for
73
+ each user is divided into both common and private parts.
74
+ All users intend to receive the common part of the message,
75
+ i.e., common message, while only part of the users wish to
76
+ receive and decode the specific private part of the message,
77
+ i.e., private message. At the user side, the common message
78
+ is decoded first with regarding all private messages as inter-
79
+ ference, while the intended private message is decoded with
80
+ only considering the private messages intended for other users
81
+ as interference. Through dynamically controlling the split of
82
+ private and common messages, the computation complexity
83
+ of RSMA can be adjusted to achieve the specific spectral
84
+ efficiency requirements. To implement RSMA for wireless
85
+ communication systems, there are still many challenges, which
86
+ include the resource allocation for private and common mes-
87
+ sages, decoding order optimization, system design in imperfect
88
+ channel and hardware mismatch cases.
89
+ There are many contributions investigating the problems
90
+ of RSMA in wireless communication systems. The general
91
+ challenges of RSMA were pointed out in [14] for multiple
92
+ input multiple output (MIMO) communication systems. To
93
+ maximize the sum rate of all users, a distributed rate splitting
94
+ technique was proposed in [16]. For a two-receiver multiple
95
+ input single output (MISO) communication system with lim-
96
+ ited rate feedback, the rate analysis was investigated in [17].
97
+ Compared with NOMA and space-division multiple access
98
+ (SDMA), it was shown in [18] that RSMA can achieve the
99
+ best performance in terms of spectral and energy efficiency
100
+ [19]. In particular, the energy efficiency optimization for
101
+ RSMA and NOMA transmissions in a unmanned aerial vehicle
102
+ assisted wireless communication system was investigated in
103
+ [20] . Considering wireless energy transfer and information
104
+ transmission, the linear precoding method for RSMA was
105
+ investigated in [21]. For the case with imperfect channel state
106
+ information, the sum rate maximization with partial channel
107
+
108
+ 2
109
+ state information for RSMA was studied in [22], while a
110
+ downlink MISO RSMA system with bounded channel errors
111
+ was investigated in [23].
112
+ The interplay between rate splitting with emerging tech-
113
+ nologies has been investigated. With the help of reconfig-
114
+ urable intelligent surface, the energy efficient resource allo-
115
+ cation for reconfigurable intelligent surface assisted RSMA
116
+ was investigated in [24], where the phase shift, rate alloca-
117
+ tion, and trasnmit beamforming were jointly scheduled. The
118
+ learning based traffic prediction method was studied in [25]
119
+ for unmanned aerial vehicle enabled wireless communication
120
+ system with rate splitting. The neural network was proposed
121
+ in [26] to solve the user clustering problem in hierarchical
122
+ rate splitting communication systems. Due to coupled rate
123
+ and power allocation relationship, the resource allocation
124
+ of RSMA usually leads to the nonconvex problem, which
125
+ can be solved by utilizing the learning techniques such as
126
+ deep reinforcement learning. Several deep learning algorithms
127
+ were designed to solve various complex resource allocation
128
+ problems for RSMA, which include total power minimization
129
+ problem [27], joint power control, beamforming design, and
130
+ splitting optimization problem [28], [29], power allocation
131
+ problem with limited channel state information knowledge
132
+ [30], [31], joint transmit power, user clustering, and resource
133
+ block allocation problem [32], joint passive precoding at the
134
+ reconfigurable intelligent surface and active precoding at the
135
+ transmitter [33]. In the federated learning frameworks [34], the
136
+ authors in [35] utilized RSMA for uplink model transmission
137
+ to minimize the total delay of the whole system. A model-
138
+ based deep learning algorithm was developed to solve the
139
+ receiver design problem of RSMA in [36].
140
+ Recently, semantic communication has attracted a lot of
141
+ attention [37]–[46]. For the wireless communication system
142
+ characterized by Shannon capacity, the receiver side needs
143
+ to recover the information that is exactly the same as the
144
+ transmitted information. However, in the emerging wireless
145
+ applications such as virtual reality, personalized healthcare,
146
+ autonomous driving, and the Internet-of-Everything (IoE), the
147
+ wireless communication systems aim to meet the multimodal
148
+ quality-of-experience (QoE) requirements with massive data,
149
+ which makes the traditional Shannon capacity characterized
150
+ transmission infeasible. Especially in human-computer inter-
151
+ action scenarios, humans can control multiple IoE devices
152
+ simultaneously through voice and augmented/virtual reality
153
+ commands, making communication ubiquitous in small-range
154
+ wireless networks, which poses severe challenges to tradi-
155
+ tional bit-oriented communication challenge. Supporting real-
156
+ time human-machine interaction and machine-to-machine in-
157
+ teraction through the use of text, speech, images, and aug-
158
+ mented/virtual reality is important for future wireless commu-
159
+ nications. In order to support this interaction, the important
160
+ information finally received depends mainly on the intent,
161
+ rather than the bit information dependence of common sense.
162
+ These applications use advanced signal processing to facilitate
163
+ the development of task-oriented semantic communication [3],
164
+ [47], [48]. In semantic communication, both transmitter and
165
+ receiver share common knowledge, which can be used to
166
+ extract small-size information at the transmitter and recover
167
+ the original information at the receiver [49]. Similarly, in
168
+ downlink RSMA, all users also need to receive both common
169
+ information and private information. Due to the inherent sim-
170
+ ilarity of common knowledge and common message, RSMA
171
+ can be utilized to enhance the system performance of downlink
172
+ semantic communication. To our best knowledge, there is
173
+ no prior works that consider the integration of semantic
174
+ communication and RSMA.
175
+ The main contributions of this paper include:
176
+ • The problem of wireless resource allocation and semantic
177
+ information extraction for energy efficient semantic com-
178
+ munications over wireless networks with rate splitting is
179
+ investigated. In the considered model, the BS first extracts
180
+ the semantic information from its large-scale data, and
181
+ then transmits the small-sized semantic information to
182
+ each user which recovers the original data based on the
183
+ local common knowledge.
184
+ • In the downlink transmission, the rate splitting scheme
185
+ is adopted, while the private small-sized semantic in-
186
+ formation is transmitted through private message and
187
+ the common knowledge is transmitted through com-
188
+ mon message. Due to limited wireless resource, both
189
+ computational energy and transmission energy must be
190
+ considered. This joint computation and communication
191
+ problem is formulated as an optimization problem whose
192
+ goal is to minimize the total energy consumption of the
193
+ network under a latency constraint.
194
+ • To solve this problem, an iterative algorithm is proposed
195
+ where, at every step, closed-form solutions for semantic
196
+ information extraction ratio and computation frequency
197
+ are derived. Numerical results show the effectiveness of
198
+ the proposed algorithm.
199
+ The rest of this paper is organized as follows. The system
200
+ model and problem formulation are described in Section II.
201
+ The algorithm design is presented in Section III. Simulation
202
+ results are analyzed in Section IV. Conclusions are drawn in
203
+ Section V.
204
+ II. SYSTEM MODEL AND PROBLEM FORMULATION
205
+ Consider a downlink semantic wireless communication
206
+ (SWC) network with one multiple-antenna BS and K single-
207
+ antenna users, as shown in Fig. 1. The BS is equipped with
208
+ N antennas and the set of users is denoted by K. Each user k
209
+ has a large-sized data Dk to receive. Due to limited wireless
210
+ resource, the BS needs to extract the small-sized semantic
211
+ information from the original data Dk. In the considered
212
+ model, the BS first extracts the semantic information based on
213
+ directional probability graph and then transmits the semantic
214
+ information via rate splitting technique.
215
+ A. Semantic Communication Model
216
+ In this part, we utilize the directional probability graph
217
+ to characterize the inherent information of the transmitted
218
+ information. In the directional probability graph, each vertex
219
+ represents the semantic entity with different semantic levels.
220
+ The higher level the semantic level is, the more complicated
221
+
222
+ 3
223
+ Large-
224
+ sized data
225
+ Semantic
226
+ information
227
+ User
228
+ ��
229
+ Fig. 1. Illustration of the considered SWC network with rate splitting.
230
+ the semantic information is. The link between any two vertexes
231
+ represents the probability.
232
+ To construct the directional probability graph, we use the
233
+ deep neural network to train the stored dataset, which includes
234
+ three main steps. In the first step, the semantic entity is
235
+ recognized from the dataset, where the semantic entity means
236
+ the names in text, including person names, place names, etc.
237
+ The name of semantic entity is highly open (various types,
238
+ flexible lengths, unregistered words), contains rich knowledge
239
+ and highlights individuality. Three common methods, i.e., rule
240
+ method, taxonomy method, and sequence labeling [50] can be
241
+ used to identify the semantic entity. The semantic entity is
242
+ presented as a vertex in the directional probability graph. In
243
+ the second step, the link between any two vertexes means the
244
+ probability that one vertex can be linked with the other vertex.
245
+ Through training the dataset, the probability between two
246
+ vertexes can be calculated via convolutional neural networks.
247
+ In the third step, the semantic information fusion is conducted.
248
+ For two vertexes, if the link probabilities between these two
249
+ vertexes are higher than a predefined threshold. As a result, the
250
+ final directional probability graph becomes a multi-tier graph,
251
+ as shown in Fig. 2.
252
+ To obtain the small-size semantic communication, the ex-
253
+ traction process includes two parts, as shown in Fig. 3. In the
254
+ first part, the directional probability graph is used to extract
255
+ semantic information and the output is denoted by G(Dk). To
256
+ efficiently transmit information, in the second part, a subset
257
+ Sk out of G(Dk) is selected at user k, which is used for data
258
+ transmission.
259
+ At the user side, each user utilizes the shared common di-
260
+ rectional probability graph to recover the original data and the
261
+ recovered data is denoted by R(Sk). The semantic accuracy
262
+ of the recovered data
263
+ uk(Dk, Sk) =
264
+ �|R(Sk)|
265
+ i=1
266
+ min{σ(R(Sk), s′
267
+ ki), σ(Dk, s′
268
+ ki)}
269
+ �|R(Sk)|
270
+ i=1
271
+ σ(R(Sk), s′
272
+ ki)
273
+ ,
274
+ (1)
275
+ where |R(Sk)| is the number of bits in R(Sk), s′
276
+ ki denotes
277
+ the i-th word in text or frame in video in R(Sk), and
278
+
279
+
280
+
281
+
282
+
283
+
284
+
285
+
286
+
287
+
288
+
289
+
290
+
291
+
292
+
293
+
294
+
295
+
296
+
297
+
298
+
299
+ High semantic
300
+ layer
301
+ Low semantic
302
+ layer
303
+ Fig. 2. An example of the multi-level semantic information extraction.
304
+ ��
305
+
306
+ Large-sized data
307
+ Semantic
308
+ information
309
+ Recovered data
310
+ Received
311
+ semantic
312
+ information
313
+
314
+
315
+
316
+
317
+
318
+
319
+ Dk
320
+ G(Dk)
321
+ Sk
322
+
323
+ Selected
324
+ semantic
325
+ information
326
+ R(Sk)
327
+ Sk
328
+ Transmitter
329
+ Receiver
330
+ Fig. 3. Illustration of the SWC model.
331
+ σ(R(Sk), s′
332
+ ki) is the number of occurrences of s′
333
+ ki in R(Sk).
334
+ B. RSMA Model
335
+ In RSMA, the message intended for each user can be split
336
+ into two parts, i.e., common part and private part [51]. The
337
+ common parts from all users are collected and combined into
338
+ a common message. Through sharing the same codebook for
339
+ all users, the common message is encoded into the common
340
+ message s0, which all users need to decode. The private part
341
+ of each user k is encoded into the private stream sk, which is
342
+ intended for the specific user k. As a result, the transmitted
343
+ signal x of the BS can be written as:
344
+ x = √p0w0s0 +
345
+ K
346
+
347
+ k=1
348
+ √pkwksk,
349
+ (2)
350
+ where w0 is the transmit beamforming of the common mes-
351
+ sage s0 , wk is the transmit beamforming of the private
352
+ message sk intended for user k, p0 is the transmit power of
353
+ the common message s0, and pk is the transmit power of the
354
+ private message sk.
355
+
356
+ 4
357
+ For user k, the received message can be represented by:
358
+ hH
359
+ k x + nk = hH
360
+ k
361
+ √p0w0s0 +
362
+ K
363
+
364
+ j=1
365
+ √pkhH
366
+ k wksj + nk,
367
+ (3)
368
+ where hk stands for the channel between user k and the BS.
369
+ To decode the common message s0, the rate of user k can be
370
+ given by:
371
+ ck = B log2
372
+
373
+ 1 +
374
+ p0|hH
375
+ k w0|2
376
+ �K
377
+ j=1 pj|hH
378
+ k wj|2 + σ2
379
+
380
+ .
381
+ (4)
382
+ where B is the bandwidth of the BS. Note that all users need
383
+ to decode the same common message. To ensure that all users
384
+ can successfully decode the common message, the rate of the
385
+ common message can be set as [18]
386
+ c0 = min
387
+ k∈K ck.
388
+ (5)
389
+ In our considered SWC with rate splitting, the common
390
+ knowledge is shared by all users. Thus, the common knowl-
391
+ edge required for semantic communication can be encoded
392
+ in the common message. Besides, the common message also
393
+ includes the parts that are allocated for different users, i.e., the
394
+ rate in the common message allocated to user k is denoted by
395
+ ak. As a result, the rate constraint for the common message
396
+ can be given by
397
+ a0 +
398
+ K
399
+
400
+ k=1
401
+ ak ≤ ck,
402
+ ∀k ∈ K,
403
+ (6)
404
+ where a0 is the rate allocated to updated common knowledge
405
+ that all users need to receive. In SWC, a0 represents the rate of
406
+ transmitting the information of updated directional probability
407
+ graph.
408
+ For each user, the common message is decoded first, and
409
+ then the common message can be subtracted for decoding the
410
+ private message. As a result, the rate for decoding the private
411
+ message for user k can be calculated as
412
+ rk = B log2
413
+
414
+ 1 +
415
+ pk|hH
416
+ k wk|2
417
+ �K
418
+ j=1,j̸=k pj|hH
419
+ k wj|2 + σ2
420
+
421
+ .
422
+ (7)
423
+ C. Transmission and Computation Model
424
+ For each user k, the computation time for extracting seman-
425
+ tic information from data Dk is
426
+ t1k = y1k(Dk, Sk)
427
+ fk
428
+ ,
429
+ (8)
430
+ where y1k(Dk, Sk) is the required amount of CPU cycles for
431
+ calculating Sk out of Dk, and fk is the computing capacity of
432
+ user k. The local computation energy can be given by:
433
+ E1k = κy1k(Dk, Sk)f 2
434
+ k,
435
+ (9)
436
+ where κ is a constant coefficient to measure the effective
437
+ switched capacitance.
438
+ With private rate (7) and allocated common rate ak, the
439
+ downlink transmission time for transmitting Sk is given by
440
+ t2k1 = Z(Sk)
441
+ rk + ak
442
+ ,
443
+ (10)
444
+ ��
445
+ Computing and Transmitting at the BS
446
+ Computing at Users
447
+ Time
448
+ Frequency
449
+ b2
450
+ bK
451
+ b1
452
+ B
453
+ t12
454
+ t22
455
+ t11
456
+ t21
457
+ t2K
458
+ t1K
459
+ Computation Time
460
+ Transmission Time
461
+ t31
462
+ t32
463
+ t3K
464
+ Fig. 4. Illustration of the computation and communication time.
465
+ where Z(Sk) is the data size of set Sk. To transmit the
466
+ renewed information about the knowledge base, i.e., updated
467
+ information of directional probability graph, the transmission
468
+ time of all users can be formulated as
469
+ t0 = K0
470
+ a0
471
+ ,
472
+ (11)
473
+ where K0 is the size of updated information of directional
474
+ probability graph. Combining (10) and (11), the downlink
475
+ transmission time for user k is
476
+ t2k = max{t2k1, t0}.
477
+ (12)
478
+ The transmission energy for sending Sk is
479
+ E2k = t2k1pk,
480
+ (13)
481
+ and the transmission energy for broadcasting updated infor-
482
+ mation of directional probability graph is
483
+ E20 = t0p0.
484
+ (14)
485
+ At user k, to recover the original data, the user needs to
486
+ compute the semantic information Sk. The computation time
487
+ of user k
488
+ t3k = y2k(Dk, Sk)
489
+ gk
490
+ ,
491
+ (15)
492
+ where y2k(Dk, Sk) is the number of computation cycles of
493
+ recovering Dk from Sk and gk is the computation capac-
494
+ ity at user k. The total complete time for user k includes
495
+ computation time at the BS, downlink transmission time, and
496
+ computation time at user k, as shown in Fig. 4. The overall
497
+ complete time of user k including both computation and
498
+ computation is
499
+ tk = t1k + t2k + t3k
500
+ = y1k(Dk, Sk)
501
+ fk
502
+ + max
503
+ � Z(Sk)
504
+ rk + ak
505
+ , K0
506
+ a0
507
+
508
+ + y2k(Dk, Sk)
509
+ gk
510
+ .
511
+ (16)
512
+ The energy consumption at user k is
513
+ E3k = κy2k(Dk, Sk)g2
514
+ k.
515
+ (17)
516
+
517
+ 5
518
+ With the above considered model, the total communication
519
+ and computation energy consumption of the system is
520
+ E =
521
+ K
522
+
523
+ k=1
524
+ (E1k + E2k + E3k) + E0
525
+ =
526
+ K
527
+
528
+ k=1
529
+
530
+ κy1k(Dk, Sk)f 2
531
+ k + Z(Sk)pk
532
+ rk + ak
533
+ + κy2k(Dk, Sk)g2
534
+ k
535
+
536
+ + K0p0
537
+ a0
538
+ .
539
+ (18)
540
+ We aim to minimize the total energy consumption of the
541
+ whole system with considering the completion time, transmit
542
+ information accuracy, computation capacity, rate allocation,
543
+ and power allocation constraints. Mathematically, the formu-
544
+ lated total energy minimization problem can be given by:
545
+ min
546
+ S,f,g,p,a,w E,
547
+ (19)
548
+ s.t. y1k(Dk, Sk)
549
+ fk
550
+ + max
551
+ � Z(Sk)
552
+ rk + ak
553
+ , K0
554
+ a0
555
+
556
+ + y2k(Dk, Sk)
557
+ gk
558
+ ≤ T,
559
+ ∀k ∈ K,
560
+ (19a)
561
+ uk(Dk, Sk) ≥ Ak,
562
+ ∀k ∈ K,
563
+ (19b)
564
+ Sk ⊆ G(Dk)
565
+ ∀k ∈ K,
566
+ (19c)
567
+ a0 +
568
+ K
569
+
570
+ k=1
571
+ ak ≤ ck,
572
+ ∀k ∈ K,
573
+ (19d)
574
+ K
575
+
576
+ k=1
577
+ fk ≤ F max
578
+ (19e)
579
+ K
580
+
581
+ k=0
582
+ p0 ≤ P max
583
+ (19f)
584
+ ak, fk, pk ≥ 0,
585
+ ∀k,
586
+ (19g)
587
+ ∥wk∥ = 1,
588
+ ∀k ∈ K ∪ {0},
589
+ (19h)
590
+ 0 ≤ gk ≤ gmax
591
+ k
592
+ ,
593
+ ∀k ∈ K,
594
+ (19i)
595
+ where S = {S1, · · · , SK}, f = [f0, f1, · · · , fK]T , g =
596
+ [g1, · · · , gK]T , p = [p1, · · · , pK]T , a = [a0, · · · , pK]T ,
597
+ w = [w0; w1; · · · ; wK], T is the maximum communication
598
+ delay of the system, Ak is the minimum semantic accuracy
599
+ for user k, F max is the maximum computation capacity at
600
+ the BS, P max is the transmission power of the BS, and
601
+ gmax
602
+ k
603
+ is the maximum local computation capacity of user
604
+ k. Since both objective function and constraints (19a)-(19c)
605
+ are nonconvex, it is generally hard to solve this problem. To
606
+ solve this problem, we propose an iterative algorithm using
607
+ the alternating method and successive convex approximation
608
+ (SCA) approach.
609
+ III. ALGORITHM DESIGN
610
+ In this section, an alternating algorithm is proposed to
611
+ iteratively solve problem (19) through optimizing three sub-
612
+ problems, i.e., semantic information extraction subproblem,
613
+ computation capacity subproblem, joint power control, rate
614
+ allocation and beamforming design subproblem.
615
+ Accuracy
616
+ k
617
+ r
618
+ Extraction rate
619
+ Computation
620
+ k
621
+ r
622
+ Extraction rate
623
+ (
624
+ ,
625
+ )
626
+ k
627
+ k
628
+ k
629
+ uk
630
+ k
631
+ k
632
+ k
633
+ k
634
+ k
635
+ ,
636
+ 2 (
637
+ ,
638
+ )
639
+ k
640
+ k
641
+ y
642
+ k
643
+ 1 (
644
+ ,
645
+ )
646
+ k
647
+ k
648
+ k
649
+ y
650
+ k
651
+ k
652
+ Fig. 5.
653
+ Illustration of the accuracy and computation functions versus the
654
+ extraction rate.
655
+ A. Semantic Information Extraction
656
+ With given computation capacity, power control, rate alloca-
657
+ tion, and beamforming design, problem (19) can be simplified
658
+ as
659
+ min
660
+ S
661
+ K
662
+
663
+ k=1
664
+
665
+ κy1k(Dk, Sk)f 2
666
+ k + Z(Sk)pk
667
+ rk + ak
668
+ + κy2k(Dk, Sk)g2
669
+ k
670
+
671
+ + K0p0
672
+ a0
673
+ (20)
674
+ s.t. y1k(Dk, Sk)
675
+ fk
676
+ + max
677
+ � Z(Sk)
678
+ rk + ak
679
+ , K0
680
+ a0
681
+
682
+ + y2k(Dk, Sk)
683
+ gk
684
+ ≤ T,
685
+ ∀k ∈ K,
686
+ (20a)
687
+ uk(Dk, Sk) ≥ Ak,
688
+ ∀k ∈ K,
689
+ (20b)
690
+ Sk ⊆ G(Dk)
691
+ ∀k ∈ K.
692
+ (20c)
693
+ Problem (20) is hard to solve because of two general diffi-
694
+ culties. The first difficulty lies in the discrete value space of
695
+ variable Sk, which leads to the discrete optimization problem
696
+ and the complexity to find the optimal solution is usually
697
+ extremely too high. The second difficulty is the implicit
698
+ expressions of accuracy function uk(Dk, Sk) and computation
699
+ functions f1k(Dk, Sk) and f2k(Dk, Sk).
700
+ To handle the first difficulty, we introduce the new variable,
701
+ extraction rate ρk, which is defined as
702
+ ρk =
703
+ Z(Sk)
704
+ Z(G(Dk)).
705
+ (21)
706
+ Absolutely, the value of ρk lies in (0,1]. In the following, we
707
+ use variable to replace Sk for the purpose of obtaining the
708
+ insights about extraction rate.
709
+ To handle the second difficulty, we first analyze the trend
710
+ of accuracy and computation functions. For the accuracy
711
+ function, the accuracy always increases with the extraction
712
+ rate since more information can be used to recover the original
713
+ data, as shown in Fig. 5. As a result, the minimum accuracy
714
+ constraint (20c) can be equivalent to
715
+ ρk ≥ Γk,
716
+ (22)
717
+ where
718
+ Γk
719
+ is
720
+ the
721
+ minimum
722
+ extraction
723
+ rate
724
+ satisfying
725
+ uk(Dk, Γk) = Ak. For computation function y1k(Dk, ρk)
726
+ is the number of required CPU cycles for computing the
727
+
728
+ SS
729
+ DS
730
+ DSS
731
+ Ds
732
+ DSS
733
+ DS
734
+ D6
735
+ information with extraction rate ρk out of Dk, y1k(Dk, Sk)
736
+ includes two parts. The first part is computing the directional
737
+ probability graph, which can be modeled as a function only
738
+ related to the size of Dk, i.e., y3k(Dk). The second part is
739
+ selecting the information with extraction rate ρk out from the
740
+ directional probability graph. Since ρk = 0 or ρk = 1, the
741
+ selection scheme is straightforward, which leads to the lowest
742
+ computation cycles. Hence, the computation of the second
743
+ part first increases and then decreases with the extraction rate
744
+ ρk. As an example, computation function y1k(Dk, ρk) can be
745
+ expressed as
746
+ y1k(Dk, ρk) = y3k(Dk) + Ck1(ρk − Ck2)Ck3,
747
+ (23)
748
+ where Ck1 > 0, Ck2 ∈ (0, 1), and Ck3 > 0 are constant
749
+ parameters and theses parameters can be obtained through sim-
750
+ ulations. For computation function y2k(Dk, ρk), the number
751
+ of computation cycles decreases with ρk since more semantic
752
+ information can be helpful in recovering the original infor-
753
+ mation. As an example, the computation function y2k(Dk, ρk)
754
+ can be expressed as
755
+ y2k(Dk, ρk) = Ck4ρ−Ck5
756
+ k
757
+ ,
758
+ (24)
759
+ where Ck4 > 0 and Ck5 > 0 are constant parameters through
760
+ simulations.
761
+ With the above variable substitution (21) and expressions
762
+ (22)-(24), problem (20) can be reformulated as:
763
+ min
764
+ ρρρ
765
+ K
766
+
767
+ k=1
768
+
769
+ κf 2
770
+ k(y3k(Dk) + Ck1(ρk − Ck2)Ck3)
771
+ + Z(G(Dk))pkρk
772
+ rk + ak
773
+ + κCk4ρ−Ck5
774
+ k
775
+ g2
776
+ k
777
+
778
+ + K0p0
779
+ a0
780
+ (25)
781
+ s.t. y3k(Dk) + Ck1(ρk − Ck2)Ck3
782
+ fk
783
+ + max
784
+ �Z(G(Dk))ρk
785
+ rk + ak
786
+ , K0
787
+ a0
788
+
789
+ + Ck4ρ−Ck5
790
+ k
791
+ gk
792
+ ≤ T,
793
+ ∀k ∈ K,
794
+ (25a)
795
+ Γk ≤ ρk ≤ 1,
796
+ ∀k ∈ K,
797
+ (25b)
798
+ where ρ = [ρ1, · · · , ρK]T . Since both objective function and
799
+ feasible set are convex, problem (25) is a convex problem.
800
+ Thus, we can apply the dual method to obtain the Karush-
801
+ Kuhn-Tucker (KKT) point. To calculate the solution of prob-
802
+ lem (25), we can obtain the following theorem.
803
+ Theorem 1. The optimal solution of problem (25) is
804
+ ρ∗
805
+ k =
806
+
807
+ ρ∗
808
+ k1(λ1k1)
809
+ if ρ∗
810
+ k1(λ11) ≥ K0(ak+rk)
811
+ a0Z(G(Dk))
812
+ ρ∗
813
+ k2(λ1k2)
814
+ if ρ∗
815
+ k2(λ12) < K0(ak+rk)
816
+ a0Z(G(Dk))
817
+ ,
818
+ (26)
819
+ where ρ∗
820
+ k1(λ1k) and ρ∗
821
+ k2(λ1k) are respectively the solutions to
822
+ ∂L1(ρ,λ1k)
823
+ ∂ρk
824
+ = 0 in (30) and (32), λ1k1 and λ1k2 respectively
825
+ satisfy
826
+ y3k(Dk) + Ck1(ρ∗
827
+ k1(λ1k1)|1
828
+ Γk − Ck2)Ck3
829
+ fk
830
+ + Z(G(Dk))
831
+ rk + ak
832
+ + Ck4(ρ∗
833
+ k1(λ1k1)|1
834
+ Γk)−Ck5
835
+ gk
836
+ = T,
837
+ (27)
838
+ y3k(Dk) + Ck1(ρ∗
839
+ k2(λ1k2)|1
840
+ Γk − Ck2)Ck3
841
+ fk
842
+ + K0
843
+ a0
844
+ + Ck4(ρ∗
845
+ k2(λ1k2)|1
846
+ Γk)−Ck5
847
+ gk
848
+ = T,
849
+ (28)
850
+ with a|c
851
+ b = min{max{a, b}, c}.
852
+ Proof. Denoting λ11, · · · , λ1K > 0 as the Lagrange multi-
853
+ plier variables associated with constraint (25a), we obtain the
854
+ Lagrange function of problem (25) as
855
+ L1(ρ, λ1) =
856
+ K
857
+
858
+ k=1
859
+
860
+ κf 2
861
+ k(y3k(Dk) + Ck1(ρk − Ck2)Ck3)
862
+ + Z(G(Dk))pkρk
863
+ rk + ak
864
+ + κCk4ρ−Ck5
865
+ k
866
+ g2
867
+ k
868
+
869
+ + K0p0
870
+ a0
871
+ +
872
+ K
873
+
874
+ k=1
875
+ λ1k
876
+ �y3k(Dk) + Ck1(ρk − Ck2)Ck3
877
+ fk
878
+ + max
879
+ �Z(G(Dk))ρk
880
+ rk + ak
881
+ , K0
882
+ a0
883
+
884
+ + Ck4ρ−Ck5
885
+ k
886
+ gk
887
+ − T
888
+
889
+ ,
890
+ (29)
891
+ where λ1 = [λ11, · · · , λ1K]T . The first derivative of (29)
892
+ becomes
893
+ ∂L1(ρ, λ1)
894
+ ∂ρk
895
+ = κf 2
896
+ kCk1Ck3(ρk − Ck2)Ck3−1
897
+ + Z(G(Dk))pk
898
+ rk + ak
899
+ − κCk4Ck5ρ−Ck5−1
900
+ k
901
+ g2
902
+ k
903
+ + λ1k
904
+ �Ck1Ck3(ρk − Ck2)Ck3−1
905
+ fk
906
+ + Z(G(Dk))
907
+ rk + ak
908
+ − Ck4Ck5ρ−Ck5−1
909
+ k
910
+ gk
911
+
912
+ (30)
913
+ for
914
+ ρk ≥ K0(ak + rk)
915
+ a0Z(G(Dk)) ,
916
+ (31)
917
+ and
918
+ ∂L1(ρ, λ1)
919
+ ∂ρk
920
+ = κf 2
921
+ kCk1Ck3(ρk − Ck2)Ck3−1
922
+ + Z(G(Dk))pk
923
+ rk + ak
924
+ − κCk4Ck5ρ−Ck5−1
925
+ k
926
+ g2
927
+ k
928
+ + λ1k
929
+ �Ck1Ck3(ρk − Ck2)Ck3−1
930
+ fk
931
+ − Ck4Ck5ρ−Ck5−1
932
+ k
933
+ gk
934
+
935
+ (32)
936
+ for
937
+ ρk < K0(ak + rk)
938
+ a0Z(G(Dk)) ,
939
+ (33)
940
+ Denote the solution of ∂L1(ρ,λ1)
941
+ ∂ρk
942
+ = 0 to equations (30) and
943
+ (32) by ρ∗
944
+ k1(λ1) and ρ∗
945
+ k2(λ1k), respectively. Note that the
946
+ left hand sides of (30) and (32) are monotonically increasing
947
+ with respect to ρk, solutions ρ∗
948
+ k1(λ1k) and ρ∗
949
+ k2(λ1k) can be
950
+ obtained via the bisection method. Considering constraints
951
+ (25b), (31), and (33), the Lagrange multiplier should meet
952
+ the KKT condition, i.e., the optimal solution of problem can
953
+ be presented in (26).
954
+
955
+ 7
956
+ B. Optimal Computation Capacity
957
+ With given semantic information extraction, power control,
958
+ rate allocation, and beamforming design, problem (19) can be
959
+ simplified as
960
+ min
961
+ f,g
962
+ K
963
+
964
+ k=1
965
+
966
+ κy1k(Dk, Sk)f 2
967
+ k + Z(Sk)pk
968
+ rk + ak
969
+ + κy2k(Dk, Sk)g2
970
+ k
971
+
972
+ + K0p0
973
+ a0
974
+ (34)
975
+ s.t. y1k(Dk, Sk)
976
+ fk
977
+ + max
978
+ � Z(Sk)
979
+ rk + ak
980
+ , K0
981
+ a0
982
+
983
+ + y2k(Dk, Sk)
984
+ gk
985
+ ≤ T,
986
+ ∀k ∈ K,
987
+ (34a)
988
+ K
989
+
990
+ k=1
991
+ fk ≤ F max
992
+ (34b)
993
+ fk ≥ 0,
994
+ ∀k,
995
+ (34c)
996
+ 0 ≤ gk ≤ gmax
997
+ k
998
+ ,
999
+ ∀k ∈ K.
1000
+ (34d)
1001
+ The Language function of problem (34) can be given by
1002
+ L2(f, g, λ2, λ3) =
1003
+ K
1004
+
1005
+ k=1
1006
+
1007
+ κy1k(Dk, Sk)f 2
1008
+ k + Z(Sk)pk
1009
+ rk + ak
1010
+ + κy2k(Dk, Sk)g2
1011
+ k
1012
+
1013
+ + K0p0
1014
+ a0
1015
+ +
1016
+ K
1017
+
1018
+ k=1
1019
+ λ2k
1020
+ �y1k(Dk, Sk)
1021
+ fk
1022
+ + max
1023
+ � Z(Sk)
1024
+ rk + ak
1025
+ , K0
1026
+ a0
1027
+
1028
+ + y2k(Dk, Sk)
1029
+ gk
1030
+ − T
1031
+
1032
+ + λ3
1033
+ � K
1034
+
1035
+ k=1
1036
+ fk − F max
1037
+
1038
+ ,
1039
+ (35)
1040
+ where λ2 = [λ21, · · · , λ2K]T is the Language multiplier
1041
+ associated with constraint (34a) and λ3 > 0 is the Language
1042
+ multiplier associated with constraint (34b). The first derivative
1043
+ of (35) becomes
1044
+ ∂L2(f, g, λ2, λ3)
1045
+ ∂fk
1046
+ =2κy1k(Dk, Sk)gk − λ2ky1k(Dk, Sk)
1047
+ g2
1048
+ k
1049
+ + λ3
1050
+ (36)
1051
+ ∂L2(f, g, λ2, λ3)
1052
+ ∂gk
1053
+ =2κy2k(Dk, Sk)fk − λ2ky2k(Dk, Sk)
1054
+ f 2
1055
+ k
1056
+ (37)
1057
+ Setting ∂L2(f,g,λ2,λ3)
1058
+ ∂fk
1059
+ = 0 and ∂L2(f,g,λ2,λ3)
1060
+ ∂gk
1061
+ = 0 yields
1062
+ 2κy1k(Dk, Sk)f 3
1063
+ k + λ3f 2
1064
+ k − λ2ky1k(Dk, Sk) = 0,
1065
+ (38)
1066
+ gk =
1067
+ �λ2ky2k(Dk, Sk)
1068
+ 2κy2k(Dk, Sk)
1069
+ � 1
1070
+ 3
1071
+ .
1072
+ (39)
1073
+ The value of fk can be obtained via solving the cubic function
1074
+ in (38). Having obtained the value of computation capacity fk
1075
+ and gk, the value of Language multiplier can be updated via
1076
+ the gradient method. In the t-th iteration, the value of λ2k and
1077
+ λ3 are updated by
1078
+ λ2k(t) =
1079
+
1080
+ λ2k(t − 1) − υ(t)
1081
+ �y1k(Dk, Sk)
1082
+ fk
1083
+ +
1084
+ max
1085
+ � Z(Sk)
1086
+ rk + ak
1087
+ , K0
1088
+ a0
1089
+
1090
+ + y2k(Dk, Sk)
1091
+ gk
1092
+ − T
1093
+ ��+
1094
+ ,
1095
+ (40)
1096
+ and
1097
+ λ3(t) =
1098
+
1099
+ λ3(t − 1) − υ(t)
1100
+ � K
1101
+
1102
+ k=1
1103
+ fk − F max
1104
+ ��+
1105
+ ,
1106
+ (41)
1107
+ where [a]+ = max a, 0 and υ(t) > 0 is the dynamic step size.
1108
+ Through iteratively updating (fk, gk) and (λ2k, λ3), the overall
1109
+ procedure yields the global optimal solution of problem (34).
1110
+ C. Joint Power Control, Rate Allocation, and Beamforming
1111
+ Design
1112
+ With given semantic information extraction and computa-
1113
+ tion capacity, problem (19) can be simplified as
1114
+ min
1115
+ p,a,w
1116
+ K
1117
+
1118
+ k=1
1119
+
1120
+ κy1k(Dk, Sk)f 2
1121
+ k + Z(Sk)pk
1122
+ rk + ak
1123
+ + κy2k(Dk, Sk)g2
1124
+ k
1125
+
1126
+ + K0p0
1127
+ a0
1128
+ ,
1129
+ (42)
1130
+ s.t. y1k(Dk, Sk)
1131
+ fk
1132
+ + max
1133
+ � Z(Sk)
1134
+ rk + ak
1135
+ , K0
1136
+ a0
1137
+
1138
+ + y2k(Dk, Sk)
1139
+ gk
1140
+ ≤ T,
1141
+ ∀k ∈ K,
1142
+ (42a)
1143
+ a0 +
1144
+ K
1145
+
1146
+ k=1
1147
+ ak ≤ ck,
1148
+ ∀k ∈ K,
1149
+ (42b)
1150
+ K
1151
+
1152
+ k=0
1153
+ p0 ≤ P max
1154
+ (42c)
1155
+ a0, ak, pk ≥ 0,
1156
+ ∀k,
1157
+ (42d)
1158
+ ∥wk∥ = 1,
1159
+ ∀k ∈ K ∪ {0},
1160
+ (42e)
1161
+ Problem (42) is nonconvex owing to the nonconvex objec-
1162
+ tive function and constraints (42a), (42b) and (42e). To handle
1163
+ the nonconvexity of the objective function, we introduce new
1164
+ variable rk and use variable p2
1165
+ k to replace power pk. Thus,
1166
+
1167
+ 8
1168
+ problem (42) can be equivalently transformed to
1169
+ min
1170
+ p,a,r,w
1171
+ K
1172
+
1173
+ k=1
1174
+
1175
+ κy1k(Dk, Sk)f 2
1176
+ k + Z(Sk)p2
1177
+ k
1178
+ rk + ak
1179
+ + κy2k(Dk, Sk)g2
1180
+ k
1181
+
1182
+ + K0p2
1183
+ 0
1184
+ a0
1185
+ ,
1186
+ (43)
1187
+ s.t. y1k(Dk, Sk)
1188
+ fk
1189
+ + max
1190
+ � Z(Sk)
1191
+ rk + ak
1192
+ , K0
1193
+ a0
1194
+
1195
+ + y2k(Dk, Sk)
1196
+ gk
1197
+ ≤ T,
1198
+ ∀k ∈ K,
1199
+ (43a)
1200
+ a0 +
1201
+ K
1202
+
1203
+ k=1
1204
+ ak ≤ B log2
1205
+
1206
+ 1 +
1207
+ p2
1208
+ 0|hH
1209
+ k w0|2
1210
+ �K
1211
+ j=1 p2
1212
+ j|hH
1213
+ k wj|2 + σ2
1214
+
1215
+ ,
1216
+ ∀k ∈ K,
1217
+ (43b)
1218
+ rk ≤ B log2
1219
+
1220
+ 1 +
1221
+ p2
1222
+ k|hH
1223
+ k wk|2
1224
+ �K
1225
+ j=1,j̸=k p2
1226
+ j|hH
1227
+ k wj|2 + σ2
1228
+
1229
+ ,
1230
+ ∀k ∈ K,
1231
+ (43c)
1232
+ a0, ak, pk ≥ 0,
1233
+ ∀k,
1234
+ (43d)
1235
+ ∥wk∥ ≤ 1,
1236
+ ∀k ∈ K ∪ {0},
1237
+ (43e)
1238
+ where r = [r0, r1, · · · , rK]T , the objective function is convex,
1239
+ and constraint (43e) is replaced by the inequality without loss
1240
+ of generality. In problem (43), we only need to deal with
1241
+ the nonconvexity of constraints (43b) and (43c) . Through
1242
+ introducing slacking variables γk and ηk, problem (43) can
1243
+ be reformulated as:
1244
+ min
1245
+ p,a,r,w,γ,η
1246
+ K
1247
+
1248
+ k=1
1249
+
1250
+ κy1k(Dk, Sk)f 2
1251
+ k + Z(Sk)p2
1252
+ k
1253
+ rk + ak
1254
+ + κy2k(Dk, Sk)g2
1255
+ k
1256
+
1257
+ + K0p2
1258
+ 0
1259
+ a0
1260
+ ,
1261
+ (44)
1262
+ s.t. y1k(Dk, Sk)
1263
+ fk
1264
+ + max
1265
+ � Z(Sk)
1266
+ rk + ak
1267
+ , K0
1268
+ a0
1269
+
1270
+ + y2k(Dk, Sk)
1271
+ gk
1272
+ ≤ T,
1273
+ ∀k ∈ K,
1274
+ (44a)
1275
+ a0 +
1276
+ K
1277
+
1278
+ k=1
1279
+ ak ≤ B log2 (1 + ηk) ,
1280
+ ∀k ∈ K,
1281
+ (44b)
1282
+ rk ≤ B log2 (1 + γk) ,
1283
+ ∀k ∈ K,
1284
+ (44c)
1285
+ a0, ak, pk ≥ 0,
1286
+ ∀k,
1287
+ (44d)
1288
+ ∥wk∥ ≤ 1,
1289
+ ∀k ∈ K ∪ {0},
1290
+ (44e)
1291
+ p2
1292
+ k|hH
1293
+ k wk|2
1294
+ �K
1295
+ j=1,j̸=k p2
1296
+ j|hH
1297
+ k wj|2 + σ2 ≥ γk,
1298
+ ∀k ∈ K,
1299
+ (44f)
1300
+ p2
1301
+ 0|hH
1302
+ k w0|2
1303
+ �K
1304
+ j=1 p2
1305
+ j|hH
1306
+ k wj|2 + σ2 ≥ ηk,
1307
+ ∀k ∈ K, (44g)
1308
+ where γ = [γ1, · · · , γK]T and η = [η1, · · · , ηK]T . In problem
1309
+ (44), the objective function is transformed into convex. Be-
1310
+ cause of nonconex constraints (44f) and (44g), problem (44)
1311
+ is nonconvex. In the following, we utilize the SCA method to
1312
+ handle these two nonconvex constraints.
1313
+ For constraint (44f), it can be equivalent to
1314
+ p2
1315
+ k|hH
1316
+ k wk|2 ≥ γkαk,
1317
+ (45)
1318
+ K
1319
+
1320
+ j=1,j̸=k
1321
+ p2
1322
+ j|hH
1323
+ k wj|2 + σ2 ≤ αk,
1324
+ (46)
1325
+ where αk is a nonnegative slack variable. In (45), we can al-
1326
+ ways choose the term hH
1327
+ k wk as a real value through changing
1328
+ the phase of beamforming wk. Thus, constraint (45) can be
1329
+ rewritten as
1330
+ R(hH
1331
+ k wk) ≥
1332
+ √γkαk
1333
+ pk
1334
+ ,
1335
+ (47)
1336
+ where the left hand side is convex now. Through using the
1337
+ first-order Taylor series to replace the right hand side of (47),
1338
+ constraint (47) can be approximated by
1339
+ R(hH
1340
+ k wk) ≥
1341
+
1342
+ γ(n)
1343
+ k α(n)
1344
+ k
1345
+ p(n)
1346
+ k
1347
+ +
1348
+
1349
+ γ(n)
1350
+ k
1351
+ 2p(n)
1352
+ k
1353
+
1354
+ α(n)
1355
+ k
1356
+ (αk − α(n)
1357
+ k )
1358
+ +
1359
+
1360
+ α(n)
1361
+ k
1362
+ 2p(n)
1363
+ k
1364
+
1365
+ γ(n)
1366
+ k
1367
+ (γk − γ(n)
1368
+ k ) −
1369
+
1370
+ γ(n)
1371
+ k
1372
+ α(n)
1373
+ k
1374
+ (p(n)
1375
+ k )2
1376
+ (pk − p(n)
1377
+ k ), (48)
1378
+ where the superscript (n) means the value of the variable in
1379
+ the n-th iteration. Moreover, (46) can be reformulated as
1380
+ K
1381
+
1382
+ j=1,j̸=k
1383
+ 1
1384
+ 4((p2
1385
+ j + |hH
1386
+ k wj|2)2 − (p2
1387
+ j − |hH
1388
+ k wj|2)2)
1389
+ =
1390
+ K
1391
+
1392
+ j=1,j̸=k
1393
+ p2
1394
+ j|hH
1395
+ k wj|2 + σ2 ≤ αk.
1396
+ (49)
1397
+ Through replacing the left hand side of (49) with its first-order
1398
+ Taylor approximation, we can obtain
1399
+ K
1400
+
1401
+ j=1,j̸=k
1402
+ 1
1403
+ 4
1404
+
1405
+ ((p(n)
1406
+ j
1407
+ )2 + |hH
1408
+ k w(n)
1409
+ j
1410
+ |2)2 + 4((p(n)
1411
+ j
1412
+ )2
1413
+ + |hH
1414
+ k w(n)
1415
+ j
1416
+ |2)p(n)
1417
+ j
1418
+ (pj − p(n)
1419
+ j
1420
+ ) − (p2
1421
+ j − |hH
1422
+ k wj|2)2
1423
+ + 4((p(n)
1424
+ j
1425
+ )2 + |hH
1426
+ k w(n)
1427
+ j
1428
+ |2)(R(hH
1429
+ k w(n)
1430
+ j
1431
+ hH
1432
+ k wj) − |hH
1433
+ k w(n)
1434
+ j
1435
+ |2)
1436
+
1437
+ + σ2 ≤ αk.
1438
+ (50)
1439
+ Similarly, we can introduce slack variable βk and constraint
1440
+ (44g) can be rewritten as:
1441
+ 1
1442
+ 4((p2
1443
+ 0 + |hH
1444
+ k w0|2)2 − (p2
1445
+ 0 − |hH
1446
+ k w0|2)2)
1447
+ =p2
1448
+ 0|hH
1449
+ k w0|2 ≥ βkηk = 1
1450
+ 4((βk + ηk)2 − (βk − ηk)2), (51)
1451
+ K
1452
+
1453
+ j=1
1454
+ p2
1455
+ j|hH
1456
+ k wj|2 + σ2 ≤ βk.
1457
+ (52)
1458
+ Note that we cannot make hH
1459
+ k w0 as real values for all k
1460
+ through changing the phase of w0. To handle the nonconvexity
1461
+ of (51), we use first-order Taylor approximation on both
1462
+ sides of (51), which is different from the method in [52].
1463
+
1464
+ 9
1465
+ Considering the first-order Taylor approximation on both sides,
1466
+ (51) can be transformed to
1467
+ ((p(n)
1468
+ 0 )2 + |hH
1469
+ k w(n)
1470
+ 0 |2)2 + 4((p(n)
1471
+ 0 )2
1472
+ +|hH
1473
+ k w(n)
1474
+ 0
1475
+ |2)p(n)
1476
+ 0 (p0 − p(n)
1477
+ 0 ) − (p2
1478
+ 0 − |hH
1479
+ k w0|2)2
1480
+ +4((p(n)
1481
+ 0 )2 + |hH
1482
+ k w(n)
1483
+ 0
1484
+ |2)(R(hH
1485
+ k w(n)
1486
+ 0 hH
1487
+ k w0) − |hH
1488
+ k w(n)
1489
+ 0 |2)
1490
+ ≥(βk + ηk)2 − (β(n)
1491
+ k
1492
+ − η(n)
1493
+ k )(βk − ηk) + (β(n)
1494
+ k
1495
+ − η(n)
1496
+ k )2,
1497
+ (53)
1498
+ For constraint (52), we can use the similar method to handle
1499
+ the nonconvexity of (46). Thus, (52) can be approximated by
1500
+ K
1501
+
1502
+ j=1
1503
+ 1
1504
+ 4
1505
+
1506
+ ((p(n)
1507
+ j
1508
+ )2 + |hH
1509
+ k w(n)
1510
+ j
1511
+ |2)2 + 4((p(n)
1512
+ j
1513
+ )2
1514
+ +|hH
1515
+ k w(n)
1516
+ j
1517
+ |2)p(n)
1518
+ j
1519
+ (pj − p(n)
1520
+ j
1521
+ ) − (p2
1522
+ j − |hH
1523
+ k wj|2)2
1524
+ +4((p(n)
1525
+ j
1526
+ )2 + |hH
1527
+ k w(n)
1528
+ j
1529
+ |2)(R(hH
1530
+ k w(n)
1531
+ j
1532
+ hH
1533
+ k wj) − |hH
1534
+ k w(n)
1535
+ j
1536
+ |2)
1537
+
1538
+ + σ2 ≤ βk.
1539
+ (54)
1540
+ With the above approximations, we can approximate the
1541
+ nonconvex constraints (44f) and (44g) with the corresponding
1542
+ convex approximation terms. Thus, the original problem (44)
1543
+ can be approximated by the following convex one:
1544
+ min
1545
+ p,a,r,w,γ,α,η,β
1546
+ K
1547
+
1548
+ k=1
1549
+
1550
+ κy1k(Dk, Sk)f 2
1551
+ k + Z(Sk)p2
1552
+ k
1553
+ rk + ak
1554
+ + κy2k(Dk, Sk)g2
1555
+ k
1556
+
1557
+ + K0p2
1558
+ 0
1559
+ a0
1560
+ ,
1561
+ (55)
1562
+ s.t. (44a) − (44e), (48), (50), (53), (54),
1563
+ (55a)
1564
+ αk ≥ 0, βk ≥ 0,
1565
+ ∀k ∈ K,
1566
+ (55b)
1567
+ where α
1568
+ = [α, · · · , α]T and β
1569
+ =
1570
+ [β1, · · · , βK]T . The
1571
+ convex problem (55) can be solved by the existing convex
1572
+ optimization toolbox.
1573
+ D. Algorithm Analysis
1574
+ The overall joint communication and computation resource
1575
+ allocation for SWC with RSMA is presented in Algorithm 1.
1576
+ According to Algorithm 1, the complexity of solving problem
1577
+ (19) lies in solving three subproblems at each iteration. For
1578
+ the semantic information extraction subproblem, the optimal
1579
+ solution is calculated by (26) in Theorem 1 with complexity
1580
+ O(K log2(1/ǫ1)), where O(log2(1/ǫ1)) is the complexity of
1581
+ solving (27) and (28) with the bisection method of accuracy
1582
+ ǫ1. For the computation capacity subproblem, the complexity
1583
+ is O(N1K), where N1 denotes the number of iterations of
1584
+ using the dual method for solving the computation capacity
1585
+ subproblem. For the joint power control, rate allocation, and
1586
+ beamforming design subproblem, the complexity lies in solv-
1587
+ ing the approximated convex problem (55). The complexity
1588
+ of obtaining the solution of problem (55) is O(M 2
1589
+ 1 M2) [53],
1590
+ where M1 = (N+7)K+N+2 is the total number of variables
1591
+ and M2 = 13K+1 is the total number of constraints. The total
1592
+ complexity of solving the joint power control, rate allocation,
1593
+ and beamforming design subproblem is O(N2N 2K3), where
1594
+ N2 is the number of iterations for the SCA method. As a
1595
+ Algorithm 1 Joint Communication and Computation Resource
1596
+ Allocation for SWC with RSMA
1597
+ 1: Initialize S(0), f (0), g(0), p(0), a(0), w(0). Set iteration
1598
+ number n = 1.
1599
+ 2: repeat
1600
+ 3:
1601
+ With
1602
+ given
1603
+ f (n−1), g(n−1), p(n−1), a(n−1), w(n−1),
1604
+ solve the semantic information extraction subproblem
1605
+ and obtain the solution S(n).
1606
+ 4:
1607
+ With given S(n), p(n−1), a(n−1), w(n−1), solve the
1608
+ computation capacity subproblem and obtain the solu-
1609
+ tion f (n), g(n).
1610
+ 5:
1611
+ With given S(n), f (n), g(n), solve the joint power con-
1612
+ trol, rate allocation, and beamforming design subprob-
1613
+ lem, of which the solution is p(n), a(n), w(n).
1614
+ 6:
1615
+ Set n = n + 1.
1616
+ 7: until the objective value (19) converges.
1617
+ TABLE I
1618
+ MAIN SYSTEM PARAMETERS
1619
+ Parameter
1620
+ Value
1621
+ Bandwidth of the BS B
1622
+ 20 MHz
1623
+ Power spectral density of the noise power
1624
+ -174 dBm/Hz
1625
+ Maximum transmit power P max
1626
+ 30 dBm
1627
+ Effective switched capacitance κ
1628
+ 10−28
1629
+ Number of users K
1630
+ 5
1631
+ result, the total complexity of the proposed Algorithm 1 is
1632
+ O(N3K log2(1/ǫ1) + N1N3K + N2N3N 2K3), where N3 is
1633
+ the number of outer iterations of Algorithm 1.
1634
+ IV. SIMULATION RESULTS
1635
+ In the simulations, there are K = 5 users in the considered
1636
+ area. For the pathloss model between each user and the BS,
1637
+ we set 128.1 + 37.6 log10 d (d is in km) [54] and the standard
1638
+ deviation of shadow fading is 4 dB [52]. Furthermore, the
1639
+ total bandwidth of the system is B = 20 MHz and the
1640
+ power spectral density of the noise power is −174 dBm/Hz.
1641
+ Unless specified otherwise, we set maximum transmit power
1642
+ P max = 30 dBm, the effective switched capacitance in local
1643
+ computation is κ = 10−28, maximum local computation
1644
+ capacity gmax
1645
+ 1
1646
+ = · · · = gmax
1647
+ K
1648
+ = 2 GHz. For the considered
1649
+ semantic information task, we consider the same parameters
1650
+ as in [55]. The main system parameters are summarized in
1651
+ Table I.
1652
+ The proposed joint communication and computation re-
1653
+ source allocation for SWC with RSMA is labeled as ‘RSMA’.
1654
+ To compare the results of the proposed scheme, we con-
1655
+ sider the conventional orthogonal multiple access, frequency
1656
+ division multiple access (FDMA) [56], which is labeled as
1657
+ ‘FDMA’, the total energy minimization problem for NOMA
1658
+ [57], which is labeled as ‘NOMA’. To better show the perfor-
1659
+ mance of multiple antenna scheme, we consider the SDMA
1660
+ system as in [18].
1661
+ Fig. 6 illustrates that the total communication and com-
1662
+ putation energy changes as the maximum transmit power of
1663
+ each user varies. According to this figure, the EXH-RSMA
1664
+ scheme stands for the exhaustive search method, which can
1665
+
1666
+ 10
1667
+ 10
1668
+ 11
1669
+ 12
1670
+ 13
1671
+ 14
1672
+ 15
1673
+ 16
1674
+ 17
1675
+ 18
1676
+ 19
1677
+ Maximum transmit power (dBm)
1678
+ 180
1679
+ 200
1680
+ 220
1681
+ 240
1682
+ 260
1683
+ 280
1684
+ 300
1685
+ Total communication and computation energy
1686
+ RSMA
1687
+ NOMA
1688
+ FDMA
1689
+ EXH-RSMA
1690
+ SDMA
1691
+ Fig. 6. Total communication and computation energy vs. maximum transmit
1692
+ power.
1693
+ yield a near globally optimal solution through running the
1694
+ proposed algorithm with 1000 initial solutions. It can be
1695
+ shown from this figure that the total energy decreases with
1696
+ the maximum transmit power of the BS. This is due to the
1697
+ fact that large transmit power can lead to low transmit time,
1698
+ which allows more time for computation and yields low total
1699
+ energy consumption. It is observed that the proposed RSMA
1700
+ outperforms FDMA, NOMA, since RSMA can achieve higher
1701
+ spectral efficiency than FDMA and NOMA. Compared to
1702
+ SDMA, RSMA can still achieve better energy consumption,
1703
+ in particular the maximum transmit power is high. The reason
1704
+ is that SDMA is more likely to serve the users with higher
1705
+ channel gains, while the users with poor channel gains tend
1706
+ to have long transmit time and high computation power is
1707
+ needed for task computation, thus leading to higher total
1708
+ energy consumption than RSMA. It can be also found that
1709
+ the proposed RSMA achieves near performance as the EXH-
1710
+ RSMA, which indicates the effectiveness of the proposed
1711
+ scheme.
1712
+ Fig. 7 shows the total energy versus bandwidth of the
1713
+ system. Based on this figure, the total communication and
1714
+ computation energy decreases as the bandwidth of the system
1715
+ increases for all schemes. This is because high bandwidth
1716
+ decreases the transmit time between users and the BS, which
1717
+ allows long computation time and consequently reduces the
1718
+ local computation energy consumption.
1719
+ Fig. 8 illustrates the trend of total communication and
1720
+ computation energy with the transmit data size of each user. It
1721
+ is observed that the total energy increases as the data size for
1722
+ all schemes. This is due to the fact that more information needs
1723
+ to be transmitted, thus increasing the transmit and computation
1724
+ power. It can be found that the growing speed of total energy
1725
+ od the proposed RSMA is slower than that of NOMA and
1726
+ FDMA, which shows the robustness of the RSMA.
1727
+ To show how the computation capacity affects the system
1728
+ performance, Fig. 9 presents the total communication and
1729
+ computation energy versus the maximum computation capac-
1730
+ 2
1731
+ 4
1732
+ 6
1733
+ 8
1734
+ 10
1735
+ 12
1736
+ 14
1737
+ 16
1738
+ 18
1739
+ 20
1740
+ Bandwidth (MHz)
1741
+ 95
1742
+ 100
1743
+ 105
1744
+ 110
1745
+ 115
1746
+ 120
1747
+ 125
1748
+ 130
1749
+ Total communication and computation energy
1750
+ RSMA
1751
+ NOMA
1752
+ FDMA
1753
+ Fig. 7.
1754
+ Total communication and computation energy vs. bandwidth of the
1755
+ system.
1756
+ 50
1757
+ 100
1758
+ 150
1759
+ 200
1760
+ 250
1761
+ 300
1762
+ 350
1763
+ 400
1764
+ 450
1765
+ 500
1766
+ Data size (Kbits)
1767
+ 110
1768
+ 120
1769
+ 130
1770
+ 140
1771
+ 150
1772
+ 160
1773
+ 170
1774
+ Total communication and computation energy
1775
+ RSMA
1776
+ NOMA
1777
+ FDMA
1778
+ Fig. 8. Total communication and computation energy vs. transmit data size
1779
+ of each user.
1780
+ ity of each user. According to this figure, the total energy first
1781
+ decreases rapidly and then the total energy tends to approach
1782
+ a fixed value. The reason lies in that for small computation
1783
+ capacity region, the increase of maximum computation ca-
1784
+ pacity can greatly decrease the computation time and more
1785
+ time can be used for transmission, thus reducing the transmit
1786
+ power and total energy. For high computation capacity region,
1787
+ each user has chosen its optimal computation capacity and the
1788
+ increase of maximum computation capacity does not affect the
1789
+ computation capacity allocation result, thus leading to stable
1790
+ energy consumption.
1791
+ V. CONCLUSIONS
1792
+ In this paper, the problem of wireless resource alloca-
1793
+ tion and semantic information extraction for energy efficient
1794
+ semantic communications over wireless networks with rate
1795
+ splitting is investigated. In the considered model, the BS
1796
+ first extracts the semantic information from its large-scale
1797
+
1798
+ 11
1799
+ 0.1
1800
+ 0.2
1801
+ 0.3
1802
+ 0.4
1803
+ 0.5
1804
+ 0.6
1805
+ 0.7
1806
+ 0.8
1807
+ 0.9
1808
+ Maximal computation capacity (GHz)
1809
+ 100
1810
+ 200
1811
+ 300
1812
+ 400
1813
+ 500
1814
+ 600
1815
+ 700
1816
+ 800
1817
+ Total communication and computation energy
1818
+ RSMA
1819
+ NOMA
1820
+ FDMA
1821
+ Fig. 9. Total communication and computation energy vs. maximum compu-
1822
+ tation capacity of each user.
1823
+ data, and then transmits the small-sized semantic information
1824
+ to each user which recovers the original data based on the
1825
+ local common knowledge. In the downlink transmission, the
1826
+ rate splitting scheme is adopted, while the private small-sized
1827
+ semantic information is transmitted through private message
1828
+ and the common knowledge is transmitted through common
1829
+ message. Due to limited wireless resource, both computational
1830
+ energy and transmission energy need to be considered. This
1831
+ joint computation and communication problem is considered
1832
+ as an optimization problem whose goal is to minimize the
1833
+ total energy consumption of the network under both task
1834
+ completion and semantic accuracy constraints. An iterative
1835
+ algorithm is presented to solve this problem, where at each
1836
+ step, the optimal solutions for semantic information extraction
1837
+ ratio and computation frequency are derived. Numerical results
1838
+ show the effectiveness of the proposed algorithm.
1839
+ REFERENCES
1840
+ [1] Y. Mao, O. Dizdar, B. Clerckx, R. Schober, P. Popovski, and H. V.
1841
+ Poor, “Rate-splitting multiple access: Fundamentals, survey, and future
1842
+ research trends,” IEEE Commun. Surveys & Tut., 2022, accepted to
1843
+ appear.
1844
+ [2] B. Clerckx, Y. Mao, E. A. Jorswieck, J. Yuan, D. J. Love, E. Erkip, and
1845
+ D. Niyato, “A primer on rate-splitting multiple access: Tutorial, myths,
1846
+ and frequently asked questions,” arXiv preprint arXiv:2209.00491, 2022.
1847
+ [3] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar et al., “Edge
1848
+ learning for B5G networks with distributed signal processing: Semantic
1849
+ communication, edge computing, and wireless sensing,” arXiv preprint
1850
+ arXiv:2206.00422, 2022.
1851
+ [4] M. Chen, D. Gunduz, K. Huang, W. Saad, M. Bennis, A. V. Feljan,
1852
+ and H. V. Poor, “Distributed learning in wireless networks: Recent
1853
+ progress and future challenges,” IEEE Journal on Selected Areas in
1854
+ Communications, vol. 39, no. 12, pp. 3579–3605, Dec. 2021.
1855
+ [5] W. Saad, M. Bennis, and M. Chen, “A vision of 6g wireless systems:
1856
+ Applications, trends, technologies, and open research problems,” IEEE
1857
+ Network, vol. 34, no. 3, pp. 134–142, May/June 2020.
1858
+ [6] Y. Liu, Z. Qin, M. Elkashlan, Z. Ding, A. Nallanathan, and L. Hanzo,
1859
+ “Nonorthogonal multiple access for 5G and beyond,” IEEE Proceedings,
1860
+ vol. 105, no. 12, pp. 2347–2381, Dec. 2017.
1861
+ [7] M. Vaezi, Z. Ding, and H. V. Poor, Multiple Access Techniques for 5G
1862
+ Wireless Networks and Beyond.
1863
+ Springer, 2018.
1864
+ [8] L. Dai, B. Wang, Y. Yuan, S. Han, C. l. I, and Z. Wang, “Non-orthogonal
1865
+ multiple access for 5G: Solutions, challenges, opportunities, and future
1866
+ research trends,” IEEE Commun. Mag., vol. 53, no. 9, pp. 74–81, Sep.
1867
+ 2015.
1868
+ [9] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K.
1869
+ Bhargava, “A survey on non-orthogonal multiple access for 5G networks:
1870
+ Research challenges and future trends,” IEEE J. Sel. Areas Commun.,
1871
+ vol. 35, no. 10, pp. 2181–2195, Oct. 2017.
1872
+ [10] K. Wang, Y. Liu, Z. Ding, and A. Nallanathan, “User association in
1873
+ non-orthogonal multiple access networks,” in Proc. IEEE Int. Conf.
1874
+ Commun., Kansas City, MO, USA, May 2018, pp. 1–6.
1875
+ [11] Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and
1876
+ K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular
1877
+ future radio access,” in Proc. IEEE Veh. Technol. Conf.
1878
+ Dresden,
1879
+ German, June 2013, pp. 1–5.
1880
+ [12] B. Rimoldi and R. Urbanke, “A rate-splitting approach to the gaussian
1881
+ multiple-access channel,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
1882
+ 364–375, Mar. 1996.
1883
+ [13] T. Han and K. Kobayashi, “A new achievable rate region for the
1884
+ interference channel,” IEEE Trans. Inf. Theory, vol. 27, no. 1, pp. 49–60,
1885
+ Jan. 1981.
1886
+ [14] B. Clerckx, H. Joudeh, C. Hao, M. Dai, and B. Rassouli, “Rate splitting
1887
+ for MIMO wireless networks: A promising PHY-layer strategy for LTE
1888
+ evolution,” IEEE Commun. Mag., vol. 54, no. 5, pp. 98–105, May 2016.
1889
+ [15] H. Liu, T. A. Tsiftsis, K. J. Kim, K. S. Kwak, and H. V. Poor,
1890
+ “Rate splitting for uplink NOMA with enhanced fairness and outage
1891
+ performance,” IEEE Trans. Wireless Commun., vol. 19, no. 7, pp. 4657–
1892
+ 4670, 2020.
1893
+ [16] J. Cao and E. M. Yeh, “Asymptotically optimal multiple-access commu-
1894
+ nication via distributed rate splitting,” IEEE Trans. Inf. Theory, vol. 53,
1895
+ no. 1, pp. 304–319, Jan. 2007.
1896
+ [17] C. Hao, Y. Wu, and B. Clerckx, “Rate analysis of two-receiver MISO
1897
+ broadcast channel with finite rate feedback: A rate-splitting approach,”
1898
+ IEEE Trans. Commun., vol. 63, no. 9, pp. 3232–3246, Sep. 2015.
1899
+ [18] Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting multiple access for
1900
+ downlink communication systems: Bridging, generalizing, and outper-
1901
+ forming SDMA and NOMA,” EURASIP J. Wireless Commun. Network.,
1902
+ vol. 2018, no. 1, pp. 1–54, May 2018.
1903
+ [19] X. Li, Y. Fan, R. Yao, P. Wang, N. Qi, N. I. Miridakis, and T. A. Tsiftsis,
1904
+ “Rate-splitting multiple access-enabled security analysis in cognitive
1905
+ satellite terrestrial networks,” IEEE Trans. Veh. Technol., 2022.
1906
+ [20] A. Rahmati, Y. Yapıcı, N. Rupasinghe, I. Guvenc, H. Dai, and
1907
+ A. Bhuyany, “Energy efficiency of RSMA and NOMA in cellular-
1908
+ connected mmwave UAV networks,” arXiv preprint arXiv:1902.04721,
1909
+ Feb. 2019.
1910
+ [21] Y. Mao, B. Clerckx, and V. O. K. Li, “Rate-splitting for multi-user
1911
+ multi-antenna wireless information and power transfer,” arXiv preprint
1912
+ arXiv:1902.07851, 2019.
1913
+ [22] H. Joudeh and B. Clerckx, “Sum-rate maximization for linearly precoded
1914
+ downlink multiuser MISO systems with partial CSIT: A rate-splitting
1915
+ approach,” IEEE Trans. Commun., vol. 64, no. 11, pp. 4847–4861, Nov.
1916
+ 2016.
1917
+ [23] ——, “Robust transmission in downlink multiuser MISO systems: A
1918
+ rate-splitting approach,” IEEE Trans. Signal Process., vol. 64, no. 23,
1919
+ pp. 6227–6242, Dec. 2016.
1920
+ [24] Z. Yang, J. Shi, Z. Li, M. Chen, W. Xu, and M. Shikh-Bahaei, “Energy
1921
+ efficient rate splitting multiple access (RSMA) with reconfigurable
1922
+ intelligent surface,” in IEEE Int. Conf. Commun. Workshops (ICC
1923
+ Workshops).
1924
+ IEEE, 2020, pp. 1–6.
1925
+ [25] L. Lu, Y. Hu, Y. Zhang, G. Jia, J. Nie, and M. Shikh-Bahaei, “Machine
1926
+ learning for predictive deployment of UAVs with rate splitting multiple
1927
+ access,” in IEEE Globecom Workshops (GC Wkshps.
1928
+ IEEE, 2020, pp.
1929
+ 1–6.
1930
+ [26] R. Pereira, A. A. Deshpande, C. J. Vaca-Rubio, X. Mestre, A. Zanella,
1931
+ D. Gregoratti, E. de Carvalho, and P. Popovski, “User clustering for
1932
+ rate splitting using machine learning,” arXiv preprint arXiv:2205.11373,
1933
+ 2022.
1934
+ [27] M. R. Camana, C. E. Garcia, and I. Koo, “Deep learning-assisted power
1935
+ minimization in underlay MISO-SWIPT systems based on rate-splitting
1936
+ multiple access,” IEEE Access, vol. 10, pp. 62 137–62 156, 2022.
1937
+ [28] J. Liu, C.-H. R. Lin, Y.-C. Hu, and P. K. Donta, “Joint beamforming,
1938
+ power allocation, and splitting control for SWIPT-enabled IoT networks
1939
+ with deep reinforcement learning and game theory,” Sensors, vol. 22,
1940
+ no. 6, p. 2328, 2022.
1941
+ [29] Z. Yang, M. Chen, W. Saad, W. Xu, and M. Shikh-Bahaei, “Sum-
1942
+ rate maximization of uplink rate splitting multiple access (RSMA)
1943
+ communication,” IEEE Trans. Mobile Computing, 2020.
1944
+
1945
+ 12
1946
+ [30] N. Q. Hieu, D. T. Hoang, D. Niyato, and D. I. Kim, “Optimal power
1947
+ allocation for rate splitting communications with deep reinforcement
1948
+ learning,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2820–2823,
1949
+ 2021.
1950
+ [31] J. Huang, Y. Yang, L. Yin, D. He, and Q. Yan, “Deep reinforcement
1951
+ learning-based power allocation for rate-splitting multiple access in 6G
1952
+ LEO satellite communication system,” IEEE Wireless Commun. Lett.,
1953
+ vol. 11, no. 10, pp. 2185–2189, 2022.
1954
+ [32] M. Z. Hassan, M. J. Hossain, J. Cheng, and V. C. Leung, “Joint
1955
+ throughput-power optimization of fog-RAN using rate-splitting multiple
1956
+ access and reinforcement-learning based user clustering,” IEEE Trans.
1957
+ Veh. Technol., vol. 70, no. 8, pp. 8019–8036, 2021.
1958
+ [33] M. Wu, Z. Gao, Y. Huang, Z. Xiao, D. W. K. Ng, and Z. Zhang,
1959
+ “Deep learning-based rate-splitting multiple access for reconfigurable
1960
+ intelligent surface-aided tera-hertz massive MIMO,” arXiv preprint
1961
+ arXiv:2209.08456, 2022.
1962
+ [34] M. Chen, Z. Yang, W. Saad, C. Yin, H. V. Poor, and S. Cui, “A joint
1963
+ learning and communications framework for federated learning over
1964
+ wireless networks,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp.
1965
+ 269–283, Jan. 2021.
1966
+ [35] S.-H. Park and H. Lee, “Completion time minimization of fog-RAN-
1967
+ assisted federated learning with rate-splitting transmission,” IEEE Trans.
1968
+ Veh. Technol., 2022.
1969
+ [36] R. C. Loli, O. Dizdar, B. Clerckx, and C. Ling, “Model-based deep
1970
+ learning receiver design for rate-splitting multiple access,” arXiv preprint
1971
+ arXiv:2205.00849, 2022.
1972
+ [37] Z. Weng and Z. Qin, “Semantic communication systems for speech
1973
+ transmission,” IEEE J. Sel. Areas Commun., vol. 39, no. 8, pp. 2434–
1974
+ 2444, 2021.
1975
+ [38] Y. Wang, M. Chen, T. Luo, W. Saad, D. Niyato, H. V. Poor, and S. Cui,
1976
+ “Performance optimization for semantic communications: An attention-
1977
+ based reinforcement learning approach,” IEEE J. Sel. Areas Commun.,
1978
+ vol. 40, no. 9, pp. 2598–2613, July 2022.
1979
+ [39] H. Xie, Z. Qin, G. Y. Li, and B.-H. Juang, “Deep learning enabled
1980
+ semantic communication systems,” IEEE Tran. Signal Process., vol. 69,
1981
+ pp. 2663–2675, 2021.
1982
+ [40] M. Chen, Y. Wang, and H. V. Poor, “Performance optimization for
1983
+ wireless semantic communications over energy harvesting networks,” in
1984
+ Proc. IEEE International Conference on Acoustics, Speech and Signal
1985
+ Processing (ICASSP).
1986
+ IEEE, 2022, pp. 8647–8651.
1987
+ [41] J. Kang, H. Du, Z. Li, Z. Xiong, S. Ma, D. Niyato, and Y. Li, “Person-
1988
+ alized saliency in task-oriented semantic communications: Image trans-
1989
+ mission and performance analysis,” arXiv preprint arXiv:2209.12274,
1990
+ 2022.
1991
+ [42] Z. Yang, M. Chen, Z. Zhang, and C. Huang, “Secure seman-
1992
+ tic communications: Fundamentals and challenges,” arXiv preprint
1993
+ arXiv:2301.01421, 2023.
1994
+ [43] R. Kaewpuang, M. Xu, W. Y. B. Lim, D. Niyato, H. Yu, J. Kang, and
1995
+ X. S. Shen, “Cooperative resource management in quantum key distri-
1996
+ bution (QKD) networks for semantic communication,” arXiv preprint
1997
+ arXiv:2209.11957, 2022.
1998
+ [44] S. Xie, Y. Wu, S. Ma, M. Ding, Y. Shi, and M. Tang, “Robust information
1999
+ bottleneck for task-oriented communication with digital modulation,”
2000
+ arXiv preprint arXiv:2209.10382, 2022.
2001
+ [45] S. Wang, J. Dai, Z. Liang, K. Niu, Z. Si, C. Dong, X. Qin, and
2002
+ P. Zhang, “Wireless deep video semantic transmission,” arXiv preprint
2003
+ arXiv:2205.13129, 2022.
2004
+ [46] H. Zou, C. Zhang, S. Lasaulce, L. Saludjian, and V. Poor, “Goal-oriented
2005
+ quantization: Analysis, design, and application to resource allocation,”
2006
+ arXiv preprint arXiv:2209.15347, 2022.
2007
+ [47] D. Gunduz and et al, “Beyond transmitting bits: Context, semantics, and
2008
+ task-oriented communications,” arXiv preprint arXiv:2207.09353, 2022.
2009
+ [48] Z. Qin, X. Tao, J. Lu, and G. Y. Li, “Semantic communications:
2010
+ Principles and challenges,” arXiv preprint arXiv:2201.01389, 2021.
2011
+ [49] H. Tong, Z. Yang, S. Wang, Y. Hu, W. Saad, and C. Yin, “Federated
2012
+ learning based audio semantic communication over wireless networks,”
2013
+ in IEEE Global Commun. Conf. (GLOBECOM).
2014
+ IEEE, 2021, pp. 1–6.
2015
+ [50] L. Deng and Y. Liu, Deep learning in natural language processing.
2016
+ Springer, 2018.
2017
+ [51] B. Clerckx, Y. Mao, R. Schober, and H. V. Poor, “Rate-splitting unifying
2018
+ SDMA, OMA, NOMA, and multicasting in MISO broadcast channel: A
2019
+ simple two-user rate analysis,” IEEE Wireless Communications Letters,
2020
+ vol. 9, no. 3, pp. 349–353, 2019.
2021
+ [52] Z. Yang, M. Chen, W. Saad, and M. Shikh-Bahaei, “Optimization of rate
2022
+ allocation and power control for rate splitting multiple access (RSMA),”
2023
+ IEEE Trans. Commun., vol. 69, no. 9, pp. 5988–6002, June 2021.
2024
+ [53] M. S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret, “Applications of
2025
+ second-order cone programming,” Linear algebra and its applications,
2026
+ vol. 284, no. 1-3, pp. 193–228, 1998.
2027
+ [54] M. S. Ali, E. Hossain, A. Al-Dweik, and D. I. Kim, “Downlink
2028
+ power allocation for CoMP-NOMA in multi-cell networks,” IEEE Trans.
2029
+ Commun., vol. 66, no. 9, pp. 3982–3998, Sep. 2018.
2030
+ [55] W. Ammar, D. Groeneveld, C. Bhagavatula, I. Beltagy, M. Crawford,
2031
+ D. Downey, J. Dunkelberger, A. Elgohary, S. Feldman, V. Ha et al.,
2032
+ “Construction of the literature graph in semantic scholar,” arXiv preprint
2033
+ arXiv:1805.02262, 2018.
2034
+ [56] K. Seong, M. Mohseni, and J. M. Cioffi, “Optimal resource allocation
2035
+ for OFDMA downlink systems,” in Proc. IEEE Int. Symp. Inf. Theory,
2036
+ Seattle, WA, USA, 2006, pp. 1394–1398.
2037
+ [57] Z. Yang, C. Pan, J. Hou, and M. Shikh-Bahaei, “Efficient resource allo-
2038
+ cation for mobile-edge computing networks with NOMA: Completion
2039
+ time and energy minimization,” IEEE Trans. Commun., vol. 67, no. 11,
2040
+ pp. 7771–7784, 2019.
2041
+
L9FQT4oBgHgl3EQfUzaG/content/tmp_files/2301.13298v1.pdf.txt ADDED
@@ -0,0 +1,2125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ LONGEVAL: Guidelines for Human Evaluation of
2
+ Faithfulness in Long-form Summarization
3
+ Kalpesh Krishna♠ ∗
4
+ Erin Bransom♦
5
+ Bailey Kuehl♦
6
+ Mohit Iyyer♠
7
+ Pradeep Dasigi♦
8
+ Arman Cohan♦♥
9
+ Kyle Lo♦
10
+ ♠University of Massachusetts Amherst, ♦Allen Institute for AI, ♥Yale University
11
+ {kalpesh,miyyer}@cs.umass.edu
12
+ {erinbransom,baileyk,pradeepd,armanc,kylel}@allenai.org
13
+ Abstract
14
+ While human evaluation remains best prac-
15
+ tice for accurately judging the faithfulness of
16
+ automatically-generated summaries, few solu-
17
+ tions exist to address the increased difficulty
18
+ and workload when evaluating long-form sum-
19
+ maries.
20
+ Through a survey of 162 papers
21
+ on long-form summarization, we first shed
22
+ light on current human evaluation practices
23
+ surrounding long-form summaries.
24
+ We find
25
+ that 73% of these papers do not perform any
26
+ human evaluation on model-generated sum-
27
+ maries, while other works face new difficul-
28
+ ties that manifest when dealing with long
29
+ documents (e.g., low inter-annotator agree-
30
+ ment). Motivated by our survey, we present
31
+ LONGEVAL, a set of guidelines for human
32
+ evaluation of faithfulness in long-form sum-
33
+ maries that addresses the following challenges:
34
+ (1) How can we achieve high inter-annotator
35
+ agreement on faithfulness scores?
36
+ (2) How
37
+ can we minimize annotator workload while
38
+ maintaining accurate faithfulness scores? and
39
+ (3) Do humans benefit from automated align-
40
+ ment between summary and source snippets?
41
+ We deploy LONGEVAL in annotation studies
42
+ on two long-form summarization datasets in
43
+ different domains (SQuALITY and PubMed),
44
+ and we find that switching to a finer granu-
45
+ larity of judgment (e.g., clause-level) reduces
46
+ inter-annotator variance in faithfulness scores
47
+ (e.g., std-dev from 18.5 to 6.8).
48
+ We also
49
+ show that scores from a partial annotation
50
+ of fine-grained units highly correlates with
51
+ scores from a full annotation workload (0.89
52
+ Kendall’s τ using 50% judgments). We release
53
+ our human judgments, annotation templates,
54
+ and our software for future research.1
55
+ 1
56
+ Introduction
57
+ Human judgments are considered the gold
58
+ standard for evaluating model-generated sum-
59
+ 1https://github.com/martiansideofthemoon/
60
+ longeval-summarization
61
+ *Work done in an AI2 internship, author contributions here.
62
+ maries (Kryscinski et al., 2019; Fabbri et al., 2021)
63
+ and generated text more broadly (Celikyilmaz et al.,
64
+ 2020). Unfortunately, human evaluation tends to
65
+ be labor-intensive, expensive to scale, and diffi-
66
+ cult to design. This is problematic as a large num-
67
+ ber of judged examples is needed to draw statisti-
68
+ cally significant conclusions about system perfor-
69
+ mances (Wei and Jia, 2021) or correlations between
70
+ human judgments and automatic metrics (Deutsch
71
+ et al., 2021). Human evaluation is especially chal-
72
+ lenging when long sequences of generated text
73
+ need to be evaluated, due to the inherent subjectiv-
74
+ ity in the task (Karpinska et al., 2021; Clark et al.,
75
+ 2021; Krishna et al., 2021; Goyal et al., 2022).
76
+ To better understand the challenges of human
77
+ evaluation on long-form summaries (150 words
78
+ or longer), we first conduct a comprehensive sur-
79
+ vey of 162 publications and preprints on long-form
80
+ summarization (Section 2). We find that 119 pa-
81
+ pers (73%) do not perform human evaluation on
82
+ long-form summaries, while the remaining papers
83
+ deviate significantly from suggested best practices
84
+ for reproducibility (Gehrmann et al., 2022). Cur-
85
+ rent human evaluation setups lack standardization
86
+ in their design decisions (such as annotation gran-
87
+ ularity), some of which can significantly impact
88
+ inter-annotator agreement (Section 3.1). Finally,
89
+ 20 papers explicitly mention human evaluation is
90
+ expensive, difficult, and time-consuming due to the
91
+ long length of summaries and source documents.
92
+ To move towards a more consistent and efficient
93
+ human evaluation, we present LONGEVAL, a set of
94
+ guidelines for human evaluation of faithfulness in
95
+ long-form summarization (Section 3). We empiri-
96
+ cally evaluate LONGEVAL using human annotation
97
+ studies on two long-form summarization datasets:
98
+ SQuALITY (Wang et al., 2022) and PubMed (Co-
99
+ han et al., 2018). We provide an overview of our
100
+ main research questions and findings in Figure 1
101
+ and enumerate them here:
102
+ arXiv:2301.13298v1 [cs.CL] 30 Jan 2023
103
+
104
+ …. He recognized her as old Hazeltyne 's daughter Harriet , no doubt
105
+ come to see justice done . She did n't have the hothouse - flower look
106
+ Asa would have expected in a girl whose father owned the most
107
+ valuable of the planetary franchises . She was not afraid to meet his
108
+ eye , the eye of a judicially certified criminal . There was , perhaps , a
109
+ crease of puzzlement in her brow , as if she had thought crimes were
110
+ committed by shriveled , rat - faced types , and not by young biological
111
+ engineers who still affected crewcuts . Tom Dorr , Hazeltyne 's general
112
+ manager , was her escort . Asa felt certain , without proof , that Dorr
113
+ was the man who had framed him for the charge of grand theft by
114
+ secreting a fresh Slider egg in his laboratory . The older man stared at
115
+ Asa coldly as he was led out of the courtroom and down the corridor
116
+ back to jail . Jumpy , Asa 's cellmate , took one look at his face as he
117
+ was put back behind bars . " Guilty , " Jumpy said ….Asa took four
118
+ steps to the far wall of the cell , stood there briefly with his head bent
119
+ and turned to face Jumpy . " Nope , " Asa said softly . " I 'm going into
120
+ a conversion tank . I 'm going to be a muck man , Jumpy . I 'm going
121
+ out to Jordan 's Planet and hunt Slider eggs . " " Smuggling ? It wo n't
122
+ work . " Asa did n't answer . The Hazeltyne company had gone after
123
+ him because he had …
124
+ Asa Graybar is a biological engineer
125
+ who studies keeping Slider eggs
126
+ alive and he is accused of a crime at
127
+ the opening of the story . He thinks
128
+ he was framed by Tom Dorr ,
129
+ Hazeltyne ’s general manager . He
130
+ was offered one year as a “
131
+ changeling ” on another planet or 5
132
+ years in rehabilitation on Earth . He
133
+ elects to do the one year , and
134
+ thinks that he will get into smuggling
135
+ Slider eggs on Jordan ’s planet …..
136
+ Source document (4.8K words)
137
+ Summary (270 words)
138
+ Alignment
139
+ Is this span fully supported
140
+ by the source?
141
+ Yes
142
+ No
143
+ FINE-grained
144
+ Q3: Is it helpful to automatically align summary
145
+ units with the long source document?
146
+ Q2: Can annotator workload
147
+ be reduced by annotating just a
148
+ fraction of the long summary?
149
+ Q1: Can inter annotator
150
+ agreement be improved with
151
+ fine-grained annotations?
152
+ COARSE-grained
153
+ How well is the summary
154
+ supported by the source?
155
+ Figure 1: Overview of research questions considered in LONGEVAL. Example summary taken from SQuALITY.
156
+ RQ1: Can inter-annotator agreement be improved
157
+ while evaluating faithfulness of long-form sum-
158
+ maries via fine-grained annotations?
159
+ Finding: Annotating faithfulness of individual
160
+ summary clauses and aggregating them leads to sig-
161
+ nificantly higher inter-annotator agreement, com-
162
+ pared to the dominant paradigm of evaluating
163
+ whole summaries at once via Likert ratings (std-dev
164
+ 18.5 to 6.8 on SQuALITY).
165
+ RQ2:
166
+ Can we reduce annotator workload by
167
+ partially annotating a long summary while
168
+ maintaining accurate faithfulness scores?
169
+ Finding: Despite annotating a fraction of summary
170
+ clauses, faithfulness scores under a reduced work-
171
+ load maintain high correlation with those from a
172
+ full workload (0.89 Kendall’s τ at 50% workload).
173
+ RQ3:
174
+ Do humans benefit from automatically
175
+ aligning summary units to relevant sentences in
176
+ the source document?
177
+ Finding: Unlike suggestions in prior work on
178
+ short-form summarization (Hardy et al., 2019;
179
+ Kryscinski et al., 2020), aligning parts of the sum-
180
+ mary to source document is only useful when the
181
+ summary is highly extractive or mostly correct.
182
+ Overall, our contributions are:
183
+ (1) a 162-paper survey of current human evaluation
184
+ practices in long-form summarization;
185
+ (2) LONGEVAL, a set of three guidelines for evalu-
186
+ ating faithfulness in long-form summarization;
187
+ (3) an empirical validation of LONGEVAL guide-
188
+ lines on two long-form summarization datasets in
189
+ different domains (SQuALITY and PubMed);
190
+ (4) A dataset with 3-way fine-grained human faith-
191
+ fulness judgments for 120 SQuALITY & PubMed
192
+ summaries annotated using LONGEVAL which can
193
+ be used for benchmarking automatic metrics.
194
+ We open-source our human evaluation data, an-
195
+ notation interface, and code for future research.1
196
+ 2
197
+ Survey of human evaluation practices
198
+ Before discussing LONGEVAL, we first attempt to
199
+ understand current human evaluation practices in
200
+ long-form summarization through a comprehensive
201
+ survey of 162 papers. Our survey reveals several
202
+ concerning trends: absence of human evaluation,
203
+ non-reproducible experimental setups, lack of stan-
204
+ dardization, and complaints of long summaries be-
205
+ ing challenging and expensive to evaluate. These
206
+ results show an urgent need to develop more effi-
207
+ cient and standardized human evaluation protocols.
208
+ Selection of papers: We consider existing summa-
209
+ rization datasets with an average summary length
210
+ of at least 150 words, which includes several pop-
211
+ ular datasets like arXiv (Cohan et al., 2018), Bill-
212
+ Sum (Kornilova and Eidelman, 2019) and Multi-
213
+ News (Fabbri et al., 2019); see Table 1 for a full list.
214
+ For our survey, we select all papers that evaluated
215
+ summarization models using at least one of these
216
+ datasets.2 All of these papers were published be-
217
+ tween June 2018 and September 2022, after the first
218
+ long-form summarization datasets were released
219
+ (PubMed / arXiv). Most of the 162 surveyed papers
220
+ 2We exclude five papers which used long-form summariza-
221
+ tion data for pre-training only, like Wei et al. (2022).
222
+
223
+ X0
224
+ 1
225
+ 2
226
+ 3
227
+ 4
228
+ 5were published in major NLP/ML venues, but we
229
+ also include newer preprints from 2022.
230
+ Long-form summaries are rarely evaluated by
231
+ humans. We find that 101 out of 162 papers (62%)
232
+ do not perform any human evaluation. 17 papers
233
+ (11%) only perform human evaluation on short
234
+ summaries (datasets like XSUM, Narayan et al.,
235
+ 2018), for which human evaluation is much easier.
236
+ Human evaluation studies of long-form sum-
237
+ maries are not reproducible. We further analyze
238
+ the 44 papers performing human evaluation of long-
239
+ form summaries to observe how often they follow
240
+ reproducible practices from Gehrmann et al. (2022).
241
+ Overall, we find that most studies do not follow
242
+ these guidelines. Only 2 of the 44 papers release
243
+ their raw human annotation data for further analy-
244
+ sis. Only 9 papers provide details of their annotator
245
+ instructions or interface, and just 12 papers perform
246
+ any kind of statistical analysis, despite most papers
247
+ annotating less than 50 summaries. While 33 pa-
248
+ pers report using multiple annotators per summary,
249
+ only 12 report inter-annotator agreement. Finally,
250
+ just 14 papers conduct human evaluation on more
251
+ than one dataset (more statistics in Appendix C).
252
+ Existing human evaluation setups lack stan-
253
+ dardization. In Table 2, we catalog the wide spec-
254
+ trum of human evaluation setups in the surveyed pa-
255
+ pers. 37 papers collect judgments of the full-length
256
+ summary at once (“COARSE-grained”), while 6 pa-
257
+ pers collect judgments at a finer granularity such as
258
+ sentences or entities (“FINE-grained”). Even within
259
+ a granularity, setups differ: Likert-scale (24 pa-
260
+ pers), A/B testing (13 papers), binary per-sentence
261
+ labels (4 papers) are the dominant protocols. In
262
+ Section 3.1, we will see that this design decision
263
+ is critical since COARSE annotations have much
264
+ lower inter-annotator agreement than FINE.3
265
+ Human evaluation of long-form summaries is
266
+ challenging and expensive. Several of the sur-
267
+ veyed papers discuss challenges in human evalua-
268
+ tion of long-form summaries. 13 papers mention
269
+ that expert annotators are necessary for human eval-
270
+ uation of long-form summaries, especially in tech-
271
+ nical domains like PubMed. 20 papers report that
272
+ human evaluation of long-form summarization was
273
+ 3Besides granularity, we also observe a large spectrum of
274
+ annotator qualifications in our survey, ranging from MTurkers
275
+ to expert graduates (Appendix C). Since non-experts are
276
+ known to be unsuitable for this task (Gillick and Liu, 2010;
277
+ Fabbri et al., 2021), we use experts in our work (Appendix B).
278
+ Dataset
279
+ |source|
280
+ |summary|
281
+ papers
282
+ (words)
283
+ (words)
284
+ PubMed (2018)
285
+ 3092
286
+ 205
287
+ 59
288
+ arXiv (2018)
289
+ 5906
290
+ 163
291
+ 55
292
+ BillSum (2019)
293
+ 1284
294
+ 174
295
+ 19
296
+ MultiNews (2019)
297
+ 2103
298
+ 263
299
+ 54
300
+ GovReport (2021)
301
+ 7551
302
+ 547
303
+ 16
304
+ BookSum (2021)
305
+ 5102
306
+ 505
307
+ 4
308
+ SummScreen (2022)
309
+ 6965
310
+ 227
311
+ 11
312
+ SQuALITY (2022)
313
+ 5194
314
+ 227
315
+ 1
316
+ Table 1: List of long-form summarization datasets con-
317
+ sidered in our survey along with average source docu-
318
+ ment and summary lengths. Each dataset considered
319
+ has at least 150 word summaries on average.
320
+ Type of human evaluation
321
+ # papers
322
+ % papers
323
+ None
324
+ 101
325
+ 62%
326
+ Short-form summaries only
327
+ 17
328
+ 11%
329
+ Likert-scale COARSE-grained
330
+ 24
331
+ 15%
332
+ A/B testing COARSE-grained
333
+ 13
334
+ 8%
335
+ Extrinsic evaluation
336
+ 1
337
+ 1%
338
+ Binary per sentence FINE-grained
339
+ 4
340
+ 2%
341
+ QA-based FINE-grained
342
+ 2
343
+ 1%
344
+ Table 2: Human evaluation setup in 162 summarization
345
+ papers that evaluate long-form summaries. 73% of the
346
+ papers do not evaluate long-form summaries with hu-
347
+ mans, while others vary significantly in their setups.
348
+ time-consuming, challenging, and expensive, pri-
349
+ marily due to the long length of the summary and
350
+ source document. To tackle the issue of high an-
351
+ notator workload, we propose a partial annotation
352
+ method in Section 3.2 and report high correlation
353
+ to a full workload. Additionally, in Section 3.3
354
+ we investigate the usefulness of highlighting sen-
355
+ tences to help annotators navigate the long source
356
+ document. While this has been advocated for in
357
+ short-form summary evaluation (Hardy et al., 2019;
358
+ Kryscinski et al., 2020) and used in 3 surveyed
359
+ long-form papers, we find that it is only helpful
360
+ when summaries are mostly correct and extractive.
361
+ 3
362
+ The LONGEVAL guidelines for
363
+ faithfulness human evaluation
364
+ In Section 2, we report several concerning issues
365
+ with current human evaluation practices in long-
366
+ form summarization. To move towards more ef-
367
+ ficient, reproducible and standardized protocols
368
+ for human evaluation, we develop the LONGEVAL
369
+ guidelines (Section 3.1-3.3, see Figure 1 for an
370
+ overview). We focus on human evaluation of faith-
371
+ fulness, which Wang et al. (2022) define as:
372
+
373
+ “Checking the factual errors in the summary,
374
+ where a factual error is a statement that con-
375
+ tradicts the source document, or is not directly
376
+ stated, heavily implied, or logically entailed by
377
+ the source document”
378
+ We conduct human annotation studies to empiri-
379
+ cally motivate LONGEVAL. Our experiments are
380
+ on two long-form summarization datasets span-
381
+ ning diverse domains and levels of abstractiveness:
382
+ (1) SQuALITY (Wang et al., 2022) is a summa-
383
+ rization dataset in the literary domain (avg. sum-
384
+ mary length of 227 words) where summaries de-
385
+ scribe the plots of English science fiction sto-
386
+ ries. SQuALITY is highly abstractive: on average
387
+ just 16% of bigrams in the summary are present
388
+ in the source document. We closely follow the
389
+ human evaluation setup in Wang et al. (2022),
390
+ and use BART (Lewis et al., 2020) and BART-
391
+ DPR (Karpukhin et al., 2020) as our summarization
392
+ models along with human-written summaries.
393
+ (2) PubMed (Cohan et al., 2018) is a summariza-
394
+ tion dataset in the scientific domain (avg. summary
395
+ length of 205 words) that pairs English biomedical
396
+ articles from PubMed4 with their abstracts as sum-
397
+ maries. Compared to SQuALITY, PubMed is more
398
+ extractive: 54% of summary bigrams are present in
399
+ the source. We use BigBird-PEGASUS-large (Za-
400
+ heer et al., 2020) and LongT5-large (Guo et al.,
401
+ 2022) as our summarization models,5 along with
402
+ human written summaries. By default, LongT5 /
403
+ BigBird were highly extractive compared to human-
404
+ written PubMed summaries (87% / 74% vs 54%
405
+ bigram overlap with source). Hence, for half the
406
+ generations we block 6-grams from being copied
407
+ from the source,6 reducing extractiveness to ∼54%.
408
+ We call this setting “PubMed-ngram-block”.
409
+ 3.1
410
+ RQ1: Does inter-annotator agreement
411
+ improve using fine-grained annotations?
412
+ In Section 2, we found that the dominant paradigm
413
+ in literature (37 out of 44 papers) is to evaluate
414
+ the whole summary at once (“COARSE”-grained,
415
+ Figure 1 top left). 6 papers instead obtain fine-
416
+ grained annotations for individual units (e.g., sen-
417
+ tences) and average them (FINE, Figure 1 top right).
418
+ 4https://pubmed.ncbi.nlm.nih.gov/
419
+ 5LongT5 is the best publicly available PubMed summa-
420
+ rizer. BigBird is a popular long-form summarization baseline.
421
+ 6Reducing extractiveness / copying is also a suggestion for
422
+ fair-use of copyrighted work (Harvard, 2016; UMGC, 2020).
423
+ Intuitively, FINE annotation has many advantages
424
+ for longer summaries — it is less subjective than
425
+ COARSE, since shorter spans needs to be judged
426
+ rather than a long summary, and it helps localize
427
+ model errors. However, the distinction between
428
+ COARSE and FINE is never justified in literature,
429
+ and inter-annotator agreement is rarely reported to
430
+ understand the task subjectivity in each setup. To
431
+ better understand the tradeoff, in this section we
432
+ conduct human evaluations annotating the same set
433
+ of summaries using these two different protocols.
434
+ Task formulation: Let Fsumm denote the faithful-
435
+ ness score of a summary. For COARSE, k-point
436
+ Likert scale ratings are obtained for the summary
437
+ (Fsumm ∈ {0, 1...k}), based on the faithfulness def-
438
+ inition provided earlier. For FINE, we collect binary
439
+ judgments of individual units in the summary and
440
+ average them,
441
+ Fsumm =
442
+ 1
443
+ |Csumm|
444
+
445
+ c∈Csumm
446
+ Fc, Fc ∈ {0, 1}
447
+ where Csumm is a set of units in the summary and
448
+ Fc is the faithfulness judgment for the unit c. In
449
+ both protocols, the faithfulness score of a system is
450
+ defined as
451
+ 1
452
+ |S|
453
+
454
+ summ∈S Fsumm where S is the set
455
+ of summaries generated by the system.7
456
+ While sentences are a popular granularity for
457
+ FINE (4 of the 6 surveyed papers), we found that
458
+ summary sentences in both datasets were over-
459
+ loaded with information. Hence, we segment sen-
460
+ tences on conjunctions and punctuation to obtain
461
+ more atomic units as Csumm. These units are often
462
+ clauses,8 similar to summary content units (SCUs)
463
+ in Pyramid (Nenkova and Passonneau, 2004).
464
+ Collecting COARSE annotations: For SQuAL-
465
+ ITY, we re-use the annotations provided by Wang
466
+ et al. (2022) for faithfulness assessments. In their
467
+ data, three annotators give each summary a 1-100
468
+ direct assessment rating (Bojar et al., 2016). An-
469
+ notators with experience in professional copyright-
470
+ ing and editing were hired on Upwork,9 and these
471
+ annotators were also involved in the creation of
472
+ SQuALITY. Unfortunately, none of the surveyed
473
+ papers that reported human evaluation results on
474
+ 7We assume all summary units get an equal weight. How-
475
+ ever, some units may be more important than others, we dis-
476
+ cuss this in the Limitations section.
477
+ 8An even finer granularity is entities / numbers. We avoid
478
+ this due to prohibitive annotation cost on long summaries.
479
+ 9https://www.upwork.com/
480
+
481
+ 0.2
482
+ 0.0
483
+ 0.2
484
+ 0.4
485
+ 0.6
486
+ 0.8
487
+ 1.0
488
+ Pearson correlation
489
+ rouge-1_f1
490
+ rouge-2_f1
491
+ rouge-l_f1
492
+ bart_score
493
+ bart_sc_pb
494
+ sent_bleu
495
+ bert_score
496
+ bleurt
497
+ SQuALITY
498
+ FINE
499
+ COARSE
500
+ 0.2
501
+ 0.0
502
+ 0.2
503
+ 0.4
504
+ 0.6
505
+ 0.8
506
+ 1.0
507
+ Pearson correlation
508
+ rouge-1_f1
509
+ rouge-2_f1
510
+ rouge-l_f1
511
+ bart_score
512
+ bart_sc_pb
513
+ sent_bleu
514
+ bert_score
515
+ bleurt
516
+ PubMed
517
+ FINE
518
+ COARSE
519
+ Figure 2: 95% confidence intervals of Pearson correlations between various automatic evaluation metrics and using
520
+ human evaluation data collected with FINE (blue) and COARSE (orange) annotation methods. In both datasets, FINE
521
+ annotations lead to much narrower CIs than COARSE annotations. See Appendix G for plot with Kendall’s Tau.
522
+ 0
523
+ 20
524
+ 40
525
+ 60
526
+ 80
527
+ 100
528
+ Mean human score
529
+ bart
530
+ bart_dpr
531
+ human
532
+ SQuALITY
533
+ FINE
534
+ COARSE
535
+ 0
536
+ 20
537
+ 40
538
+ 60
539
+ 80
540
+ 100
541
+ Mean human score
542
+ longt5
543
+ bigbird
544
+ human
545
+ PubMed
546
+ FINE
547
+ COARSE
548
+ 0
549
+ 20
550
+ 40
551
+ 60
552
+ 80
553
+ 100
554
+ Mean human score
555
+ longt5
556
+ bigbird
557
+ human
558
+ PubMed-ngram-block
559
+ FINE
560
+ COARSE
561
+ Figure 3: 95% confidence intervals of estimated model performances using FINE (blue) and COARSE (orange)
562
+ annotation methods. Intervals calculated using bootstrap resampling across annotators (Appendix A). While both
563
+ annotation granularities lead to similar relative ordering of systems, FINE annotations have narrower confidence
564
+ intervals. The higher LongT5 score vs human in PubMed is due to highly extractive LongT5 summaries (Section 3).
565
+ PubMed released their raw human annotations.10
566
+ Hence, we collect our own COARSE evaluations on
567
+ PubMed summaries on Upwork, using freelancers
568
+ with professional experience reading and writing
569
+ research papers (details in Appendix B.2). We col-
570
+ lect 3 annotations per summary and use a 5-point
571
+ Likert scale, the most common choice for COARSE
572
+ assessment in our survey (18 out of 38 papers). In
573
+ total, 120 summaries are evaluated.
574
+ Collecting FINE annotations: For both SQuAL-
575
+ ITY and PubMed, we collect FINE annotations on
576
+ Upwork (3 annotators per FINE unit) for the same
577
+ set of 120 summaries evaluated using COARSE an-
578
+ notations. For SQuALITY, we hire freelancers with
579
+ professional experience in English, creative writ-
580
+ ing, or education. For PubMed, we hire freelancers
581
+ with prior experience analyzing biomedical arti-
582
+ cles. See Appendix B.1 for details of our annotator
583
+ 10In our email correspondence with authors of these works,
584
+ they mentioned losing access or compliance issues as reasons
585
+ for not sharing human evaluations. We received some exam-
586
+ ples from Guo et al. (2021) and Ju et al. (2021) for reference.
587
+ Dataset
588
+ COARSE
589
+ FINE
590
+ SQuALITY
591
+ 18.5
592
+ 6.8
593
+ PubMed
594
+ 11.8
595
+ 7.3
596
+ PubMed + ngram block
597
+ 11.7
598
+ 9.3
599
+ Average
600
+ 14.0
601
+ 7.8
602
+ Table 3: Average standard deviation of faithfulness
603
+ scores across annotators on a 100-point rating scale.
604
+ Lower variation means higher agreement. Overall, we
605
+ find that FINE-grained annotations have higher inter-
606
+ annotator agreement than COARSE-grained annotations.
607
+ Note that all FINE units of a summary were annotated
608
+ to obtain these results (f = 1.0 in Section 3.2).
609
+ screening process, compensation, instructions, and
610
+ screenshots of our annotation interface.
611
+ FINE annotations have higher inter-annotator
612
+ agreement than COARSE annotations.
613
+ This
614
+ leads to more confident downstream estimates.
615
+ We present our results in Table 3. Overall, we ob-
616
+ serve that across all settings, FINE annotations have
617
+
618
+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
619
+ Fraction of units
620
+ 0.0
621
+ 0.2
622
+ 0.4
623
+ 0.6
624
+ 0.8
625
+ 1.0
626
+ KT correlation to full annotation
627
+ PubMed
628
+ SQuALITY
629
+ 0.1
630
+ 0.2
631
+ 0.3
632
+ 0.4
633
+ 0.5
634
+ 0.6
635
+ 0.7
636
+ 0.8
637
+ 0.9
638
+ 1.0
639
+ Fraction of units
640
+ 5.0
641
+ 7.5
642
+ 10.0
643
+ 12.5
644
+ 15.0
645
+ 17.5
646
+ 20.0
647
+ 22.5
648
+ 25.0
649
+ Inter-annotator standard deviation
650
+ FINE - PubMed
651
+ FINE - SQuALITY
652
+ COARSE - PubMed
653
+ COARSE - SQuALITY
654
+ Figure 4: Accuracy and variance after annotating a fraction of units per summary (X-axis) with FINE. Despite
655
+ annotating just a fraction of the summary, we observe a high segment-level Kendall tau correlation with a full
656
+ annotation (left). However we observe higher inter-annotator variance as the fraction reduces (right). Confidence
657
+ intervals shown are 95% and computed across 1000 random subsets (see Appendix F for left plot with Pearson).
658
+ lower standard deviation (and thus higher agree-
659
+ ment) in faithfulness scores than COARSE anno-
660
+ tations (7.8 vs 14.0 average on 100-point scaled
661
+ ratings). To illustrate the importance of higher
662
+ agreement, we measure its effect on two down-
663
+ stream statistics that human evaluation is primarily
664
+ used for: (1) correlation with automatic metrics;
665
+ and (2) mean system performance. We adapt the
666
+ bootstrap resampling analysis11 of Deutsch et al.
667
+ (2021) to estimate confidence intervals of these two
668
+ downstream statistics for COARSE and FINE.
669
+ In Figure 2, we plot the 95% confidence inter-
670
+ vals of the Pearson correlation of various auto-
671
+ matic evaluation metrics against FINE-grained and
672
+ COARSE-grained human evaluation data. Across
673
+ both datasets, FINE data leads to much narrower
674
+ confidence intervals (0.15 vs 0.35 average uncer-
675
+ tainty in Pearson correlation on PubMed) for the
676
+ same number of summaries, implying higher sta-
677
+ tistical power. In Figure 3, we observe a simi-
678
+ lar trend with mean system performance. Inter-
679
+ estingly, both annotation methods give the same
680
+ relative ordering of systems (human > bart-dpr >
681
+ bart for SQuALITY, human > longT5 > BigBird
682
+ for PubMed-block), confirming the alignment of
683
+ FINE and COARSE judgments on average.
684
+ Recommendation: Unlike the dominant trend in
685
+ prior work, FINE-grained evaluations should be pre-
686
+ ferred over COARSE grained evaluation for long-
687
+ 11We slightly modify the algorithm in Deutsch et al. (2021)
688
+ for inter-annotator variance, see Appendix A.
689
+ form summaries. FINE annotations have lower inter-
690
+ annotator variance than COARSE annotations and
691
+ help localize model errors. In our setup we assume
692
+ all FINE units are equally weighted while aggre-
693
+ gating them to the final summary score. Despite
694
+ this assumption, in our results we observe a consis-
695
+ tent relative ordering of systems/metrics between
696
+ COARSE and FINE annotations. Nevertheless, non-
697
+ uniform weighing of units is an interesting future
698
+ work direction; more in the Limitations section.
699
+ 3.2
700
+ RQ2: Can we reduce annotator workload
701
+ by partially annotating a long summary?
702
+ In Section 3.1, we found that FINE annotations have
703
+ lower variance than COARSE annotations. However,
704
+ long summaries may be composed of several units
705
+ (sentences or phrases) which each require FINE
706
+ annotation. This could make FINE annotation very
707
+ expensive for longer summaries (as also noted in
708
+ our survey). What if we instead annotate a random
709
+ subset of units from the summary? While this will
710
+ lower annotation cost, how accurate would these
711
+ partial annotations be? We explore this tradeoff by
712
+ re-using the annotations collected in Section 3.1.
713
+ For every summary, we randomly sample a fraction
714
+ of units f ∈ {0.1, 0.2...0.9} and then measure its
715
+ correlation to the full set of annotations collected.
716
+ Each annotator gets a different random sample of
717
+ units for the same summary. In initial experiments,
718
+ we found that this yielded higher accuracy than
719
+ when keeping the same set of units per annotator.
720
+
721
+ Partial annotation has a high correlation to full
722
+ annotation, but higher variance: In Figure 4
723
+ (left) we plot the segment level Kendall’s τ correla-
724
+ tion (relative ordering of summary scores) between
725
+ a partial annotation and full annotation for different
726
+ values of f. Overall, we observe a high correlation
727
+ across different values of f. Despite annotating just
728
+ half the summary (f = 0.5), in both datasets we
729
+ observe a high correlation of 0.78-0.89 Kendall’s
730
+ τ (95% interval) with a full annotation. Does a
731
+ partial annotation preserve the variance benefits of
732
+ FINE vs COARSE? In Figure 4 (right) we plot the
733
+ inter-annotator variance for different values of f.
734
+ In both datasets we find that a partial annotation
735
+ has a higher variance than a full annotation. While
736
+ for all values of f in SQuALITY we find that FINE
737
+ annotations still have lower variance than COARSE,
738
+ in PubMed COARSE has lower variance than FINE
739
+ for f <= 0.3 with 95% confidence.
740
+ Recommendation: Having annotators judge a ran-
741
+ dom subset of units in a long-form summary is a
742
+ simple way to reduce FINE annotation cost, and has
743
+ high correlation with a full annotation. However,
744
+ it increases inter-annotator variance. Annotating
745
+ 50% of the summary results in 0.78-0.89 Kendall’s
746
+ τ correlation, with a 30-40% increase in standard
747
+ deviation compared to full FINE annotation. Partial
748
+ annotation may be limited in its ability to identify
749
+ issues in summaries with very few errors. However,
750
+ we find that this is not the case in current systems,
751
+ which are abundant in faithfulness errors.
752
+ 3.3
753
+ RQ3: Is it useful to align summary units
754
+ to sentences in the source document?
755
+ So far, we have focused on design decisions on the
756
+ summary side of evaluation. However, evaluating
757
+ faithfulness requires a comparison of facts between
758
+ a summary and a source document. Long-form
759
+ summaries tend to have long source documents
760
+ (Table 1): 3.1K words for SQuALITY and 5.1K
761
+ words for PubMed. In Section 2, we found sev-
762
+ eral mentioned human evaluation is challenging
763
+ since annotators need to read long source docu-
764
+ ments. Some prior work has suggested highlight-
765
+ ing spans in the source document that align with
766
+ the summary (Hardy et al., 2019; Kryscinski et al.,
767
+ 2020; Vig et al., 2021) as shown in Figure 1. How-
768
+ ever, these efforts have exclusively focused on news
769
+ summarization with relatively short source docu-
770
+ ments, like CNN/DM (804 words) (Nallapati et al.,
771
+ 2016) or XSUM (438 words) (Narayan et al., 2018).
772
+ Algorithm
773
+ R@3
774
+ R@5
775
+ R@10
776
+ BM25 (1995)
777
+ 0.38
778
+ 0.46
779
+ 0.56
780
+ ROUGE-1 (2004)
781
+ 0.31
782
+ 0.34
783
+ 0.46
784
+ SIM (2019)
785
+ 0.37
786
+ 0.52
787
+ 0.60
788
+ DPR (2020)
789
+ 0.29
790
+ 0.31
791
+ 0.41
792
+ BERTScore-DB-XL (2020)
793
+ 0.30
794
+ 0.37
795
+ 0.46
796
+ SummaC-NLI (2022)
797
+ 0.22
798
+ 0.26
799
+ 0.34
800
+ MultiVers-FEVER (2022)
801
+ 0.47
802
+ 0.58
803
+ 0.71
804
+ SuperPAL (2021)
805
+ 0.61
806
+ 0.68
807
+ 0.77
808
+ Table 4:
809
+ A comparison of algorithms finding the
810
+ top source document sentences for summary units in
811
+ SQuALITY. R@k (recall@k) denotes the fraction of
812
+ times the gold sentence was in the top-k predictions.
813
+ Hints
814
+ Acc. (↑)
815
+ Agree. (↑)
816
+ Time (secs) (↓)
817
+ (2-way)
818
+ (Fleiss)
819
+ All
820
+ First 5
821
+ None
822
+ 93%
823
+ 0.71
824
+ 41.4
825
+ 115.6
826
+ SuperPAL
827
+ 92%
828
+ 0.64
829
+ 48.2
830
+ 84.6
831
+ Gold
832
+ 92%
833
+ 0.63
834
+ 40.4
835
+ 60.4
836
+ Table 5: Annotator performance (accuracy, agreement,
837
+ median time) in detecting summary errors with differ-
838
+ ent types of source document highlight hints. Overall,
839
+ we see little difference across the three settings.
840
+ How useful is highlighting based on alignment,
841
+ or “hints”, when the spans are chosen from much
842
+ longer documents?
843
+ What is the best highlighting algorithm? We
844
+ conduct a study to identify the alignment algorithm
845
+ best suited for highlighting hints. We manually
846
+ annotate 125 FINE units from human-written sum-
847
+ maries of the SQuALITY validation split, marking
848
+ the sentences best supporting them from the source
849
+ document. We then test several candidate meth-
850
+ ods for linking summary units to the source doc-
851
+ ument. These include token overlap methods like
852
+ ROUGE (Lin, 2004), retrievers (Karpukhin et al.,
853
+ 2020), and fact verifiers (Wadden et al., 2022). In
854
+ Table 4, we find that SuperPAL (Ernst et al., 2021),
855
+ a weakly supervised linking algorithm, performs
856
+ best (0.61 recall@3 vs the next best 0.47). To im-
857
+ prove precision, we filter matches scoring less than
858
+ 0.3 on SuperPAL, and show at most five highlights.
859
+ Do highlighted hints improve summary error
860
+ detection? To answer this question, we manu-
861
+ ally perturb 50 FINE summary units in SQuALITY
862
+ validation summaries, introducing entity errors or
863
+ negations like Kryscinski et al. (2020). We mod-
864
+ ify the summary context of the perturbed unit to
865
+ ensure summaries are self-consistent. Annotators
866
+
867
+ Question & TL;DR response
868
+ Response Snippets
869
+ Q: Did you find the highlighted
870
+ hints useful while making your
871
+ judgment?
872
+ TL;DR: 4 out of 5 annota-
873
+ tors said Sometimes, 1 said Yes.
874
+ More useful for SQuALITY,
875
+ summary units copied verbatim
876
+ from source, correct summaries.
877
+ “With summaries that had poor correctness, the hints were often a mess, and even correct spans had to be
878
+ carefully checked. In summaries that were more correct, I could often just read the span and remember that
879
+ it was correct, and then the hints helped me find the right source position, or refresh my memory about
880
+ details.”
881
+ “They were more useful when the summary was a near verbatim source reproduction.”
882
+ “Yes, they were useful. Often they would highlight the exact passage needed to support the summary span.”
883
+ “In PubMed, they were a little more chaotic, even for good summaries.”
884
+ “SQuALITY summaries consisted of sentences or parts of sentences taken straight from the story (wording was
885
+ exactly as in the text). So hints often lead to the exact place.”
886
+ “For SQuALITY, they were mostly accurate and helpful. For PubMed, they were less accurate and relevant.”
887
+ Q: Would the highlights have
888
+ been sufficient to make judg-
889
+ ments, or was reading the entire
890
+ source document necessary?
891
+ TL;DR: 3 out of 5 annota-
892
+ tors said No, 2 said sometimes
893
+ in SQuALITY. Reading the
894
+ entire document was critical.
895
+ “Reading the entire source document was very helpful to understand the basic story plot”
896
+ “Even when the hints were relevant, sometimes they left out information (like character name)...”
897
+ “Initially I tried skimming ... then concluded it’s easier to read the entire document first.”
898
+ “With SQuALITY there were cases where almost all of the highlights did not make any sense and nothing of
899
+ that was even mentioned in the story. With PubMed, it was even more difficult to find hints that support the
900
+ text”
901
+ “Reading the entire document was essential to understanding the whole process, the hints in isolation were
902
+ not good enough. The hints and the summary often confused similar objects, especially when pronouns were
903
+ involved, from different parts of the source. In PubMed a similar thing happened when the source discussed
904
+ what other papers had done – punctuation, acronyms, and abbreviations played a big role in providing context.”
905
+ Q: Did you use Ctrl+F searches
906
+ in the source document while
907
+ making judgments?
908
+ TL;DR: 4 out of 5 annota-
909
+ tors said Yes, 1 said yes only
910
+ for PubMed.
911
+ Ctrl+F helped
912
+ locate synonyms, entities.
913
+ “Yes, all the time. It was usually a safer bet than using the hints. The hints are given out of context of the
914
+ whole SQuALITY story. There were a lot of problems with the PubMed hints involving numbers, which I
915
+ often searched for. They were very rarely supported by the document, or contained wrong symbols (= instead
916
+ of >).”
917
+ “Yes, mostly in cases the highlight did not support the summary unit partially or entirely.”
918
+ “I used Ctrl+F when looking for very specific words, like names. Searching was less helpful when it came to
919
+ words that had synonyms or emotions.”
920
+ “I did Ctrl+F on keywords taken directly from the summary unit as well as synonyms and any specific words
921
+ that I remembered from the story that could help me get to that place in the source document quickly.”
922
+ Table 6: Results and snippets from our questionnaire with FINE annotators. Overall, annotators find hints only
923
+ sometimes useful, and mention reading the entire source document along with keyword searches.
924
+ are shown 50 perturbed and 50 un-perturbed sum-
925
+ maries, and asked to annotate whether the summary
926
+ units are faithful to the source in three settings:12
927
+ (1) no highlighted hints; (2) SuperPAL highlighted
928
+ hints; (3) gold hints manually annotated by us. In
929
+ Table 5, we show accuracy, inter-annotator agree-
930
+ ment, and median time13 for each setting.
931
+ Highlighted hints have almost no effect in eval-
932
+ uating long-form summaries: Surprisingly, we
933
+ observe that in all three metrics (accuracy, agree-
934
+ ment, median time taken), scores are quite similar
935
+ across the three settings. In fact, the “no-hint” set-
936
+ ting scores slightly higher than the SuperPAL hint
937
+ settings (93% vs 92% accuracy, 0.71 vs 0.64 Fleiss
938
+ κ) and takes annotators less time (41.4 vs 48.2 sec-
939
+ onds per unit). However, we find that hints helped
940
+ annotate the first few units of a summary quicker
941
+ (84.6 secs vs 115.6 secs per unit). We attribute our
942
+ findings to a learning effect over time. FINE anno-
943
+ tation of long-form summaries requires annotation
944
+ 12To prevent any bias, each annotator receives only one of
945
+ these settings for a particular summary.
946
+ 13Calculated using the method in Akoury et al. (2020).
947
+ of several units for the same document - summary
948
+ pair. As annotation progresses, annotators get more
949
+ familiar with the contents of the source document
950
+ and summary, reducing the need for hints over time.
951
+ See Appendix E for learning trajectory plots.
952
+ Questionnaire with FINE annotators confirm
953
+ limited utility of hints: Our evaluation so far is
954
+ limited to perturbed human summaries. How effec-
955
+ tive are hints on model-generated summaries? To
956
+ answer this, we ask five of our FINE Upwork anno-
957
+ tators (from Section 3.1) a set of three questions
958
+ about their experiences using highlighted hints.14
959
+ Detailed questionnaire results along with answer
960
+ snippets are shown in Table 6. Overall, annota-
961
+ tors find hints were useful only sometimes. Hints
962
+ were less useful when (1) the summary unit was not
963
+ supported in the source; (2) the summary unit was
964
+ highly abstractive compared to the source; (3) pro-
965
+ nouns, numbers, or abbreviations were involved;
966
+ and (4) Pubmed summaries were annotated. Al-
967
+ 14The FINE annotations in Section 3.1 were shown hints in
968
+ the source document. Since hints may not be helpful, annota-
969
+ tors were told not to solely rely on hints for annotation.
970
+
971
+ most all annotators said it was necessary to read
972
+ the entire source document before annotation to get
973
+ an overall idea of the plot and resolve coreferences.
974
+ Nearly all annotators used “Ctrl+F” searches along
975
+ with hints to search for specific keywords while
976
+ making judgments. This was especially true when
977
+ the summary unit was incorrect, since the source
978
+ document had to be thoroughly searched (beyond
979
+ the hints) before confidently marking “Incorrect”.
980
+ Recommendation: In contrast to recommendations
981
+ in prior work, automatically highlighted hints are
982
+ useful only in some specific cases of long-form
983
+ summarization: mostly correct summaries, almost
984
+ verbatim copied sentences. Annotators should be
985
+ instructed to read the entire source document and
986
+ to not rely solely on highlighted hints, since that
987
+ could bias their judgments. Based on a small-scale
988
+ study, we found SuperPAL (Ernst et al., 2021) to
989
+ be the most accurate method for finding hints, but
990
+ its performance (61% recall@3) is far from ideal.
991
+ 3.4
992
+ To what extent do our findings generalize
993
+ to short-form summarization?
994
+ In this work, we exclusively focus on summariza-
995
+ tion datasets with an average summary length of at
996
+ least 150 words. This constraint excludes two pop-
997
+ ular benchmarks in summarization research over
998
+ the last five years: CNN/DM (Nallapati et al., 2016)
999
+ and XSUM (Narayan et al., 2018). How relevant
1000
+ are our research questions (RQs) and findings for
1001
+ these short-form summarization benchmarks?
1002
+ On average, XSUM (24 words) and CNNDM
1003
+ (60 words) contain much shorter summaries than
1004
+ SQuALITY (237 words). XSUM outputs typically
1005
+ contain only 1 sentence or roughly 2-3 FINE units
1006
+ per summary. This blurs the distinction between
1007
+ FINE and COARSE units, which makes it less use-
1008
+ ful to study RQ1 in these short-form settings. The
1009
+ shorter length of outputs also implies that evalu-
1010
+ ation is less expensive and consumes less time,
1011
+ which makes our RQ2 less relevant. Finally, on
1012
+ average, XSUM (440 words) and CNNDM (800
1013
+ words) also have much shorter source documents
1014
+ than datasets like SQuALITY (5200 words), reduc-
1015
+ ing the need for alignment (the main premise for
1016
+ RQ3). The main motivation behind our study is
1017
+ that human evaluation of long-form summarization
1018
+ datasets like SQuALITY and PubMed is challeng-
1019
+ ing and expensive due to the long length of the gen-
1020
+ erated text. Overall, our research questions and
1021
+ findings are more relevant for long-form sum-
1022
+ marization datasets than for short-form sum-
1023
+ marization datasets like XSUM and CNNDM.
1024
+ 4
1025
+ Related Work
1026
+ A large body of recent work has focused on new
1027
+ automatic evaluation methods for summarization
1028
+ via NLI-based algorithms (Falke et al., 2019; La-
1029
+ ban et al., 2022) or QA-based algorithms (Wang
1030
+ et al., 2020; Fabbri et al., 2022). Our work focuses
1031
+ on the much less studied area of human evaluation,
1032
+ the gold standard for developing automatic met-
1033
+ rics. A notable effort in this space is the Pyramid
1034
+ method (Nenkova and Passonneau, 2004), along
1035
+ with work improving Pyramid efficiency (Shapira
1036
+ et al., 2019; Zhang and Bansal, 2021). Efficient
1037
+ Pyramid-like protocols have been used to collect
1038
+ large-scale datasets human judgments (Bhandari
1039
+ et al., 2020; Liu et al., 2022) in short-form news
1040
+ summarization tasks like CNN/DM. While these
1041
+ efforts focus on salience evaluation and assume ac-
1042
+ cess to multiple references, our work focuses on
1043
+ faithfulness and operates in a reference-free set-
1044
+ ting. Moreover, we focus on long-form summariza-
1045
+ tion tasks like SQuALITY and PubMed, which are
1046
+ much more challenging and expensive to evaluate.
1047
+ Evaluating summary faithfulness relates to fact
1048
+ verification (Vlachos and Riedel, 2014), where
1049
+ claim sentences are checked against a large knowl-
1050
+ edge source (Wikipedia). Prior work (Nakov et al.,
1051
+ 2021) attempts to simplify the human fact checking
1052
+ process by methods like knowledge source snip-
1053
+ pets (Fan et al., 2020), similar to hint highlights
1054
+ (§3.3). Faithfulness in summarization differs from
1055
+ fact verification in three ways: (1) summaries are
1056
+ paragraph-long and contextual compared to sin-
1057
+ gle sentence stand-alone claims in fact verification;
1058
+ (2) summaries are grounded to a source document,
1059
+ compared to a large knowledge source in fact veri-
1060
+ fication; (3) summaries are model-generated com-
1061
+ pared to human-written claims in fact checking
1062
+ datasets (Thorne et al., 2018; Wadden et al., 2020).
1063
+ 5
1064
+ Conclusion
1065
+ We present the LONGEVAL guidelines, a set of
1066
+ recommendations for moving towards standardized
1067
+ human evaluation of long-form summarization. We
1068
+ empirically analyze each recommendation on two
1069
+ datasets. Overall, we find that (1) FINE-grained an-
1070
+ notations have lower inter-annotator variance than
1071
+ COARSE-grained annotations; (2) partially annotat-
1072
+
1073
+ ing a summary reduces annotator workload while
1074
+ maintaining accuracy; (3) highlighting hints in the
1075
+ source document has limited usefulness for evaluat-
1076
+ ing long-form summaries. As future work, we plan
1077
+ to conduct experiments on other aspects of summa-
1078
+ rization evaluation like salience and coherence.
1079
+ Limitations
1080
+ Human evaluation is a noisy process with many
1081
+ confounding variables. Some of these variables
1082
+ were kept constant among experiments on a dataset,
1083
+ but modifying them could change the trends in the
1084
+ results. These include: (1) number of annotations
1085
+ per summary; (2) the specific annotation interface
1086
+ used; (3) granularity for FINE evaluation (sentences
1087
+ vs phrases); (4) Number of points in the Likert scale
1088
+ for COARSE evaluation; (5) set of summarization
1089
+ systems evaluated; and finally (6) relative (eg: A/B
1090
+ tests) vs absolute evaluation (eg: Likert), which has
1091
+ been discussed in Tang et al. (2022) for short-form
1092
+ news summarization datasets like CNN/DM.
1093
+ Our paper is limited to faithfulness evaluation,
1094
+ but summaries are typically evaluated for salience,
1095
+ fluency, coherence as well (Fabbri et al., 2021).
1096
+ While fluency may be less of an issue due to
1097
+ large-scale language model pretraining (Dou et al.,
1098
+ 2021), coherence and salience are important as-
1099
+ pects to evaluate especially in long-form summa-
1100
+ rization (Goyal et al., 2022). Our findings may not
1101
+ generalize to evaluation of coherence or salience.
1102
+ Our experiments in Section 3.1 assigned an
1103
+ equal weight to each FINE unit while calculating
1104
+ the overall score of the summary. However, the
1105
+ faithfulness of some FINE units may be more impor-
1106
+ tant than others. A non-uniform weighing of FINE
1107
+ units may be a good strategy if there is a notion
1108
+ of how critical a particular unit is for a summary’s
1109
+ correctness. For example: (1) PICO units are criti-
1110
+ cal in medical summaries (DeYoung et al., 2021);
1111
+ (2) the Pyramid scheme (Nenkova and Passonneau,
1112
+ 2004) uses a reference frequency-based unit impor-
1113
+ tance, assuming access to multiple gold references.
1114
+ However, a consistent notion of importance is diffi-
1115
+ cult to establish across different domains, and also
1116
+ depends on an individual consumer’s preferences.
1117
+ Designing non-uniform weighing schemes is an
1118
+ interesting direction for future research.
1119
+ Ethical Considerations
1120
+ All experiments involving human evaluation in this
1121
+ paper were exempt under institutional IRB review.
1122
+ We fairly compensated each Upwork freelancer in-
1123
+ volved in this study, at a rate of 15-20$ per hour
1124
+ (respecting their suggested Upwork hourly wage).
1125
+ For each round of annotation, we estimated the
1126
+ average amount of time the task would take (by
1127
+ running pilots among ourselves), and provided an-
1128
+ notators with the estimated time requirement. Most
1129
+ freelancers finished the task within the time win-
1130
+ dow, but sometimes exceeded it by 0.5-1 hr. We
1131
+ compensated freelancers based on the actual time
1132
+ they took and their hourly wage, rather than a fixed
1133
+ amount per annotation.
1134
+ Acknowledgments
1135
+ First and foremost, we would like to thank all the
1136
+ nine Upwork freelancers who contributed human
1137
+ annotations to this project. We are very grateful
1138
+ to Yixiao Song, Alex Wang, John Giorgi, Dustin
1139
+ Wright, Yulia Otmakhova, Daniel Deutsch, Arie
1140
+ Cattan, Shiyue Zhang, Tanya Goyal, Greg Durrett,
1141
+ Marzena Karpinska, Ankita Gupta, Nader Akoury
1142
+ and the Semantic Scholar team for several useful
1143
+ discussions at various points during the project.
1144
+ This work was mostly done while Kalpesh Krishna
1145
+ (KK) was an intern at the Allen Institute for Arti-
1146
+ ficial Intelligence. KK was partly supported by a
1147
+ Google PhD Fellowship awarded in 2021.
1148
+ Author Contributions:
1149
+ Kalpesh Krishna led the
1150
+ project and performed all the technical contribu-
1151
+ tions including literature review, dataset collection
1152
+ and processing, model implementation, annotation
1153
+ interface development, running experiments, and
1154
+ data analysis. Kalpesh also contributed to project
1155
+ scoping and ideation and led the writing of the pa-
1156
+ per. Erin Bransom and Bailey Kuehl helped with
1157
+ obtaining human judgements, including piloting
1158
+ the task and giving feedback, performing the anno-
1159
+ tation themselves, and hiring and managing anno-
1160
+ tators on Upwork. Pradeep Dasigi, Arman Cohan,
1161
+ and Kyle Lo were mentors of the project during and
1162
+ after Kalpesh’s internship, contributing equally to
1163
+ project scoping, experimental design, ideation and
1164
+ direction throughout the course of the project and
1165
+ paper writing. Mohit Iyyer provided mentorship
1166
+ after the internship, in particular providing impor-
1167
+ tant feedback and direction on data analysis and
1168
+ contributing to paper writing.
1169
+
1170
+ References
1171
+ Nader Akoury, Shufan Wang, Josh Whiting, Stephen
1172
+ Hood, Nanyun Peng, and Mohit Iyyer. 2020. STO-
1173
+ RIUM: A Dataset and Evaluation Platform for
1174
+ Machine-in-the-Loop Story Generation. In Proceed-
1175
+ ings of the 2020 Conference on Empirical Methods
1176
+ in Natural Language Processing (EMNLP), pages
1177
+ 6470–6484, Online. Association for Computational
1178
+ Linguistics.
1179
+ Manik Bhandari, Pranav Narayan Gour, Atabak Ash-
1180
+ faq, Pengfei Liu, and Graham Neubig. 2020.
1181
+ Re-
1182
+ evaluating evaluation in text summarization.
1183
+ In
1184
+ Proceedings of the 2020 Conference on Empirical
1185
+ Methods in Natural Language Processing (EMNLP),
1186
+ pages 9347–9359, Online. Association for Computa-
1187
+ tional Linguistics.
1188
+ Ondˇrej Bojar, Yvette Graham, Amir Kamran, and
1189
+ Miloš Stanojevi´c. 2016. Results of the WMT16 met-
1190
+ rics shared task. In Proceedings of the First Con-
1191
+ ference on Machine Translation: Volume 2, Shared
1192
+ Task Papers, pages 199–231, Berlin, Germany. As-
1193
+ sociation for Computational Linguistics.
1194
+ Asli Celikyilmaz, Elizabeth Clark, and Jianfeng Gao.
1195
+ 2020.
1196
+ Evaluation of text generation:
1197
+ A survey.
1198
+ arXiv preprint arXiv:2006.14799.
1199
+ Mingda Chen, Zewei Chu, Sam Wiseman, and Kevin
1200
+ Gimpel. 2022.
1201
+ SummScreen:
1202
+ A dataset for ab-
1203
+ stractive screenplay summarization. In Proceedings
1204
+ of the 60th Annual Meeting of the Association for
1205
+ Computational Linguistics (Volume 1: Long Papers),
1206
+ pages 8602–8615, Dublin, Ireland. Association for
1207
+ Computational Linguistics.
1208
+ Elizabeth Clark, Tal August, Sofia Serrano, Nikita
1209
+ Haduong, Suchin Gururangan, and Noah A. Smith.
1210
+ 2021.
1211
+ All that’s ‘human’ is not gold: Evaluating
1212
+ human evaluation of generated text.
1213
+ In Proceed-
1214
+ ings of the 59th Annual Meeting of the Association
1215
+ for Computational Linguistics and the 11th Interna-
1216
+ tional Joint Conference on Natural Language Pro-
1217
+ cessing (Volume 1: Long Papers), pages 7282–7296,
1218
+ Online. Association for Computational Linguistics.
1219
+ Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
1220
+ Trung Bui, Seokhwan Kim, Walter Chang, and Na-
1221
+ zli Goharian. 2018.
1222
+ A discourse-aware attention
1223
+ model for abstractive summarization of long docu-
1224
+ ments. In Proceedings of the 2018 Conference of
1225
+ the North American Chapter of the Association for
1226
+ Computational Linguistics: Human Language Tech-
1227
+ nologies, Volume 2 (Short Papers), pages 615–621,
1228
+ New Orleans, Louisiana. Association for Computa-
1229
+ tional Linguistics.
1230
+ Daniel Deutsch, Rotem Dror, and Dan Roth. 2021. A
1231
+ statistical analysis of summarization evaluation met-
1232
+ rics using resampling methods. Transactions of the
1233
+ Association for Computational Linguistics, 9:1132–
1234
+ 1146.
1235
+ Daniel Deutsch and Dan Roth. 2020. SacreROUGE:
1236
+ An Open-Source Library for Using and Developing
1237
+ Summarization Evaluation Metrics. In Proceedings
1238
+ of Second Workshop for NLP Open Source Software
1239
+ (NLP-OSS), pages 120–125, Online. Association for
1240
+ Computational Linguistics.
1241
+ Jay DeYoung, Iz Beltagy, Madeleine van Zuylen, Bai-
1242
+ ley Kuehl, and Lucy Lu Wang. 2021. MSˆ2: Multi-
1243
+ document summarization of medical studies. In Pro-
1244
+ ceedings of the 2021 Conference on Empirical Meth-
1245
+ ods in Natural Language Processing, pages 7494–
1246
+ 7513, Online and Punta Cana, Dominican Republic.
1247
+ Association for Computational Linguistics.
1248
+ Yao Dou, Maxwell Forbes, Rik Koncel-Kedziorski,
1249
+ Noah A Smith, and Yejin Choi. 2021. Scarecrow:
1250
+ A framework for scrutinizing machine text. arXiv
1251
+ preprint arXiv:2107.01294.
1252
+ Ori Ernst, Ori Shapira, Ramakanth Pasunuru, Michael
1253
+ Lepioshkin, Jacob Goldberger, Mohit Bansal, and
1254
+ Ido Dagan. 2021.
1255
+ Summary-source proposition-
1256
+ level alignment: Task, datasets and supervised base-
1257
+ line. In Proceedings of the 25th Conference on Com-
1258
+ putational Natural Language Learning, pages 310–
1259
+ 322, Online. Association for Computational Linguis-
1260
+ tics.
1261
+ Alexander Fabbri, Irene Li, Tianwei She, Suyi Li, and
1262
+ Dragomir Radev. 2019. Multi-news: A large-scale
1263
+ multi-document summarization dataset and abstrac-
1264
+ tive hierarchical model. In Proceedings of the 57th
1265
+ Annual Meeting of the Association for Computa-
1266
+ tional Linguistics, pages 1074–1084, Florence, Italy.
1267
+ Alexander Fabbri, Chien-Sheng Wu, Wenhao Liu, and
1268
+ Caiming Xiong. 2022. QAFactEval: Improved QA-
1269
+ based factual consistency evaluation for summariza-
1270
+ tion. In Proceedings of the 2022 Conference of the
1271
+ North American Chapter of the Association for Com-
1272
+ putational Linguistics: Human Language Technolo-
1273
+ gies, pages 2587–2601, Seattle, United States.
1274
+ Alexander R Fabbri, Wojciech Kry´sci��nski, Bryan
1275
+ McCann, Caiming Xiong, Richard Socher, and
1276
+ Dragomir Radev. 2021. Summeval: Re-evaluating
1277
+ summarization evaluation. Transactions of the Asso-
1278
+ ciation for Computational Linguistics, 9:391–409.
1279
+ Tobias Falke, Leonardo F. R. Ribeiro, Prasetya Ajie
1280
+ Utama, Ido Dagan, and Iryna Gurevych. 2019.
1281
+ Ranking generated summaries by correctness: An in-
1282
+ teresting but challenging application for natural lan-
1283
+ guage inference. In Proceedings of the 57th Annual
1284
+ Meeting of the Association for Computational Lin-
1285
+ guistics, pages 2214–2220.
1286
+ Angela Fan, Aleksandra Piktus, Fabio Petroni, Guil-
1287
+ laume Wenzek, Marzieh Saeidi, Andreas Vlachos,
1288
+ Antoine Bordes, and Sebastian Riedel. 2020. Gen-
1289
+ erating fact checking briefs. In Proceedings of the
1290
+ 2020 Conference on Empirical Methods in Natural
1291
+ Language Processing (EMNLP), pages 7147–7161,
1292
+ Online. Association for Computational Linguistics.
1293
+
1294
+ Joseph L Fleiss. 1971. Measuring nominal scale agree-
1295
+ ment among many raters.
1296
+ Psychological bulletin,
1297
+ 76(5):378.
1298
+ Sebastian Gehrmann, Elizabeth Clark, and Thibault
1299
+ Sellam. 2022. Repairing the cracked foundation: A
1300
+ survey of obstacles in evaluation practices for gener-
1301
+ ated text. arXiv preprint arXiv:2202.06935.
1302
+ Dan Gillick and Yang Liu. 2010. Non-expert evalua-
1303
+ tion of summarization systems is risky. In Proceed-
1304
+ ings of the NAACL HLT 2010 Workshop on Creating
1305
+ Speech and Language Data with Amazon’s Mechan-
1306
+ ical Turk, pages 148–151.
1307
+ Tanya Goyal, Junyi Jessy Li, and Greg Durrett. 2022.
1308
+ Snac: Coherence error detection for narrative sum-
1309
+ marization. arXiv preprint arXiv:2205.09641.
1310
+ Mandy Guo, Joshua Ainslie, David Uthus, Santiago
1311
+ Ontanon, Jianmo Ni, Yun-Hsuan Sung, and Yinfei
1312
+ Yang. 2022.
1313
+ LongT5: Efficient text-to-text trans-
1314
+ former for long sequences. In Findings of the Associ-
1315
+ ation for Computational Linguistics: NAACL 2022.
1316
+ Yue Guo, Wei Qiu, Yizhong Wang, and Trevor Co-
1317
+ hen. 2021. Automated lay language summarization
1318
+ of biomedical scientific reviews. In Proceedings of
1319
+ the AAAI Conference on Artificial Intelligence, vol-
1320
+ ume 35, pages 160–168.
1321
+ Hardy Hardy, Shashi Narayan, and Andreas Vlachos.
1322
+ 2019.
1323
+ HighRES: Highlight-based reference-less
1324
+ evaluation of summarization. In Proceedings of the
1325
+ 57th Annual Meeting of the Association for Com-
1326
+ putational Linguistics, pages 3381–3392, Florence,
1327
+ Italy. Association for Computational Linguistics.
1328
+ OGC of Harvard. 2016. Copyright and fair use.
1329
+ Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng
1330
+ Ji, and Lu Wang. 2021. Efficient attentions for long
1331
+ document summarization.
1332
+ In Proceedings of the
1333
+ 2021 Conference of the North American Chapter of
1334
+ the Association for Computational Linguistics: Hu-
1335
+ man Language Technologies, pages 1419–1436, On-
1336
+ line. Association for Computational Linguistics.
1337
+ Jiaxin Ju, Ming Liu, Huan Yee Koh, Yuan Jin, Lan Du,
1338
+ and Shirui Pan. 2021. Leveraging information bot-
1339
+ tleneck for scientific document summarization. In
1340
+ Findings of the Association for Computational Lin-
1341
+ guistics: EMNLP 2021, pages 4091–4098, Punta
1342
+ Cana, Dominican Republic. Association for Compu-
1343
+ tational Linguistics.
1344
+ Marzena Karpinska, Nader Akoury, and Mohit Iyyer.
1345
+ 2021. The perils of using Mechanical Turk to eval-
1346
+ uate open-ended text generation. In Proceedings of
1347
+ the 2021 Conference on Empirical Methods in Natu-
1348
+ ral Language Processing, pages 1265–1285, Online
1349
+ and Punta Cana, Dominican Republic. Association
1350
+ for Computational Linguistics.
1351
+ Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
1352
+ Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
1353
+ Wen-tau Yih. 2020.
1354
+ Dense passage retrieval for
1355
+ open-domain question answering. In Proceedings of
1356
+ the 2020 Conference on Empirical Methods in Nat-
1357
+ ural Language Processing (EMNLP), pages 6769–
1358
+ 6781, Online. Association for Computational Lin-
1359
+ guistics.
1360
+ Anastassia Kornilova and Vladimir Eidelman. 2019.
1361
+ BillSum: A corpus for automatic summarization of
1362
+ US legislation. In Proceedings of the 2nd Workshop
1363
+ on New Frontiers in Summarization, pages 48–56,
1364
+ Hong Kong, China. Association for Computational
1365
+ Linguistics.
1366
+ Kalpesh Krishna, Aurko Roy, and Mohit Iyyer. 2021.
1367
+ Hurdles to progress in long-form question answer-
1368
+ ing.
1369
+ In Proceedings of the 2021 Conference of
1370
+ the North American Chapter of the Association for
1371
+ Computational Linguistics: Human Language Tech-
1372
+ nologies, pages 4940–4957, Online. Association for
1373
+ Computational Linguistics.
1374
+ Wojciech Kryscinski, Nitish Shirish Keskar, Bryan Mc-
1375
+ Cann, Caiming Xiong, and Richard Socher. 2019.
1376
+ Neural text summarization: A critical evaluation. In
1377
+ Proceedings of the 2019 Conference on Empirical
1378
+ Methods in Natural Language Processing and the
1379
+ 9th International Joint Conference on Natural Lan-
1380
+ guage Processing (EMNLP-IJCNLP), pages 540–
1381
+ 551, Hong Kong, China. Association for Computa-
1382
+ tional Linguistics.
1383
+ Wojciech Kryscinski, Bryan McCann, Caiming Xiong,
1384
+ and Richard Socher. 2020.
1385
+ Evaluating the factual
1386
+ consistency of abstractive text summarization.
1387
+ In
1388
+ Proceedings of the 2020 Conference on Empirical
1389
+ Methods in Natural Language Processing (EMNLP),
1390
+ pages 9332–9346, Online. Association for Computa-
1391
+ tional Linguistics.
1392
+ Wojciech Kry´sci´nski, Nazneen Rajani, Divyansh Agar-
1393
+ wal, Caiming Xiong, and Dragomir Radev. 2021.
1394
+ Booksum:
1395
+ A collection of datasets for long-
1396
+ form narrative summarization.
1397
+ arXiv preprint
1398
+ arXiv:2105.08209.
1399
+ Philippe Laban, Tobias Schnabel, Paul N. Bennett, and
1400
+ Marti A. Hearst. 2022. SummaC: Re-visiting NLI-
1401
+ based models for inconsistency detection in summa-
1402
+ rization. Transactions of the Association for Compu-
1403
+ tational Linguistics, 10:163–177.
1404
+ Mike
1405
+ Lewis,
1406
+ Yinhan
1407
+ Liu,
1408
+ Naman
1409
+ Goyal,
1410
+ Mar-
1411
+ jan Ghazvininejad, Abdelrahman Mohamed, Omer
1412
+ Levy, Veselin Stoyanov, and Luke Zettlemoyer.
1413
+ 2020. BART: Denoising sequence-to-sequence pre-
1414
+ training for natural language generation, translation,
1415
+ and comprehension. In Proceedings of the 58th An-
1416
+ nual Meeting of the Association for Computational
1417
+ Linguistics, pages 7871–7880, Online. Association
1418
+ for Computational Linguistics.
1419
+
1420
+ Chin-Yew Lin. 2004.
1421
+ ROUGE: A package for auto-
1422
+ matic evaluation of summaries. In Text Summariza-
1423
+ tion Branches Out, pages 74–81, Barcelona, Spain.
1424
+ Association for Computational Linguistics.
1425
+ Yixin Liu, Alexander R Fabbri, Pengfei Liu, Yilun
1426
+ Zhao, Linyong Nan, Ruilin Han, Simeng Han,
1427
+ Shafiq Joty, Chien-Sheng Wu, Caiming Xiong, et al.
1428
+ 2022. Revisiting the gold standard: Grounding sum-
1429
+ marization evaluation with robust human evaluation.
1430
+ arXiv preprint arXiv:2212.07981.
1431
+ Preslav Nakov, David Corney, Maram Hasanain, Firoj
1432
+ Alam,
1433
+ Tamer Elsayed,
1434
+ Alberto Barrón-Cedeño,
1435
+ Paolo Papotti, Shaden Shaar, and Giovanni Da San
1436
+ Martino. 2021.
1437
+ Automated fact-checking for
1438
+ assisting human fact-checkers.
1439
+ arXiv preprint
1440
+ arXiv:2103.07769.
1441
+ Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
1442
+ Caglar Gulcehre, and Bing Xiang. 2016. Abstrac-
1443
+ tive text summarization using sequence-to-sequence
1444
+ RNNs and beyond.
1445
+ In Proceedings of the 20th
1446
+ SIGNLL Conference on Computational Natural Lan-
1447
+ guage Learning, pages 280–290, Berlin, Germany.
1448
+ Association for Computational Linguistics.
1449
+ Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
1450
+ 2018. Don’t give me the details, just the summary!
1451
+ topic-aware convolutional neural networks for ex-
1452
+ treme summarization. In Proceedings of the 2018
1453
+ Conference on Empirical Methods in Natural Lan-
1454
+ guage Processing, pages 1797–1807, Brussels, Bel-
1455
+ gium. Association for Computational Linguistics.
1456
+ Ani Nenkova and Rebecca Passonneau. 2004. Evaluat-
1457
+ ing content selection in summarization: The pyra-
1458
+ mid method.
1459
+ In Proceedings of the Human Lan-
1460
+ guage Technology Conference of the North Ameri-
1461
+ can Chapter of the Association for Computational
1462
+ Linguistics:
1463
+ HLT-NAACL 2004, pages 145–152,
1464
+ Boston, Massachusetts, USA. Association for Com-
1465
+ putational Linguistics.
1466
+ Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
1467
+ Jing Zhu. 2002. Bleu: a method for automatic eval-
1468
+ uation of machine translation.
1469
+ In Proceedings of
1470
+ the 40th Annual Meeting of the Association for Com-
1471
+ putational Linguistics, pages 311–318, Philadelphia,
1472
+ Pennsylvania, USA. Association for Computational
1473
+ Linguistics.
1474
+ Justus J Randolph. 2005.
1475
+ Free-marginal multirater
1476
+ kappa (multirater k [free]): An alternative to fleiss’
1477
+ fixed-marginal multirater kappa. Online submission.
1478
+ Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm,
1479
+ Michael Collins, Dipanjan Das, Slav Petrov, Gau-
1480
+ rav Singh Tomar, Iulia Turc, and David Reitter. 2021.
1481
+ Measuring attribution in natural language generation
1482
+ models. arXiv preprint arXiv:2112.12870.
1483
+ Stephen E Robertson, Steve Walker, Susan Jones,
1484
+ Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1485
+ 1995. Okapi at trec-3. Nist Special Publication Sp,
1486
+ 109:109.
1487
+ Thibault Sellam, Dipanjan Das, and Ankur Parikh.
1488
+ 2020.
1489
+ BLEURT: Learning robust metrics for text
1490
+ generation. In Proceedings of the 58th Annual Meet-
1491
+ ing of the Association for Computational Linguistics,
1492
+ pages 7881–7892, Online. Association for Computa-
1493
+ tional Linguistics.
1494
+ Ori Shapira, David Gabay, Yang Gao, Hadar Ro-
1495
+ nen, Ramakanth Pasunuru, Mohit Bansal, Yael Am-
1496
+ sterdamer, and Ido Dagan. 2019.
1497
+ Crowdsourcing
1498
+ lightweight pyramids for manual summary evalua-
1499
+ tion. In Proceedings of the 2019 Conference of the
1500
+ North American Chapter of the Association for Com-
1501
+ putational Linguistics: Human Language Technolo-
1502
+ gies, Volume 1 (Long and Short Papers), pages 682–
1503
+ 687, Minneapolis, Minnesota. Association for Com-
1504
+ putational Linguistics.
1505
+ Xiangru Tang, Alexander Fabbri, Haoran Li, Ziming
1506
+ Mao, Griffin Adams, Borui Wang, Asli Celikyilmaz,
1507
+ Yashar Mehdad, and Dragomir Radev. 2022. Inves-
1508
+ tigating crowdsourcing protocols for evaluating the
1509
+ factual consistency of summaries. In Proceedings of
1510
+ the 2022 Conference of the North American Chap-
1511
+ ter of the Association for Computational Linguis-
1512
+ tics: Human Language Technologies, pages 5680–
1513
+ 5692, Seattle, United States. Association for Com-
1514
+ putational Linguistics.
1515
+ James
1516
+ Thorne,
1517
+ Andreas
1518
+ Vlachos,
1519
+ Christos
1520
+ Christodoulopoulos,
1521
+ and
1522
+ Arpit
1523
+ Mittal.
1524
+ 2018.
1525
+ FEVER: a large-scale dataset for fact extraction
1526
+ and VERification.
1527
+ In Proceedings of the 2018
1528
+ Conference of the North American Chapter of the
1529
+ Association for Computational Linguistics: Human
1530
+ Language Technologies, Volume 1 (Long Papers),
1531
+ pages 809–819, New Orleans, Louisiana.
1532
+ Robert J Tibshirani and Bradley Efron. 1993. An intro-
1533
+ duction to the bootstrap. Monographs on statistics
1534
+ and applied probability, 57:1–436.
1535
+ Libraries at UMGC. 2020.
1536
+ Copyright and fair use
1537
+ guidelines.
1538
+ Jesse Vig, Wojciech Kryscinski, Karan Goel, and
1539
+ Nazneen Rajani. 2021. SummVis: Interactive visual
1540
+ analysis of models, data, and evaluation for text sum-
1541
+ marization. In Proceedings of the 59th Annual Meet-
1542
+ ing of the Association for Computational Linguistics
1543
+ and the 11th International Joint Conference on Nat-
1544
+ ural Language Processing: System Demonstrations,
1545
+ pages 150–158, Online.
1546
+ Andreas Vlachos and Sebastian Riedel. 2014.
1547
+ Fact
1548
+ checking: Task definition and dataset construction.
1549
+ In Proceedings of the ACL 2014 workshop on lan-
1550
+ guage technologies and computational social sci-
1551
+ ence, pages 18–22.
1552
+ David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
1553
+ Wang, Madeleine van Zuylen, Arman Cohan, and
1554
+ Hannaneh Hajishirzi. 2020. Fact or fiction: Verify-
1555
+ ing scientific claims.
1556
+ In Proceedings of the 2020
1557
+ Conference on Empirical Methods in Natural Lan-
1558
+ guage Processing (EMNLP), pages 7534–7550.
1559
+
1560
+ David Wadden, Kyle Lo, Lucy Wang, Arman Cohan,
1561
+ Iz Beltagy, and Hannaneh Hajishirzi. 2022.
1562
+ Mul-
1563
+ tiVerS: Improving scientific claim verification with
1564
+ weak supervision and full-document context.
1565
+ In
1566
+ Findings of the Association for Computational Lin-
1567
+ guistics: NAACL 2022, pages 61–76, Seattle, United
1568
+ States. Association for Computational Linguistics.
1569
+ Alex Wang, Kyunghyun Cho, and Mike Lewis. 2020.
1570
+ Asking and answering questions to evaluate the fac-
1571
+ tual consistency of summaries. In Proceedings of
1572
+ the 58th Annual Meeting of the Association for Com-
1573
+ putational Linguistics, pages 5008–5020, Online.
1574
+ Association for Computational Linguistics.
1575
+ Alex Wang, Richard Yuanzhe Pang, Angelica Chen, Ja-
1576
+ son Phang, and Samuel R Bowman. 2022. Squality:
1577
+ Building a long-document summarization dataset
1578
+ the hard way. arXiv preprint arXiv:2205.11465.
1579
+ Matthijs J Warrens. 2010. Inequalities between multi-
1580
+ rater kappas. Advances in data analysis and classifi-
1581
+ cation, 4(4):271–286.
1582
+ Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
1583
+ Adams Wei Yu, Brian Lester, Nan Du, Andrew M
1584
+ Dai, and Quoc V Le. 2022.
1585
+ Finetuned language
1586
+ models are zero-shot learners. In International Con-
1587
+ ference on Learning Representations.
1588
+ Johnny Wei and Robin Jia. 2021. The statistical advan-
1589
+ tage of automatic NLG metrics at the system level.
1590
+ In Proceedings of the 59th Annual Meeting of the
1591
+ Association for Computational Linguistics and the
1592
+ 11th International Joint Conference on Natural Lan-
1593
+ guage Processing (Volume 1: Long Papers), pages
1594
+ 6840–6854, Online. Association for Computational
1595
+ Linguistics.
1596
+ John Wieting, Taylor Berg-Kirkpatrick, Kevin Gimpel,
1597
+ and Graham Neubig. 2019. Beyond BLEU:training
1598
+ neural machine translation with semantic similarity.
1599
+ In Proceedings of the 57th Annual Meeting of the
1600
+ Association for Computational Linguistics, pages
1601
+ 4344–4355, Florence, Italy. Association for Compu-
1602
+ tational Linguistics.
1603
+ Weizhe Yuan, Graham Neubig, and Pengfei Liu. 2021.
1604
+ Bartscore: Evaluating generated text as text gener-
1605
+ ation. Advances in Neural Information Processing
1606
+ Systems, 34:27263–27277.
1607
+ Manzil Zaheer, Guru Guruganesh, Kumar Avinava
1608
+ Dubey, Joshua Ainslie, Chris Alberti, Santiago On-
1609
+ tanon, Philip Pham, Anirudh Ravula, Qifan Wang,
1610
+ Li Yang, et al. 2020.
1611
+ Big bird: Transformers for
1612
+ longer sequences. Advances in Neural Information
1613
+ Processing Systems, 33:17283–17297.
1614
+ Shiyue Zhang and Mohit Bansal. 2021. Finding a bal-
1615
+ anced degree of automation for summary evaluation.
1616
+ In Proceedings of the 2021 Conference on Empiri-
1617
+ cal Methods in Natural Language Processing, pages
1618
+ 6617–6632, Online and Punta Cana, Dominican Re-
1619
+ public. Association for Computational Linguistics.
1620
+ Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q
1621
+ Weinberger, and Yoav Artzi. 2020. Bertscore: Eval-
1622
+ uating text generation with bert.
1623
+ In International
1624
+ Conference on Learning Representations.
1625
+
1626
+ Appendix
1627
+ A
1628
+ Bootstrap analysis of inter-annotator
1629
+ variance
1630
+ We utilize the bootstrap resampling (Tibshirani and
1631
+ Efron, 1993) technique described in Deutsch et al.
1632
+ (2021) to estimate confidence intervals for human
1633
+ evaluation data. At a high level, bootstrap resam-
1634
+ pling helps capture the uncertainty in a downstream
1635
+ test statistic by repeatedly sampling from the data
1636
+ with replacement. We consider two downstream
1637
+ test statistics in our work — (1) average system
1638
+ level performance; (2) correlation of human judge-
1639
+ ments to automatic metrics.
1640
+ While Deutsch et al. (2021) were primarily in-
1641
+ terested in uncertainty due to the specific instances
1642
+ and systems evaluated, our goal is to capture uncer-
1643
+ tainty due to the inter-annotator variance. Hence
1644
+ unlike Deutsch et al. (2021), we sample with re-
1645
+ placement from the set of annotators for every in-
1646
+ stance. Our precise formulation can be found in
1647
+ Algorithm 1, which operates on a X ∈ RN×M ma-
1648
+ trix of human annotations where N is the number
1649
+ of summaries, and M the number of annotators.
1650
+ Algorithm 1 Bootstrap Confidence Interval
1651
+ Input: X ∈ RN×M, k ∈ N, α ∈ [0, 1].
1652
+ N is summaries, M is annotators
1653
+ Output: (1 − α) × 100%-confidence interval
1654
+ 1: samples ← an empty list
1655
+ 2: for k iterations do
1656
+ 3:
1657
+ Xs ← empty N × M matrix
1658
+ 4:
1659
+ for i ∈ {1, . . . , N} do
1660
+ 5:
1661
+ D ← samp. {1, . . . , M} w/ repl. M times
1662
+ 6:
1663
+ for j ∈ {1, . . . M} do
1664
+ 7:
1665
+ Xs[i, j] ← X[i, D[j]]
1666
+ 8:
1667
+ end for
1668
+ 9:
1669
+ end for
1670
+ 10:
1671
+ Calculate test statistic on Xs and append to samples
1672
+ 11: end for
1673
+ 12: ℓ, u ← (α/2) × 100 and (1 − α/2) × 100 percentiles of
1674
+ samples
1675
+ 13: return ℓ, u
1676
+ B
1677
+ Human evaluation details
1678
+ B.1
1679
+ FINE-grained evaluations of SQuALITY
1680
+ and PubMed summaries
1681
+ We interviewed a total of 9 Upwork freelancers
1682
+ for the position, offering a compensation of $15-
1683
+ 16.5 / hr (depending on their Upwork hourly rate).
1684
+ The screening procedure involved a qualification
1685
+ task on synthetically perturbed summaries from
1686
+ the SQuALITY dataset validation split. Similar to
1687
+ the final annotation task, annotators were shown a
1688
+ F-κ
1689
+ R-κ
1690
+ all agree
1691
+ Random
1692
+ 0.00
1693
+ 0.00
1694
+ 25%
1695
+ SQuALITY
1696
+ 0.74
1697
+ 0.76
1698
+ 82%
1699
+ PubMed
1700
+ 0.53
1701
+ 0.65
1702
+ 74%
1703
+ Table 7: Fleiss kappa (F-κ), Randolph kappa (R-κ), and
1704
+ agreement scores of our FINE annotation per summary
1705
+ unit. All κ scores are well above a random annotation
1706
+ baseline, indicating good agreement.
1707
+ highlighted clause from the summary, and asked
1708
+ to mark whether or not it is supported by the
1709
+ source document. 50% of the clauses were synthet-
1710
+ ically perturbed (via negation or entity swapping as
1711
+ in Kryscinski et al., 2020) and manually checked
1712
+ to ensure they were not supported by the source
1713
+ document. A total of 6 freelancers scored 85% or
1714
+ better, and were recruited for the main set of exper-
1715
+ iments. All 9 freelancers were compensated for the
1716
+ screening round at the rate of 15$ USD / hr.
1717
+ All six hired annotators are native or bilingual
1718
+ English speakers. All annotators have completed
1719
+ a degree at the undergraduate level and three also
1720
+ have Masters degrees, with the most common fo-
1721
+ cuses of the degrees being English/creative writing
1722
+ and education. The annotators’ common profes-
1723
+ sional experiences include copywriting, editing,
1724
+ proofreading, writing, and teaching. Finally, for
1725
+ PubMed annotations we re-hired three annotators
1726
+ from the pool of six SQuALITY annotators who
1727
+ mentioned they had experience reading and ana-
1728
+ lyzing biomedical articles. These three annotators
1729
+ were provided with an additional bonus of $30 after
1730
+ they completed all annotations.
1731
+ Annotators are provided with a detailed anno-
1732
+ tation guideline along with examples of faithful-
1733
+ ness (Table 10). Our guidelines are mostly con-
1734
+ sistent with a recently proposed set of guidelines
1735
+ for checking attribution in text generation (Rashkin
1736
+ et al., 2021). The final annotation interface is im-
1737
+ plemented in AMT Sandbox, as shown in Figure 8.
1738
+ Inter-annotator agreement (binary): Much of
1739
+ the analysis in Section 3 uses standard deviation
1740
+ across summaries scores to measure inter-annotator
1741
+ agreement. However, another way to calculate
1742
+ inter-annotator agreement for FINE annotations is
1743
+ measuring agreement on individual units which
1744
+ received a Yes / No judgment.
1745
+ In Table 7 we
1746
+ show these inter-annotator agreement statistics. We
1747
+ measure Fleiss Kappa (Fleiss, 1971), Randolph
1748
+
1749
+ Kappa (Randolph, 2005; Warrens, 2010), and the
1750
+ fraction of sentence pairs with total agreement.15
1751
+ In the table we can see all agreement statistics are
1752
+ well away from a uniform random annotation base-
1753
+ line, indicating good agreement.
1754
+ B.2
1755
+ COARSE-grained evaluation of PubMed
1756
+ summaries
1757
+ None of the surveyed papers evaluating PubMed
1758
+ summaries with humans released their human eval-
1759
+ uation data. Hence, we decided to collect our own
1760
+ COARSE annotations. Since FINE annotations (Sec-
1761
+ tion B.1) may have biased our original set of an-
1762
+ notators, we hire three new annotators to perform
1763
+ overall assessments on a 5-point Likert scale. In
1764
+ other words, we use a “between-subject” experi-
1765
+ ment design to compare FINE against COARSE.
1766
+ We hired three freelancers on Upwork, all of
1767
+ whom have extensive professional experience read-
1768
+ ing research papers (two of them had PhDs in
1769
+ biomedical fields). All annotators were compen-
1770
+ sated at a rate of 20$ USD / hr, their hourly rate on
1771
+ Upwork. All three annotators had been previously
1772
+ screened and hired by us for different projects in
1773
+ the past. Two of them had assisted us in an an-
1774
+ notation task involved reading short summaries of
1775
+ biomedical academic papers and evaluating them
1776
+ for fluency, accuracy, correctness.
1777
+ Annotators are provided with a detailed anno-
1778
+ tation guideline along with examples of faithful-
1779
+ ness (Table 11). Our guidelines are mostly con-
1780
+ sistent with a recently proposed set of guidelines
1781
+ for checking attribution in text generation (Rashkin
1782
+ et al., 2021). The final annotation interface is im-
1783
+ plemented in LabelStudio, as shown in Figure 9.
1784
+ B.3
1785
+ Crowdworkers or expert annotators?
1786
+ Several prior works have raised the issue of low
1787
+ inter-annotator agreement and poor accuracy with
1788
+ non-expert annotators (eg: MTurk crowdworkers)
1789
+ in human evaluation of summarization (Gillick and
1790
+ Liu, 2010; Fabbri et al., 2021; Falke et al., 2019)
1791
+ and open-ended long-form generation (Karpinska
1792
+ et al., 2021; Clark et al., 2021). In our survey
1793
+ (Table 9), we found the type of annotators used in
1794
+ long-form summarization is often not specified (16
1795
+ / 43 papers). Among other papers, 10 papers use
1796
+ non-experts while 17 papers use expert annotators
1797
+ (often graduate students).
1798
+ 15The κ scores are measured using the library https://
1799
+ github.com/statsmodels/statsmodels.
1800
+ Overall, we echo the concerns with non-expert
1801
+ annotators and recommend hiring freelancers on
1802
+ Upwork (or experts) who are well-versed with
1803
+ the domain for annotation. In initial experiments,
1804
+ we attempted to recruit Amazon Mechanical Turk
1805
+ crowdworkers filtered by the “Master’s qualifica-
1806
+ tion” and having a 90%+ approval rating. In our
1807
+ qualification task of error detection in syntheti-
1808
+ cally perturbed SQuALITY summaries, MTurkers
1809
+ scored just 62% (binary classification) with a three-
1810
+ annotator Fleiss κ of 0.15. On the other hand, Up-
1811
+ work freelancers (with professional writing experi-
1812
+ ence) an accuracy 90% with a high inter-annotator
1813
+ agreement (Fleiss κ = 0.71).
1814
+ C
1815
+ Additional Survey Statistics
1816
+ In Table 8 and Table 9 we document some addi-
1817
+ tional statistics for the 44 papers conducting human
1818
+ evaluation of long-form summarization.
1819
+ Best practice
1820
+ # papers
1821
+ Raw human evaluation data released
1822
+ 2 / 44
1823
+ Interface or instructions provided
1824
+ 9 / 44
1825
+ Inter-annotator agreement reported
1826
+ 12 / 44
1827
+ Statistical analysis conducted
1828
+ 12 / 44
1829
+ Multiple datasets are human evaluated
1830
+ 14 / 44
1831
+ Multiple annotators per summary
1832
+ 33 / 44
1833
+ Annotator background reported
1834
+ 33 / 44
1835
+ Specific summary aspects evaluated
1836
+ 42 / 44
1837
+ Table 8: Fraction of surveyed papers following the best
1838
+ practices recommended by Gehrmann et al. (2022). We
1839
+ include only the 44 papers here which conducted a hu-
1840
+ man evaluation of long-form summarization.
1841
+ Type of annotator
1842
+ # papers
1843
+ No details specified
1844
+ 11 / 44
1845
+ Native English speaker**
1846
+ 5 / 44
1847
+ Mechnical Turk crowdworker
1848
+ 9 / 44
1849
+ Non-expert volunteers
1850
+ 1 / 44
1851
+ Extensive prior experience**
1852
+ 3 / 44
1853
+ Graduate students / researchers
1854
+ 13 / 44
1855
+ Upwork freelancers
1856
+ 2 / 44
1857
+ Table 9: The types of annotators used across different
1858
+ long-form summarization papers. ** - No additional
1859
+ details were specified.
1860
+ D
1861
+ Automatic summarization metrics
1862
+ used for evaluation
1863
+ The following metrics are considered while measur-
1864
+ ing Pearson’s correlation with our human evalua-
1865
+ tion data (Figure 2) — ROUGE-1 / 2 / F (Lin, 2004),
1866
+
1867
+ BARTScore / BARTScore-Parabank (Yuan et al.,
1868
+ 2021), Sentence-BLEU (Papineni et al., 2002),
1869
+ BERTScore (Zhang et al., 2020) and BLEURT (Sel-
1870
+ lam et al., 2020). A number of metrics were calcu-
1871
+ lated using the SacreROUGE repository (Deutsch
1872
+ and Roth, 2020).
1873
+ E
1874
+ Learning effect while annotating
1875
+ long-form summaries
1876
+ In Section 3.3 we discussed a learning effect where
1877
+ annotators get more familiar with the contents of
1878
+ a source document as they annotate more FINE-
1879
+ grained units in a long-form summary. To better
1880
+ understand this effect, in Figure 5 we plot the av-
1881
+ erage time taken by annotators as they progress in
1882
+ their annotation of a summary. Overall, we find that
1883
+ annotators get significantly faster in annotating the
1884
+ summary after the first 20% units. We hypothesize
1885
+ that annotators get pretty familiar with the general
1886
+ topics in the source document after the first few
1887
+ annotations, speeding up subsequent annotations.
1888
+ 0.0
1889
+ 0.2
1890
+ 0.4
1891
+ 0.6
1892
+ 0.8
1893
+ 1.0
1894
+ Fraction of summary units annotated
1895
+ 50
1896
+ 100
1897
+ 150
1898
+ 200
1899
+ 250
1900
+ Time taken (seconds)
1901
+ pred_hints
1902
+ gold_hints
1903
+ no_hints
1904
+ Figure 5: Learning effect over time while evaluating
1905
+ long-form summaries with FINE annotation. As the an-
1906
+ notators evaluate more summary units, they learn the
1907
+ document better and are much faster at annotation irre-
1908
+ spective of whether hints are shown to them.
1909
+ F
1910
+ Partial summary annotation with
1911
+ pearson correlation
1912
+ See Figure 6.
1913
+ G
1914
+ Metric correlations using Kendall’s
1915
+ Tau
1916
+ See Figure 7.
1917
+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1918
+ Fraction of units
1919
+ 0.0
1920
+ 0.2
1921
+ 0.4
1922
+ 0.6
1923
+ 0.8
1924
+ 1.0
1925
+ Pearson correlation to full annotation
1926
+ PubMed
1927
+ SQuALITY
1928
+ Figure 6: A version of Figure 4 using Pearson correla-
1929
+ tion instead of Kendall Tau correlation.
1930
+
1931
+ 0.2
1932
+ 0.0
1933
+ 0.2
1934
+ 0.4
1935
+ 0.6
1936
+ 0.8
1937
+ 1.0
1938
+ KT correlation
1939
+ rouge-1_f1
1940
+ rouge-2_f1
1941
+ rouge-l_f1
1942
+ bart_score
1943
+ bart_sc_pb
1944
+ sent_bleu
1945
+ bert_score
1946
+ bleurt
1947
+ SQuALITY
1948
+ FINE
1949
+ COARSE
1950
+ 0.2
1951
+ 0.0
1952
+ 0.2
1953
+ 0.4
1954
+ 0.6
1955
+ 0.8
1956
+ 1.0
1957
+ KT correlation
1958
+ rouge-1_f1
1959
+ rouge-2_f1
1960
+ rouge-l_f1
1961
+ bart_score
1962
+ bart_sc_pb
1963
+ sent_bleu
1964
+ bert_score
1965
+ bleurt
1966
+ PubMed
1967
+ FINE
1968
+ COARSE
1969
+ Figure 7: A version of Figure 2 using Kendall’s Tau correlation instead of Pearson’s correlation.
1970
+ Figure 8: The AMT Sandbox annotation interface used for FINE evaluation of SQuALITY and PubMed summaries
1971
+ (Appendix B.1).
1972
+
1973
+ Select an option
1974
+ Summary (focus on highlighted span): < pad> background : the aim of this study is to compare the learning and memorization rates of english using authentic and
1975
+ Yes
1976
+ 1
1977
+ traditional assessment methods. methods: the research method is semi experimental and the sample included 60 students chosen by simple random sampling.
1978
+ No
1979
+ 2
1980
+ results: the rate of students learning andmemorization is more in authentic assessment than traditional methods.the rate of memorizing is more in authentic methods
1981
+ than traditional ones. conclusion: the results of this research indicate that the rate of students learning and memorization is more in authentic methods than traditional
1982
+ methods.the students attitude toward test is more positive than traditional ones.
1983
+ Source Document:
1984
+ Prev HintNext Hint(4 hint(s) available)Store Source Position
1985
+ NOTE: hints may or may not be useful, please skim through document yourself (or search for keywords with Ctrl + F) if hints are unhelpful.
1986
+ is cancelled because it emphasized on loading learner s accumulator minds and interrogating in tests as jean piaget said the main goal of education must be training
1987
+ of innovators who could think not to repeat .
1988
+ it is training of investigators and researchers not those who adopt whatever is said ( 1 ) .
1989
+ obviously , it is not possible to train new generation for the living in a changeable society for present and next days without new planning to change functions and
1990
+ worksof educationsystem includinggoals,contents,teachingandlearningmethodsalso evaluation and assessmentmethods(2)contemporary,indomainof
1991
+ trainingscience,evaluationhasreceivedsuchan importancethat identifiedasan independentandspecialized scientificfield
1992
+ because of the importance of evaluation some specialists in domain of curriculum development like tiler presented it as a center of education process ( 3 )
1993
+ evaluation indicated as the last link for the teaching - learning process which is used in the end of educational period to separate students with different learning
1994
+ process
1995
+ if it could present suitable information permanently through feedbacks to students , it would be more effective to improve learning .
1996
+ foreignlanguageIn this task, you will be shown a long document ("Source Document") and its Summary. A span of text will be
1997
+ highlighted in the summary, and the goal is to check if this span is factually supported by the source document. You
1998
+ will need to choose one of two options:
1999
+ 1. Yes: if all the facts in the highlighted summary span are supported by the source document
2000
+ 2. No: if the highlighted summary span presents some information that is not supported by the source document (either
2001
+ a direct contradiction, or not present)
2002
+ In addition to the source document, you will be provided with some highlighted text ("hints") in the source document
2003
+ which may help you in making a decision. Press the "Next Hint" button to scroll through the highlighted hints. Source
2004
+ document hints may or may not be helpful. Do not make a judgment solely based on these hints. Skim through the
2005
+ source document yourself / search for keywords with Ctrl + F if the hints are not helpful.
2006
+ Below you can find some short representative examples.
2007
+ Example 1
2008
+ Summary (only highlighted span shown) = ... Retief is not Lemuel’s cousin. ...
2009
+ Source Document (snippets shown) = He eyed Retief ... "He ain’t no cousin of mine," Lemuel said slowly.
2010
+ Supports = Yes
2011
+ Example 2
2012
+ Summary (only highlighted span shown) = ... Lemeul knocks down Retief. ...
2013
+ Source Document (snippets shown) = Retief’s left fist shot out, smacked Lemuel’s face dead center. He stumbled back,
2014
+ blood starting from his nose; ... He caught himself, jumped for Retief ... and met a straight right that snapped him onto
2015
+ his back: out cold. "Wow!" said Potter. "The stranger took Lem ... in two punches!"
2016
+ Supports = No (Reason: Retief knocks down Lemeul, not the other way around.)
2017
+ Example 3
2018
+ Summary (only highlighted span shown) = ... Potter and his team do not trust the Embassy. ...
2019
+ Source Document (snippets shown) = Lemme up. My name’s Potter. Sorry ’bout that. I figured it was a Flap-jack boat;
2020
+ looks just like ’em . He waved a hand toward the north, where the desert lay.
2021
+ Supports = No (Reason: The claim is irrelevant to the evidence.)
2022
+ Table 10: Annotation guidelines provided to annotators for FINE-grained evaluation of SQuALITY and PubMed
2023
+ summaries. (Appendix B.1).
2024
+
2025
+ Figure 9:
2026
+ The LabelStudio annotation interface used for COARSE evaluation of PubMed summaries (Ap-
2027
+ pendix B.2).
2028
+
2029
+ Summary to annotate
2030
+ On a scale of 0-5, how factually correct is the summary with respect to
2031
+ thesourcedocument?
2032
+ introductionout - of - hospital cardiac arrest has a low survival rate to hospital discharge.recent studies
2033
+ 0
2034
+ O 2
2035
+ 04
2036
+ O5
2037
+ compareda simplifiedform of cpr,basedon chest compressionalone versus standard cpr including
2038
+ out - of hospital cpr for non traumatic cardiac arrest in different databases.resultswe identified only three
2039
+ randomized trials on this topic, including witnessed and not -witnessed cardiac arrests .when pooling
2040
+ evidence to support the superiority of the compression-only cpr interms of survival at hospital
2041
+ discharge,as 211/1842(11.5%)patients in the chest compression alone group versus 178/1895(9.4%
2042
+ )in thestandard cprgroup werealiveat hospital discharge:oddsratio from both petoand dersimonian
2043
+ laird methods = 0.80 (95% confidence interval 0.65 -0.99),p for effect = 0.04,p for heterogeneity = 0.69
2044
+ , inconsistency = 0%).conclusionsavailable evidence strongly support the superiority of bystander
2045
+ compression-only cpr.reasons forthe best efficacy of chest compression-only cpr include a better
2046
+ willingness to start cpr by bystanders,the low quality of mouth-to -mouth ventilation and a detrimental
2047
+ effect of too long interruptions of chest compressions during ventilation . based on our findings,
2048
+ compression - only cpr should be recommended as the preferred cpr technique performed by untrained
2049
+ bystander .
2050
+ SourceDocument
2051
+ Comments (optional)
2052
+ out -of -hospital cardiac arrest is still a major public health issue,claiming hundreds of thousands
2053
+ of livesworldwideyearly
2054
+ bystander - initiated cardiopulmonary resuscitation (cpr ) is essential to increase the chance of
2055
+ survival and neurologicalrecovery
2056
+ despite huge efforts to train laypeople to recognize and treat cardiac arrest , incidence of bystander
2057
+ reluctancetoperformmouth-to-mouthventilation is one of themajorreason
2058
+ pv
2059
+ whereas cpr including ventilation is still considered the gold standard approach before advanced life
2060
+ support can be instituted , a growing number of studies compared a simplified form of cpr , based
2061
+ on chest compression alone versus standard cpr including ventilation
2062
+ animal studies showed no difference in survival or even worse outcomes when ventilation was
2063
+ added to chest compressions ; nevertheless , in animal models of cardiac arrest due to respiratory
2064
+ inhumans
2065
+ observational studies of bystander - initiated cpr comparing standard and compressions - only cpr
2066
+ reported similar survival rates ; however , interpretation of the results is made difficult due to the
2067
+ highheterogeneityofthecausesof cardiac arrestandoftherescuecharacteristics
2068
+ chest compression - only cpr is simpler than standard cpr to teach ( during courses but even by
2069
+ dispatchersunderrealconditions),andlikelyahigherpercentageofbystanderswouldacceptto
2070
+ performitwhileavoidingmouth-to-mouthcontact:thedemonstrationthatitis(atleast)as
2071
+ effective as standard cpr can be crucial to improve survival rate in out - of - hospital cardiac arrest .
2072
+ with the underlying hypothesis that out - of - hospital cardiac arrest bystander - initiated
2073
+ compression
2074
+ - only cpr is equivalent to cpr including ventilation(standard cpr),we performed a comprehensive
2075
+ systematicreview andmeta-analysis of randomizedcontrolledtrials,focusingonsurvival at
2076
+ hospital discharge
2077
+ pertinent studies were independently searched in biomedcentral , central , and pubmed ( updated
2078
+ september1,2010)by several trained investigatorInstructions for Likert-scale evaluation. Please read all instructions before starting the annotation.
2079
+ Setup
2080
+ 1. Start by signing up on Label Studio, you will need to provide an email ID and password. It’s okay to use a
2081
+ non-existent throw-away email ID here. Also, do not use any personal / sensitive passwords (but make sure to remember
2082
+ your email / password for logging in next time!). Click on the box saying “<your name> — Summarization Evaluation”
2083
+ 2. In this batch a total of 30 summaries need to be evaluated. Every three consecutive rows are different summaries of
2084
+ the same source document. You can evaluate a summary by clicking on a row, and annotating it. Optionally, you can
2085
+ click on “Label All Tasks” at the top of the screen.
2086
+ Annotation Task
2087
+ Each summary needs to be evaluated for its “correctness”. You need to provide a 0-5 judgment for the entire summary,
2088
+ where “correctness” can be defined as, “The absence of factual errors in the summary, where a factual error is a
2089
+ statement that contradicts the source document, or is not directly stated, heavily implied, or logically entailed by the
2090
+ source document”. For example,
2091
+ Source Document (snippet shown) = ..... Vitamin C was discovered in 1912, isolated in 1928, and, in 1933, was
2092
+ the first vitamin to be chemically produced. It is on the World Health Organization’s List of Essential Medicines.
2093
+ Vitamin C is available as an inexpensive generic and over-the-counter medication. Partly for its discovery, Albert
2094
+ Szent-Györgyi and Walter Norman Haworth were awarded the 1937 Nobel Prizes in Physiology and Medicine and
2095
+ Chemistry, respectively. Foods containing vitamin C include citrus fruits, kiwifruit, guava, broccoli, Brussels sprouts,
2096
+ bell peppers, potatoes, and strawberries. Prolonged storage or cooking may reduce vitamin C content in foods. . . . .
2097
+ Summary 1 (snippet shown) = ... Chicken contains vitamin C . . .
2098
+ Summary 2 (snippet shown) = ... Albert Szent-Györgyi won the 1955 Nobel Prize for discovering Vitamin C . . .
2099
+ Summary 3 (snippet shown) = ... Vitamin C was the first chemically produced Vitamin . . .
2100
+ Summary 4 (snippet shown) = ... Apple contains vitamin C . . .
2101
+ Errors marked in red. Here, the snippets for summary 1 are incorrect, summary 2 partially correct, and summary 3
2102
+ completely correct with respect to the source document. Summary 4 is incorrect with respect to the source document
2103
+ (since it’s never discussed), but a globally correct fact. You should treat such a summary as incorrect since it is not
2104
+ mentioned in the source document.
2105
+ (This is an illustrative example only, the actual annotation task has much longer summaries / source documents.)
2106
+ The rating scale is from 0 to 5, where 0 is the lowest possible rating (most or all of the summary is wrong / irrelevant to
2107
+ the source document), and 5 is the highest rating (most or all of the summary is correct).
2108
+ While it is compulsory to provide a judgment from 0 to 5 for each summary, you can optionally provide additional
2109
+ comments in your annotation. For instance, if the judgment needs to be more nuanced than a 5-point scale, you prefer
2110
+ to mark something like “3.5”, or you would like to add some other notes about your judgment.
2111
+ Press “Submit” after you have provided your annotation.
2112
+ Suggested workflow
2113
+ Every three consecutive rows contain different summaries for the same source document. We suggest the following
2114
+ workflow while annotating documents —
2115
+ 1. Spend the first 15 minutes reading the source document and getting a general sense of the facts mentioned in the
2116
+ document.
2117
+ 2. Spend 5 minutes to read and annotate the summaries in each of the three consecutive rows which correspond to the
2118
+ same document. Add optional comments / notes if necessary.
2119
+ 3. In the last 5 minutes, re-calibrate your ratings across the three rows if needed (for instance, you significantly preferred
2120
+ the correctness of summary 1 vs summary 2, but you gave it the same rating in the initial pass). Add optional comments
2121
+ / notes if necessary.
2122
+ Following this workflow, it should take 35 minutes to annotate each set of 3 rows. For 30 rows, this should take 6 hrs.
2123
+ Table 11: Annotation guidelines provided to annotators for COARSE evaluation of PubMed summaries (Ap-
2124
+ pendix B.2).
2125
+
L9FQT4oBgHgl3EQfUzaG/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MdFRT4oBgHgl3EQf2zi9/content/tmp_files/2301.13662v1.pdf.txt ADDED
@@ -0,0 +1,1854 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
2
+ 1
3
+ InstructTTS: Modelling Expressive TTS in Discrete
4
+ Latent Space with Natural Language Style Prompt
5
+ Dongchao Yang*, Songxiang Liu*, Rongjie Huang, Guangzhi Lei, Chao Weng, Helen Meng, Fellow, IEEE and
6
+ Dong Yu, Fellow, IEEE
7
+ Abstract—Expressive text-to-speech (TTS) aims to synthesize
8
+ different speaking style speech according to human’s demands.
9
+ Nowadays, there are two common ways to control speaking styles:
10
+ (1) Pre-defining a group of speaking style and using categorical
11
+ index to denote different speaking style. However, there are
12
+ limitations in the diversity of expressiveness, as these models can
13
+ only generate the pre-defined styles. (2) Using reference speech
14
+ as style input, which results in a problem that the extracted
15
+ style information is not intuitive or interpretable. In this study,
16
+ we attempt to use natural language as style prompt to control
17
+ the styles in the synthetic speech, e.g., “Sigh tone in full of
18
+ sad mood with some helpless feeling”. Considering that there
19
+ is no existing TTS corpus which is proper to benchmark this
20
+ novel task, we first construct a speech corpus, whose speech
21
+ samples are annotated with not only content transcriptions but
22
+ also style descriptions in natural language. Then we propose
23
+ an expressive TTS model, named as InstructTTS, which is
24
+ novel in the sense of following aspects: (1) We fully take the
25
+ advantage of self-supervised learning and cross-modal metric
26
+ learning, and propose a novel three-stage training procedure to
27
+ obtain a robust sentence embedding model, which can effectively
28
+ capture semantic information from the style prompts and control
29
+ the speaking style in the generated speech. (2) We propose to
30
+ model acoustic features in discrete latent space and train a
31
+ novel discrete diffusion probabilistic model to generate vector-
32
+ quantized (VQ) acoustic tokens rather than the commonly-used
33
+ mel spectrogram. (3) We jointly apply mutual information (MI)
34
+ estimation and minimization during acoustic model training to
35
+ minimize style-speaker and style-content MI, avoiding possible
36
+ content and speaker information leakage from the style prompt.
37
+ Extensive objective and subjective evaluation has been conducted
38
+ to verify the effectiveness and expressiveness of InstructTTS.
39
+ Experimental results show that InstructTTS can synthesize high-
40
+ fidelity and natural speech with style prompts controlling the
41
+ speaking style. Synthesized samples are available 1.
42
+ Index Terms—Text to speech, prompt-based learning, diffusion
43
+ model, metric learning
44
+ I. INTRODUCTION
45
+ T
46
+ EXT-to-speech (TTS) aims to generate human-like
47
+ speech from input text, which attracts broad interest in the
48
+ audio and speech processing community. Nowadays, the state-
49
+ of-the-art TTS systems [1]–[3] are able to produce natural
50
+ and high-quality speech. However, there still exists a big gap
51
+ between TTS-synthetic speech and human speech in terms of
52
+ Dongchao Yang and Helen Meng are with the Chinese University of Hong
53
+ Kong. This work was done when Dongchao Yang was an intern at Tencent AI
54
+ Lab. * denotes equal contribution with order determined by alphabetic order.
55
+ Songxiang Liu, Guangzhi Lei, Chao Weng and Dong Yu are with Tencent
56
+ AI Lab.
57
+ Rongjie Huang is with the Zhejiang University, China.
58
+ Songxiang Liu is the corresponding author.
59
+ 1http://dongchaoyang.top/InstructTTS/
60
+ expressiveness, which limits the broad applications of current
61
+ speech synthesis systems. Many researchers now focus on
62
+ a more challenging task, i.e., expressive TTS, which aims
63
+ to modeling and control the speaking style (e.g., emotion,
64
+ speaking-rate and so on) in the generated speech according to
65
+ human’s demands. We note that there are generally two types
66
+ of methods in the literature to learn speaking style information:
67
+ one uses auxiliary categorical style labels as the condition of
68
+ the framework [4], [5], the other imitates the speaking style
69
+ of a reference speech [6]–[9]. However, there are limitations
70
+ in the diversity of expressiveness when categorical style labels
71
+ are used, as these models can only generate a few pre-defined
72
+ styles from the training set. Although TTS models using a
73
+ reference utterance to model style generation can be trained
74
+ in an unsupervised manner and generalizable to out-of-domain
75
+ speaking styles, style information in the reference speech is
76
+ not intuitive and interpretable. Moreover, it is hard to choose
77
+ a reference speech sample in precise accordance of a user’s
78
+ demand.
79
+ For the first time, we study the modelling of expressive
80
+ TTS with style prompt in natural language, where we meet
81
+ with the following research problems: (1) how to train a
82
+ language model that can capture semantic information from
83
+ the natural language prompt and control the speaking style in
84
+ the generated speech; (2) how to design an acoustic model
85
+ to effectively model the challenging one-to-many learning
86
+ problem of expressive TTS. In this paper, we will address
87
+ these two challenges.
88
+ The main contributions of this study are summarized as
89
+ follows:
90
+ (1) For the first time, we study the modelling of expressive
91
+ TTS with natural language prompt, which brings us a step
92
+ closer to achieve user-controllable expressive TTS.
93
+ (2) We introduce a novel three stage training strategy to obtain
94
+ a robust sentence embedding model, which can effectively
95
+ capture semantic information from the style prompts.
96
+ (3) Inspired by the success of large-scale language models,
97
+ e.g., GPT3 and ChatGPT [10], we propose to model acoustic
98
+ features in discrete latent space and cast speech synthesis
99
+ as a language modeling task. Specifically, we train a novel
100
+ discrete diffusion model to generate vector-quantized (VQ)
101
+ acoustic feature rather than to predict the commonly-used mel-
102
+ spectrogram.
103
+ (4) We explore to model two types of VQ acoustic fea-
104
+ ture: mel-spectrogram based VQ features and waveform-based
105
+ VQ features. We prove that the two types of VQ features
106
+ can be effectively modeled by our proposed novel discrete
107
+ arXiv:2301.13662v1 [cs.SD] 31 Jan 2023
108
+
109
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
110
+ 2
111
+ Discrete Diffusion
112
+ Model
113
+ Variance Adaptor
114
+ Positional
115
+ Encoding
116
+ Positional
117
+ Encoding
118
+ Mel-spectrogram or waveform
119
+ SALN adaptor
120
+ Text Embedding
121
+ Layer
122
+ Content Prompt
123
+ Speaker
124
+ Embedding
125
+ Layer
126
+ (a) The overview of InstructTTS.
127
+ Speaker
128
+ ID
129
+ Style
130
+ Encoder
131
+ Style
132
+ Prompt
133
+ Mel-spectrogram
134
+ Phoneme Encoder
135
+ Content
136
+ Encoder
137
+ (b) The details of style encoder.
138
+ Mel-VQ-Diffusion transformer decoder
139
+ Token
140
+ Embedding
141
+ Encoder
142
+ 5
143
+ 1
144
+ 7 39
145
+ M
146
+ M
147
+ 0 M
148
+ Diffusion
149
+ process
150
+ 5
151
+ 1
152
+ 7 39
153
+ Decoder
154
+ (c) The details of Mel-VQ-Diffusion.
155
+ Text Embedding
156
+ Layer
157
+ Content Prompt
158
+
159
+ Audio Encoder
160
+ Mel-spectrogram
161
+ Style prompt
162
+ Adaptor
163
+ Prompt Encoder
164
+ Fig. 1. (a) shows the model architecture of our proposed InstructTTS. Where SALN denotes the style-adaptive layer normalization adaptor [14]. (b) shows
165
+ the details of our proposed style encoder, which aims to extract style features from GT mel-spectrogram (training stage) or style prompt (inference stage). In
166
+ Figure 1 (c), we give an example of discrete diffusion decoder to generate VQ mel-spectrogram acousic features (we name it as Mel-VQ-Diffusion).
167
+ diffusion model. We must state that our waveform-based
168
+ modelling method only needs one-stage training and it is
169
+ a non-autoregressive model, which is far different from our
170
+ concurrent work AudioLM [11], VALL-E [12] and MusicLM
171
+ [13].
172
+ (5) We jointly apply mutual information (MI) estimation
173
+ and minimization during acoustic model training to minimize
174
+ style-speaker and style-content MI, which avoiding possi-
175
+ ble content and speaker information leakage from the style
176
+ prompt.
177
+ The rest of this paper is organized as follows: In Section II,
178
+ we motivate our study by introducing the background and
179
+ related work. In Section III, we present the details of datasets.
180
+ In Section IV, we introduce the details of our proposed
181
+ methods. The experimental setting, evaluation metrics and
182
+ results are presented from Section V to Section VII. The study
183
+ is concluded in Section VIII.
184
+ II. RELATED WORK AND BACKGROUND
185
+ This study is built on several previous works on cross-
186
+ modal representation learning, vector quantization, diffusion
187
+ probabilistic models and expressive TTS. We briefly introduce
188
+ the related studies to set the stage for our research and
189
+ rationalize the novelty of our contributions.
190
+ A. Cross-modal Representation Learning
191
+ Cross-modal representation learning aims to learn a com-
192
+ mon latent space for different modal data (e.g. text and image,
193
+ text and speech). In general, two different modal encoders are
194
+ used to extract deep feature representation, then a variety of
195
+ supervised or unsupervised strategies are devised to align the
196
+ two modal representation spaces [15]–[17]. In our study, we
197
+ expect to control the acoustic features (such as pitch, emotion
198
+ and speed) by a natural language sentence. To realize this
199
+ target, we turn to cross-modal representation learning. The
200
+ details will be discussed later.
201
+ B. Vector Quantization
202
+ Vector quantization technique has been used in various
203
+ fields, such as image [18]–[20] and speech processing [21]–
204
+ [24]. VQ-VAE [18] was proposed to train an encoder to
205
+ compress the image into a low-dimensional discrete latent
206
+ space, then a decoder is used to recover the image from
207
+ a group of discrete tokens. Inspired by VQ-VAE, a series
208
+ of works adopt the idea to reconstruct mel-spectrogram or
209
+ linear-spectrogram [25], [26]. Recently, a lot of works focus
210
+ on reconstruct waveform by VQ-VAE. To supplement the
211
+ information loss during the VQ process, a residual-VQ (R-
212
+ VQ) [24] technique is proposed, which uses multiple different
213
+ codebooks to encode the audio information. Nowadays, the
214
+ majority of TTS systems focus on using an acoustic model
215
+ (AM) to directly predict mel-spectrogram, then uses a pre-
216
+ trained vocoder to recover waveform from the predicted mel-
217
+ spectrogram [2], [27], [28]. However, the mel-spectrogram is
218
+ highly correlated along both time and frequency axes in a
219
+ complicated way, leading to a great difficulty for the AM
220
+ to predict. Furthermore, the gap between the ground-truth
221
+ (GT) mel-spectrogram and the predict one from AM degrades
222
+ the performance due to the vocoder is trained on GT mel-
223
+ spectrogram. In this study, instead of using AM to predict mel-
224
+ spectrogram, we turn to predict learnable and vector-quantized
225
+ acoustic representation, which is transformed to a discrete
226
+ latent space.
227
+ C. Expressive Text-to-speech
228
+ Expressive TTS models have been studied for decades in the
229
+ TTS community: Wang et al. [6] propose to use global style
230
+ tokens to control and transfer the global style. Li et al. [29]
231
+ adopt a multi-scale style encoder to assist expressive speech
232
+ synthesis. Min et al. [14] propose Meta-StyleSpeech, which
233
+ uses a meta-learning training strategy for multi-speaker TTS
234
+ synthesis. SC-GlowTTS [30] proposed a speaker-conditional
235
+ architecture that explores a flow-based decoder in a zero-
236
+ shot scenario. Zhou et al. [31] propose a mixed emotion
237
+ speech synthesis model, which can control multiple different
238
+
239
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
240
+ 3
241
+ emotions in one synthetic speech sample. Huang et al. [32]
242
+ propose a multi-level style adaptor to transfer speaking style.
243
+ Yang et al. [9] propose NoreSpeech, which can robust transfer
244
+ style information from noisy reference speech. Liu et al. [33]
245
+ attempt to use robust style descriptors to transfer style learned
246
+ from low-quality but expressive speech data to a target voice.
247
+ The most related to our work are Style-Tagging-TTS (ST-TTS)
248
+ [34] and PromptTTS [35]. ST-TTS proposes to use style tag
249
+ to guide the speaking style of synthsized speech, where style
250
+ tag denotes short phrase or word representing the style of an
251
+ utterance, such as emotion, intention, and tone of voice. In
252
+ this study, we attempt to use longer natural language as style
253
+ descriptions to control the styles in the synthetic speech, which
254
+ is more complicated due to longer natural language prompts
255
+ carry out more abundant semantic information and results in
256
+ more complicated acoustic characteristic. Our concurrent work
257
+ PromptTTS [35] proposed a similar idea with us, using a
258
+ sentence as style prompt to control the style information in
259
+ TTS systems. They define 5 different style factors (gender,
260
+ pitch, speaking speed, volume, and emotion), and they assume
261
+ the prompts have obvious style factor words, such as low-pitch,
262
+ high-speaking speech and so on, which means that model can
263
+ get style information from local-level description. Different
264
+ from PromptTTS, our study does not apply constraint on the
265
+ form of the style prompts and allows the user to use any free-
266
+ form natural language to describe a speaking style, resulting
267
+ in a much more challenging machine learning problem. Fur-
268
+ thermore, we focus on Mandarin Chinese TTS and construct
269
+ the first Mandarin Chinese speech corpus applicable for style-
270
+ prompt-controllable expressive TTS.
271
+ D. Diffusion Probabilistic Models
272
+ Diffusion generative models are first proposed in [36] and
273
+ achieve strong results in image generation [37]–[40] and
274
+ speech synthesis [41]–[44]. Diffusion models with discrete
275
+ state spaces are first introduced by Sohl-Dickstein et al.
276
+ [36], who considered a diffusion process over binary random
277
+ variables. Hoogeboom et al. [45] extend the model to categor-
278
+ ical random variables with transition matrices characterized
279
+ by uniform transition probabilities. Jacob et al. [46] further
280
+ improve and extend discrete diffusion models by using a more
281
+ structured categorical corruption process to corrupt the forward
282
+ process. Many works have successfully applied discrete diffu-
283
+ sion models in image or sound generation, e.g., D3PMs [46]
284
+ VQ-Diffusion [38], DiffSound [26]. However, no one attempts
285
+ to apply the discrete diffusion model to synthesize speech. In
286
+ the following, we briefly review background knowledge of
287
+ diffusion models.
288
+ 1) Vanilla Diffusion Model: A diffusion model consists of
289
+ forward process and reverse process. The forward process
290
+ attempts to corrupt the original data x0 into the noisy latent
291
+ variable xT which follows a simple stationary distribution
292
+ (e.g., Gaussian distribution), and the reverse process learns
293
+ to recover the original data x0 from xT .
294
+ Forward process Given the audio data x0, the forward
295
+ process aims to corrupt the data x0 ∼ q(x0) into a sequence of
296
+ increasingly noisy latent variables x1:T = x1, x2, ..., xT . Each
297
+ of the noisy latent variables xt has the same dimensionality
298
+ as x0. The forward process from data x0 to the variable xT
299
+ can be formulated as a fixed Markov chain
300
+ q(x1:T |x0) =
301
+ T
302
+
303
+ t=1
304
+ q(xt|xt−1).
305
+ (1)
306
+ Following [36], Gaussian noise is selected in each step, so
307
+ that the conditional probability distribution is modeled as
308
+ q(xt|xt−1) = N(xt; √1 − βtxt−1, βtI), where βt is a small
309
+ positive constant. According to the pre-defined noise schedule
310
+ β1, β2, ..., βT , the overall process gradually converts clean x0
311
+ to a latent variable with an isotropic Gaussian distribution of
312
+ p(xT ) = N(0, I). Due to the properties of the Markov chain,
313
+ the probability distribution q(xt|x0) can be conveniently de-
314
+ rived as
315
+ q(xt|x0) = N(xt; √αtx0, (1 − αt)I),
316
+ (2)
317
+ where αt = 1 − βt and αt = �t
318
+ s=1 αs.
319
+ Reverse process The reverse process converts the latent
320
+ variable xT ∼ N(0, I) into x0, whose jointly probability
321
+ follows
322
+ pθ(x0:T ) = p(xT )
323
+ T
324
+
325
+ t=1
326
+ pθ(xt−1|xt),
327
+ (3)
328
+ where pθ(·) is the distribution of the reverse process with
329
+ learnable parameters θ. The posterior q(xt−1|xt, x0) can be
330
+ derived according to the Bayes formula. In order to optimize
331
+ the generative model pθ(x0) to fit the data distribution q(x0),
332
+ one typically optimizes a variational upper bound on the
333
+ negative log-likelihood [47].
334
+ 2) Discrete Diffusion model: In discrete diffusion model,
335
+ a transition probability matrix is defined to indicate how x0
336
+ transits to xt for each step of forward process. Assuming that
337
+ x0 ∈ ZN and xk
338
+ 0 ∈ {1, 2, ..., P}, without introducing confu-
339
+ sion, we omit the superscript k in the following presentation.
340
+ The matrices [Qt]ij = q(xt = i|xt−1 = j) ∈ RP ×P defines
341
+ the probabilities that xt−1 transits to xt. Then the forward
342
+ process for the whole token sequence can be written as
343
+ q(xt|xt−1) = c⊤(xt)Qtc(xt−1),
344
+ (4)
345
+ where c(x) denotes the one-hot column vector of x. The cate-
346
+ gorical distribution over xt is given by the vector Qtc(xt−1).
347
+ Due to the property of Markov chain, one can marginalize
348
+ out the intermediate steps and derive the probability of xt at
349
+ arbitrary timestep directly from x0 as
350
+ q(xt|x0) = c⊤(xt)Qtc(x0), with Qt = Qt . . . Q1.
351
+ (5)
352
+ Besides, q(xt−1|xt, x0) can be derived according to the Bayes
353
+ formula:
354
+ q(xt−1|xt, x0) = q(xt|xt−1, x0)q(xt−1|x0)
355
+ q(xt|x0)
356
+ =
357
+
358
+ c⊤(xt)Qtc(xt−1)
359
+ ��
360
+ c⊤(xt−1)Qt−1c(x0)
361
+
362
+ c⊤(xt)Qtc(x0)
363
+ .
364
+ (6)
365
+
366
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
367
+ 4
368
+ TABLE I
369
+ EXAMPLE STYLE PROMPTS FROM DIFFERENT CORPORA. SINCE NLSPEECH CORPUS IS IN MANDARIN CHINESE, WE ADDITIONALLY PROVIDE THE
370
+ TRANSLATED VERSION. THE FSNR0 IS IN KOREAN, WE PROVIDE THE TRANSLATED ONES IN THE TABLE.
371
+ FSNR0 [34]
372
+ PromptSpeech [35]
373
+ NLSpeech (translated)
374
+ Seem sad
375
+ A distressful male sound appeared in low volume
376
+ The tone of the shock question revealed the sad feelings
377
+ Bitter
378
+ He sadly turns down his volume, pitch and speed
379
+ It was a fiery expression of disapproval and condemnation,
380
+ with a palpable sense of irony, a tinge of disgust and disdain
381
+ Pleased
382
+ The ladylike person made an increment of the volume and pitch
383
+ There was a sense of joy in the words, an expression of
384
+ joy in the heart, mixed with pride.
385
+ In a hurry
386
+ Men, low tone, said loudly and quickly
387
+ His voice grew more agitated,
388
+ and his tone revealed an urge and urgency.
389
+ III. DATASET
390
+ We use an internally collected Mandarin Chinese speech
391
+ corpus named NLSpeech to conduct experimental evaluation
392
+ since there is no openly available Mandarin Chinese speech
393
+ corpus with rich style prompts. The corpus contains 44 hours
394
+ of speech data (in total 32k utterances) from 7 speakers
395
+ (5 female and 2 male). Audio waveform has a sampling
396
+ rate of 24kHz. We randomly spare 0.1 hours of data as the
397
+ validation set, another 0.1 hours of data as the test set and
398
+ the remaining data as the training set. Each utterance has 5
399
+ style prompts labeled by different annotators. To obtain high-
400
+ quality annotations, we ask annotators to follow three steps of
401
+ annotation strategy:
402
+ • Step-1: The annotators first use one word to describe the
403
+ overall perceived emotion of an utterance;
404
+ • Step-2: The annotators then listen to the utterance care-
405
+ fully and describe the emotion level of the utterance with
406
+ one word;
407
+ • Step-3: The annotators write a complete sentence in
408
+ natural language to describe the style of the utterance.
409
+ Note that we ask annotators to not care about the speech
410
+ content, which may influence the perception of emotion and
411
+ style. Table I shows example style prompts in our dataset, and
412
+ we also compare NLSpeech with other existing related cor-
413
+ pora, including the FSNR0 corpus [34] and the PromptSpeech
414
+ corpus [35]). We note that the style prompts in NLSpeech
415
+ are in free-form natural language sentences which are more
416
+ consistent with those used in our daily life, while those in
417
+ the FSNR0 and the PromptSpeech corpora are somewhat
418
+ constraint to some degree. Meanwhile, this also brings us a
419
+ challenging TTS problem since natural language sentences al-
420
+ low for expressing virtually any concepts. Compact and infor-
421
+ mative representation of style prompt is therefore paramount
422
+ to achieve effective style controlling during speech synthesis.
423
+ IV. PROPOSED METHOD
424
+ The overall architecture of the proposed InstructTTS frame-
425
+ work is demonstrated in Figure 1, which consists of five parts
426
+ including a content encoder, a style encoder, a speaker encoder,
427
+ a style-adaptive layer normalization (SALN) adaptor and a
428
+ discrete diffusion decoder. The detailed design of each part
429
+ will be introduced in this section.
430
+ A. Content Encoder
431
+ The content encoder aims to extract content representation
432
+ from the content prompts. We follow the architecture of Fast-
433
+ Prompt Encoder
434
+ Audio Encoder
435
+ Style Prompt
436
+ Audio embedding
437
+ Style embedding
438
+ Metric
439
+ Learning
440
+ Objective
441
+ Audio
442
+ Semantic Hyper-Sphere
443
+ Fig. 2. The model architecture of cross-modal representation learning.
444
+ Speech2, which consists of 4 feed-forward transformer. The
445
+ hidden size, number of attention heads, kernel size and filter
446
+ size of the one-dimensional convolution in the FFT block are
447
+ set as 256, 2, 9 and 1024, respectively. After that, a variance
448
+ adaptor is used to predict information such as duration and
449
+ pitch that is closely related to the style of synthetic speech.
450
+ B. Style encoder
451
+ The style encoder module, as shown in Fig. 1 (b), includes
452
+ three parts: A pre-trained robust style prompt embedding
453
+ model, an adapt layer to map the style embedding into a
454
+ new latent space, an audio encoder that used to encode style
455
+ information from the target mel-spectrogram. Note that our
456
+ pre-trained robust prompt embedding model is fixed when
457
+ we train our TTS system. In the training stage, one of the
458
+ training target is to minimize the distance between style
459
+ prompt embedding and audio embedding. We note that the
460
+ audio encoder may encode speaker and content information.
461
+ To make sure the audio encoder only encodes the style-
462
+ related information, during training, we jointly minimize the
463
+ style-speaker mutual information (i.e., I(ze; zsid)) and style-
464
+ content mutual information (i.e., I(ze; c)). Mutual information
465
+ (MI) is a key measurement of correlation between random
466
+ variables. However, MI of high-dimensional random variables
467
+ with unknown distribution is intractable to compute. Previous
468
+ works focus on either estimating the MI lower bound or the
469
+ MI upper bound. MINE [48] and InfoNCE [18] compute a
470
+ lower bound as the MI estimators while CLUB [49] computes
471
+ an upper bound as the MI estimator. In this work, we use
472
+ the CLUB method to minimize style-speaker and style-content
473
+ MI to avoid content and speaker information leakage from the
474
+ mel-spectrogram during training.
475
+
476
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
477
+ 5
478
+ C. Style Prompt Embedding Model
479
+ To extract style representation from the style prompts,
480
+ we adopt a RoBERTa model [50] as prompt embedding
481
+ model. Assuming we have a style prompt sequence S =
482
+ [S1, S2, ..., SM], where M denotes the sequence length. We
483
+ add a [CLS] token to the start of prompt sequence, and then
484
+ feed into the prompt embedding model. After that, we take
485
+ the representation of [CLS] token as the style representation
486
+ of this sentence. In order to stably control the style in the
487
+ output of TTS through natural language description, the quality
488
+ of prompt embedding is of great importance, which should
489
+ satisfy two conditions: (1) the learned style prompt space must
490
+ be able to contain important semantic information; (2) the
491
+ distribution of prompt embedding space should be relatively
492
+ uniform and smooth, and the model can be generalized to the
493
+ style description not seen in the training. To realize this target,
494
+ we propose a novel three-stage training-fine-tuning strategy.
495
+ The details are shown as follow.
496
+ 1) Training a base language model for Chinese: Given that
497
+ most of open-source pre-trained language models are trained
498
+ on English data, we first train a RoBERTa model on Chinese
499
+ data.
500
+ 2) Fine-tuning the pre-trained language model on labeled
501
+ data: We use a small amount of Chinese natural language
502
+ inference (NLI) to fine-tune the model parameters in a super-
503
+ vised way to achieve a better semantic representation of the
504
+ model. Specifically, we follow the training strategy proposed
505
+ in SimCSE [51], which using an InfoNCE loss [52] objective
506
+ to fine-tune our pre-trained RoBERTa model.
507
+ 3) Cross-modal
508
+ representation
509
+ learning
510
+ between
511
+ style
512
+ prompts and speech: We hope that the prompt embedding vec-
513
+ tor from the style prompt sentence and the style representation
514
+ vector from the speech can be mapped to the shared semantic
515
+ space, so that we can control the style in the TTS output
516
+ through the style description when testing. Thus, we propose
517
+ a cross-modal representation learning process based on metric
518
+ learning, as Figure III shows. Specifically, we build a audio-
519
+ text retrieval task based on the style-prompt and audio pair
520
+ in our NLSpeech dataset. For any style prompt, we randomly
521
+ choose N − 1 negative audio samples, combined with one
522
+ positive audio sample to build a training batch. Similarly, for
523
+ one audio sample, we can also build a training batch that
524
+ including one positive style prompt and N − 1 negative style
525
+ prompts. Inspired by previous audio-text retrieval works [16],
526
+ [53], we adopt contrastive ranking loss [54] and InfoNCE loss
527
+ [52] as the training objective respectively. Experiments results
528
+ show that InfoNCE loss brings better retrieval performance.
529
+ The details will be introduced in Experiments part.
530
+ D. Modelling Mel-spectrograms in Discrete Latent Space
531
+ In this part, we introduce our hypothesis: modelling mel-
532
+ spectrograms in discrete latent space is a suitable way for
533
+ expressive TTS. Then we introduce how to utilize VQ-VAE as
534
+ intermediate representations to help model mel-spectrogram.
535
+ Lastly, we introduce our proposed non-autoregressive mel-
536
+ spectrogram token generation model, which is based on dis-
537
+ crete diffusion models.
538
+ Mel-VQ-VAE
539
+ Decoder
540
+ Mel-spectrogram Codebook
541
+ Z2 Z3
542
+ Z1
543
+ Z4
544
+ ZK
545
+ Discriminator
546
+ mel-spectrogram
547
+ tokens
548
+ VQ(.)
549
+ Encoder
550
+ 5
551
+ 1
552
+ 7 39
553
+ 5
554
+ 1
555
+ 7 39
556
+ Neural audio codec
557
+ Encoder
558
+ VQ1(.)
559
+ VQ2(.)
560
+ 5
561
+ 1
562
+ 7 39
563
+ Residual 1
564
+ 1
565
+ 2
566
+ 3 33
567
+ Residual 2
568
+ VQ8(.)
569
+ 12
570
+ 0
571
+ 7 4
572
+ 5
573
+ 1
574
+ 7 39
575
+ 1
576
+ 2
577
+ 3 33
578
+ 12
579
+ 0
580
+ 7 4
581
+ Decoder
582
+ Residual 7
583
+ Fig. 3.
584
+ The overall architecture of the VQ-VAE and Neural audio codec
585
+ models.
586
+ Most of the text-to-speech (TTS) methods [2], [42], [55]
587
+ directly learn the mapping from text to mel-spectrogram in
588
+ continuous space. Then they use a pre-trained vocoder to de-
589
+ code the predicted mel-spectrogram into waveform. However,
590
+ frequency bins in a mel-spectrogram are highly correlated
591
+ along both time and frequency axes in a complicated way,
592
+ especially when the speech sample conveys highly expres-
593
+ sive emotions and speaking styles, leading to a challenging
594
+ modeling problem. Furthermore, the gap between the ground-
595
+ truth mel-spectrogram and the predicted one also influence
596
+ the synthesis performance [56]. In this study, we propose
597
+ to model mel-spectrogram in discrete latent space, but still
598
+ use a HiFi-GAN vocoder [56] to recover waveform from
599
+ mel-spectrogram. Specifically, we first pre-train a VQ-VAE
600
+ with a large-scale speech dataset, so that the pre-trained Mel-
601
+ VQ-VAE encodes all of the linguistic, pitch, energy, emotion
602
+ information into the latent codes. Then we regard the vector
603
+ quantized latent codes as the predicting targets and hence
604
+ model the mel-spectrogram in the discrete latent space. A
605
+ similar idea modeling mel-spectrogram in discrete latent space
606
+ is applied in VQ-TTS [57], which utilizes self-supervised VQ
607
+ acoustic feature (vq-wav2vec [21]) rather than traditional mel-
608
+ spectrogram as intermediate prediction target. VQ-TTS builds
609
+ an autoregressive classification model for prosody label and
610
+ VQ acoustic feature. Different from VQ-TTS, we still use
611
+ mel-spectrogram as intermediate acoustic feature and use a
612
+ VQ-VAE model to transform mel-sepctrogram into a latent
613
+ discrete space for reducing the time-frequency correlations.
614
+ As Figure 3 shows, a mel-spectrogram can be represented by
615
+ a group of mel-spectrogram tokens. Thus, the mel-spectrogram
616
+ synthesis problem transfers to predicting a group of discrete
617
+ tokens, which can be seen as a language modeling problem.
618
+ In the following, we will introduce the details of VQ-VAE,
619
+ then we introduce our proposed Mel-VQ-Diffusion decoder.
620
+ 1) VQ-VAE: VQ-VAE is trained to approximate an input
621
+ using a compressed intermediate representation, retrieved from
622
+ a discrete codebook. VQ-VAE consists of three parts: an
623
+ encoder Evq, a decoder G and a codebook Z = {zk}K
624
+ k=1 ∈
625
+
626
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
627
+ 6
628
+ RK×nz containing a finite number of embedding vectors,
629
+ where K denotes the size of the codebook and nz is the
630
+ dimension of codes. Given a mel-spectrogram s ∈ RF ×L, the
631
+ input s is firstly encoded into a lower-dimension representation
632
+ ˆz = Evq(s) ∈ RF ′×L′×nz where F ′ × L′ represents the
633
+ reduced frequency and time dimension . Then a spatial-wise
634
+ quantizer Q(.) is used to map each spatial feature ˆzij into
635
+ its closest codebook entry zk to obtain a spatial collection of
636
+ spectrogram tokens zq
637
+ zq = Q(ˆz) :=
638
+
639
+ arg min
640
+ zk∈Z
641
+ ||ˆzij −zk||2
642
+ 2 for all (i, j) in (F ′, L′)
643
+
644
+ (7)
645
+ Lastly, the mel-spectrogram can be faithfully reconstructed
646
+ via the decoder, i.e., ˆs = G(zq). In this study, we follow
647
+ VQGAN [20], which adds an adversarial loss [58] to improve
648
+ the reconstruction performance.
649
+ 2) Mel-VQ-Diffusion decoder: With help of the pre-trained
650
+ Mel-VQ-VAE, we transfer the problem of mel-spectrogram
651
+ prediction into that of predicting a group of quantization
652
+ tokens. To generate high-quality mel-spectrogram tokens while
653
+ maintaining fast inference speed, we propose a Mel-VQ-
654
+ Diffusion decoder. In the following, we first introduce the
655
+ basic idea of Mel-VQ-Diffusion, then we summarize the
656
+ training target. Lastly, we introduce a classifier-free guidance
657
+ to enhance the connection between conditional information
658
+ and training target.
659
+ Given the paired training data (x0, y), where y denotes
660
+ the combination of phone features, style features and speaker
661
+ features, x0 denotes the ground truth mel-spectrogram tokens.
662
+ We first build a diffusion process, which corrupts the distribu-
663
+ tion of p(x0) into a controllable stationary distribution p(xT ).
664
+ Then we build a Transformer-based neural network [59] to
665
+ learn to recover the p(x0) conditioned on the y. Inspired by
666
+ previous works [26], [60], we utilize a mask and uniform
667
+ transition matrix to guide the diffusion process. The transition
668
+ matrices Qt ∈ R(K+1)×(K+1) is defined as
669
+ Qt =
670
+
671
+ ����
672
+ αt + βt
673
+ βt
674
+ βt
675
+ · · ·
676
+ 0
677
+ βt
678
+ αt + βt
679
+ βt
680
+ · · ·
681
+ 0
682
+ ...
683
+ ...
684
+ ...
685
+ ...
686
+ ...
687
+ γt
688
+ γt
689
+ γt
690
+ · · ·
691
+ 1
692
+
693
+ ���� .
694
+ (8)
695
+ The transition matrix denotes that each token has a probability
696
+ of γt to transition to [MASK] token, a probability of Kβt be
697
+ resampled uniformly over all the K categories and a probability
698
+ of αt = 1 − Kβt − γt to stay the same token. Based on
699
+ the transition matrix, we can derive the stationary distribution
700
+ p(xT ) as
701
+ p(xT ) = [βT , βT , · · · , γT ],
702
+ (9)
703
+ where αT = �T
704
+ t=1 αt, γT = 1 − �T
705
+ t=1(1 − γt) and βT =
706
+ (1 − αT − γT )/K. We can calculate q(xt|x0) according to
707
+ following formula:
708
+ Qtc(x0) = αtc(x0) + (γt − βt)c(K + 1) + βt.
709
+ (10)
710
+ Decoder Training Target We train a network pθ(xt−1|xt, y)
711
+ to estimate the posterior transition distribution q(xt−1|xt, x0).
712
+ The network is trained to minimize the variational lower bound
713
+ (VLB).
714
+ Ldiff =
715
+ T −1
716
+
717
+ t=1
718
+
719
+ DKL[q(xt−1|xt, x0)||pθ(xt−1|xt, y)]
720
+
721
+ + DKL(q(xT |x0)||p(xT )),
722
+ (11)
723
+ Enhancing the connection between x0 and y Based on
724
+ previous discussion, we can see that the conditional informa-
725
+ tion y inject into the network, to help optimize p(xt−1|xt, y).
726
+ However, in the last few steps, when xt includes enough infor-
727
+ mation, the network may ignore the conditional information y
728
+ in the training stage. To solve this problem, we introduce the
729
+ classifier free guidance [61], [62] to enhance the connection
730
+ between x0 and y. Specifically, instead of only optimizing
731
+ p(x|y), we expect to optimize the following target function:
732
+ log(p(x|y)) + λ log(p(y|x)),
733
+ (12)
734
+ where λ is a hyper-parameter to control the degree of poste-
735
+ rior constraint. Using Bayes’s theorem, Formula (12) can be
736
+ derived as:
737
+ arg max
738
+ x
739
+ [log p(x|y) + λ log p(y|x)]
740
+ = arg max
741
+ x
742
+ [(λ + 1) log p(x|y) − λ log p(x)]
743
+ = arg max
744
+ x
745
+ [log p(x) + (λ + 1)(log p(x|y) − log p(x))].
746
+ (13)
747
+ To predict the unconditional mel-spectrogram token, we follow
748
+ [62] to use a learnable null vector n to represent unconditional
749
+ information y. In the training stage, we set 10% probability
750
+ to use null vector n. In the inference stage, we first generate
751
+ the conditional mel-spectrogram token’s logits pθ(xt−1|xt, y),
752
+ then predict the unconditional mel-spectrogram token’s logits
753
+ pθ(xt−1|xt, n). Based on formula (13), the next step sample
754
+ probability pθ(xt−1|xt, y) can be re-write as:
755
+ pθ(xt−1|xt, n) + (λ + 1)(pθ(xt−1|xt, y) − pθ(xt−1|xt, n))
756
+ (14)
757
+ E. Modelling Waveform in Discrete Latent Space Via Residual
758
+ Vector Quantizer
759
+ Inspired by the success of neural audio codec models, such
760
+ as Soundstream [24] and Encodec [23]. In this study, we
761
+ additionally investigate directly predicting waveform in the
762
+ discrete latent space with the help of large-scale pre-trained
763
+ neural audio codec models.
764
+ Recently, many methods have been proposed to generate
765
+ speech using neural codec model, e.g. AudioLM [11] trains
766
+ speech-to-speech language models on both k-means tokens
767
+ from a self-supervised model and acoustic tokens from a
768
+ neural codec model, leading to high-quality speech-to-speech
769
+ generation. The concurrent work VALL-E [12] is the most
770
+ related to ours, VALL-E proposes to train a two-stage models
771
+ to synthesize speech based on text input and reference audio.
772
+ However, VALL-E needs a two-stage training strategy, and
773
+ the first stage is an autoregressive language model, which
774
+ significant influence the synthesis speed. In this study, we pro-
775
+ pose a non-autoregressive model based on discrete diffusion
776
+
777
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
778
+ 7
779
+ Token
780
+ Embedding
781
+ Encoder
782
+ 5
783
+ 1
784
+ 7 39
785
+ 1
786
+ 2
787
+ 3 33
788
+ 12
789
+ 0
790
+ 7 4
791
+ 1
792
+ M
793
+ M M
794
+ M
795
+ M
796
+ 3 M
797
+ M
798
+ M
799
+ M 0
800
+ Diffusion
801
+ process
802
+ Wave-VQ-
803
+ Diffusion
804
+ Transformer
805
+ Mutil-head
806
+ output layer
807
+ 5
808
+ 1
809
+ 7 39
810
+ 1
811
+ 2
812
+ 3 33
813
+ 12
814
+ 0
815
+ 7 4
816
+ Decoder
817
+ Convolution layer
818
+ Downsample
819
+ Copy and Add
820
+ Upsample
821
+ L denotes the number of tokens generated by one
822
+ codebook, Nq denotes the number of codebook.
823
+ Fig. 4. The framework of our proposed U-transformer-based discrete diffusion decoder.
824
+ model, which significantly improve the synthesis speed while
825
+ maintaining high-quality synthesis performance.
826
+ As Figure 3 shows, compared to Mel-VQ-VAE, the neural
827
+ audio codec model includes more codebooks. Although using
828
+ more codebooks can bring better reconstruction performance,
829
+ it also raise a new research problem: How to model such long
830
+ sequence by transformer? As we known, the computational
831
+ complexity of transformer is related to the sequence length.
832
+ For a 10s speech with 24k sampling rate, if we use 8
833
+ codebooks and set 240 times downsampling in the encoder,
834
+ we will get 8000 tokens. Using a transformer based model
835
+ to handle such long sequence is challenging due to GPU
836
+ memory limitation, thus it is necessary to seek novel strategy
837
+ for long sequence modelling. In this study, we propose a
838
+ U-Transformer architecture to simultaneously model multiple
839
+ codebooks. As Figure 4 shows, we first use several convolution
840
+ layers to downsample the input codebook matrix along the
841
+ codebook number dimension, after the convolution layers,
842
+ we use a transformer to model the relationship of tokens in
843
+ latent space. After that, we use several convolution layers and
844
+ upsampling layers to recover the codebook number dimension.
845
+ Lastly, we use different output layers to output prediction
846
+ results for each codebook simultaneously.
847
+ 1) Wave-VQ-Diffusion:
848
+ There are three differences in
849
+ Wave-VQ-Diffusion comparing to Mel-VQ-Diffusion: (1) We
850
+ adopt a U-transformer architecture to model multiple code-
851
+ books simultaneously. Note that we use the same transformer
852
+ architecture as that in Mel-VQ-Diffusion. (2) We use different
853
+ embedding table for different codebook, due to the fact that
854
+ tokens from different codebooks follows different data distri-
855
+ butions. (3) We design an improved mask and uniform strategy
856
+ for the diffusion process, which is based on a principle that
857
+ the information included in the codebook is gradually decrease
858
+ from codebook 1 to Nq. The first codebook includes the
859
+ most of text, style, speaker identity information, the following
860
+ codebooks mainly include the fine-grained acoustic details,
861
+ which is crucial for the speech’s quality. We conjecture that
862
+ the first codebook’s tokens are easy to recover conditioned
863
+ on y, instead the following codebook’s tokens are hard to
864
+ recover due to the they have not obvious connection with y.
865
+ Following the easy-first-generation principle, we should mask
866
+ the last codebook (e.g. codebook Nq) at the start of the forward
867
+ process and mask the foremost codebook (e.g. codebook 1) at
868
+ the end of the forward process such that the learnable reverse
869
+ process follows an easy-first generative behavior. However,
870
+ previous commonly-used mask and uniform strategy assumes
871
+ all of the token in the sequence are of the same importance,
872
+ which violates the easy-first-generation principle. To solve this
873
+ problem, we propose an improved mask and uniform strategy,
874
+ whose details are presented in the following.
875
+ Improved Mask and uniform strategy We dynamically al-
876
+ locate different weights for different codebooks when we pre-
877
+ define the transition matrix. Considering these aforementioned
878
+ properties, we construct αi
879
+ t , γi
880
+ t and β
881
+ i
882
+ t as follows
883
+ αi
884
+ t = 1 − t
885
+ T −
886
+ exp( i%Nq
887
+ 2∗Nq )
888
+ 2 ∗ T
889
+ ,
890
+ γi
891
+ t = t
892
+ T +
893
+ exp( i%Nq
894
+ 2∗Nq )
895
+ 2 ∗ T
896
+ ,
897
+ β
898
+ i
899
+ t = (1 − αi
900
+ t − γi
901
+ t)/K,
902
+ (15)
903
+ where Nq denotes the the number of codebooks in neural audio
904
+ codec model, i denotes the token position in the sequence. In
905
+ our study, we concatenate all of the tokens from codebook 1
906
+ to codebook Nq.
907
+ F. The Training and Inference Details
908
+ In this section, we summarize the overall training objective
909
+ and the inference process.
910
+ 1) Training objective: Our proposed InstructTTS can be
911
+ trained in an end-to-end manner. The overall training objective
912
+ is as follows:
913
+ L = Ldiff + Lvar + λ1I(ze; c) + λ2I(ze; zsid)+
914
+ λ3DEuc(zc, ze) − β1F1(θ1) − β2F2(θ2).
915
+ (16)
916
+ where Ldiff denotes the diffusion loss, Lvar denotes the dura-
917
+ tion, pitch and energy reconstruction loss. I(.) denotes mutual
918
+ information, DEuc denotes the L2 loss. F1(θ1) and F2(θ2)
919
+ denote the likelihood approximation model of qθ1(zsid|ze)
920
+
921
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
922
+ 8
923
+ Algorithm 1 Training of the InstructTTS.
924
+ Require:
925
+ Pre-trained prompt encoder, A transition matrix Qt,
926
+ timestep T, network parameters θ, training epoch N,
927
+ NLSpeech dataset D, the encoder of VQ-VAE Evq.
928
+ 1: for i = 1 to N do
929
+ 2:
930
+ for (conetent prompt, style prompt, audio) in D do
931
+ 3:
932
+ mel = get mel spectrogram(audio);
933
+ 4:
934
+ x0 = Evq(mel);
935
+ 5:
936
+ c =ContentEncoder(content prompt);
937
+ 6:
938
+ ze =AudioEncoder(mel);
939
+ 7:
940
+ zp =PromptEmb(style prompt);
941
+ 8:
942
+ zs =SpeakerEmb(speaker id);
943
+ 9:
944
+ y = c + ze + zs;
945
+ 10:
946
+ sample t from Uniform(1, 2, 3, ..., T);
947
+ 11:
948
+ sample xt from q(xt|x0) based on formula (10);
949
+ 12:
950
+ estimate pθ(xt−1|xt, y);
951
+ 13:
952
+ calculate loss according to formula (16);
953
+ 14:
954
+ update network θ;
955
+ 15:
956
+ end for
957
+ 16: end for
958
+ 17: return network θ.
959
+ Algorithm 2 Inference of the InstructTTS.
960
+ Require:
961
+ Time stride ∆t, timestep T, Content Prompt, Style
962
+ Prompt, the decoder of VQ-VAE G, network θ, stationary
963
+ distribution p(xT );
964
+ 1: t = T, c =ContentEncoder(content prompt);
965
+ 2: zs =SpeakerEmb(speaker id);
966
+ 3: zp =PromptEmb(style prompt);
967
+ 4: y = c + zp + zs;
968
+ 5: sample xt from p(xT );
969
+ 6: while t>0 do
970
+ 7:
971
+ sample xt based on formula (14)
972
+ 8:
973
+ t ← (t − ∆t)
974
+ 9: end while
975
+ 10: return G(xt).
976
+ and qθ2(ze|c) respectively. Details about the MI estimation
977
+ and minimization can be found in [49]. The whole training
978
+ process is summarized on Algorithm 1. Note that we assume
979
+ a Mel-VQ-Diffusion decoder is used in Algorithm 1. When we
980
+ use a Wave-VQ-diffusion decoder, a similar process is used.
981
+ 2) Inference: In the inference process, we directly use the
982
+ feature extracted by style prompt embedding model as the style
983
+ features. In our experiments, we set the T = 100 and ∆t = 1.
984
+ The whole inference process is summarized on Algorithm 2.
985
+ V. EXPERIMENTAL SETUP
986
+ A. Dataset and Data Pre-processing
987
+ 1) Dataset for Vector Quantization Pre-training: To obtain
988
+ a robust and acoustic-informative Vector Quantization model,
989
+ we combine one internal dataset with three commonly-used
990
+ public-available TTS datasets: (1) Our internal dataset, which
991
+ is a Mandarin Chinese speech corpus, including 300h speech
992
+ data. (2) The VCTK dataset 2. (3) The AISHELL3 dataset [?].
993
+ (4) The LibriTTS clean dataset [63]. In total, the training set
994
+ has 669 hours speech data.
995
+ 2) Dataset for InstructTTS: We use our internal dataset
996
+ NLSpeech as our training and testing dataset. The details can
997
+ refer to Section III.
998
+ 3) Data pre-processing: All audio clips have a sampling
999
+ rate of 24kHz. For Mel-VQ-VAE pre-training, the log mel-
1000
+ spectrograms extracted using a 1024-points Hanning window
1001
+ with 240-points hop size and 80 mel bins. The PyWorld toolkit
1002
+ 3 is used to compute F0 values from speech signals. Energy
1003
+ features are computed by taking the l2-norm of frequency bins
1004
+ in STFT magnitudes.
1005
+ B. Implementation Details
1006
+ We first pre-train the Mel-VQ-VAE and neural audio codec
1007
+ models. Then we fix the pre-trained model, and train the
1008
+ InstructTTS model in an end-to-end manner. In the following,
1009
+ we will introduce the details of network structure and training
1010
+ strategy.
1011
+ 1) VQ-VAE: In this study, we follow VQ-GAN [20], [25],
1012
+ adopting similar network architecture for the VQ-VAE encoder
1013
+ Evq, decoder G, and discriminator D. To preserve more time-
1014
+ dimension information, we set a downsampling factor of 2
1015
+ along the time axis, and a downsampling factor of 20 along
1016
+ the frequency axis. For the codebook Z, the dimension of each
1017
+ code word vector nz is set as 256, and the codebook dictionary
1018
+ size K is set as 512. The learning rate is fixed and determined
1019
+ as a product of a base learning rate, the number of GPUs used
1020
+ and the batch size. In our experiments, the base learning rate
1021
+ is set as 1 × E−6. The Adam optimizer [64] (the betas are
1022
+ 0.5 and 0.9) is adopted to optimize weights. We train VQ-
1023
+ VAE with batches of 24 mel-spectrograms on 8 Nvidia V100
1024
+ GPUs. The training takes about 3 days on the our dataset.
1025
+ 2) Neural Audio Codec Model: Inspired by the success of
1026
+ Encodec [23] and SoundStream [24], we adopt similar network
1027
+ architecture with the Encodec model. Specifically, the encoder
1028
+ model E consists with a 1D convolution layer with 32 hidden
1029
+ channels and a kernel size of 7, followed by 4 convolution
1030
+ blocks. Each convolution block is composed of a single
1031
+ residual unit followed by a down-sampling layer consisting
1032
+ with a strided convolution layer, with a kernel size twice of
1033
+ the stride. The residual unit contains two convolution layers
1034
+ and a skip connection. The number of channels is doubled
1035
+ whenever down-sampling occurs. The convolution blocks are
1036
+ followed by a two-layer LSTM for sequence modeling and a
1037
+ final 1D convolution layer with a kernel size of 7 and 32 output
1038
+ channels. In our study, we set the strides as S = [6, 5, 4, 2]. We
1039
+ set the maximum codebook size as 12 in the training process.
1040
+ Similar to SoundStream [24], quantizer dropout is used. To
1041
+ maintain high-quality audio reconstruction performance, a
1042
+ multi-scale STFT-based (MS-STFT) discriminator is used. We
1043
+ train the neural audio codec model with batches of 32 audio
1044
+ segments (we randomly crop 1 second segment from a audio
1045
+ sample) on 32 Nvidia V100 GPUs. The training takes about
1046
+ 3 days for 300 epochs in our dataset.
1047
+ 2https://datashare.ed.ac.uk/handle/10283/2651
1048
+ 3https://github.com/JeremyCCHsu/Python-Wrapper-for-World-Vocoder
1049
+
1050
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1051
+ 9
1052
+ 3) InstructTTS: Our proposed InstructTTS consists of three
1053
+ main parts: style encoder, content encoder and discrete diffu-
1054
+ sion decoder. For the content encoder, we follow the Fast-
1055
+ Speech2 [2], using the same architecture for the phoneme
1056
+ encoder and the variance adaptor. For the style encoder, which
1057
+ includes a pre-trained Prompt encoder model (the details refer
1058
+ to Section IV-C) and an audio encoder. The audio encoder
1059
+ consists of two convolution layers and one multi-head attention
1060
+ module. For the discrete diffusion model, we follow the similar
1061
+ architecture as [26], we built a 12-layer 8- head transformer
1062
+ with a dimension of 256 for the decoder. Each transformer
1063
+ block contains a full-context attention, a linear fusion layer
1064
+ to combine conditional features and a feed-forward network
1065
+ block. For the default setting, we set timesteps T = 100. We
1066
+ adopt the linear schedule strategy, which linearly increase γt
1067
+ and βt from 0 to 0.9 and 0.1, and decrease αt from 1 to 0. We
1068
+ optimize our network using the AdamW optimizer [65] with
1069
+ β1 = 0.9 and β2 = 0.94. The basic learning rate is 3 × E−6,
1070
+ and batch size is 16 for each GPU.
1071
+ C. Baseline Approach
1072
+ In the literature, there is no existing expressive TTS model
1073
+ using natural language style prompt to control stylish gener-
1074
+ ation. Following traditional neural TTS paradigm which pre-
1075
+ dicts intermediate acoustic features, such mel-spectrograms,
1076
+ from text input, we adapt the StyleSpeech model proposed
1077
+ in [14] as the baseline approach. We replace the Mel-Style-
1078
+ Encoder in the StyleSpeech model with the same style encoder
1079
+ module used in InstructTTS, making the comparison as fair
1080
+ as possible. The baseline model uses the same HiFi-GAN
1081
+ vocoder to generate waveform as the proposed model.
1082
+ VI. EVALUATION METRIC
1083
+ A. Objective Evaluation
1084
+ We evaluate the synthesized speech from two aspects:
1085
+ speech quality and prosody similarity. For speech quality, we
1086
+ adopt Mel-cepstral distorion (MCD) [66], structural similarity
1087
+ index measure (SSIM) [67] and Short-Time Objective Intelli-
1088
+ gibility (STOI) [68] to evaluate the speech quality. For prosody
1089
+ similarity, we use three pitch-related metrics: Gross Pitch Error
1090
+ (GPE), Voicing Decision Error (VDE) [69] and F0 Frame
1091
+ Error (FFE) [70]. GPE, VDE and FFE are widely applied to
1092
+ evaluate the performance of expressive TTS. The details of
1093
+ these metrics will be introduced as follows.
1094
+ 1) Mel-cepstral distorion: Spectral features, based on the
1095
+ short-term power spectrum of sound, such as Mel-cepstral
1096
+ coefficients (MCEPs), contain rich information about expres-
1097
+ sivity and emotion [71]. Mel-cepstral Distortion (MCD) [66]
1098
+ is a widely adopted metric to measure the spectrum similarity,
1099
+ which is computed as
1100
+ MCD = 1
1101
+ T
1102
+ T −1
1103
+
1104
+ t=0
1105
+
1106
+
1107
+
1108
+
1109
+ M
1110
+
1111
+ m=1
1112
+ (cm,t − ˆcm,t)2,
1113
+ (17)
1114
+ where cm,t and ˆcm,t denote the m-th mel-frequency cepstral
1115
+ coefficient (MFCC) of the t-th frame from the reference and
1116
+ synthesized speech. We sum the squared differences over the
1117
+ first M MFCCs. In this study, we set M = 24.
1118
+ 2) SSIM and STOI: Structural similarity index measure
1119
+ (SSIM) [67] and Short-Time Objective Intelligibility (STOI)
1120
+ [68] are effective metrics to evaluate the speech clarity and
1121
+ intelligibility. Following previous work [72], we also adopt
1122
+ them as one of the metrics for speech quality.
1123
+ 3) Prosody-related metrics: Given that pitch is considered
1124
+ as a major prosodic factor contributing to speech emotion and
1125
+ closely correlated to the activity level [73], [74], in this study,
1126
+ we adopt three common pitch similarity metrics to evaluate the
1127
+ synthesis results, which are Gross Pitch Error (GPE), Voicing
1128
+ Decision Error (VDE) and F0 Frame Error (FFE) [70], with
1129
+ detailed descriptions as follows:
1130
+ 1) Gross Pitch Error (GPE): measures the pitch similarity
1131
+ between a pair of compared utterances.
1132
+ 2) Voice Decision Error (VDE): measures the difference of
1133
+ voiced/unvoiced decision between a pair of compared
1134
+ utterances.
1135
+ 3) F0 Frame Error (FFE): reflects both pitch similarity and
1136
+ voiced/unvoiced decision differences between a pair of
1137
+ compared utterances.
1138
+ The metrics of GPE, VDE and FFE have been used as common
1139
+ objective evaluation metric for expressive TTS [7].
1140
+ B. Subjective Evaluation
1141
+ To further validate the effectiveness of our proposed method,
1142
+ we conduct subjective evaluation from two aspects: speech
1143
+ quality and style relevance.
1144
+ 1) Speech quality: We first conduct the Mean Opinion
1145
+ Score (MOS) test to evaluate speech quality, which aims to
1146
+ evaluate the speech’s naturalness, fidelity and intelligibility.
1147
+ All participants are asked to listen to the reference speech
1148
+ (“Ground truth”) and the synthesized speech and score the
1149
+ “quality” of each speech sample on a 5-point scale (‘5’ for
1150
+ excellent, ‘4’ for good, ‘3’ for fair, ‘2’ for poor, and ‘1’ for
1151
+ bad). Each audio sample is rated by at least 20 testers.
1152
+ 2) The style’s relevance between synthesized speech and the
1153
+ natural language prompt: We conduct RMOS (relevance mean
1154
+ opinion score) for speaking style relevance on the testing set
1155
+ to evaluate the relevance between synthesized speech and the
1156
+ prompt. All participants are asked to read the natural language
1157
+ prompt and then listen to the synthesized speech. After that,
1158
+ the participants are asked to score the “relevance” of each
1159
+ speech sample on a 5-point scale (‘5’ for excellent, ‘4’ for
1160
+ good, ‘3’ for fair, ‘2’ for poor, and ‘1’ for bad). Each audio
1161
+ sample is rated by at least 20 testers.
1162
+ 3) AXY test: We propose to use AXY test [7] to assess
1163
+ the style relevance between the generated speech with its
1164
+ corresponding natural language style prompt. An AXY test
1165
+ aims to assess the style transfer performance, where raters
1166
+ are asked to rate a 7-point score (from -3 to 3) and choose
1167
+ the speech samples which sound closer to the target style in
1168
+ terms of style expression. For each reference (A), the listeners
1169
+ are asked to choose a preferred one among the samples
1170
+ synthesized by the baseline model (X) and proposed Method
1171
+ (Y), from which AXY preference rates are calculated. The
1172
+ scale ranges of 7-point are from “X is much closer” to “Both
1173
+ are about the same distance” to “Y is much closer”, and can
1174
+
1175
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1176
+ 10
1177
+ TABLE II
1178
+ OBJECTIVE AND SUBJECTIVE EVALUATION AS WELL AS MODEL SIZE RESULTS. MCD, SSIM, STOI, GPE, VDE AND FFE ARE ADOPTED AS OBJECTIVE
1179
+ METRICS. GT DENOTES THE GROUND TRUTH SPEECH, GT (VOC) DENOTES THAT WE USE PRE-TRAINED VOCODER (HIFI-GAN) RECOVER SPEECH FROM
1180
+ MEL-SPECTROGRAM. MOS ANS RMOS AS THE SUBJECTIVE METRIC, IS PRESENTED WITH 95% CONFIDENCE INTERVALS.
1181
+ Model
1182
+ Decoder
1183
+ MCD(↓)
1184
+ SSIM(↑)
1185
+ STOI (↑)
1186
+ GPE(↓)
1187
+ VDE(↓)
1188
+ FFE(↓)
1189
+ MOS(↑)
1190
+ RMOS(↑)
1191
+ GT
1192
+ -
1193
+ 4.62 ± 0.05
1194
+ 4.65 ± 0.05
1195
+ GT (voc)
1196
+ -
1197
+ 5.02
1198
+ 0.695
1199
+ 0.893
1200
+ 0.006
1201
+ 0.076
1202
+ 0.08
1203
+ 4.41 ± 0.07
1204
+ 4.61 ± 0.07
1205
+ Baseline
1206
+ Mel-decoder
1207
+ 5.75
1208
+ 0.385
1209
+ 0.613
1210
+ 0.476
1211
+ 0.347
1212
+ 0.42
1213
+ 4.04 ± 0.08
1214
+ 3.85 ± 0.1
1215
+ InstructTTS
1216
+ Mel-VQ-Diff
1217
+ 5.69
1218
+ 0.387
1219
+ 0.607
1220
+ 0.479
1221
+ 0.343
1222
+ 0.40
1223
+ 4.35 ± 0.07
1224
+ 4.22 ± 0.09
1225
+ Wave-VQ-Diff
1226
+ 5.77
1227
+ 0.365
1228
+ 0.587
1229
+ 0.433
1230
+ 0.343
1231
+ 0.39
1232
+ 3.59 ± 0.08
1233
+ 4.27 ± 0.07
1234
+ TABLE III
1235
+ THE AXY PREFERENCE TEST RESULTS FOR SPEAKING STYLE
1236
+ RELEVANCE.
1237
+ X
1238
+ Y
1239
+ 7-point score
1240
+ Baseline
1241
+ InstructTTS (Mel)
1242
+ 0.72
1243
+ InstructTTS (Wave)
1244
+ 0.84
1245
+ TABLE IV
1246
+ THE EMOTION CLASSIFICATION PROBABILITY (%) COMPARISON
1247
+ BETWEEN OUR PROPOSED METHODS AND THE BASELINE. FOR EACH TYPE
1248
+ OF EMOTION, WE CHOOSE 15 SAMPLES. THE TABLE REPORTS THE
1249
+ AVERAGED PROBABILITY VALUES OF 15 UTTERANCES.
1250
+ Model
1251
+ Sad
1252
+ Happy
1253
+ Angry
1254
+ Overall
1255
+ GT
1256
+ 100
1257
+ 88.80
1258
+ 94.70
1259
+ 95.20
1260
+ Baseline
1261
+ 64.28
1262
+ 66.60
1263
+ 68.15
1264
+ 66.70
1265
+ InstructTTS (Mel)
1266
+ 71.42
1267
+ 66.60
1268
+ 68.40
1269
+ 69.10
1270
+ InstructTTS (Wave)
1271
+ 71.42
1272
+ 55.50
1273
+ 84.21
1274
+ 71.42
1275
+ naturally be mapped on the integers from -3 to 3. Note that we
1276
+ do not use the ground truth speech as reference, instead we
1277
+ ask raters to read the natural language style prompt, and then
1278
+ evaluate which synthesized speech is closer to the prompt in
1279
+ terms of semantic meaning in emotion and style.
1280
+ C. Emotion Perception Test
1281
+ Given that speaking style is related with emotion. We choose
1282
+ three types of test samples (happy, sad and angry) from
1283
+ our test set based on the natural language prompt. Then we
1284
+ expect our proposed methods can generate similar emotional
1285
+ speech with the guidance of natural language prompt. We
1286
+ propose to use emotion classification probability to validate the
1287
+ emotion perception performance. Intuitively, the classification
1288
+ probabilities summarize the useful emotion information from
1289
+ the previous layers for final output layer. Thus, we believe
1290
+ that the classification probabilities can be an effective tool
1291
+ to justify the synthesized speech’s performance. To realize
1292
+ this, we first pre-train an emotion classification model in our
1293
+ internal emotion classification dataset. We adopt a pre-trained
1294
+ wav2vec2 [75] model as feature extractor, and then we add
1295
+ two linear layers and one softmax layer.
1296
+ VII. RESULTS AND ANALYSIS
1297
+ In this section, we conduct experiments to verify the ef-
1298
+ fectiveness of our proposed InstructTTS. We first compare
1299
+ the performance between our proposed InstructTTS and the
1300
+ baseline. Then we conduct ablation studies to validate the
1301
+ effectiveness of each part of our proposed methods.
1302
+ TABLE V
1303
+ THE ABLATION STUDY FOR CROSS-MODAL REPRESENTATION LEARNING.
1304
+ WE EVALUATED WITH THE TEST SET OF CHINESE STS-B CORPUS. SCC
1305
+ DENOTES SPEARMAN CORRELATION COEFFICIENT.
1306
+ Model
1307
+ SCC (%)
1308
+ w/o cross-modal learning
1309
+ 80.4
1310
+ w cross-modal learning
1311
+ 80.94
1312
+ A. The comparison between proposed InstructTTS and Base-
1313
+ line
1314
+ 1) The analysis of objective metrics: Table II shows the
1315
+ objective metrics (MCD, SSIM, STOI, GPE, VDE, FFE) com-
1316
+ parison between our proposed InstructTTS and the baseline
1317
+ system. We have the following observations: (1) Our proposed
1318
+ InstructTTS achieves better performance than the baseline
1319
+ system in terms of speech quality and prosody. (2) Using Mel-
1320
+ VQ-Diffusion as decoder can realize better speech quality than
1321
+ Wave-VQ-Diffusion, but Wave-VQ-Diffusion is superior in
1322
+ maintaining prosody details. One of the reasons is that the pre-
1323
+ trained Mel-VQ-VAE downsamples 20 times in the frequency
1324
+ dimension, which may harm the pitch information. Instead,
1325
+ Wave-VQ-Diffusion directly models all of the information
1326
+ in time domain, prosody-related information can be well
1327
+ reserved, but some acoustic details may loss.
1328
+ 2) Subjective Evaluation: We conduct crowd-sourced mean
1329
+ opinion score (MOS) tests to evaluate the quality of the
1330
+ synthesized speech perceptually. Furthermore, we also conduct
1331
+ crowd-sourced relevance mean opinion score (RMOS) tests
1332
+ to evaluate the relevance between the synthesized speech and
1333
+ the prompt. The results are shown on Table II. We can see
1334
+ that InstructTTS (mel) gets the best MOS performance, and
1335
+ InstructTTS (wave) gets the best RMOS performance. We can
1336
+ see that both of our proposed InstructTTS obtain better RMOS
1337
+ performance than the baseline. The subjective evaluation re-
1338
+ sults are consist with the objective evaluation results. We can
1339
+ also observe that the speech quality of InstructTTS (wave) still
1340
+ has room for improvement in quality, on which we will further
1341
+ study in our future work.
1342
+ We additionally conduct AXY preference test to compare
1343
+ InstructTTS and the baseline in terms of the naturalness of
1344
+ prosody in their generated speech. From Table III, we can see
1345
+ that the raters show much higher preference to the proposed
1346
+ InstructTTS (Mel) and InstructTTS (Wave) than to the baseline
1347
+ model.
1348
+ 3) Emotion Perception Evaluation: To further evaluate the
1349
+ expressiveness in modeling speaking emotion and styles with
1350
+ InstructTTS, we conduct perception evaluation with a speech
1351
+
1352
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1353
+ 11
1354
+ TABLE VI
1355
+ THE TEXT-TO-AUDIO RETRIEVAL PERFORMANCE IN THE TEST SET. WE
1356
+ USE RECALL AT RANK K (R@K) AS THE METRICS.
1357
+ Loss Type
1358
+ R@1
1359
+ R@5
1360
+ R@10
1361
+ Contrastive Loss
1362
+ 11.62
1363
+ 42.97
1364
+ 61.72
1365
+ InfoNCE
1366
+ 15.62
1367
+ 42.97
1368
+ 63.67
1369
+ TABLE VII
1370
+ THE ABLATION STUDY FOR MUTUAL INFORMATION MINIMIZATION
1371
+ (MIM) TRAINING STRATEGY.
1372
+ Model
1373
+ MIM
1374
+ MCD(↓)
1375
+ SSIM(↑)
1376
+ FFE(↓)
1377
+ InstructTTS (Mel)
1378
+ 5.94
1379
+ 0.368
1380
+ 0.44
1381
+
1382
+ 5.69
1383
+ 0.387
1384
+ 0.40
1385
+ InstructTTS (Wave)
1386
+ 5.91
1387
+ 0.355
1388
+ 0.43
1389
+
1390
+ 5.77
1391
+ 0.365
1392
+ 0.39
1393
+ emotion classification model. The details are introduced in
1394
+ Section VI-C. The results are reported in Table IV. We can
1395
+ see that our pre-trained speech emotion classification (SEC)
1396
+ model obtains a good classification performance in the ground
1397
+ truth set, which proves that our SEC model is effective.
1398
+ Furthermore, we can observe that our proposed InstructTTS
1399
+ got better classification performance, with the InstructTTS
1400
+ (Wave) model getting the best performance. We note that the
1401
+ evaluation results are consistent with the FFE results.
1402
+ B. Ablation studies for InstructTTS
1403
+ 1) The impact of cross-modal representation learning for
1404
+ robust style embedding: In this section, we explore the effec-
1405
+ tiveness of our proposed cross-modal representation learning
1406
+ in Section IV-C. Table V presents the results. We can see
1407
+ that, after finetuning with our proposed cross-modal repre-
1408
+ sentation learning, the performance of the RoBERTa even
1409
+ achieves better performance in STS task than only finetuning
1410
+ with SimCSE. Furthermore, we also evaluate the text-to-audio
1411
+ retrieval performance in the test set. As Table VI shows, we
1412
+ can see that using InfoNCE loss as training objective can bring
1413
+ better retrieval performance than the contrastive ranking loss.
1414
+ 2) The Impact of Mutual information minimization (MIM)
1415
+ training: In this study, we propose to using mutual information
1416
+ minimization strategy to constrain the encoded information
1417
+ by the audio encoder, we expect the audio encoder only
1418
+ encodes the style-related information. In this part, we conduct
1419
+ ablation studies to investigate whether our proposed MIM
1420
+ strategy can bring better performance. The experiments results
1421
+ report on Table VII. We can see that using MIM training
1422
+ strategy can significant improvement in both speech quality
1423
+ and pitch similarity, which proved that effectiveness of feature
1424
+ disentangled strategy.
1425
+ 3) The effectiveness of classifier-free guidance: In this
1426
+ study, we propose to use classifier-free guidance (CFG) strat-
1427
+ egy to enhance the connection between conditional informa-
1428
+ tion and the predicted results. To validate the effectiveness of
1429
+ classifier-free guidance, we conduct ablation study, the exper-
1430
+ iments are shown on Table VIII. We can see that using CFG
1431
+ strategy can bring better performance due to it enhancing the
1432
+ connection between conditional information and the predicted
1433
+ TABLE VIII
1434
+ THE ABLATION STUDY FOR THE EFFECTIVENESS OF CLASSIFIER-FREE
1435
+ GUIDANCE (CFG).
1436
+ Model
1437
+ CFG
1438
+ MCD(↓)
1439
+ SSIM(↑)
1440
+ FFE(↓)
1441
+ InstructTTS (Mel)
1442
+ 5.75
1443
+ 0.36
1444
+ 0.413
1445
+
1446
+ 5.69
1447
+ 0.387
1448
+ 0.40
1449
+ InstructTTS (Wav)
1450
+ 5.75
1451
+ 0.353
1452
+ 0.41
1453
+
1454
+ 5.77
1455
+ 0.365
1456
+ 0.39
1457
+ Frame
1458
+ F0 (Hz)
1459
+ Fig. 5. Pitch tracks. We present the F0 contours of 10 different runs with the
1460
+ same text input, speaker id and style prompt conditioning.
1461
+ results, which forces the model to better utilize the conditional
1462
+ information.
1463
+ 4) The effectiveness of improved diffusion strategy for
1464
+ Wave-VQ-Diffusion decoder: Table IX shows the experiments
1465
+ results when we use different diffusion strategies. We can see
1466
+ that our proposed improved mask and uniform strategy can
1467
+ bring better performance. The experimental results validate
1468
+ our proposed easy-first-generation principle.
1469
+ 5) Discuss how many codebooks (Nq) we should use when
1470
+ we train InstructTTS (Wave): As we discuss in Section V-B,
1471
+ we train a neural audio codec model using 12 codebooks in
1472
+ total. In practice, we do not need to use all of 12 codebooks.
1473
+ Although using more codebooks can bring better speech
1474
+ quality, it also bring burden for the network. To choose a
1475
+ suitable Nq, we follow two principles: (1) make sure using Nq
1476
+ codebooks can get satisfactory reconstruction performance. (2)
1477
+ Nq should be as small as possible. We use an out-of-domain
1478
+ test set (including 1024 high-quality 24kHz audio samples) to
1479
+ evaluate the reconstruction performance of our neural audio
1480
+ codec model and the pre-trained Encodec model
1481
+ 4. Table
1482
+ X shows the experimental results. We can see that when
1483
+ using 8 codebooks, we can get a comparable reconstruction
1484
+ performance with Encodec. Thus, we set Nq = 8 when we
1485
+ train InstructTTS (Wave) in this study. We also explore using
1486
+ Nq = 12 but receive not obvious performance boost. We
1487
+ conjecture that the amount of data in the NLSpeech dataset
1488
+ is still in-sufficient and using a larger-scale dataset can bring
1489
+ extra improvement.
1490
+ C. Synthesis Variation
1491
+ Unlike the baseline systhem, which output is uniquely
1492
+ determined by the input text and other conditional informa-
1493
+ tion (such as speaker identity, natural language prompt) at
1494
+ inference, InstructTTS takes sampling processes at denoising
1495
+ steps and can inject some variations into the generated speech.
1496
+ To demonstrate this, we run a InstructTTS (mel) model 10
1497
+ times for a particular input text, speaker and natural language
1498
+ 4https://github.com/facebookresearch/encodec
1499
+
1500
+ 400
1501
+ 350
1502
+ 300
1503
+ 250
1504
+ !
1505
+ 200
1506
+ 150
1507
+ ·
1508
+ 100
1509
+ 50
1510
+ 20
1511
+ 40
1512
+ 60
1513
+ 80
1514
+ 100
1515
+ 120
1516
+ 140
1517
+ 160JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1518
+ 12
1519
+ TABLE IX
1520
+ THE ABLATION STUDY FOR DIFFERENT DIFFUSION STRATEGY. MAR
1521
+ REPRESENTS THE MASK AND REPLACE STRATEGY. I-MAR DENOTES OUR
1522
+ IMPROVED MASK AND REPLACE STRATEGY. NOTE THAT WE CONDUCT
1523
+ EXPERIMENTS ON WAVE-VQ-DIFFUSION BASED INSTRUCTTTS IN THIS
1524
+ PART.
1525
+ Model
1526
+ MCD
1527
+ SSIM
1528
+ STOI
1529
+ FFE
1530
+ InstructTTS (MAR)
1531
+ 5.85
1532
+ 0.354
1533
+ 0.565
1534
+ 0.42
1535
+ InstructTTS (I-MAR)
1536
+ 5.77
1537
+ 0.365
1538
+ 0.587
1539
+ 0.39
1540
+ TABLE X
1541
+ THE NEURAL AUDIO CODEC’S RECONSTRUCTION PERFORMANCE
1542
+ COMPARISON. Nq DENOTES WE USE Nq CODEBOOKS TO
1543
+ RECONSTRUCTION THE AUDIO.
1544
+ Model
1545
+ Nq
1546
+ PESQ
1547
+ STOI
1548
+ Neural Audio Codec Model (ours)
1549
+ 1
1550
+ 1.974
1551
+ 0.802
1552
+ 2
1553
+ 2.632
1554
+ 0.869
1555
+ 4
1556
+ 3.240
1557
+ 0.910
1558
+ 8
1559
+ 3.54
1560
+ 0.932
1561
+ 12
1562
+ 3.62
1563
+ 0.937
1564
+ Encodec
1565
+ 24
1566
+ 3.206
1567
+ 0.965
1568
+ prompt, and then compute the F0 contours of the generated
1569
+ speech samples. We visualize in Figure 5 and observe that
1570
+ InstructTTS can synthesize speech with diverse pitches.
1571
+ VIII. CONCLUSION
1572
+ In this work, we present InstructTTS, which can synthesize
1573
+ expressive speech with the natural language prompt. To our
1574
+ best of knowledge, this is the first work to use long and
1575
+ complex natural language prompt to control the speaking style.
1576
+ In terms of acoustic model, we propose a novel perspective
1577
+ to model expressive TTS: we propose to model expressive
1578
+ TTS in the discrete latent space and cast speech synthesis as
1579
+ a language modeling task. We explore two kinds of modelling
1580
+ methods: (1) modelling mel-spectrogram with the help of
1581
+ a pre-trained Mel-VQ-VAE model; (2) modeling waveform
1582
+ with the help of a pre-trained neural audio codec model. In
1583
+ terms of model structure, we propose a novel U-transformer,
1584
+ which can effectively model long-sequence. Our experiments
1585
+ demonstrate the advantages of our proposed method.
1586
+ This work still has some limitations that need to be ad-
1587
+ dressed in our future work: (1) The inference speed is limited
1588
+ due to the diffusion step is large (we use 100 diffusion steps).
1589
+ (2) We will build large-scale dataset to train the InstructTTS
1590
+ models, similar to VALL-E and AudioLM. We believe that
1591
+ InstructTTS is expected to be more robust when the amount
1592
+ of training data increases.
1593
+ ACKNOWLEDGMENTS
1594
+ We thank the help of our colleagues Mingjie Jin and Dan
1595
+ Su for this paper. They help us build the NLSpeech dataset.
1596
+ REFERENCES
1597
+ [1] Y. Wang, R. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly,
1598
+ Z. Yang, Y. Xiao, Z. Chen, S. Bengio, et al., “Tacotron: Towards end-
1599
+ to-end speech synthesis,” arXiv preprint arXiv:1703.10135, 2017.
1600
+ [2] Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, et al., “Fastspeech 2:
1601
+ Fast and high-quality end-to-end text to speech,” arXiv preprint
1602
+ arXiv:2006.04558, 2020.
1603
+ [3] J. Kim, J. Kong, and J. Son, “Conditional variational autoencoder
1604
+ with adversarial learning for end-to-end text-to-speech,” in International
1605
+ Conference on Machine Learning, pp. 5530–5540, PMLR, 2021.
1606
+ [4] N. Tits, F. Wang, K. E. Haddad, V. Pagel, and T. Dutoit, “Visualization
1607
+ and interpretation of latent spaces for controlling expressive speech
1608
+ synthesis through audio analysis,” arXiv preprint arXiv:1903.11570,
1609
+ 2019.
1610
+ [5] N. Tits, K. El Haddad, and T. Dutoit, “Exploring transfer learning for
1611
+ low resource emotional tts,” in Proceedings of SAI Intelligent Systems
1612
+ Conference, pp. 52–60, Springer, 2019.
1613
+ [6] Y. Wang, D. Stanton, Y. Zhang, R.-S. Ryan, E. Battenberg, J. Shor,
1614
+ Y. Xiao, Y. Jia, F. Ren, and R. A. Saurous, “Style tokens: Unsupervised
1615
+ style modeling, control and transfer in end-to-end speech synthesis,” in
1616
+ International Conference on Machine Learning, pp. 5180–5189, PMLR,
1617
+ 2018.
1618
+ [7] R. Skerry-Ryan, E. Battenberg, Y. Xiao, Y. Wang, D. Stanton, J. Shor,
1619
+ R. Weiss, R. Clark, and R. A. Saurous, “Towards end-to-end prosody
1620
+ transfer for expressive speech synthesis with tacotron,” in international
1621
+ conference on machine learning, pp. 4693–4702, PMLR, 2018.
1622
+ [8] Y. Jia, Y. Zhang, R. Weiss, Q. Wang, J. Shen, F. Ren, P. Nguyen,
1623
+ R. Pang, I. Lopez Moreno, Y. Wu, et al., “Transfer learning from
1624
+ speaker verification to multispeaker text-to-speech synthesis,” Advances
1625
+ in neural information processing systems, vol. 31, 2018.
1626
+ [9] D. Yang, S. Liu, J. Yu, H. Wang, C. Weng, and Y. Zou, “Norespeech:
1627
+ Knowledge distillation based conditional diffusion model for noise-
1628
+ robust expressive tts,” arXiv preprint arXiv:2211.02448, 2022.
1629
+ [10] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
1630
+ A. Neelakantan, P. Shyam, G. Sastry, A. Askell, et al., “Language mod-
1631
+ els are few-shot learners,” Advances in Neural Information Processing
1632
+ Systems, vol. 33, pp. 1877–1901, 2020.
1633
+ [11] Z. Borsos, R. Marinier, D. Vincent, E. Kharitonov, O. Pietquin, M. Shar-
1634
+ ifi, O. Teboul, D. Grangier, M. Tagliasacchi, and N. Zeghidour, “Audi-
1635
+ olm: a language modeling approach to audio generation,” arXiv preprint
1636
+ arXiv:2209.03143, 2022.
1637
+ [12] C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu,
1638
+ H. Wang, J. Li, et al., “Neural codec language models are zero-shot text
1639
+ to speech synthesizers,” arXiv preprint arXiv:2301.02111, 2023.
1640
+ [13] Andrea and so on, “Musiclm: Generating music from text,” arXiv
1641
+ preprint arXiv: 2301.11325, 2023.
1642
+ [14] D. Min, D. Lee, E. Yang, and S. Hwang, “Meta-stylespeech: Multi-
1643
+ speaker adaptive text-to-speech generation,” in International Conference
1644
+ on Machine Learning, pp. 7748–7759, PMLR, 2021.
1645
+ [15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
1646
+ G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
1647
+ visual models from natural language supervision,” in International
1648
+ Conference on Machine Learning, pp. 8748–8763, PMLR, 2021.
1649
+ [16] A. S. Koepke, A.-M. Oncescu, J. Henriques, Z. Akata, and S. Albanie,
1650
+ “Audio retrieval with natural language queries: A benchmark study,”
1651
+ IEEE Transactions on Multimedia, 2022.
1652
+ [17] W. Zhou, H. Li, and Q. Tian, “Recent advance in content-based image
1653
+ retrieval: A literature survey,” arXiv preprint arXiv:1706.06064, 2017.
1654
+ [18] A. Van Den Oord, O. Vinyals, et al., “Neural discrete representation
1655
+ learning,” Advances in Neural Information Processing Systems, vol. 30,
1656
+ 2017.
1657
+ [19] A. Razavi, A. Van den Oord, and O. Vinyals, “Generating diverse
1658
+ high-fidelity images with vq-vae-2,” Advances in Neural Information
1659
+ Processing Systems, vol. 32, 2019.
1660
+ [20] P. Esser, R. Rombach, and B. Ommer, “Taming transformers for high-
1661
+ resolution image synthesis,” in Proceedings of the IEEE/CVF Confer-
1662
+ ence on Computer Vision and Pattern Recognition, pp. 12873–12883,
1663
+ 2021.
1664
+ [21] A.
1665
+ Baevski,
1666
+ S.
1667
+ Schneider,
1668
+ and
1669
+ M.
1670
+ Auli,
1671
+ “vq-wav2vec:
1672
+ Self-
1673
+ supervised learning of discrete speech representations,” arXiv preprint
1674
+ arXiv:1910.05453, 2019.
1675
+ [22] W.-N. Hsu, B. Bolte, Y.-H. H. Tsai, K. Lakhotia, R. Salakhutdinov, and
1676
+ A. Mohamed, “Hubert: Self-supervised speech representation learning
1677
+ by masked prediction of hidden units,” IEEE/ACM Transactions on
1678
+ Audio, Speech, and Language Processing, vol. 29, pp. 3451–3460, 2021.
1679
+ [23] A. D´efossez, J. Copet, G. Synnaeve, and Y. Adi, “High fidelity neural
1680
+ audio compression,” arXiv preprint arXiv:2210.13438, 2022.
1681
+ [24] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi,
1682
+ “Soundstream: An end-to-end neural audio codec,” IEEE/ACM Transac-
1683
+ tions on Audio, Speech, and Language Processing, vol. 30, pp. 495–507,
1684
+ 2021.
1685
+ [25] V. Iashin and E. Rahtu, “Taming visually guided sound generation,” in
1686
+ British Machine Vision Conference (BMVC), 2021.
1687
+
1688
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1689
+ 13
1690
+ [26] D. Yang, J. Yu, H. Wang, W. Wang, C. Weng, Y. Zou, and D. Yu,
1691
+ “Diffsound: Discrete diffusion model for text-to-sound generation,”
1692
+ arXiv preprint arXiv:2207.09983, 2022.
1693
+ [27] I. Elias, H. Zen, J. Shen, Y. Zhang, Y. Jia, R. Skerry-Ryan, and Y. Wu,
1694
+ “Parallel tacotron 2: A non-autoregressive neural tts model with differ-
1695
+ entiable duration modeling,” arXiv preprint arXiv:2103.14574, 2021.
1696
+ [28] J. Kim, S. Kim, J. Kong, and S. Yoon, “Glow-tts: A generative flow
1697
+ for text-to-speech via monotonic alignment search,” Advances in Neural
1698
+ Information Processing Systems, vol. 33, pp. 8067–8077, 2020.
1699
+ [29] X. Li, C. Song, J. Li, Z. Wu, J. Jia, and H. Meng, “Towards multi-
1700
+ scale style control for expressive speech synthesis,” arXiv preprint
1701
+ arXiv:2104.03521, 2021.
1702
+ [30] E. Casanova, C. Shulby, E. G¨olge, N. M. M¨uller, F. S. de Oliveira, A. C.
1703
+ Junior, A. d. S. Soares, S. M. Aluisio, and M. A. Ponti, “Sc-glowtts: an
1704
+ efficient zero-shot multi-speaker text-to-speech model,” arXiv preprint
1705
+ arXiv:2104.05557, 2021.
1706
+ [31] K. Zhou, B. Sisman, R. Rana, B. W. Schuller, and H. Li, “Speech synthe-
1707
+ sis with mixed emotions,” IEEE Transactions on Affective Computing,
1708
+ 2022.
1709
+ [32] R. Huang, Y. Ren, J. Liu, C. Cui, and Z. Zhao, “Generspeech: Towards
1710
+ style transfer for generalizable out-of-domain text-to-speech synthesis,”
1711
+ arXiv preprint arXiv:2205.07211, 2022.
1712
+ [33] S. Liu, S. Yang, D. Su, and D. Yu, “Referee: Towards reference-free
1713
+ cross-speaker style transfer with low-quality data for expressive speech
1714
+ synthesis,” in ICASSP 2022-2022 IEEE International Conference on
1715
+ Acoustics, Speech and Signal Processing (ICASSP), pp. 6307–6311,
1716
+ IEEE, 2022.
1717
+ [34] M. Kim, S. J. Cheon, B. J. Choi, J. J. Kim, and N. S. Kim, “Expressive
1718
+ text-to-speech using style tag,” arXiv preprint arXiv:2104.00436, 2021.
1719
+ [35] Z. Guo, Y. Leng, Y. Wu, S. Zhao, and X. Tan, “Prompttts: Controllable
1720
+ text-to-speech with text descriptions,” arXiv preprint arXiv:2211.12171,
1721
+ 2022.
1722
+ [36] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
1723
+ “Deep unsupervised learning using nonequilibrium thermodynamics,” in
1724
+ International Conference on Machine Learning, pp. 2256–2265, PMLR,
1725
+ 2015.
1726
+ [37] P. Dhariwal and A. Nichol, “Diffusion models beat gans on image
1727
+ synthesis,” Advances in Neural Information Processing Systems, vol. 34,
1728
+ 2021.
1729
+ [38] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and
1730
+ B. Guo, “Vector quantized diffusion model for text-to-image synthesis,”
1731
+ arXiv preprint arXiv:2111.14822, 2021.
1732
+ [39] A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew,
1733
+ I. Sutskever, and M. Chen, “Glide: Towards photorealistic image gen-
1734
+ eration and editing with text-guided diffusion models,” arXiv preprint
1735
+ arXiv:2112.10741, 2021.
1736
+ [40] P. Esser, R. Rombach, A. Blattmann, and B. Ommer, “Imagebart: Bidi-
1737
+ rectional context with multinomial diffusion for autoregressive image
1738
+ synthesis,” Advances in Neural Information Processing Systems, vol. 34,
1739
+ 2021.
1740
+ [41] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro, “Dif-
1741
+ fwave: A versatile diffusion model for audio synthesis,” arXiv preprint
1742
+ arXiv:2009.09761, 2020.
1743
+ [42] M. Jeong, H. Kim, S. J. Cheon, B. J. Choi, and N. S. Kim, “Diff-
1744
+ tts: A denoising diffusion model for text-to-speech,” arXiv preprint
1745
+ arXiv:2104.01409, 2021.
1746
+ [43] V. Popov, I. Vovk, V. Gogoryan, T. Sadekova, and M. Kudinov, “Grad-
1747
+ tts: A diffusion probabilistic model for text-to-speech,” in International
1748
+ Conference on Machine Learning, pp. 8599–8608, PMLR, 2021.
1749
+ [44] S.-g. Lee, H. Kim, C. Shin, X. Tan, C. Liu, Q. Meng, T. Qin, W. Chen,
1750
+ S. Yoon, and T.-Y. Liu, “Priorgrad: Improving conditional denois-
1751
+ ing diffusion models with data-driven adaptive prior,” arXiv preprint
1752
+ arXiv:2106.06406, 2021.
1753
+ [45] E. Hoogeboom, D. Nielsen, P. Jaini, P. Forr´e, and M. Welling, “Argmax
1754
+ flows and multinomial diffusion: Towards non-autoregressive language
1755
+ models,” arXiv preprint, 2021.
1756
+ [46] J. Austin, D. Johnson, J. Ho, D. Tarlow, and R. van den Berg, “Structured
1757
+ denoising diffusion models in discrete state-spaces,” Advances in Neural
1758
+ Information Processing Systems, vol. 34, 2021.
1759
+ [47] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
1760
+ Advances in Neural Information Processing Systems, vol. 33, pp. 6840–
1761
+ 6851, 2020.
1762
+ [48] M. I. Belghazi, A. Baratin, S. Rajeshwar, S. Ozair, Y. Bengio,
1763
+ A. Courville, and D. Hjelm, “Mutual information neural estimation,” in
1764
+ Proceedings of the 35th International Conference on Machine Learning
1765
+ (J. Dy and A. Krause, eds.), vol. 80 of Proceedings of Machine Learning
1766
+ Research, pp. 531–540, PMLR, 10–15 Jul 2018.
1767
+ [49] P. Cheng, W. Hao, S. Dai, J. Liu, Z. Gan, and L. Carin, “Club: A con-
1768
+ trastive log-ratio upper bound of mutual information,” in International
1769
+ conference on machine learning, pp. 1779–1788, PMLR, 2020.
1770
+ [50] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
1771
+ L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
1772
+ pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.
1773
+ [51] T. Gao, X. Yao, and D. Chen, “Simcse: Simple contrastive learning of
1774
+ sentence embeddings,” arXiv preprint arXiv:2104.08821, 2021.
1775
+ [52] A. v. d. Oord, Y. Li, and O. Vinyals, “Representation learning with
1776
+ contrastive predictive coding,” arXiv preprint arXiv:1807.03748, 2018.
1777
+ [53] Y.-W. Chao, D. Yang, R. Gu, and Y. Zou, “3cmlf: Three-stage
1778
+ curriculum-based mutual learning framework for audio-text retrieval,” in
1779
+ 2022 Asia-Pacific Signal and Information Processing Association Annual
1780
+ Summit and Conference (APSIPA ASC), pp. 1602–1607, IEEE, 2022.
1781
+ [54] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
1782
+ discriminatively, with application to face verification,” in 2005 IEEE
1783
+ Computer Society Conference on Computer Vision and Pattern Recog-
1784
+ nition (CVPR’05), vol. 1, pp. 539–546, IEEE, 2005.
1785
+ [55] X. Tan, T. Qin, F. Soong, and T.-Y. Liu, “A survey on neural speech
1786
+ synthesis,” arXiv preprint arXiv:2106.15561, 2021.
1787
+ [56] J. Kong, J. Kim, and J. Bae, “Hifi-gan: Generative adversarial networks
1788
+ for efficient and high fidelity speech synthesis,” Advances in Neural
1789
+ Information Processing Systems, vol. 33, pp. 17022–17033, 2020.
1790
+ [57] C. Du, Y. Guo, X. Chen, and K. Yu, “Vqtts: High-fidelity text-to-
1791
+ speech synthesis with self-supervised vq acoustic feature,” arXiv preprint
1792
+ arXiv:2204.00768, 2022.
1793
+ [58] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
1794
+ with conditional adversarial networks,” in Proceedings of the IEEE
1795
+ Conference on Computer Vision and Pattern Recognition, pp. 1125–
1796
+ 1134, 2017.
1797
+ [59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
1798
+ Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
1799
+ neural information processing systems, vol. 30, 2017.
1800
+ [60] S. Gu, D. Chen, J. Bao, F. Wen, B. Zhang, D. Chen, L. Yuan, and
1801
+ B. Guo, “Vector quantized diffusion model for text-to-image synthesis,”
1802
+ in Proceedings of the IEEE/CVF Conference on Computer Vision and
1803
+ Pattern Recognition, pp. 10696–10706, 2022.
1804
+ [61] J. Ho and T. Salimans, “Classifier-free diffusion guidance,” arXiv
1805
+ preprint arXiv:2207.12598, 2022.
1806
+ [62] Z. Tang, S. Gu, J. Bao, D. Chen, and F. Wen, “Improved vector quantized
1807
+ diffusion models,” arXiv preprint arXiv:2205.16007, 2022.
1808
+ [63] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech:
1809
+ an asr corpus based on public domain audio books,” in 2015 IEEE
1810
+ international conference on acoustics, speech and signal processing
1811
+ (ICASSP), pp. 5206–5210, IEEE, 2015.
1812
+ [64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
1813
+ arXiv preprint arXiv:1412.6980, 2014.
1814
+ [65] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
1815
+ arXiv preprint arXiv:1711.05101, 2017.
1816
+ [66] R. Kubichek, “Mel-cepstral distance measure for objective speech qual-
1817
+ ity assessment,” in Proceedings of IEEE pacific rim conference on
1818
+ communications computers and signal processing, vol. 1, pp. 125–128,
1819
+ IEEE, 1993.
1820
+ [67] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
1821
+ quality assessment: from error visibility to structural similarity,” IEEE
1822
+ transactions on image processing, vol. 13, no. 4, pp. 600–612, 2004.
1823
+ [68] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen, “A short-
1824
+ time objective intelligibility measure for time-frequency weighted noisy
1825
+ speech,” in 2010 IEEE international conference on acoustics, speech
1826
+ and signal processing, pp. 4214–4217, IEEE, 2010.
1827
+ [69] T. Nakatani, S. Amano, T. Irino, K. Ishizuka, and T. Kondo, “A method
1828
+ for fundamental frequency estimation and voicing decision: Application
1829
+ to infant utterances recorded in real acoustical environments,” Speech
1830
+ Communication, vol. 50, no. 3, pp. 203–214, 2008.
1831
+ [70] W. Chu and A. Alwan, “Reducing f0 frame error of f0 tracking
1832
+ algorithms under noisy conditions with an unvoiced/voiced classification
1833
+ frontend,” in 2009 IEEE International Conference on Acoustics, Speech
1834
+ and Signal Processing, pp. 3969–3972, IEEE, 2009.
1835
+ [71] D. Bitouk, R. Verma, and A. Nenkova, “Class-level spectral features for
1836
+ emotion recognition,” Speech communication, vol. 52, no. 7-8, pp. 613–
1837
+ 625, 2010.
1838
+ [72] S. Liu, D. Su, and D. Yu, “Diffgan-tts: High-fidelity and efficient text-to-
1839
+ speech with denoising diffusion gans,” arXiv preprint arXiv:2201.11972,
1840
+ 2022.
1841
+ [73] W. F. Johnson, R. N. Emde, K. R. Scherer, and M. D. Klinnert, “Recog-
1842
+ nition of emotion from vocal cues,” Archives of General Psychiatry,
1843
+ vol. 43, no. 3, pp. 280–283, 1986.
1844
+
1845
+ JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021
1846
+ 14
1847
+ [74] M. J. Owren and J.-A. Bachorowski, “Measuring emotion-related vocal
1848
+ acoustics,” Handbook of emotion elicitation and assessment, pp. 239–
1849
+ 266, 2007.
1850
+ [75] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0:
1851
+ A framework for self-supervised learning of speech representations,”
1852
+ Advances in neural information processing systems, vol. 33, pp. 12449–
1853
+ 12460, 2020.
1854
+
MdFRT4oBgHgl3EQf2zi9/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
MtE0T4oBgHgl3EQf0QIf/content/tmp_files/2301.02682v1.pdf.txt ADDED
@@ -0,0 +1,1305 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ How, where and when do cosmic rays reach ultrahigh
2
+ energies?
3
+ James H. Matthews𝑎,∗ and Andrew M. Taylor𝑏
4
+ 𝑎Department of Physics, Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road,
5
+ Oxford, OX1 3RH, UK
6
+ 𝑏Deutsches Elektronen-Synchrotron, Platanenallee 6, Zeuthen, Germany
7
+ E-mail: [email protected]
8
+ Understanding the origins of ultrahigh energy cosmic rays (UHECRs) – which reach energies
9
+ in excess of 1020 eV – stretches particle acceleration physics to its very limits. In this review,
10
+ we discuss how such energies can be reached, using general arguments that can often be derived
11
+ on the back of an envelope. We explore possible particle acceleration mechanisms, with special
12
+ attention paid to shock acceleration.
13
+ Informed by the arguments derived, we discuss where
14
+ UHECRs might come from and which classes of powerful astrophysical objects could be UHECR
15
+ sources; generally, we favour radio galaxies, GRB afterglows and other sources which are not too
16
+ compact and dissipate prodigious amounts of energy on large scales, allowing them to generate
17
+ large products 𝛽𝐵𝑅 without the CRs undergoing restrictive losses. Finally, we discuss when
18
+ UHECRs are accelerated by highlighting the importance of source variability, and explore the
19
+ intriguing possibility that the UHECR arrival directions are partly a result of “echoes” from
20
+ magnetic structures in the local Universe.
21
+ 27th European Cosmic Ray Symposium - ECRS
22
+ 25-29 July 2022
23
+ Nijmegen, the Netherlands
24
+ ∗Speaker
25
+ © Copyright owned by the author(s) under the terms of the Creative Commons
26
+ Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).
27
+ https://pos.sissa.it/
28
+ arXiv:2301.02682v1 [astro-ph.HE] 6 Jan 2023
29
+
30
+ How, where and when do cosmic rays reach ultrahigh energies?
31
+ James H. Matthews
32
+ 1.
33
+ Introduction
34
+ The origin of ultrahigh energy cosmic rays (UHECRs) has remained an open question ever
35
+ since their discovery by Linsley [1]. Together with Scarsi, Linsley measured the energy spectrum
36
+ above 1 EeV and even performed an analysis of arrival directions with a sample of 97 events.
37
+ Since these pioneering results, decades of experimental and theoretical work have been dedicated
38
+ to understanding the phenomenology and physics of UHECRs (see historical reviews by Watson
39
+ [2, 3]) – the highest energy particles in nature. Despite Herculean efforts, the sources of UHECRs
40
+ are not yet known, nor is the physics of their acceleration understood.
41
+ The current state of the art UHECR observatories are the Pierre Auger Observatory (PAO), in
42
+ Malargüe, Argentina (detection area ≈ 3000 km2), and the Telescope Array (TA) in Millard County,
43
+ Utah, USA (detection area ≈ 700 km2). Both observatories have been critical for measuring the
44
+ spectrum, composition and anisotropy of UHECRs over the past decade. The CR spectrum is
45
+ characterised by a smooth power-law over 11 decades in energy, with a series of inflection points;
46
+ in the UHE regime the most relevant features are the ankle, a hardening at ≈ 4 EeV, and a cutoff
47
+ or flux suppression at ≈ 40 EeV [e.g. 4, see Fig. 1]. In terms of composition, combined fits of the
48
+ spectrum and the distribution or moments of the depths of the air shower maxima, 𝑋max, suggest a
49
+ composition that gets heavier with energy above the ankle [4–6, see also section 2.2]. Finally, the
50
+ question of UHECR anisotropy has seen particularly exciting recent progress, with PAO reporting a
51
+ dipole anisotropy at 5.2𝜎 significance [7], together with less significant indications of anisotropies
52
+ on smaller scales from both PAO [8, 9] and TA [10, 11]. However, working backwards from arrival
53
+ directions to uncover the sources of UHECRs remains challenging given the limited statistics at such
54
+ high energies, uncertain detailed composition and, in particular, the obfuscating effect of (poorly
55
+ constrained) intergalactic and Galactic magnetic fields.
56
+ On the theoretical and modelling side, there have also been many recent advances (see, e.g.,
57
+ chapters 5 & 6 of the EuCAPT white paper [12]). Building on the foundational theory of shock
58
+ acceleration [13–16], particle-in-cell (PIC) simulations have provided unprecedented insights into
59
+ the nonlinear plasma physics at work during shock acceleration [e.g. 17, 18] and magnetic recon-
60
+ nection [e.g. 19, 20]. Cosmic-ray propagation codes, such as CR-Propa [21], now provide flexible
61
+ frameworks for treating the propagation of UHECRs from source to detector. This mature and
62
+ well-tested suite of computational tools are essential for understanding the theoretical cosmic-ray
63
+ landscape, but one particular feature of UHECR acceleration is the vast range of scales at work;
64
+ a mildly relativistic proton with 𝛾 ∼ 10 must increase it’s energy (and thus Larmor radius for a
65
+ constant magnetic field strength) by a factor of 108 to reach the UHE (≳ 1018 eV) regime. Such a
66
+ dynamic range is out of reach of even the most ambitious simulator.
67
+ It is not yet possible to make unambiguous inferences about UHECR sources from data or
68
+ theory alone. As a result, we must consider the whole picture, taking into account plasma physics,
69
+ astrophysics and multimessenger astronomy, when interpreting the experimental data. The need for
70
+ such a holistic view makes studying UHECRs challenging, but also particularly rich and rewarding
71
+ (in our opinion!). We will try to convey some of that excitement in this review contribution to
72
+ the proceedings of the European Cosmic Ray Symposium (ECRS) 2022. Our review is structured
73
+ as follows, mirroring the corresponding ECRS talk.
74
+ We start (section 2) by going over some
75
+ UHECR fundamentals, to establish the basic assumptions we will make. We then discuss each
76
+ 2
77
+
78
+ How, where and when do cosmic rays reach ultrahigh energies?
79
+ James H. Matthews
80
+ of the interrogatives in our title: we explore how UHECRs might be able to reach such extreme
81
+ energies (section 3), where they might be coming from (section 4), and when they might have been
82
+ accelerated, with a biased focus on a specific ‘echoes’ model for their origin (section 5). Finally,
83
+ in section 6, we conclude and comment on the future outlook. We generally adopt CGS units and
84
+ Gaussian units for electromagnetism, but we often give energies in eV or EeV and rigidities in V or
85
+ EV. We use the symbols E for electric field, 𝐸 for energy, 𝒗 for velocity, and define 𝛽 ≡ 𝑣/𝑐.
86
+ 2.
87
+ UHECR Fundamentals
88
+ We define ultrahigh energy cosmic rays (UHECRs) as charged particles (protons or nuclei)
89
+ reaching an energy in excess of 1018 eV, although a successful UHECR source must be able to
90
+ accelerate particles right up to ∼ 100 EeV in order to explain the full energy range of UHECR data.
91
+ The spectrum of UHECRs arriving at Earth as measured by PAO is shown in the left hand panel of
92
+ Fig. 1, with the main features labelled.
93
+ The Larmor radius (or gyroradius) of such an ultra-relativistic particle with energy 𝐸 = 𝑝𝑐
94
+ (where 𝑝 is momentum) is given by 𝑟𝑔 = 𝐸/(𝑍𝑒𝐵). This is the radius of gyration when undergoing
95
+ circular rotation in a uniform magnetic field. Writing down the Larmor radius already gives us
96
+ useful insights. Given in scaling relation form for characteristic UHECR energies, the Larmor
97
+ radius is
98
+ 𝑟𝑔 = 10.8 kpc
99
+
100
+ 𝐸
101
+ 10 EeV
102
+ � � 𝐵
103
+ 𝜇G
104
+ �−1
105
+ 𝑍−1.
106
+ (1)
107
+ This gives a (very minimal) condition for UHECR sources – a source must be able to confine a
108
+ particle before it can accelerate it. However, for acceleration to take place, it is the electric field
109
+ that really matters, and it is useful to think of the maximum rigidity, rather than maximum energy,
110
+ associated with astrophysical acceleration sites. We define rigidity, which we quote in Volts (V), as
111
+ R = 𝐸
112
+ 𝑍𝑒 .
113
+ (2)
114
+ The maximum rigidity, Rmax, is an important quantity because it relates directly to particle accel-
115
+ eration in electric or magnetic fields. The energy gained by moving a particle a distance 𝑅 in an
116
+ electric field of strength E is 𝑍𝑒E𝑅, so the maximum rigidity should be an intrinsic quantity of the
117
+ accelerator; it depends only on the size of the region, and the electric field available.
118
+ 2.1 UHECR losses, propagation and ‘horizons’
119
+ UHECRs are attenuated or degraded from interaction with the cosmic microwave background
120
+ (CMB) and extragalactic background light (EBL). Protons can undergo resonant photopion con-
121
+ version, which in this context is known as the Greisen-Zat’sepin-Kuzmin (GZK) effect [23, 24],
122
+ while heavier nuclei undergo photodisintegration [25] and all nuclei are subject to Bethe-Heitler pair
123
+ production. The photopion, pair production and photodisintegration processes impose composition-
124
+ dependent energy loss lengths or mean free paths, making it difficult for UHECRs to reach us from
125
+ very distant sources. These length-scales are often referred to as limits or horizons, but as with any
126
+ opacity source there is a chance, however slim, that an UHECR can travel a considerable distance
127
+ beyond this length scale. The energy loss lengths for protons and a few different ion species (He,
128
+ 3
129
+
130
+ How, where and when do cosmic rays reach ultrahigh energies?
131
+ James H. Matthews
132
+ 1018
133
+ 1019
134
+ 1020
135
+ E (eV)
136
+ 1027
137
+ 1028
138
+ E3 J (eV2 cm−2s−1sr−1)
139
+ ‘Ankle’
140
+ ‘Flux Suppression’
141
+ ‘Instep?’
142
+ PAO Data (ICRC 2019)
143
+ 1018
144
+ 1019
145
+ 1020
146
+ E (eV)
147
+ 101
148
+ 102
149
+ 103
150
+ 104
151
+ Energy loss length (Mpc)
152
+ CoG/Local Sheet
153
+ SG Structure
154
+ Cyg A
155
+ p
156
+ He
157
+ N
158
+ Fe
159
+ Figure 1: Left: The UHECR energy spectrum measured by PAO as presented at ICRC 2019 [38]. The
160
+ spectrum is shown in 𝐸3 𝐽 units where 𝐽 is the differential flux spectrum in units of particles per unit area
161
+ per unit energy per unit solid angle. As plotted, a 𝑑𝑁/𝑑𝐸 ∝ 𝐸−3 spectrum shows up as a horizontal line.
162
+ Right: Energy loss lengths as a function of CR energy calculated for the same four species shown in Fig. 2.
163
+ The energy loss length is defined in the text. The loss lengths are calculated by considering photopion,
164
+ photodisintegration and pair production interactions with the CMB and EBL, using the EBL model of [22].
165
+ N, Fe) are shown in Fig. 1 for the EBL model of [22]. The energy loss length here is defined as
166
+ the average distance necessary for an UHECR to propagate in order for its energy to decrease to
167
+ 𝑒−1 of its original value. The separate bumps in the curves are attributed to different processes
168
+ and radiation fields, with the CMB photopion and photodisintegration processes dominating at the
169
+ highest energies. We have also marked on the figure the distance to Cygnus A of ∼ 240 Mpc
170
+ [26], the typical distance to objects in the ‘Council of Giants’ (CoG) or ‘Local Sheet’ [27], and
171
+ the characteristic scale length of ∼ 100 Mpc associated with the supergalactic plane [28]; these
172
+ distances are all relevant to discussions here and in section 4. Fig. 1 highlights how difficult it is
173
+ to accurately characterise the UHECR source population from the spectrum alone given that its
174
+ form depends on the source spectrum, spatial distribution or redshift evolution, and composition.
175
+ Nevertheless, broadly speaking, the various CMB and EBL interactions impose a characteristic
176
+ length scale ∼ 100 Mpc within which the dominant UHECR sources are most likely to lie.
177
+ Combined knowledge of source timescales, UHECR propagation and anisotropy can impose
178
+ additional constraints on UHECR source distances. For example, Eichmann and collaborators have
179
+ explored a model where Cygnus A was the dominant source in the sky up to tens of EeV [29].
180
+ Cygnus A is compelling as an UHECR source because it is unusually powerful for a radio galaxy,
181
+ and although its distance of ∼ 240 Mpc might appear restrictive, at 1019 eV energy loss lengths are
182
+ quite large, and Cygnus A’s potentially vast UHECR luminosity could still produce the magnitude
183
+ of the observed UHECR flux. However, in a follow-up paper [30], Eichmann showed that Cygnus
184
+ A cannot account for an isotropic CR component at these energies, because the CRs would not have
185
+ had time to isotropise in the extragalactic magnetic field in the time the source has been active; one
186
+ should instead see an anisotropic signal pointing towards Cygnus A. This difficulty could in principle
187
+ 4
188
+
189
+ How, where and when do cosmic rays reach ultrahigh energies?
190
+ James H. Matthews
191
+ 1018
192
+ 1019
193
+ 1020
194
+ E (eV)
195
+ 600
196
+ 650
197
+ 700
198
+ 750
199
+ 800
200
+ 850
201
+ 900
202
+ ⟨Xmax⟩ (g cm−2)
203
+ p
204
+ He
205
+ N
206
+ Fe
207
+ PAO 2019 (stat.)
208
+ sys.
209
+ 1018
210
+ 1019
211
+ 1020
212
+ E (eV)
213
+ 20
214
+ 30
215
+ 40
216
+ 50
217
+ 60
218
+ 70
219
+ σXmax (g cm−2)
220
+ Figure 2: Composition diagnostics from extensive air showers detected by the PAO, showing how the
221
+ composition gets heavier at higher energies. Data taken from the PAO contribution to ICRC 2019 [38]. Left:
222
+ The ⟨𝑋max⟩ distribution from PAO data, defined as the mean depth of the air shower maximum, as a function
223
+ of energy. Right: 𝜎𝑋max, the standard deviation of 𝑋max as a function of energy. In both cases the coloured
224
+ bands show the predictions for four pure composition scenarios, with the range shown corresponding to that
225
+ spanned by three hadronic interaction models (QGSJet II-04, EPOS-LHC and Sibyll 2.1), as calculated using
226
+ the parameterisation from Ref. [39], with adjusted parameters from S. Petrera (priv. comm.).
227
+ be alleviated if the Galactic halo magnetic field can isotropise the signal on shorter timescales, but
228
+ the general principle of ‘diffusive’ horizons for UHECR production is nevertheless important (see
229
+ also Refs. [31, 32]).
230
+ Following the cumulative composition and spectral measurements made by the PAO over the
231
+ last 15 years, a growing body of evidence has amounted suggesting that UHECR at the highest
232
+ energies must have a rather local origin [33, 34]. This finding is particularly interesting along with
233
+ other suggestions that not many sources should be contributing to the UHECR spectrum in this
234
+ high energy range [35]. Collectively this suggests that a local UHECR source may dominate the
235
+ contribution to the UHECR spectrum at the highest energies. This finding may also be consistent
236
+ with the UHECR dipole strength recently detected by the PAO [36], with the main contribution to
237
+ the dipole being driven by the presence of this local source [37].
238
+ 2.2 Composition and Maximum Rigidity
239
+ Since the maximum rigidity, rather than maximum energy, is an intrinsic property of a cosmic
240
+ acceleration site, it follows that the charge on the nuclei (or the atomic composition of UHECRs) is
241
+ important for establishing possible UHECR sources. At CR energies below the knee, experiments
242
+ such as the Alpha Magnetic Spectrometer [AMS; 40] and Cosmic Ray Energetics and Mass exper-
243
+ iment [CREAM; 41] can provide direct measurements of CR charge and therefore decompose the
244
+ CR spectrum into different species. However, at ultrahigh energies, the CRs are detected through
245
+ extensive air showers, and the main diagnostic of composition is a more indirect measure: the
246
+ distribution of the depths of air shower maxima, 𝑋max. We show the first two moments of the 𝑋max
247
+ 5
248
+
249
+ How, where and when do cosmic rays reach ultrahigh energies?
250
+ James H. Matthews
251
+ distribution in Fig. 2 from the data released as part of the PAO contribution to ICRC 2019. The data
252
+ are compared to theoretical distributions for 𝑋max for three different hadronic interaction models.
253
+ The general trend is a gradual change from nearly pure protons around ∼ 3 EeV to a heavier com-
254
+ position at higher energies. Such a trend might suggest maximum rigidities of Rmax ∼ 3 − 10 EV,
255
+ which is broadly consistent with other studies: the combined fit of the spectrum and composition
256
+ PAO data finds a cutoff rigidity of Rmax = 4.79 EV [4], and Ref. [42] find maximum energies for
257
+ Fe nuclei at source of ≈ 300 EeV suggesting Rmax ≈ 11 EV. There is some wiggle room in this
258
+ quantity but it cannot be too much lower than 10 EV in order to explain the observed > 100 EeV
259
+ UHECRs, so we will adopt 10 EV(1019 V) as our ‘target’ rigidity when discussing UHECR sources.
260
+ 3.
261
+ Acceleration of UHECRs (How?)
262
+ 3.1 The Hillas energy and power requirement
263
+ The maximum characteristic energy associated with a particle acceleration process is the Hillas
264
+ energy [43], given by
265
+ 𝐸𝐻 = 9.25 EeV
266
+
267
+ 𝐵
268
+ 10 𝜇G
269
+ � � 𝑅
270
+ kpc
271
+
272
+ 𝑍𝛽,
273
+ (3)
274
+ where 𝑍 is the dimensionless charge on the particle, 𝛽 = 𝑣/𝑐 is the velocity of the accelerator in
275
+ units of 𝑐, 𝐵 is the magnetic field and 𝑅 is the characteristic size. The above equation can also be
276
+ equivalently written as a Hillas rigidity in the form R𝐻 = 𝛽𝐵𝑅, which is the basic figure of merit for
277
+ an UHECR accelerator. The Hillas condition is not the same as having a Larmor radius equal to the
278
+ size of the acceleration region; there is an additional factor such that the acceleration region must be
279
+ larger than the Larmor radius of the highest energy particles by a factor of 1/𝛽. The Hillas energy
280
+ can be arrived at in various ways, but is perhaps best understood in terms of a particle travelling a
281
+ distance 𝑅 in an optimally arranged −(𝒗/𝑐) × 𝑩 electric field. It is is only a characteristic maximum
282
+ energy, and as we shall see in the next section is a necessary, but not sufficient criterion that is
283
+ only reached under certain conditions. One can construct scenarios in which the Hillas energy is
284
+ exceeded; for example, if a CR can be confined to a perpendicular shock for a very long time then
285
+ in principle the CR can cross the shock on many occasions without escaping. However, in practice
286
+ this is likely to require specialised shock or magnetic field geometries to avoid drifts, diffusion or
287
+ advection removing the particle from the acceleration site. We will therefore proceed under the
288
+ expectation that the Hillas energy really is a maximum or cutoff energy.
289
+ The Hillas energy can be used to derive a minimum magnetic or kinetic power that a source
290
+ must possess. A similar requirement was, to our knowledge, first discussed by Lovelace [44], but
291
+ also forms the basis for Hillas’ figure 6 in the 1984 paper [43]. The power requirement is therefore
292
+ sometimes referred to as a ‘Hillas-Lovelace limit’ (although see also Refs. [45–49]). The basic idea
293
+ is that a source must be able to supply enough magnetic energy per unit time that a given product
294
+ 𝛽𝐵𝑅 can be maintained in the acceleration site. In the non-relativistic case, a limit on the kinetic
295
+ power 𝑄𝑘 can be derived,
296
+ 𝑄𝑘 ≳ 1044 erg s−1 𝛽−1
297
+ � 𝐸/𝑍
298
+ 1019eV
299
+ �2
300
+ 𝜖𝑏 𝜂2,
301
+ (4)
302
+ 6
303
+
304
+ How, where and when do cosmic rays reach ultrahigh energies?
305
+ James H. Matthews
306
+ where 𝜖𝑏 is the ratio of magnetic to kinetic power (which, in shocks, can be thought of as an
307
+ efficiency of magnetic field amplification), and 𝜂 is an efficiency factor defined in section 3.2.1
308
+ which describes how close the diffusion is to the Bohm regime (equation 7).
309
+ In relativistic particle accelerators, the above expressions can be modified slightly to account
310
+ for special relativistic effects. Ref. [50] gives the Hillas energy in the form 𝐸𝐻 = Γ𝑍𝑒𝐵𝛽𝑅, where
311
+ Γ is the bulk Lorentz factor of the shock, and 𝑅 and 𝐵 are given in the co-moving frame. Whether
312
+ the particle really gains this Lorentz boost likely depends on the nature of the turbulence generated
313
+ at the shock, and the details of the particle transport in the source region [51]. However, such a
314
+ boost may potentially be important particularly if GRB internal shock or afterglow models are to
315
+ reach rigidities of 10 EV (see section 4.2.3). The power requirement can also include an additional
316
+ Γ2 factor [49, 52], although this cancels with the outflow opening angle, Θ, if Θ ∝ Γ−1. In any case,
317
+ it is hard for a relativistic accelerator to reach optimal conditions with 𝜂 ≈ 1 (see section 3.2.1), and
318
+ so we take equations 3 and 4 as our basic energetic requirements.
319
+ 3.2 Particle acceleration mechanisms
320
+ Astrophysical fluids are often hot and ionized plasmas in which electrons and ions are unbound
321
+ and free to move. The motion of these free charges tends to rapidly damp or screen any local
322
+ electrostatic field present in the plasma. However, bulk, differential motions of the plasma, with a
323
+ velocity 𝒗, lead to a −(𝒗/𝑐) × 𝑩 electric field which can accelerate particles, where the velocity can
324
+ be thought of as the characteristic velocity of ‘scattering centres’, in Hillas’ language [43]. Indeed,
325
+ this electric field is the origin of the 𝛽𝐵 term in the Hillas energy above. Rather than acceleration
326
+ in some spark gap or monolithic electrostatic field, particles are thought to acquire nonthermal
327
+ energies through interactions with magnetised plasma that lead to a so-called ‘Fermi’ process: a
328
+ gradual, stochastic acceleration in a −(𝒗/𝑐) × 𝑩 electric field.
329
+ Fermi originally proposed that CRs gain energy from interactions with magnetised clouds [53],
330
+ which, together with its derivatives, is now referred to as second-order Fermi acceleration because
331
+ the fractional energy gain per scatter is proportional to 𝛽2. In the late 1970s, a series of authors
332
+ proposed first-order Fermi acceleration at shocks [13–16], and since then Fermi processes have
333
+ been extensively studied from various perspectives and are the subject of a number of review papers
334
+ [e.g. 48, 54, 55]. We refer the reader to these reviews for a detailed discussion. Here, we discuss
335
+ some of the basic reasoning behind first-order Fermi processes and the physical mechanisms at
336
+ work, as well as the astrophysical sites in which they can operate.
337
+ 3.2.1 Shock Acceleration
338
+ The most famous example of first-order Fermi acceleration is shock acceleration. A shock
339
+ is a converging flow, with ∇ · 𝒗 < 0, and particles that cross the shock front gain a momentum
340
+ boost proportional to the shock velocity 𝛽. The theory was laid out in the aforementioned series of
341
+ papers, with Bell [13] providing a ‘microscopic’, test-particle description, and Blandford & Ostriker
342
+ [14] a ‘macroscopic’ description using the Fokker-Planck equation. The basic result is that CRs
343
+ crossing the shock front get an energy boost each time they do so, with a mean fractional energy
344
+ gain ⟨Δ𝐸/𝐸⟩ = 𝛽. At the same time, CRs are being swept away from the front at a rate which is
345
+ also proportional to 𝛽. It is straightforward to show [e.g. 13, 48] that the competition between these
346
+ 7
347
+
348
+ How, where and when do cosmic rays reach ultrahigh energies?
349
+ James H. Matthews
350
+ two effects – energy gain, and escape – leads to a power-law CR distribution of the form
351
+ 𝑑𝑁
352
+ 𝑑𝐸 ∝ 𝐸−𝑞,
353
+ (5)
354
+ with 𝑞 = 2 for the idealised example considered here. There are various effects that lead to a
355
+ steepening of this spectral index, such as energy exchange with turbulent magnetic fields [56, 57],
356
+ and in ultra-relativistic shocks an index of 𝑞 ≈ 2.2 − 2.3 is expected [50, 58].
357
+ By treating the crossing of the shock and the scattering by magnetic irregularities as a diffusive
358
+ process with coefficient 𝐷 = 𝜆𝑐, where 𝜆 is the mean free path, it is possible to derive an acceleration
359
+ time. In detail, this acceleration time should allow for different upstream and downstream diffusion
360
+ coefficients [59], but the basic form is
361
+ 𝜏acc ∼ 𝐷
362
+ 𝑣2𝑠
363
+
364
+ 𝜆
365
+ 𝛽2𝑠𝑐 .
366
+ (6)
367
+ The CR energy is maximised when the acceleration time is shortest, requiring small diffusion
368
+ coefficients and large shock velocities (in the non-relativistic regime). The diffusion coefficient is
369
+ often written in the form
370
+ 𝐷 ∼ 𝜂𝑟𝑔𝑐
371
+ (7)
372
+ where 𝜂 is the so-called gyrofactor; 𝜂 = 1 is the optimal Bohm regime where 𝜆 ≈ 𝑟𝑔, and 𝜂 > 1
373
+ otherwise leading to slower acceleration. It is easy to show that the Hillas energy is necessary but
374
+ not sufficient by combining equations 1, 6 and 7, and equating 𝜏acc with 𝑅/𝑣𝑠, giving the equation
375
+ 𝐸max ∼ 𝜂−1𝑍𝑒𝛽𝐵𝑅.
376
+ (8)
377
+ Thus, the Hillas energy is only reached when 𝜂 = 1 and Bohm diffusion applies, that is when
378
+ 𝜆 ≈ 𝑟𝑔. For this to happen, there must be strong turbulence with 𝛿𝐵/𝐵 ∼ 1 and structure in this
379
+ turbulence on scales of the Larmor radius. These considerations show why the plasma physics of
380
+ CR instabilites and the nonlinear, coupled acceleration process are important for understanding the
381
+ maximum energy/rigidity attainable in a given accelerator.
382
+ It was realised early on that CR-excited waves or MHD turbulence of some kind were needed
383
+ to confine the CRs at the shock, allowing the CRs to cross many times and facilitate acceleration to
384
+ high energies. Originally, Alfvén waves driven by the resonant CR instability [60] were invoked,
385
+ but a new non-resonant or Bell instability was discovered [61, 62]. The non-resonant instability has
386
+ a number of advantages; it grows faster than the resonant instability and creates turbulence on the
387
+ scale of the Larmor radius of the particles driving the instability, providing a self-regulated process
388
+ that allows acceleration to proceed close to the Bohm regime. The instability is thought to operate
389
+ in supernova remnant (SNR) shocks where it is critical for providing the necessary magnetic field
390
+ amplification, and growing the turbulent magnetic field to the Larmor radius of the highest energy
391
+ particles. There is observational evidence that the Bohm regime is realised in SNR shocks [63, 64],
392
+ suggesting they can get close to the special conditions needed for the Hillas energy to apply.
393
+ In some sense it is natural to appeal to relativistic shocks as UHECR accelerators, given
394
+ that some of the most powerful phenomena in the Universe involve ultrarelativistic outflows and
395
+ invariably produce radiation from nonthermal electrons. The ultrarelativistic version of shock ac-
396
+ celeration or first-order Fermi acceleration differs somewhat from its nonrelativistic counterpart.
397
+ 8
398
+
399
+ How, where and when do cosmic rays reach ultrahigh energies?
400
+ James H. Matthews
401
+ The expected spectral index is slightly steeper than the canonical shock acceleration value, with
402
+ 𝑞 ≈ 2.2 − 2.3, the compression ratio is higher, the shock is quasi-perpendicular and significant
403
+ anisotropies develop in the particle distribution function [50, 58]. One might think the ultrarel-
404
+ ativistic shocks are the most obvious sites for UHECR acceleration, since 𝛽 → 1 maximises the
405
+ Hillas energy, but a number of authors have shown that relativistic shocks have difficulties reaching
406
+ ultrahigh energies [51, 65–67]. In particular, Ref. [67] shows that the maximum energy is likely
407
+ to be many orders of magnitude below EeV energies. This happens because the CR spectrum is
408
+ steeper, so there is less energy to drive turbulence on UHECR Larmor radius scales, and the CRs
409
+ also do not have time to drive large-scale turbulence, because they penetrate less far upstream and
410
+ are quickly advected away downstream. There may be ways around these issues – for example, if
411
+ there is pre-existing turbulence in the upstream medium (see also Refs. [68, 69] for relevant recent
412
+ studies) – but we will refer to these collective difficulties as the ‘relativistic shock problem’ for
413
+ UHECRs.
414
+ 3.2.2 Magnetic Reconnection
415
+ Magnetic reconnection – the resistive dissipation of magnetic fields – is another mechanism
416
+ that can accelerate particles. In this case the transfer of energy is from magnetic energy to thermal
417
+ and kinetic, a fraction of which can be passed on to nonthermal particles.
418
+ Reconnection has
419
+ received a lot of attention as a particle acceleration mechanism recently, for various reasons. The
420
+ last decade has seen dramatic progress in using PIC (as well as test particle and hybrid MHD-
421
+ PIC) simulations to study first 2D, and subsequently 3D, reconnection sites. A variety of particle
422
+ acceleration mechanisms can operate in these reconnection sites; unlike shock acceleration there is
423
+ a current sheet involved, and the electric field close to the reconnection X-point can inject particles
424
+ or accelerate them to modest energies. After injection, Fermi mechanisms can take over. Various
425
+ Fermi mechanisms and models have been proposed, with acceleration taking place by traversing
426
+ the converging flows either side of the X-point [70–72] or within contracting plasmoids [19].
427
+ It is not yet clear how relevant magnetic reconnection is to the UHE, multi-EeV regime, though
428
+ a number of authors have proposed it as a possible UHECR acceleration mechanism [71, 73, 74].
429
+ One potential difficulty is arranging for structure (and energy density) in the magnetic field to be
430
+ present on a wide range of scales from the resistive scale up to the Larmor radii of UHECRs.
431
+ In shock acceleration, the magnetic field is amplified and stretched via, e.g., the CR-driven non-
432
+ resonant instability, but we (the authors) do not know of a convincing mechanism to arrange for
433
+ such a magnetic field structure in reconnection sites at this stage. However, that does not mean one
434
+ does not exist or will not be forthcoming in the future.
435
+ 3.2.3 Other Mechanisms and General Comments
436
+ As well as from shocks and reconnection, there are various other ways in which particles can
437
+ gain large amounts of energy. Shear acceleration involves scattering across a shear layer [75],
438
+ in a similar manner to shock acceleration, and has been proposed as a possible mechanism for
439
+ UHECR acceleration at the edge of a relativistic jet. A detailed discussion of shear acceleration
440
+ pertaining to UHECR acceleration in AGN jets is given by Rieger in a recent review [49], who
441
+ highlights some recent studies proposing one-shot or ‘espresso’ acceleration in relativistic AGN
442
+ jets [76–78]. Alternatively, shear acceleration can be rather gradual, and the details of the process
443
+ 9
444
+
445
+ How, where and when do cosmic rays reach ultrahigh energies?
446
+ James H. Matthews
447
+ depend on the thickness of the shear layer and the Kelvin-Helmholtz instabilities operating in the
448
+ region [49, 79, 80]. Various authors have also discussed second-order Fermi acceleration (Fermi
449
+ II) by MHD turbulence in, for example, giant radio lobes [81–83, see also section 4.2.2]. Finally,
450
+ there is the possibility of acceleration by ‘unipolar induction’, whereby a rapidly rotating magnetic
451
+ field in, e.g., a pulsar magnetosphere generates a large potential difference [45, 84–86]. We do
452
+ not provide a detailed account of these three processes (shear, Fermi II, unipolar induction), and
453
+ neither is this an exhaustive list, but we we do touch on some of them in more detail, with the
454
+ relevant astrophysical context, in section 4. In our discussions hereafter, we will try to keep the
455
+ arguments general, based on the basic energetics and physical conditions of the system, but a bias
456
+ in emphasis towards shock acceleration is probably inevitable given the background of the authors,
457
+ and the relative maturity of each mechanism at the time of writing.
458
+ 3.3 UHECR Losses and Escape
459
+ The Hillas energy and power requirements above and the maximum energy derived from shock
460
+ acceleration apply when the CR maximum energy is limited by either the escape time or dynamical
461
+ time. In sources with strong magnetic fields or intense radiation fields, losses can instead limit
462
+ the maximum energy. Synchrotron losses for CR nuclei with relative atomic mass 𝐴 occur on a
463
+ timescale 𝜏sync = 142 yr (𝐴/𝑍)4 𝐸−1
464
+ EeV𝐵−2, where 𝐸EeV is the energy in EeV. By equating this with
465
+ the acceleration time (equation 6), we can write the maximum energy in a magnetic field of strength
466
+ 𝐵 as
467
+ 𝐸max,sync = 200 EeV
468
+ � 1
469
+ 𝜂𝑍3
470
+ �1/2 � 𝐵
471
+ G
472
+ �−1/2
473
+ 𝛽𝐴2,
474
+ (9)
475
+ which can be restrictive even for optimum acceleration conditions in strong magnetic field sources.
476
+ Equivalently, we can invert this equation to write a maximum magnetic field strength for acceleration
477
+ to a given energy,
478
+ 𝐵max = 400 G
479
+ � 1
480
+ 𝜂𝑍3
481
+ � �
482
+ 𝐸
483
+ 10 EeV
484
+ �−2
485
+ 𝛽2𝐴4,
486
+ (10)
487
+ which illustrates the challenge of accelerating UHECRs in highly magnetised environments as
488
+ discussed by various authors [87–92, see section 4 for source implications]. Interactions with
489
+ ambient radiation fields during both the acceleration and escape of CRs can also limit the maximum
490
+ energy through the same processes described in section 2.1, although the details depend on the
491
+ radiation field shape and intensity considered. Considering photopion losses from protons, Ref.
492
+ [87] derives an approximate limit on the source radiative luminosity at a distance 𝑅 from the source
493
+ given by 𝐿𝛾 < 5 × 1044 erg s−1 ¯𝜖 (𝑅/1017cm) where ¯𝜖 is the energy of the maximum of the
494
+ integral photon spectrum in eV. Such an upper limit might seem counter-intuitive given that we also
495
+ found a lower limit on power from equation 4, but the latter is a magnetic power limit as opposed
496
+ to a radiative one. The acceleration of UHECRs therefore favours sources which are neither too
497
+ radiatively efficient nor too compact – ideally we need large amounts of energy to be dissipated so
498
+ that a large product 𝛽𝐵𝑅 can be maintained, but without the energy densities in magnetic fields or
499
+ radiation fields becoming too large.
500
+ We close this section by noting that the losses within, and escape from, the acceleration
501
+ site and immediate environment can have interesting implications for the emergent spectrum and
502
+ 10
503
+
504
+ How, where and when do cosmic rays reach ultrahigh energies?
505
+ James H. Matthews
506
+ composition of the UHECRs. For example, in the Unger-Farrar-Anchordoqui model [93], photo-
507
+ disintegration in the source environment can naturally reproduce the location of the UHECR ankle,
508
+ shape of the UHECR spectrum and composition trends (see also Ref. [94]). Similarly, diffusive
509
+ escape modifies the spectral shape below a critical energy at which the escape time, 𝜏esc, is equal to
510
+ the source age [e.g. 95, 96]. Above this energy, the at-source spectrum is gradually recovered. Fur-
511
+ thermore, high rigidity CRs escape more quickly than low rigidity CRs, so the escaping UHECRs
512
+ can be lighter than the internal CRs, although the details depend on a complex interplay between
513
+ the source activity, and the cooling/escape timescales [96].
514
+ 3.4 UHECR Source Checklist
515
+ With the above arguments in mind, and referring the reader to the references given for greater
516
+ detail, we propose that the following criteria form a basic ‘checklist’ that a source or source
517
+ population must satisfy to be a realistic UHECR candidate:
518
+ • The source must have a large product 𝛽𝐵𝑅 to satisfy the Hillas condition (equation 3)
519
+ • The source must dissipate a large amount of power in (for example) a shock or a site of
520
+ magnetic reconnection (equation 4)
521
+ • If the acceleration is diffusive, the diffusion coefficient must approach the Bohm regime or
522
+ near-optimal conditions (e.g. equation 8) across a range of energies
523
+ • If the acceleration is at a shock, the shock probably cannot be highly relativistic
524
+ • The CRs must not undergo restrictive losses due to, e.g. curvature radiation, synchrotron
525
+ radiation, adiabatic expansion, or interactions with photons
526
+ • The source must be within a composition- and energy-dependent horizon from the Earth, or
527
+ produce UHECRs with such efficacy that a substantial UHECR luminosity still reaches us.
528
+ • The source must be common and powerful enough to produce the observed UHECR flux.
529
+ Meeting all of these criteria turns out to be a challenge for any astrophysical source. However, it
530
+ is also difficult to assess the relative merit of the sources given that (i) the underlying physics is
531
+ complex and far from settled, and (ii) many of the estimates of velocities, magnetic field strengths,
532
+ and jet/outflow powers are subject to large astrophysical uncertainties. Nevertheless, we will soldier
533
+ on and discuss possible UHECR sources with this list of requirements as our guide.
534
+ 4.
535
+ Astrophysical Sources of UHECRs (Where?)
536
+ The detections of anisotropies in UHECR data from the Pierre Auger Observatory (PAO) and
537
+ Telescope Array mean that we are entering an exciting era for UHECR astrophysics. In this section,
538
+ we will first look at anisotropy data to see what the data alone tell us, before discussing the overall
539
+ prospects of a host of astrophysical candidates.
540
+ 11
541
+
542
+ How, where and when do cosmic rays reach ultrahigh energies?
543
+ James H. Matthews
544
+ 150◦
545
+ 120◦
546
+ 90◦
547
+ 60◦
548
+ 30◦
549
+ 0◦
550
+ 330◦
551
+ 300◦
552
+ 270◦
553
+ 240◦
554
+ 210◦
555
+ -75°
556
+ -60°
557
+ -45°
558
+ -30°
559
+ -15°
560
+
561
+ 15°
562
+ 30°
563
+ 45°
564
+ 60°
565
+ 75°
566
+ 0
567
+ 2
568
+ 4
569
+ 6
570
+ 8
571
+ 10
572
+ 12
573
+ 14
574
+ 16
575
+ Flux (10−3 km−2 sr−1 yr−1)
576
+ Figure 3: UHECR flux map, in Galactic coordinates, from PAO above 41 EeV comprising 1274 events,
577
+ produced from the data made publicly available by PAO [9]. A top-hat smoothing of radius 25◦ has been
578
+ applied. The supergalactic plane and PAO exclusion are marked in green and grey, respectively.
579
+ 4.1 UHECR anisotropies
580
+ Detecting statistically significant anisotropies in the arrival directions of UHECRs is a key
581
+ goal of TA and PAO, and is an essential step for uncovering the origin of UHECRs. In 2017,
582
+ PAO reported a large-scale anisotropy in the arrival directions of 30,000 CRs above 8 EeV at 5.2𝜎
583
+ significance. The anisotropy is well-described by a dipole with 6.5% anisotropy. TA has also
584
+ undertaken large-scale anisotropy searches [97], with results that are consistent with both isotropy
585
+ and the PAO dipole. The detection of a significant UHECR dipole is a spectacular and important
586
+ result. It more-or-less confirms some aspects of UHECR origins which had long been suspected:
587
+ that UHECRs are extragalactic in origin, and are not isotropic. However, it is extremely difficult to
588
+ pinpoint UHECR sources from a large-scale dipole on the sky. Moving to higher energies results
589
+ in a trade-off. On the one hand, higher energy typically means higher rigidity, resulting in smaller
590
+ magnetic deflections and anisotropies that emerge on smaller angular scales. These anisotropies
591
+ can feasibly be correlated with astrophysical source catalogues. On the other, the statistics drop off
592
+ markedly and so the number of events one is able to analyse can become prohibitively small.
593
+ Both TA and PAO have reported indications of anisotropy on intermediate angular scales
594
+ (≈ 5◦ − 25◦ search radii) at ≳ 40 EeV energies. PAO found (model-dependent) correlations with
595
+ catalogues of star-forming galaxies (4𝜎) and AGN (3.2𝜎) [98], with anisotropic fraction of around
596
+ 5 − 10%. Here a ‘UHECR luminosity proxy’ must be adopted and PAO used gamma-ray and radio
597
+ fluxes as weights for the relative luminosity of each source in UHECRs. In a more recent study [9],
598
+ PAO presented a detailed investigation of 2635 events with reconstructed energy > 32 EeV. The
599
+ 12
600
+
601
+ How, where and when do cosmic rays reach ultrahigh energies?
602
+ James H. Matthews
603
+ arrival directions from this study are shown in Fig. 3. An excess in flux can be seen just above the
604
+ Galactic plane, approximately in the direction of Centaurus, with a hint of additional excesses at
605
+ southern Galactic latitudes and just below the PAO exclusion area. Using updated catalogues for
606
+ gamma-ray luminosities as well as considering other catalogues with different luminosity proxies,
607
+ Ref. [9] found post-trial 𝑝-values of < 10−3 for catalogues comprising jetted AGN, galaxies traced
608
+ by near-infrared emission, X-ray AGN and star-forming galaxies. Each of these searches resulted
609
+ in top-hat search radii in the range 22◦ − 25◦ and threshold energies of 38 − 40 EeV, and the most
610
+ significant correlation was with the star-forming galaxies traced by their radio emission, giving
611
+ 𝑝 = 3.2 × 10−5 corresponding to > 4𝜎 significance. The same study also conducted a series of less
612
+ model-dependent searches for correlations with structures such as the supergalactic and Galactic
613
+ plane; although none of these were statistically significant, they did find a > 4𝜎 correlation with
614
+ the Centaurus region on the sky, which is responsible for driving much of the correlation seen in
615
+ the catalogue searches (since Cen A, NGC 4945 and M83 all lie in this area). More details on this
616
+ study can be found in the contribution of C. Galleli, on behalf of PAO, to these proceedings.
617
+ TA have also reported anisotropies on intermediate angular scales, with a particular excess
618
+ that is often referred to as the ‘TA hotspot’ [10]. TA reported an excess of events above 57 EeV
619
+ fairly close to the supergalactic plane, at RA = 146.7◦, Dec. = 43◦, which is roughly the direction
620
+ of M82. Originally, the post-trial (local Li-Ma) significances was 3.4𝜎 (5.1𝜎), while more recent
621
+ updates put the post-trial significance at 2.9−3.2𝜎 [99, 100]. TA have also reported another excess
622
+ at slightly lower energies, in the approximate direction of the Perseus-Pisces supercluster [11].
623
+ Finally, in addition to the TA and PAO searches, joint PAO and TA efforts have been undertaken
624
+ to build full-sky maps of UHECR arrival directions by correcting for the different exposures and
625
+ systematics between the two experiments [101, 102]. The results emerging from this show excesses
626
+ roughly correlated with the supergalactic plane (or local sheet/CoG, which follows a similar path
627
+ on the sky), with particular hotspots in the direction of NGC 253/Fornax, Cen A/NGC2945, and
628
+ M82. Although the statistical significance of any correlations with these local planar structures
629
+ is still fairly marginal (∼ 3𝜎) [102], the full-sky UHECR arrival directions seem to highlight the
630
+ importance of nearby sources and/or structures, especially when considered in tandem with the
631
+ arguments for local sources discussed in section 2.1.
632
+ 4.2 Possible Source Classes
633
+ At this stage, unambiguous source identifications from anisotropy data alone are not possible.
634
+ We must therefore consider carefully the underlying astrophysics when considering the best can-
635
+ didate UHECR sources. Here, we will make a whistle-stop tour of possible sources based on the
636
+ physics underpinning particle acceleration to ultrahigh energies discussed in the previous section.
637
+ 4.2.1 Star-forming Galaxies
638
+ Particle acceleration in star-forming galaxies has been extensively studied, but the indication of
639
+ anisotropy reported by PAO [98], with a 4𝜎 correlation with a ‘starburst’ catalogue, ignited interest
640
+ in this class of objects as UHECR sources. We prefer to use the term ‘star-forming’ rather than
641
+ ‘starburst’ for this catalogue, as many of the galaxies have fairly typical star formation rates rather
642
+ than the extreme values normally associated with starbursts. A number of local star-forming galaxies
643
+ 13
644
+
645
+ How, where and when do cosmic rays reach ultrahigh energies?
646
+ James H. Matthews
647
+ are known to be gamma-ray emitters and include bona fide starbursts such as M82 [103, 104]. It is
648
+ therefore clear that high-energy particle acceleration does take place in these sources.
649
+ A number of authors have either discussed the physics of particle acceleration in these starburst
650
+ ‘superwinds’ or proposed them as UHECR sources [105–108]. The superwinds are thought to be
651
+ caused by dramatic bursts of star formation, with the combined effect of supernovae and stellar
652
+ winds (and possibly also CR pressure from low energy CRs) driving a powerful kpc-scale outflow
653
+ [109, 110]. The kinetic powers are estimated at ∼ 1042 erg s−1 for sources like NGC 253 and M82,
654
+ with shock velocities of ∼ 1000 km s−1 [105, 110, 111]. Taking these numbers as characteristic we
655
+ find a maximum rigidity estimate of
656
+ Rmax ∼ 0.15 EV
657
+ �� 𝜖𝑏
658
+ 0.1
659
+ � �
660
+ 𝑄𝑘
661
+ 3 × 1042 erg s−1
662
+ � �
663
+ 𝑣
664
+ 1000 km s−1
665
+ ��1/2
666
+ 𝜂−1
667
+ (11)
668
+ for particles accelerated by starburst superwinds, once again emphasizing the importance of the
669
+ electric field and associated velocity term. This estimate is on the optimistic end of the more
670
+ detailed calculations presented by Ref. [105], and would require quite efficient magnetic field
671
+ amplification. UHECRs at our target maximum rigidity of 10 EV would therefore appear to be
672
+ beyond the capabilities of starburst superwinds. Star-forming galaxies may still be the sources
673
+ of UHECRs on the sky through their accumulated populations or historical record of magnetised
674
+ neutron stars (magnetars and/or pulsars), gamma-ray bursts or tidal disruption events. We discuss
675
+ these source classes in sections 4.2.4, 4.2.3 and 4.2.5, respectively. In addition, star-forming galaxies
676
+ are polluters of the circumgalactic medium [CGM; e.g. 112, 113], a process which could produce
677
+ magnetic fields on large scales and act as barrier to, or reflector of, UHECRs (see section 5).
678
+ 4.2.2 Radio Galaxies and AGN
679
+ Radio galaxies (using our adopted definition) are active galaxies which produce giant, kpc-
680
+ scale jets that emit synchrotron radiation in the radio band [114]. They have been commonly
681
+ suggested as UHECR sources [29, 43, 83, 115–120], and the local radio galaxy Centaurus A (Cen
682
+ A) is a particularly compelling candidate [81, 121, 122]. Radio galaxies are known to accelerate
683
+ non-thermal particles as revealed by their radio, X-ray and gamma-ray emission, but the particle
684
+ acceleration mechanism and sites of energy dissipation vary from source-to-source. Their radio
685
+ morphology gives important clues as to their particle acceleration physics, and is broadly split
686
+ into two Fanaroff-Riley (FR) classes [123]: FR-I sources are brighter in the centre and resemble
687
+ a disrupted plume of jet material, whereas FR-II sources are brightest far from the nucleus and
688
+ remain well-collimated until they reach the termination shock, producing a radio hotspot. The FR
689
+ dichotomy is thought to be caused by a combination of jet power and environment [114], with
690
+ FR-II sources generally being associated with powerful sources and/or poorer group or cluster
691
+ environments (although Ref. [124] has shown FR-II morphologies can be produced down to rather
692
+ low radio luminosities). From a particle acceleration perspective, it is generally thought that FR-
693
+ II sources primarily accelerate the synchrotron-emitting electrons in the hotspot associated with
694
+ the jet termination shock [e.g. 125–127] with additional particle acceleration along the jet itself
695
+ [128–130] and in the lobes or backflows [83, 131, 132]. By contrast, many FR-I sources appear
696
+ to continuously accelerate nonthermal electrons along their length in a distributed, in-situ process
697
+ [133, 134], although they can also have features such as knots [135, 136] or bow shocks [137, 138].
698
+ 14
699
+
700
+ How, where and when do cosmic rays reach ultrahigh energies?
701
+ James H. Matthews
702
+ Given their higher average jet powers and strong termination shocks, FR-II radio galaxies
703
+ are the natural class of UHECR accelerators from an energetic perspective [43, 115, 116]. The
704
+ maximum energy in radio hotspots may be severely limited due to their relativistic nature [139],
705
+ which motivated Matthews et al. to propose a model in which UHECRs are accelerated in multiple
706
+ shocks of 𝛽 ≈ 2 in supersonic backflows. The maximum rigidity in these backflows is estimated,
707
+ using hydrodynamic simulations, at 50 𝐸𝑉. However, powerful radio galaxies are also relatively
708
+ rare, with only a handful of FR-II sources within a few hundred Mpc [140, 141]. This has lead
709
+ various authors to consider local FR-I radio galaxies such as Cen A and Fornax A, which also have
710
+ compelling associations with UHECR anisotropies [141]; however, in Cen A the current jet power
711
+ is thought to be ∼ 1043 erg s−1 [83] and the bow-shock associated with the current activity is not fast
712
+ or powerful to accelerate UHECRs [137]. Thus, although particle acceleration in mildly or non-
713
+ relativistic shocks associated with radio galaxies seems quite attractive as an UHECR origins story,
714
+ this requires flickering-type variability or jet powers which were significantly higher in the past
715
+ [96, 141, 142]. A further challenge is to make sure that, if the jet is initially leptonic, then it entrains
716
+ a significant hadronic component [83, 119]. Alternatively, Hardcastle, Wykes and collaborators
717
+ [81, 83, 119] have suggested Fermi II acceleration in Cen A’s turbulent lobes, which could produce
718
+ UHECRs for very fast Alfvén speeds. Furthermore, Eichmann and collaborators have shown that
719
+ the UHECR spectrum can be reproduced from a population of radio galaxies including local sources
720
+ like Cen and Fornax A, even when taking into account the detailed source physics and propagation
721
+ [29, 120, 143].
722
+ Finally, AGN winds, which are responsible for X-ray ‘ultra-fast outflow’ features [144] and
723
+ for quasar blue-shifted broad absorption lines [145, 146], can drive shocks into their surroundings.
724
+ These shocks may accelerate particles and produce synchrotron and inverse Compton emission
725
+ [147].
726
+ Although there is no definitive detection, there are observational hints of quasar wind
727
+ contributions to radio and gamma-ray emission [148–151].
728
+ Quasar winds might reach 𝑄𝑘 ∼
729
+ 5 × 1044 erg s−1 [147], if the outflow is 5% efficient compared to the bolometric power.
730
+ The
731
+ maximum shock velocity at the reverse shock is ≲ 0.1𝑐, suggesting a maximum rigidity of a few
732
+ EeV from equation 4. For estimates based on Ref. [147] of 𝐵 ∼ 1 mG and 𝑅 ∼ 0.1 kpc, we
733
+ obtain R𝐻 ∼ 10 EV. AGN winds were investigated as UHECR sources by Ref. [152], who found
734
+ maximum proton energies of ∼ 100 EeV for optimistic parameters. Thus, AGN winds merit further
735
+ investigation, but it is hard to draw any firm conclusions here, and the current lack of evidence for
736
+ nonthermal particles makes them less compelling as UHECR accelerators.
737
+ 4.2.3 Gamma-ray bursts
738
+ Gamma-ray bursts (GRBs) are violent, catastrophic explosions that release flashes of gamma-
739
+ rays and prodigious amounts of energy. The general paradigm [e.g. 153] is that short GRBs are
740
+ associated with merging neutron stars, and long GRBs with ‘collapsars’, in which a massive stellar
741
+ core collapses to form a black hole; the latter are more common and so probably more interesting
742
+ as UHECR sources.
743
+ GRBs are known to accelerate particles, most likely in shocks, with the
744
+ prompt emission thought to be produced by highly relativistic colliding internal shocks, giving
745
+ way to a longer-lived afterglow phase powered by a forward shock. Additionally, emission from
746
+ the reverse shock can be detected at early times [154]. MAGIC has detected early time afterglow
747
+ emission at hundreds of GeV coincident with GRB 190114C [155], and HESS detected late time
748
+ 15
749
+
750
+ How, where and when do cosmic rays reach ultrahigh energies?
751
+ James H. Matthews
752
+ afterglow emission up to 3 TeV from GRB 190829A [156]. Furthermore, during the writing of
753
+ these proceedings, LHAASO has reported an exciting detection of early time emission up to 18 TeV
754
+ associated with the brightest (but not most intrinsically luminous) GRB to-date, GRB 221009A
755
+ [157]. GRBs are clearly excellent particle accelerators up to at least the TeV regime – but can they
756
+ reach ultrahigh energies?
757
+ GRBs have been regularly discussed as UHECR sources, since a few years after workable
758
+ theoretical models for the GRB engine and resulting fireball emerged [47, 158, 159]. They are
759
+ attractive on account of their energetics; a GRB releases a total isotropic energy of up to 𝐸iso ∼
760
+ 1054 erg [e.g. 160] in a relatively short amount of time, and a large fraction of this power is dissipated
761
+ through a strong shock. Waxman [158] and Vietri [159] argued that protons could reach energies in
762
+ excess of 1020 eV and that the observed UHECR flux above 1020 eV could be explained as long as
763
+ GRBs release similar amounts of energy in > 1020 eV CRs to the amount released in gamma-rays.
764
+ More recent studies have confirmed the need for rather efficient UHECR production, as well as high
765
+ baryon loading, to produce the UHECR flux at Earth [47, 91, 161]. However, if these efficiencies
766
+ can be accommodated, then GRB models can in principle reproduce the observed UHECR spectrum
767
+ rather well [91].
768
+ As mentioned in section 3.2.1, an additional difficulty with UHECR acceleration in GRB blast
769
+ waves arises from the ultra-relativistic nature of the shock. Even GRB afterglows have initial shock
770
+ Lorentz factors of ∼ 100, approximately evolving with observer time, 𝑡obs as Γsh ∝ 𝑡−3/8
771
+ obs
772
+ in the case
773
+ of a uniform density medium [162, 163]. This evolution leads to a relativistic-Newtonian transition
774
+ around a year after the initial burst [163], and this non-relativistic phase dissipates significantly
775
+ less power through the shock. For GRB afterglow shocks to accelerate UHECRs, one therefore
776
+ either needs to circumvent the relativistic shock problem, or find another way to reach the UHE
777
+ regime (e.g. by reconnection or shear acceleration). While in some sense this is the same problem
778
+ discussed above for radio galaxies, in radio galaxies the jet bulk Lorentz factors are thought to be
779
+ much lower and the presence of mildly or non-relativistic shocks in backflows and, perhaps in some
780
+ cases, jets themselves, makes them more conducive to UHECR acceleration than GRBs. Further
781
+ work is clearly needed to better understand the particle acceleration and shock physics in GRBs,
782
+ but in principle the high energy leptonic emission is able to provide a useful probe of the turbulent
783
+ plasma conditions. This was demonstrated recently by Ref. [68], with the recent TeV gamma-ray
784
+ emission detected perhaps already challenging our understanding of the nature of turbulence in
785
+ relativistic shocks.
786
+ 4.2.4 Magnetised Neutron Stars
787
+ A highly magnetised, rapidly rotating neutron star can accelerate particles with a voltage drop
788
+ of 𝜙 = Ω2𝜇/𝑐2, where Ω is the angular velocity and 𝜇 = 𝑅3
789
+ NS𝐵 is the magnetic moment. This voltage
790
+ is time-dependent since the NS can spin down (or up) and thus Ω can change. For sufficiently small
791
+ periods and large magnetic dipole moments, the maximum energy is 𝐸max ∼ 1021 eV 𝑍 𝜇33 𝑃−2
792
+ ms
793
+ [e.g. 92], where 𝜇33 is the magnetic dipole moment in units of 1033 G cm3, typical for newly born
794
+ magnetars with 𝐵 ∼ 1015 G [164], and 𝑃ms is the orbital period in milliseconds. For young pulsars
795
+ with 𝐵 ∼ 1012 G the maximum energy is a factor of 1000 lower. For magnetars, this characteristic
796
+ energy is easily within the UHECR regime for reasonable parameters; however, the problem with
797
+ this mechanism is that particles accelerated in the NS magnetosphere (inside the light cylinder)
798
+ 16
799
+
800
+ How, where and when do cosmic rays reach ultrahigh energies?
801
+ James H. Matthews
802
+ undergo debilitating curvature losses, while CRs also undergo rapid synchrotron losses in such
803
+ strong magnetic fields. Furthermore, the strong magnetic fields can be screened by prolific pair
804
+ production [45, 84]. These limitations have instead led various authors to consider acceleration in
805
+ the pulsar wind termination shock or nebula associated with a very young, rapidly spinning pulsar
806
+ [85, 86, 165] or magnetar [92, 166], or from ∇𝐵 drifts in the wind nebula [167]. The termination
807
+ shocks are likely to be highly relativistic and so the same issues discussed above for radio galaxies
808
+ and GRBs apply. However, the Crab nebula does seem to be able to accelerate particles in close to
809
+ optimal conditions; LHAASO have detected PeV emission from the Crab nebula [168] that requires
810
+ 𝜂−1 = 0.15 in our notation. It seems fairly likely that Crab-like PWNe are perhaps PeVatrons,
811
+ but probably not UHECR sources, with a maximum proton energy of ∼ 30 PeV [45]. The higher
812
+ spin-down luminosities of rapidly spinning magnetars make them more attractive, and the winds
813
+ they power are feasible sites of particle acceleration to rigidities of ∼ 10 EV [92].
814
+ 4.2.5 Other Objects
815
+ A veritable menagerie of other astrophysical objects have been proposed as UHECR sources;
816
+ we only briefly discuss tidal disruption events (TDEs) and clusters of galaxies. TDEs are transient
817
+ events that occur when a star passes close to a supermassive black hole and is ripped apart and
818
+ accreted [169].
819
+ Radio emission from jets in TDEs has been detected in a handful of sources
820
+ [170, 171], and these jets could be interesting as sites of UHECR acceleration providing the CRs
821
+ can survive in the intense radiation field and the relativistic shock problem can be overcome.
822
+ Ref. [172] finds the former should be possible in the reverse shock and estimates a maximum energy
823
+ of 64 EeV for protons (see also Ref. [173]). Cluster shocks – associated with gas accretion or
824
+ galaxy mergers – are potential sites of UHECR acceleration, because they are extremely large (virial
825
+ radii ∼ 1 Mpc). The intracluster medium (ICM) magnetic field is ∼ 1 𝜇G and the shock velocity is
826
+ ∼ 1000 km s−1, leading to a Hillas rigidity of 𝑅H ∼ 3 EV. This estimate is roughly in line with the
827
+ maximum proton energy suggested by Kang for acceleration by multiple weak shocks in the ICM
828
+ [174], and the calculation by Ref. [175], who find cluster accretion shocks can produce UHECRs
829
+ from ∼ 2 − 10 EeV but struggle to produce the very highest energies. However, Ref. [176] show
830
+ that UHECRs with energies up to ∼ 60 EeV could be accelerated in larger (𝑅 ∼ 5 Mpc) accretion
831
+ shocks associated with ‘caustics’ if Bohm diffusion applies, finding that the Virgo cluster could
832
+ make a substantial contribution to the observed UHECR flux at ∼ 30 EeV.
833
+ 4.3 A Modified Hillas Diagram
834
+ In Hillas’ 1984 work, a number of useful diagnostic plots for identifiying UHECR sources
835
+ were provided. Figure 1 of the same paper is often referred to as a ‘Hillas diagram’, in which
836
+ characteristic size is plotted along the 𝑥-axis, and magnetic field along the 𝑦-axis. One can then
837
+ obtain a rough estimate of the feasibility of UHECR sources by drawing diagonal lines of constant
838
+ rigidity, an exercise that has been regularly used to inform discussions of UHECR origins [e.g.
839
+ 43, 177, 178]. However, technically the diagram only conveys the ability of a source to confine
840
+ UHECRs of a given rigidity – it does not include the characteristic velocity of the accelerator and
841
+ thus does not capture the impact of the electric field, E ∝ 𝛽𝐵. The velocity of the scatterers is
842
+ plotted in Hillas’ figure 6, which is perhaps more informative in terms of which sources can actually
843
+ accelerate to the UHE regime. Here we instead show a ‘modified Hillas diagram’ in Fig. 4, in which
844
+ 17
845
+
846
+ How, where and when do cosmic rays reach ultrahigh energies?
847
+ James H. Matthews
848
+ 105
849
+ 109
850
+ 1013
851
+ 1017
852
+ 1021
853
+ 1025
854
+ R (cm)
855
+ 10°10
856
+ 10°6
857
+ 10°2
858
+ 102
859
+ 106
860
+ 1010
861
+ 1014
862
+ bB (G)
863
+ 1 EV
864
+ 10 EV
865
+ 100 EV
866
+ Starburst
867
+ Winds#
868
+ GRBs*†
869
+ Magnetised
870
+ NS*†
871
+ Radio
872
+ Galaxies†
873
+ 10 EeV p
874
+ 100 EeV Fe
875
+ Magnetars
876
+ Magnetar Nebulae/Winds
877
+ RG Hotspots
878
+ & Backflows
879
+ RG Lobes
880
+ Clusters
881
+ GRB Prompt
882
+ TDEs
883
+ GRB Afterglows
884
+ AGN Winds
885
+ Starbursts
886
+ Figure 4: Modified Hillas plot showing the maximum electric field available, 𝛽𝐵, plotted against charac-
887
+ teristic size. The three diagonal lines show parameters needed to achieve the labelled maximum rigidity.
888
+ The coloured points show the values from table 1, the circles give a feel for the uncertainties, and points
889
+ connected by lines have multiple estimates. The symbols (†, ∗, #) represent caveats; the meanings of † and
890
+ ∗ are defined in the text, while # means the source does not dissipate sufficient kinetic or magnetic power
891
+ (equation 4). The lines with hashed regions mark the maximum magnetic field for acceleration of 10 EeV
892
+ protons and 100 EeV Fe nuclei (equation 10). Broadly speaking, a vaiable UHECR source must sit in the
893
+ region that is shaded in translucent green.
894
+ the electric field available, 𝛽𝐵, is made explicit and plotted directly on the 𝑦-axis. The overall result
895
+ is rather similar to the usual diagram, except that some sources move downwards in the parameter
896
+ space (if they have 𝛽 < 1). The main source classes discussed in the text have been given extra
897
+ prominence in their labelling and the values used in our estimates are given in table 1. The plot
898
+ does not capture the detailed physics of UHECR acceleration, or the relativistic shock problem,
899
+ and nor does it contain information about the number density or luminosity density of sources;
900
+ nevertheless, this modified Hillas diagram acts as a useful summary of the maximum rigidities
901
+ attainable in UHECR candidate sources, while emphasizing the need for more accurate estimates
902
+ of 𝛽 and 𝐵 in cosmic accelerators.
903
+ 5.
904
+ Source Variability and UHECR Echoes (When?)
905
+ ‘When’ is perhaps an unusual interrogative to apply to the origin of UHECRs. Our motive for
906
+ using it is to briefly describe our ‘echoes’ model for UHECR production in dormant or declining
907
+ sources, but time-dependence is an intrinsic part of any UHECR study, for a number of reasons.
908
+ UHECR deflections in magnetic fields inevitably lead to a time delay with respect to any associated
909
+ electromagnetic or neutrino signal [96, 181]. Variability on a wide range of timescales is ubiquitous
910
+ in accreting systems such as AGN [182, 183] and the fuelling of the AGN might be expected to
911
+ cause flickering or stochastic activity [184, 185]. Star formation also varies over time due to various
912
+ 18
913
+
914
+ How, where and when do cosmic rays reach ultrahigh energies?
915
+ James H. Matthews
916
+ Source Class
917
+ 𝛽
918
+ 𝑅 (cm)
919
+ 𝐵 (G)
920
+ Ref.
921
+ Section
922
+ Magnetars†,∗
923
+ 1
924
+ 106
925
+ 1014
926
+ [92]
927
+ 4.2.4
928
+ Magnetar Winds†,∗
929
+ 1
930
+ 1014, 1016
931
+ 104, 10
932
+ [92]
933
+ 4.2.4
934
+ GRB Prompt/Internal†,∗
935
+ 1
936
+ 1013, 1016
937
+ 106, 100
938
+ [91, 179]
939
+ 4.2.3
940
+ GRB Afterglows†
941
+ 1
942
+ 1016
943
+ 1
944
+ [179]
945
+ 4.2.3
946
+ RG Hotspots†
947
+ 1
948
+ 1021
949
+ 3 × 10−4
950
+ [139]
951
+ 4.2.2
952
+ RG Backflows
953
+ 0.2
954
+ 1021
955
+ 10−4
956
+ [131]
957
+ 4.2.2
958
+ RG Lobes
959
+ 0.01
960
+ 1022
961
+ 10−5
962
+ [180]
963
+ 4.2.2
964
+ Starburst Winds
965
+ 0.004
966
+ 1021
967
+ 10−4
968
+ [105, 110]
969
+ 4.2.1
970
+ TDE Jets†
971
+ 1
972
+ 1014
973
+ 100
974
+ [172]
975
+ 4.2.5
976
+ Cluster Shocks
977
+ 0.004
978
+ 1024
979
+ 10−6
980
+ [175, 176]
981
+ 4.2.5
982
+ AGN Winds
983
+ 0.1
984
+ 1020
985
+ 10−3
986
+ [147]
987
+ 4.2.2
988
+ Table 1: Table of characteristic values of parameters adopted for the modified Hillas diagram (Fig. 4). In
989
+ some cases multiple values are quoted designed to crudely represent the range spanned by evolving sources
990
+ or literature values. Sources marked with a dagger (†) have relativistic characteristic speeds and so may have
991
+ to contend with the relativistic shock problem discussed in section 3.2.1. Sources marked with an asterisk
992
+ (∗) have strong magnetic fields and are subject to significant curvature or synchrotron losses which limit the
993
+ maximum energy, so the Hillas energy is often a significant overestimate. A reference is given for each set of
994
+ estimates, and the sub-section in which the source class is discussed is also labelled. The estimates presented
995
+ here are inhomogenous and subject to large uncertainties and biases, and should not be taken as authoritative.
996
+ triggers and/or regulators [186, 187], and some of the sources mentioned in the previous section
997
+ are catastrophic events. With this in mind it seems reasonable to consider the time variability as an
998
+ important factor for UHECR sources, as discussed before for transients like GRBs [158, 188, 189].
999
+ Recently, Ref. [190] showed that a feasible model for intermediate UHECR anisotropies could
1000
+ be constructed, in which UHECRs are accelerated in a powerful outburst in a nearby source (Cen
1001
+ A), and the UHECRs then ‘echo’ or scatter off nearby magnetic structures, in this case associated
1002
+ with the circumgalactic medium of star-forming galaxies that lie within a few Mpc in the CoG/Local
1003
+ Sheet. A schematic depicting this scenario is shown in Fig. 5. The motivation here is that Cen A
1004
+ is unique in the CoG structure in having powerful AGN jet activity, and the model provides a way
1005
+ for arrival directions to be correlated with star-forming galaxies without requiring acceleration in
1006
+ the star-forming galaxies themselves. A workable model requires Cen A to have had a UHECR
1007
+ luminosity 20 Myr ago that is ∼ 200 times that currently reaching Earth from the source, and also
1008
+ necessitates magnetic field strengths of ∼ 10 − 20 nG out to a distance of 400 − 800 kpc in the
1009
+ CGM. M82 could well be able to maintain a large magnetic field on this scale through advection or
1010
+ amplification of magnetic fields [113, 190, 191], in which case the UHECR echo could explain the
1011
+ TA hotspot. When star-forming galaxies such as NGC 253 and IC 342 are included, an anisotropy
1012
+ pattern can be produced that is similar to the all-sky anisotropy reported by PAO and TA [101, 102].
1013
+ The echoes model should be testable through the use of UHECR ‘composition clocks’. Rigidity-
1014
+ dependent propagation and species-dependent loss lengths (Fig. 1) mean that, in principle, we should
1015
+ expect different compositions from the echo waves compared to the direct wave due to the different
1016
+ 19
1017
+
1018
+ How, where and when do cosmic rays reach ultrahigh energies?
1019
+ James H. Matthews
1020
+ Star-forming galaxy with
1021
+ magnetized CGM
1022
+ (e.g M82)
1023
+ Centaurus A
1024
+ Earth
1025
+ “Direct” wave
1026
+ “Echo” wave
1027
+ CRs from powerful
1028
+ past outburst
1029
+ L/c ~ 33 Myr
1030
+ L/c ~ 12 Myr
1031
+ Figure 5: Schematic depicting the basic principle of the echoes model proposed by Ref. [190] to explain
1032
+ intermediate scale anisotropies in PAO and TA data without requiring acceleration in starburst galaxies
1033
+ directly.
1034
+ path lengths travelled (see Fig. 5). In particular, species with short photodistintegration loss lengths
1035
+ could be under-represented in the echo wave, while high rigidity particles might be able to escape
1036
+ the source more quickly and be over-represented in the echo wave. We will present quantitative
1037
+ investigations of both of these effects in a future study (Taylor et al., in prep), which are exciting
1038
+ given the improved composition diagnostics of AugerPrime [192].
1039
+ We note that many authors have discussed the impact of extragalactic magnetic field structures
1040
+ on the arrival directions of UHECRs. For example, Kotera & Lemoine [193] suggest “the possibility
1041
+ that the last scattering center encountered by a CR be mistaken with the source of this CR”, while
1042
+ Kim et al. [194] explore a similar effect encountered if UHECRs travel along magnetic filaments
1043
+ before scattering towards Earth.
1044
+ The deflection of UHECRs by magnetic fields is a generic
1045
+ difficulty associated with UHECR searches, which is exacerbated by how difficult it is to glean
1046
+ accurate knowledge of astrophysical magnetic field strengths and structures.
1047
+ 6.
1048
+ Conclusions and Future Outlook
1049
+ The origins of UHECRs remain elusive, despite extensive efforts, and the study of their
1050
+ acceleration and propagation is a rich topic that has synergies with a whole host of subfields
1051
+ of astrophysics and particle physics. In this review, we have described how particles might be
1052
+ accelerated to super-EeV energies and discussed the basic energetic requirements for this to happen,
1053
+ informed in a large part by Hillas’ 1984 work [43]. We have touched on more detailed aspects of the
1054
+ plasma physics of particle acceleration, particularly relating to shock acceleration, that are critical to
1055
+ the particle acceleration process. We used these physical arguments to write a ‘checklist’ for UHECR
1056
+ sources, which we applied to a range of astrophysical candidates such as AGN, GRBs, magnetised
1057
+ neutron stars and star-forming galaxies. Even in sources that dissipate energy at an astonishing rate,
1058
+ accelerating UHECRs still often requires particle acceleration physics to be stretched to its limits.
1059
+ 20
1060
+
1061
+ How, where and when do cosmic rays reach ultrahigh energies?
1062
+ James H. Matthews
1063
+ As we have alluded to on multiple occasions in this review, we are presently in an excit-
1064
+ ing era for UHECR experiment and theory, as well as particle acceleration more generally. The
1065
+ UHECR spectrum is well-characterised, 𝑋max distributions at ultrahigh energies are constraining
1066
+ the UHECR composition, and UHECR anisotropies are finally beginning to emerge above the noise
1067
+ at statistically significant levels. Nearly simultaneously, we have entered a ‘four-messenger’ era of
1068
+ high-energy astrophysics through the observation, sometimes with electromagnetic counterparts,
1069
+ of >TeV neutrinos by IceCube [195] and gravitational waves by LIGO and VIRGO [196]. In
1070
+ the future, the observational capabilities of the TAx4 [197] and AugerPrime [192] upgrades will
1071
+ dramatically improve our view of the UHECR sky, and the Cherenkov Telescope Array will shortly
1072
+ offer unprecendented sensitivity to TeV gamma-rays [198]. In combination with a rapidly ma-
1073
+ turing theoretical landscape [12], these transformative instruments offer great prospects for fully
1074
+ understanding the ‘origin story’ of UHECRs.
1075
+ Acknowledgements
1076
+ We would like to thank Tony Bell, Lauren Rhodes, Frank Rieger, Claudio Galelli, Sergio
1077
+ Petrera and Alan Watson for helpful discussions. We are extremely grateful to Jörg Horandel and
1078
+ the organising committee for ECRS 2022 for an excellent conference. JM acknowledges funding
1079
+ from the Royal Society and, previously, from the Herchel Smith fund at Cambridge.
1080
+ References
1081
+ [1] J. Linsley, 1963, Phys. Rev. Lett., 10:146–148.
1082
+ [2] A. A. Watson, 2019, EPJWC, 210:00001.
1083
+ [3] A. A. Watson, 2019, arXiv e-prints, arXiv:1909.00670 [astro-ph].
1084
+ [4] Pierre Auger Collaboration et al., 2017, JCAP, 2017(04):038–038.
1085
+ [5] J. Bellido and Pierre Auger Collaboration, In 35th International Cosmic Ray Conference (ICRC2017),
1086
+ volume 301, pp. 506, 2017.
1087
+ [6] A. A. Watson, 2022, Journal of High Energy Astrophysics, 33:14–19.
1088
+ [7] Pierre Auger Collaboration et al., 2017, Science, 357:1266–1270.
1089
+ [8] Pierre Auger Collaboration et al., 2018, Astrophys. J. Lett., 853:L29.
1090
+ [9] Pierre Auger Collaboration et al., 2022, arXiv e-prints, arXiv:2206.13492 [astro-ph].
1091
+ [10] R. U. Abbasi et al., 2014, Astrophys. J., 790:L21.
1092
+ [11] Telescope Array Collaboration et al., 2021, arXiv e-prints, arXiv:2110.14827 [astro-ph].
1093
+ [12] R. Alves Batista et al., 2021, EuCAPT White Paper, arXiv e-prints, arXiv:2110.10074 [astro-ph].
1094
+ [13] A. R. Bell, 1978, Mon. Not. Roy. Astron. Soc., Vol. 182, 147-156 (1978), 182:147–156.
1095
+ [14] R. D. Blandford and J. P. Ostriker, 1978, Astrophys. J. Lett., 221:L29–L32.
1096
+ [15] W. I. Axford et al., In International Cosmic Ray Conference, volume 11, pp. 132, 1977.
1097
+ [16] G. F. Krymskii, 1977, Soviet Physics Doklady, 22:327.
1098
+ [17] A. Spitkovsky, 2008, Astrophys. J. Lett., 682:L5.
1099
+ [18] D. Caprioli and A. Spitkovsky, 2014, Astrophys. J., 783:91.
1100
+ [19] J. F. Drake et al., 2006, Nature, 443:553–556.
1101
+ [20] L. Sironi and A. Spitkovsky, 2014, Astrophys. J. Lett., 783:L21.
1102
+ [21] R. Alves Batista et al., 2016, JCAP, 05:038.
1103
+ [22] A. Franceschini et al., 2008, Astron. Astrophys., 487(3):837.
1104
+ [23] K. Greisen, 1966, Phys. Rev. Lett., 16:748–750.
1105
+ [24] G. T. Zatsepin and V. A. Kuz’min, 1966, Soviet J. Exp. Theor. Phys. Lett., 4:78.
1106
+ 21
1107
+
1108
+ How, where and when do cosmic rays reach ultrahigh energies?
1109
+ James H. Matthews
1110
+ [25] F. W. Stecker and M. H. Salamon, 1999, Astrophys. J., 512:521–526.
1111
+ [26] C. L. Carilli and P. D. Barthel, 1996, Astron. Astrophys.Review, 7:1–54.
1112
+ [27] M. L. McCall, 2014, Mon. Not. Roy. Astron. Soc., 440:405–426.
1113
+ [28] H. Böhringer et al., 2016, Astron. Astrophys., 596:A22.
1114
+ [29] B. Eichmann et al., 2018, JCAP, 02:036.
1115
+ [30] B. Eichmann, 2019, 36:245.
1116
+ [31] R. Alves Batista and G. Sigl, 2014, arXiv e-prints, arXiv:1410.7800.
1117
+ [32] N. Globus et al., 2019, Mon. Not. Roy. Astron. Soc., 484:4167–4173.
1118
+ [33] A. M. Taylor et al., 2015, Phys. Rev. D, 92(6):063011.
1119
+ [34] R. G. Lang et al., 2020, Phys. Rev. D, 102:063012.
1120
+ [35] D. Ehlert et al., 2022. , arXiv e-prints, arXiv:2207.10691
1121
+ [36] A. Aab et al., 2017, Science, 357(6537):1266–1270.
1122
+ [37] R. G. Lang et al., 2021, Phys. Rev. D, 103(6):063005.
1123
+ [38] Pierre Auger Collaboration et al., 2019, arXiv e-prints, arXiv:1909.09073 [astro-ph].
1124
+ [39] Pierre Auger Collaboration, 2013, JCAP, 02:026.
1125
+ [40] M. Aguilar et al., 2021, Physics Reports, 894:1–116.
1126
+ [41] E. S. Seo et al., 2004, Advances in Space Research, 33:1777–1785.
1127
+ [42] A. M. Taylor et al., 2015, Phys. Rev. D, 92:063011.
1128
+ [43] A. M. Hillas, 1984, Annual Review of Astron. Astrophys., 22:425–444.
1129
+ [44] R. V. E. Lovelace, 1976, Nature, 262:649–652.
1130
+ [45] R. D. Blandford, 2000, Physica Scripta Volume T, 85:191–194.
1131
+ [46] E. Waxman,
1132
+ 2001,
1133
+ High-Energy Particles from 𝛾-Ray Bursts,
1134
+ In Physics and Astrophysics of
1135
+ Ultra-High-Energy Cosmic Rays, Eds. M. Lemoine, G. Sigl, Lecture Notes in Physics, 576:122.
1136
+ [47] E. Waxman, 2004, Astrophys. J., 606:988–993.
1137
+ [48] J. H. Matthews et al., 2020, New Astronomy Reviews, 89:101543.
1138
+ [49] F. M. Rieger, 2022, Universe, 8:607.
1139
+ [50] A. Achterberg et al., 2001, Mon. Not. Roy. Astron. Soc., 328:393–408.
1140
+ [51] G. Pelletier et al., 2009, AIP Conf. Proc., 1085(1):61–70.
1141
+ [52] M. Lemoine and E. Waxman, 2009, JCAP, 2009:009.
1142
+ [53] E. Fermi, 1949, Physical Review, 75:1169–1174.
1143
+ [54] L. O. Drury, 1983, Reports on Progress in Physics, 46:973–1027.
1144
+ [55] R. Blandford and D. Eichler, 1987, Physics Reports, 154:1–75.
1145
+ [56] A. R. Bell et al., 2019, Mon. Not. Roy. Astron. Soc., 488:2466–2472.
1146
+ [57] R. Diesing and D. Caprioli, 2019, Phys. Rev. Lett., 123(7):071101.
1147
+ [58] J. G. Kirk et al., 2000, Astrophys. J., 542:235–242.
1148
+ [59] P. O. Lagage and C. J. Cesarsky, 1983, Astron. Astrophys., 118:223–228.
1149
+ [60] J. Skilling, 1975, Mon. Not. Roy. Astron. Soc., 173:255–269.
1150
+ [61] S. G. Lucek and A. R. Bell, 2000, Mon. Not. Roy. Astron. Soc., 314:65–74.
1151
+ [62] A. R. Bell, 2004, Mon. Not. Roy. Astron. Soc., 353:550–558.
1152
+ [63] M. D. Stage et al., 2006, Nature Physics, 2:614–619.
1153
+ [64] Y. Uchiyama et al., 2007, Nature, 449:576–578.
1154
+ [65] M. Lemoine and G. Pelletier, 2010, Mon. Not. Roy. Astron. Soc., 402:321–334.
1155
+ [66] B. Reville and A. R. Bell, 2014, Mon. Not. Roy. Astron. Soc., 439:2050–2059.
1156
+ [67] A. R. Bell et al., 2018, Mon. Not. Roy. Astron. Soc., 473:2364–2371.
1157
+ [68] Z.-Q. Huang et al., 2022, Astrophys. J., 925:182.
1158
+ [69] J. G. Kirk et al., 2022, arXiv e-prints, arXiv:2212.02349 [astro-ph, physics:physics].
1159
+ [70] E. M. de Gouveia dal Pino and A. Lazarian, 2005, Astron. Astrophys., 441(3):845.
1160
+ [71] D. Giannios, 2010, Mon. Not. Roy. Astron. Soc., 408:L46–L50.
1161
+ 22
1162
+
1163
+ How, where and when do cosmic rays reach ultrahigh energies?
1164
+ James H. Matthews
1165
+ [72] L. O. Drury, 2012, Mon. Not. Roy. Astron. Soc., 422:2474–2476.
1166
+ [73] E. M. de Gouveia Dal Pino and A. Lazarian, 2000, Astrophys. J., 536:L31–L34.
1167
+ [74] E. de Gouveia Dal Pino et al., 2021, In Proc. of 37th International Cosmic Ray Conference —
1168
+ PoS(ICRC2021), pp. 454, arXiv:2204.09100.
1169
+ [75] F. M. Rieger and P. Duffy, 2019, Astrophys. J. Lett.], 886(2):L26.
1170
+ [76] D. Caprioli et al., 2017, Phys. Rev. Lett., 119:171101.
1171
+ [77] S. S. Kimura et al., 2018, Physical Review D, 97:023026.
1172
+ [78] R. Mbarek and D. Caprioli, 2019, Astrophys. J., 886:8.
1173
+ [79] F. M. Rieger and P. Duffy, 2006, Astrophys. J., 652:1044–1049.
1174
+ [80] J.-S. Wang et al., 2022, arXiv e-prints, arXiv:2212.03226 [astro-ph].
1175
+ [81] M. J. Hardcastle et al., 2009, Mon. Not. Roy. Astron. Soc., 393:1041–1053.
1176
+ [82] S. O’Sullivan et al., 2009, Mon. Not. Roy. Astron. Soc., 400:248–257.
1177
+ [83] S. Wykes et al., 2013, Astron. Astrophys., 558:A19.
1178
+ [84] P. Goldreich and W. H. Julian, 1969, Astrophys. J., 157:869.
1179
+ [85] P. Blasi et al., 2000, Astrophys. J., 533:L123–L126.
1180
+ [86] K. Fang et al., 2012, Astrophys. J., 750:118.
1181
+ [87] F. A. Aharonian et al., 2002, Physical Review D, 66:023005.
1182
+ [88] K. Murase et al., 2008, Physical Review D, 78:023005.
1183
+ [89] X.-Y. Wang et al., 2008, Astrophys. J., 677:432–440.
1184
+ [90] A. Pe’er et al., 2009, Physical Review D, 80(12):123018.
1185
+ [91] N. Globus et al., 2015, Mon. Not. Roy. Astron. Soc., 451:751–790.
1186
+ [92] A. L. Piro and J. A. Kollmeier, 2016, Astrophys. J., 826:97.
1187
+ [93] M. Unger et al., 2015, Physical Review D, 92:123001.
1188
+ [94] N. Globus et al., 2015, Physical Review D, 92:021302.
1189
+ [95] K. Kotera et al., 2009, Astrophys. J., 707:370–386.
1190
+ [96] J. H. Matthews and A. M. Taylor, 2021, Mon. Not. Roy. Astron. Soc., 503(4):5948–5964.
1191
+ [97] R. U. Abbasi et al., 2020, Astrophys. J., 898:L28.
1192
+ [98] A. Aab et al., 2018, Astrophys. J. Lett., 853:L29.
1193
+ [99] K. Kawata et al., 2019, EPJWC, 210:01004.
1194
+ [100] H. Sagawa, 2022, arXiv e-prints, arXiv:2209.03591 [astro-ph].
1195
+ [101] J. Biteau et al., 2019 EPJWC, 210:01005
1196
+ [102] A. di Matteo et al., 2020, arXiv e-prints, arXiv:2001.01864.
1197
+ [103] A. A. Abdo et al., 2010, Astrophys. J., 709:L152–L157.
1198
+ [104] M. Ackermann et al., 2012, Astrophys. J., 755:164.
1199
+ [105] G. E. Romero et al., 2018, arXiv e-prints, arXiv:1801.06483 [astro-ph].
1200
+ [106] L. A. Anchordoqui, 2018, Physical Review D, 97:063010.
1201
+ [107] E. Peretti et al., 2022, Mon. Not. Roy. Astron. Soc., 511:1336–1348.
1202
+ [108] L. Alfredo Anchordoqui, 2022, arXiv e-prints, arXiv:2210.15569.
1203
+ [109] T. M. Heckman et al., 1990, Astrophys. J.Suppl. Series, 74:833–868.
1204
+ [110] D. K. Strickland and I. R. Stevens, 2000, Mon. Not. Roy. Astron. Soc., 314:511–545.
1205
+ [111] D. K. Strickland and T. M. Heckman, 2009, Astrophys. J., 697:2030–2056.
1206
+ [112] J. Tumlinson et al., 2011, Science, 334:948.
1207
+ [113] E. Lopez-Rodriguez et al., 2021, Astrophys. J., 914:24.
1208
+ [114] M. J. Hardcastle and J. H. Croston, 2020, New Astronomy Reviews, 88:101539.
1209
+ [115] J. P. Rachen and P. L. Biermann, 1993, Astron. Astrophys., 272:161–175.
1210
+ [116] C. A. Norman et al., 1995, Astrophys. J., 454:60.
1211
+ [117] C. D. Dermer et al., 2009, New Journal of Physics, 11:065016.
1212
+ [118] S. Massaglia, 2007, Nuclear Physics B Proceedings Supplements, 168:302–304.
1213
+ 23
1214
+
1215
+ How, where and when do cosmic rays reach ultrahigh energies?
1216
+ James H. Matthews
1217
+ [119] S. Wykes et al., 2017, ArXiv e-prints, arXiv:1706.08229.
1218
+ [120] B. Eichmann, 2019, Journal of Physics Conference Series, 1181:012028.
1219
+ [121] P. L. Biermann and V. de Souza, 2012, Astrophys. J., 746:72.
1220
+ [122] S. Sahu et al., 2012, Physical Review D, 85:043012.
1221
+ [123] B. L. Fanaroff and J. M. Riley, 1974, Mon. Not. Roy. Astron. Soc., 167:31P–36P.
1222
+ [124] B. Mingo et al., 2019, Mon. Not. Roy. Astron. Soc., 488:2701–2721.
1223
+ [125] K. Meisenheimer and A. F. Heavens, 1986, Nature, 323(6087):419–422.
1224
+ [126] K. Meisenheimer et al., 1989, Astron. Astrophys., 219:63–86.
1225
+ [127] A. T. Araudo et al., 2015, Astrophys. J., 806:243.
1226
+ [128] R. A. Perley et al., 1984, Astrophys. J. Lett., 285:L35–L38.
1227
+ [129] E. S. Gentry, 2014, arXiv e-prints, arXiv:1405.6704.
1228
+ [130] M. J. Hardcastle et al., 2016, Mon. Not. Roy. Astron. Soc., 455:3526–3545.
1229
+ [131] J. H. Matthews et al., 2019, Mon. Not. Roy. Astron. Soc., 482:4303–4321.
1230
+ [132] S. Mukherjee et al., 2020, JCAP, 2020:032.
1231
+ [133] R. A. Laing and A. H. Bridle, 2013, Mon. Not. Roy. Astron. Soc., 432:1114–1132.
1232
+ [134] H. E. S. S. Collaboration et al., 2020, Nature, 582(7812):356–359.
1233
+ [135] A. H. Bridle et al., 1994, The Astronomical Journal, 108:766–820.
1234
+ [136] J. L. Goodger et al., 2010, Astrophys. J., 708:675–697.
1235
+ [137] J. H. Croston et al., 2009, Mon. Not. Roy. Astron. Soc., 395:1999–2012.
1236
+ [138] R. Timmerman et al., 2021, arXiv e-prints, arXiv:2108.07287 [astro-ph].
1237
+ [139] A. T. Araudo et al., 2018, Mon. Not. Roy. Astron. Soc., 473:3500–3506.
1238
+ [140] S. Massaglia, 2007, Nuclear Physics B Proceedings Supplements, 165:130–136.
1239
+ [141] J. H. Matthews et al., 2018, Mon. Not. Roy. Astron. Soc., 479:L76–L80.
1240
+ [142] J. H. Matthews et al., 2019, EPJWC, 210:04002.
1241
+ [143] B. Eichmann, 2019, JCAP, 2019:009.
1242
+ [144] J. Gofford et al., 2013, Mon. Not. Roy. Astron. Soc., 430(1):60–80.
1243
+ [145] R. J. Weymann et al., In J. S. Miller, editor, Astrophysics of Active Galaxies and Quasi-Stellar Objects,
1244
+ pp. 333–365, 1985.
1245
+ [146] A. L. Rankine et al., 2020, Mon. Not. Roy. Astron. Soc., 492:4553–4575.
1246
+ [147] J. Nims et al., 2015, Mon. Not. Roy. Astron. Soc., 447:3612–3622.
1247
+ [148] M. Ajello et al., 2021, Astrophys. J., 921:144.
1248
+ [149] A. L. Rankine et al., 2021, Mon. Not. Roy. Astron. Soc., 502:4154–4169.
1249
+ [150] G. T. Richards et al., 2021, The Astronomical Journal, 162:270.
1250
+ [151] J. W. Petley et al., 2022, Mon. Not. Roy. Astron. Soc., 515:5159–5174.
1251
+ [152] X. Wang and A. Loeb, 2017, Physical Review D, 95:063007.
1252
+ [153] P. Mészáros, 2019, arXiv e-prints, arXiv:1904.10488 [astro-ph, physics:hep-ph].
1253
+ [154] T. Laskar et al., 2016, Astrophys. J., 833:88.
1254
+ [155] V. A. Acciari et al., 2019, Nature, 575(7783):455–458.
1255
+ [156] H. E. S. S. Collaboration et al., 2021, Science, 372(6546):1081–1085.
1256
+ [157] Y. Huang et al., 2022, GRB Coordinates Network, 32677:1.
1257
+ [158] E. Waxman, 1995, Phys. Rev. Lett., 75:386–389.
1258
+ [159] M. Vietri, 1995, Astrophys. J., 453:883.
1259
+ [160] D. A. Perley et al., 2014, Astrophys. J., 781(1):37.
1260
+ [161] P. Baerwald et al., 2015, Astroparticle Physics, 62:66–91.
1261
+ [162] R. D. Blandford and C. F. McKee, 1976, Physics of Fluids, 19:1130–1138.
1262
+ [163] T. Piran, 2004, Reviews of Modern Physics, 76:1143–1210.
1263
+ [164] S. Şaşmaz Muş et al., 2019, Astrophys. J., 886(1):5.
1264
+ [165] M. Lemoine et al., 2015, JCAP, 07:016.
1265
+ 24
1266
+
1267
+ How, where and when do cosmic rays reach ultrahigh energies?
1268
+ James H. Matthews
1269
+ [166] J. Arons, 2003, Astrophys. J., 589:871–892.
1270
+ [167] A. R. Bell, 1992, Mon. Not. Roy. Astron. Soc., 257:493–500.
1271
+ [168] L. Collaboration et al., 2021, Science.
1272
+ [169] S. Gezari, 2021, Annual Review of Astron. Astrophys., 59(1):null.
1273
+ [170] D. N. Burrows et al., 2011, Nature, 476(7361):421–424.
1274
+ [171] F. De Colle and W. Lu, 2020, New Astronomy Reviews, 89:101538.
1275
+ [172] B. T. Zhang et al., 2017, Physical Review D, 96:063007.
1276
+ [173] C. Guépin et al., 2018, Astron. Astrophys., 616:A179.
1277
+ [174] H. Kang, 2021, Journal of Korean Astronomical Society, 54:103–112.
1278
+ [175] V. S. Ptuskin et al., 2009, Bull. Russ. Acad. Sci.: Phys., 73(5):552–554.
1279
+ [176] H. Kang et al., 1996, Astrophys. J., 456:422.
1280
+ [177] K. V. Ptitsyna and S. V. Troitsky, 2010, Physics Uspekhi, 53:691–701.
1281
+ [178] R. Alves Batista et al., 2019, Frontiers in Astronomy and Space Sciences, 6:23.
1282
+ [179] T. Piran, In E. M. de Gouveia dal Pino et al., editors, Magnetic Fields in the Universe: From Laboratory
1283
+ and Stars to Primordial Structures., AIP Conf. Proc., 784:164–174.
1284
+ [180] J. H. Croston et al., 2005, Astrophys. J., 626:733–747.
1285
+ [181] M. Lemoine et al., 1997, Astrophys. J. Lett., 486:L115–L118.
1286
+ [182] P. Uttley and I. M. Mchardy, 2004, Prog. Theor. Phys. Suppl., 155:170–177.
1287
+ [183] F. M. Maccagni et al., 2020, Astron. Astrophys., 634:A9.
1288
+ [184] M. Gaspari, 2016, Galaxies at High Redshift and Their Evolution Over Cosmic Time, 319:17.
1289
+ [185] H.-Y. K. Yang and C. S. Reynolds, 2016, Astrophys. J., 829:90.
1290
+ [186] R. S. Beckmann et al., 2017, Mon. Not. Roy. Astron. Soc., 472:949–965.
1291
+ [187] S. Tacchella et al., 2020, Mon. Not. Roy. Astron. Soc., 497:698–725.
1292
+ [188] E. Waxman and A. Loeb, 2009, JCAP, 2009(08):026–026.
1293
+ [189] N. Globus et al., 2022, arXiv e-prints, arXiv:2210.15885 [astro-ph].
1294
+ [190] A. R. Bell and J. H. Matthews, 2022, Mon. Not. Roy. Astron. Soc., 511:448–456.
1295
+ [191] S. Samui et al., 2018, Mon. Not. Roy. Astron. Soc., 476:1680–1695.
1296
+ [192] G. A. Anastasi and Pierre Auger Collaboration, 2022, NIMPA, 1044:167497.
1297
+ [193] K. Kotera and M. Lemoine, 2008, Physical Review D, 77:123003.
1298
+ [194] J. Kim et al., 2019, Science Advances, 5:eaau8227.
1299
+ [195] S. Ansoldi et al., 2018, Astrophys. J., 863(1):L10.
1300
+ [196] B. P. Abbott et al., 2017, Astrophys. J. Lett., 848(2):L13.
1301
+ [197] Telescope Array Collaboration, 2021, NIMPA, 1019:165726.
1302
+ [198] Cherenkov Telescope Array Consortium et al., 2019, Science with the Cherenkov Telescope Array,
1303
+ Published by World Scientific Publishing Co. Pte. Ltd., ISBN #9789813270091. doi:10.1142/10986
1304
+ 25
1305
+
MtE0T4oBgHgl3EQf0QIf/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
O9AzT4oBgHgl3EQflP2h/content/tmp_files/2301.01545v1.pdf.txt ADDED
@@ -0,0 +1,2013 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ X-ray Thomson scattering spectra from DFT-MD simulations based on a modified
2
+ Chihara formula
3
+ Maximilian Sch¨orner,1, ∗ Mandy Bethkenhagen,2, 3 Tilo D¨oppner,4
4
+ Dominik Kraus,1, 5 Siegfried H. Glenzer,6 and Ronald Redmer1
5
+ 1University of Rostock, Institute of Physics, 18051 Rostock, Germany
6
+ 2 ´Ecole Normale Sup´erieure de Lyon, Laboratoire de G´eologie de Lyon LGLTPE UMR 5276,
7
+ Centre Blaise Pascal, 46 all´ee d’Italie Lyon 69364, France
8
+ 3Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
9
+ 4Lawrence Livermore National Laboratory, Livermore, CA 94551, USA
10
+ 5Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
11
+ 6SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
12
+ (Dated: January 5, 2023)
13
+ We study state-of-the-art approaches for calculating x-ray Thomson scattering spectra from den-
14
+ sity functional theory molecular dynamics (DFT-MD) simulations based on a modified Chihara
15
+ formula that expresses the inelastic contribution in terms of the dielectric function. We compare
16
+ the electronic dynamic structure factor computed from the Mermin dielectric function using an
17
+ ab initio electron-ion collision frequency to computations using a linear response time dependent
18
+ density functional theory (LR-TDDFT) framework for hydrogen and beryllium and investigate the
19
+ dispersion of free-free and bound-free contributions to the scattering signal. A separate treatment of
20
+ these contributions in the Mermin dielectric function shows excellent agreement with LR-TDDFT
21
+ results for ambient-density beryllium, but breaks down for highly compressed matter where the
22
+ bound states become pressure ionized. LR-TDDFT is used to reanalyze x-ray Thomson scattering
23
+ experiments on beryllium demonstrating strong deviations from the plasma conditions inferred with
24
+ traditional analytic models at small scattering angles.
25
+ I.
26
+ INTRODUCTION
27
+ X-ray Thomson scattering (XRTS) has been one of the
28
+ premier diagnostic tools for warm dense matter (WDM)
29
+ experiments, enabling measurements of the electron den-
30
+ sity, temperature and ionization state [1–3]. The states
31
+ reached in these experiments are characterized by tem-
32
+ peratures of a few electronvolts (eV) and around solid
33
+ densities, which constitutes strongly correlated plasmas
34
+ with non-negligible degeneracy. This prevents the appli-
35
+ cation of ideal plasma theory for the analysis of these
36
+ experiments, and rather requires a quantum mechani-
37
+ cal treatment in a many-body framework.
38
+ Knowledge
39
+ of equation of state data as well as thermal and electrical
40
+ transport properties for warm dense hydrogen and beryl-
41
+ lium is essential for modelling astrophysical objects [4, 5]
42
+ and inertial confinement fusion [6], where hydrogen is
43
+ used as fuel while beryllium often serves as ablator ma-
44
+ terial [7, 8]. Furthermore, hydrogen and beryllium are
45
+ excellent test cases for new theoretical approaches. The
46
+ analytical behavior in many limiting cases for fully ion-
47
+ ized hydrogen plasmas are known and beryllium can be
48
+ used to test the treatment of bound states in a simple
49
+ low-Z material. WDM is typically opaque in the optical
50
+ regime, as the light frequency is smaller than the plasma
51
+ frequency ωpl of these plasmas.
52
+ Therefore, it is indis-
53
+ pensable to have diagnostic tools at experiments that are
54
+ well understood, both experimentally and theoretically.
55
56
+ XRTS has proven to overcome many of the experimen-
57
+ tal challenges of probing WDM. The high energy x-ray
58
+ photons can penetrate dense plasmas and since the ad-
59
+ vent of free electron lasers (FEL), rep-rated x-ray sources
60
+ with sufficient brilliance for probing short-lived transient
61
+ states are available in addition to laser-plasma sources
62
+ which only allow a limited number of experiments and re-
63
+ quire complex sample assemblies. New FEL techniques
64
+ like self-seeding [9, 10] have also resulted in much nar-
65
+ rower bandwidths of the x-ray source, enabling the mea-
66
+ surement of phonons and ion acoustic modes [11, 12] and
67
+ a better resolution of density and temperature-sensitive
68
+ regions in the XRTS spectrum.
69
+ Due to the steadily improving quality of collected spec-
70
+ tra, it is vital to have accurate theoretical modeling of the
71
+ scattering. While in the past, the resolution of XRTS
72
+ spectra often did not allow for discrimination between
73
+ different theoretical approaches, now, fitting experimen-
74
+ tal spectra to theoretical models has allowed predictions
75
+ of electron temperature and density to within a few per-
76
+ cent uncertainties [13–15]. As a result, the fidelity of the
77
+ theoretical model used is now the limiting factor in de-
78
+ termining the correct plasma parameters in experiments
79
+ that employ XRTS as a diagnostic tool. Most approaches
80
+ rely on the semi-classical Chihara decomposition [16, 17]
81
+ of the spectrum into three distinct contributions which
82
+ originates from distinguishing between free and bound
83
+ electrons in a chemical picture. An analogous fully quan-
84
+ tum mechanical description has also been proposed [18].
85
+ The standard approach for modeling XRTS spectra in
86
+ the Chihara description is a combination of theories to
87
+ describe each component individually [19]. The ion dy-
88
+ arXiv:2301.01545v1 [physics.plasm-ph] 4 Jan 2023
89
+
90
+ 2
91
+ namics are usually described by the hypernetted-chain
92
+ approximation with different expressions for the inter-
93
+ action potential while the form factors are described by
94
+ a screened hydrogenic approximation to the wave func-
95
+ tions [20] and the Debye-H¨uckel approximation for the
96
+ screening cloud. The plasmon can be described by the
97
+ random phase approximation (RPA) or the Mermin di-
98
+ electric function in order to also include electron-ion col-
99
+ lisions which can also be approximated to different de-
100
+ grees [21]. Further electron correlations can be accounted
101
+ for by local field corrections [22]. Contributions that are
102
+ related to bound-free transitions are treated within the
103
+ impulse approximation [23] which is sometimes modified
104
+ by the ionization potential depression and normalized
105
+ according to different sum rules.
106
+ Each of these theo-
107
+ ries entails various approximations and achieves different
108
+ degrees of fidelity in a wide range of temperatures and
109
+ densities which severely complicates gauging sources of
110
+ errors.
111
+ Furthermore, the ionization degree is often left as an
112
+ unconstrained parameter in the fitting procedure which
113
+ risks overfitting and neglects its dependence on tempera-
114
+ ture and density. In recent years, this approach has been
115
+ partially replaced by ab initio descriptions like density
116
+ functional theory molecular dynamics (DFT-MD) sim-
117
+ ulations and real time or linear response time depen-
118
+ dent DFT (RT/LR-TDDFT) computations. Witte et al.
119
+ successfully used electron-ion collision frequencies deter-
120
+ mined by DFT to accurately model the plasmon of an
121
+ aluminum plasma [24]. This approach was subsequently
122
+ compared to LR-TDDFT by Ramakrishna et al. for am-
123
+ bient and extreme conditions in aluminum [25] and car-
124
+ bon [26], which was then used to discern miscibility in
125
+ an XRTS experiment [13].
126
+ Baczewski et al.
127
+ went be-
128
+ yond the Chihara decomposition by simulating the real
129
+ time propagation of the electronic density using RT-
130
+ TDDFT [27].
131
+ Path integral Monte Carlo simulations
132
+ have delivered approximation-free results for the uniform
133
+ electron gas [28] and hydrogen plasmas [29], but are cur-
134
+ rently unable to describe heavier elements.
135
+ In this work, we describe the calculation of XRTS spec-
136
+ tra in an ab initio framework where each contribution
137
+ to the Chihara decomposition is extracted from a DFT-
138
+ MD simulation that is based on well defined approxima-
139
+ tions and limits the free parameters to the mass density
140
+ and temperature by constraining the number of free elec-
141
+ trons per atom according to a new technique recently
142
+ proposed by Bethkenhagen et al. [30]. The capability of
143
+ DFT-MD to compute ion dynamics and the form factors
144
+ was already demonstrated and tested in previous pub-
145
+ lications [31–33].
146
+ Therefore, we focus on the inelastic
147
+ contribution that can be computed from a self-consistent
148
+ DFT cycle using the Kubo-Greenwood formula or LR-
149
+ TDDFT. We give an overview of the theoretical founda-
150
+ tion for computing the electronic dynamic structure fac-
151
+ tor from the Mermin dielectric function with a dynamic
152
+ complex collision frequency and apply this framework
153
+ to extract a DFT-based collision frequency in Secs. II A
154
+ and II B. In Sec. II D we give the details of the simula-
155
+ tion method. We compute DFT-based collision frequen-
156
+ cies for a hydrogen plasma and compare them to sev-
157
+ eral analytic approaches in Sec. III and we study the im-
158
+ pact of these collision frequencies on DSFs for hydrogen
159
+ and beryllium plasmas in Secs. IV A, IV B, and IV C. In
160
+ Sec. V, we apply LR-TDDFT to XRTS experiments on
161
+ beryllium to evaluate their impact on the inferred plasma
162
+ parameters.
163
+ II.
164
+ THEORETICAL BACKGROUND
165
+ A.
166
+ Dynamic structure factor
167
+ The electronic dynamic structure factor (DSF) [1]
168
+ Stot
169
+ ee (⃗k, ω) =
170
+ 1
171
+ 2πNe
172
+ � ∞
173
+ −∞
174
+ dt⟨ne
175
+ ⃗k(τ)ne
176
+ −⃗k(τ + t)⟩τ eiωt
177
+ (1)
178
+ is the central quantity representing the spatially resolved
179
+ power spectrum of an electronic system, describing its dy-
180
+ namics at given temporal and spatial periodicities given
181
+ by the frequency ω and the wave vector ⃗k, respectively.
182
+ The number of considered electrons is Ne and the spatial
183
+ Fourier components of the electron density are given by
184
+ ne
185
+ ⃗k. The time is described by t and τ, where ⟨...⟩τ de-
186
+ scribes a time average over τ. Experimentally, Stot
187
+ ee (⃗k, ω)
188
+ can be used to identify how strong a photon will cou-
189
+ ple to density fluctuations at a given energy transfer and
190
+ scattering angle [1].
191
+ In this work we will use a slight
192
+ modification of the common decomposition of Eq. (1) in-
193
+ troduced by Chihara [16, 17]:
194
+ Stot
195
+ ee (⃗k, ω) = |fi(⃗k) + q(⃗k)|2Sii(⃗k, ω)+
196
+ + ZfS0
197
+ ee(⃗k, ω) + ZbSbf(⃗k, ω)
198
+
199
+ ��
200
+
201
+ Z Set(⃗k,ω)
202
+ .
203
+ (2)
204
+ The first term refers to the elastic response of the elec-
205
+ trons which follow the ion motion described by the ion-
206
+ ion structure factor Sii(⃗k, ω). Here, fi(⃗k) describes the
207
+ contribution of tightly bound electrons and q(⃗k) repre-
208
+ sents the loosely bound screening cloud around the ions.
209
+ The second term, called the electron feature, arises from
210
+ the collective behavior of the free electrons in the system
211
+ undergoing transitions to different free-electron states.
212
+ The number of free electrons per atom is labeled Zf and
213
+ their DSF is denoted by S0
214
+ ee(⃗k, ω).
215
+ The last term in
216
+ Eq. (2) is the bound-free contribution. In the original
217
+ work, Chihara clearly separates free and bound electrons
218
+ and describes this term as a convolution of the DSF of
219
+ the core electrons with the self-part of the ionic DSF [17].
220
+ We treat the bound-free contribution on the same footing
221
+ as the free electron contibution and introduce the bound-
222
+ free DSF Sbf(⃗k, ω) and the number of bound electrons per
223
+ atom Zb. Both the free electron and bound-free contri-
224
+ butions arise due to inelastic transitions of the electrons
225
+
226
+ 3
227
+ and can, therefore, be combined into one DSF Set(⃗k, ω)
228
+ that accounts for all electronic transitions. This avoids
229
+ the artificial separation into bound and free electrons for
230
+ both the charge state Z and the DSF. According to the
231
+ fluctuation-dissipation theorem [34], this combined DSF
232
+ can be related the dielectric response described by the
233
+ dielectric function ϵ(⃗k, ω) via
234
+ Set(⃗k, ω) = − ϵ0ℏ⃗k2
235
+ πe2ne
236
+ Im
237
+
238
+ ϵ−1(⃗k, ω)
239
+
240
+ 1 − exp
241
+
242
+ −ℏω
243
+ kBTe
244
+ �.
245
+ (3)
246
+ The vacuum permittivity is denoted by ϵ0, the reduced
247
+ Planck constant is ℏ and e is the elementary charge. The
248
+ electron density is given by ne, the electron tempera-
249
+ ture is Te and the Boltzmann constant is kB. At which
250
+ conditions the separation into free and bound-free part
251
+ in Eq. (2) is justified and yields the same results as the
252
+ combined approach is discussed in Secs. IV B and IV C.
253
+ B.
254
+ Dielectric Function with electron-ion collisions
255
+ The dielectric function ϵ(⃗k, ω) is a central material
256
+ property that is connected to other material properties,
257
+ like the electrical conductivity σ(ω) in the long wave-
258
+ length limit or the DSF via the fluctuation dissipation
259
+ theorem from Eq. (3). One of the first approaches that
260
+ produced collective features of the electron system, like
261
+ plasmons, is the Lindhard dielectric function [35]
262
+ ϵRPA(⃗k, ω) = lim
263
+ η→0
264
+
265
+ 1−
266
+ − 2e2
267
+ ϵ0k2
268
+
269
+ d3q
270
+ (2π)3
271
+ f⃗q−
272
+ ⃗k
273
+ 2 − f⃗q+
274
+ ⃗k
275
+ 2
276
+ ℏ (ω + iη) + E⃗q−
277
+ ⃗k
278
+ 2 − E⃗q+
279
+ ⃗k
280
+ 2
281
+
282
+ .
283
+ (4)
284
+ which accounts for electric field screening in the Random
285
+ Phase Approximation (RPA). The arguments ⃗k and ω
286
+ are the wave vector and the angular frequency, respec-
287
+ tively while the electron charge is denoted by e. E⃗q and
288
+ f⃗q are the kinetic energy and the Fermi occupation of
289
+ an electron with wave vector ⃗q in the unperturbed free
290
+ electron gas. The small imaginary contribution to the
291
+ frequency η is introduced to avoid the pole in the in-
292
+ tegration and approaches zero thereafter. However, for
293
+ degenerate, strongly correlated systems electron-ion in-
294
+ teractions, which are neglected in Eq. (4), have to be ac-
295
+ counted for in order to accurately describe the dielectric
296
+ function.
297
+ It was shown that electron-ion collisions can be in-
298
+ cluded via a dynamic collision frequency ν(ω) in the
299
+ framework of the Mermin dielectric function [36–39]
300
+ ϵMermin(⃗k, ω; ν(ω)) = 1+
301
+ +
302
+
303
+ 1 + i ν(ω)
304
+ ω
305
+ � �
306
+ ϵRPA(⃗k, ω + iν(ω)) − 1
307
+
308
+ 1 + i ν(ω)
309
+ ω
310
+ ϵRPA(⃗k,ω+iν(ω))−1
311
+ ϵRPA(⃗k,0)−1
312
+ .
313
+ (5)
314
+ Extensive work has been performed on the evaluation
315
+ of different analytic collision frequencies and local field
316
+ corrections [21, 22, 40], as well as first attempts to incor-
317
+ porate ab initio results to determine collision frequen-
318
+ cies [41].
319
+ We present the derivation of the RPA dielectric func-
320
+ tion in the presence of a dynamic complex collision fre-
321
+ quency in Appendix A. Equations (5), (A7) and (A8)
322
+ are the basis for calculating the Mermin dielectric func-
323
+ tion for a given dynamic collision frequency ν(ω). In the
324
+ following, because we are dealing with isotropic systems,
325
+ we will only consider the magnitude of wave vector ⃗k and
326
+ drop the vector notation.
327
+ One of the most prominent approximations for the col-
328
+ lision frequency is the Born collision frequency [21], the
329
+ combination of which with the Mermin dielectric func-
330
+ tion in Eq. (5) is called the Born-Mermin approxima-
331
+ tion (BMA). It is widely used in the analysis of XRTS
332
+ spectra in the WDM field.
333
+ We give the exact equa-
334
+ tions used in this work in Appendix B. However, complex
335
+ many-particle effects, as they are considered in ab initio
336
+ simulations, cannot be accounted for by this approach.
337
+ FIG. 1. Schematic work flow for determining the dynamic col-
338
+ lision frequency and k-dependent dielectric function via DFT.
339
+ In Fig. 1, we show the schematic procedure to compute
340
+ a DFT-based collision frequency from an electrical con-
341
+ ductivity in the optical limit. In essence, we construct a
342
+ complex collision frequency for which the Mermin dielec-
343
+ tric function coincides with the ab initio dielectric func-
344
+ tion in the optical limit. As input, the temperature and
345
+ electron density of the plasma are needed for the Mer-
346
+ min dielectric function and the real part of the electrical
347
+ conductivity is needed from the simulation. According to
348
+
349
+ DFT-MD
350
+ input
351
+ Consistency check
352
+ KK-Transform
353
+ Re[α(k = O, w)]
354
+ Im[o(k = 0,w)]
355
+ Imle
356
+ Re[o]
357
+ Im[o] = Eo w (1 - Re[e])
358
+ mO
359
+ KK-Transform
360
+ Im[e(k = 0,w)]
361
+ Re[e(k = 0,w)]
362
+ DFT(k = 0,w)
363
+ Mermin(k, w; v(w))
364
+ eMermin(k, w; vDFT(w))
365
+ T,n
366
+ DFT()
367
+ Input4
368
+ the Kubo-Greenwood formula [42, 43] the conductivity is
369
+ Re [σ(k = 0, ω)] = 2πe2
370
+ 3ωΩ
371
+
372
+ ⃗g
373
+ w⃗g
374
+ N
375
+
376
+ j=1
377
+ N
378
+
379
+ i=1
380
+ 3
381
+
382
+ α=1
383
+ ×
384
+ ×
385
+
386
+ f(ϵj,⃗g) − f(ϵi,⃗g)
387
+
388
+ | ⟨ψj,⃗g|ˆvα|ψi,⃗g⟩ |2δ(ϵi,⃗g − ϵj,⃗g − ℏω).
389
+ (6)
390
+ The indices i and j run over the eigenstates, α runs over
391
+ the spatial orientations and ⃗g denotes the reciprocal vec-
392
+ tors in the Brillouin zone where the wave functions ψi,⃗g
393
+ are evaluated. The Fermi-Dirac occupation at a given
394
+ eigenenergy ϵj,⃗g is described by f(ϵj,⃗g) and ˆvα is the ve-
395
+ locity operator in the direction α.
396
+ The normalization
397
+ volume is denoted by Ω and w⃗g is the weigthing of each
398
+ k-point. We translate the electrical conductivity to the
399
+ imaginary dielectric function via
400
+ Im [ϵ(k = 0, ω)] =
401
+ 1
402
+ ϵ0ω Re [σ(k = 0, ω)]
403
+ (7)
404
+ and use the Kramers-Kronig transformation to compute
405
+ the corresponding real part, leading to a complex dielec-
406
+ tric function ϵDFT(k = 0, ω). If we require an equivalence
407
+ between the DFT result and the Mermin dielectric func-
408
+ tion in the optical limit
409
+ ϵDFT (k = 0, ω)
410
+ != lim
411
+ k→0 ϵMermin (k, ω; ν (ω)) ,
412
+ (8)
413
+ the real and imaginary parts must be equal simultane-
414
+ ously. This can be achieved by adjusting the real and
415
+ imaginary part of the dynamic collision frequency which
416
+ feeds into the Mermin dielectric function, leading to a
417
+ two dimensional optimization problem. The result of this
418
+ optimization is a collision frequency νDFT for which the
419
+ analytic Mermin dielectric function yields the same re-
420
+ sults as DFT in the macroscopic limit. Because there is
421
+ no notion of bound states in the theoretical framework
422
+ of the Mermin dielectric function, the electrical conduc-
423
+ tivity must only originate from free or quasi-free states.
424
+ For this purpose, the conductivity in Eq. (6) can be split
425
+ into different contibutions, see Ref. 30 for details.
426
+ Figure 2 shows the convergence of the Mermin dielec-
427
+ tric function and DSF to the DFT result in the opti-
428
+ cal limit for a beryllium plasma at ρ = 5 g/cm3 and
429
+ T = 100 eV. Due to the presence of bound states in
430
+ beryllium at these conditions, only the electrical conduc-
431
+ tivity due to free electrons can be used as an input to the
432
+ workflow depicted in Fig. 1 and all quantities in Fig. 2 are
433
+ free-electron contibutions. The DFT result for the DSF
434
+ SDFT and the dielectric function ϵDFT are only available
435
+ at k = 0 and are shown as a constant reference for the
436
+ various k depicted in Fig. 2. In both panels, it is appar-
437
+ ent that, with the correct collision frequency νDFT, the
438
+ Mermin result converges to the optical limit described
439
+ by DFT. In practice, the limit k → 0 is reached at wave
440
+ numbers that correspond to length scales that are sig-
441
+ nificantly larger than any characteristic length scales of
442
+ the studied system. For beryllium at these conditions,
443
+ the convergence is reached for wave numbers smaller or
444
+ equal to 10−4 ˚A−1 as depicted in Fig. 2. The dielectric
445
+ functions in the upper panel are connected to the DSF
446
+ in the lower panel by Eq. (3). However, it is apparent
447
+ that the dynamic dielectric function in the upper panel
448
+ of Fig. 2 is more sensitive to changes in the wave num-
449
+ ber than the DSF shown in the bottom panel, which is
450
+ dominated by the pole in ϵ−1(k, ω).
451
+ 0
452
+ 5
453
+ 10
454
+ 15
455
+ 20
456
+ 25
457
+ 30
458
+ 35
459
+ −50
460
+ 0
461
+ 50
462
+ 100
463
+ 150
464
+ 200
465
+ ϵ(k, ω)
466
+ k = 10−4 ˚A−1
467
+ k = 10−1 ˚A−1
468
+ k = 0.5 ˚A−1
469
+ Re[ϵDFT(k = 0)]
470
+ Im[ϵDFT(k = 0)]
471
+ Re[ϵMermin(k)]
472
+ Im[ϵMermin(k)]
473
+ 0
474
+ 20
475
+ 40
476
+ 60
477
+ 80
478
+ 100
479
+ ¯hω [eV]
480
+ 0.0
481
+ 0.5
482
+ 1.0
483
+ 1.5
484
+ 2.0
485
+ 2.5
486
+ 3.0
487
+ 3.5
488
+ S0
489
+ ee(k, ω) [a.u.]
490
+ k = 10−4 ˚A−1
491
+ k = 10−1 ˚A−1
492
+ k = 0.5 ˚A−1
493
+ k = 1 ˚A−1
494
+ k = 3 ˚A−1
495
+ SDFT(k = 0, ω)
496
+ SMermin (k, ω; νDFT)
497
+ FIG. 2. The top panel shows the free-electron part of the di-
498
+ electric function ϵ(k, ω) in a beryllium plasma at ρ = 5 g/cm3
499
+ and T = 100 eV. The DFT results are given at k = 0,
500
+ where the solid lines are the real part and the dash-dotted
501
+ lines are the imaginary part. The Mermin dielectric function
502
+ from Eq. (5) is calculated with the DFT collision frequency
503
+ νDFT. The colors represent different values for k, while the
504
+ real and imaginary parts are given by the circles and crosses,
505
+ respectively. The bottom panel shows the free-electron DSF
506
+ S0
507
+ ee(k, ω) computed from DFT (solid lines) at k = 0 and from
508
+ the Mermin dielectric function (circles) at various k.
509
+ The
510
+ DSFs are scaled to the same magnitude and the dielectric
511
+ function and DSFs are shifted by 75 and 0.5 a.u., respectively,
512
+ with respect to the next lowest wave number for readability.
513
+
514
+ 5
515
+ C.
516
+ Linear response time dependent density
517
+ functional theory
518
+ In the framework of LR-TDDFT the density response
519
+ of the non-interacting Kohn-Sham system can be evalu-
520
+ ated at a finite momentum transfer as [44, 45]:
521
+ χKS(⃗k, ω) = 1
522
+
523
+
524
+ ⃗g,i,j
525
+ f(ϵi,⃗g) − f(ϵj,⃗g+⃗k)
526
+ ω + ϵi,⃗g − ϵj,⃗g+⃗k + iη ×
527
+ × ⟨ψi,⃗g|e−i⃗k⃗r|ψj,⃗g+⃗k⟩ ⟨ψi,⃗g|ei⃗k⃗r|ψj,⃗g+⃗k⟩ .
528
+ (9)
529
+ The quantities in this equation are defined analogously to
530
+ the Kubo-Greenwood formula in Eq. (6). This response
531
+ function can be related to the full density response χ via a
532
+ Dyson equation [44], with different levels of approxima-
533
+ tion for the exchange-correlation kernel fXC. A closed
534
+ expression can be written as
535
+ χ(⃗k, ω) =
536
+ χKS(⃗k, ω)
537
+ 1 −
538
+
539
+ v(⃗k) + fXC(⃗k, ω)
540
+
541
+ χKS(⃗k, ω)
542
+ ,
543
+ (10)
544
+ where v(⃗k) is the Fourier transform of the Coulomb po-
545
+ tential. The level of the RPA is achieved for fXC = 0, for
546
+ which the dielectric function can be computed as
547
+ ϵRPA
548
+ KS (⃗k, ω) = 1 − 4π
549
+ |⃗k|2 χKS(⃗k, ω).
550
+ (11)
551
+ Because the Mermin dielectric function accounts for elec-
552
+ tron interactions on the level of the RPA, we set fXC = 0
553
+ and use Eq. (11) in Secs. IV A, IV B and IV C to facili-
554
+ tate comparisons. In Sec. V, we use the adiabatic local
555
+ density approximation [44, 46].
556
+ D.
557
+ Computational details
558
+ All DFT-MD simulations for this work were per-
559
+ formed with the Vienna ab initio simulation package
560
+ (VASP) [47–49]. The electronic and ionic parts are de-
561
+ coupled by the Born-Oppenheimer approximation and,
562
+ for fixed ion positions, the electronic problem is solved in
563
+ the finite temperature DFT approach [50]. In VASP, the
564
+ electronic wave functions are expanded in a plane wave
565
+ basis set up to a energy cutoff Ecut. After the electronic
566
+ ground state density is determined self-consistently at
567
+ every time step, the forces on the ions via Coulomb in-
568
+ teractions with other ions and the electron cloud are com-
569
+ puted and the ions are moved according to Newton’s sec-
570
+ ond law.
571
+ The temperature control in the MD simula-
572
+ tion is performed via the Nos´e-Hoover algorithm [51, 52]
573
+ with a mass parameter corresponding to a temperature
574
+ oscillation period of 40 time steps. All simulations are
575
+ performed using the exchange-correlation functional of
576
+ Perdew, Burke, and Ernzerhof (PBE) [53].
577
+ For beryl-
578
+ lium, we use the PAW_PBE Be_sv_GW 31Mar2010 poten-
579
+ tial with an energy cutoff of 800 eV for all simulations
580
+ apart from the compressed case in Sec. IV C for which we
581
+ use a Coulomb potential with a cutoff of 10 000 eV. For
582
+ further details on the hydrogen simulation parameters,
583
+ see Ref. 54.
584
+ The dynamic electrical conductivity, that is the input
585
+ for the scheme presented in Fig. 1, was computed from
586
+ the eigenfunctions and eigenenergies of separate DFT cy-
587
+ cles with a more precise energy convergence criterion
588
+ via the Kubo-Greenwood formula (6).
589
+ These simula-
590
+ tions were performed on at least five snapshots taken
591
+ at equidistant time steps from the DFT-MD simulation.
592
+ The scheme described in Sec. II B was implemented us-
593
+ ing the NumPy software package [55] for arrays to store
594
+ the dynamic properties and for the evaluation of sim-
595
+ ple numerical integration. More elaborate integrals, such
596
+ as in Eqs. (A7) and (A8), were evaluated using Gaus-
597
+ sian quadrature from the SciPy software package [56].
598
+ The Kramers-Kronig transformation between the real
599
+ and imaginary part of the dynamic dielectric function
600
+ and the electrical conductivity was performed according
601
+ to Maclaurin’s formula from Ref. 57.
602
+ The
603
+ linear
604
+ response
605
+ time
606
+ dependent
607
+ DFT
608
+ (LR-
609
+ TDDFT) calculations were performed in the GPAW
610
+ code [45, 58–60]. The same snapshots as for the Kubo-
611
+ Greenwood calculations were used and a 2x2x2 or 4x4x4
612
+ Monkhorst-Pack grid [61] was employed for calculations
613
+ of k-dependent dielectric functions. For the considered
614
+ conditions, already the Baldereschi mean value point [62]
615
+ yields converged optical conductivities for the Kubo-
616
+ Greenwood calculations.
617
+ For hydrogen, the dielectric
618
+ function was computed with a plane-wave energy cut-
619
+ off of at least 50 eV, while for beryllium at least 250 eV
620
+ were used.
621
+ III.
622
+ DYNAMIC COLLISION FREQUENCY
623
+ The work flow presented in Fig. 1 results in a complex
624
+ dynamic collision frequency νDFT(ω). To study how this
625
+ collision frequency compares to different levels of analytic
626
+ approximations, we determine the real part of νDFT for a
627
+ hydrogen isochore at ρ = 2 g/cm3 from 5 to 100 eV (see
628
+ Ref. 54 for numerical details). This temperature range
629
+ was chosen to illustrate the transition from the WDM
630
+ regime to the ideal plasma regime. In Fig. 3 we compare
631
+ these collision frequencies to the Lenard-Balescu (LB)
632
+ collision frequency, the T-Matrix (TM) approach and
633
+ the Gould-DeWitt (GDW) approach. The LB approach
634
+ goes beyond the Born collision frequency by including
635
+ dynamic screening, while the TM approach accounts for
636
+ strong binary collisions by summing up ladder diagrams
637
+ in the perturbation expansion [63]. The GDW scheme
638
+ combines the dynamic screening of the LB approach with
639
+ the strong collisions of the TM treatment and should,
640
+ in principle, give the most accurate results. For further
641
+ details on the analytic approaches see Refs. 21, 63–66.
642
+ The aforementioned approaches solely describe electron-
643
+ ion collisions, but electron-electron (e-e) collisions can
644
+
645
+ 6
646
+ 0
647
+ 1
648
+ 2
649
+ 3
650
+ 4
651
+ Re[¯hν] [eV]
652
+ T = 100 eV
653
+ DFT
654
+ LB
655
+ TM
656
+ GDW
657
+ GDW with e-e
658
+ LR-TDDFT
659
+ 0
660
+ 2
661
+ 4
662
+ 6
663
+ 8
664
+ Re[¯hν] [eV]
665
+ T = 50 eV
666
+ 0
667
+ 2
668
+ 4
669
+ 6
670
+ 8
671
+ Re[¯hν] [eV]
672
+ T = 25 eV
673
+ 0
674
+ 100
675
+ 200
676
+ 300
677
+ 400
678
+ 500
679
+ 600
680
+ 700
681
+ ¯hω [eV]
682
+ 0
683
+ 2
684
+ 4
685
+ 6
686
+ 8
687
+ Re[¯hν] [eV]
688
+ T = 5 eV
689
+ FIG. 3. The real part of the dynamic collision frequency of hy-
690
+ drogen plasmas at ρ = 2 g/cm3 for temperatures ranging from
691
+ 5 to 100 eV. The DFT and LR-TDDFT collision frequencies
692
+ determined via Eq. (8) from their respective electrical con-
693
+ ductivities are shown in black and pink, respectively. The LB
694
+ collision frequency is shown in blue with crosses and the T-
695
+ Matrix approach is shown in yellow with plus symbols. The
696
+ GDW collision frequencies with and without electron-electron
697
+ collisions are depicted in red as a dotted line and as a solid
698
+ line with filled circles, respectively.
699
+ be included by modulating the collision frequency with
700
+ a renormalization factor [21].
701
+ The GDW collision fre-
702
+ quency including e-e collisions is also indicated in Fig. 3
703
+ by the red dotted lines. It is apparent that although the
704
+ DFT predictions agree well with the TM and GDW ap-
705
+ proach at high temperatures, it deviates significantly at
706
+ lower temperatures where complex many-body and quan-
707
+ tum effects contribute strongly. At T = 100 eV, the colli-
708
+ sion frequency is dominated by strong collisions between
709
+ ions and electrons. However, the inclusion of e-e collisions
710
+ via the renormalization factor leads to worse agreement
711
+ with the DFT results, which is in agreement with recent
712
+ observations that the Kubo-Greenwood formula applied
713
+ to DFT lacks e-e collisions [54, 67].
714
+ Furthermore, we
715
+ apply the work flow presented in Fig. 1 to the electri-
716
+ cal conductivity in the optical limit computed by LR-
717
+ TDDFT to extract a collision frequency which we show
718
+ as the pink dashed lines in Fig. 3. At all temperatures,
719
+ its behavior is very similar to the Kubo-Greenwood re-
720
+ sults which indicates that electron-electron collisions are
721
+ also not included in this description of transport prop-
722
+ erties. It is remarkable that at high frequencies the LR-
723
+ TDDFT collision frequency lies significantly below the
724
+ Kubo-Greenwood results for all considered temperatures.
725
+ In our tests, this could not be attributed to a lack of con-
726
+ vergence in number of bands or cutoff energy.
727
+ IV.
728
+ DYNAMIC STRUCTURE FACTOR
729
+ A.
730
+ Hydrogen
731
+ Given a dynamic collision frequency ν(ω), Eqs. (3) and
732
+ (5) can be used to compute the electronic DSF See(k, ω)
733
+ 0.0
734
+ 0.5
735
+ 1.0
736
+ 1.5
737
+ 2.0
738
+ 2.5
739
+ Set(k, ω) [a.u.]
740
+ 0.67 ˚A−1
741
+ 1.15 ˚A−1
742
+ 1.89 ˚A−1
743
+ 2.40 ˚A−1
744
+ T = 5 eV
745
+ LR-TDDFT
746
+ Mermin + DFT
747
+ Mermin + GDW (e-e)
748
+ Mermin + Born
749
+ 0
750
+ 20
751
+ 40
752
+ 60
753
+ 80
754
+ 100
755
+ 120
756
+ ¯hω [eV]
757
+ 0.0
758
+ 0.5
759
+ 1.0
760
+ 1.5
761
+ 2.0
762
+ 2.5
763
+ Set(k, ω) [a.u.]
764
+ 0.67 ˚A−1
765
+ 1.15 ˚A−1
766
+ 1.89 ˚A−1
767
+ 2.40 ˚A−1
768
+ T = 50 eV
769
+ FIG. 4. The inelastic electronic DSF Set(k, ω) of a hydrogen
770
+ plasma at ρ = 2 g/cm3 and T = 5 eV (upper panel) and T =
771
+ 50 eV (lower panel) from k = 0.67 ˚A−1 to k = 2.40 ˚A−1. The
772
+ solid line denotes the direct computation from LR-TDDFT
773
+ at the respective wave numbers, while the other lines denote
774
+ DSFs computed from the Mermin dielectric function with the
775
+ DFT collision frequency (dashed lines), the GDW collision
776
+ frequency including electron-electron collisions (dash-dotted
777
+ lines) and the Born collision frequency (dotted lines). The
778
+ DSFs are shifted by 0.5 with respect to the next lowest wave
779
+ number for readability.
780
+
781
+ 7
782
+ where the k dependence only enters through the Mermin
783
+ dielectric function. The LR-TDDFT approach allows di-
784
+ rect access to the dielectric function at finite k by com-
785
+ puting transitions matrix elements between Kohn-Sham
786
+ states at different k points [45]. In Fig. 4, we show the
787
+ electronic DSF of a hydrogen plasma at ρ = 2 g/cm3 and
788
+ T = 50 eV (lower panel) and T = 5 eV (upper panel).
789
+ The direct computations through LR-TDDFT are shown
790
+ as solid lines, while we also present DSFs computed via
791
+ the Mermin dielectric function in conjunction with the
792
+ DFT and GDW collision frequencies shown in Fig. 3 as
793
+ dashed and dash-dotted lines, respectively. Additionally,
794
+ we show the results from the Mermin dielectric function
795
+ with the Born collision frequency (see Eq. (B1)), which
796
+ constitutes the often used Born-Mermin approach, as
797
+ dotted lines. At the lowest wave number shown in Fig. 4,
798
+ k = 0.67 ˚A−1, we are considering the collective behavior
799
+ where collision are important, as can be seen from the
800
+ dimensionless scattering parameter α (see Ref. 1 for def-
801
+ inition) which is 4.17 and 2.84 for T = 5 and T = 50 eV,
802
+ respectively.
803
+ As expected for a fully ionized hydrogen plasma, the
804
+ k dependence encoded by the Mermin dielectric function
805
+ agrees well with the direct computation via LR-TDDFT
806
+ for all considered collision frequencies at both conditions.
807
+ However, at T = 5 eV, the damping of the plasmon pre-
808
+ dicted by LR-TDDFT can only be captured with the
809
+ DFT collision frequency, especially at small k. The Born
810
+ collision frequency leads to a vast overestimation of the
811
+ plasmon magnitude for k below 2.4 ˚A−1 and also the
812
+ GDW approach with renormalization overestimates the
813
+ magnitude by a factor of 2 for k below 1.15 ˚A−1. With
814
+ increasing wave numbers, the collisions become less sig-
815
+ nificant, and the DSFs for all collision frequencies start
816
+ to converge to the same result. At T = 50 eV, the col-
817
+ lisions play a smaller role, which is demonstrated by the
818
+ largely identical predictions from all collision frequen-
819
+ cies for k above 1.15 ˚A−1. It is notable that although
820
+ the inclusion of electron-electron collisions leads to sig-
821
+ nificant discrepancies between the dynamic collision fre-
822
+ quencies in Fig. 3, these differences cannot be observed in
823
+ the DSF, given the numerical noise. In the LR-TDDFT
824
+ data, a small additional contribution at ℏω = 0 eV ap-
825
+ pears, which has also recently been seen in path inte-
826
+ gral Monte Carlo simulations [68]. This bump is not in-
827
+ cluded in the Mermin formalism and appears more pro-
828
+ nounced at higher temperatures and lower densities (also
829
+ see Sec. IV B and IV C), leading us to propose that it
830
+ is connected to bound-bound transitions without energy
831
+ transfer.
832
+ B.
833
+ Isochorically heated beryllium
834
+ To investigate the impact of tightly bound states on
835
+ the presented procedure, we study a beryllium plasma
836
+ at ρ = 1.8 g/cm3 and T = 12 eV, for which the ap-
837
+ proach of Ref. 30 predicts a charge state Z = 2.1. The
838
+ bound 1s states are energetically clearly separated from
839
+ the free electrons. The collision frequency can either be
840
+ determined from the full dynamic electrical conductivity
841
+ that includes the transitions from the bound 1s states to
842
+ the conduction band, or from the free-free electrical con-
843
+ ductivity by restricting the transition matrix elements
844
+ in Eq. (6) to transitions orginating and ending in the
845
+ conduction band (for details on this decomposition, see
846
+ Ref. 30). In the latter case, only the free-free contribution
847
+ to the DSF is considered within the Mermin dielectric
848
+ function, while the bound-free contribution must be ap-
849
+ proximated by its behavior at k → 0. In Fig. 5, we show
850
+ the comparison of these two approaches to the direct
851
+ computation of the electronic DSF using LR-TDDFT.
852
+ At the lowest wave number k = 0.49 ˚A−1, shown in the
853
+ upper panel, all approaches agree well, as expected due
854
+ to the construction of the collision frequency which re-
855
+ quires equivalence in the limit of small k (see Eq. (8)).
856
+ The separation of the conductivity into a free-free and a
857
+ bound-free contribution allows us to clearly identify the
858
+ different terms of the Chihara formula (2) in the DSF.
859
+ The dotted line represents the bound-free contribution,
860
+ which agress exactly with the LR-TDDFT data above
861
+ ∼ 90 eV, and the dashed line represents the free-free
862
+ contribution (plasmon), which matches the LR-TDDFT
863
+ results below ∼ 90 eV. Remarkably, the prefactors Zf
864
+ and Zb in Eq. (2) which give the respective weighting
865
+ of these two features come out of the definition of the
866
+ charge state described in Ref. 30 and agree virtually ex-
867
+ actly with the direct computation including all transi-
868
+ tions in LR-TDDFT.
869
+ At k = 1.47 ˚A−1 in the middle panel of Fig. 5, the devi-
870
+ ation of the approach using the full collision frequency to
871
+ the other approaches becomes apparent. The bound-free
872
+ dominated DSF above ∼ 90 eV is still well approximated
873
+ by both the full collision frequency and the bound-free
874
+ feature at k → 0.
875
+ Below ∼ 90 eV, however, the ap-
876
+ proach using the full collision frequency, denoted by the
877
+ dash-dotted line, deviates strongly (note the logarithmic
878
+ scale) from the LR-TDDFT result.
879
+ The free-free fea-
880
+ ture computed solely from the collision frequency based
881
+ on free-free transitions, denoted by the dashed line, still
882
+ agrees very well with the LR-TDDFT calculation in this
883
+ energy regime.
884
+ The bottom panel of Fig. 5, showing the DSF at
885
+ k = 3.42 ˚A−1, highlights the complete breakdown of
886
+ the approach using the full collision frequency.
887
+ While
888
+ the DSF is still described adequately above ∼ 90 eV, its
889
+ shape is very different from the LR-TDDFT result below
890
+ that energy. On the other hand, the separate description
891
+ of free-free and bound-free contributions again describes
892
+ the DSF accurately compared to the LR-TDDFT data.
893
+ However, the approximation of the bound-free feature by
894
+ its k → 0 limit starts to deteriorate at this wave number.
895
+ At the highest energy shift shown in Fig. 5, this approxi-
896
+ mation underestimates the LR-TDDFT value by a factor
897
+ of almost 2. Additionally, at the onset of the bound-free
898
+ feature around 100 eV, it overestimates the DSF com-
899
+
900
+ 8
901
+ pared to the LR-TDDFT as can be seen in Fig. 6 which
902
+ shows the DSF on a linear scale. The fast deterioration
903
+ beyond the k → 0 limit of the approach using the full
904
+ collision frequency is expected because the framework of
905
+ the Mermin dielectric function, which encodes the k de-
906
+ pendence, does not include the existence of bound states.
907
+ Therefore, any such states that are artificially introduced
908
+ via the collision frequency cannot be handled correctly in
909
+ the k dependence.
910
+ Furthermore, in Fig. 6, we show the DSFs computed
911
+ from the Mermin dielectric function with Born collision
912
+ frequencies for a plasma with a charge state Z = 2 and
913
+ Z = 4.
914
+ The position of the plasmon peak for Z = 2
915
+ agrees well with the DFT spectra, while the position of
916
+ the Z = 4 plasma is consistently at too high energies, as
917
+ expected due to the higher free-electron density. How-
918
+ ever, at low k, the dampening of the plasmon peak due
919
+ to the Born collision frequency is too low compared to the
920
+ DFT data, similar as observed for hydrogen in Fig. 4. At
921
+ the higher wave numbers, the plasmon-peak position of
922
+ the DFT results agrees well with Mermin function using
923
+ the Born collision frequency at Z = 2, clearly indicating
924
+ that the bound 1s states do not contribute to this feature.
925
+ 10−3
926
+ 10−1
927
+ Set(k, ω) [a.u.]
928
+ k = 0.49 ˚A−1
929
+ LR-TDDFT
930
+ DFT(b-f) at k = 0
931
+ Mermin + DFT(f-f)
932
+ Mermin + DFT(full)
933
+ 10−4
934
+ 10−2
935
+ 100
936
+ Set(k, ω) [a.u.]
937
+ k = 1.47 ˚A−1
938
+ −50
939
+ 0
940
+ 50
941
+ 100
942
+ 150
943
+ 200
944
+ 250
945
+ 300
946
+ ¯hω [eV]
947
+ 10−2
948
+ 10−1
949
+ 100
950
+ Set(k, ω) [a.u.]
951
+ k = 3.42 ˚A−1
952
+ FIG. 5. The inelastic electronic DSF Set(k, ω) of a beryllium
953
+ plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values
954
+ on a logarithmic scale. The solid lines are direct computations
955
+ at the given k using LR-TDDFT. The dash-dotted and the
956
+ dashed lines denote DSFs computed from the Mermin dielec-
957
+ tric function with the full DFT collision frequency, determined
958
+ from the electrical conductivity including bound-free transi-
959
+ tions, and the free-free collision frequency, determined from
960
+ the electrical conductivity including only free-free transitions,
961
+ respectively. The dotted lines denote the DSF computed di-
962
+ rectly from the bound-free conductivity at k = 0 ˚A−1.
963
+ −50
964
+ 0
965
+ 50
966
+ 100
967
+ 150
968
+ 200
969
+ 250
970
+ 300
971
+ ¯hω [eV]
972
+ 0.0
973
+ 0.5
974
+ 1.0
975
+ 1.5
976
+ 2.0
977
+ 2.5
978
+ Set(k, ω) [a.u.]
979
+ k = 0.49 ˚A−1
980
+ k = 1.47 ˚A−1
981
+ k = 2.44 ˚A−1
982
+ k = 3.42 ˚A−1
983
+ LR-TDDFT
984
+ (Mermin + f-f) + b-f(k = 0)
985
+ Mermin + Born (Z = 2)
986
+ Mermin + Born (Z = 4)
987
+ −100
988
+ 0
989
+ E − µ [eV]
990
+ 0.0
991
+ 0.5
992
+ 1.0
993
+ D(E) [a. u.]
994
+ FIG. 6. The inelastic electronic DSF Set(k, ω) of a beryllium
995
+ plasma at ρ = 1.8 g/cm3 and T = 12 eV for various k values.
996
+ The solid lines are direct computations at the given k using
997
+ LR-TDDFT, while the dotted and dash-dotted lines denote
998
+ DSFs computed from the Mermin dielectric function with the
999
+ Born collision frequency for a plasma with a charge state of
1000
+ Z = 2 and Z = 4, respectively. The dashed lines represent
1001
+ the sum of the DSF computed through the Mermin dielectric
1002
+ function using the free-free collision frequency and the bound-
1003
+ free DSF at k = 0 ˚A−1. The DSFs are shifted by 0.5 with
1004
+ respect to the next lowest wave number for readability. In
1005
+ the inset, the solid line shows the density of states, while the
1006
+ shaded area denotes the occupied density of states.
1007
+ The inset in Fig. 6 shows the density of states (DOS) of
1008
+ the beryllium plasma which shows a clear separation be-
1009
+ tween the narrow 1s band, which is fully occupied, and
1010
+ the conduction band. This clear distinction is the rea-
1011
+ son why the separate treatment of free-free and bound-
1012
+ free contibutions is successful.
1013
+ The bound-free feature
1014
+ does not exhibit a strong k dependence up to high k
1015
+ values [23, 69], and the plasmon occurs energetically sep-
1016
+ arated in the DSF.
1017
+ C.
1018
+ Compressed beryllium
1019
+ With increasing density and temperature the notion
1020
+ of bound states becomes ill-defined in WDM. The in-
1021
+ set in Fig. 7 shows the DOS of a beryllium plasma at
1022
+ T = 50 eV and ρ = 40 g/cm3 which demonstrates the
1023
+ closing of the band gap compared to the inset in Fig. 6.
1024
+ Furthermore, the former 1s states broaden significantly
1025
+
1026
+ 9
1027
+ 0
1028
+ 100
1029
+ 200
1030
+ 300
1031
+ 400
1032
+ 500
1033
+ 600
1034
+ 700
1035
+ 800
1036
+ ¯hω [eV]
1037
+ 0.0
1038
+ 0.5
1039
+ 1.0
1040
+ 1.5
1041
+ 2.0
1042
+ 2.5
1043
+ 3.0
1044
+ Set(k, ω) [a.u.]
1045
+ k = 1.37 ˚A−1
1046
+ k = 4.12 ˚A−1
1047
+ k = 6.87 ˚A−1
1048
+ (Mermin + f-f) + b-f(k = 0)
1049
+ Mermin + DFT(full)
1050
+ LR-TDDFT
1051
+ −200
1052
+ 0
1053
+ 200
1054
+ E − µ [eV]
1055
+ 0.0
1056
+ 0.5
1057
+ 1.0
1058
+ D(E) [a. u.]
1059
+ FIG. 7. The inelastic electronic DSF Set(k, ω) of a beryllium
1060
+ plasma at ρ = 40
1061
+ g/cm3 and T = 50 eV for various k val-
1062
+ ues. The solid lines are direct computations at the given k
1063
+ using LR-TDDFT, while the dashed lines represent the sum
1064
+ of the DSF computed through the Mermin dielectric function
1065
+ using the free-free collision frequency and the bound-free DSF
1066
+ at k = 0 ˚A−1. The dotted lines denote the DSF computed
1067
+ through the Mermin dielectric function with the full collision
1068
+ frequency. The DSFs are shifted by 0.5 with respect to the
1069
+ next lowest wave number for readability.
1070
+ In the inset, the
1071
+ solid line shows the density of states, while the shaded area
1072
+ denotes the occupied density of states.
1073
+ into a band and the DOS converges towards the
1074
+
1075
+ E be-
1076
+ havior of a free electron gas. Because the band gap is still
1077
+ clearly identifiable the separate treatment of bound-free
1078
+ and free-free contributions to the DSF presented in the
1079
+ previous section can also be applied to these conditions.
1080
+ Figure 7 shows the results of this separate treatment,
1081
+ as well as the direct computation using LR-TDDFT and
1082
+ the DSF from the Mermin dielectric function using the
1083
+ full collision frequency. While the separate treatment of
1084
+ bound-free and free-free contributions yields excellent re-
1085
+ sults for the near-ambient density case in Fig. 5, it poorly
1086
+ approximates the LR-TDDFT results in strongly com-
1087
+ pressed beryllium shown in Fig. 7. The plasmon peak at
1088
+ k = 1.37 ˚A−1 is severly underdamped due to the missing
1089
+ bound-free transitions in the collision frequency, which
1090
+ occur in the same energy range as the free-free transi-
1091
+ tions at these conditions. The use of the Born collision
1092
+ frequency in lieu of the free-free DFT collision frequency
1093
+ leads to an increase of the plasmon peak magnitude by a
1094
+ factor of 2 (not shown in Fig. 7). The broader peak aris-
1095
+ ing around ∼ 130 eV for k = 4.12 and k = 6.87 ˚A−1 is due
1096
+ to the insufficient approximation of the bound-free fea-
1097
+ ture by its value at k = 0 ˚A−1. As can be seen from the
1098
+ LR-TDDFT data, the bound-free features merges with
1099
+ the free-free feature to form one homogeneous feature.
1100
+ At these conditions, using the full collision frequency in
1101
+ the Mermin dielectric function gives better results, which
1102
+ is expected as the former 1s states lose their bound char-
1103
+ acter due to the higher compression and higher temper-
1104
+ ature. For all considered wave numbers, this approach
1105
+ yields good agreement with the LR-TDDFT data above
1106
+ ∼ 200 eV, and approximates the trends below that energy
1107
+ fairly well. Solely at ∼ 100 eV this approach predicts
1108
+ a feature that is not visible in the LR-TDDFT results
1109
+ across the considered k range.
1110
+ V.
1111
+ APPLICATION TO EXPERIMENTS
1112
+ We
1113
+ reanalyze
1114
+ previous
1115
+ XRTS
1116
+ experiments
1117
+ by
1118
+ D¨oppner et al. [70] and Kritcher et al. [71] using LR-
1119
+ TDDFT to evaluate the influence of advanced methods
1120
+ on the initially inferred plasma parameters. In general,
1121
+ temperature and density of the target must be consid-
1122
+ ered simultaneously. However, since D¨oppner et al. used
1123
+ detailed balance in their forward scattering experiment
1124
+ to determine the temperature as T = 18 eV, we use this
1125
+ value and vary the density to find the best agreement
1126
+ with the experimental data.
1127
+ To justify this approach
1128
+ we show the results of a recently suggested model-free
1129
+ temperature diagnostic [72] in Appendix C. For the
1130
+ 1.0
1131
+ 1.2
1132
+ 1.4
1133
+ 1.6
1134
+ 1.8
1135
+ 2.0
1136
+ 2.2
1137
+ ρ [g/cm3]
1138
+ 1.0
1139
+ 1.2
1140
+ χ2
1141
+ 2920
1142
+ 2940
1143
+ 2960
1144
+ 2980
1145
+ 3000
1146
+ ¯hω [eV]
1147
+ 0.0
1148
+ 0.2
1149
+ 0.4
1150
+ 0.6
1151
+ 0.8
1152
+ 1.0
1153
+ Intensity [a.u.]
1154
+ ρ = 1.0 g/cm3
1155
+ ρ = 1.4 g/cm3
1156
+ ρ = 1.8 g/cm3
1157
+ ρ = 2.2 g/cm3
1158
+ Inelastic
1159
+ 2920
1160
+ 2930
1161
+ 2940
1162
+ 2950
1163
+ 0.0
1164
+ 0.2
1165
+ FIG. 8.
1166
+ The lower panel shows the scattering intensity of
1167
+ an isochorically heated beryllium target at T = 18 eV from
1168
+ Ref. 70. The colors of the solid lines encode different densities
1169
+ used in the LR-TDDFT simulations. The dotted lines denote
1170
+ the inelastic contributions.
1171
+ The upper panel shows the χ2
1172
+ deviation depending on the density used in the simulation
1173
+ where the colored dots correspond to the spectra shown in the
1174
+ lower panel and the black curve is achieved by interpolating
1175
+ to 40 evenly spaced densities between these spectra.
1176
+
1177
+ 10
1178
+ other experiment, we include the temperature in the
1179
+ analysis.
1180
+ Firstly, in Fig. 8, we show simulated XRTS spectra
1181
+ with densities ranging from 1.0 to 2.2 g/cm3 at T = 18 eV
1182
+ together with the forward XRTS spectrum recorded by
1183
+ D¨oppner et al. [70], which was collected at the Omega
1184
+ laser facility at the Laboratory for Laser Energetics at
1185
+ the University of Rochester. The experiment probed a
1186
+ scattering vector of approximately k = 1 ˚A−1, enabling
1187
+ access to collective behavior of the plasma. In the original
1188
+ analysis of the experiment a density of 1.17 g/cm3 was
1189
+ determined by D¨oppner et al. [70]. The electron feature
1190
+ was treated on the level of the RPA wihtout including
1191
+ electron-ion collisions and the ionization was assumed
1192
+ to be Zf = 2.3.
1193
+ We compute the electron feature for
1194
+ various densities from LR-TDDFT while including local
1195
+ field corrections via the adiabatic local density approxi-
1196
+ mation [44, 46]. The magnitude of the ion feature is left
1197
+ as a free parameter in the χ2 minimization. Although
1198
+ none of the computed spectra capture the plasmon at
1199
+ 2930 eV perfectly, the spectrum at ρ = 1.8 g/cm3 yields
1200
+ a 5% lower χ2 deviation than any of the other consid-
1201
+ ered densities.
1202
+ The ionization state at this density is
1203
+ Z = 2.14, determined via the Thomas-Reiche-Kuhn sum
1204
+ rule [30], which is approximately 7% lower than the value
1205
+ used by D¨oppner et al. [70]. Furthermore, the here com-
1206
+ puted density of the sample is more than 50% higher
1207
+ than the originally determined value, indicating the need
1208
+ to use sophisticated methods to achieve reliable results
1209
+ in forward scattering experiments.
1210
+ For the experiment by Kritcher et al. [71], the tempera-
1211
+ ture cannot reliably be inferred from the detailed balance
1212
+ relation and the temperature must, therefore, be included
1213
+ in the analysis. Furthermore, the instrument and source
1214
+ functions were not available and must be modeled ex-
1215
+ plicitly in the analysis. To analyze the experiments, we
1216
+ simulate spectra on a sufficiently large temperature and
1217
+ density grid and interpolate between them [73] to model
1218
+ arbitrary ρ − T combinations in this range. Due to the
1219
+ high number of parameters involved in this sort of anal-
1220
+ ysis, we employ Bayesian inference [74] implemented in
1221
+ the PyMC3 software package [75] and use the sequential
1222
+ Monte Carlo algorithm [76, 77] for sampling the parame-
1223
+ ter space. In Fig. 9, we consider the backward XRTS ex-
1224
+ periment at k = 8.42 ˚A−1 on imploding beryllium shells
1225
+ by Kritcher et al. [71], which was also performed at the
1226
+ Omega laser facility. To analyze the experiment, we sim-
1227
+ ulate spectra on a grid ranging from 2 to 32 g/cm3 and
1228
+ from 0.1 to 25 eV. No instrument or source function was
1229
+ supplied in Ref. 71. We, therefore, use the parametriza-
1230
+ tion of a zinc source given in Ref. 14 and include all
1231
+ the parameters of the instrument response function in
1232
+ the Bayesian analysis. We also replace the Gaussian de-
1233
+ scribing the source broadening by a skewed Gaussian to
1234
+ account for the asymmetry observed in the ion feature.
1235
+ Thus, ten parameters determine the shape of the spec-
1236
+ trum, including the physical parameters describing the
1237
+ density and temperature of the sample and the magni-
1238
+ −600
1239
+ −400
1240
+ −200
1241
+ 0
1242
+ 200
1243
+ ¯hω [eV]
1244
+ 0.0
1245
+ 0.2
1246
+ 0.4
1247
+ 0.6
1248
+ 0.8
1249
+ 1.0
1250
+ Intensity [a.u.]
1251
+ Exp. (t = 3.1 ± 0.1 ns, Kritcher et al.)
1252
+ Total spectrum
1253
+ Inelastic contribution
1254
+ Elastic contribution
1255
+ 5
1256
+ 6
1257
+ 7
1258
+ 8
1259
+ 9
1260
+ 10
1261
+ ρ [g/cm3]
1262
+ 0.0
1263
+ 0.2
1264
+ 0.4
1265
+ p(ρ|Exp.)
1266
+ ρ = 7.9+1.0
1267
+ −0.8 g/cm3
1268
+ 80 %
1269
+ FIG. 9.
1270
+ Scattering intensity of imploding beryllium shells
1271
+ from Ref. 71. The upper panel shows the experimental data
1272
+ at a delay t = 3.1 ± 0.1 ns and the posterior prediction for
1273
+ the elastic and inelastic contributions based on LR-TDDFT
1274
+ simulations. The thin lines are 100 spectra computed from
1275
+ parameters randomly sampled from the posterior probility
1276
+ distribution.
1277
+ The shaded areas show the region below the
1278
+ average posterior predictions. The lower panel shows the re-
1279
+ duced posterior probability distribution in the density param-
1280
+ eter ρ where the dark shaded area under the curve indicates
1281
+ the 80% highest posterior density interval.
1282
+ tude of the ion feature, and 7 parameters describing the
1283
+ experimental setup. The upper panel of Fig. 9 shows an
1284
+ XRTS spectrum collected from an imploding beryllium
1285
+ shell at a delay of t = 3.1 ± 0.1 ns and the posterior
1286
+ prediction for the elastic and inelastic contribution to
1287
+ the simulated scattering spectrum.
1288
+ The posterior pre-
1289
+ dictions are obtained by sampling parameters according
1290
+ to the posterior probability distribution and using these
1291
+ parameters to simulate the spectrum.
1292
+ The agreement
1293
+ between the simulated spectrum and the experimental
1294
+ data is excellent. The bottom panel of Fig. 9 shows the
1295
+ reduced posterior probability distribution in the density
1296
+ parameter ρ, which is the full probability distribution
1297
+ integrated over all other parameters. The inferred den-
1298
+ sity ρ = 7.9+1.0
1299
+ −0.8 g/cm3 corresponds to the maximum
1300
+ aposteriori probability and the uncertainties are deter-
1301
+ mined from the 80% highest posterior density interval.
1302
+ With an assumed ionization state Z = 2, the original
1303
+ analysis by Kritcher et al. [71] resulted in estimates of
1304
+ ρ = 8.23 ± 2.24 g/cm3 and T = 14 ± 3 eV. The density,
1305
+ which is the most sensitive plasma parameter with re-
1306
+ spect to the Compton feature at these conditions, agrees
1307
+ very well with our current study. However, Kritcher et al.
1308
+ also used a temperature-dependent model for the ion fea-
1309
+ ture, while we keep the ion feature as a free parameter.
1310
+ Therefore, the inferred temperature is mainly determined
1311
+ from the relative magnitude of the ion feature and Comp-
1312
+
1313
+ 11
1314
+ ton feature. Because the shape of the Compton feature is
1315
+ not very sensitive to the temperature at these conditions,
1316
+ we cannot reliably determine the electron temperature.
1317
+ VI.
1318
+ CONCLUSION
1319
+ In this work, we presented the theoretical basis for
1320
+ computation of DSFs using the Mermin dielectric func-
1321
+ tion with a dynamic complex collision frequency and
1322
+ showed how this framework can be used to extract col-
1323
+ lision frequencies from DFT simulations. We compared
1324
+ these collision frequencies to several analytic approaches
1325
+ for hydrogen plasmas at ρ = 2 g/cm3 and, for temper-
1326
+ atures approaching the ideal plasma limit, found good
1327
+ agreement with models that incorporate strong collisions.
1328
+ Furthermore, we studied how different collision frequen-
1329
+ cies impact the DSF calculated from the Mermin dielec-
1330
+ tric function and compared these results to the direct
1331
+ computation of the DSF at the given wave numbers us-
1332
+ ing LR-TDDFT. For hydrogen, we find good agreement
1333
+ for all collision frequencies at high k, while at small k, es-
1334
+ pecially the frequently used Born approximation leads to
1335
+ underdamped plasmon peaks. For beryllium, we showed
1336
+ that a separate treatment of free-free and bound-free con-
1337
+ tributions to the DSF yields excellent agreement with the
1338
+ LR-TDDFT for near-ambient densities up to moderate
1339
+ wave numbers (k = 3.42 ˚A−1), while it disagrees signif-
1340
+ icantly for highly compressed beryllium because bound-
1341
+ free transition interact with the free-free transitions to
1342
+ dampen the plasmon. Therefore, in order to get accurate
1343
+ DSFs over a wide range of wave numbers in extreme con-
1344
+ ditions, it is imperative to employ ab initio approaches
1345
+ like LR-TDDFT or path integral Monte Carlo simula-
1346
+ tions. We applied LR-TDDFT to XRTS experiments on
1347
+ beryllium and found significant deviations of more than
1348
+ 50% in inferred density for small k for D¨oppner et al. [70]
1349
+ and found good agreement with analytical approaches for
1350
+ backscattering with large k for Kritcher et al. [71].
1351
+ ACKNOWLEDGMENTS
1352
+ We want to thank P. Sperling, B. Witte, M. French,
1353
+ G. R¨opke, H. J. Lee and A. Cangi for many helpful
1354
+ discussions.
1355
+ M. S. and R. R. acknowledge support by
1356
+ the Deutsche Forschungsgemeinschaft (DFG) within the
1357
+ Research Unit FOR 2440.
1358
+ All simulations and analy-
1359
+ ses were performed at the North-German Supercomput-
1360
+ ing Alliance (HLRN) and the ITMZ of the University
1361
+ of Rostock. M. B. gratefully acknowledges support by
1362
+ the European Horizon 2020 programme within the Marie
1363
+ Sk�lodowska-Curie actions (xICE grant 894725) and the
1364
+ NOMIS foundation. The work of T. D. was performed
1365
+ under the auspices of the U.S. Department of Energy
1366
+ by Lawrence Livermore National Laboratory under Con-
1367
+ tract No. DE-AC52-07NA27344.
1368
+ Appendix A: Derivation of real and imaginary part
1369
+ of RPA dielectric function
1370
+ The collision frequency is generally a complex number
1371
+ ν(ω) = ν1(ω) + i ν2(ω),
1372
+ (A1)
1373
+ meaning that its imaginary part acts as a shift of the
1374
+ frequency that enters into ϵRPA in Eq. (5) and its real
1375
+ part takes on the role of the artificial damping η that
1376
+ was introduced in Eq. (4).
1377
+ However, in this case, the
1378
+ damping is not set to zero after the integration.
1379
+ Now, we will split Eq. (4) into its real and imaginary
1380
+ part and consider the modulation of the input frequency
1381
+ ω by the complex frequency from Eq. (A1) where the
1382
+ argument of ν is dropped for readability:
1383
+ Re
1384
+
1385
+ ϵRPA(⃗k, ω + i ν)
1386
+
1387
+ = 1 − 2e2
1388
+ ϵ0k2
1389
+
1390
+ d3q
1391
+ (2π)3 ×
1392
+ ×
1393
+
1394
+ f⃗q−
1395
+ ⃗k
1396
+ 2 − f⃗q+
1397
+ ⃗k
1398
+ 2
1399
+ � �
1400
+ ℏ˜ω −
1401
+
1402
+ E⃗q+
1403
+ ⃗k
1404
+ 2 − E⃗q−
1405
+ ⃗k
1406
+ 2
1407
+ ��
1408
+
1409
+ ℏ˜ω −
1410
+
1411
+ E⃗q+
1412
+ ⃗k
1413
+ 2 − E⃗q−
1414
+ ⃗k
1415
+ 2
1416
+ ��2
1417
+ + ℏ2ν2
1418
+ 1
1419
+ ,
1420
+ (A2)
1421
+ Im
1422
+
1423
+ ϵRPA(⃗k, ω + i ν)
1424
+
1425
+ = 2e2
1426
+ ϵ0k2
1427
+
1428
+ d3q
1429
+ (2π)3 ×
1430
+ × ℏν1
1431
+ f⃗q−
1432
+ ⃗k
1433
+ 2 − f⃗q+
1434
+ ⃗k
1435
+ 2
1436
+
1437
+ ℏ˜ω −
1438
+
1439
+ E⃗q+
1440
+ ⃗k
1441
+ 2 − E⃗q−
1442
+ ⃗k
1443
+ 2
1444
+ ��2
1445
+ + ℏ2ν2
1446
+ 1
1447
+ .
1448
+ (A3)
1449
+ The shifted frequency ˜ω = ω − ν2 is introduced here.
1450
+ These integrals are performed across the entire momen-
1451
+ tum space and can therefore be shifted by an arbitrary
1452
+ vector ⃗y because for an integral of a function G(⃗x), which
1453
+ goes to 0 as |⃗x| → ∞, it holds that
1454
+
1455
+ R3 d3x G(⃗x) =
1456
+
1457
+ R3 d3x G(⃗x − ⃗y),
1458
+ with |⃗y| < ∞. (A4)
1459
+ Therefore, we can separate the integrand in Eqs. (A2)
1460
+ and (A3) into two summands with the Fermi occupation
1461
+ of the up- and down-shifted momentum, respectively. We
1462
+ further use Eq. (A4) to shift the momenta in the argu-
1463
+ ment of the Fermi occupation to ⃗q in order to get f⃗q as
1464
+ a common prefactor for both summands. The momenta
1465
+ in the subscripts of the energy have to be shifted accord-
1466
+ ingly. This gives
1467
+ Re
1468
+
1469
+ ϵRPA(⃗k, ω + i ν)
1470
+
1471
+ = 1−
1472
+ − 2e2
1473
+ ϵ0k2 2π
1474
+ � ∞
1475
+ 0
1476
+ dq
1477
+ (2π)3 q2fq
1478
+ me
1479
+ ℏ2k ×
1480
+ ×
1481
+ � 1
1482
+ −1
1483
+ dz
1484
+
1485
+ κ − 1
1486
+ 2 (k + 2qz)
1487
+
1488
+ κ − 1
1489
+ 2 (k + 2qz)
1490
+ �2 + ∆2 −
1491
+
1492
+ κ − 1
1493
+ 2 (−k + 2qz)
1494
+
1495
+ κ − 1
1496
+ 2 (−k + 2qz)
1497
+ �2 + ∆2
1498
+
1499
+ (A5)
1500
+
1501
+ 12
1502
+ for the real part and
1503
+ Im
1504
+
1505
+ ϵRPA(⃗k, ω + i ν)
1506
+
1507
+ =
1508
+ 4π e2
1509
+ ϵ0k2
1510
+ � ∞
1511
+ 0
1512
+ dq
1513
+ (2π)3
1514
+ ν1m2
1515
+ e
1516
+ ℏ3k2 q2fq×
1517
+ ×
1518
+ � 1
1519
+ −1
1520
+ dz
1521
+
1522
+ 1
1523
+
1524
+ κ − 1
1525
+ 2 (k + 2qz)
1526
+ �2 + ∆2 −
1527
+
1528
+ 1
1529
+
1530
+ κ − 1
1531
+ 2 (−k + 2qz)
1532
+ �2 + ∆2
1533
+
1534
+ (A6)
1535
+ for the imaginary part.
1536
+ Here, ⃗k was fixed in the q3-
1537
+ direction and z = cos θ where θ is the angle between
1538
+ ⃗q and ⃗k. The shorthands κ = ˜ωme
1539
+ ℏk
1540
+ and ∆ = meν1
1541
+ ℏk
1542
+ with
1543
+ the electron mass me are introduced. The Fermi occu-
1544
+ pation can be pulled out of the angle integration as it
1545
+ only depends on the magnitude of the momentum. The
1546
+ integral over the angle can be performed analytically in
1547
+ Eqs. (A5) and (A6), giving
1548
+ Re
1549
+
1550
+ ϵRPA(⃗k, ω + i ν)
1551
+
1552
+ = 1 + 2π mee2
1553
+ ϵ0ℏ2k3
1554
+ � ∞
1555
+ 0
1556
+ dq
1557
+ (2π)3 qfq×
1558
+ × ln
1559
+
1560
+ ∆2 +
1561
+
1562
+ κ − k
1563
+ 2 − q
1564
+ �2� �
1565
+ ∆2 +
1566
+
1567
+ κ + k
1568
+ 2 + q
1569
+ �2�
1570
+
1571
+ ∆2 +
1572
+
1573
+ κ − k
1574
+ 2 + q
1575
+ �2� �
1576
+ ∆2 +
1577
+
1578
+ κ + k
1579
+ 2 − q
1580
+ �2�
1581
+ (A7)
1582
+ for the real part, and
1583
+ Im
1584
+
1585
+ ϵRPA(⃗k, ω + i ν)
1586
+
1587
+ = −4π mee2
1588
+ ϵ0ℏ2k3
1589
+ � ∞
1590
+ 0
1591
+ dq
1592
+ (2π)3 qfq×
1593
+ ×
1594
+
1595
+ arctan
1596
+
1597
+ κ − k
1598
+ 2 − q
1599
+
1600
+
1601
+ + arctan
1602
+
1603
+ κ + k
1604
+ 2 + q
1605
+
1606
+
1607
+
1608
+ − arctan
1609
+
1610
+ κ − k
1611
+ 2 + q
1612
+
1613
+
1614
+ − arctan
1615
+
1616
+ κ + k
1617
+ 2 − q
1618
+
1619
+ � �
1620
+ (A8)
1621
+ for the imaginary part of the RPA dielectric function
1622
+ modulated by a complex frequency. The remaining in-
1623
+ tegration over q has to be performed numerically.
1624
+ Appendix B: Expressions for the Born collision
1625
+ frequency
1626
+ One of the most prominent approximations for the col-
1627
+ lision frequency is the Born collision frequency [21]
1628
+ νBorn(ω) = −i
1629
+ ϵ0niΩ2
1630
+ 6π2e2neme
1631
+ � ∞
1632
+ 0
1633
+ dq q6×
1634
+ × V 2
1635
+ ei(q)Sii(q) 1
1636
+ ω
1637
+
1638
+ ϵRPA(q, ω) − ϵRPA(q, 0)
1639
+
1640
+ ,
1641
+ (B1)
1642
+ with the ion density ni, the electron density ne and
1643
+ the normalization volume Ω.
1644
+ There are different ap-
1645
+ proximations for the electron-ion potential Vei and the
1646
+ −20
1647
+ 0
1648
+ 20
1649
+ 40
1650
+ ¯hω [eV]
1651
+ 0.0
1652
+ 0.2
1653
+ 0.4
1654
+ 0.6
1655
+ 0.8
1656
+ 1.0
1657
+ Intensity [a.u.]
1658
+ Exp.
1659
+ Inst.
1660
+ 20
1661
+ 30
1662
+ 40
1663
+ ¯hω [eV]
1664
+ 5
1665
+ 10
1666
+ 15
1667
+ 20
1668
+ 25
1669
+ 30
1670
+ 35
1671
+ 40
1672
+ 45
1673
+ Te [eV]
1674
+ Te = 19 ± 1.5 eV
1675
+ Without
1676
+ instrument
1677
+ With
1678
+ instrument
1679
+ FIG. 10. The left panel shows the scattering intensity and
1680
+ the instrument function from Ref. 70. The right panel shows
1681
+ the inferred electron temperature accoring to Ref. 72.
1682
+ static structure factor Sii.
1683
+ The potential can be ap-
1684
+ proximated by the screened Coulomb potential with the
1685
+ Debye-H¨uckel or Thomas-Fermi screening parameter de-
1686
+ pending on the density and temperature regime consid-
1687
+ ered. Approaches to the structure factor range from the
1688
+ assumption of a homogeneous electron gas (Sii(q) = 1)
1689
+ or analytic models like the Debye-H¨uckel theory to more
1690
+ sophisticated methods like the hypernetted-chain (HNC)
1691
+ equation or MD simulations. Here, we use the potential
1692
+ Vei(q) = V Coulomb
1693
+ ei
1694
+ (q)
1695
+ ϵRPA(q, 0)
1696
+ = −eeei
1697
+ ϵ0Ω
1698
+ 1
1699
+ q2 ϵRPA(q, 0)
1700
+ (B2)
1701
+ and the static structure factor we calculate from our
1702
+ DFT-MD simulations.
1703
+ Equation (B1) is computed by
1704
+ directly calculating its real part and subsequently per-
1705
+ forming the Kramers-Kronig [78, 79] transformation to
1706
+ arrive at the imaginary part.
1707
+ Appendix C: Temperature determination via
1708
+ Laplace transform
1709
+ We employ the recently proposed temperature diag-
1710
+ nostic based on a two-sided Laplace transform [72] to
1711
+ inferr the temperature from experiment performed by
1712
+ D¨oppner et al.
1713
+ The left panel of Fig. 10 shows the
1714
+ scattering data and the instrument function, while the
1715
+ right panel shows the inferred temperature according to
1716
+ the procedure described in Ref. 72. The x axis denotes
1717
+ the energy up to which the two-sided Laplace trans-
1718
+ form is performed.
1719
+ A convergence is observed beyond
1720
+ 40 eV and the electron temperature is determined to be
1721
+ 19 ± 1.5 eV. This values agrees within errorbars with the
1722
+ electron temperature of 18 eV, originally determined by
1723
+ D¨oppner et al. We, therefore, exclude the electron tem-
1724
+ perature from the fitting procedure for this experiment.
1725
+
1726
+ 13
1727
+ [1] S. H. Glenzer and R. Redmer, Rev. Mod. Phys. 81, 1625
1728
+ (2009).
1729
+ [2] L. B. Fletcher, H. J. Lee, T. D¨oppner, E. Galtier, B. Na-
1730
+ gler, P. Heimann, C. Fortmann, S. LePape, T. Ma,
1731
+ M. Millot, A. Pak, D. Turnbull, D. A. Chapman, D. O.
1732
+ Gericke, J. Vorberger, T. White, G. Gregori, M. Wei,
1733
+ B. Barbrel, R. W. Falcone, C.-C. Kao, H. Nuhn, J. Welch,
1734
+ U. Zastrau, P. Neumayer, J. B. Hastings, and S. H. Glen-
1735
+ zer, Nat. Photonics 9, 274 (2015).
1736
+ [3] R. R. F¨austlin, T. Bornath, T. D¨oppner, S. D¨usterer,
1737
+ E. F¨orster, C. Fortmann, S. H. Glenzer, S. G¨ode, G. Gre-
1738
+ gori, R. Irsig, T. Laarmann, H. J. Lee, B. Li, K.-H.
1739
+ Meiwes-Broer, J. Mithen, B. Nagler, A. Przystawik,
1740
+ H. Redlin, R. Redmer, H. Reinholz, G. R¨opke, F. Tavella,
1741
+ R. Thiele, J. Tiggesb¨aumker, S. Toleikis, I. Uschmann,
1742
+ S. M. Vinko, T. Whitcher, U. Zastrau, B. Ziaja,
1743
+ and
1744
+ T. Tschentscher, Phys. Rev. Lett. 104, 125002 (2010).
1745
+ [4] T. Guillot, Annu. Rev. Earth Planet. Sci. 33, 493 (2005).
1746
+ [5] R. Helled, J. D. Anderson, M. Podolak, and G. Schubert,
1747
+ The Astrophysical Journal 726, 15 (2010).
1748
+ [6] J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendin-
1749
+ ning, S. H. Glenzer, S. W. Haan, R. L. Kauffman, O. L.
1750
+ Landen, and L. J. Suter, Phys. Plasmas 11, 339 (2004).
1751
+ [7] H. W. Xu, C. S. Alford, J. C. Cooley, L. A. Dixon, R. E.
1752
+ Hackenberg, S. A. Letts, K. A. Moreno, A. Nikroo, J. R.
1753
+ Wall,
1754
+ and K. P. Youngblood, Fusion Sci. Technol. 51,
1755
+ 547 (2007).
1756
+ [8] A. N. Simakov, D. C. Wilson, S. A. Yi, J. L. Kline, D. S.
1757
+ Clark, J. L. Milovich, J. D. Salmonson, and S. H. Batha,
1758
+ Phys. Plasmas 21, 022701 (2014).
1759
+ [9] J. Amann, W. Berg, V. Blank, F. J. Decker, Y. Ding,
1760
+ P. Emma, Y. Feng, J. Frisch, D. Fritz, J. Hastings,
1761
+ Z. Huang, J. Krzywinski, R. Lindberg, H. Loos, A. Lut-
1762
+ man, H. D. Nuhn, D. Ratner, J. Rzepiela, D. Shu,
1763
+ Y. Shvyd’Ko, S. Spampinati, S. Stoupin, S. Terentyev,
1764
+ E. Trakhtenberg, D. Walz, J. Welch, J. Wu, A. Zholents,
1765
+ and D. Zhu, Nat. Photonics 6, 693 (2012).
1766
+ [10] E. E. McBride, T. G. White, A. Descamps, L. B.
1767
+ Fletcher, K. Appel, F. P. Condamine, C. B. Curry,
1768
+ F. Dallari, S. Funk, E. Galtier, M. Gauthier, S. Goede,
1769
+ J. B. Kim, H. J. Lee, B. K. Ofori-Okai, M. Oliver,
1770
+ A. Rigby, C. Schoenwaelder, P. Sun, T. Tschentscher,
1771
+ B. B. L. Witte, U. Zastrau, G. Gregori, B. Nagler,
1772
+ J. Hastings, S. H. Glenzer,
1773
+ and G. Monaco, Rev. Sci.
1774
+ Instrum. 89, 10F104 (2018).
1775
+ [11] A. Descamps, B. K. Ofori-Okai, K. Appel, V. Ceran-
1776
+ tola, A. Comley, J. H. Eggert, L. B. Fletcher, D. O.
1777
+ Gericke, S. G¨ode, O. Humphries, O. Karnbach, A. Laz-
1778
+ icki, R. Loetzsch, D. McGonegle, C. A. J. Palmer,
1779
+ C. Plueckthun, T. R. Preston, R. Redmer, D. G. Senesky,
1780
+ C. Strohm, I. Uschmann, T. G. White, L. Wollenwe-
1781
+ ber, G. Monaco, J. S. Wark, J. B. Hastings, U. Zastrau,
1782
+ G. Gregori, S. H. Glenzer, and E. E. McBride, Sci. Rep.
1783
+ 10, 14564 (2020).
1784
+ [12] L. Wollenweber, T. R. Preston, A. Descamps, V. Ceran-
1785
+ tola, A. Comley, J. H. Eggert, L. B. Fletcher, G. Geloni,
1786
+ D. O. Gericke, S. H. Glenzer, S. G¨ode, J. Hastings,
1787
+ O. S. Humphries, A. Jenei, O. Karnbach, Z. Konop-
1788
+ kova, R. Loetzsch, B. Marx-Glowna, E. E. McBride,
1789
+ D. McGonegle, G. Monaco, B. K. Ofori-Okai, C. A. J.
1790
+ Palmer, C. Pl¨uckthun, R. Redmer, C. Strohm, I. Thorpe,
1791
+ T. Tschentscher, I. Uschmann, J. S. Wark, T. G. White,
1792
+ K. Appel, G. Gregori, and U. Zastrau, Rev. Sci. Instrum.
1793
+ 92, 013101 (2021).
1794
+ [13] S. Frydrych, J. Vorberger, N. J. Hartley, A. K. Schuster,
1795
+ K. Ramakrishna, A. M. Saunders, T. van Driel, R. W.
1796
+ Falcone, L. B. Fletcher, E. Galtier, E. J. Gamboa, S. H.
1797
+ Glenzer, E. Granados, M. J. MacDonald, A. J. MacK-
1798
+ innon, E. E. McBride, I. Nam, P. Neumayer, A. Pak,
1799
+ K. Voigt, M. Roth, P. Sun, D. O. Gericke, T. D¨oppner,
1800
+ and D. Kraus, Nat. Commun. 11, 2620 (2020).
1801
+ [14] M. J. MacDonald, A. M. Saunders, B. Bachmann,
1802
+ M. Bethkenhagen, L. Divol, M. D. Doyle, L. B. Fletcher,
1803
+ S. H. Glenzer, D. Kraus, O. L. Landen, H. J. LeFevre,
1804
+ S. R. Klein, P. Neumayer, R. Redmer, M. Sch¨orner,
1805
+ N. Whiting, R. W. Falcone, and T. D¨oppner, Phys. Plas-
1806
+ mas 28, 032708 (2021).
1807
+ [15] L. B. Fletcher, J. Vorberger, W. Schumaker, C. Ruyer,
1808
+ S. Goede, E. Galtier, U. Zastrau, E. P. Alves, S. D. Baal-
1809
+ rud, R. A. Baggott, B. Barbrel, Z. Chen, T. D¨oppner,
1810
+ M. Gauthier, E. Granados, J. B. Kim, D. Kraus, H. J.
1811
+ Lee, M. J. MacDonald, R. Mishra, A. Pelka, A. Rava-
1812
+ sio, C. Roedel, A. R. Fry, R. Redmer, F. Fiuza, D. O.
1813
+ Gericke, and S. H. Glenzer, Front. Phys. 10 (2022).
1814
+ [16] J. Chihara, J. Phys. F: Met. Phys. 17, 295 (1987).
1815
+ [17] J. Chihara, J. Phys.: Condens. Matter 12, 231 (2000).
1816
+ [18] B. Crowley and G. Gregori, High Energy Density Phys.
1817
+ 13, 55 (2014).
1818
+ [19] D. A. Chapman, D. Kraus, A. L. Kritcher, B. Bachmann,
1819
+ G. W. Collins, R. W. Falcone, J. A. Gaffney, D. O. Ger-
1820
+ icke, S. H. Glenzer, T. M. Guymer, J. A. Hawreliak, O. L.
1821
+ Landen, S. Le Pape, T. Ma, P. Neumayer, J. Nilsen,
1822
+ A. Pak, R. Redmer, D. C. Swift, J. Vorberger,
1823
+ and
1824
+ T. D¨oppner, Phys. Plasmas 21, 082709 (2014).
1825
+ [20] L. Pauling and J. Sherman, Zeitschrift f¨ur Kristallogra-
1826
+ phie - Crystalline Materials 81, 1 (01 Dec. 1932).
1827
+ [21] H. Reinholz, R. Redmer, G. R¨opke,
1828
+ and A. Wierling,
1829
+ Phys. Rev. E 62, 5648 (2000).
1830
+ [22] C. Fortmann, A. Wierling, and G. R¨opke, Phys. Rev. E
1831
+ 81, 026405 (2010).
1832
+ [23] P. Eisenberger and P. M. Platzman, Phys. Rev. A 2, 415
1833
+ (1970).
1834
+ [24] B. B. L. Witte, L. B. Fletcher, E. Galtier, E. Gamboa,
1835
+ H. J. Lee, U. Zastrau, R. Redmer, S. H. Glenzer,
1836
+ and
1837
+ P. Sperling, Phys. Rev. Lett. 118, 225001 (2017).
1838
+ [25] K. Ramakrishna, A. Cangi, T. Dornheim, A. Baczewski,
1839
+ and J. Vorberger, Phys. Rev. B 103, 125118 (2021).
1840
+ [26] K. Ramakrishna and J. Vorberger, J. Phys.: Condens.
1841
+ Matter 32, 095401 (2019).
1842
+ [27] A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B.
1843
+ Hansen, and R. J. Magyar, Phys. Rev. Lett. 116, 115004
1844
+ (2016).
1845
+ [28] T. Dornheim, S. Groth, and M. Bonitz, Phys. Rep. 744,
1846
+ 1 (2018).
1847
+ [29] M. B¨ohme, Z. A. Moldabekov, J. Vorberger,
1848
+ and
1849
+ T. Dornheim, Phys. Rev. Lett. 129, 066402 (2022).
1850
+ [30] M.
1851
+ Bethkenhagen,
1852
+ B.
1853
+ B.
1854
+ L.
1855
+ Witte,
1856
+ M.
1857
+ Sch¨orner,
1858
+ G. R¨opke, T. D¨oppner, D. Kraus, S. H. Glenzer, P. A.
1859
+ Sterne, and R. Redmer, Phys. Rev. Research 2, 023260
1860
+ (2020).
1861
+ [31] H. R. R¨uter and R. Redmer, Phys. Rev. Lett. 112,
1862
+ 145007 (2014).
1863
+
1864
+ 14
1865
+ [32] K.-U. Plagemann, H. R. R¨uter, T. Bornath, M. Shi-
1866
+ hab, M. P. Desjarlais, C. Fortmann, S. H. Glenzer, and
1867
+ R. Redmer, Phys. Rev. E 92, 013103 (2015).
1868
+ [33] B. B. L. Witte, M. Shihab, S. H. Glenzer, and R. Red-
1869
+ mer, Phys. Rev. B 95, 144105 (2017).
1870
+ [34] R. Kubo, Rep. Prog. Phys. 29, 255 (1966).
1871
+ [35] J. Lindhard, Kgl. Danske Videnskab. Selskab Mat.-fys.
1872
+ Medd. 28 (1954).
1873
+ [36] N. D. Mermin, Phys. Rev. B 1, 2362 (1970).
1874
+ [37] A. Selchow and K. Morawetz, Phys. Rev. E 59, 1015
1875
+ (1999).
1876
+ [38] G. R¨opke, A. Selchow, A. Wierling,
1877
+ and H. Reinholz,
1878
+ Phys. Lett. A 260, 365 (1999).
1879
+ [39] T. Millat, A. Selchow, A. Wierling, H. Reinholz, R. Red-
1880
+ mer,
1881
+ and G. R¨opke, J. Phys. A: Math. Gen. 36, 6259
1882
+ (2003).
1883
+ [40] R. Thiele, T. Bornath, C. Fortmann, A. H¨oll, R. Redmer,
1884
+ H. Reinholz, G. R¨opke, A. Wierling, S. H. Glenzer, and
1885
+ G. Gregori, Phys. Rev. E 78, 026411 (2008).
1886
+ [41] K.-U. Plagemann, P. Sperling, R. Thiele, M. P. Desjar-
1887
+ lais, C. Fortmann, T. D¨oppner, H. J. Lee, S. H. Glenzer,
1888
+ and R. Redmer, New J. Phys. 14, 055020 (2012).
1889
+ [42] M. French and R. Redmer, Phys. Plasmas 24, 092306
1890
+ (2017).
1891
+ [43] M. Gajdoˇs, K. Hummer, G. Kresse, J. Furthm¨uller, and
1892
+ F. Bechstedt, Phys. Rev. B 73, 045112 (2006).
1893
+ [44] E. Engel and R. M. Dreizler, Density Functional Theory
1894
+ (Springer Berlin, Heidelberg, 2011).
1895
+ [45] J. Yan, J. J. Mortensen, K. W. Jacobsen,
1896
+ and K. S.
1897
+ Thygesen, Phys. Rev. B 83, 245122 (2011).
1898
+ [46] A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
1899
+ [47] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
1900
+ [48] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
1901
+ [49] G. Kresse and J. Furthm¨uller, Phys. Rev. B 54, 11169
1902
+ (1996).
1903
+ [50] N. D. Mermin, Phys. Rev. 137, A1441 (1965).
1904
+ [51] S. Nos´e, J. Chem. Phys. 81, 511 (1984).
1905
+ [52] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
1906
+ [53] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev.
1907
+ Lett. 77, 3865 (1996).
1908
+ [54] G. R¨opke, M. Sch¨orner, R. Redmer,
1909
+ and M. Bethken-
1910
+ hagen, Phys. Rev. E 104, 045204 (2021).
1911
+ [55] C. R. Harris, K. J. Millman, S. J. van der Walt,
1912
+ R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
1913
+ J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
1914
+ S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane,
1915
+ J. Fern´andez del R´ıo, M. Wiebe, P. Peterson, P. G´erard-
1916
+ Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Ab-
1917
+ basi, C. Gohlke,
1918
+ and T. E. Oliphant, Nature 585,
1919
+ 357–362 (2020).
1920
+ [56] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haber-
1921
+ land, T. Reddy, D. Cournapeau, E. Burovski, P. Pe-
1922
+ terson, W. Weckesser, J. Bright, S. J. van der Walt,
1923
+ M. Brett, J. Wilson, K. J. Millman, N. Mayorov, A. R. J.
1924
+ Nelson, E. Jones, R. Kern, E. Larson, C. J. Carey, ˙I. Po-
1925
+ lat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde,
1926
+ J. Perktold, R. Cimrman, I. Henriksen, E. A. Quintero,
1927
+ C. R. Harris, A. M. Archibald, A. H. Ribeiro, F. Pe-
1928
+ dregosa, P. van Mulbregt,
1929
+ and SciPy 1.0 Contributors,
1930
+ Nat. Methods 17, 261 (2020).
1931
+ [57] K. Ohta and H. Ishida, Appl. Spectrosc. 42, 952 (1988).
1932
+ [58] J. J. Mortensen, L. B. Hansen,
1933
+ and K. W. Jacobsen,
1934
+ Phys. Rev. B 71, 035109 (2005).
1935
+ [59] J. Enkovaara, C. Rostgaard, J. J. Mortensen, J. Chen,
1936
+ M. Du�lak,
1937
+ L. Ferrighi,
1938
+ J. Gavnholt,
1939
+ C. Glinsvad,
1940
+ V.
1941
+ Haikola,
1942
+ H.
1943
+ A.
1944
+ Hansen,
1945
+ H.
1946
+ H.
1947
+ Kristoffersen,
1948
+ M. Kuisma, A. H. Larsen, L. Lehtovaara, M. Ljung-
1949
+ berg,
1950
+ O. Lopez-Acevedo,
1951
+ P. G. Moses,
1952
+ J. Ojanen,
1953
+ T. Olsen, V. Petzold, N. A. Romero, J. Stausholm-
1954
+ Møller, M. Strange, G. A. Tritsaris, M. Vanin, M. Walter,
1955
+ B. Hammer, H. H¨akkinen, G. K. H. Madsen, R. M. Niem-
1956
+ inen, J. K. Nørskov, M. Puska, T. T. Rantala, J. Schiøtz,
1957
+ K. S. Thygesen, and K. W. Jacobsen, J. Phys.: Condens.
1958
+ Matter 22, 253202 (2010).
1959
+ [60] A. H. Larsen, J. J. Mortensen, J. Blomqvist, I. E.
1960
+ Castelli, R. Christensen, M. Du�lak, J. Friis, M. N.
1961
+ Groves, B. Hammer, C. Hargus, E. D. Hermes, P. C.
1962
+ Jennings, P. B. Jensen, J. Kermode, J. R. Kitchin, E. L.
1963
+ Kolsbjerg, J. Kubal, K. Kaasbjerg, S. Lysgaard, J. B.
1964
+ Maronsson, T. Maxson, T. Olsen, L. Pastewka, A. Pe-
1965
+ terson, C. Rostgaard, J. Schiøtz, O. Sch¨utt, M. Strange,
1966
+ K. S. Thygesen, T. Vegge, L. Vilhelmsen, M. Walter,
1967
+ Z. Zeng, and K. W. Jacobsen, J. Phys.: Condens. Mat-
1968
+ ter 29, 273002 (2017).
1969
+ [61] H. J. Monkhorst and J. D. Pack, Phys. Rev. B 13, 5188
1970
+ (1976).
1971
+ [62] A. Baldereschi, Phys. Rev. B 7, 5212 (1973).
1972
+ [63] Reinholz, H., Ann. Phys. Fr. 30, 1 (2005).
1973
+ [64] R. Thiele, R. Redmer, H. Reinholz,
1974
+ and G. R¨opke, J.
1975
+ Phys. A: Math. Gen. 39, 4365 (2006).
1976
+ [65] H. A. Gould and H. E. DeWitt, Phys. Rev. 155, 68
1977
+ (1967).
1978
+ [66] G. R¨opke and R. Redmer, Phys. Rev. A 39, 907 (1989).
1979
+ [67] M. French, G. R¨opke, M. Sch¨orner, M. Bethkenhagen,
1980
+ M. P. Desjarlais,
1981
+ and R. Redmer, Phys. Rev. E 105,
1982
+ 065204 (2022).
1983
+ [68] T. Dornheim, Z. A. Moldabekov, J. Vorberger,
1984
+ and
1985
+ B. Militzer, Sci. Rep. 12, 708 (2022).
1986
+ [69] B. A. Mattern and G. T. Seidler, Phys. Plasmas 20,
1987
+ 022706 (2013).
1988
+ [70] T. D¨oppner, O. Landen, H. Lee, P. Neumayer, S. Regan,
1989
+ and S. Glenzer, High Energy Density Phys. 5, 182 (2009).
1990
+ [71] A. L. Kritcher, T. D¨oppner, C. Fortmann, T. Ma, O. L.
1991
+ Landen, R. Wallace, and S. H. Glenzer, Phys. Rev. Lett.
1992
+ 107, 015002 (2011).
1993
+ [72] T. Dornheim, M. B¨ohme, D. Kraus, T. D¨oppner, T. R.
1994
+ Preston, Z. A. Moldabekov, and J. Vorberger, Nat. Com-
1995
+ mun. 13, 7911 (2022).
1996
+ [73] H.-C. Weissker, R. Hambach, V. Olevano, and L. Rein-
1997
+ ing, Phys. Rev. B 79, 094102 (2009).
1998
+ [74] M. F. Kasim, T. P. Galligan, J. Topp-Mugglestone,
1999
+ G. Gregori, and S. M. Vinko, Phys. Plasmas 26, 112706
2000
+ (2019).
2001
+ [75] J. Salvatier, T. V. Wiecki,
2002
+ and C. Fonnesbeck, PeerJ
2003
+ Computer Science 2, e55 (2016).
2004
+ [76] P. Del Moral, A. Doucet,
2005
+ and A. Jasra, Journal of the
2006
+ Royal Statistical Society: Series B (Statistical Method-
2007
+ ology) 68, 411 (2006).
2008
+ [77] S. A. Sisson, Y. Fan,
2009
+ and M. M. Tanaka, Proc. Natl.
2010
+ Acad. Sci. U.S.A. 104, 1760 (2007).
2011
+ [78] R. de L. Kronig, J. Opt. Soc. Am. 12, 547 (1926).
2012
+ [79] H. A. Kramers, Atti Cong. Intern. Fisici 2, 545 (1927).
2013
+
O9AzT4oBgHgl3EQflP2h/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
PtFRT4oBgHgl3EQf6Djm/content/tmp_files/2301.13675v1.pdf.txt ADDED
@@ -0,0 +1,1332 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.13675v1 [math.AC] 31 Jan 2023
2
+ ON TIGHT SUBMODULES
3
+ OF MODULES OVER VALUATION DOMAINS
4
+ PETER DANCHEV AND L´ASZL ´O FUCHS
5
+ Abstract. This note offers an unusual approach of studying a class of mod-
6
+ ules inasmuch as it is investigating a subclass of the category of modules over a
7
+ valuation domain. This class is far from being a full subcategory, it is not even
8
+ a category.
9
+ Our concern is the subclass consisting of modules of projective
10
+ dimension not exceeding one, admitting only morphisms whose kernels and
11
+ cokernels are also objects in this subclass. This class is still tractable, several
12
+ features are in general simpler than in module categories, but lots of familiar
13
+ properties are lost. A number of results on modules in this class are similar to
14
+ those on modules over rank one discrete valuation domains (where the global
15
+ dimension is 1). The study is considerably simplified by taking advantage of
16
+ the general theory of modules over valuation domains available in the litera-
17
+ ture, e.g. in [14]-[15]. Our main goal is to establish the basic features and have
18
+ a closer look at injectivity, pure-injectivity, and cotorsionness, but we do not
19
+ wish to enter into an in-depth study of these properties.
20
+ 1. Introduction
21
+ Everybody familiar with module theory over integral domains knows well that
22
+ the theory simplifies tremendously if the ring is a Dedekind domain; i.e. the modules
23
+ have projective dimension (p.d.)
24
+ at most one.
25
+ That the condition ‘p.d.1’ is so
26
+ powerful was recognized by E. Matlis who developed interesting properties under
27
+ the hypothesis that the field of quotients as a module has p.d.1; see [17] (in [15] these
28
+ rings were named Matlis domains in his honor). In order to understand p.d.1 better
29
+ and to learn more about it, it is natural to try to find out how the theory would
30
+ look like over a general integral domain if one deals only with its modules of p.d.
31
+ not exceeding 1, and ignores modules of higher projective dimensions. This means
32
+ to investigate a class where the objects are modules of p.d.≤ 1 and morphisms
33
+ are required to have both kernels and cokernels of p.d.≤ 1. This is what we are
34
+ planning to do in this article over an arbitrary valuation domain (i.e. an integral
35
+ domain where the ideals form a chain with respect to inclusion). Valuation domains
36
+ are the first and obvious choice for such a study, as they are sufficiently general,
37
+ but still manageable, and luckily, there is an extensive literature available on them
38
+ that reveals a lot of information one can take advantage of.
39
+ The selected subclass of the module category is not a category; a primary reason
40
+ for it is that the usual composition rule of mappings works only under an additional
41
+ condition. When dealing with modules of such a class, it is soon realized that one
42
+ has to reassess familiar facts and obvious concepts to fit into the new situation. The
43
+ usual sum of two morphisms is rarely another one, submodules that belong to this
44
+ Date: February 1, 2023.
45
+ 2020 Mathematics Subject Classification. Primary 13C05, 13F99. Secondary 13G05.
46
+ 1
47
+
48
+ subclass only exceptionally form a lattice, the tensor product of two objects may
49
+ not belong to this class, etc. But on the other hand, some nice features of discrete
50
+ rank one valuation domains carry over, like the equality of injectivity and divisi-
51
+ bility or the pure-injectivity of cyclically presented torsion modules. We will also
52
+ pay attention to pure-injectivity and to the cotorsion property (Sections 7 and 8).
53
+ Though these concepts are defined to have close resemblance to the familiar module
54
+ concepts, one should always keep in mind that they are not exactly the same. The
55
+ discussion of the submodules in direct sums of cyclically presented modules (Section
56
+ 5) already shows the huge difference from the traditional treatment of modules.
57
+ Throughout the symbol V will denote a valuation domain (commutative), and Q
58
+ its quotient field. We will use the notation K = Q/V . The symbol V × denotes the
59
+ multiplicative monoid of non-zero elements of V . Torsion and torsion-free modules
60
+ have the usual meaning.
61
+ The abbreviation p.d.
62
+ denotes projective dimension.
63
+ The global weak dimension of a valuation domain is 1. Likewise, |X| denotes the
64
+ cardinality of the set X, and ω is the smallest infinite ordinal. We also abbreviate
65
+ gen M to stand for the minimal cardinality of generating sets of M.
66
+ We use
67
+ “countably generated” to mean gen M = ℵ0 (not finite).
68
+ Torsion-freeness and
69
+ flatness are equivalent over valuation domains; consequently, relative divisibility
70
+ and purity have the same meaning. For the construction of valuation domains with
71
+ prescribed value groups, see e.g. [15, Chap. II, Section 3].
72
+ For a valuation domain V , we consider the category CV as the category V -Mod
73
+ of V -modules with the usual morphisms. Our main goal is to study the subclass
74
+ C∗
75
+ V whose objects are the V -modules of p.d.≤ 1 and whose morphisms are required
76
+ to have kernels and cokernels that also have p.d.≤ 1. The subobjects are the tight
77
+ submodules (see Section 2). While our results are restricted to this subclass, in
78
+ proofs we will often use arguments and concepts from the covering category CV .
79
+ Modules of projective dimension one have been discussed briefly in an earlier pa-
80
+ per [9] with emphasis on Pr¨ufer domains, and some of our present results appeared
81
+ there in a different context.
82
+ The idea of investigating the subclass C∗
83
+ V comes from a recent paper [12] where
84
+ tight submodules played a dominating role. To deal with classes of modules where
85
+ both the kernels and the cokernels of the maps were restricted looked strange, but
86
+ at the same time interesting and challenging. We admit, we were first hesitating
87
+ to get involved in an uncharted territory with no immediate applications in the
88
+ horizon, but in spite of this we decided to start working on this class, since we
89
+ believed that the results could be helpful in a better understanding of the impact
90
+ of projective dimension one as well as of the role of tightness in submodules. In
91
+ addition, they might provide counterexamples in unusual situations. In this paper
92
+ we begin with exploring this idea, and accordingly, we have been trying to find out
93
+ not only what can be verified, but also what is no longer valid in comparison to
94
+ conventional module theory.
95
+ 2. Tight Submodules
96
+ The fundamental concept we are using throughout is the tightness of submodules
97
+ in modules of p.d.≤ 1. The following definition applies to all rings. Let B < A
98
+ be modules such that p.d.A ≤ 1. B is called tight in A if p.d.A/B ≤ 1. Then
99
+ also p.d.B ≤ 1. It is evident that direct summands are tight submodules, but tight
100
+ 2
101
+
102
+ submodules need not be summands. The tightness for p.d.1 that was introduced
103
+ in [8] and immediately generalized to higher p.d.s in [1], was slightly different: its
104
+ definition required that p.d.A/B ≤ p.d.A. The only difference between the two
105
+ variants is that in a free V -module cyclically presented a free submodule is not
106
+ tight in the sense of [8], but is in this paper.
107
+ (The present version was called
108
+ t-submodule in [9].)
109
+ The following easily verifiable basic rules will be applied, often without explicit
110
+ reference:
111
+ Lemma 2.1. Let C < B < A be V -modules and p.d.A ≤ 1.
112
+ (a) If C is tight in B and B is tight in A, then C is tight in A.
113
+ (b) If C and B are tight in A, then C is tight in B.
114
+ (c) If C and B are tight in A, then B/C is tight in A/C.
115
+ (d) If C is tight in A and B/C is tight in A/C, then B is tight in A.
116
+
117
+ As already mentioned before, the symbol CV will denote the category of V -
118
+ modules with the usual morphisms, while C∗
119
+ V is the subclass whose objects are
120
+ the V -modules of p.d.≤ 1. E.g. the frequently used localizations VS at countable
121
+ multiplicative submonoids S of V × are objects of our class C∗
122
+ V . The subobjects of
123
+ an object M ∈ C∗
124
+ V are the tight submodules of M. The morphisms in C∗
125
+ V are those
126
+ module homomorphisms φ : M → N (M, N ∈ C∗
127
+ V ) for which Im φ is tight in N.
128
+ This also means that Ker φ should be a tight submodule of M. Thus morphisms in
129
+ C∗
130
+ V have tight kernels and images. Clearly, a submodule A of M is tight if and only
131
+ if the inclusion morphism A → M belongs to C∗
132
+ V . In order to check whether or not
133
+ C∗
134
+ V is a category, one ought to examine the axioms of category theory; in particular,
135
+ the critical one that says that if α : A → B and β : B → C are morphisms, then so
136
+ is the composite map βα : A → C. Unfortunately, this property is seldom satisfied
137
+ in C∗
138
+ V . As we will see in a moment, this property is related to the one that the sum
139
+ of two tight submodules is again tight – which holds very rarely. In the next lemma
140
+ this property is compared to similar properties, in particular to the tightness of the
141
+ intersection of two tight submodules.
142
+ Lemma 2.2. Let M be a V -module of p.d.≤ 1, and A, B two tight submodules of
143
+ M. Consider the following conditions:
144
+ (i) A ∩ B is tight in A;
145
+ (ii) A ∩ B is tight in B;
146
+ (iii) A is tight in A + B;
147
+ (iv) B is tight in A + B;
148
+ (v) A ∩ B is tight in M;
149
+ (vi) A ∩ B is tight in A + B;
150
+ (vii) A + B is tight in M.
151
+ Then conditions (i)-(v) are equivalent, (vi) follows from each of them, and (vii)
152
+ implies each of them.
153
+ Proof. (i) ⇔ (iv) as well as (ii) ⇔ (iii) follows from Noether’s isomorphism theorem.
154
+ (i) ⇔ (v). The third non-zero module in the exact sequence
155
+ 0 → A/(A ∩ B) → M/(A ∩ B) → M/A → 0
156
+ has p.d.≤ 1. We deduce, by the well-known Kaplansky’s lemma on p.d.’s in short
157
+ exact sequences (see e.g.
158
+ [15, Lemma 2.4, p.
159
+ 202]) that the first two non-zero
160
+ modules in the last exact sequence are simultaneously of p.d. ≤ 1.
161
+ 3
162
+
163
+ (vii) ⇒ (ii). From the exact sequence
164
+ 0 → (A + B)/A → M/A → M/(A + B) → 0
165
+ where M/A and M/(A+B) have p.d.≤ 1 we argue, by the same Kaplansky’s lemma
166
+ that p.d.(A + B)/A = 1. Hence p.d.B/(A ∩ B) = 1, and A ∩ B is tight in B.
167
+ (ii) ⇒ (v). By hypothesis A ∩ B is tight in B, and B is tight in M. Therefore,
168
+ by Lemma 2.1(a), A ∩ B is tight in M. Similar argument yields (i) ⇒ (v).
169
+ (vii) ⇒ (iii). Because of Lemma 2.1(b), A and A + B tight in M implies A is
170
+ tight in A + B.
171
+ (i)+(ii) ⇒ (vi). If A/(A ∩ B) and (A + B)/A ∼= B/(A ∩ B) have p.d.≤ 1, then
172
+ the middle term in the exact sequence
173
+ 0 → A/(A ∩ B) → (A + B)/(A ∩ B) → (A + B)/A → 0
174
+ is likewise of p.d.≤ 1.
175
+
176
+ We are indebted to L. Salce for furnishing us with an example showing that the
177
+ sum of two tight submodules of a module of p.d.1 need not be tight even if their
178
+ intersection is tight (the converse is ruled out by the implication (vii) ⇒ (v) in
179
+ Lemma 2.2). Since the proof requires several results from the theory of valuation
180
+ domains that are not needed in this paper, we skip the details.
181
+ The relation between the module and its tight submodules is a fundamental
182
+ issue. The following simple fact might provide useful information.
183
+ Lemma 2.3. Let M be a V -module of p.d.≤ 1. A tight submodule C of M satisfies
184
+ gen C ≤ gen M.
185
+ Proof. If gen M = n is an integer, then by Warfield [21] M is the direct sum of
186
+ n cyclic submodules, so its Goldie-dimension is n (the Goldie-dimension — to be
187
+ abbreviated as Gd — of a module M is the supremum of the cardinalities of the
188
+ sets of non-zero summands in direct sums ⊕i∈IMi contained in M). A submodule
189
+ C cannot have larger Goldie-dimension, thus gen C ≤ n.
190
+ 0
191
+ 0
192
+ �
193
+ �
194
+ H
195
+ H
196
+ �
197
+ �
198
+ 0 −−−−→ C −−−−→ N −−−−→
199
+ F
200
+ −−−−→ 0
201
+ ||
202
+ �
203
+ �ψ
204
+ 0 −−−−→ C −−−−→ M
205
+ φ
206
+ −−−−→ M/C −−−−→ 0
207
+ �
208
+ �
209
+ 0
210
+ 0
211
+ If gen M = κ is an infinite cardinal, then consider a free resolution 0 → H →
212
+ F → M/C → 0 where gen F = κ.
213
+ The pullback N of φ : M → M/C and
214
+ ψ : F → M/C fits in the vertical exact sequence 0 → H → N → M → 0. (See the
215
+ commutative diagram with exact rows and columns.) Obviously, the free submodule
216
+ H of the free F satisfies gen H ≤ gen F = κ, whence gen N ≤ gen H + gen M = κ
217
+ 4
218
+
219
+ and gen N ≥ gen M = κ follow. Thus gen N = κ, and as N ∼= F ⊕C, the inequality
220
+ gen C ≤ gen N = κ becomes evident.
221
+
222
+ Next we verify a result on the tightness of modules in a chain. Keep in mind
223
+ that being tight is not an inductive property. (Continuity in the next lemma means
224
+ that Mρ = ∪σ<ρMσ whenever ρ is a limit ordinal.)
225
+ Lemma 2.4. Suppose
226
+ (1)
227
+ 0 = M0 < M1 < · · · < Mσ < · · · < Mτ = M
228
+ is a continuous well-ordered ascending chain of submodules of the module M with
229
+ union M such that the modules Mσ (σ < τ) have p.d.1. If each module is tight in
230
+ its immediate successor, then each module is tight in all of the successor modules
231
+ of the chain, and also in M. Furthermore, p.d.M = 1.
232
+ Proof. Apply Auslander’s familiar criterion on the p.d. of the union of a chain (see
233
+ e.g. [15, Chap. VI, Lemma 2.6]) to the subchain starting at Mσ, to argue that
234
+ p.d.Mσ+ρ+1/Mσ+ρ ≤ 1 for all ordinals ρ ≥ 0 implies that Mσ is tight in every
235
+ successor in the chain. That p.d.M = 1 follows from the same lemma.
236
+
237
+ Let us agree that when we say “object”, we will mean an object of the subclass
238
+ C∗
239
+ V of CV (remember: all objects have p.d.≤ 1, and all subobjects are tight!).
240
+ Manifestly, C∗
241
+ V is closed under direct summands and direct sums; the projections
242
+ onto direct summands and the embeddings of direct summands are morphisms in
243
+ C∗
244
+ V . In the opposite direction, we observe that neither the sum nor the intersection
245
+ of two subobjects is necessarily a subobject, and the union of an ascending chain
246
+ of objects need not be an object. The class C∗
247
+ V is not additive in general; it is of
248
+ course if V is a discrete valuation domain (DVD).
249
+ 3. Fundamental Objects
250
+ Because of the restrictive composition rule of morphisms in our class, we have
251
+ to learn from scratch if and how some of the familiar basic concepts have to be
252
+ modified to fit in. One should not be surprised if in some cases hard-to-believe
253
+ situations have to be accepted.
254
+ Cyclically presented objects. The simplest objects in our class C∗
255
+ V are the
256
+ cyclically presented modules: V r/V s (r, s ∈ V ) where V s ≤ V r are principal ideals.
257
+ All cyclic submodules of V r/V s are subobjects. Later on we will see that these
258
+ are the only subobjects of V r/V s ∼= V (rs−1) ≤ V . Accordingly, only the principal
259
+ ideals are subobjects in object V .
260
+ Multiplications by ring elements induce endomorphisms of V r/V s whose kernels
261
+ and images are subobjects. Morphisms between cyclically presented modules are
262
+ the same in C∗
263
+ V as in CV , therefore the V - as well as the C∗
264
+ V -endomorphism ring of
265
+ a cyclically presented object is local.
266
+ Finitely generated objects. The finitely generated objects behave very nicely
267
+ in C∗
268
+ V . It is an elementary result that a finitely generated module over a valuation
269
+ domain is of p.d.≤ 1 if and only if it is finitely presented (see [14, Proposition 4.1, p.
270
+ 83]), and then it is the direct sum of a finite number of cyclically presented modules
271
+ (see Warfield [21], or [15, p.159]). Thus in our class C∗
272
+ V , the finitely generated objects
273
+ are the finitely presented V -modules. Note that the annihilators of elements in such
274
+ a module are principal ideals (the ideal 0 is included), thus subobjects.
275
+ 5
276
+
277
+ Example 3.1. Let {x, y, z, w} be a generating set of the module M with defining
278
+ relations rx = 0, sy = 0, ax + by + cz = 0, ex + dw = 0 where r, s, a, b, c, d, e are
279
+ non-units in V ×. The structure of M depends to a great extent on the divisibility
280
+ relations between these ring elements. Assume e.g. the following proper divisibility
281
+ relations: c | d | b | e | a | s | r.
282
+ We can choose a different generating set:
283
+ {x, y, z′, w′} with z′ = z + ac−1x + bc−1y, w′ = w + ed−1x; then the new relations
284
+ will be rx = 0, sy = 0, cz′ = 0, dw′ = 0. This shows that the finitely presented
285
+ module M is the direct sum of four cyclically presented submodules generated by
286
+ x, y, z′, w′ with annihilators V r, V s, V c, V d, respectively.
287
+
288
+ If B is a finitely generated submodule of a finitely presented module A, then A/B
289
+ is finitely presented, so it has p.d.≤ 1. Thus B is a subobject in A. If C is tight
290
+ in a finitely presented module A, then p.d.A/C ≤ 1 implies that A/C is finitely
291
+ presented. Hence C is finitely generated. Therefore, the subobjects in a finitely
292
+ generated object are precisely the finitely generated submodules. An immediate
293
+ consequence of this fact is the following corollary. It is telling us that the subclass
294
+ of finitely presented objects behaves the same manner in C∗
295
+ V as in CV .
296
+ Corollary 3.2. 1) Let α : A → B and β : B → C be morphisms between finitely
297
+ presented objects in C∗
298
+ V . Then the composite map βα is also a morphism in C∗
299
+ V .
300
+ 2) The endomorphisms of a finitely presented object in C∗
301
+ V form a ring.
302
+ Proof. It suffices to show that the intersection of two finitely generated subobjects
303
+ is also finitely generated (the sum of two finitely generated submodules is evidently
304
+ again finitely generated). The implication (vii)⇒(vi) in Lemma 2.2 ensures that
305
+ such an intersection is tight also in the sum of the objects. Tight in finitely gener-
306
+ ated is finitely generated.
307
+
308
+ Important observations on finitely generated submodules in objects are recorded
309
+ in the following proposition.
310
+ Proposition 3.3. (i) Finitely generated submodules in any object are (finitely
311
+ presented) subobjects. In a finitely generated object they are the only subobjects.
312
+ (ii) The finitely presented subobjects of an object M in the class C∗
313
+ V form a
314
+ sublattice in the lattice of submodules of M.
315
+ (iii) The sum and intersection of a finitely presented subobject with any subobject
316
+ are also subobjects.
317
+ Proof. (i) This is an immediate consequence of [15, Lemma 6.4, p. 217], which
318
+ ensures that finitely generated submodules of modules of p.d.≤ 1 are tight. The
319
+ second part of claim (i) was already stated above.
320
+ (ii) This follows from Corollary 3.2.
321
+ (iii) Let A be a finitely presented and B an arbitrary subobject of M.
322
+ The
323
+ module (A + B)/B is a finitely generated submodule of M/B, therefore, it is tight
324
+ in M/B. Hence A + B is tight in M. The rest follows from Lemma 2.2.
325
+
326
+ Uniserial objects.
327
+ Most important objects are the uniserial modules (also
328
+ called serial modules in the literature): these are defined as modules whose sub-
329
+ modules form a chain with respect to inclusion. The obvious examples in CV are
330
+ the so-called standard uniserial modules: the field of quotients, Q, as well as its
331
+ submodules and submodules of their epic images, i.e. modules of the form J/I
332
+ where 0 ≤ I < J ≤ Q are submodules. By Osofsky (see [18] or also [15, Chap.
333
+ 6
334
+
335
+ VI, Sect. 3]), the p.d. of a submodule J of Q over a valuation domain is an in-
336
+ teger n ≥ 0 if and only if gen J = ℵn−1 (ℵ−1 means “finite”). Hence uniserial
337
+ objects in C∗
338
+ V are at most countably generated. However, — as noted before — a
339
+ countably generated ideal J is not a subobject of V in C∗
340
+ V ; indeed, as p.d.V = 0
341
+ and p.d.J = 1 imply p.d.V/J = 2. A torsion uniserial ought to have p.d.≤ 1 to
342
+ belong to C∗
343
+ V , therefore only those standard uniserials J/I are objects for which J
344
+ is at most countably generated and I is cyclic, since p.d.J/I ≤ 1 implies that J/I
345
+ is coherent; see e.g. [14, Chap. IV, Theorem 4.3]. Thus all the annihilator ideals
346
+ of elements in a uniserial object are principal ideals. Hence it follows that the only
347
+ proper subobjects of uniserial objects are cyclically presented. The non-standard
348
+ uniserials (that play an important role in the theory of valuation domains, cf. [2]
349
+ or [15]) will now be ignored, since their p.d. always exceeds 1.
350
+ A convenient way to deal with uniserial objects is to view them in the form
351
+ J (torsion-free case) or J/V (torsion case), where J is either Q (provided it is
352
+ countably generated) or an at most countably generated proper submodule of Q
353
+ containing V . Then it is trivial to answer the question of isomorphism of uniserial
354
+ modules: J ∼= J′ if and only if J = rJ′ or J′ = rJ for some r ∈ V × (i.e. J′ = qJ
355
+ for some 0 ̸= q ∈ Q), while J/V ∼= J′/V if and only if J = J′. Also, it makes sense
356
+ to talk about total order even in the set of torsion uniserial objects in C∗
357
+ V : the order
358
+ relation being induced by the natural inclusion relation of the numerators J.
359
+ Let U be a uniserial object and r ∈ V ×. It is obvious what is meant by rU. But
360
+ it also makes sense to write r−1U. Indeed, this denotes the uniserial object U ′ that
361
+ satisfies rU ′ = U; it is unique up to isomorphism.
362
+ From the description of the proper subobjects of a countably generated uniserial
363
+ object U ∈ C∗
364
+ V it follows that their only endomorphisms are the automorphisms
365
+ and the map to the zero submodule, that is, EndC∗
366
+ V (U) = AutV (U)∪{0}. It is well
367
+ known that the endomorphism ring of a uniserial module in CV is a local ring (see
368
+ Shores–Lewis [19]), and modules with local endomorphism rings enjoy the Exchange
369
+ Property.
370
+ The Exchange Property is one of the properties most frequently investigated
371
+ about the behavior of summands. Recall that a module A has the (finite) Exchange
372
+ Property if direct decompositions M = A ⊕ B = C ⊕ D of any module M imply
373
+ that there is another decomposition of the form M = A ⊕ C1 ⊕ D1 such that
374
+ C1 ≤ C, D1 ≤ D. Furthermore, A has the Cancellation Property if A ⊕ B ∼= A ⊕ C
375
+ for arbitrary modules B, C implies B ∼= C.
376
+ Finally, A enjoys the Substitution
377
+ Property if M = A1 ⊕ B = A2 ⊕ C with A1 ∼= A2 ∼= A implies the existence of a
378
+ submodule A′ ≤ M such that A′ ∼= A and M = A′ ⊕ B = A′ ⊕ C. (See [6].) We
379
+ note that, if an object A ∈ C∗
380
+ V has either the Exchange, or the Cancellation, or the
381
+ Substitution Property as a module in CV , then it also displays the same property
382
+ in the class C∗
383
+ V , since this class is closed under direct summands and direct sums.
384
+ In view of the preceding remarks, from [15, Corollary 2.3, p. 342] and [15, p.181]
385
+ we derive the following theorem.
386
+ Theorem 3.4. Finite direct sums of uniserial objects in the class C∗
387
+ V enjoy all of
388
+ the cancellation, exchange and substitution properties.
389
+
390
+ Maximal uniserial submodules. By a maximal uniserial submodule in M
391
+ we mean a uniserial submodule that is not properly contained in another uniserial
392
+ submodule of M.
393
+ 7
394
+
395
+ Theorem 3.5. Suppose M is a V -module of p.d.≤ 1, and U is a uniserial sub-
396
+ module in M.
397
+ (i) If U is maximal uniserial in M, then it is at most countably generated and
398
+ has p.d.≤ 1.
399
+ (ii) If U is countably generated and tight in M, then it is a maximal uniserial
400
+ submodule in M.
401
+ (iii) If U is a countably generated maximal uniserial submodule in a tight sub-
402
+ module of M, then it is also maximal in M.
403
+ Proof. (i) See [15, Chap. VI, Lemma 6.7].
404
+ (ii) By way of contradiction assume U is not maximal in M, i.e. there exists a
405
+ uniserial U ′ ≤ M that contains U properly. We may assume that U ′ is cyclic, say,
406
+ U ′ = V a for a ∈ M. Then V a/U is a non-zero cyclic submodule in the module
407
+ M/U which has p.d.1 by hypothesis. Hence it follows that V a/U is tight in M/U,
408
+ so U must be cyclic. This contradiction completes the proof of (ii).
409
+ (iii) The proof is similar to that of (ii). If U is a maximal uniserial in a tight
410
+ submodule N of M and contained in a larger uniserial U ′ ≤ M that is cyclic, then
411
+ U ′/U ∼= (U ′ + N)/N is a cyclic submodule in M/N, so cyclically presented. Again
412
+ we can conclude that U must be cyclic.
413
+
414
+ An immediate consequence of this theorem is that in a direct sum of cyclically
415
+ presented objects all uniserial subobjects are also cyclically presented.
416
+ Mixed modules as objects. An object in C∗
417
+ V that is mixed in the usual sense
418
+ (i.e. neither torsion nor torsion-free) need not have a 1-dimensional torsion part.
419
+ Actually, the torsion submodule of a mixed module of p.d.1 can have any p.d.
420
+ not exceeding the maximal p.d. of torsion-free V -modules minus 1 whenever this
421
+ number is ≥ 1. Indeed, select a torsion-free V -module N of p.d. n ≥ 2 and set
422
+ N = F/G with a free V -module F. Let H be an essential free submodule of G, and
423
+ define M = F/H. Then M is an object with torsion submodule G/H of p.d. n − 1.
424
+ Even if the torsion submodule of a mixed object is an object, it need not be a
425
+ subobject. Therefore, it seems reasonable to consider an object mixed in C∗
426
+ V if its
427
+ torsion submodule is a non-zero proper subobject. For an injective object in C∗
428
+ V
429
+ that is a mixed module in CV , but not in C∗
430
+ V , see Example 6.9 infra.
431
+ Countably generated objects. Suppose M is the union of a countable as-
432
+ cending chain Mn (n < ω) of finitely presented modules. Then each Mn is tight
433
+ in its immediate successor and hence also in M which will have p.d.1 (cf. Lemma
434
+ 2.4). Moreover, since every finitely generated submodule of M is contained in some
435
+ Mn, all finitely generated submodules of M are tight in M and finitely presented,
436
+ so subobjects. Cyclic subobjects are cyclically presented, thus the annihilators of
437
+ elements in M are principal ideals (i.e. also objects). Submodules that are count-
438
+ ably generated may or may not be subobjects in countably generated objects. E.g.
439
+ the countably generated ideals of V are objects, but not subobjects of V .
440
+ Claim (i) in our next theorem shows that the module M in the preceding para-
441
+ graph is a typical countably generated object.
442
+ Theorem 3.6. (i) A countably generated V -module is of p.d.≤ 1 if and only if it
443
+ is the union of a countable ascending chain of finitely presented (tight) submodules.
444
+ (ii) Let A, B be tight submodules in a V -module M of p.d.≤ 1 such that B is at
445
+ most countably generated. Then
446
+ 8
447
+
448
+ (a) C = A ∩ B is also at most countably generated, and tight in B and also
449
+ in A and in M;
450
+ (b) A + B is of p.d.≤ 1, and A is tight in it.
451
+ Proof. (i) One way the claim follows from Proposition 3.3, while the converse is
452
+ taken care of by the last but one paragraph before this theorem.
453
+ (ii) (a) B is the union of a countable chain {Bn | n < ω} of finitely presented
454
+ submodules. Hence B/C = B/(A ∩ B) ∼= (A + B)/A = ∪n(A + Bn)/A, where the
455
+ last quotient modules are finitely generated (epic images of the Bn in M/A), and
456
+ therefore tight in M/A. The p.d. of their union (A + B)/A equals 1, which means
457
+ p.d.B/C = 1. Thus C is tight in B, and hence in M, and then also in A.
458
+ (b) The sum A + B is the union of the chain of the extensions A + Bn of A by
459
+ finitely presented modules, so its p.d. is ≤ 1.
460
+
461
+ Next we give more examples of countably generated objects.
462
+ By choosing a
463
+ suitable value group, it is easy to construct valuation domains that have the required
464
+ properties.
465
+ Example 3.7. Consider a uniserial object U generated by {ui (i < ω)}. Attach to
466
+ each ui ∈ U a cyclically presented module, say, generated by bi such that ribi = ui
467
+ where the non-units ri ∈ V × are required to satisfy the condition that V/V ri is
468
+ properly embeddable in U/V ui. Then U is a pure subobject of B = ⟨U, bi (i < ω)⟩
469
+ such that B/U is a direct sum of cyclically presented modules ∼= V bi/V ui. Since
470
+ pure extensions by a cyclically presented module are obviously splitting, we obtain:
471
+ B ∼= U ⊕ (⊕i<ωV bi/V ui).
472
+
473
+ Example 3.8. Let J, L denote submodules of Q containing V that are at most
474
+ countably generated, and let r ∈ V × be a non-unit. Then one of J/V r and L/V r,
475
+ say, the former, admits an isomorphic embedding in the latter, φ : J/V r → L/V r,
476
+ that is the identity on V/V r. Define N as the push-out of the embeddings φ :
477
+ V/V r → J/V r and ψ : V/V r → L/V r.
478
+ Then N is an extension of its pure
479
+ submodule L/V r by J/V . A fast calculation shows that N = L/V r ⊕ J′/V where
480
+ J′/V = {(x, φ(x)) | x ∈ J/V } ≤ J/V ⊕ L/V .
481
+
482
+ The abundance of subobjects. It is a remarkable fact that even if V is not a
483
+ discrete rank one valuation domain, objects in C∗
484
+ V contain a large number of tight
485
+ submodules of all possible sizes. From our discussion above this is clear for finitely
486
+ and countably generated objects, while for uncountably generated objects it is a
487
+ consequence of the existence of tight systems. Every module M of p.d.≤ 1 admits
488
+ a tight system T (over any integral domain). This is defined as a G(ℵ0)-family of
489
+ tight submodules; see [15, Chap. VI, Sect. 5]. Recall that, for an infinite cardinal
490
+ κ, by a G(κ)-family G of submodules of a module M is meant a set of submodules
491
+ such that the following conditions are satisfied: 1) 0, M ∈ G; 2) G is closed under
492
+ unions; 3) if X is a subset of M of cardinality ≤ κ and A ∈ G, then there exists
493
+ a B ∈ G such that X ∪ A ⊆ B and gen(B/A) ≤ κ. It follows that in case T is
494
+ a tight system of M, then A < C (A, C ∈ T ) implies A is tight in C. Moreover,
495
+ under the canonical map the complete preimages of the tight submodules in C/A
496
+ are subobjects of C; they are also subobjects in M.
497
+ An immediate corollary of the existence of tight systems is the next result.
498
+ Corollary 3.9. Let M be an object, and N a submodule of M. Then N is contained
499
+ in a tight submodule N ∗ of M such that gen N ∗ ≤ max{gen N, ℵ0}.
500
+ 9
501
+
502
+ Proof. Every generator of N is contained in some countably generated tight sub-
503
+ module that belongs to a fixed tight system T of M. The union of all these members
504
+ of T is a member N ∗ of T containing N. By construction, N ∗ can be generated by
505
+ gen N · ℵ0 elements.
506
+
507
+ A tight system T of object M allows us to build a continuous well-ordered
508
+ ascending chain (1) of tight submodules Mσ ∈ T for some ordinal τ, such that
509
+ gen(Mσ+1/Mσ) ≤ ℵ0 for all σ < τ. Moreover, since a countably generated object
510
+ is the union of a chain of finitely presented subobjects (Theorem 3.6), the chain (1)
511
+ can be refined so as to have all of the quotients Mσ+1/Mσ finitely, or even cyclically
512
+ presented.
513
+ Another important consequence of the existence of tight systems is that we have
514
+ already formulated in Proposition 3.3: every finitely generated submodule of a
515
+ module M (of any size) of p.d.1 is finitely presented and tight in M.
516
+ Projective objects. A finitely generated torsion-free module over a valuation
517
+ domain is free. A useful fact: a finite rank pure submodule in a free V -module is
518
+ a summand; see e.g. [14, Chap. XIV, Theorem 6.1]. By Kaplansky [16], projective
519
+ V -modules are free. Evidently, they are projective objects in our class C∗
520
+ V as well.
521
+ Dimension calculation shows that a tight submodule of a free module must have
522
+ zero p.d. Therefore, we can state:
523
+ Theorem 3.10. The subobjects of free V -modules are the free submodules.
524
+
525
+ Hence we conclude that every object M in C∗
526
+ V admits a free resolution in the
527
+ form of a short exact sequence: 0 → H → F → M → 0 where H, F are free
528
+ V -modules, i.e. free objects.
529
+ 4. More Fundamental Concepts
530
+ Continuing the review of the basics, we would like to establish more results
531
+ concerning the objects in the class C∗
532
+ V , but in order to deal with the objects more
533
+ efficiently, we need several tools available in [14] and in [15]. In this section we
534
+ review some concepts and facts we shall need.
535
+ Annihilators of elements. The study of objects in C∗
536
+ V is greatly simplified by
537
+ the fact that the annihilator ideals of elements in objects are not just objects, but
538
+ they are even principal ideals. This has been pointed out before, but let us give a
539
+ formal proof of this property.
540
+ Lemma 4.1. Let M be an object in C∗
541
+ V . Then for any element a ∈ M, the anni-
542
+ hilator annM(a) = {r ∈ V | ra = 0} is a principal ideal of V .
543
+ Proof. M has a tight system, so a ∈ M is included in a countably generated tight
544
+ submodule N of M, and hence also in a finitely presented submodule (see Theorem
545
+ 3.6 above). For finitely presented objects the claim has been established before.
546
+
547
+ Heights of elements.
548
+ The principal information in describing the way an
549
+ element is located in the module is stored in its height. Heights of elements are
550
+ defined by using uniserial modules, see [14]. The uniserials that occur as possible
551
+ heights for valuation domains have been studied in [1] and [2].
552
+ Fortunately, in
553
+ modules of p.d.≤ 1 only most tractable heights can occur.
554
+ 10
555
+
556
+ Suppose M is an object and 0 ̸= a ∈ M. Consider maps φJ : J → M of the
557
+ submodules J of Q containing V such that φJ(1) = a. For a fixed a, the union in
558
+ Q of those J’s for which such a φJ exists is a submodule HM(a) of Q, called the
559
+ height-ideal of a ∈ M. The module
560
+ hM(a) = HM(a)/V
561
+ is defined as the height of a ∈ M. We call hM(a) non-limit height or limit-height
562
+ according as HM(a) is one of the J’s or is not. In the limit case we write hM(a) =
563
+ U −. Note that hM(a) is always a uniserial torsion module; it is of the form U = J/V
564
+ with J ⊆ Q (equality only in case Q ∈ C∗
565
+ V ). In the non-limit case, the element
566
+ a is contained in a uniserial module W that is a maximal uniserial in M such
567
+ that hM(a) = W/V a.
568
+ The heights of elements in a non-standard uniserial are
569
+ uncountable limit heights — these are out of question in C∗
570
+ V . The set of heights
571
+ occurring in C∗
572
+ V is totally ordered in the obvious way once we declare the non-
573
+ limit height J/V to be larger than the corresponding limit height (J/V )−. The
574
+ minimum height is 0 (this is the height of the generator in a cyclic module), and
575
+ we set h(0) = ∞ as the maximum height.
576
+ Example 4.2. To give an example of a limit height, consider a countably generated
577
+ submodule J of Q containing V , and choose a properly ascending chain of fractional
578
+ ideals {V t−1
579
+ i
580
+ | i < ω} with union J (where ti ∈ V ×). Define a countably generated
581
+ object X as follows: the generators are xi (i < ω) with the defining relations:
582
+ (2)
583
+ rt0x0 = 0,
584
+ t0x0 = tixi
585
+ (i < ω)
586
+ where r ∈ V × is arbitrary. The element t0x0 has limit height, namely (J/r−1V )−.
587
+ To get an idea of what kind of module X is, observe that the cyclic submodules
588
+ generated by the elements xi − (t−1
589
+ i ti+1)xi+1 are summands of X for all i < ω
590
+ (a complement is the submodule generated by all the given generators with xi
591
+ removed). Actually, these cyclic modules generate their direct sum X′ in X. This
592
+ X′ is tight and pure in X, and the quotient X/X′ is a countably generateduniserial
593
+ module containing the coset x0 + X′.
594
+
595
+ Next we prove the following:
596
+ Theorem 4.3. A non-zero element in an object of the class C∗
597
+ V has one of the
598
+ following heights:
599
+ (i) cyclic height;
600
+ (ii) countably generated non-limit height;
601
+ (iii) arbitrary limit height of standard type.
602
+ Elements in a finitely generated module cannot have limit heights.
603
+ Proof. To begin with, observe that for each of (i)-(iii) we already had examples
604
+ above, so it remains only to show that (i)-(iii) is a complete list. The only other
605
+ heights in CV are uncountably generated non-limit heights. Working toward con-
606
+ tradiction, suppose that for some a ∈ M ∈ C∗
607
+ V , we have hM(a) = J/V with an
608
+ uncountably generated submodule J of Q. There is a homomorphism φJ : J → M
609
+ such that φJ(1) = a. The maximal property of J as height implies that φJ(J) must
610
+ be a maximal uniserial in M. Therefore, by Theorem 3.5 it is at most countably
611
+ generated — a contradiction, completing the proof of the first claim.
612
+ 11
613
+
614
+ That (iii) cannot occur in a finitely generated module is an immediate conse-
615
+ quence of the simple fact that limit heights require infinite Goldie-dimension, as is
616
+ clear from Example 4.2.
617
+
618
+ Height-gaps. Suppose U is a uniserial object and V r ̸= 0 is the annihilator of
619
+ a ∈ U. Then hU(a) = rU and hU(sa) = s−1rU provided that sa ̸= 0 for s ∈ V .
620
+ If U is contained in a V -module M, then the heights of these elements may be
621
+ larger in M. In general, in every module M, for an element a ∈ M and its multiple
622
+ ra (r ∈ V ×) the inequality
623
+ hM(a) ≤ r−1hM(ra)
624
+ holds. We say that M has a height-gap at 0 ̸= a ∈ M if, hM(a) > shM(x) holds
625
+ whenever sx = a for some x ∈ M and for a non-unit s ∈ V .
626
+ Example 4.4. To illustrate height-gaps, let U be a uniserial module, and x1, x2, x3
627
+ symbols. Suppose that the non-units si, ti ∈ V × satisfy the following proper divis-
628
+ ibility relations: s1 | s2 | s3 and t1 | t2 | t3. Pick some u ∈ U such that s3u ̸= 0,
629
+ and define a module N to be generated by U and by the given symbols subject to
630
+ the relations siu = sitixi (i = 1, 2, 3). The height-gaps in the submodule U are at
631
+ s1u, s2u, s3u, and at 0.
632
+
633
+ Purity. The main point about this widely used concept that we are emphasiz-
634
+ ing repeatedly is that in valuation domains it is equivalent to the simpler relative
635
+ divisibility (see [20]). Thus a submodule N is pure in a V -module M if and only
636
+ if rN = N ∩ rM holds for every r ∈ V ×. Equivalently, for all r ∈ V , the map
637
+ V/V r ⊗V N → V/V r ⊗V M induced by the inclusion N → M is monic. This is
638
+ tantamount to the injectivity of the map HomV (V/V r, M) → HomV (V/V r, M/N)
639
+ for all r ∈ V × induced by the natural homomorphism M → M/N. A pure-exact
640
+ sequence 0 → A → B → C → 0 is an exact sequence in which the image of the map
641
+ A → B is pure in B.
642
+ Lemma 4.5. (i) Let U be a uniserial submodule of an object M, and a ∈ U. If
643
+ hM(a) = U/V a, then U is a maximal uniserial in M, and there is no height-gap in
644
+ U at a and above.
645
+ (ii) If U is a maximal uniserial in M and is torsion with no height-gaps other
646
+ than the one at 0, then U is pure in M.
647
+ Proof. (i) This is rather obvious.
648
+ (ii) U is not pure in M means that there is u ∈ U such that hU(u) < hM(u).
649
+ Hence there must be a height-gap in U at u or above, because by maximality, some
650
+ of the generators of U have the same height in U as in M.
651
+
652
+ We recall the definition of Pext1
653
+ V (X, M): it is a sub-bifunctor of Ext1
654
+ V (X, M),
655
+ consisting of those non-equivalant extensions of M by X in which M is a pure
656
+ submodule (see e.g. [15, p. 45]). In the commutative case, Pext is a V -module.
657
+ 5. Theorems on Torsion and Torsion-free Modules
658
+ In this section, we discuss briefly a few fundamental results on torsion and
659
+ torsion-free objects. An in-depth study that would require more research and in-
660
+ teresting applications is planned in the future.
661
+ We start with the following simple observation.
662
+ 12
663
+
664
+ Theorem 5.1. A pure and tight finitely generated submodule in an object is a direct
665
+ summand.
666
+ Proof. Suppose a finitely generated module N is pure and tight in a module M
667
+ of p.d.≤ 1. By the tightness of N, M/N has p.d.≤ 1, and by Corollary 7.7 N is
668
+ pure-injective. All this combined implies that N is a summand of M.
669
+
670
+ We continue with typical examples of direct sums of cyclically presented mod-
671
+ ules:
672
+ the pure-projective objects.
673
+ These are defined as objects P that satisfy
674
+ Pext1
675
+ V (P, M) = 0 for all objects M ∈ C∗
676
+ V .
677
+ Theorem 5.2. A V -module is pure-projective if and only if it is a direct sum of
678
+ cyclically presented modules.
679
+ Proof. This is a special case of a well-known theorem. E.g. it follows from [15,
680
+ Chap. VI, Theorem 12.2].
681
+
682
+ Concerning direct sums of uniserials, a most important result is the following
683
+ theorem (this is not related to tightness).
684
+ Theorem 5.3. (i) The uniserial summands in a direct sum of uniserial modules
685
+ are unique up to isomorphism.
686
+ (ii) Summands of a direct sum of uniserial modules are themselves direct sums
687
+ of uniserials.
688
+ Proof. These are well-known immediate consequences of the fact that the endomor-
689
+ phism rings of uniserial modules are local (Theorem 3.4).
690
+
691
+ Let r ∈ V × be a non-unit. By a V/V r-homogeneous module we mean a V -module
692
+ H such that each element is contained in a submodule of H that is ∼= V/V r. Then
693
+ H satisfies rH = 0, and any cyclic submodule of H that is ∼= V/V r must be pure
694
+ in H. Moreover, by Theorem 5.1 it is then a summand.
695
+ Proposition 5.4. Suppose M is a V -module of p.d.1.
696
+ (i) If rM = 0, then a V/V r-homogeneous tight submodule is a summand of M.
697
+ (ii) If M is V/V r-homogeneous, then it is the direct sum of cyclically presented
698
+ submodules, all isomorphic to V/V r.
699
+ (iii) If D is a divisible object, then for every r ∈ V ×, D[r] is V/V r-homogeneous,
700
+ so a direct sum of cyclically presented submodules isomorphic to V/V r.
701
+ Proof. For (i)-(ii) we refer to [15, Chap. XII, Theorems 2.2 and 2.3], and for (iii)
702
+ to [15, Chap. XIV, Corollary 2.4].
703
+ ��
704
+ We note that the number of summands ∼= V/V r in (iii) is the same for every r
705
+ provided that D[r] ̸= 0: it is the Goldie-dimension of D.
706
+ An important theorem in abelian group theory, due to L. Ya. Kulikov, states
707
+ that a subgroup of a direct sum of cyclic groups is likewise a direct sum of cyclic
708
+ groups (see, e.g., [11]). An analogue in C∗
709
+ V would state that a tight submodule of a
710
+ direct sum of cyclically presented modules is also such a direct sum. This is indeed
711
+ true for torsion-free modules: a tight submodule of a free module in C∗
712
+ V is again
713
+ free. It was conjectured that this holds in C∗
714
+ V also in the torsion case. (For torsion
715
+ abelian groups, see e.g. [11, Chap. 3, Theorem 5.7].) However, we claim that the
716
+ module X in Example 4.2 refutes this conjecture. In order to prove this, consider
717
+ the module Y in the following example.
718
+ 13
719
+
720
+ Example 5.5. The countably generated torsion object Y is defined just as the
721
+ module X in Example 4.2: it is generated by the same set {xi | i < ω} with the
722
+ same defining relations, but there is a single modification: we replace t0 ∈ V × by
723
+ s ∈ V × that is picked such that J < V s−1. In this case, V x0 is a pure and tight
724
+ submodule in Y (a summand), and the elements xi −(t−1
725
+ i s)x0 for all i > 0 generate
726
+ cyclic direct summands of Y such that Y is the direct sum of V x0 and these cyclic
727
+ submodules. (Another, but less explicit argument to obtain the structure of Y is as
728
+ follows. After observing that the cyclic submodule V x0 is pure in Y , it only remains
729
+ to point out that moreover, it is a summand of Y , since Y/V x0 is pure-projective
730
+ as the direct sum of cyclically presented modules ∼= V ti (i > 0).)
731
+
732
+ To argue that the object X of Example 4.2 cannot be a direct sum of cyclically
733
+ presented objects, appeal to Theorem 4.3. The element t0x0 ∈ X is of countable
734
+ limit height, and as such it cannot belong to a direct sum of the stated kind: it would
735
+ be contained already in a finitely generated summand with the same limit height.
736
+ However, this is impossible as is demonstrated by the cited theorem. Thus the
737
+ object X that is (isomorphic to) a tight submodule (observe that Y/X ∼= V s/V t0
738
+ is cyclically presented) in a direct sum Y of cyclically presented modules fails to be
739
+ a direct sum of such modules.
740
+ Hence it is obvious that this theorem of Kulikov cannot have the suspected
741
+ analogue in C∗
742
+ V without additional hypotheses. Looking for simple conditions that
743
+ would lead us to a Kulikov-type theorem for subobjects in direct sums of cyclically
744
+ presented objects, we selected (b), in addition to the obvious (a), that seems natural
745
+ to assume:
746
+ (a) The non-zero elements have cyclic heights.
747
+ (b) The uniserial submodules admit but a finite number of height-gaps.
748
+ Under the hypothesis of (a)-(b), we will prove a desired analogue for the count-
749
+ ably generated torsion objects (see Theorem 5.8 below). But first we deal with
750
+ preliminary lemmas.
751
+ We need a definition. Similarly to [13], we will call a V -module M cyclically
752
+ separable if every finite set of its elements can be embedded in a finitely generated
753
+ summand of M, i.e. in a summand that is the direct sum of a finite number of cycli-
754
+ cally presented modules. Observe that in order to verify the cyclic separability of
755
+ a torsion object, it suffices to check the defining property only for one element sub-
756
+ sets, as every finitely generated object is a finite direct sum of cyclically presented
757
+ objects. Hence it is evident that summands of modules inherit cyclical separability.
758
+ We now prove a crucial lemma.
759
+ Lemma 5.6. Let M denote a torsion object in C∗
760
+ V . If M satisfies conditions (a)-
761
+ (b), then it is a cyclically separable V -module.
762
+ Proof. Assume M has properties (a)-(b), and let 0 ̸= a ∈ M. By (a), a is contained
763
+ in a cyclically presented submodule C = V c that is maximal uniserial in M. If C
764
+ contains no height-gap strictly between a and 0, then C is pure in M, and hence a
765
+ summand of M (Theorem 5.1). Thus in this case a embeds in a cyclically presented
766
+ summand of M, and we are done. If there are height-gaps in C between a and 0,
767
+ then by (b) there is one, say at rc (r ∈ V ), such that no height-gap exists strictly
768
+ between rc and 0. Then by the previous argument there is a cyclically presented
769
+ summand B = V b of M that contains rc, M = V b ⊕ M ′. If b′ ∈ V b is such that
770
+ V rb′/V c ∼= V r, then V (c) + V (b) = V (c − b′) ⊕ V (b). In this case, the projection of
771
+ 14
772
+
773
+ V (c − b′) in M ′ contains the coordinate of a with a smaller number of height-gaps
774
+ below it. Repeating this process for the coordinates of a a finite number of times,
775
+ we get a finitely generated summand of M that contains the selected element a.
776
+
777
+ Lemma 5.7. Let M be a torsion object satisfying conditions (a)-(b).
778
+ If M is
779
+ countably generated, then it is a direct sum of cyclically presented objects.
780
+ Proof. By Lemma 5.6, M is cyclically separable. It is a simple exercise to prove that
781
+ a countably generated cyclically separable module is a direct sum of cyclics.
782
+
783
+ The following analogue of Kulikov’s theorem is now easily established.
784
+ Theorem 5.8. Assume M is a direct sum of cyclically presented torsion objects,
785
+ and N is a countably generated subobject satisfying condition (b) above. Then N
786
+ is likewise a direct sum of cyclically presented subobjects.
787
+ Proof. Owing to Theorem 2.3 and Lemma 5.6 it suffices to show that N satisfies
788
+ condition (a). But this is immediate by virtue of Theorem 3.5 (iii).
789
+
790
+ We are asking the obvious question: do the preceding lemma and theorem hold
791
+ for larger cardinalities? The answer is: for Lemma 5.7 counterexamples are torsion-
792
+ complete abelian p-groups with countable unbounded basic subgroups; cf.
793
+ [11,
794
+ Chap. 10, sect. 3]. For Theorem 5.8 we do not know the answer.
795
+ We record the following two parallel questions.
796
+ Problem 5.9. Are pure subobjects in direct sums of torsion uniserial (resp. count-
797
+ ably generated) objects also direct sums of the same kind?
798
+
799
+ Next we want to get an idea of the torsion-free modules in C∗
800
+ V . It is a pleasant
801
+ surprise that all countably generated torsion-free modules in CV are objects in C∗
802
+ V .
803
+ This is evident from the following theorem.
804
+ Theorem 5.10. (i) A torsion-free V -module A has p.d.≤ 1 if and only if every
805
+ rank one pure submodule is at most countably generated.
806
+ (ii) A torsion-free V -module A is of p.d.≤ 1 if and only if it admits a well-ordered
807
+ ascending chain of tight pure submodules Aα such that for each α, Aα+1/Aα is of
808
+ rank one and of p.d.1 (thus cyclic or countably generated torsion-free).
809
+ Proof. It suffices to refer to [7, Corollary 4.5] and to [15, Chap. VI, Lemma 6.6],
810
+ respectively.
811
+
812
+ We continue with a theorem that resembles Pontryagin’s theorem on countable
813
+ free abelian groups. A similar result for the projective dimension one case is also
814
+ included.
815
+ Theorem 5.11. A torsion-free module of countable rank in C∗
816
+ V is free (is an object
817
+ in C∗
818
+ V ) if and only if its finite rank pure submodules are free (have p.d.≤ 1).
819
+ Proof. See [15, Chap. VI, Corollary 3.12].
820
+
821
+ 15
822
+
823
+ 6. Divisible and Injective Objects
824
+ The theory of divisibility and injectivity clearly illustrates a fundamental differ-
825
+ ence between the classes C∗
826
+ V and CV .
827
+ Divisible objects.
828
+ Divisibility of modules is defined as usual: D ∈ C∗
829
+ V is
830
+ divisible if rD = D for all r ∈ V ×. Equivalently, the equality Ext1
831
+ V (V/V r, D) = 0
832
+ holds for all r ∈ V ×. The prototype of divisible modules, the quotient field Q of
833
+ V as a V -module, is in general not an object. It is exactly when Q is a countably
834
+ generated V -module (then p.d.Q = 1, i.e. V is a Matlis domain). But the module
835
+ ∂V (see [8]), the generator of the subcategory of the divisible modules in V -Mod
836
+ has p.d.1, so it is an object in C∗
837
+ V . Recall that ∂V is generated by the k-tuples
838
+ (r1, . . . , rk) for all k ≥ 0 of non-unit elements ri ∈ V ×, subject to the defining
839
+ relations
840
+ (3)
841
+ rk(r1, . . . , rk−1, rk) = (r1, . . . , rk−1)
842
+ (k > 0)
843
+ for all choices of the ri.
844
+ The generator w = (∅) generates a submodule of ∂V
845
+ isomorphic to V such that ∂V0 = ∂V /V w is a divisible torsion module of p.d.1
846
+ (which is a generator of the subcategory of divisible torsion modules in CV ). See
847
+ [8] or [15] for more details.
848
+ As far as the structure of divisible objects is concerned, the following information
849
+ is crucial. (Pay attention to the enormous simplification over Matlis domains.)
850
+ Theorem 6.1. (i) An object in C∗
851
+ V is divisible if and only if it is a summand of a
852
+ direct sum of copies of the module ∂V .
853
+ (ii) If V is a Matlis domain, then an object is divisible if and only if it is the
854
+ direct sum of copies of Q and/or K.
855
+ Proof. (i) In [8, Theorem 18] it is shown that over a Pr¨ufer domain (and hence over
856
+ a valuation domain) a divisible module has p.d.1 if and only if it is a summand of
857
+ a direct sum of copies of ∂. (By the way, this holds for all integral domains.)
858
+ (ii) See [15, Chap. VII, Theorem 3.5].
859
+
860
+ In order to obtain a full set of invariants for a divisible object D, we introduce
861
+ two cardinal invariants measuring the size of its torsion and torsion-free parts. One
862
+ is κ = rk D, the torsion-free rank of D, the number of generators of a maximal
863
+ size free submodule contained in D. The other invariant is λ = gen D[r] for any
864
+ non-unit r ∈ V ×. Thus λ is the cardinality of the set of summands ∼= V/V r in a
865
+ direct decomposition of D[r] into indecomposable summands. These two cardinals
866
+ form a complete set of invariants characterizing divisible objects in C∗
867
+ V . In fact,
868
+ Theorem 6.2. Assume D and D′ are divisible objects in C∗
869
+ V . Then D ∼= D′ if and
870
+ only if
871
+ (i) their ranks are equal: rk D = rk D′; and
872
+ (iI) for some, and hence for each r ∈ V ×, gen D[r] = gen D′[r].
873
+ Proof. See [10, Theorem C] or [15, Chap. VII, Theorem 3.4].
874
+
875
+ We also state the existence theorem accompanying this structure theorem.
876
+ Theorem 6.3. Given the cardinals κ, λ, there exists a divisible object D in class
877
+ C∗
878
+ V such that rk D = κ and gen D[r] = λ if and only if
879
+ (i) in case p.d.Q = 1: both κ and λ are arbitrary;
880
+ (ii) in case p.d.Q > 1: κ is arbitrary and λ ≥ max{κ, gen Q}.
881
+ 16
882
+
883
+ Proof. We refer to [10, Theorem 3] or to [15, Chap. VII, Theorem 3.8].
884
+
885
+ From the foregoing results we can draw the conclusion that in case p.d.Q > 1
886
+ every divisible D ̸= 0 in C∗
887
+ V satisfies Gd(D) ≥ gen Q. Furthermore, no indecom-
888
+ posable divisible object exists in C∗
889
+ V .
890
+ We also have the embedding result as expected:
891
+ Theorem 6.4. Every object in C∗
892
+ V is a subobject of a divisible object.
893
+ Proof. Write M ∈ C∗
894
+ V as M = F/H with free V -modules F, H. If F = ⊕i∈IV xi
895
+ with V xi ∼= V , then define G = ⊕i∈I∂i with ∂i ∼= ∂V , and embed F in G by
896
+ identifying the generator xi with the generator wi ∈ ∂i, for all i. Then F becomes
897
+ a subobject of G, and G/H will be a divisible module of p.d.1 that contains a copy
898
+ of M as a subobject.
899
+
900
+ h-divisibility of a V -module H is defined by the extendibility of the homomor-
901
+ phisms V → H to Q → H (see [17] or [15, p. 38]). With the exception of the next
902
+ proposition, this concept will not be discussed, considering that h-divisible modules
903
+ rarely exist in C∗
904
+ V , even injective objects are not h-divisible whenever p.d.Q > 1.
905
+ Proposition 6.5. (i) h-divisible objects exist in C∗
906
+ V if and only if V is a Matlis
907
+ domain, in which case all divisible modules are h-divisible.
908
+ (ii) If V is a Matlis domain, then an h-divisible object of p.d.1 is the direct sum
909
+ of copies of Q and K.
910
+ Proof. (i) It is well known that over a domain, divisibility and h-divisibility are
911
+ equivalent if and only if p.d.Q ≤ 1 (see e.g. [15, Chap. VII, Theorem 2.8]).
912
+ (ii) See [15, Chap. VII, Sect. 2].
913
+
914
+ Injective objects. The role of injective modules is played by objects E ∈ C∗
915
+ V
916
+ that satisfy Ext1
917
+ V (A, E) = 0 for all A ∈ C∗
918
+ V ; i.e. whenever E is a subobject, it
919
+ must be a summand.
920
+ Luckily, this property is equivalent to the more familiar
921
+ extensibility of morphisms into E from subobjects to objects. But this equivalence
922
+ comes with a caveat: the extended map need not be a C∗
923
+ V -morphism, since its image
924
+ might not be tight. Perhaps unexpectedly, injectivity and divisibility turn out to
925
+ be equivalent.
926
+ Theorem 6.6. The following conditions are equivalent for an object E ∈ C∗
927
+ V .
928
+ (i) Ext1
929
+ V (C, E) = 0 for all C ∈ C∗
930
+ V ;
931
+ (ii) every morphism φ : A → E in C∗
932
+ V extends to a homomorphism ψ : B → E
933
+ whenever A, B are in C∗
934
+ V and A is tight in B;
935
+ (iii) E is a divisible object.
936
+ Proof. In the category CV we have an exact sequence
937
+ (4)
938
+ HomV (B, E) → HomV (A, E) → Ext1
939
+ V (B/A, E) → . . .
940
+ (i) ⇒ (ii). Hypothesis implies that Ext in (4) vanishes, so the map between the
941
+ two Homs is surjective.
942
+ (ii) ⇒ (iii). Condition (ii) ensures that for every r ∈ V ×, every map φ : V r → E
943
+ extends to V → E (note that φ ∈ C∗
944
+ V ). This is equivalent to the divisibility of E
945
+ by r.
946
+ 17
947
+
948
+ (iii) ⇒ (i). By Bazzoni–Herbera [3], over an integral domain R, a module E
949
+ is divisible if (and only if) Ext1
950
+ R(C, E) = 0 holds for all R-modules C of p.d.≤ 1.
951
+ (This implication was proved in [9, Theorem 6] for Pr¨ufer domains.)
952
+
953
+ As an immediate corollary to the preceding theorem we obtain:
954
+ Corollary 6.7. Direct sums of injective objects are likewise injective. In particular,
955
+ injective objects are Σ-injective, i.e. any direct sum of copies of an injective object
956
+ is injective.
957
+
958
+ A well-known test for the injectivity of a module is that its extensions by cyclic
959
+ modules are splitting. In C∗
960
+ V this criterion simplifies to cyclically presented modules:
961
+ Theorem 6.8. An object E ∈ C∗
962
+ V is injective if and only if Ext1
963
+ V (C, E) = 0 holds
964
+ for all cyclically presented objects C.
965
+
966
+ It is well known in commutative module theory that every module contains a
967
+ unique maximal divisible submodule. This is not true in C∗
968
+ V in general, because the
969
+ relevant property that the sum of two divisible objects is again one fails; indeed,
970
+ the property of being of p.d. at most 1 is frequently lost when forming the sum.
971
+ Example 6.9. We exhibit an injective object which is a mixed V -module, but
972
+ neither torsion, nor torsion-free, nor mixed as an object of C∗
973
+ V . Let V be a valuation
974
+ domain such that p.d.Q = 3, and consider the divisible V -module ∂V defined above.
975
+ As p.d.∂V = 1, we have ∂V ∈ C∗
976
+ V . The torsion submodule T of ∂V has p.d.2, since
977
+ ∂V /T ∼= Q. Therefore ∂V , as an object of C∗
978
+ V , is neither torsion, nor torsion-free,
979
+ nor mixed.
980
+
981
+ The following corollary is obvious in view of our discussion of the divisible ob-
982
+ jects. (For the following (i), cf. Theorem 6.4.)
983
+ Corollary 6.10. (i) Every object embeds as a subobject in an injective object.
984
+ (ii) Objects that are epic images of injective objects (modulo subobjects) are them-
985
+ selves injective.
986
+ (iii) Every object M admits an injective resolution, that is an exact sequence
987
+ 0 → M → A → B → 0 of modules of p.d.≤ 1 where A, B are injective objects.
988
+ (iv) The injective dimension of any object in C∗
989
+ V is 0 or 1.
990
+
991
+ Let us pause for a moment to answer a question concerning the existence of
992
+ injective envelopes in the class C∗
993
+ V . By the injective envelope of an object M we
994
+ mean an injective object E(M) containing M as a subobject such that for every
995
+ injective object E containing M as a subobject, the identity map of M extends to
996
+ a tight embedding E(M) → E. Of course, if an envelope exists, it is then unique
997
+ up to isomorphism.
998
+ Theorem 6.11. All modules in the class C∗
999
+ V admit injective (divisible) envelopes
1000
+ if and only if V is a rank one discrete valuation domain.
1001
+ Proof. If V is a DVD, then CV and C∗
1002
+ V are identical, and the claim in CV is well-
1003
+ known. If V is a Matlis domain, then all divisible modules are h-divisible, they are
1004
+ direct sums of copies of Q and/or K. If V is not a DVD, then it contains a countably
1005
+ generated ideal, and such an ideal cannot be tight in a direct sum of Qs. Finally,
1006
+ if p.d.Q > 1, then the C∗
1007
+ V -injective envelope of V should be an indecomposable
1008
+ summand of ∂V , but — as observed above — such a summand does not exist.
1009
+
1010
+ 18
1011
+
1012
+ 7.
1013
+ Pure-Injectivity
1014
+ Pure-injectivity in C∗
1015
+ V can be developed like in traditional module theory (see e.g.
1016
+ [14, Chap. XI, Section 2] and [15, Chap. XIII, Sections 2-3]). As expected, there
1017
+ are several changes, so we provide the whole proof, but skip routine arguments.
1018
+ By a system of equations (with unkowns xj (j ∈ J)) over a module M we mean
1019
+ a system of linear equations
1020
+ (5)
1021
+
1022
+ j∈Ji
1023
+ rijxj = ai ∈ M
1024
+ (rij ∈ V, i ∈ I)
1025
+ for i ∈ I, j ∈ J where I, J are arbitrary index sets, and Ji is a finite subset
1026
+ of J for each i ∈ I. Let F denote the free module generated by the unknowns
1027
+ xj (j ∈ J) and H its submodule generated by the left sides of the equations for all
1028
+ i ∈ I. We consider only consistent systems; i.e., systems that do not contain hidden
1029
+ contradiction. This means that we get a genuine homomorphism φ : H → M by
1030
+ mapping the generators of H onto the elements of M as shown by the equations, i.e.
1031
+ φ : �
1032
+ j∈Ji rijxj �→ ai. It is easy to check that the system has a solution in M if and
1033
+ only if φ extends to a homomorphism φ∗ : F → M, in which case xi = φ∗(xi) ∈ M
1034
+ are the solutions. It is pretty obvious that a consistent system defines an extension
1035
+ M ∗ of M by F/H by adjoining to M the unknowns xi as generators subject to the
1036
+ defining relations (5). Furthermore, it is straightforward to check that M will be
1037
+ pure in M ∗ exactly if (5) is finitely solvable in M, i.e. the finite subsystems of (5)
1038
+ admit solutions in M.
1039
+ We define p.d.(F/H) as the projective dimension of the system (5). It will be
1040
+ convenient to call (5) an adequate equation system if 1) it is consistent; 2) its p.d.
1041
+ is ≤ 1; and 3) it is finitely solvable.
1042
+ An object M ∈ C∗
1043
+ V is said to be pure-injective if it has either one of the equivalent
1044
+ properties listed in the following theorem.
1045
+ Theorem 7.1. For an object M, (α)-(γ) are equivalent properties:
1046
+ (α) Pext1
1047
+ V (C, M) = 0 for all objects C.
1048
+ (β) If A is a pure subobject of object B, then every C∗
1049
+ V -map A → M extends to
1050
+ a homomorphism B → M (that need not be a C∗
1051
+ V -map).
1052
+ (γ) Every adequate equation system over M has a global solution in M.
1053
+ Proof. All modules in this proof are objects in C∗
1054
+ V .
1055
+ (α) ⇒ (β) Assuming (α), consider the following push-out diagram where the top
1056
+ sequence is pure-exact and ζ is a C∗
1057
+ V -morphism.
1058
+ 0 −−−−→ A −−−−→ B −−−−→ C −−−−→ 0
1059
+ �ζ
1060
+ �
1061
+ ���
1062
+ 0 −−−−→ M −−−−→ N −−−−→ C −−−−→ 0
1063
+ Then the bottom row is also pure-exact, so it splits by hypothesis. Hence there is
1064
+ a homomorphism B → M making the upper triangle ABM commute. This is an
1065
+ extension of ζ, proving (β).
1066
+ (β) ⇒ (γ) Given an adequate equation system (5) over M, consider the corre-
1067
+ sponding free module F and its submodule H. If (5) is viewed as a system over M ∗,
1068
+ then by construction, there is an extension ψ : F → M ∗ of φ : H → M ≤ M ∗. This
1069
+ means that (5) is solvable in M ∗. Hypothesis (β) implies that M is a summand
1070
+ 19
1071
+
1072
+ of M ∗. Hence ψ followed by the projection M ∗ → M yields a desired extension
1073
+ F → M of φ.
1074
+ (γ) ⇒ (α) In the next diagram, let the bottom row represent a pure extension
1075
+ of M by C, and the top row a free resolution of C. The map φ∗ exists because F
1076
+ is free (making the right square commute). It is evident that its restriction φ to
1077
+ H makes the left square commute. As H is tight in F, the pair {H, F} along with
1078
+ φ defines a system (5) of equations that is finitely solvable in M, due the purity
1079
+ of the bottom sequence. Thus (5) is an adequate system, and hence condition (γ)
1080
+ implies that there exists a map F → M that makes the maps in the upper triangle
1081
+ HFM commute. Then the bottom sequence splits, establishing (α).
1082
+ 0 −−−−→ H −−−−→ F −−−−→ C −−−−→ 0
1083
+ φ
1084
+ �
1085
+ �φ∗
1086
+ ���
1087
+ 0 −−−−��� M −−−−→ N −−−−→ C −−−−→ 0
1088
+
1089
+ Evidently, divisible (i.e. injective) objects are pure-injective. Moreover, they
1090
+ contain a lot of pure-injective subobjects — as is shown by the following theorem.
1091
+ Theorem 7.2. Let D be a divisible object in C∗
1092
+ V . For every r ∈ V ×, the submodule
1093
+ D[r] = {d ∈ D | rd = 0} is a pure-injective object.
1094
+ Proof. From the isomorphism D/D[r] ∼= D and from p.d.D = 1 we infer that D[r]
1095
+ is tight in D. Let A be a pure subobject of object B, and ξ : A → D[r] a C∗
1096
+ V -map.
1097
+ ξ induces a map ξ′ : A/rA → D[r] that extends (by purity) to ξ′′ : B/rB → D.
1098
+ Evidently, Im ξ′′ ≤ D[r] as well, so the canonical map B → B/rB followed by ξ′′
1099
+ yields a desired extension B → D[r] of ξ.
1100
+
1101
+ Imitating the proof of Eklof–Mekler [5, Chap. V, Corollary 1.3], we verify:
1102
+ Theorem 7.3. Every object in C∗
1103
+ V is a pure subobject in a pure-injective object.
1104
+ Proof. Select any cardinal κ > max{|V |, ℵ0}. Given a module M ∈ C∗
1105
+ V , we define a
1106
+ continuous well-ordered ascending chain {Mσ | σ < κ} of length κ as follows. Start
1107
+ with M0 = M. If for some σ the modules Mρ of p.d.≤ 1 have been constructed
1108
+ for all ρ ≤ σ, then define Mσ+1 by adjoining to Mσ the unknowns (as additional
1109
+ generators) of every adequate equation system with defining relations given by
1110
+ the systems. It is readily checked that then p.d.Mσ+1 ≤ 1 as well, and Mσ will
1111
+ be tight and pure in Mσ+1 such that all the adequate equation systems over Mσ
1112
+ are solvable in Mσ+1. At limit ordinals, we take the union which will again have
1113
+ p.d.≤ 1 and will contain all previously constructed Mρs as tight pure submodules.
1114
+ It is straightforward to check that the union of the constructed chain will satisfy
1115
+ condition (γ), and thus it will be a pure-injective object containing M as a pure
1116
+ subobject. (The process can stop at systems with λ unknowns, where λ is any
1117
+ uncountable cardinal > |V |.)
1118
+
1119
+ The next proposition implies that the first Ulm-submodule of a pure-injective
1120
+ object is an injective object whenever its p.d. is ≤ 1.
1121
+ Proposition 7.4. The first Ulm-submodule M 1 = ∩r∈V ×rM of a pure-injective
1122
+ object M satisfies Ext1
1123
+ V (C, M 1) = 0 for all objects C.
1124
+ 20
1125
+
1126
+ Proof. Let {ri | i ∈ I} be a list of the non-unit elements of V ×. We have to show
1127
+ that for any given a ∈ M 1, for each rj the equation rjx = a is solvable for x ∈ M 1.
1128
+ For each j ∈ I, consider the following system of linear equations
1129
+ rjx = a,
1130
+ rixi = x
1131
+ (i ∈ I).
1132
+ An easy calculation confirms that the p.d. of this system is 1. Furthermore, since
1133
+ the chosen element a is divisible by rjri for all indices, each system is finitely
1134
+ solvable in M. By hypothesis, it has a solution in M.
1135
+ Clearly, each solution x
1136
+ belongs to M 1, so M 1 is a divisible submodule.
1137
+
1138
+ For every valuation domain V of global dimension ≥ 2, we exhibit an example
1139
+ of a pure-injective object in C∗
1140
+ V whose injective submodule is an object, but neither
1141
+ a subobject nor a summand in C∗
1142
+ V .
1143
+ Example 7.5. Let V be as stated. We form the following diagram with pure-exact
1144
+ rows and commutative squares.
1145
+ 0 −−−−→ A −−−−→ B
1146
+ −−−−→ C −−−−→ 0
1147
+ �
1148
+ �
1149
+ ���
1150
+ 0 −−−−→ D −−−−→ B′ −−−−→ C −−−−→ 0
1151
+ ���
1152
+ �
1153
+ �
1154
+ 0 −−−−→ D −−−−→ B′′ −−−−→ C′ −−−−→ 0
1155
+ For the top row select a pure-exact sequence of torsion V -modules such that A, B
1156
+ are of p.d.1, and p.d.C = 2. We can make the selection such that the first Ulm-
1157
+ submodule of C is 0. Embed A in a divisible object D as a tight submodule, and
1158
+ get the middle row as a pure-exact sequence via pushout. The next step is the
1159
+ application of the embedding process of Theorem 7.3 to C (it works even if C is
1160
+ not an object) to obtain a pure extension C′ by a module H of p.d.1 such that C′
1161
+ has the property that its pure extensions by V -modules of p.d.≤ 1 are splitting.
1162
+ Since p.d.H = 1, there is a module B′′ making (though not uniquely) the bottom
1163
+ sequence pure-exact and the diagram commutative. The middle vertical arrows are
1164
+ injections and the projective dimensions of B, B′/B, B′′/B′ are all 1. Hence we
1165
+ have p.d.B′′ = 1 as well. Furthermore, as a pure extension of D by C′, the module
1166
+ B′′ has the property that its pure extensions by V -modules of p.d.≤ 1 are splitting.
1167
+ This means that B′′ is a pure-injective object in C∗
1168
+ V . Its injective submodule D has
1169
+ p.d.1, but, since p.d.C′ = 2, it is not tight in B′′, so it is not a summand in C∗
1170
+ V .
1171
+
1172
+ We close this section with an example and its corollary.
1173
+ Example 7.6. An explicit example of a pure-injective object is a direct sum
1174
+ C = ⊕i∈IV/V r for any non-unit r ∈ V × and any index set I. This follows from
1175
+ Proposition 5.4 (iii).
1176
+
1177
+ Consequently, we can state the following corollary (the case for finitely presented
1178
+ objects has been stated above in Theorem 5.1):
1179
+ Corollary 7.7. Every V/V r-homogeneous (r ∈ V ×) torsion module is Σ-pure-
1180
+ injective.
1181
+ 21
1182
+
1183
+ Proof. If D is any direct sum of copies of ∂V , then the submodule D[r] is V/V r-
1184
+ homogeneous, so a direct sum of copies of V/V r. Moreover, it is pure-injective by
1185
+ Example 7.6. Summands of D[r] as well as finite direct sums of pure-injectives are
1186
+ also pure-injective.
1187
+
1188
+ 8.
1189
+ Cotorsion Modules
1190
+ We shall call an object C cotorsion if Ext1
1191
+ R(U, C) = 0 holds for all uniserial
1192
+ (i.e. rank one) torsion-free objects U. Evidently, it suffices to demand this only for
1193
+ countably generated uniserials. Readers familiar with cotorsion theory immediately
1194
+ recognize that this cotorsion concept corresponds to Warfield-cotorsion (where split-
1195
+ ting is required for extensions by all torsion-free modules). This claim will become
1196
+ even more transparent in light of the following general statement.
1197
+ Lemma 8.1. An object C ∈ C∗
1198
+ V is cotorsion if and only if it satisfies the equation
1199
+ Ext1
1200
+ V (A, C) = 0 for all torsion-free objects A.
1201
+ Proof. Definition settles the claim in one direction. For the ’only if’ part, assume
1202
+ that C is cotorsion and A is torsion-free of p.d.≤ 1. We know from Theorem 5.10
1203
+ that then A is the union of a continuous well-ordered ascending chain of torsion-free
1204
+ submodules Aα (α < κ) that are pure and tight in A such that all the quotients
1205
+ Aα+1/Aα are torsion-free of rank 1. We now refer to Eklof’s theorem (see [4]) on the
1206
+ extension by the union of a chain to conclude that A satisfies the quoted equation,
1207
+ as all the mentioned quotients in the chain satisfy it.
1208
+
1209
+ In order to characterize cotorsion objects in terms of solvability of systems of
1210
+ equations, consider a torsion-free uniserial object U.
1211
+ If it is not cyclic, then it
1212
+ is generated by a countable set {un | n < ω} such that rnun+1 = un for some
1213
+ rn ∈ V × for all n < ω. Therefore, an extension B of module C by U looks like
1214
+ B = ⟨C, bn (n < ω)⟩ with defining relations given by the equations rnbn+1−bn = cn
1215
+ for certain cn ∈ C. Clearly, C is cotorsion if and only if C is a summand of B for
1216
+ all permissible choices of the Us and the cns if and only if each consistent countable
1217
+ system of equations of the form
1218
+ (6)
1219
+ rnxn+1 − xn = cn
1220
+ with cn ∈ C (n < ω)
1221
+ is solvable in C. In the last case, a solution xn yields a complement to C in B: the
1222
+ submodule generated by the elements an = xn − bn (n < ω). This leads us to the
1223
+ following theorem.
1224
+ Theorem 8.2. An object C is cotorsion if and only if all consistent systems of
1225
+ linear equations of the form (6) constructed with torsion-free uniserial objects U
1226
+ are solvable in C.
1227
+
1228
+ More useful information about cotorsion objects is provided by the next result.
1229
+ Theorem 8.3. (i) All pure-injective objects in C∗
1230
+ V are also cotorsion objects.
1231
+ (ii) Every object is a subobject of a cotorsion object with torsion-free cokernel.
1232
+ Proof. (i) is an immediate consequence of the definitions, since all extensions by
1233
+ torsion-free V -modules are pure-extensions.
1234
+ (ii) This can be verified easily, just copy the proof of Theorem 7.3, using (6)
1235
+ in place of linear systems of p.d.≤ 1, mutatis mutandis. (By the way, the mere
1236
+ embedding property follows already from (i) and Theorem 7.3.)
1237
+
1238
+ 22
1239
+
1240
+ The next lemma is a convincing evidence that in some respect the cotorsion
1241
+ objects behave like ordinary cotorsion modules, though several relevant features
1242
+ are missing.
1243
+ Lemma 8.4. (i) Extension of cotorsion by cotorsion is again cotorsion.
1244
+ (ii) Modules of p.d.1 that are epimorphic images of cotorsion objects (modulo
1245
+ tight submodules) are likewise cotorsion objects.
1246
+ Proof. (i) is obvious.
1247
+ (ii) This is evident considering that if C → C′ is a surjective map, then for
1248
+ every module A of p.d.≤ 1, the induced map Ext1
1249
+ V (A, C) → Ext1
1250
+ V (A, C′) is also
1251
+ surjective.
1252
+
1253
+ In order to demonstrate that not all cotorsion objects are pure-injective, take e.g.
1254
+ a torsion object T whose first Ulm-submodule T 1 is a subobject, but not divisible.
1255
+ Then the embedding process mentioned in the proof of Theorem 8.3(ii) yields a
1256
+ cotorsion object T containing T as a tight submodule such that T /T is torsion-
1257
+ free. This T cannot be not pure-injective, because its Ulm-submodule contains its
1258
+ torsion submodule T 1 that is a subobject, but is not injective (cf. Theorem 7.4).
1259
+ (Another proof can be given by displaying an extension of a pure-injective by a
1260
+ pure-injective (that is necessarily cotorsion) which fails to be pure-injective.)
1261
+ We raise the following problem on cotorsion modules in C∗
1262
+ V .
1263
+ Problem 8.5. Are the Ulm-submodules of cotorsion modules cotorsion and the
1264
+ Ulm-factors pure-injective in C∗
1265
+ V as in the case of DVD?
1266
+
1267
+ Acknowledgment. We would like to thank Luigi Salce for his numerous helpful
1268
+ comments.
1269
+ Correction. (by L. Fuchs) Non-standard uniserial modules appear frequently in the study of
1270
+ modules over valuation domains, we could not avoid mentioning them in our study either.
1271
+ I
1272
+ would like to correct erroneous statements on them in the literature.
1273
+ In her very interesting
1274
+ papers on non-standard uniserials (Bull. Amer. Math. Soc. 25 (1991) and Contemporary Math.
1275
+ 124 (1992)) B. Osofsky stated that non-standard uniserials were investigated because of their
1276
+ connection to Kaplansky’s problem on the existence of valuation rings that are not homomorphic
1277
+ images of valuation domains. This incorrect claim (with another mistaken statement) was restated
1278
+ in the review of Osofsky’s first article by R. G¨obel in Math. Reviews. The fact is that the problem
1279
+ of existence of non-standard uniserials was raised in 1980 by L. Salce during our joint investigation
1280
+ of modules over valuation domains, and it was him who named them ”non-standard”. S. Shelah
1281
+ was told about non-standard uniserials only at the Udine Conference in April 1984 just before
1282
+ the night he succeeded in establishing their existence. Then neither Shelah nor anybody else at
1283
+ the well-attended conference could claim that Kaplansky’s problem had been solved, since at this
1284
+ point nobody suspected that it was related to non-standard uniserials. The connection became
1285
+ known only three months later when we solved the Kaplansky problem, and the solution relied
1286
+ on non-standard uniserials (see the original solution published in [14]).
1287
+ 23
1288
+
1289
+ References
1290
+ [1] S. Bazzoni and L. Fuchs, On modules of finite projective dimension over valuation domains,
1291
+ Abelian Groups and Modules, CISM Courses and Lectures 287 (1984), 361–371.
1292
+ [2] S. Bazzoni, L. Fuchs, and L. Salce, The hierarchy of uniserial modules over a valuation
1293
+ domain, Forum Math. 7 (1995), 247–277.
1294
+ [3] S. Bazzoni and D. Herbera, Cotorsion pairs generated by modules of bounded projective
1295
+ dimension, Israel J. Math. 174 (2009), 119–160.
1296
+ [4] P.C. Eklof, Homological algebra and set theory, Trans. Amer. Math. Soc. 227 (1977), 207–225.
1297
+ [5] P.C. Eklof and A. Mekler, Almost Free Modules. Set-theoretic Methods (North Holland, 1990).
1298
+ [6] L. Fuchs, On a substitution property of modules, Monatsh. Math. 75 (1971), 198–204.
1299
+ [7] L. Fuchs, On projective dimensions of modules over valuation domains, in: Abelian Group
1300
+ Theory, Lecture Notes Math., 1006 (Springer, 1983), 589–598.
1301
+ [8] L. Fuchs, On divisible modules over domains, Abelian Groups and Modules, CISM Courses
1302
+ and Lectures 287 (1984), 341–356.
1303
+ [9] L. Fuchs, Note on modules of projective dimension one, in: Abelian Group Theory, Gordon
1304
+ and Breach Sci. Publ., (New York, 1987), 425–432.
1305
+ [10] L. Fuchs, On divisible modules over valuation domains, J. Algebra 110 (1987), 498–506.
1306
+ [11] L. Fuchs, Abelian Groups, Springer (Cham, Switzerland, 2015).
1307
+ [12] L. Fuchs, Torsion-free extensions of projective modules by torsion modules, J. Commut.
1308
+ Algebra, to appear (2023).
1309
+ [13] L. Fuchs and L. Salce, Separable torsion modules over valuation domains, Archiv Math. 41
1310
+ (1983), 17–24.
1311
+ [14] L. Fuchs and L. Salce, Modules over Valuation Domains, Lecture Notes in Pure and Applied
1312
+ Math. 97, Marcel Dekker Inc. (New York, Basel, 1985).
1313
+ [15] L. Fuchs and L. Salce, Modules over non-Noetherian Domains, Mathematical Surveys and
1314
+ Monographs 84, Amer. Math. Soc. (Providence, RI, 2001).
1315
+ [16] I. Kaplansky, Projective modules, Ann. Math. 68 (1958), 372–377.
1316
+ [17] E. Matlis, Divisible modules, Proc. Amer. Math. Soc. 11 (1960), 385–391.
1317
+ [18] B. Osofsky, Global dimension of valuation rings, Trans. Amer. Math. Soc. 127 (1967), 136–
1318
+ 149.
1319
+ [19] T.S. Shores and W.J. Lewis, Serial modules and endomorphism rings, Duke Math. J. 41
1320
+ (1974), 889–909.
1321
+ [20] R.B. Warfield, Jr., Purity and algebraic compactness for modules, Pac. J. Math. 28 (1969),
1322
+ 263–276.
1323
+ [21] R.B. Warfield, Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc. 25
1324
+ (1970), 167–172.
1325
+ Institute of Mathematics & Informatics, Bulgarian Academy of Sciences, 1113 Sofia,
1326
+ Bulgaria
1327
1328
+ Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA
1329
+ and 1724 Pinetree Cir NE, Atlanta, Georgia 30329, USA
1330
+ Email address: [email protected]
1331
+ 24
1332
+
PtFRT4oBgHgl3EQf6Djm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
QNE2T4oBgHgl3EQfrwi3/content/tmp_files/2301.04053v1.pdf.txt ADDED
@@ -0,0 +1,1520 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Coffee stain effect on a fibre from axisymmetric
3
+ droplets
4
+ Marie Corpart1, Frédéric Restagno1 and François Boulogne1†
5
+ 1Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France.
6
+ (Received xx; revised xx; accepted xx)
7
+ The so-called coffee stain effect has been intensively studied over the past decades, but
8
+ most of the studies are focused on sessile droplets. In this paper, we analyse the origin of
9
+ the difference between the deposition of suspended particles in a sessile drop and in an
10
+ axisymmetric drop deposited on a fibre. First, we model the shape of a drop on a fibre
11
+ and its evaporative flux with some approximations to derive analytical calculations. Then,
12
+ for pinned contact lines, we solve the hydrodynamics equations in the liquid phase under
13
+ the lubrication approximation to determine the flow velocity toward the contact lines. We
14
+ comment these results by comparison to a sessile drop of similar evaporating conditions,
15
+ and we show that the substrate curvature plays a role on the contact line depinning, the local
16
+ evaporative flux, and the liquid flow field. The competition between the advection and the
17
+ Brownian motion indicates that the transport of the particles toward the contact line occurs
18
+ in a volume localised in the close vicinity of the contact lines for a drop on a fibre. Thus, the
19
+ fibre geometry induces a weaker accumulation of particles at the contact line compared to a
20
+ sessile drop, leading to the more homogeneous deposit observed experimentally.
21
+ Key words: Authors should not enter keywords on the manuscript, as these must be chosen by
22
+ the author during the online submission process and will then be added during the typesetting
23
+ process (see Keyword PDF for the full list). Other classifications will be added at the same
24
+ time.
25
+ 1. Introduction
26
+ The deposition of a material on surfaces in a controlled manner is a key aspect in a broad
27
+ range of applications. Among the coating techniques, the deposition of suspended particles,
28
+ which can also be solute particles such as salts and polymers, through the evaporation of
29
+ the carrying liquid here called the solvent is a common approach (Routh 2013; Brutin &
30
+ Starov 2018). When a volatile drop is deposited on a surface, particles are carried toward
31
+ the contact line. This so-called coffee stain effect introduced by Deegan et al. (1997) and
32
+ recently reviewed by Gelderblom et al. (2022) and Wilson & D’Ambrosio (2023), is the
33
+ consequence of a radial flow induced by evaporation. To rationalise this phenomenon, the
34
+ † Email address for correspondence: [email protected]
35
+ arXiv:2301.04053v1 [physics.flu-dyn] 10 Jan 2023
36
+
37
+ 2
38
+ fluid flow in the drop must be determined to explain the dynamics of the particle motion. The
39
+ resolution of the liquid flow is subordinated to the knowledge of the drop shape resulting from
40
+ capillary phenomena, which is to a good approximation a spherical cap, for a drop on a flat
41
+ substrate, when its size is smaller than the capillary length. In addition, the derivation of the
42
+ evaporative flux is necessary. The evaporative flux of a circular disk, i.e. a sessile drop with a
43
+ vanishing contact angle, has been derived analytically by Cooke (1967), and generalisations
44
+ to non-zero contact angle are also available in the literature (Sreznevsky 1882; Picknett &
45
+ Bexon 1977). Thus, the fluid flow in the sessile drop has been derived theoretically through
46
+ different contributions, e.g. Deegan et al. (2000); Hu & Larson (2005); Popov (2005); Zheng
47
+ (2009); Larson (2014).
48
+ In addition, Hamamoto et al. (2011) and then Marin et al. (2011a,b) revealed the rush-hour
49
+ effect, which consists in an increase of the average particle velocity toward the contact line
50
+ as the contact angle decreases in time. This particle velocity increase has an impact on the
51
+ ordering of the particles in the final deposit (Marin et al. 2011a,b). The time evolution of
52
+ the particle accumulation at the contact line has been satisfactorily predicted and measured
53
+ by various authors (Popov 2005; Deegan 2000; Monteux & Lequeux 2011; Berteloot et al.
54
+ 2012; Larson 2014; Boulogne et al. 2017). The resulting deposition pattern forms a ring shape
55
+ (Deegan 2000; Routh 2013; Brutin & Starov 2018) that triggered various investigations to find
56
+ strategies for tuning, limiting, or suppressing this effect. For instance, studies focused on the
57
+ liquid properties especially with solutal Marangoni flows (Kajiya et al. 2009; Sempels et al.
58
+ 2013; Kim et al. 2016; Pahlavan et al. 2021), on the substrate hydrophobicity (Gelderblom
59
+ et al. 2011), on the substrate permeability (Boulogne et al. 2015), and on the multiple drops
60
+ interaction (Pradhan & Panigrahi 2015; Wray et al. 2020, 2021). See Mampallil & Eral
61
+ (2018) for a recent review.
62
+ Most of the literature is focused on drops on flat surfaces. However, drops on fibres also
63
+ represent a relevant situation for applications such as the drying of filters, clothing (Duprat
64
+ 2022), and insulating materials (Sauret et al. 2015). A liquid deposited on fibres can adopt
65
+ a rich variety of morphologies. We distinguish the clamshell shape, which corresponds to
66
+ a small drop wetting a portion of the fibre perimeter from the barrel shape where the drop
67
+ wets the fibre as a pearl on a necklace (Chou et al. 2011). More complex liquid shapes can be
68
+ obtained on fibrous networks. Fibres can be either crossed or parallel, which leads to a rich
69
+ variety of equilibrium morphologies including liquid columns, distorted drops, and drops
70
+ coexisting with columns (Protiere et al. 2012; Sauret et al. 2015).
71
+ The deposition of particles dissolved in an evaporating clamshell drop on a fibre has
72
+ already been investigated by Pham et al. (2002), where a similar behaviour to sessile drops
73
+ has been observed. In the barrel case, the liquid morphology is remarkable due to the
74
+ substrate geometry. The fibre curvature induces an inflection point of the interface and a drop
75
+ aspect ratio of order of the unity even for a perfectly wetting fluid in contrast to sessile drops
76
+ (Carroll 1976; Brochard-Wyart et al. 1991; Lorenceau et al. 2006). By minimising the surface
77
+ energy, Carroll (1976) has obtained an analytical expression of the drop profile. In addition,
78
+ Corpart et al. (2022) recently obtained by numerical calculations the evaporative flux of an
79
+ axisymmetric drop on a fibre, demonstrating that the divergence of the evaporative flux is
80
+ localised near the contact line. Thus, due to the differences in shape and evaporative flux
81
+ induced by the substrate, we propose to investigate theoretically the particle deposition from
82
+ a drop deposited on a fibre. In this paper, our approach will favour analytical calculations
83
+ when possible and we will limit ourselves to the regime where the contact line is pinned on
84
+ the substrate. Thus, we will rationalise the particle transport and the deposit left at the initial
85
+ position of the contact lines, which will be compared to the well-established sessile drop.
86
+ To do so, we investigate theoretically the transport of particles due to evaporation in a drop
87
+ wetting a fibre in an axisymmetric barrel configuration. The obtained model is compared to
88
+
89
+ 3
90
+ Figure 1: (a) Sketch presenting the notations of an axisymmetric drop of length 2𝐿 on a
91
+ fibre of radius 𝑎. 𝑐sat is the saturation vapour mass concentration, the vapour mass
92
+ concentration in air at the liquid air/interface, and 𝑐∞ is the mass concentration of vapour
93
+ far from the droplet. (b) Comparison of the analytical solution obtained by Carroll (1976)
94
+ of the dimensionless profile ℎ/𝑎 at 𝐿/𝑎 = 6.5 (solid lines), to the proposed ansatz (2.1)
95
+ with 𝐿/𝑎 ≈ 6.7 (dotted lines) for 𝜃 = 0, 1, 5, 10, 15◦. The apex height is obtained by
96
+ fitting Carroll’s profile by equation (2.1) and the length 𝐿/𝑎 = 6.7 is chosen to be the
97
+ fitted length obtained for 𝜃 = 0. The dimensions chosen here corresponds approximately
98
+ to a microlitre drop deposited on a glass fibre of a hundred micrometers radius. The curves
99
+ are arbitrarily shifted for clarity.
100
+ the case of a sessile drop in terms of volume loss dynamics, characteristic velocities, and
101
+ efficiency of the particles transport toward the contact line. In Section 2, we introduce the
102
+ phenomenological equations for the drop shape and the evaporative flux in order to obtain
103
+ analytical predictions. Then, we derive the hydrodynamics equation in the liquid phase
104
+ under the lubrication approximation to provide the velocity field toward the pinned contact
105
+ line. In Section 3, we compare the drop on a fibre with the sessile drop, and we comment
106
+ about the main differences between these systems. In Section 4, we present some qualitative
107
+ experimental observations on the particle dynamics in both geometries that we compare to
108
+ the theoretical investigations.
109
+ 2. Fluid flow of an evaporating drop on a fibre
110
+ We consider a volatile drop of density 𝜌, viscosity 𝜂, surface tension 𝛾, and volume Ω, on a
111
+ fibre of radius 𝑎. The contact angle of the liquid on the material, defined by Young’s law, is
112
+ denoted 𝜃. On a horizontal single fibre, two configurations exist: a drop pierced by a fibre,
113
+ the barrel shape, or a drop wetting a portion of the fibre circumference, the clamshell shape.
114
+ As shown by Chou et al. (2011), this barrel shape is stable for a certain range of contact
115
+ angles whose upper limit depends on the drop volume. For sufficiently small contact angles,
116
+ this configuration is therefore realistic. Also, studies indicate that gravity, when sufficient,
117
+ can off-centre the drop leading to an asymmetric shape (Chou et al. 2011; Gupta et al.
118
+ 2021). The role of gravity over capillarity can be quantified by the Worthington number
119
+ Wo = 𝜌𝑔Ω/(𝜋𝛾𝑎) (Worthington 1885; Ferguson 1912). We assume a negligible effect of the
120
+ gravity, i.e. Wo ≪ 1. The drop is therefore considered perfectly axisymmetric in this study.
121
+ Thus, we adopt the cylindrical coordinate system shown in figure 1(a). The profile of
122
+ the liquid-vapour interface is described by a function ℎ(𝑧, 𝑡). The evaporation of the liquid
123
+ generates a volume variation, and therefore an internal flow. When the liquid is seeded with
124
+ particles of radius 𝑏, the liquid flow can carry these particles. Our aim is to predict analytically
125
+ the particle transport in the liquid phase. In the present work, we focus our interest on the
126
+ regime for which the contact line is pinned, i.e. the length 𝐿 is constant. In practice, this
127
+
128
+ 4
129
+ pinning occurs due to the contact angle hysteresis and the additional pinning force due to
130
+ the particles accumulated at the contact line creating defects (Joanny & de Gennes 1984;
131
+ di Meglio 1992; Boulogne et al. 2016). As evaporation proceeds, the drop height and the
132
+ contact angle decrease.
133
+ The profile of the liquid interface (Carroll 1976) and evaporative flux (Corpart et al. 2022)
134
+ are particularly complex in this geometry. Consequently, to perform an analytical analysis, we
135
+ will model the drop shape and the evaporative flux with phenomenological expressions, for
136
+ which the validity will be discussed. In addition, we will write the hydrodynamics equations
137
+ to derive the main component of the liquid flow, along the fibre, while the contact lines
138
+ remain pinned. Then, we will be in position to discuss the particle transport in the drop.
139
+ 2.1. Profile of the liquid-vapour interface
140
+ An analytical solution of the drop shape has been derived by Carroll (1976), but the elliptical
141
+ integral involved in this solution would limit the analytical derivation of the present problem.
142
+ Thus, we choose to describe the drop profile with an ansatz fitting Carroll’s solution
143
+ ℎ(𝑧, 𝑡) = ℎ0(𝑡)
144
+
145
+ 1 − 𝑧2
146
+ 𝐿2
147
+ �2
148
+ ,
149
+ (2.1)
150
+ where ℎ0(𝑡) is the drop height at the apex 𝑧 = 0 and 𝐿 is the distance from the apex to the
151
+ contact line (Fig. 1(a).). We consider the regime for which contact lines are pinned, so the
152
+ length 𝐿 remains constant. The contact angle is defined by Young’s law and depends only on
153
+ the liquid/solid properties. For an axisymetric drop on a fibre, Carroll (1976) demonstrated
154
+ that the relation between the drop shape and the contact angle is not straightforward and in
155
+ particular, the contact angle cannot be read directly from the slope between the interface
156
+ and the surface of the fibre as it is for sessile drops. Typically, for contact angles between
157
+ 0 and 30◦, the slope of the interface vanishes in the vicinity of the contact line as shown
158
+ in figure 1(b) where we compare drop profiles obtained from Carroll (1976) at 𝐿/𝑎 = 6.5
159
+ to equation 2.1 for 𝜃 = 0, 5, 10, and 15◦. To describe the drop profile, we fit Carroll’s
160
+ profile with equation 2.1 where 𝐿 and ℎ0 are the two adjustable parameters. To keep the
161
+ wetted-length constant over the dynamics, we choose to set 𝐿 as the fitted length obtained
162
+ for 𝜃 = 0, 𝐿/𝑎 ≈ 6.7. Then, we use the values of ℎ0 obtained by the fit to calculate drop
163
+ profile with equation (2.1) (see dashed lines in Fig. 1(b)). As shown in figure 1(b), the
164
+ proposed description of the drop profile is reasonably close to the analytical solution and
165
+ describes its main features. We tested the validity of the ansatz for various drop profiles and
166
+ we found a good agreement for drop with small contact angles, typically lower than 30◦ and
167
+ dimensionless volume Ω/𝑎3 < 1000.
168
+ The liquid volume is defined as
169
+ Ω(𝑡) =
170
+
171
+ 𝑎+ℎ(𝑧,𝑡)
172
+ 𝑎
173
+ ∫ 2𝜋
174
+ 0
175
+
176
+ 𝐿
177
+ −𝐿
178
+ 𝑟 d𝑟 d𝜃 d𝑧 = 32
179
+ 315𝜋𝐿ℎ0(𝑡) (21𝑎 + 8ℎ0(𝑡)) .
180
+ (2.2)
181
+ With equation (2.1) and equation (2.2), we can estimate the volume of the drop and compare
182
+ it to the volume calculated by Carroll (1976) from his analytical description of the drop
183
+ profile. The ansatz gives a good approximation of the drop volume with a relative error of
184
+ about 10 % for the largest contact angle tested, 𝜃 = 15◦, for which the difference between the
185
+ fit and the analytical profile is the largest.
186
+ 2.2. Evaporative flux
187
+ The evaporation process is assumed to be limited by the diffusion of vapour in air (Cazabat
188
+ & Guéna 2010), described by the vapour diffusion coefficient Dv. The steady-state regime is
189
+
190
+ 5
191
+ 0.0
192
+ 0.2
193
+ 0.4
194
+ 0.6
195
+ 0.8
196
+ 1.0
197
+ 1 − z2
198
+ L2
199
+ 1.0
200
+ 1.2
201
+ 1.4
202
+ 1.6
203
+ 1.8
204
+ 2.0
205
+ 2.2
206
+ 2.4
207
+ 2.6
208
+ ve(z)
209
+ v0e
210
+ Figure 2: Local dimensionless evaporation velocity 𝑣e(𝑧)/𝑣0e as a function of 1 − 𝑧2/𝐿2
211
+ where 𝑣0e is the evaporation velocity at the drop apex. The points are obtained from
212
+ numerical simulations using finite element methods presented in Corpart et al. (2022) for
213
+ 𝑎 = 125 µm, 𝜃 = 10◦, Ω = 1 µL, which corresponds to 𝐿/𝑎 ≈ 6.7. The dashed line is
214
+ equation (2.3) with the fitted parameters 𝛼 = 0.7 and 𝛽 = 0.1.
215
+ reached on a timescale 𝐿2/Dv, which is, in most situations, short compared to the observation
216
+ timescale. Thus, the vapour mass concentration field 𝑐(𝑟, 𝑧) is the solution of the Laplace
217
+ equation △𝑐 = 0. The boundary conditions are 𝑐 = 𝑐sat at the liquid-vapour interface,
218
+ 𝑐 = 𝑐∞ far from the interface, and a no flux condition 𝒏 · ∇𝑐 = 0 on the solid-gas interface
219
+ characterised by its normal 𝒏 (see Fig. 1(a)). Once the mass concentration field is obtained,
220
+ the evaporation velocity at the liquid-vapour interface is defined as 𝑣e(𝑧) = Dv
221
+ 𝜌 𝒏 · ∇𝑐|ℎ(𝑧,𝑡),
222
+ where the derivative is calculated at the liquid-vapour interface and 𝜌 is the density of the
223
+ liquid.
224
+ Corpart et al. (2022) have recently performed numerical simulations using finite elements
225
+ method to determine the local evaporative flux of a drop on a fibre. In particular, this
226
+ study revealed that the evaporation velocity differs from the well-known sessile drop in two
227
+ aspects. First, the divergence is localised in the close vicinity of the contact line, and second,
228
+ the contact angle has a weak effect on the evaporation velocity. A typical result of these
229
+ computations is presented in figure 2. The localisation of the divergence near the contact line
230
+ implies that the evaporation velocity cannot be written as a power law (Corpart et al. 2022).
231
+ Instead, we propose to fit the results of the numerical simulations by
232
+ 𝑣e(𝑧) = 𝑣0
233
+ e
234
+
235
+ 𝛽
236
+
237
+ 1 − 𝑧2
238
+ 𝐿2
239
+ �−𝛼
240
+ + 1 − 𝛽
241
+
242
+ ,
243
+ (2.3)
244
+ where 𝛼 and 𝛽 are constants, independent of the contact angle, for 𝜃 < 20◦ (Corpart
245
+ et al. 2022). The prefactor 𝑣0
246
+ e = 𝑣e(𝑧 = 0) is the single parameter that depends on the
247
+ environmental conditions and is proportional to Dv(𝑐sat − 𝑐∞)/𝜌. The total evaporative flux
248
+ writes 𝑄e(𝑡) =
249
+
250
+ 𝑣ed𝑆 = 2𝜋
251
+ ∫ 𝐿
252
+ −𝐿 𝑣e(𝑧) (𝑎 + ℎ(𝑧, 𝑡))d𝑧, which leads after integration to
253
+ 𝑄e(𝑡) = 2𝜋𝑣0
254
+ e𝐿 (𝐴1𝑎 + 𝐴2ℎ0(𝑡)) ,
255
+ (2.4)
256
+
257
+ 6
258
+ with
259
+ 𝐴1 = √𝜋𝛽 Γ(1 − 𝛼)
260
+ Γ( 3
261
+ 2 − 𝛼)
262
+ + 2(1 − 𝛽),
263
+ (2.5a)
264
+ 𝐴2 = √𝜋𝛽 Γ(3 − 𝛼)
265
+ Γ( 7
266
+ 2 − 𝛼)
267
+ + 16
268
+ 15 (1 − 𝛽),
269
+ (2.5b)
270
+ where Γ is the Gamma-function (Abramowitz & Stegun 1972).
271
+ 2.3. Hydrodynamics
272
+ 2.3.1. Lubrication approximation
273
+ Now that the geometry and the evaporation dynamics are described, we analyse the flow in
274
+ the liquid phase. By considerations of symmetries, the velocity field can be written in the
275
+ cylindrical coordinates (𝑣𝑟 (𝑟, 𝑧), 𝑣𝑧(𝑟, 𝑧)). The continuity equation is
276
+ 1
277
+ 𝑟
278
+ 𝜕(𝑟𝑣𝑟)
279
+ 𝜕𝑟
280
+ + 𝜕𝑣𝑧
281
+ 𝜕𝑧 = 0,
282
+ (2.6)
283
+ and the Navier-Stokes equations in the stationary regime are
284
+ −𝜕𝑝
285
+ 𝜕𝑟 + 𝜂
286
+ �1
287
+ 𝑟
288
+ 𝜕
289
+ 𝜕𝑟
290
+
291
+ 𝑟 𝜕𝑣𝑟
292
+ 𝜕𝑟
293
+
294
+ + 𝜕2𝑣𝑟
295
+ 𝜕𝑧2 − 𝑣𝑟
296
+ 𝑟2
297
+
298
+ = 0,
299
+ (2.7a)
300
+ −𝜕𝑝
301
+ 𝜕𝑧 + 𝜂
302
+ �1
303
+ 𝑟
304
+ 𝜕
305
+ 𝜕𝑟
306
+
307
+ 𝑟 𝜕𝑣𝑧
308
+ 𝜕𝑟
309
+
310
+ + 𝜕2𝑣𝑧
311
+ 𝜕𝑧2
312
+
313
+ = 0,
314
+ (2.7b)
315
+ where 𝑝(𝑟, 𝑧) is the liquid pressure. The boundary conditions are no fluid slippage on the
316
+ fibre and no stress at the liquid-vapour interface, i.e.
317
+ 𝑣𝑧(𝑟, 𝑧) = 0,
318
+ on
319
+ 𝑟 = 𝑎
320
+ and
321
+ |𝑧| ⩽ 𝐿,
322
+ (2.8a)
323
+ 𝜕𝑣𝑧
324
+ 𝜕𝑟 = 0,
325
+ on
326
+ 𝑟 = 𝑎 + ℎ(𝑧, 𝑡)
327
+ and
328
+ |𝑧| ⩽ 𝐿.
329
+ (2.8b)
330
+ Equation 2.8b means that tracers are assumed to have no surfactant effect, due to their
331
+ size. We apply the lubrication approximation to equations (2.7a, 2.7b), which is valid for
332
+ ℎ0
333
+ 𝐿
334
+ 𝜌ℎ(𝑧,𝑡)𝑣𝑧
335
+ 𝜂
336
+ ≪ 1 (Batchelor 2000) and we get
337
+ d𝑝
338
+ d𝑧 = 𝜂
339
+ �1
340
+ 𝑟
341
+ 𝜕
342
+ 𝜕𝑟
343
+
344
+ 𝑟 𝜕𝑣𝑧
345
+ 𝜕𝑟
346
+ ��
347
+ .
348
+ (2.9)
349
+ Based on the differential equation (2.9) and the boundary conditions (2.8a) and (2.8b), we
350
+ can calculate the velocity field 𝑣𝑧
351
+ 𝑣𝑧(𝑟, 𝑧, 𝑡) = −1
352
+ 𝜂
353
+ d𝑝
354
+ d𝑧
355
+ � (𝑎 + ℎ(𝑧, 𝑡))2
356
+ 2
357
+ ln
358
+ � 𝑟
359
+ 𝑟0
360
+
361
+ − 𝑟2
362
+ 4
363
+
364
+ ,
365
+ (2.10)
366
+ with 𝑟0 = 𝑎 exp �−𝑎2/(2(𝑎 + ℎ(𝑧, 𝑡))2)�. We remark that the radial dependence of 𝑣𝑧 is not a
367
+ quadratic function in contrast to the sessile drop that will be recalled thereafter in Section A.
368
+ 2.3.2. Mass conservation
369
+ To fully obtain the fluid velocity 𝑣𝑧, the pressure gradient d𝑝/d𝑧 must be determined. To do
370
+ so, we write the mass conservation over a slice between 𝑧 and 𝑧 + d𝑧,
371
+ 𝜕ℎ
372
+ 𝜕𝑡 +
373
+ 1
374
+ 2(𝑎 + ℎ)
375
+ 𝜕
376
+ 𝜕𝑧
377
+
378
+ (2𝑎ℎ + ℎ2) ¯𝑣𝑧
379
+
380
+ + 𝑣e(𝑧) = 0,
381
+ (2.11)
382
+
383
+ 7
384
+ where ¯𝑣𝑧(𝑧, 𝑡) is the velocity 𝑣𝑧(𝑟, 𝑧, 𝑡) averaged over a cross-section perpendicular to the
385
+ fibre,
386
+ ¯𝑣𝑧(𝑧, 𝑡) =
387
+ 2
388
+ 2𝑎ℎ + ℎ2
389
+
390
+ 𝑎+ℎ(𝑧,𝑡)
391
+ 𝑎
392
+ 𝑣𝑧(𝑟, 𝑧, 𝑡) 𝑟 d𝑟.
393
+ (2.12)
394
+ Now, we can establish the relation between ¯𝑣𝑧 and 𝑣𝑧. First, we integrate equation (2.12)
395
+ with equation (2.10) to express ¯𝑣𝑧 as a function of d𝑝/d𝑧. Equation (2.12) is written
396
+ ¯𝑣𝑧(𝑧, 𝑡) = −1
397
+ 𝜂
398
+ d𝑝
399
+ d𝑧 G(𝑎, ℎ(𝑧, 𝑡)),
400
+ (2.13)
401
+ where the geometrical function G(𝑎, ℎ(𝑧, 𝑡)) is given by
402
+ G(𝑎, ℎ(𝑧, 𝑡)) =
403
+ 1
404
+ 4(2𝑎ℎ + ℎ2)
405
+ �𝑎4
406
+ 2 + (𝑎 + ℎ)4
407
+
408
+ 𝑎2
409
+ (𝑎 + ℎ)2
410
+ �1
411
+ 2 − ln 𝑎
412
+ 𝑟0
413
+
414
+ + ln 𝑎 + ℎ
415
+ 𝑟0
416
+ − 1
417
+ ��
418
+ .
419
+ (2.14)
420
+ Substituting the pressure derivative from (2.10) in (2.13) yields
421
+ 𝑣𝑧(𝑟, 𝑧, 𝑡) =
422
+ ℎ¯𝑣𝑧
423
+ G(𝑎, ℎ(𝑧, 𝑡))
424
+ � (𝑎 + ℎ(𝑧, 𝑡))2
425
+ 2
426
+ ln
427
+ � 𝑟
428
+ 𝑟0
429
+
430
+ − 𝑟2
431
+ 4
432
+
433
+ .
434
+ (2.15)
435
+ In the next subsections, we derive the time evolution of the drop profile 𝜕ℎ/𝜕𝑡, which will
436
+ be used along the evaporation velocity 𝑣e(𝑧) in the mass conservation (2.11) to obtain the
437
+ average velocity ¯𝑣𝑧 as a function of the evaporation dynamics.
438
+ 2.3.3. Liquid evaporation
439
+ First, we calculate the time derivative of the liquid profile, 𝜕ℎ/𝜕𝑡, which appears in equation
440
+ (2.11). The time derivative of the drop profile defined in equation (2.1) considering a constant
441
+ drop length 𝐿 gives
442
+ 𝜕ℎ(𝑧, 𝑡)
443
+ 𝜕𝑡
444
+ = dℎ0
445
+ d𝑡
446
+
447
+ 1 − 𝑧2
448
+ 𝐿2
449
+ �2
450
+ .
451
+ (2.16)
452
+ In addition, the loss of liquid by evaporation compensates the total evaporative flux as
453
+ dΩ/d𝑡 = −𝑄e(𝑡). Substituting the volume defined in equation (2.2), we have
454
+ dℎ0
455
+ d𝑡 = − 315
456
+ 32𝜋
457
+ 𝑄e(𝑡)
458
+ 𝐿(21𝑎 + 16ℎ0(𝑡)) ,
459
+ (2.17)
460
+ which fully defines the time derivative of the liquid profile.
461
+ Integrating equation 2.17 from 0 to 𝑡 and ℎi to ℎ0 leads to
462
+ 16
463
+ 𝐴2
464
+ (ℎi − ℎ0(𝑡)) + 𝑎(21𝐴2 − 16𝐴1)
465
+ 𝐴2
466
+ 2
467
+ ln
468
+
469
+ 𝐴1𝑎 + 𝐴2ℎi
470
+ 𝐴1𝑎 + 𝐴2ℎ0(𝑡)
471
+
472
+ = 315
473
+ 16 𝑣0
474
+ e𝑡.
475
+ (2.18)
476
+ At the first leading order in (ℎi − ℎ0)/ℎi, we obtain the time variation of the height of the
477
+ apex
478
+ ℎ0(𝑡) ≈ ℎi − 315
479
+ 16
480
+ 𝐴1𝑎 + 𝐴2ℎi
481
+ 21𝑎 + 16ℎi
482
+ 𝑣0
483
+ e 𝑡.
484
+ (2.19)
485
+ 2.3.4. Mean liquid velocity
486
+ Now, we derive the mean liquid velocity ¯𝑣𝑧. By substituting equations (2.16) and (2.17) in
487
+ the mass conservation (2.11), we have
488
+
489
+ 8
490
+ 1
491
+ 2(𝑎 + ℎ)
492
+ 𝜕
493
+ 𝜕𝑧
494
+
495
+ (2𝑎ℎ + ℎ2) ¯𝑣𝑧
496
+
497
+ = 315
498
+ 32𝜋
499
+ 𝑄e(𝑡)
500
+ 𝐿(21𝑎 + 16ℎ0)
501
+
502
+ 1 − 𝑧2
503
+ 𝐿2
504
+ �2
505
+ − 𝑣e(𝑧).
506
+ (2.20)
507
+ The integration of this differential equation from 0 to 𝑧 yields
508
+ (2𝑎ℎ + ℎ2) ¯𝑣𝑧 = 315
509
+ 16𝜋
510
+ 𝑄e(𝑡)
511
+ (21𝑎 + 16ℎ0)
512
+ 𝑧
513
+ 𝐿
514
+
515
+ 𝑎 P1
516
+ � 𝑧
517
+ 𝐿
518
+
519
+ + ℎ0 P2
520
+ � 𝑧
521
+ 𝐿
522
+ ��
523
+ − 2
524
+
525
+ 𝑧
526
+ 0
527
+ (𝑎 + ℎ)𝑣ed𝑧, (2.21)
528
+ where P1(𝑥) = 1 − 2
529
+ 3𝑥2 + 1
530
+ 5𝑥4 and P2(𝑥) = 1 − 4
531
+ 3𝑥2 + 6
532
+ 5𝑥4 − 4
533
+ 7𝑥6 + 1
534
+ 9𝑥8.
535
+ The plane perpendicular to the fibre at 𝑧 = 0 is a plane of symmetry, thus ¯𝑣𝑧(𝑧 = 0) = 0.
536
+ From equation (2.3), we can calculate the remaining integral of equation (2.21)
537
+ 2
538
+
539
+ 𝑧
540
+ 0
541
+ (𝑎 + ℎ)𝑣e d𝑧 = 2𝑣0
542
+ e𝑧
543
+
544
+ 𝑎
545
+
546
+ 𝛽 2𝐹1
547
+ �1
548
+ 2, 𝛼; 3
549
+ 2; 𝑧2
550
+ 𝐿2
551
+
552
+ + (1 − 𝛽)
553
+
554
+ + ℎ0
555
+
556
+ 𝛽 2𝐹1
557
+ �1
558
+ 2, 𝛼 − 2; 3
559
+ 2; 𝑧2
560
+ 𝐿2
561
+
562
+ + (1 − 𝛽) P1
563
+ � 𝑧
564
+ 𝐿
565
+ ���
566
+ ,
567
+ (2.22)
568
+ where the hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) writes (Abramowitz & Stegun 1972)
569
+ 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) =
570
+
571
+ ∑︁
572
+ 𝑛=0
573
+ (𝑎)𝑛(𝑏)𝑛
574
+ (𝑐)𝑛
575
+ 𝑧𝑛
576
+ 𝑛! = 1 + 𝑎𝑏
577
+ 𝑐
578
+ 𝑧
579
+ 1! + 𝑎(𝑎 + 1)𝑏(𝑏 + 1)
580
+ 𝑐(𝑐 + 1)
581
+ 𝑧2
582
+ 2! + · · · .
583
+ The combination of equations (2.21) and (2.22) provides the mean velocity ¯𝑣𝑧(𝑧, 𝑡). The
584
+ velocity profile 𝑣𝑧(𝑟, 𝑧, 𝑡) is therefore obtained by a straightforward substitution in equation
585
+ (2.15). This description of the fluid flow permits to analyse the induced particle transport,
586
+ which will be discussed in Section 3.
587
+ 3. Comparison between geometries
588
+ In this Section, we discuss the results obtained in Section 2 on a fibre that we compare to
589
+ the well-established results for a drop on a flat surface (See Appendix A) (Deegan 2000;
590
+ Popov 2005; Stauber et al. 2014; Larson 2014; Boulogne et al. 2017). To adopt versatile
591
+ notations for the two geometries, let 𝑥 be the 𝑧 or 𝑟 coordinate for the fibre or the sessile case,
592
+ respectively. Hence, the velocity toward the contact line is denoted ¯𝑣𝑥. Similarly, the length
593
+ L denotes the length 𝐿 or 𝑅, respectively.
594
+ First, we compare the time evolution of the drop profiles for pinned contact lines to reveal
595
+ the effect of the substrate curvature on the duration of this regime of evaporation with respect
596
+ to the total time of evaporation. Next, we analyse the fluid velocity toward the contact line
597
+ and its efficiency to transport the particles through a Péclet number. Finally, we compute to
598
+ total number of particles accumulated at the contact line during the pinned regime.
599
+ 3.1. Methodology
600
+ To be able to compare the two geometries, a choice on the initial parameters has to be made.
601
+ The possible parameters are 𝜃i the initial contact angle, L the wetted length, Ω(𝑡 = 0) the
602
+ initial volume, and 𝑄e(𝑡 = 0), the initial evaporation rate. A common practice for comparison
603
+ is to consider the same liquid-solid system such that the initial contact angle 𝜃i is fixed. In
604
+ addition, a similar evaporation rate 𝑄e for both systems brings the advantage of a comparable
605
+ driving force for the particle transport. With equation (2.4), we can calculate the evaporation
606
+
607
+ 9
608
+ rate of a drop on a fibre whose geometry is given by equation (2.1) at 𝐿/𝑎 ≈ 6.7 and
609
+ 𝜃 = 𝜃i = 15◦ (see Fig. 1(b)). Numerical simulation in a previous study by Corpart et al.
610
+ (2022) provides 𝑣0
611
+ e for a water droplet in the initial geometry described here and evaporating
612
+ in dry air (𝑐∞ = 0) at 20 ◦C (𝑐sat = 1.72×10−2 kg/s and Dv = 2.36×10−5 m2/s) (Lide 2008).
613
+ We obtained 𝑣0
614
+ e ≈ 4 × 10−7 m/s. From equation (A 4), we can calculate the wetted length
615
+ of the sessile droplet having the same evaporation rate for the same ambient conditions. We
616
+ find a similar lengthscale 𝑅 ≈ 𝐿. For instance, the barrel-shaped drop on a fibre of radius
617
+ 𝑎 = 125 µm has, initially, a wetted-length 𝐿 ≈ 8.4 × 10−4 m and a sessile drop evaporating
618
+ at the same initial rate has a wetted length 𝑅 ≈ 8.9 × 10−4 m. We thus choose to make
619
+ comparisons at the same wetted length 𝐿/𝑎 ≈ 6.7 which is given by fitting Carroll’s profile
620
+ with equation (2.1) as explained in Section 2 (see Fig. 1(b)). For the same wetted length
621
+ and the same initial contact angle, the initial volume of the droplet is different in the two
622
+ geometries. For example, for 𝐿 = 𝑅 ≈ 8.4 × 10−4 m and 𝜃i = 15◦, the initial volume is
623
+ Ω(𝑡 = 0) ≈ 0.1 µL for the sessile case and Ω(𝑡 = 0) ≈ 0.6 µL for the drop on fibre. The
624
+ sessile drop has a smaller initial volume and thus a shorter lifetime than the drop on a fibre
625
+ even if the initial evaporation rate is the same in the two geometries. Additionally, since the
626
+ particle transport depends on the particle size, we consider a particle diameter 2𝑏 = 1 µm
627
+ motivated by the large number of studies on the coffee-stain using micrometer-sized particles.
628
+ To summarise, we choose to compare drops of same wetting length and same initial
629
+ contact angle. This corresponds to drops having different initial volumes but the same initial
630
+ evaporation rate for the two different geometries when evaporating in the same ambient
631
+ conditions. In this framework, we can compare the mean velocities toward the contact line
632
+ for the two systems. The competition between the particle transport and the Brownian motion
633
+ will be rationalised by a Péclet number.
634
+ 3.2. Time evolution of the drop shapes
635
+ We analyse the evolution of the drop shape in both configurations. The temporal evolution of
636
+ drop heights, plotted in figure 3(c) are given by equation 2.18 (blue solid line) approximated
637
+ by equation 2.19 (dashed line) for the drop on a fibre and equation A 2 (black line) for the
638
+ sessile drop.
639
+ The evolution of the drop shape for different contact angles for a sessile drop is illustrated
640
+ in figure 3(a). Due to the particle accumulation at the contact line that increases the pinning
641
+ force (Joanny & de Gennes 1984; di Meglio 1992; Boulogne et al. 2016), we consider that
642
+ the depinning nearly occurs at a zero contact angle, which corresponds to a vanishing drop
643
+ volume. Now, considering the drop on a fibre, we plot in figure 3(b) the drop shape on a
644
+ fibre having the same wetted length and the same contact angles as the sessile drops in
645
+ figure 3(a). By fitting the profiles of figure 3(b) with equation 2.1 we get the apex heights
646
+ and the corresponding times by inserting them in equation 2.18. The results are represented
647
+ by the circles in figure 3(c). This figure shows that the temporal evolution of the apex height
648
+ of a drop on a fibre is well described by the approximated equation 2.19 (in dashed-line in
649
+ Fig 3(c)) during the pinned-regime.
650
+ From figures 3(a) and (b), we also get the height of the apex at the depinning ℎdep
651
+ 0
652
+ =
653
+ ℎ0(𝜃 = 0). In the example studied here, we get ℎdep
654
+ 0
655
+ = 0 for the sessile drop and ℎdep
656
+ 0
657
+ = 2.4𝑎
658
+ (corresponding to ℎdep
659
+ 0
660
+ = 0.8ℎi) for the drop on a fibre. From that we get the duration of
661
+ the pinned regime 𝜏dep of the drop on a fibre by inserting ℎdep
662
+ 0
663
+ into equation 2.18. In the
664
+ example studied here, we find 𝜏dep ≈ 110 s. In the case of the sessile drop the volume tends
665
+ to zero at the end of the pinned regime, meaning that 𝜏dep = 𝜏e (Eq. A 5) the lifetime of
666
+ a sessile drop evaporating entirely at constant contact radius. In the example studied here
667
+
668
+ 10
669
+ −5
670
+ 0
671
+ 5
672
+ r/a
673
+ −4
674
+ −2
675
+ 0
676
+ 2
677
+ 4
678
+ 6
679
+ h/a
680
+ (a)
681
+ θ = 0◦
682
+ θ = 5◦
683
+ θ = 10◦
684
+ θ = 15◦
685
+ −5
686
+ 0
687
+ 5
688
+ z/a
689
+ −4
690
+ −2
691
+ 0
692
+ 2
693
+ 4
694
+ h/a
695
+ (b)
696
+ 0
697
+ 25
698
+ 50
699
+ 75
700
+ 100
701
+ t (s)
702
+ 0.0
703
+ 0.2
704
+ 0.4
705
+ 0.6
706
+ 0.8
707
+ 1.0
708
+ h0/hi
709
+ (c)
710
+ Fibre
711
+ Sessile
712
+ 0.0
713
+ 0.2
714
+ 0.4
715
+ 0.6
716
+ 0.8
717
+ 1.0
718
+ t/τdep
719
+ 0.0
720
+ 2.5
721
+ 5.0
722
+ 7.5
723
+ 10.0
724
+ 12.5
725
+ 15.0
726
+ θ(◦)
727
+ (d)
728
+ θ = 0◦
729
+ θ = 0.1◦
730
+ θ = 1◦
731
+ θ = 5◦
732
+ θ = 10◦
733
+ θ = 15◦
734
+ θ = θi
735
+
736
+ 1 −
737
+ t
738
+ τdep
739
+
740
+ Figure 3: (a) – (b) Evolution of the drop shape at different contact angles in (a) the sessile
741
+ case (Eq. A 1) and (b) the fibre configuration for which the drop profile is described by
742
+ elliptic integrals given by Carroll (1976). (c) Time evolution of the drop height at the apex
743
+ ℎ0 normalised by the initial height ℎi for the two configurations. The black line
744
+ corresponds to the sessile drop (Eq. A 2). The blue lines are for an axisymmetric drop on a
745
+ fibre, the solid line is equation 2.18 and the dashed line is the approximation given by
746
+ equation 2.19. (d) Dynamics of the contact angle 𝜃 for a sessile drop. (c) – (d) Circles
747
+ represent the apex heights (c) and contact angles (d) of the profiles of drops on fibres
748
+ obtained with our ansatz (Eq. 2.1) and plotted in figure 1(b). Here, the comparisons are
749
+ performed for the same wetted length L/𝑎 ≈ 6.7 and an initial contact angle 𝜃i = 15◦.
750
+ This corresponds to water on glass substrate of initial volume Ω(𝑡 = 0) ≈ 0.6 µL for the
751
+ fibre configuration (𝑎 = 125 µm) and Ω(𝑡 = 0) ≈ 0.1 µL for the sessile case. The initial
752
+ evaporation rate 𝑄e(𝑡 = 0) is nearly the same for the two configurations. For both
753
+ geometries the ambient conditions are taken to be those of water evaporating in dry air at
754
+ 20◦C, 𝑐sat = 1.72 × 10−2 kg/m3, 𝑐∞ = 0 and Dv = 2.36 × 10−5 m2/s (Lide 2008). In this
755
+ conditions, for a drop on a fibre (Ω = 1 µL, 𝜃 = 10◦ and 𝑎 = 125 µm) we obtained by
756
+ numerical simulations 𝑣0e ≈ 4 × 10−7 m/s, 𝛼 = 0.7 and 𝛽 = 0.1 (Fig. 2).
757
+ we find 𝜏e ≈ 90 s. To establish the relationship between time and contact angle, we plot on
758
+ figure 3(d) (circles) the temporal evolution of contact angle obtained from the drop profiles
759
+ represented in figure 3(b) for which we know ℎ0 and 𝜃. In solid black line, we represent
760
+ 𝜃(𝑡) = 𝜃i
761
+ �1 − 𝑡/𝜏dep
762
+ � valid for a sessile drop (Eq. A 2) which also describes very well the
763
+ temporal evolution of the contact angle of a drop on a fibre. We thus find for both geometries
764
+ that ℎ0 ∝ 𝜃 ∝ 𝑡.
765
+ Moreover, as observed in figure 3(b, c), the relative variation of the drop height ℎ0 (and
766
+
767
+ 11
768
+ 0.0
769
+ 0.2
770
+ 0.4
771
+ 0.6
772
+ 0.8
773
+ 1.0
774
+ x/L
775
+ 10−8
776
+ 10−6
777
+ 10−4
778
+ 10−2
779
+ ¯vx(m/s)
780
+ (a)
781
+ θ = 0.1◦
782
+ θ = 1◦
783
+ θ = 5◦
784
+ θ = 10◦
785
+ θ = 15◦
786
+ 0.0
787
+ 0.2
788
+ 0.4
789
+ 0.6
790
+ 0.8
791
+ 1.0
792
+ x/L
793
+ 10−4
794
+ 10−1
795
+ 102
796
+ 105
797
+ Pe
798
+ (b)
799
+ Figure 4: (a) Mean velocity of the flow toward the contact line ¯𝑣𝑥 as a function of the
800
+ dimensionless coordinate 𝑥/L along the solid surface. The comparison is performed for
801
+ water drops in both configurations with the same dimensionless wetted length L/𝑎 ≈ 6.7
802
+ and various contact angles (see caption). Dashed lines correspond to ¯𝑣𝑟 (Eq. (A 6)), the
803
+ average fluid velocity toward the contact line in sessile drops. Solid lines are ¯𝑣𝑧, the
804
+ average fluid velocity in drop on fibre, given by equation (2.21). The dependence of ¯𝑣𝑧 in
805
+ 𝜃 is implicit and contained in the dimensions of the drop which are obtained by fitting
806
+ Carroll’s drop profile with equation (2.1) for each contact angle as done on Fig. 1(b). (b)
807
+ Péclet number Pe deduced from the mean velocity and drop profile (Eqs. (2.1) and (A 1))
808
+ as a function of 𝑥/L. Solid lines correspond to drop on fibre and dashed lines to sessile
809
+ drops having the same wetted length. The solid red line corresponds to Pe = 1. For both
810
+ geometries the ambient conditions are taken to be those of water evaporating in dry air at
811
+ 20◦C, described in the paragraph 3.1 and in the figure 3.
812
+ drop volume) during the pinned regime, is small for the drop on the fibre. During the pinned
813
+ regime, a small amount of the initial volume has evaporated, which means that the duration
814
+ of the pinned regime is short compared to the drop lifetime 𝜏dep ≪ 𝜏e. The remarkable
815
+ difference with the sessile drop is the significant liquid volume remaining at a zero contact
816
+ angle, the contact angle at which the depinning is supposed to occur. We can estimate the
817
+ remaining volume at the end of the pinned regime from equation (2.2). For the geometry
818
+ represented in figure 3(b), we find that only 35 % of the initial volume has evaporated before
819
+ the contact line depinning.
820
+ From this comparison, we can state that the geometry imposes constraints on the dynamics
821
+ of the drop profile. In particular, in contrast to the sessile drop, only a small fraction of the
822
+ liquid volume can evaporate in the constant wetted length regime. Also, on a fibre, a drop
823
+ has two contact lines such that we expect that only one of the two lines depins. At this
824
+ time, the lower quantity of evaporated liquid implies that only a fraction of the particles
825
+ are accumulated at the contact lines and that the complementary fraction of particles is still
826
+ dispersed in the liquid phase. However to compute the number of accumulated particles at
827
+ the contact line the velocity field inside the drop needs to be described which is the object of
828
+ the next section.
829
+ 3.3. Transport of particles toward the contact line
830
+ 3.3.1. Mean flow velocity toward the contact line
831
+ In figure 4(a), we plot ¯𝑣𝑥 for both geometries, 𝑥 being either 𝑧 or 𝑟 according to the geometry.
832
+ In the centre, 𝑥 = 0, the fluid velocity is equal to zero by symmetry. We observe that, at the
833
+ beginning of evaporation, i.e. for 𝜃 = 15◦ the flow towards the contact line is one order of
834
+ magnitude higher in the sessile drop in most of the radial positions. Near the contact line, the
835
+
836
+ 12
837
+ 0.0
838
+ 0.2
839
+ 0.4
840
+ 0.6
841
+ 0.8
842
+ 1.0
843
+ t/τdep
844
+ 0.0
845
+ 0.2
846
+ 0.4
847
+ 0.6
848
+ 0.8
849
+ 1.0
850
+ x/L
851
+ Fibre
852
+ Sessile
853
+ x = x0
854
+ x = x⋆
855
+ Figure 5: Temporal evolution of the dimensionless positions of the advected fluid layer
856
+ 𝑥0/L (solid lines) and of 𝑥★/L (dashed lines) the positions beyond which the Péclet
857
+ number is greater than unity. Blue lines are used for axisymmetric drops on fibres, and
858
+ black lines for sessile drops. Here, the comparison between the two geometries is
859
+ performed in the conditions described in the paragraph 3.1 and in figure 3.
860
+ mean liquid velocity diverges due to the vanishing liquid thickness for both geometries. As
861
+ the liquid evaporates i.e. 𝜃 decreases, the so-called rush-hour effect (Hamamoto et al. 2011;
862
+ Marin et al. 2011a) occurs in the sessile drop, i.e. ¯𝑣𝑟 increases in time. However, ¯𝑣𝑧 remains
863
+ nearly constant for a drop on a fibre. This difference is due to the curvature of the substrate
864
+ that enables the existence of the peculiar axisymmetric barrel morphology, for which the
865
+ variation of the drop profile remains limited when 𝜃 decreases (see Fig. 3(b)) unlike the case
866
+ of the spherical cap on a flat substrate (Fig. 3(a)).
867
+ 3.3.2. Péclet number
868
+ To describe the effective transport of particles toward the contact line, the action of the liquid
869
+ flow on the particles must be compared to the Brownian motion. Particles are transported by
870
+ the shear flow in the drop characterised by the mean shear rate ¯�𝛾 = ¯𝑣(𝑥, 𝑡)/ℎ(𝑥, 𝑡) and also
871
+ by the Brownian motion D = 𝑘B𝑇/(6𝜋𝜂𝑏) where 𝑘B is the Boltzmann constant and 𝑇 the
872
+ temperature. To compare these two competing forces, we introduce the mean Péclet number
873
+ Pe defined as Pe = ¯�𝛾𝑏2/D (Bossis & Brady 1989).
874
+ In figure 4(b), we plot the mean Péclet number Pe as a function of the dimensionless
875
+ position along the solid surface 𝑥/L. As previously we observe that, initially, the mean
876
+ Péclet number is comparable in the two geometries and diverges in the vicinity of the triple
877
+ line where the liquid height vanishes. As the liquid evaporates the mean Péclet number
878
+ strongly increases in the sessile case while it remains constant for the barrel-shaped drop on
879
+ a fibre. Again, we attribute these differences to the difference of morphology between the
880
+ droplets due to the curvature of the substrate.
881
+ 3.4. Number of particles accumulating at the contact line
882
+ 3.4.1. Advection of a slice of fluid
883
+ We consider a fluid layer at a position 𝑥0 of an infinitesimal width d𝑥, which is advected
884
+ toward the contact line at a velocity ¯𝑣𝑥(𝑥0, 𝑡). The advection of a fluid layer is described
885
+
886
+ 13
887
+ by its position 𝑥0(𝑡) that satisfies (Deegan 2000; Popov 2005; Monteux & Lequeux 2011;
888
+ Berteloot et al. 2012)
889
+ d𝑥0
890
+ d𝑡 = ¯𝑣𝑥(𝑥0, 𝑡).
891
+ (3.1)
892
+ For the sessile drop, the solution is recalled in Appendix A (Eq. A 9) and is represented in
893
+ figure 5 in solid black line. For the fibre, the complexity of equation 2.21 makes us unable
894
+ to find an analytical solution of the differential equation (3.1). Instead, we proceed to a
895
+ numerical integration with odeint from scipy (Jones et al. 2001–). The solution is plotted in
896
+ solid blue line in figure 5.
897
+ We define 𝑥★ as the position along the solid surface for which Pe(𝑥★) = 1. For 𝑥 > 𝑥★, we
898
+ have Pe > 1 such that the particles advection by the flow overcome their Brownian diffusion.
899
+ The particles in the volume of liquid enclosed between 𝑥 = 𝑥★ and 𝑥 = L are advected by
900
+ the flow and transported to the triple line.
901
+ In figure 5, we plot in dashed lines 𝑥★/L as a function of the dimensionless time for the
902
+ two geometries. At the beginning of the drying, 𝑥★/L is closed to unity for both geometries.
903
+ This means that the region over which the particles are transported by the liquid flow,
904
+ corresponding to the region between 𝑥 = 𝑥★ and 𝑥 = L, is localised in the close vicinity
905
+ of the contact line at the beginning of evaporation. We even note that initially this region is
906
+ smaller for a sessile drop than for a drop on a fibre 𝑟★/𝑅 < 𝑧★/𝐿. Thus, at the beginning
907
+ of evaporation, the transport of the particles toward the contact line is more efficient for the
908
+ drop on a fibre. However, as the sessile drop evaporates, the region boundary position 𝑟★/𝑅
909
+ continuously decreases to reach zero at the end of the pinned regime (𝑡 = 𝜏dep). On the fibre,
910
+ 𝑧★/𝐿 remains nearly constant, close to unity. In other words, the width of the attraction zone
911
+ in a sessile drop grows as the liquid evaporates. Progressively, this zone occupies the entire
912
+ drop, which leads to transport of the majority of the suspended particles toward the contact
913
+ line. This is not the case for the drop on a fibre for which the zones in which the particles are
914
+ effectively transported by the flow to the contact lines remain small and located in the close
915
+ vicinity of the triple line.
916
+ The curves presented in figure 5 provide a comparison of the relative positions of 𝑥★
917
+ (dashed lines) and 𝑥0 (solid lines). During most of the pinned contact line regime, the area
918
+ bounded by the position of the advected fluid layer 𝑥0 includes small and large Péclet numbers
919
+ domains (𝑥0 < 𝑥★ < L). Exceptions are noticed at short timescales after evaporation starts
920
+ and at the end of the pinned regime for the sessile drop.
921
+ 3.4.2. Particle accumulation dynamics in the large Péclet domain – 𝑥★ < 𝑥0
922
+ If 𝑥★ < 𝑥0, i.e. Pe > 1 between 𝑥0 and L, the particles in this layer are transported toward the
923
+ contact line such that their number is conserved. On the fibre, from the initial concentration
924
+ (number of particles per unit volume) 𝑐i and the initial liquid profile ℎ(𝑧, 𝑡 = 0), the number
925
+ of particles 𝑁CL accumulated at each contact line can be written
926
+ 𝑁fibre
927
+ CL (𝑡) = 𝑐i
928
+
929
+ 𝑎+ℎ(𝑧, 𝑡=0)
930
+ 𝑎
931
+ ∫ 2𝜋
932
+ 0
933
+
934
+ 𝐿
935
+ 𝑧0(𝑡)
936
+ 𝑟d𝑟 d𝜃 d𝑧,
937
+ (3.2)
938
+ which gives,
939
+ 𝑁fibre
940
+ CL (𝑡) = 𝜋𝑐i ℎi 𝐿
941
+
942
+ ℎi P3
943
+ � 𝑧0
944
+ 𝐿
945
+
946
+ + 2𝑎 P4
947
+ � 𝑧0
948
+ 𝐿
949
+ ��
950
+ .
951
+ (3.3)
952
+ with P3(𝑥) = − 𝑥9
953
+ 9 + 4𝑥7
954
+ 7 − 6𝑥5
955
+ 5 + 4𝑥3
956
+ 3 − 𝑥 + 128
957
+ 315 and P4(𝑥) = − 𝑥5
958
+ 5 + 2𝑥3
959
+ 3 − 𝑥 + 8
960
+ 15. The above
961
+ equation is shown as dashed blue line in figure 6. The equivalent calculation for the sessile
962
+ drop is recalled in Appendix A.1 (Eq. A 11) and is represented in dashed grey line in figure 6.
963
+
964
+ 14
965
+ 0.0
966
+ 0.2
967
+ 0.4
968
+ 0.6
969
+ 0.8
970
+ 1.0
971
+ t/τdep
972
+ 0.0
973
+ 0.2
974
+ 0.4
975
+ 0.6
976
+ 0.8
977
+ 1.0
978
+ NCL/Ntot
979
+ 0
980
+ 25
981
+ 50
982
+ 75
983
+ 100
984
+ t (s)
985
+ 0
986
+ 5000
987
+ 10000
988
+ NCL
989
+ Fibre
990
+ z⋆ ≤ z0
991
+ Sessile
992
+ r⋆ ≤ r0
993
+ Figure 6: Time evolution of the dimensionless number of particles at the contact line
994
+ 𝑁CL/𝑁tot. Blue lines represent axisymmetric drops on fibres and black lines sessile drops.
995
+ Solid lines are obtained from equation 3.3 (fibre) or equation A 11 (sessile) when 𝑥0 ⩾ 𝑥★
996
+ and from equation 3.5 (fibre) or equation A 13 (sessile) when 𝑥0 ⩽ 𝑥★. The dashed lines
997
+ represent the results obtained under the assumption that all particles contained between 𝑥0
998
+ and L are transported to the contact line and are plotted from Eq. (A 11) for a sessile drop
999
+ (grey dashed line) and Eq.(3.3) for a drop on a fibre (blue dashed line). Here the
1000
+ comparison between the two geometries is performed in the conditions described in the
1001
+ paragraph 3.1 and in figure 3. The inset shows the temporal evolution of the number of
1002
+ particles 𝑁CL plotted in solid lines in the main figure for an initial particle concentration
1003
+ 𝑐i = 1 × 108 particles/mL.
1004
+ 3.4.3. Particle accumulation dynamics over small and large Péclet domains – 𝑥★ ⩾ 𝑥0
1005
+ Now, if positions 𝑥★ and 𝑥0 are swapped, the number of accumulated particles is decomposed
1006
+ from two contributions. The first contribution, from 𝑥★ to L is equivalent to equation
1007
+ 3.2. In this large Péclet domain, all the particles are advected with an increasing particle
1008
+ concentration as evaporation proceeds. Between 𝑥0 and 𝑥★, the small Péclet number indicates
1009
+ that Brownian motion maintains the particle concentration uniform. Once the fluid layer
1010
+ reaches 𝑥★, particles are advected and concentrated as it is between 𝑥★ and L. Therefore,
1011
+ we evaluate the number of particles in the fluid layer at the position 𝑥★ with a particle
1012
+ concentration 𝑐i. The sum of these two contributions gives
1013
+ 𝑁fibre
1014
+ CL (𝑡) = 𝑐i
1015
+
1016
+ 𝑎+ℎ(𝑧,𝑡=0)
1017
+ 𝑎
1018
+ ∫ 2𝜋
1019
+ 0
1020
+
1021
+ 𝐿
1022
+ 𝑧★ 𝑟d𝑟 d𝜃 d𝑧 + 𝑐i
1023
+
1024
+ 𝑎+ℎ(𝑧★,𝑡=0)
1025
+ 𝑎
1026
+ ∫ 2𝜋
1027
+ 0
1028
+
1029
+ 𝑧★
1030
+ 𝑧0(𝑡)
1031
+ 𝑟d𝑟 d𝜃 d𝑧.
1032
+ (3.4)
1033
+ After integration, we obtain
1034
+ 𝑁fibre
1035
+ CL (𝑡) = 𝜋𝑐i ℎi 𝐿
1036
+ ������
1037
+ ℎi ��
1038
+
1039
+ P3
1040
+ � 𝑧★
1041
+ 𝐿
1042
+
1043
+ +
1044
+
1045
+ 1 −
1046
+ � 𝑧★
1047
+ 𝐿
1048
+ �2�4 � 𝑧★
1049
+ 𝐿 − 𝑧0
1050
+ 𝐿
1051
+
1052
+ ��
1053
+
1054
+ +2𝑎 ��
1055
+
1056
+ P4
1057
+ � 𝑧★
1058
+ 𝐿
1059
+
1060
+ +
1061
+
1062
+ 1 −
1063
+ � 𝑧★
1064
+ 𝐿
1065
+ �2�2 � 𝑧★
1066
+ 𝐿 − 𝑧0
1067
+ 𝐿
1068
+
1069
+ ��
1070
+
1071
+ ������
1072
+ .
1073
+ (3.5)
1074
+ The same calculation is performed in Appendix A.1 for the sessile drop.
1075
+
1076
+ 15
1077
+ Using the appropriate conditions according to the relative positions of 𝑥0 and 𝑥★ shown in
1078
+ figure 5, we plot in solid lines in figure 6 the dimensionless number of particles accumulated
1079
+ at the contact line. In the inset of figure 6, we plot the number of particles accumulated at
1080
+ the triple line over time for an initial concentration of 𝑐i = 1 × 108 particles/mL.
1081
+ Figure 6 shows that the classical calculation (Deegan et al. 2000; Berteloot et al. 2012;
1082
+ Popov 2005; Monteux & Lequeux 2011; Boulogne et al. 2017), made in the literature for a
1083
+ sessile drop, valid if all the particles contained between 𝑥0 and L are transported by the flow,
1084
+ leads to overestimate the number of particles accumulated at the triple line during the first
1085
+ part of the pinned regime. However, at the end of the drying the liquid height tends towards
1086
+ 0 which leads to Pe > 1 in almost the entire drop (cf. Fig. 5) i.e. 𝑟★ ⩽ 𝑟0. The result is that
1087
+ almost all the particles are transported and deposited at the initial position of the contact line
1088
+ during drying, which corresponds to a typical density of 𝑁tot/2𝜋𝑅 ≈ 2 particles/µm in the
1089
+ final deposit. In practice, we must note also that the threshold value Pe = 1 is arbitrary and
1090
+ must be adjusted for a fine quantitative description.
1091
+ For a drop on a fibre, on the other hand, 𝑧★ is almost constant and therefore during most
1092
+ of the pinned regime, 𝑧★ > 𝑧0 which means that the classical calculation of equation 3.3,
1093
+ represented in blue dashed line in figure 6, overestimates the number of particles accumulated
1094
+ at the contact line. Indeed, taking into account the fact that Brownian diffusion dominates
1095
+ in the zone between 𝑧0 and 𝑧★, we obtain a number of particles accumulated at the edge of
1096
+ the drop that is ten times lower than the one obtained by considering that all the particles
1097
+ between 𝑧0 and 𝑧★ are advected by the flow.
1098
+ Figure 6 also shows that the particles contained in the drop on a fibre are transported toward
1099
+ the contact lines. At the end of the pinned regime, the number of particles accumulated at the
1100
+ initial positions of the triple lines of a drop on a fibre corresponds to 𝑁CL(𝜏dep)/2𝜋𝑎 = 0.2
1101
+ particles/µm, which is about 10 times lower than the sessile drop. As shown in the inset, the
1102
+ duration of the pinned regime is approximately the same in both geometries 𝜏fibre
1103
+ dep ≈ 110 s
1104
+ and 𝜏sessile
1105
+ dep
1106
+ ≈ 90 s, but the rate of accumulation of particles at the contact line is lower in the
1107
+ drop on fibre than in the sessile drop. This lower rate can be attributed to the overall lower
1108
+ fluid velocity and the narrow size of the advection-dominated domain in the fibre geometry.
1109
+ Next we want to compare the results of the calculations with what is observed experimen-
1110
+ tally.
1111
+ 4. Experimental observations
1112
+ 4.1. Materials and method
1113
+ We used fluorescent particles of polystyrene (Lifetechnologies) of diameter 2𝑏 = 1 𝜇m,
1114
+ diluted in pure water to a concentration of 𝑐i = 1 × 108 particles/mL. The experiments are
1115
+ performed at 20 ◦C and at a relative humidity between RH = 30 % and RH = 47 %. The
1116
+ drops are deposited on the substrates using a micropipette (Eppendorf 0.1 - 2.5 𝜇L). Images
1117
+ are recorded by using a camera (ORCA-Flash4.0, Hamamatsu).
1118
+ For the sessile drop experiment, the drop is placed on a glass microscope slide washed with
1119
+ distilled water and soap and rinsed with acetone (Fisher, purity ⩾ 99,8 %) and with anhydrous
1120
+ ethanol (Carlo Erba). The observations are made from below using an inverted fluorescence
1121
+ microscope (IX83, Olympus) equipped with a 4× magnification objective (Olympus). For
1122
+ the drop-on-fibre experiments, fibres of radius 𝑎 = 125 𝜇m are supplied by Saint-Gobain and
1123
+ activated by a plasma generator (Electro-Technics Products) prior to the experiments. The
1124
+ drop is observed from the side with a custom horizontal fluorescence microscope equipped
1125
+ with a 5× magnification objective (Mitutoyo). The initial volumes are chosen to have the
1126
+
1127
+ 16
1128
+ Figure 7: Experimental observations of particle transport induced by evaporation. (a,b)
1129
+ Temporal evolution of a drop on a fibre (side view) and on a flat surface (bottom view),
1130
+ respectively. The initial wetted length is 𝑅 = 𝐿 ≈ 0.75 mm. The times framed in red
1131
+ correspond to the moment when the depinning of one of the contact lines occurs. (c,d)
1132
+ Photographs of the corresponding final deposit. The direction of gravity is shown in the
1133
+ pictures. The scale bars represent 0.2 mm and the yellow arrows indicate the initial
1134
+ position of the triple lines. Movies are provided in supplementary materials.
1135
+ same initial wetted length in both geometries, such that 0.7 𝜇L is deposited on the fibre and
1136
+ 0.1 𝜇L on the microscope slide.
1137
+ 4.2. Observations
1138
+ An example of the temporal evolution of the system is shown in figure 7(a) for a drop on
1139
+ a fibre and 7(b) for a sessile drop. The Worthington number associated to the drop on the
1140
+ fibre is Wo ≈ 0.2, validating the small effect of gravity on the drop shape as observed in
1141
+ figure 7(a).
1142
+ One of the main differences between the two geometries is that there is only one contact
1143
+ line in a sessile drop, whereas two independent contact lines exist in a drop on a fibre. In
1144
+ both cases, the contact line depinning from its initial position is indicated by red frames in
1145
+ figures 7(a) and 7(b). The exact depinning time 𝜏dep of one of the two triple lines of a drop on
1146
+ a fibre is difficult to determine experimentally due to the curvature of the substrate and the
1147
+ interface. However, it is observed that, on a fibre, the time during which the wetted length is
1148
+ constant is small compared to the total lifetime of the drop and represents about 1–10 % of
1149
+ the lifetime. This is not observed for a sessile drop where the triple line remains pinned for
1150
+ the majority of the drying time, i.e. 80–90 % of the lifetime. The lifetime of the sessile drop
1151
+ is shorter than the lifetime of the drop on a fibre because its initial volume is lower. Corpart
1152
+ et al. (2022) have shown that the evaporative flux of a barrel-shaped droplet on a fibre is
1153
+
1154
+ 17
1155
+ correctly approximated by the one of a spherical droplet in the same condition, such that
1156
+ the lifetime of a drop on a fibre can be estimated as 𝜌𝐿2/(2Dv[𝑐sat − 𝑐∞]). Comparing this
1157
+ result to the lifetime of a sessile drop defined in equation A 5 for the experimental condition
1158
+ tested here, we obtain 𝜏fibre
1159
+ e
1160
+ /𝜏sessile
1161
+ e
1162
+ ≈ 8/(𝜋𝜃i) ≈ 10 for 𝜃i = 15◦, which is in good agreement
1163
+ with what is measured experimentally as we get 𝜏fibre
1164
+ e
1165
+ /𝜏sessile
1166
+ e
1167
+ ≈ 11.
1168
+ The final deposition is shown in figure 7(c) and figure 7(d) for these two geometries. During
1169
+ the pinned regime of a drop on a fibre, it is observed that the areas over which particles are
1170
+ transported to the triple lines are small and remain localised in the vicinity of the contact
1171
+ line, so that few particles are deposited at the contact lines. Conversely, in a sessile drop
1172
+ evaporating at constant wetted length, we observe that the zone of attraction of the triple
1173
+ line progressively increases over time to finally invade the entire liquid. The particles are
1174
+ therefore mainly transported and deposited at the initial position of the contact line.
1175
+ When one of the two contact lines unpins of the fibre, which is beyond the proposed model,
1176
+ the particles continue to accumulate at the stationary contact line, while the movement of
1177
+ the other triple line generates a complex flow in the drop. This contact line can then anchor
1178
+ again and a complex alternation of the movement of the left and right lines can be noticed,
1179
+ leading to the typical final morphology of the deposit observed in figure 7(c).
1180
+ 4.3. Comparison with the proposed model
1181
+ There is a qualitative agreement between the observations and the predictions of the
1182
+ calculation. Indeed, for the drop on a fibre we observe experimentally that the zone over
1183
+ which the particles are transported towards the triple line is small and remains localised at
1184
+ the edge of the drops during the pinned regime and that there are few particles accumulated
1185
+ at the contact line during the pinned regime. The duration of the pinned regime is also short
1186
+ compared to the lifetime of the drop and when the depinning occurs, there is a significant
1187
+ volume of liquid remaining on the fibre.
1188
+ However, we were unable to obtain a quantitative agreement between the theory and the
1189
+ experiments because of the difficulty of tracking the particles due to the curvature of the
1190
+ substrate and the liquid/air interface. In addition, the area where we can measure the velocity
1191
+ is located at the edge of the drop where the velocity diverges, so we cannot see any difference
1192
+ between the two geometries.
1193
+ 5. Conclusions
1194
+ We conducted a theoretical investigation of the particle accumulation at the contact lines
1195
+ during the pinned contact line regime of an evaporating axisymmetric barrel-shaped drop
1196
+ on a fibre. First, to obtain analytical expressions, we defined a phenomenological equation
1197
+ for the drop shape that we compared to the exact solution. We used a phenomenological
1198
+ model for the evaporation velocity along the liquid-vapour interface, which is supported by a
1199
+ previous study (Corpart et al. 2022). Within the lubrication approximation, we calculated the
1200
+ velocity field toward the contact line. As the advection of particles competes with Brownian
1201
+ motion, we quantify the ability for the liquid flow to effectively transport the particles with
1202
+ a Péclet number. We compared our results to the well-known sessile drop geometry.
1203
+ In our analysis, we highlighted that the liquid morphology is strongly different for both
1204
+ systems due to the fibre curvature. A first consequence is that a large liquid volume remains
1205
+ on the fibre when one of the two contact lines unpins, whereas nearly all the sessile drop
1206
+ is evaporated. A second consequence is that the divergence of the evaporation velocity is
1207
+ localised in the close vicinity of the triple line contrarily to the sessile drop. From these two
1208
+ observations and our calculations, we have shown that the liquid flow velocity far from the
1209
+ contact line is order of magnitudes lower on the fibre, although the initial total evaporation
1210
+
1211
+ 18
1212
+ rates are similar. Nevertheless, the velocity field is not sufficient to obtain a description on
1213
+ the particle transport. As the advection of particles competes with Brownian motion, a Péclet
1214
+ number indicates how effective the particle transport is. In a sessile drop, the domain where
1215
+ advection dominates diffusion grows in time, until a full invasion of the drop at the final stage,
1216
+ which is in perfect agreement with the common observation of an outward radial motion of
1217
+ particles. On the fibre, the situation is strikingly different: advection remains located in a
1218
+ small region near the contact line for the same variation of the contact angle. Therefore the
1219
+ calculated rate of particle accumulation at the contact line is lower in a drop on a fibre than
1220
+ in a sessile drop.
1221
+ As a result, the number of particles accumulated at the contact line at the end of the pinned
1222
+ regime on a fibre is weaker. A unique and rich feature of the fibre geometry is the existence
1223
+ of two contact lines, topologically disconnected. One of them remains pinned and particles
1224
+ keep accumulated in time, while the other one recedes, which brings an interesting dynamics,
1225
+ more complex than the sessile drop. The evaporation dynamics continues with a succession
1226
+ of contact line pinning-depinning, leading to the succession of ring-like deposits shown in
1227
+ figure 7(c). The fine description of the final pattern requires the modelling of the receding
1228
+ contact line (Freed-Brown 2014). Elucidating the receding dynamics of the contact lines
1229
+ induced by evaporation coupled with the particle deposition is an important consideration
1230
+ for future studies.
1231
+ Supplementary data. Supplementary material and movies are available at
1232
+ Acknowledgements. We thank Saint-Gobain and ANRT for funding this study and J. Delavoipière and M.
1233
+ Lamblet for useful discussions.
1234
+ Declaration of interests. The authors report no conflict of interest.
1235
+ Appendix A. Fluid flow of an evaporating sessile drop
1236
+ In this Appendix, we recall some results formerly obtained on the evaporation of a sessile
1237
+ drop with a pinned contact line. These results will be used for quantitatively comparing the
1238
+ evaporation of sessile drop and a drop on a fibre in the next Section.
1239
+ We consider a drop of volatile liquid of the same properties as in the main text and we recall
1240
+ some results in the former works of Deegan (2000); Popov (2005); Stauber et al. (2014);
1241
+ Larson (2014); Boulogne et al. (2017) and summarised recently by Gelderblom et al. (2022).
1242
+ The drop is sitting on a flat surface with a contact angle 𝜃 and a constant contact radius 𝑅.
1243
+ We consider small volume such that the gravitational effects are negligible and the geometry
1244
+ of the liquid is well described by a spherical cap. We assume a small contact angle, which
1245
+ simplifies the description of the drop shape and the evaporative flux. Thus, the drop profile
1246
+ is
1247
+ ℎ(𝑟, 𝑡) = ℎ0(𝑡)
1248
+
1249
+ 1 − 𝑟2
1250
+ 𝑅2
1251
+
1252
+ ,
1253
+ (A 1)
1254
+ where ℎ0(𝑡) ≈ 𝑅𝜃(𝑡)/2 is the height at the apex. In the pinned regime,
1255
+ ℎ0(𝑡) = ℎi
1256
+
1257
+ 1 −
1258
+ 𝑡
1259
+ 𝜏dep
1260
+
1261
+ ,
1262
+ (A 2)
1263
+ with ℎi the initial height of the apex and 𝜏dep the duration of the evaporation process in the
1264
+ pinned regime. For a sessile drop, the receding contact angle tends to zero, in particular due
1265
+ to the presence of particles (Joanny & de Gennes 1984; di Meglio 1992; Boulogne et al.
1266
+ 2016). Therefore, we can estimate with a good approximation that 𝜏dep ≈ 𝜏e, the lifetime of
1267
+ the drop.
1268
+
1269
+ 19
1270
+ In these conditions, the evaporation velocity is
1271
+ 𝑣e(𝑟) = 𝑣0
1272
+ e
1273
+
1274
+ 1 − 𝑟2
1275
+ 𝑅2
1276
+ �−1/2
1277
+ ,
1278
+ (A 3)
1279
+ with the characteristic evaporation velocity 𝑣0
1280
+ e = 2Dv(𝑐sat − 𝑐∞)/(𝜋𝜌𝑅), where Dv is the
1281
+ diffusion coefficient of the vapour in the air. Then, the total evaporative flux is
1282
+ 𝑄e = 4Dv(𝑐sat − 𝑐∞)𝑅.
1283
+ (A 4)
1284
+ From equation (A 4), we can write the evaporative time assuming that all the liquid evaporates
1285
+ during the pinned-regime
1286
+ 𝜏e =
1287
+ 𝜋𝜌ℎi𝑅
1288
+ 8Dv(𝑐sat − 𝑐∞) .
1289
+ (A 5)
1290
+ Under the lubrication approximation, the mean radial velocity is
1291
+ ¯𝑣𝑟 (𝑟, 𝑡) = 𝑣0
1292
+ e
1293
+ 𝑅2
1294
+ 𝑟ℎ(𝑟, 𝑡)
1295
+ ��
1296
+ 1 − 𝑟2
1297
+ 𝑅2
1298
+ �1/2
1299
+
1300
+
1301
+ 1 − 𝑟2
1302
+ 𝑅2
1303
+ �2�
1304
+ ,
1305
+ (A 6)
1306
+ and the radial velocity field corresponds to half of a Poiseuille flow, given by
1307
+ 𝑣𝑟 (𝑟, 𝑧, 𝑡) = 3
1308
+ 2
1309
+ 𝑅2𝑣0
1310
+ e
1311
+ 𝑟ℎ(𝑟, 𝑡)3
1312
+ ��
1313
+ 1 − 𝑟2
1314
+ 𝑅2
1315
+ �1/2
1316
+
1317
+
1318
+ 1 − 𝑟2
1319
+ 𝑅2
1320
+ �2� �
1321
+ 𝑧2 − 2ℎ(𝑟, 𝑡)𝑧
1322
+
1323
+ .
1324
+ (A 7)
1325
+ A.1. Particle accumulation dynamics
1326
+ The number of particles 𝑁CL(𝑡) accumulating at the contact line is the sum of the particles
1327
+ contained in the volume between 𝑟0(𝑡) and 𝑅 where 𝑟0(𝑡) is defined as
1328
+ d𝑟0
1329
+ d𝑡 = ¯𝑣𝑟 (𝑟0(𝑡), 𝑡),
1330
+ (A 8)
1331
+ which leads after integration to
1332
+ 𝑟0(𝑡)
1333
+ 𝑅
1334
+ =
1335
+
1336
+
1337
+
1338
+ 1 −
1339
+
1340
+ 1 −
1341
+
1342
+ 1 − 𝑡
1343
+ 𝜏𝑒
1344
+ �3/4�2/3
1345
+ .
1346
+ (A 9)
1347
+ As presented in Section 3.4.2, the number of accumulated particles in the case 𝑟★ < 𝑟0
1348
+ writes
1349
+ 𝑁sessile
1350
+ CL
1351
+ (𝑡) = 2𝜋𝑐i
1352
+
1353
+ 𝑅
1354
+ 𝑟0(𝑡)
1355
+ ℎ(𝑟′, 𝑡 = 0) 𝑟′d𝑟′,
1356
+ (A 10)
1357
+ where 𝑐i is the initial particle concentration.
1358
+ 𝑁sessile
1359
+ CL
1360
+ (𝑡) = 2𝜋𝑐iℎi𝑅2
1361
+ �1
1362
+ 4 − 1
1363
+ 2
1364
+ 𝑟0(𝑡)2
1365
+ 𝑅2
1366
+ + 1
1367
+ 4
1368
+ 𝑟0(𝑡)4
1369
+ 𝑅4
1370
+
1371
+ ,
1372
+ (A 11)
1373
+ For the other case where 𝑟★ > 𝑟0, we have
1374
+ 𝑁sessile
1375
+ CL
1376
+ (𝑡) = 𝑐i
1377
+
1378
+ 𝑅
1379
+ 𝑟★
1380
+ ∫ 2𝜋
1381
+ 0
1382
+ ∫ ℎ(𝑟,𝑡=0)
1383
+ 0
1384
+ 𝑟d𝑟 d𝜃 d𝑧 + 𝑐i
1385
+ ∫ 𝑟★
1386
+ 𝑟0
1387
+ ∫ 2𝜋
1388
+ 0
1389
+ ∫ ℎ(𝑟★,𝑡=0)
1390
+ 0
1391
+ 𝑟d𝑟 d�� d𝑧, (A 12)
1392
+
1393
+ 20
1394
+ which writes after integration:
1395
+ 𝑁sessile
1396
+ CL
1397
+ (𝑡) = 2𝜋𝑐iℎi𝑅2
1398
+
1399
+ 1
1400
+ 4 − 1
1401
+ 4
1402
+ 𝑟★(𝑡)4
1403
+ 𝑅4
1404
+ − 1
1405
+ 2
1406
+ 𝑟2
1407
+ 0(𝑡)
1408
+ 𝑅2
1409
+
1410
+ 1 − 𝑟★(𝑡)2
1411
+ 𝑅2
1412
+ ��
1413
+ .
1414
+ (A 13)
1415
+ REFERENCES
1416
+ Abramowitz, M. & Stegun, I.A. 1972 Handbook of Mathematical Functions with Formulas, Graphs, and
1417
+ Mathematical Tables.. New York: Dover.
1418
+ Batchelor, G.K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.
1419
+ Berteloot, G., Hoang, A., Daerr, A., Kavehpour, H.P, Lequeux, F. & Limat, L. 2012 Evaporation of a
1420
+ sessile droplet: Inside the coffee stain. Journal of Colloid and Interface Science 370, 155–161.
1421
+ Bossis, G. & Brady, J. F. 1989 The rheology of Brownian suspensions. The Journal of Chemical Physics
1422
+ 91 (3), 1866–1874.
1423
+ Boulogne, F., Ingremeau, F., Dervaux, J., Limat, L. & Stone, H. A. 2015 Homogeneous deposition of
1424
+ particles by absorption on hydrogels. Europhysics Letters 112 (4), 48004.
1425
+ Boulogne, F., Ingremeau, F., Limat, L. & Stone, H. A. 2016 Tuning the receding contact angle on
1426
+ hydrogels by addition of particles. Langmuir 32 (22), 5573–5579.
1427
+ Boulogne, F., Ingremeau, F. & Stone, H. A. 2017 Coffee-stain growth dynamics on dry and wet surfaces.
1428
+ Journal of Physics: Condensed Matter 29 (7), 074001.
1429
+ Brochard-Wyart, F., Di Meglio, J.-M., Quere, D. & De Gennes, P.-G. 1991 Spreading of nonvolatile
1430
+ liquids in a continuum picture. Langmuir 7 (2), 335–338.
1431
+ Brutin, D. & Starov, V. 2018 Recent advances in droplet wetting and evaporation. Chem. Soc. Rev. 47,
1432
+ 558–585.
1433
+ Carroll, B.J. 1976 The accurate measurement of contact angle, phase contact areas, drop volume, and
1434
+ Laplace excess pressure in drop-on-fiber systems. Journal of Colloid and Interface Science 57 (3),
1435
+ 488–495.
1436
+ Cazabat, A.-M. & Guéna, G. 2010 Evaporation of macroscopic sessile droplets. Soft Matter 6 (12),
1437
+ 2591–2612.
1438
+ Chou, T.-H., Hong, S.-J., Liang, Y.-E., Tsao, H.-K. & Sheng, Y.-J. 2011 Equilibrium phase diagram of
1439
+ drop-on-fiber: Coexistent states and gravity effect. Langmuir 27 (7), 3685–3692.
1440
+ Cooke, J. Robert 1967 Some theoretical considerations in stomatal diffusion: A field theory approach. Acta
1441
+ Biotheoretica 17 (3), 95–124.
1442
+ Corpart, M., Dervaux, J., Poulard, C., Restagno, F. & Boulogne, F. 2022 Evaporation of a liquid
1443
+ coated on a fiber. Europhysics Letters 139 (4), 43001.
1444
+ Deegan, R. D. 2000 Pattern formation in drying drops. Phys. Rev. E 61, 475–485.
1445
+ Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 1997 Capillary flow
1446
+ as the cause of ring stains from dried liquid drops. Nature 389 (6653), 827–829.
1447
+ Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R. & Witten, T. A. 2000 Contact line
1448
+ deposits in an evaporating drop. Phys. Rev. E 62, 756–765.
1449
+ Duprat, C. 2022 Moisture in textiles. Annual Review of Fluid Mechanics 54 (1), 443–467.
1450
+ Ferguson, A. 1912 XXXVIII. Photographic measurements of pendent drops. The London, Edinburgh, and
1451
+ Dublin Philosophical Magazine and Journal of Science 23 (135), 417–430.
1452
+ Freed-Brown, J. 2014 Evaporative deposition in receding drops. Soft Matter 10, 9506–9510.
1453
+ Gelderblom, H., Diddens, C. & Marin, A 2022 Evaporation-driven liquid flow in sessile droplets. Soft
1454
+ Matter 18, 8535–8553.
1455
+ Gelderblom, H., Marin, A. G., Nair, H., van Houselt, A., Lefferts, L., Snoeijer, J. H. & Lohse, D.
1456
+ 2011 How water droplets evaporate on a superhydrophobic substrate. Phys. Rev. E 83, 026306.
1457
+ Gupta, A., Konicek, A. R., King, Mark A., Iqtidar, A., Yeganeh, M. S. & Stone, H. A. 2021 Effect
1458
+ of gravity on the shape of a droplet on a fiber: Nearly axisymmetric profiles with experimental
1459
+ validation. Phys. Rev. Fluids 6, 063602.
1460
+ Hamamoto, Y., Christy, J. R. E. & Sefiane, K. 2011 Order-of-magnitude increase in flow velocity driven
1461
+ by mass conservation during the evaporation of sessile drops. Phys. Rev. E 83, 051602.
1462
+ Hu, H. & Larson, R. G. 2005 Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir
1463
+ 21 (9), 3963–3971.
1464
+
1465
+ 21
1466
+ Joanny, J. F. & de Gennes, P. G. 1984 A model for contact angle hysteresis. Journal of Chemical Physics
1467
+ 81 (1), 552–562.
1468
+ Jones, E., Oliphant, T., Peterson, P. & others 2001– SciPy: Open source scientific tools for Python.
1469
+ Kajiya, T., Kobayashi, W., Okuzono, T. & Doi, M. 2009 Controlling the drying and film formation
1470
+ processes of polymer solution droplets with addition of small amount of surfactants. The Journal of
1471
+ Physical Chemistry B 113 (47), 15460–15466.
1472
+ Kim, H., Boulogne, F., Um, E., Jacobi, I., Button, E. & Stone, H. A. 2016 Controlled uniform coating
1473
+ from the interplay of Marangoni flows and surface-adsorbed macromolecules. Physical Review
1474
+ Letters 116, 124501.
1475
+ Larson, R. G. 2014 Transport and deposition patterns in drying sessile droplets. AIChE Journal 60 (5),
1476
+ 1538–1571.
1477
+ Lide, D.R., ed. 2008 CRC Handbook of Chemistry and Physics, 89th edn. CRC Press/Taylor and Francis.
1478
+ Lorenceau, E., Senden, T. & Quéré, D. 2006 Wetting of fibers. In Molecular Gels (ed. Richard G. Weiss
1479
+ & Pierre Terech), pp. 223–237. Springer Netherlands.
1480
+ Mampallil, D. & Eral, H. B. 2018 A review on suppression and utilization of the coffee-ring effect.
1481
+ Advances in Colloid and Interface Science 252, 38–54.
1482
+ Marin, A. G., Gelderblom, H., Lohse, D. & Snoeijer, J. H. 2011a Order-to-disorder transition in ring-
1483
+ shaped colloidal stains. Phys. Rev. Lett. 107, 085502.
1484
+ Marin, A. G., Gelderblom, H., Lohse, D. & Snoeijer, J. H. 2011b Rush-hour in evaporating coffee drops.
1485
+ Physics of Fluids 23 (9), 091111.
1486
+ di Meglio, J.-M. 1992 Contact angle hysteresis and interacting surface defects. Europhysics Letters 17 (7),
1487
+ 607.
1488
+ Monteux, C. & Lequeux, F. 2011 Packing and sorting colloids at the contact line of a drying drop.
1489
+ Langmuir 27 (6), 2917–2922.
1490
+ Pahlavan, A. A., Yang, L., Bain, C.D. & Stone, H.A. 2021 Evaporation of binary-mixture liquid droplets:
1491
+ The formation of picoliter pancakelike shapes. Phys. Rev. Lett. 127, 024501.
1492
+ Pham, N. T., McHale, G., Newton, M. I., Carroll, B. J. & Rowan, S. M. 2002 Investigation of deposition
1493
+ of monodisperse particles onto fibers. Langmuir 18 (12), 4979–4983.
1494
+ Picknett, R.G. & Bexon, R. 1977 The evaporation of sessile or pendant drops in still air. Journal of Colloid
1495
+ and Interface Science 61 (2), 336–350.
1496
+ Popov, Y. O. 2005 Evaporative deposition patterns: Spatial dimensions of the deposit. Phys. Rev. E 71,
1497
+ 036313.
1498
+ Pradhan, T. K. & Panigrahi, P. K. 2015 Deposition pattern of interacting droplets. Colloids and Surfaces
1499
+ A: Physicochemical and Engineering Aspects 482, 562–567.
1500
+ Protiere, S., Duprat, C. & Stone, H. A. 2012 Wetting on two parallel fibers: drop to column transitions.
1501
+ Soft Matter 9, 271–276.
1502
+ Routh, A. F. 2013 Drying of thin colloidal films. Reports on Progress in Physics 76 (4), 046603.
1503
+ Sauret, A., Boulogne, F., Soh, B., Dressaire, E. & Stone, H. A. 2015 Wetting morphologies on randomly
1504
+ oriented fibers. The European Physical Journal E 38 (6), 62.
1505
+ Sempels, W., De Dier, R., Mizuno, H., Hofkens, J. & Vermant, J. 2013 Auto-production of biosurfactants
1506
+ reverses the coffee ring effect in a bacterial system. Nat Commun 4, 1757.
1507
+ Sreznevsky, B. 1882 Zh. Russ. Fiz. Khim. Obshchest 14, 420–483.
1508
+ Stauber, J.M., Wilson, S.K., Duffy, B.R. & Sefiane, K. 2014 On the lifetimes of evaporating droplets.
1509
+ Journal of Fluid Mechanics .
1510
+ Wilson, S. K. & D’Ambrosio, H.-M. 2023 Evaporation of sessile droplets. Annual Review of Fluid
1511
+ Mechanics 55 (1).
1512
+ Worthington, A.M. 1885 IV. Note on a point in the theory of pendent drops. The London, Edinburgh, and
1513
+ Dublin Philosophical Magazine and Journal of Science 19 (116), 46–48.
1514
+ Wray, A. W., Duffy, B. R. & Wilson, S. K. 2020 Competitive evaporation of multiple sessile droplets.
1515
+ Journal of Fluid Mechanics 884, A45.
1516
+ Wray, A. W., Wray, P. S., Duffy, B. R. & Wilson, S. K. 2021 Contact-line deposits from multiple
1517
+ evaporating droplets. Phys. Rev. Fluids 6, 073604.
1518
+ Zheng, R. 2009 A study of the evaporative deposition process: Pipes and truncated transport dynamics. The
1519
+ European Physical Journal E 29 (2), 205–218.
1520
+
QNE2T4oBgHgl3EQfrwi3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
RNFAT4oBgHgl3EQf0x4X/content/tmp_files/2301.08705v1.pdf.txt ADDED
@@ -0,0 +1,1626 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.08705v1 [nlin.SI] 20 Jan 2023
2
+ Multi-soliton solutions of the sine-Gordon equation with
3
+ elliptic-function background
4
+ Daisuke A. Takahashi1,2∗
5
+ 1Research and Education Center for Natural Sciences, Keio University, Hiyoshi 4-1-1,
6
+ Yokohama, Kanagawa 223-8521, Japan
7
+ 2Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551,
8
+ Japan
9
+ E-mail: [email protected]
10
+ Abstract.
11
+ The multi-soliton solution of the sine-Gordon equation in the presence of elliptic-
12
+ function background is derived by the inverse scattering method.
13
+ The key tool in our
14
+ formulation is the Lax pair written by 4×4 matrix differential operators given by Takhtadzhyan
15
+ and Faddeev in 1974, which enables us to use the conventional form of the integral
16
+ representation of the Jost solutions and Krichever’s theory of commuting differential operators.
17
+ As a by-product we also provide generalized orthogonality and completeness relations for
18
+ eigenfunctions associated with indefinite inner product. The multi-soliton solution is expressed
19
+ by a determinant of theta functions and the shift of the background lattice due to solitons is
20
+ also determined using addition formula. One kink and one breather solutions are presented by
21
+ animated gifs.
22
+ 1. Introduction
23
+ The sine-Gordon (SG) equation has a wide variety of applications in physics and other natural
24
+ sciences. For example, it appears as a continuum limit of the Frenkel-Kontorowa model
25
+ describing the commensurate-incommensurate transition (Ref. [1], chapter 6 and Ref. [2],
26
+ chapter 10), the effective model for the chiral magnet and soliton propagation on it [3, 4],
27
+ and kinks in the long Josephson junction of superconductors [5, 6, 7]. The model where the
28
+ partial derivative is changed from hyperbolic to elliptic type has also been solved and applied
29
+ to vortices and dislocations in spatially two-dimensional systems [8, 9, 10]. The rogue-wave
30
+ solutions with unstable background has been recently investigated [11]. From the view of
31
+ the theory of classical integrable systems, the SG equation is one of the earliest equations
32
+ formulated via the zero-curvature expression, known as the Ablowitz-Kaup-Newell-Segur
33
+ (AKNS) formalism [12, 13]. The analogical integrable models with higher group symmetries
34
+ have been also investigated (Ref. [14] and references found in Ref. [15], part II, chapter I, §8).
35
+ In some of the above-mentioned works, the multi-soliton excited states not only for
36
+ uniform background but also for oscillating non-uniform background attract considerable
37
+ physical attention. While the multi-soliton solutions of an integrable equation in the presence
38
+ of the elliptic-function, or more general quasiperiodic Riemann theta function background,
39
+ can be in principle obtained by taking a special limit of the finite-zone quasiperiodic
40
+ solutions [16], the procedure is often complicated. Furthermore, in physical applications, the
41
+ eigenfunctions of the Lax pair, which is necessary in construction of soliton solutions, often
42
+ ∗ The current primary affiliation is 2.
43
+
44
+ 2
45
+ play additional roles in, e.g., calculation of dispersion relations of linearized waves and linear
46
+ stability analysis. Therefore, constructing the soliton solutions with non-uniform background
47
+ not from a degenerate case of quasiperiodic solutions but by adding solitons to the stationary
48
+ background using eigenfunctions of the Lax pair via various conventional methods provides
49
+ helpful by-products in investigation of physical phenomena.
50
+ Motivated by these circumstances, in this paper, we derive the multi-soliton solution
51
+ of the SG equation in the presence of elliptic-function background. Though this problem
52
+ itself has been solved in many references including the above-mentioned ones, we believe
53
+ that the following features (i)-(iii) will bring some new light. (i) We use the Lax formalism
54
+ based on 4 × 4 matrix differential operator by Takhtadzhyan and Faddeev [17], which is a
55
+ variant of the Lax pair written by an integral operator [18]. While the famous treatment
56
+ of the SG equation in soliton theory is the zero-curvature expression using 2 × 2 matrices
57
+ which depend on the spectral parameter [12, 13], the use of this method has the following
58
+ advantages: (a) the theory of commuting differential operators [19] can be applied and (b)
59
+ the common integral representation of Jost solutions can be used without modification so we
60
+ do not need trial and error to find suitable form. (ii) The final expression of the multi-soliton
61
+ solution, which is obtained by formulating the inverse scattering method (ISM) and solving
62
+ the Gelfand-Levitan-Marchenko (GLM) equation, is compactly summarized as a determinant
63
+ of theta functions, and its asymptotic form is also derived using the addition formulas in
64
+ Ref. [20]. (iii) The orthogonal and completeness relations of eigenfunctions arising from the
65
+ indefinite inner product is discussed in detail, which is necessary in formulation of the ISM
66
+ and determination of the possible emerging patterns of discrete eigenvalues corresponding
67
+ to solitons.
68
+ This treatment is regarded as a generalization of the corresponding finite-
69
+ dimensional linear algebra [21] to continuous space and differential operators.
70
+ The organization of this paper is as follows. In Sec. 2, we write down the Lax pair of the
71
+ SG equation. In Sec. 3, we point out that the Lax operators are “σ-self-adjoint”, and introduce
72
+ the associated indefinite inner product which defines the generalized orthogonal relations to
73
+ eigenfunctions. In Sec. 4, we derive simultaneous eigenfunctions of the Lax pair for the
74
+ stationary soliton lattice solution, and identify the corresponding algebraic curve, based on
75
+ the theory of commuting differential operators [19]. The eigenvalues and eigenfunctions are
76
+ parametrized by uniformization variable on torus, and their symmetries are also presented.
77
+ In Sec. 5, we define left and right Jost solutions and the scattering matrix for the system
78
+ where the background potential asymptotically tends to the stationary soliton lattice at spatial
79
+ infinities. In Sec. 6, we introduce the integral representation of the Jost solution, and present
80
+ the GLM equation which determines the kernel function of the integral representation from the
81
+ scattering data. In Sec. 7, we solve the GLM equation for reflectionless case and determine the
82
+ multi-soliton solution, which is expressed by determinant of theta functions. The phase shift
83
+ of the background lattice is also found. In Sec. 8, by solving the time-dependent Lax equation,
84
+ we determine the time-evolution of the scattering matrix, and using this, we derive the time-
85
+ dependent multi-soliton solution for the SG equation. In Sec. 9, we provide the constraint
86
+ that the discrete eigenvalues must satisfy in order for the resultant solution to become real
87
+ and bounded. In Sec. 10, we address the gif animations of the soliton solutions generated
88
+ by Mathematica.
89
+ The method of visualization and used numerical values are presented.
90
+ Sec. 11 is devoted to summary and discussion. The appendices discuss several technical
91
+ details.
92
+ In Appendix A, the integration formula necessary to obtain the eigenfunction is
93
+ presented. In Appendix B, we show the detailed derivation of the eigenfunctions given in
94
+ Sec. 4. In Appendix C, we derive the completeness relation for eigenfunctions of the soliton
95
+ lattice potential. There, we also discuss several technical important points on, e.g., the zero-
96
+ norm eigenfunction defined by indefinite inner product and the necessity of the expression
97
+
98
+ 3
99
+ by meromorphic integrand. In Appendix D, we provide the detailed derivation of the GLM
100
+ equation. In Appendix E, we calculate the determinant of theta functions appearing in the
101
+ asymptotic form of the soliton solution using addition formulas.
102
+ 2. Lax pair
103
+ We write an n × n identity and zero matrix as In and On. Let σ1, σ2, and σ3 be the Pauli
104
+ matrices. The Lax pair and the Lax equation for the SG equation is given by [17]
105
+ 4i∂ ˆL
106
+ ∂t = [ ˆL, ˆB],
107
+ (2.1)
108
+ ˆL = −4i∂x
109
+ �σ3
110
+ O2
111
+
112
+ +
113
+ � iσ1w
114
+ e−iφσ2/2
115
+ e−iφσ2/2
116
+ O2
117
+
118
+ ,
119
+ w = φx + φt,
120
+ (2.2)
121
+ ˆB = 4i∂x
122
+ �I2
123
+ −I2
124
+
125
+ − 2
126
+
127
+ σ3e−iφσ2/2
128
+ e−iφσ2/2σ3
129
+
130
+ .
131
+ (2.3)
132
+ Equation (2.1) then reduces to the SG equation
133
+ φtt − φxx + sin φ = 0.
134
+ (2.4)
135
+ Here we slightly changed prefactors of operators and choice of the SU(2) basis in the way
136
+ (σ1, σ2, σ3) → (σ1, σ3, −σ2) from the original work Ref. [17]. This makes no essential
137
+ difference in formulation.
138
+ 3. Symmetry of the Lax operator and orthogonality of eigenfunctions
139
+ Henceforth we simply write σ := σ3 ⊕ σ3 = I2 ⊗ σ3. Then, ˆL and ˆB are both “σ-self-
140
+ adjoint”[21], i.e.,
141
+ σ ˆL†σ = ˆL,
142
+ σ ˆB†σ = ˆB.
143
+ (3.1)
144
+ Therefore the orthogonal and completeness relations of eigenfunctions of these operators are
145
+ defined through the indefinite inner product, called “σ-inner product” in [21] : (f1, f2)σ :=
146
+
147
+ dxf †
148
+ 1 σf2. The correct identification of the completeness relation is important in derivation
149
+ of the GLM equation (Appendix C and Appendix D).
150
+ Following the established procedure of the ISM, we first consider the eigenvalue problem
151
+ of ˆL. Since the highest-order coefficient matrix of ˆL is given by σ3 ⊕ O2, which obviously
152
+ has rank 2, there exist two linearly independent eigenfunctions for a given eigenvalue λ. They
153
+ can be written in the form f =
154
+
155
+ g
156
+ λ−1e−iφσ2/2g
157
+
158
+ with g a two-component column vector. If we
159
+ rewrite the equation with respect to g using the light-cone coordinate x′ = x+t
160
+ 2 , t′ = x−t
161
+ 2 , the
162
+ famous 2 × 2 AKNS form [12] is reproduced. Let f1 =
163
+
164
+ g1
165
+ 1
166
+ λ e−iφσ2/2g1
167
+
168
+ and f2 =
169
+
170
+ g2
171
+ 1
172
+ λ e−iφσ2/2g2
173
+
174
+ be
175
+ eigenfunctions of ˆL with eigenvalues λ1 and λ2. Then, we can show
176
+ 4i
177
+
178
+ f †
179
+ 1 (I2 ⊕ O2)f2
180
+
181
+ x = (λ∗
182
+ 1 − λ2)f †
183
+ 1 σf2.
184
+ (3.2)
185
+ Therefore, if λ∗
186
+ 1 � λ2, then we have
187
+
188
+ dxf †
189
+ 1 σf2 = 0, which is the above-mentioned
190
+ orthogonality.
191
+ On the other hand, when λ∗
192
+ 1 = λ2, we obtain f †
193
+ 1 (I2 ⊕ O2)f2 = g†
194
+ 1g2 =
195
+ (x-independent). We can also show that if λ1 = λ2, det(g1, g2) does not depend on x, which
196
+
197
+ 4
198
+ can be more easily shown using the AKNS form.
199
+ In addition to Eq. (3.1), ˆL further has the following symmetry:
200
+ (I2 ⊗ σ2) ˆL(I2 ⊗ σ2) = ˆL∗,
201
+ (σ3 ⊗ σ2) ˆL(σ3 ⊗ σ2) = − ˆL,
202
+ (3.3)
203
+ which immediately means
204
+ ˆLf = λf
205
+
206
+ ˆL[(I2 ⊗ σ2)f ∗] = λ∗(I2 ⊗ σ2)f ∗
207
+
208
+ ˆL[(σ3 ⊗ σ2)f] = −λ(σ3 ⊗ σ2)f
209
+
210
+ ˆL[(σ3 ⊗ I2)f ∗] = −λ∗(σ3 ⊗ I2)f ∗.
211
+ (3.4)
212
+ Thus the eigenvalues λ, λ∗, −λ, −λ∗ always appear simultaneously.
213
+ ˆL also has a little unfamiliar symmetry:
214
+ ˆL f = λf
215
+
216
+ ˜L[(σ2 ⊗ σ3)f] = −λ−1(σ2 ⊗ σ3)f,
217
+ (3.5)
218
+ ˜L := an operator such that w in ˆL is replaced by ˜w = 2φx − w.
219
+ (3.6)
220
+ We thus find the identity
221
+ ˆL−1 = −(σ2 ⊗ σ3) ˜L(σ2 ⊗ σ3).
222
+ (3.7)
223
+ It is unusual that the inverse of a matrix differential operator can be written down explicitly,
224
+ and furthermore, its expression does not include an integral operator. Such situation seems to
225
+ occur when the highest-order coefficient matrix is not full-rank, which is −4iσ3 ⊕ O2 for the
226
+ present ˆL.
227
+ In particular, for the stationary solution of the SG equation φt = 0, we find w = ˜w = φx
228
+ and hence ˆL = ˜L. In this case ˆL−1 = −(σ2 ⊗ σ3) ˆL(σ2 ⊗ σ3) holds and the eigenvalues λ
229
+ and −λ−1 appear in pairs. We, however, again emphasize that this relation does not hold for
230
+ general w � φx, and therefore when we consider the scattering matrix S in the ISM in Sec. 5,
231
+ we must not impose this symmetry to ˆL.
232
+ 4. Soliton lattice solution, Riemann surface, and eigenfunctions
233
+ Let us consider the eigenfunction for the stationary solution, which we henceforth write
234
+ φ0(x). Since the Lax pair commutes [ ˆL, ˆB] = 0 for the stationary solution, we consider the
235
+ simultaneous eigenfunction:
236
+ ˆLf0 = λf0,
237
+ ˆBf0 = ωf0.
238
+ (4.1)
239
+ We first determine φ0(x). The first integral for the stationary SG equation is
240
+ φ2
241
+ 0x + 2 cos φ0 = 4
242
+ m − 2
243
+
244
+ ( 1
245
+ 2φ0x)2
246
+ 1 − m sin2 φ0−π
247
+ 2
248
+ = 1
249
+ m.
250
+ (4.2)
251
+ Integrating this equation once again yields the soliton lattice solution as
252
+ φ0(x) = π + 2 am
253
+
254
+ x
255
+ √m
256
+ ���m
257
+
258
+ ,
259
+ (4.3)
260
+ φ′
261
+ 0(x) =
262
+ 2
263
+ √m dn
264
+
265
+ x
266
+ √m
267
+ ���m
268
+
269
+ ,
270
+ cos φ0(x)
271
+ 2
272
+ = − sn
273
+
274
+ x
275
+ √m
276
+ ���m
277
+
278
+ ,
279
+ sin φ0(x)
280
+ 2
281
+ = cn
282
+
283
+ x
284
+ √m
285
+ ���m
286
+
287
+ .
288
+ (4.4)
289
+ Here and henceforth, we use the notations of elliptic functions in the Abramowitz-Stegun
290
+ book [22] unless otherwise noted. If 0 < m < 1, it is the rotating solution. If m = 1, it
291
+
292
+ 5
293
+ represents the stationary one-kink solution, and if m > 1, it is an oscillating solution. In
294
+ this paper we only consider the rotating background 0 < m < 1. Generally, the pair of
295
+ commuting differential operators satisfies an algebraic relation P( ˆL, ˆB) = 0 [19]. Strictly
296
+ speaking, Krichever’s original paper [19] only consider the case where the highest-order
297
+ coefficient matrices of the matrix differential operators are invertible, but similar nature can
298
+ be seen even if this assumption is not satisfied and an algebraic curve can be defined in many
299
+ cases. In the present case, P(λ, ω) = 0 gives a genus-one curve, i.e., an elliptic curve:
300
+ λ2ω2 = λ4 + 2
301
+ � 2
302
+ m − 1
303
+
304
+ λ2 + 1.
305
+ (4.5)
306
+ It can be parametrized by elliptic functions:
307
+ λ(z) = −i √m sn(iz|m) cn(iz|m)
308
+ dn(iz|m)
309
+ = i √m sn(iz|m) sn(iz − K|m),
310
+ (4.6)
311
+ ω(z) = sn2(iz|m) − sn2(iz − K|m)
312
+ λ(z)
313
+ ,
314
+ (4.7)
315
+ where K = K(m) and K′ = K(1 − m). The eigenfunction f0(x, z) for the above parametrized
316
+ eigenvalue λ = λ(z) and the corresponding crystal momentum k(z) is
317
+ k(z) = Z(2iz + iK′|m) + Z(2iz − iK′|m)
318
+ 4i √m
319
+ ,
320
+ (4.8)
321
+ f0(x, z) = eik(z)xΘ4(0)
322
+ 2Θ4( x
323
+ √m)
324
+ 
325
+ Θ1( x
326
+ √m − iz)/Θ4(iz)
327
+ Θ2( x
328
+ √m − iz)/Θ3(iz)
329
+ −iΘ4( x
330
+ √m − iz)/Θ1(iz)
331
+ −iΘ3( x
332
+ √m − iz)/Θ2(iz)
333
+ 
334
+ .
335
+ (4.9)
336
+ Here, we define the scaled theta functions by Θi(u|m) := [ϑi( πu
337
+ 2K , q)]Abramowitz-Stegun with the
338
+ nome q = e−πK′/K, and the second argument m is omitted. Using this scaled theta function,
339
+ the Jacobi zeta function is expressed as Z(u|m) =
340
+ d
341
+ du ln Θ4(u|m). The derivation of Eqs. (4.8)
342
+ and (4.9) are given in Appendix B.
343
+ λ(z), ω(z), k(z) satisfy the following (quasi-)periodicity, parity, and the complex
344
+ conjugation relations:
345
+ λ(z) = (−1)l+nλ(z + nK′ + ilK)(−1)n = −λ(−z) = λ(z∗)∗,
346
+ (4.10)
347
+ ω(z) = (−1)nω(z + nK′ + ilK) = −ω(−z) = ω(z∗)∗,
348
+ (4.11)
349
+ k(z) = k(z + nK′ + ilK) +
350
+
351
+ 2K √m = −k(−z) = k(z∗),
352
+ (4.12)
353
+ for n, l ∈ Z. The eigenfunction f0(x, z) also has the symmetries
354
+ f0(x, z + nK′ + ilK) = il �
355
+ (σl
356
+ 3σn
357
+ 2) ⊗ (σl
358
+ 2σn
359
+ 3)
360
+
361
+ f0(x, z),
362
+ (4.13)
363
+ f0(x, −z∗) = (σ3 ⊗ I2)f0(x, z)∗.
364
+ (4.14)
365
+ The two linearly independent solution for a given eigenvalue λ = λ(z) are f0(x, z) and
366
+ f0(x, −z − iK), because λ(z) = λ(−z − iK).
367
+ To cover all eigenfunctions, the region we must consider is the rectangle with vertices
368
+ z = ±K′ ± iK, which is the fundamental period parallelogram of λ(z).
369
+ The bounded
370
+
371
+ 6
372
+ eigenfunctions with k(z) ∈ R, i.e., the scattering eigenstates, lie on the lines z ∈ R + iK
373
+ 2 Z,
374
+ and there are four independent lines in one fundamental period parallelogram. Among them,
375
+ R, R−iK gives monotonically increasing k(z) and real λ(z), while R± iK
376
+ 2 gives monotonically
377
+ decreasing k(z) and pure imaginary λ(z).
378
+ The region satisfying Im k(z) > 0 is given by
379
+ −K < Im z < − K
380
+ 2 , 0 < Im z < K
381
+ 2 , and the positions of zeros of a(z) corresponding to bound
382
+ eigenstates are chosen from this region in Sec. 6.
383
+ The completeness relation satisfied for scattering eigenstates is
384
+ δ(x − y)I4 =
385
+
386
+ C1+C2
387
+ dz
388
+ 2π f0(x, z)f0(y, z∗)†σ.
389
+ (4.15)
390
+ Here, C1 is the rectangular contour passing through the vertices −K′ → K′ → K′ + iK
391
+ 2 →
392
+ −K′ + iK
393
+ 2 → −K′ and C2 is the one −K′ − iK → K′ − iK → K′ − iK
394
+ 2 → −K′ − iK
395
+ 2 → −K′ − iK.
396
+ Note that the integrations along vertical lines cancel out due to the periodicity. Therefore,
397
+ the actual path with non-zero contribution is
398
+
399
+ C1+C2 =
400
+ � K′
401
+ −K′ −
402
+ � K′+ iK
403
+ 2
404
+ −K′+ iK
405
+ 2 +
406
+ � K′−iK
407
+ −K′−iK −
408
+ � K′− iK
409
+ 2
410
+ −K′− iK
411
+ 2 . The
412
+ derivation of Eq. (4.15) is given in Appendix C.
413
+ 5. Scattering matrix
414
+ Henceforth, we consider the scattering problem under the condition that the background
415
+ potential tends to the stationary soliton lattice at spatial infinities x → ±∞. Let the potential
416
+ φ(x) satisfy the boundary condition
417
+ φ(x) →
418
+ 
419
+ φ0(x)
420
+ (x → −∞),
421
+ φ0(x − x0)
422
+ (x → +∞),
423
+ (5.1)
424
+ where x0 represents the phase shift of the background lattice caused by solitons and ripple
425
+ waves. We define the left and right Jost solutions by the asymptotic form
426
+ f−(x, z) → f0(x, z)
427
+ (x → −∞),
428
+ (5.2)
429
+ f+(x, z) → f0(x − x0, z)
430
+ (x → +∞).
431
+ (5.3)
432
+ The scattering matrix S (z) is then defined by the linear transformation between these two:
433
+
434
+ f+(x, z)
435
+ f+(x, −z − iK)
436
+
437
+ =
438
+
439
+ f−(x, z)
440
+ f−(x, −z − iK)
441
+
442
+ S (z).
443
+ (5.4)
444
+ The uniqueness of the definition of the Jost solution by its asymptotic form and the properties
445
+ of eigenfunctions (4.13) and (4.14) imply
446
+ f±(x, z) = (−iσ3 ⊗ σ2)l f±(x, z + 2nK′ + ilK) = (σ3 ⊗ I2)f±(x, −z∗)∗,
447
+ n, l ∈ Z.
448
+ (5.5)
449
+ Note that while f0(x, z) has an additional symmetry with respect to translation of z by
450
+ (2n + 1)K′ (see Eq. (4.13)), the corresponding symmetry does not exist for Jost solutions
451
+ f±(x, z), because this additional symmetry is coming from special nature of φ0(x) satisfying
452
+ ˆL = ˜L in Eqs. (3.5)-(3.7). Combining Eqs. (5.4) and (5.5), we have
453
+ S (z) = σl
454
+ 3S (z + 2nK′ + ilK)σl
455
+ 3 = S (−z∗)∗ = σ1S (−z − iK)σ1,
456
+ n, l ∈ Z.
457
+ (5.6)
458
+ Equating the integration constant obtained by integrating Eq. (3.2) at x → ±∞, we find
459
+ S (z)−1 = S (z∗)†.
460
+ (5.7)
461
+
462
+ 7
463
+ We can also show det S = 1 from the constancy of the Wronskian det(g1, g2) (see the sentence
464
+ after Eq. (3.2)). Therefore, S and its inverse matrix has the forms
465
+ S (z) =
466
+ �a(z)
467
+ −b(z∗)∗
468
+ b(z)
469
+ a(z∗)∗
470
+
471
+ ,
472
+ (5.8)
473
+ S (z)−1 =
474
+ �a(z∗)∗
475
+ b(z∗)∗
476
+ −b(z)
477
+ a(z)
478
+
479
+ ,
480
+ (5.9)
481
+ with matrix elements satisfying
482
+ a(z)a(z∗)∗ + b(z)b(z∗)∗ = 1,
483
+ (5.10)
484
+ a(z) = a(−z∗)∗ = a(z − iK),
485
+ b(z) = b(−z∗)∗ = −b(z − iK).
486
+ (5.11)
487
+ From this, the zeros of a(z) always appear simultaneously at four points z, −z∗, z−iK, −z∗−iK,
488
+ and the orders of these zeros are the same.
489
+ 6. Integral representation of Jost solution and Gelfand-Levitan-Marchenko equation
490
+ Let us introduce the integral representation for the left Jost solution
491
+ f−(x, z) = f0(x, z) +
492
+ � x
493
+ −∞
494
+ dyΓ(x, y)f0(y, z).
495
+ (6.1)
496
+ The kernel function Γ(x, y) is a 4 × 4 matrix and assumed to decrease exponentially in the
497
+ limits x, y → −∞.
498
+ In order for this integral to converge, the integrand must decrease
499
+ y → −∞, and this condition is satisfied at least for eigenfunctions with Im k ≤ 0, i.e.,
500
+ −K/2 ≤ Im z ≤ 0, K/2 ≤ Im z ≤ K. From Eq. (3.4), we immediately conclude that
501
+ Γ(x, y) = (σ3 ⊗ σ2)Γ(x, y)(σ3 ⊗ σ2) = (σ3 ⊗ I2)Γ(x, y)∗(σ3 ⊗ I2) = (I2 ⊗ σ2)Γ(x, y)∗(I2 ⊗ σ2).
502
+ (6.2)
503
+ Let us now write
504
+ ˆL0(x) = −4iσ3 ⊕ O2 + U0(x),
505
+ U0(x) =
506
+ � iσ1w0
507
+ e−iφ0σ2/2
508
+ e−iφ0σ2/2
509
+ O2
510
+
511
+ ,
512
+ (6.3)
513
+ ˆL(x) = −4iσ3 ⊕ O2 + U(x),
514
+ U0(x) =
515
+ � iσ1w
516
+ e−iφσ2/2
517
+ e−iφσ2/2
518
+ O2
519
+
520
+ .
521
+ (6.4)
522
+ Following the same derivation as Ref. [23], section 2.8, (In the present case, the first-order
523
+ coefficient matrix of ˆL is not full-rank, but it makes no difference to the proof.)
524
+ U(x) − U0(x) = 4i�σ3 ⊕ O2, Γ(x, x)�,
525
+ (6.5)
526
+ ˆL(x)Γ(x, y) = Γ(x, y) ˆL0(y).
527
+ (6.6)
528
+ From Eq. (6.5),
529
+ w = w0 + 2Γ12,
530
+ (6.7)
531
+ eiφ/2 = eiφ0/2 + 4(iΓ13 + Γ14).
532
+
533
+ ↔ cos φ
534
+ 2 = cos φ0
535
+ 2 + 4iΓ13, sin φ
536
+ 2 = sin φ0
537
+ 2 − 4iΓ14.
538
+
539
+ ,
540
+ (6.8)
541
+ where we briefly write the matrix element of Γ(x, x) as Γi j = [Γ(x, x)]i j. Note that Γ12, iΓ13,
542
+ and iΓ14 are real-valued functions due to Eq. (6.2). Using these relations, we can re-construct
543
+
544
+ 8
545
+ the potential from the kernel Γ, which is determined from scattering data by solving the GLM
546
+ equation shown below.
547
+ The integral kernel Γ(x, y) is uniquely determined from the following scattering data: (i)
548
+ the values of the reflection coefficient for scattering states r(z) = b(z)/a(z), where scattering
549
+ states mean the bounded eigenfunction s.t. k(z) ∈ R, appearing on lines z ∈ R + iK
550
+ 2 Z, and (ii)
551
+ the list of the zeros of a(z), which we write z1, . . . , zn, and the normalization factor c2
552
+ j := b(z j)
553
+ i˙a(z j),
554
+ where zj’s are to be chosen from the region Im k(zj) > 0, and due to the property (5.11),
555
+ the zeros simultaneously appear at z, −z∗, z − iK, −z∗ − iK. The values of c2
556
+ j also have some
557
+ constraint, whose detail will be described in Sec. 9. Here, we only treat the case where all
558
+ zeros of a(z) are first order. For uniform background, the solitons corresponding to higher-
559
+ order zeros are discussed in Ref. [24]. The case of unstable uniform background is considered
560
+ in Ref. [25].
561
+ The GLM equation that determines the kernel Γ(x, y) from the above-mentioned
562
+ scattering data is given by
563
+ Γ(x, y) + Ω(x, y) +
564
+ � x
565
+ −∞
566
+ dwΓ(x, w)Ω(w, y) = 0,
567
+ y ≤ x.
568
+ (6.9)
569
+ Here, Ω = Ωbd + Ωsc with
570
+ Ωbd(x, y) := W(x)W(y)T(I2 ⊗ σ1),
571
+ (6.10)
572
+ W(x) := −iσ3 ⊗ σ2 (f0(x, −z1)c1, . . ., f0(x, −zn)cn) ,
573
+ (6.11)
574
+ Ωsc(x, y) :=
575
+ 
576
+ � K′
577
+ −K′ −
578
+ � K′+ iK
579
+ 2
580
+ −K′+ iK
581
+ 2
582
+ +
583
+ � K′+iK
584
+ −K′−iK
585
+
586
+ � K′− iK
587
+ 2
588
+ −K′− iK
589
+ 2
590
+ 
591
+ dz
592
+ 2π f0(x, −z − iK)r(z)f0(y, z∗)†σ.
593
+ (6.12)
594
+ Ωbd represents the contribution from bound states, and Ωsc is that from scattering states. The
595
+ derivation of the GLM equation (6.9) with (6.10)-(6.12) is given in Appendix D.
596
+ 7. Reflectionless potentials
597
+ Let us solve the GLM equation (6.9) for the reflectionless case, i.e., Ωsc = 0. The ansatz for
598
+ the kernel Γ(x, y) is as follows. Let us introduce the notation H(x) = (h1(x), . . ., hn(x)), where
599
+ each hi(x) is four-component column vector. We then assume
600
+ Γ(x, y) = H(x)W(y)T(I2 ⊗ σ1).
601
+ (7.1)
602
+ Substituting it to the GLM equation, we obtain the equation for H(x):
603
+ H(x) + W(x) + H(x)G(x) = 0,
604
+ (7.2)
605
+ where we define the n × n Gram matrix by
606
+ G(x) =
607
+ � x
608
+ −∞
609
+ dyW(y)T(I2 ⊗ σ1)W(y).
610
+ (7.3)
611
+ From Eq. (7.2), H = −W(In+G)−1. Let Gl j(x) be the (l, j)-component of G(x). Using Eq. (3.2)
612
+ and the symmetries of λ(z) and f0(x, z), Eqs. (4.10), (4.13), and (4.14), we find
613
+ Gl j(x) = clc j
614
+ 4 f0(x, −zl)T(σ2 ⊕ O2)f0(x, −zj)
615
+ λ(zl) − λ(zj)
616
+ .
617
+ (7.4)
618
+
619
+ 9
620
+ It can be simplified using the Weierstrass three-term formula in Ref. [20], Eq. (3.8). The result
621
+ is
622
+ Gl j(x) = clc je−i[k(zl)+k(z j)]x Θ2Θ4Θ3( x
623
+ √m + i(zl + zj))
624
+ Θ3Θ2(i(zl + zj))Θ4( x
625
+ √m) .
626
+ (7.5)
627
+ Thus,
628
+ Γ(x, y) = −W(x)[In + G(x)]−1W(y)T(I2 ⊗ σ1).
629
+ (7.6)
630
+ Let us write W as an array of row vectors: W =
631
+ 
632
+ W1
633
+ W2
634
+ W3
635
+ W4
636
+ , where each Wi is a 1 × n row vector.
637
+ Then we get the expressions Γ13 = −W1(In + G)−1WT
638
+ 4 , Γ14 = −W1(In + G)−1WT
639
+ 3 . Using the
640
+ relation (6.8) and the Woodbury-type identity 1 + ⃗a†A−1⃗b = det(A+⃗b⃗a†)
641
+ det A
642
+ ,
643
+ cos φ
644
+ 2 = cos φ0
645
+ 2 + 4iΓ13 =
646
+
647
+ cos φ0
648
+ 2
649
+ � det(I + P)
650
+ det(I + G),
651
+ Pi j = Gi j −
652
+ 4i
653
+ cos φ0
654
+ 2
655
+ f03(x, −zi)f02(x, −zj),
656
+ (7.7)
657
+ sin φ
658
+ 2 = sin φ0
659
+ 2 − 4iΓ14 =
660
+
661
+ sin φ0
662
+ 2
663
+ � det(I + Q)
664
+ det(I + G),
665
+ Qi j = Gi j −
666
+ 4i
667
+ sin φ0
668
+ 2
669
+ f04(x, −zi)f02(x, −zj),
670
+ (7.8)
671
+ where f0 j(x, z) represents the j-th component of f0(x, z) defined by (4.9).
672
+ These can
673
+ be simplified by using Ref. [20], Eq. (3.5b).
674
+ Rewriting C j =
675
+ 1
676
+ c2
677
+ j
678
+ √m, and introducing
679
+ new matrices G, P, Q through the relations Gi j
680
+ =
681
+ m1/4cic je−i[k(zi)+k(z j)]xGi j,
682
+ Pi j
683
+ =
684
+ m1/4cic je−i[k(zi)+k(z j)]xPi j, Qi j = m1/4cic je−i[k(zi)+k(z j)]xQi j, we obtain the final expressions
685
+ cos φ
686
+ 2 =
687
+
688
+ cos φ0
689
+ 2
690
+ � det(E + P)
691
+ det(E + G),
692
+ (7.9)
693
+ sin φ
694
+ 2 =
695
+
696
+ sin φ0
697
+ 2
698
+ � det(E + Q)
699
+ det(E + G),
700
+ (7.10)
701
+ where the components of n × n matrices E, G, P, and Q are given by
702
+ Ei j = δi jC je2ik(z j)x,
703
+ (7.11)
704
+ Gi j =
705
+ Θ4Θ3( x
706
+ √m + i(zi + zj))
707
+ Θ2(i(zi + zj))Θ4( x
708
+ √m) ,
709
+ (7.12)
710
+ Pi j =
711
+ �Θ4(izi)
712
+ Θ1(izi)
713
+ � 
714
+ −Θ4Θ2( x
715
+ √m + i(zi + zj))
716
+ Θ2(i(zi + zj))Θ1( x
717
+ √m)
718
+ 
719
+ �Θ2(izj)
720
+ Θ3(izj)
721
+
722
+ ,
723
+ (7.13)
724
+ Qi j =
725
+ �Θ4(izi)
726
+ Θ2(izi)
727
+ � 
728
+ Θ4Θ1( x
729
+ √m + i(zi + zj))
730
+ Θ2(i(zi + zj))Θ2( x
731
+ √m)
732
+ 
733
+ �Θ1(izj)
734
+ Θ3(izj)
735
+
736
+ .
737
+ (7.14)
738
+ Since the wavenumbers used to make bound states all satisfy Im k(zj) > 0,
739
+ E →
740
+ 
741
+
742
+ (x → −∞),
743
+ 0
744
+ (x → +∞).
745
+ (7.15)
746
+
747
+ 10
748
+ Therefore, the asymptotic form of φ is given by
749
+ cos φ
750
+ 2 →
751
+ 
752
+ cos φ0
753
+ 2
754
+ (x → −∞),
755
+ cos φ0
756
+ 2 det PG−1
757
+ (x → +∞),
758
+ (7.16)
759
+ sin φ
760
+ 2 →
761
+ 
762
+ sin φ0
763
+ 2
764
+ (x → −∞),
765
+ sin φ0
766
+ 2 det QG−1
767
+ (x → +∞).
768
+ (7.17)
769
+ The determinant appearing in x → +∞ is calculated in Appendix E. The resultant asymptotic
770
+ form is
771
+ φ(x) →
772
+ 
773
+ φ(x)
774
+ (x → −∞),
775
+ φ(x − x0)
776
+ (x → +∞),
777
+ (7.18)
778
+ x0 := −2i √m
779
+ n
780
+
781
+ j=1
782
+ zn.
783
+ (7.19)
784
+ x0 has the meaning of the phase shift of the background lattice caused by solitons. The
785
+ realness of x0 follows from the fact that the zeros of a(z) always simultaneously emerge at
786
+ four points z, z − iK, −z∗, and −z∗ − iK.
787
+ 8. Time evolution
788
+ Finally, let us determine the time dependence of scattering matrix if the system obeys the Lax
789
+ equation (2.1). Let f be a time-dependent eigenfunction of ˆL. Then, the Lax equation implies
790
+ ˆLf = λf,
791
+ (8.1)
792
+ 4ift = − ˆBf.
793
+ (8.2)
794
+ We now define the time-dependent eigenfunction by the initial condition ˜f+(t = 0, x, z) =
795
+ f+(x, z). Though ˆB is now a time-dependent operator for finite x, it is time-independent at
796
+ x → ±∞. Therefore, the asymptotic forms of this ˜f+(t, x, z) is given by
797
+ ( ˜f+(t, x, z), ˜f+(t, x, −z − iK)) →
798
+ 
799
+ (f0(x, z), f0(x, −z − iK))eiω(z)tσ3/4S (z)
800
+ (x → −∞),
801
+ (f0(x − x0, z), f0(x − x0, −z − iK))eiω(z)tσ3/4
802
+ (x → +∞).
803
+ (8.3)
804
+ Here, we have used the relation ω(−z − iK) = −ω(z). Therefore, if we define the time-
805
+ dependent right Jost solution by the asymptotic form f+(t, x, z) → f0(x − x0, z) for x →
806
+ +∞, which is different from ˜f+(t, x, z), then the relation ( ˜f+(t, x, z), ˜f+(t, x, −z − iK)) =
807
+ (f+(t, x, z), f+(t, x, −z − iK))eiω(z)t/4 holds. Then the time evolution of the scattering matrix
808
+ is given by
809
+ S (t, z) = eiω(z)tσ3/4S (z)e−iω(z)tσ3/4,
810
+ (8.4)
811
+ or for each component,
812
+ a(t, z) = a(z),
813
+ b(t, z) = e−iω(z)t/2b(z).
814
+ (8.5)
815
+ Since C j is defined by C j =
816
+ 1
817
+ c2
818
+ j
819
+ √m =
820
+ i˙a(z j)
821
+ √mb(z j), its time evolution is written as
822
+ C j(t) = C jeiω(z j)t/2.
823
+ (8.6)
824
+
825
+ 11
826
+ Therefore, we can define the time-dependent Ei j(t) as follows. In Eq. (7.11), we replace C j
827
+ by C j(t) = C jeiω(z j)t/2, i.e.,
828
+ Ei j(t) = δi jC je2ik(z j)x+iω(z j)t/2.
829
+ (8.7)
830
+ Then the time-dependent solution of the SG equation is given by replacing E with E(t) in Eqs.
831
+ (7.9) and (7.10):
832
+ cos φ
833
+ 2 =
834
+
835
+ cos φ0
836
+ 2
837
+ � det(E(t) + P)
838
+ det(E(t) + G),
839
+ (8.8)
840
+ sin φ
841
+ 2 =
842
+
843
+ sin φ0
844
+ 2
845
+ � det(E(t) + Q)
846
+ det(E(t) + G),
847
+ (8.9)
848
+ where the definition of G, P, and Q remains unchanged (Eqs. (7.12)-(7.14)).
849
+ 9. Limitation to eigenvalues zj’s and normalization coefficients C j’s
850
+ In order for the function φ(x, t) to be real and bounded, zj’s, which are the zeros of a(z)
851
+ corresponding to the discrete eigenvalues for bound states, and the normalization coefficients
852
+ C j’s must satisfy several conditions.1 Here we describe it.
853
+ First, depending on its value, zj’s must satisfy the following (i) or (ii):
854
+ (i) zj, zj − iK, −z∗
855
+ j, −z∗
856
+ j − iK appear simultaneously. Due to this symmetry, one of these
857
+ four zj can be chosen from 0 ≤ Re zj ≤ K′, 0 < Im zj < K
858
+ 2 without loss of generality.
859
+ (ii) If, as a special case, zj = irj or zj = irj + K′ with rj ∈ (0, K
860
+ 2 ), then just two zeros zj and
861
+ zj − iK appear simultaneously.
862
+ The case (i) corresponds to the breather solution and the case (ii) the traveling one kink
863
+ solution. The total number of zj’s are always even. If there are breathers and even number of
864
+ kinks, the number is a multiple of four, while if there exists odd number of kinks, the number
865
+ is of the form 4n + 2. The velocity of the soliton is given by v j = − Im ω(z j)
866
+ 4 Im k(z j). In particular,
867
+ for one kink solution, it reduces to v j = − ω(z j)
868
+ 4k(z j), which is negative if zj = irj and positive if
869
+ zj = irj + K′.
870
+ Next let us consider the condition for C j’s. By Eq. (5.11), the derivative of a(z) satisfies
871
+ ˙a(z) = −˙a(−z∗)∗ = ˙a(z − iK),
872
+ (9.1)
873
+ and thus if we define
874
+ C(z) :=
875
+ i˙a(z)
876
+ √mb(z),
877
+ (9.2)
878
+ then it has the symmetry
879
+ C(z) = C(−z∗)∗ = −C(z − iK).
880
+ (9.3)
881
+ This symmetry is the same as that of b(z) given in Eq. (5.11). Therefore, for the breather
882
+ solution where four zeros appear, if we temporarily write these four as zj, zj+1 = zj−iK, zj+2 =
883
+ −z∗
884
+ j, zj+3 = −z∗
885
+ j − iK, then we should choose the corresponding coefficients as C j+1 =
886
+ −C j, C j+2 = C∗
887
+ j, C j+3 = −C∗
888
+ j. For the kink solution, where two zeros zj and zj+1 = zj − iK
889
+ appear, C j+1 = −C j are both real and must have the opposite sign. Whether the solution
890
+ becomes kink or anti-kink, i.e., the phase rotation becomes counterclockwise or clockwise, is
891
+ determined by which one is chosen positive.
892
+ 1 If we consider application to scientific problems where the complex-valued and/or divergent solutions have some
893
+ appropriate physical interpretations, the restriction stated here can be loosened.
894
+
895
+ 12
896
+ Figure 1. A snapshot of one kink solution. The number of zeros is n = 2 and the parameters
897
+ are m = 0.95, z1 = 0.02iK + K′, z2 = z1 − iK, C1 = −1, C2 = −C1. The snapshot at t = 1.
898
+ 10. Animation of soliton solutions
899
+ Here, we present a few examples of the soliton solutions, Eqs. (8.8) and (8.9), by gif
900
+ animations. We visualize the solution through the 3D plot (x, cos φ(x, t), sin φ(x, t)). An
901
+ example of snapshot is shown in Fig. 1. See attached files, testx.gif with x=1,2, and 3. Below,
902
+ we provide the parameters for each solution. We write K = K(m) and K′ = K(1 − m).
903
+ (i) test1.gif: one kink solution.
904
+ The number of zeros is n = 2. The parameters are m = 0.99, z1 = 0.02iK + K′, z2 =
905
+ z1 − iK, C1 = −1, C2 = −C1. The time range is −10 ≤ t ≤ 10.
906
+ (ii) test2.gif: one anti-kink solution.
907
+ C1 = 1, C2 = −C1, and other parameters are the same as (i).
908
+ (iii) test3.gif: one breather solution.
909
+ The number of zeros is n = 4. The parameters are m = 0.99, z1 = 0.1iK + 0.5K′, z2 =
910
+ z1 − iK, z3 = −z∗
911
+ 1, z4 = −z∗
912
+ 2, C1 = −1, C2 = −C1, C3 = C∗
913
+ 1, C4 = C∗
914
+ 2. The time range
915
+ is −10 ≤ t ≤ 10.
916
+ Solutions with more number of solitons will be generated using the Mathematica file in google
917
+ drive.2
918
+ 11. Summary and discussion
919
+ In this paper, we have derived the multi-soliton solutions of the SG equation with elliptic-
920
+ function background by the ISM. The result is expressed by a determinant of theta functions,
921
+ i.e., Eqs. (8.8) and (8.9). The shift of the background lattice caused by solitons (7.18) with
922
+ (7.19) has also been found using the addition formula of theta functions. One key tool in our
923
+ work is the Lax pair represented by 4×4 matrix differential operators (2.2) and (2.3), originally
924
+ introduced in Ref. [17]. This most conventional but seemingly outdated approach makes
925
+ it possible to use the common form of the integral representation of the Jost solution (6.1)
926
+ 2 In this file, since the default build-in Jacobi elliptic functions are a little slow, the functions defined by the ratio of
927
+ theta functions are used alternatively.
928
+
929
+ -10
930
+ .5
931
+ 10 -213
932
+ without modification and the formulation of the ISM is simplified. Also, the completeness
933
+ relations in an indefinite inner product space, which is necessary in the formulation of the
934
+ ISM, has been discussed in detail (Appendix C). Application to various physical phenomena
935
+ including the dynamics of defects with periodic background, extension to unstable oscillating
936
+ background (m > 1) and studying multi rogue waves, and the solitons associated with higher-
937
+ order zeros of a(z), are left as possible future works.
938
+ Before concluding, we provide several technical remarks and perspectives.
939
+ In this
940
+ work, we can introduce the concept of orthogonality between eigenfunctions based on the
941
+ indefinite inner product, since the Lax operators have the symmetry (3.1). If the Lax pair
942
+ has no such symmetry and any inner product cannot be defined, the completeness relation
943
+ will be constructed from the set of left and right eigenfunctions, an analog of left and right
944
+ eigenvectors for finite dimensional matrix. Such basis is sometimes called a bi-orthogonal
945
+ basis.
946
+ Whether we can always reduce the classical integrable systems written by zero-curvature
947
+ condition (or a compatibility condition) and/or the Lax pair including an integral operator to
948
+ the Lax formalism with differential operators seems to be unclear. (The inverse operation
949
+ is easy; if one has an integrable equation written by the Lax form using matrix differential
950
+ operators, one can immediately rewrite it in a zero-curvature expression.) If we can do it,
951
+ the integral representation of the Jost solution will be widely applicable and multi-soliton
952
+ solutions will be easily obtained by the dressing method [26], where we can even omit the
953
+ full formulation of the ISM if we do not have an interest in general initial-value problem. We
954
+ also note that, as emphasized in Secs. 3 and 4, the highest-order coefficient matrix of the Lax
955
+ operator ˆL is not full-rank and ˆL−1 can be written down explicitly without using an integral
956
+ operator. Though we do not show detail here, a similar property also emerges in the derivative
957
+ nonlinear Schr¨odinger equation, which is usually treated by the Kaup-Newell form. That is,
958
+ if we rewrite it to the Lax form, the highest-order coefficient matrix is not full-rank. Even in
959
+ these systems, the algebraic curve from the pair of commuting operators can be appropriately
960
+ defined (see Eq. (4.5)), though, strictly speaking, these cases are not included in the seminal
961
+ work [19]. Exploring these examples more comprehensively and exhaustively might bring a
962
+ slight extension to the theory of commuting differential operators.
963
+ Acknowledgments
964
+ This work was supported by MEXT-Supported Program Grant No. S1511006 and JSPS
965
+ KAKENHI Grant No. JP19H05821.
966
+ Appendix A. Integral often emerging in calculation of eigenfunctions for elliptic
967
+ potentials
968
+ Let us define scd(z|m) := sn(z|m) cn(z|m) dn(z|m). When an elliptic-function potential is given
969
+ in some hierarchy of integrable systems, the calculation of its eigenfunctions often reduces to
970
+ the following integral:
971
+
972
+ dxα[scd(αx) + scd β]
973
+ sn2(αx) − sn2 β
974
+ = αZ(β)x + ln Θ1(αx − β)
975
+ Θ4(β)Θ4(αx),
976
+ (A.1)
977
+ even if the corresponding Riemann surface has higher genus g > 1. This formula can be
978
+ derived by using [27], appendix B. If we interpret this formula using Weierstrass’s functions,
979
+ it reduces to the formula given in Ref. [28], II, Kap. 6, §3, and is called the standard form
980
+
981
+ 14
982
+ of the elliptic integral of the third kind. Using it, the solution to the first-order differential
983
+ equation
984
+ fx
985
+ f = γ + α[scd αx + scd β]
986
+ sn2 αx − sn2 β
987
+ (A.2)
988
+ is given by
989
+ f(x) = Ceikx Θ1(αx − β)
990
+ Θ4(β)Θ4(αx), k = −i(γ + αZ(β)).
991
+ (A.3)
992
+ If m ∈ [0, 1], α > 0, and k is real, then f becomes a twisted periodic function
993
+ f
994
+
995
+ x + 4Kl
996
+ α
997
+
998
+ = eik 4Kl
999
+ α f(x),
1000
+ l ∈ Z.
1001
+ (A.4)
1002
+ Therefore, if k can be physically interpreted to be crystal momentum of the Bloch function, it
1003
+ is defined up to mod απ
1004
+ 2K and the corresponding Brillouin zone is given by [− απ
1005
+ 4K , απ
1006
+ 4K ].
1007
+ Appendix B. Eigenfunctions for soliton lattice
1008
+ In this appendix, we derive the simultaneous eigenfunction f0(x, z) with its crystal momentum
1009
+ k(z) in Eqs. (4.8) and (4.9) for the time-independent Lax pair ˆL and ˆB with the soliton lattice
1010
+ potential (4.3), when the eigenvalues are parametrized by Eqs. (4.6) and (4.7). The method is
1011
+ in fact the special case of the one given by Krichever [19].
1012
+ Let us write f0 =
1013
+
1014
+ g
1015
+ 1
1016
+ λ e−iφσ2g
1017
+
1018
+ , where g is a two-component vector g = � g1
1019
+ g2
1020
+ �. Eliminating g′
1021
+ 1
1022
+ and g′
1023
+ 2 using the eigenequation of ˆL in Eq. (4.1), and substituting them to that of ˆB, one obtains
1024
+ two linear relations with respect to g1 and g2. The determinant of this coefficient matrix must
1025
+ vanish, which gives an elliptic curve (4.5). Using it, one can eliminate either of g1 and g2 and
1026
+ obtain the first-order differential equation only containing one function:
1027
+ g′
1028
+ 1
1029
+ g1
1030
+ = −i(2λ − ω)
1031
+ 4
1032
+ +
1033
+ i(−1 + λ4 − 2λ3ω + λ2ω2)
1034
+ 2λ(−1 + λ2 − λω + 2 cos2 φ0
1035
+ 2 )
1036
+ +
1037
+ −φ0x cos φ0
1038
+ 2 sin φ0
1039
+ 2
1040
+ −1 + λ2 − λω + 2 cos2 φ0
1041
+ 2
1042
+ ,
1043
+ (B.1)
1044
+ g′
1045
+ 2
1046
+ g2
1047
+ = i(2λ + ω)
1048
+ 4
1049
+ + −i(−1 + λ4 + 2λ3ω + λ2ω2)
1050
+ 2λ(−1 + λ2 + λω + 2 cos2 φ0
1051
+ 2 )
1052
+ +
1053
+ −φ0x cos φ0
1054
+ 2 sin φ0
1055
+ 2
1056
+ −1 + λ2 + λω + 2 cos2 φ0
1057
+ 2
1058
+ .
1059
+ (B.2)
1060
+ Using Eq. (4.4) and the parametrizations (4.6) and (4.7), the above equations reduce to
1061
+ g′
1062
+ 1
1063
+ g1
1064
+ = −i(2λ − ω)
1065
+ 4
1066
+ +
1067
+ 1
1068
+ √m
1069
+ scd( x
1070
+ √m) + scd(iz)
1071
+ sn2( x
1072
+ √m) − sn2(iz) ,
1073
+ (B.3)
1074
+ g′
1075
+ 2
1076
+ g2
1077
+ = i(2λ + ω)
1078
+ 4
1079
+ +
1080
+ 1
1081
+ √m
1082
+ scd( x
1083
+ √m) + scd(iz − K)
1084
+ sn2( x
1085
+ √m) − sn2(iz − K) .
1086
+ (B.4)
1087
+ Therefore, using the formula in Appendix A, we find
1088
+ g1 = C1eik1x Θ1( x
1089
+ √m − iz)
1090
+ Θ4(iz)Θ4( x
1091
+ √m), k1 = ω − 2λ
1092
+ 4
1093
+
1094
+ i√mZ(iz),
1095
+ (B.5)
1096
+ g2 = C2eik2x Θ2( x
1097
+ √m − iz)
1098
+ Θ3(iz)Θ4( x
1099
+ √m), k2 = ω + 2λ
1100
+ 4
1101
+
1102
+ i√mZ(iz − K).
1103
+ (B.6)
1104
+
1105
+ 15
1106
+ Due to the Bloch (Floquet) theorem, g1 and g2 must share the same crystal momentum, i.e.,
1107
+ k1 and k2 must be related by k1 ≡ k2 mod
1108
+ π
1109
+ 2 √mK . In fact, using the periodicity of the Jacobi
1110
+ elliptic and zeta functions, we can check k1 = k2. Therefore, henceforth we simply write
1111
+ k1 = k2 = k(z). The ratio C1/C2 must also be fixed. Rewriting g1/g2 using the Jacobi elliptic
1112
+ function, and checking its consistency with the linear relation between g1 and g2 obtained
1113
+ from the eigenequation of ˆB, we find C1/C2 = 1.
1114
+ The crystal momentum k(z) can be further simplified as follows. The derivative k′(z) can
1115
+ be simplified using the double-angle formula of the cs function:
1116
+ k′(z) =
1117
+ 1
1118
+ √m
1119
+
1120
+ − cs2(2iz) − E
1121
+ K
1122
+
1123
+ =
1124
+ 1
1125
+ 2 √m
1126
+
1127
+ dn2(2iz + iK′) + dn2(2iz − iK′) − 2E
1128
+ K
1129
+
1130
+ .
1131
+ (B.7)
1132
+ Since Z′ = dn2 − E
1133
+ K , integrating this expression soon gives the Jacobi zeta function. Further-
1134
+ more, the constant of integration can be fixed using some specific value at any point, e.g.,
1135
+ k1( K′
1136
+ 2 ) = −
1137
+ π
1138
+ 4K √m. Thus we obtain Eq. (4.8).
1139
+ The third and fourth components of the eigenfunction, g3 = λ−1
1140
+
1141
+ − sn( x
1142
+ √m)g1 − cn( x
1143
+ √m)g2
1144
+
1145
+ and g4 = λ−1
1146
+
1147
+ cn( x
1148
+ √m)g1 − sn( x
1149
+ √m)g2
1150
+
1151
+ , can be simplified using another expression of Eq. (4.6),
1152
+ λ(z) = −i Θ1(iz)Θ2(iz)
1153
+ Θ3(iz)Θ4(iz), and the addition formula of theta functions, in particular, Ref. [20],
1154
+ Eqs. (3.5b) and (3.8). The final expression is then given by Eq. (4.9).
1155
+ Appendix C. Completeness relation
1156
+ In this appendix, we derive the completeness relation (4.15) for eigenfunctions of the soliton
1157
+ lattice potential φ0(x) of Eq. (4.3).3
1158
+ The first important point is that ˆL is not self-adjoint, i.e., ˆL† � ˆL and instead satisfies
1159
+ ˆL† = σ ˆLσ with σ = I2 ⊗ σ3 as stated in Sec. 3. For such operator, the eigenfunction satisfies
1160
+ the orthogonal relation with respect to the indefinite inner product (f, g)σ =
1161
+
1162
+ dxf †σg.
1163
+ The normalization of eigenfunction is also made based on (f, f)σ and all eigenfunctions
1164
+ are classified into the ones possessing positive, negative, and zero norm. The completeness
1165
+ relation for the case of finite-dimensional linear algebra is shown in section 3 of Ref. [21], and
1166
+ 3 In order to eliminate confusion, we should explain the difference of the usage of the terminology “eigenvalues an
1167
+ eigenfunctions” between classical integrable systems and other fields. In theoretical physics, particularly in quantum
1168
+ mechanics, when one finds a solution of an eigenequation of a given differential operator ˆL f = λf , the operand
1169
+ function f is called an eigenfunction only when it is a bounded function and only in this case λ is included to the set
1170
+ of eigenvalues. The eigenfunctions possessing everywhere-bounded plane-wave type behavior are called a scattering
1171
+ state and constitute the set of continuous eigenvalues, i.e., a band. The eigenfunction with localized profile and finite
1172
+ norm is called a bound state and make a discrete eigenvalue. The completeness relation, which is in bra-ket notation
1173
+ of quantum mechanics often expressed as 1 = �
1174
+ n |n⟩ ⟨n|, is constructed by gathering all these scattering and bound
1175
+ eigenstates.
1176
+ In classical integrable systems, the exponentially divergent solution of an eigenequation, which is usually not
1177
+ counted as an eigenfunction, plays an important role in generating multi-soliton solutions by various methods. An
1178
+ elementary example is the divergent solution of the Schr¨odinger operator −fxx = −κ2 f with eigenvalue λ = −κ2 < 0
1179
+ and f = e±κx, which is indeed used to construct the multi-soliton solution of the KdV equation. Thus, identification
1180
+ of all solutions of the eigenequation for any complex λ is important, and therefore, in the context where no
1181
+ confusion occurs, these divergent solutions f and corresponding values λ are also sometimes called eigenfunctions
1182
+ and eigenvalues, without distinction. This manuscript also adopts this loose use of terminology in several sections,
1183
+ e.g., in Sec. 4. To preserve the logical unambiguity, the “genuine” eigenfunctions with no divergent behaviors are
1184
+ explicitly referred to as scattering and bound eigenstates. The completeness relation includes only these “genuine”
1185
+ eigenfunctions.
1186
+ The solution of eigenequation for arbitrary complex eigenvalue is also often called the Baker-
1187
+ Akhiezer function, whose original meaning is the single-valued function defined on a Riemann surface and possessing
1188
+ finitely many essential singular points but meromorphic excepting these points.
1189
+
1190
+ 16
1191
+ we now need to consider its analog in continuous space for a differential operator. (A specific
1192
+ example for a differential operator in continuous space is found in Refs. [29, 30], though
1193
+ not fully general.) In mathematical physics, a space equipped with indefinite inner product
1194
+ is called the Krein space. Eigenfunctions with nonzero norm can be almost analogously
1195
+ treated to the case of self-adjoint operators whose eigenvalues are real and eigenfunctions
1196
+ are normalized by positive-definite norm. On the other hand, we must carefully consider
1197
+ eigenfunctions with zero norm. In particular, the eigenfunction with complex eigenvalue
1198
+ always has zero norm due to Eq. (3.2). In this case, in order to prepare a σ-orthogonal basis,
1199
+ we should construct positive- and negative-norm functions by linear combination of a pair of
1200
+ zero-norm eigenfunctions with mutually complex conjugate eigenvalues.
1201
+ The second important point in writing down the completeness relation supposed to be
1202
+ applied in the ISM is that the integrand must be expressed by meromorphic function with
1203
+ respect to spectral variable λ or its parametrization variable z, because, in the derivation
1204
+ of the GLM equation in Appendix D, we want to use the residue theorem. Therefore, we
1205
+ must eliminate z∗ from the integrand using the complex conjugation relations described in
1206
+ Eqs. (4.10)-(4.14). The key relation is as follows. A little calculation using the addition
1207
+ formula of theta functions shows
1208
+ f0(x, z∗)†σf0(x, z) =
1209
+ 4
1210
+
1211
+ i=1
1212
+ (−1)i−1gi(x, z∗)∗gi(x, z) = −1
1213
+ √m
1214
+
1215
+ dn2( x
1216
+ √m) + cs2(2iz)
1217
+
1218
+ .
1219
+ (C.1)
1220
+ This quantity is meromorphic, i.e., only including z due to Eq. (4.14). The spatial average of
1221
+ this quantity is, using dn2 = E
1222
+ K and recalling Eq. (B.7),
1223
+ f0(x, z∗)†σf0(x, z) =
1224
+ 1
1225
+ √m
1226
+
1227
+ − E
1228
+ K − cs2(2iz)
1229
+
1230
+ = k′(z),
1231
+ (C.2)
1232
+ which is used to normalize scattering eigenstates and rewrite the k-integral to z-integral. As
1233
+ shown below, the spatial average of the norm density f0(x, z)†σf0(x, z) for scattering states all
1234
+ reduces to Eq. (C.2).
1235
+ Thirdly, if we have a σ-orthogonal basis of the Bloch-type functions parametrized
1236
+ by crystal momentum k and band index α, and all of them have non-vanishing norm and
1237
+ are normalized so that the spatial average becomes φ±(k, α)†σφ±(k, α) = ±1, where ±
1238
+ represents the sign of norm, the completeness relation is given by �
1239
+ α
1240
+
1241
+ dk
1242
+ 2π(φ+(k, α)φ+(k, α)† −
1243
+ φ−(k, α)φ−(k, α)†)σ = Id. This fact can be proved by considering the finite-length system
1244
+ where the scattering states can be explicitly normalizable and their spectrum is discretized,
1245
+ and then taking the infinite-length limit. Here we omit the detail of this argument, since it
1246
+ is tedious but straightforward. For readers’ reference, we note that a similar discussion in
1247
+ another physical problem for discretization of scattering states of a self-adjoint operator and
1248
+ its infinite limit can be found in Ref. [31], section 3.
1249
+ Keeping in mind the above-mentioned things, let us now write down the completeness
1250
+ relation. Since the potentials (4.4) are periodic, there are only scattering states by the Bloch
1251
+ theorem and no bound state exist.
1252
+ Hence, the completeness relation is written only by
1253
+ scattering states. As stated in Sec. 4, up to periodicity, there are four distinct lines in z-plane
1254
+ where crystal momentum becomes real k(z) ∈ R, representing the scattering states. Here we
1255
+ discuss the scattering states on each line in detail.
1256
+ (i) z ∈ R.
1257
+ We can check λ(z) ∈ R and f0(x, z) has positive norm, so f0(x, z∗) = f0(x, z) and hence
1258
+
1259
+ 17
1260
+ f0(x, z∗)†σf0(x, z) = f0(x, z)†σf0(x, z) = k′(z) > 0. Therefore, the contribution of these
1261
+ states to completeness relation is
1262
+
1263
+ dk
1264
+
1265
+ f0(x,z)f0(y,z)†σ
1266
+ k′(z)
1267
+ =
1268
+ � K′
1269
+ −K′
1270
+ dz
1271
+ 2π f0(x, z)f0(y, z∗)†σ.
1272
+ (ii) z ∈ R − iK.
1273
+ We can check λ(z) ∈ R and f0(x, z) has negative norm, and f0(x, z∗) = −f0(x, z)
1274
+ using periodicity (4.13). Thus, f0(x, z)†σf0(x, z) = −f0(x, z∗)†σf0(x, z) = −k′(z) < 0.
1275
+ Therefore, the contribution to these states to completeness relation is
1276
+
1277
+ dk f0(x,z)f0(y,z)†σ
1278
+ −k′(z)
1279
+ =
1280
+ � K′+iK
1281
+ −K′−iK
1282
+ dz
1283
+ 2π f0(x, z)f0(y, z∗)†σ.
1284
+ (iii) z ∈ R ± iK
1285
+ 2 .
1286
+ We can check λ(z) ∈ iR and hence f0(x, z) has zero norm. Therefore we must make
1287
+ nonzero-norm functions by linear combination of a pair of eigenfunctions with mutually
1288
+ complex conjugate eigenvalues. Since λ(z∗) = λ(z)∗ and k(z∗) = k(z)∗, this pair share the
1289
+ same wavenumber. Now let us assume that f1 and f2 are zero-norm eigenfunctions of
1290
+ the Bloch type with complex eigenvalues λ and λ∗ and share the same and real-valued
1291
+ wavenumber k. By definition the spatial average of norm density is zero: f †
1292
+ i σfi =
1293
+ 0, i = 1, 2, but f †
1294
+ 1 σf2 � 0 unless they belong to nontrivial Jordan blocks. Then, if an
1295
+ overall prefactors of f1 and f2 are adjusted to satisfy the relation f †
1296
+ 1 σf2 = f †
1297
+ 2 σf1 > 0,
1298
+ then f± =
1299
+ f1± f2
1300
+
1301
+ 2
1302
+ are positive- and negative-norm functions and σ-orthogonal to each
1303
+ other. Thus these two can be used as a σ-orthogonal basis, and the contribution of
1304
+ these states to completeness relation is written as
1305
+
1306
+ dk
1307
+
1308
+ f+ f †
1309
+ +σ− f− f †
1310
+ −σ
1311
+ f †
1312
+ 2 σf1
1313
+ =
1314
+
1315
+ dk
1316
+
1317
+ (f1 f †
1318
+ 2 + f2 f †
1319
+ 1 )σ
1320
+ f †
1321
+ 2 σf1
1322
+ .
1323
+ Now let us take f1 = f0(x, z), z ∈ R + iK
1324
+ 2 and f2 = −f0(x, z∗), z∗ ∈ R − iK
1325
+ 2 . By
1326
+ Eq. (C.2), f †
1327
+ 2 σf1 = −k′(z) > 0 is real and positive.
1328
+ (Note: k(z) is a decreasing
1329
+ function on z ∈ R ± iK
1330
+ 2 .) Therefore, the contribution of these states to completeness
1331
+ relation is given by
1332
+
1333
+ dk
1334
+
1335
+ (− f0(x,z)f0(y,z∗)†− f0(x,z∗)f0(y,z)†)σ
1336
+ −k′(z)
1337
+ = −
1338
+ � K′+ iK
1339
+ 2
1340
+ −K′+ iK
1341
+ 2
1342
+ dz
1343
+ 2π(f0(x, z)f0(y, z∗)† +
1344
+ f0(x, z∗)f0(y, z)†)σ.
1345
+ Changing the dummy variable z → z∗, the latter term can be
1346
+ rewritten as −
1347
+ � K′− iK
1348
+ 2
1349
+ −K′− iK
1350
+ 2
1351
+ dz
1352
+ 2π f0(x, z)f0(y, z∗)†σ.
1353
+ Summarizing all contributions from (i)-(iii), the completeness relation is given by
1354
+ δ(x − y)I4 =
1355
+ � K′
1356
+ −K′
1357
+ dz
1358
+ 2π f0(x, z)f0(y, z∗)†σ +
1359
+ � K′+iK
1360
+ −K′−iK
1361
+ dz
1362
+ 2π f0(x, z)f0(y, z∗)†σ
1363
+
1364
+ � K′+ iK
1365
+ 2
1366
+ −K′+ iK
1367
+ 2
1368
+ dz
1369
+ 2π f0(x, z)f0(y, z∗)†σ −
1370
+ � K′− iK
1371
+ 2
1372
+ −K′− iK
1373
+ 2
1374
+ dz
1375
+ 2π f0(x, z)f0(y, z∗)†σ.
1376
+ (C.3)
1377
+ Adding vertical paths which cancel out by periodicity, we obtain the desired form
1378
+ δ(x − y)I4 =
1379
+
1380
+ C1+C2
1381
+ dz
1382
+ 2π f(x, z)f(y, z∗)†σ,
1383
+ (C.4)
1384
+ where the definitions of the contours C1 and C2 are already described in the sentences after
1385
+ Eq. (4.15).
1386
+
1387
+ 18
1388
+ Appendix D. Derivation of the GLM equation
1389
+ In this appendix we drive the GLM equation (6.9). By the relation between right and left Jost
1390
+ solutions (5.4) and the integral representation (6.1),
1391
+ f+(x, z) 1
1392
+ a(z) − f0(x, z) =
1393
+ � x
1394
+ −∞
1395
+ dyΓ(x, y)f0(y, z) +
1396
+
1397
+ f0(x, −z − iK) +
1398
+ � x
1399
+ −∞
1400
+ dyΓ(x, y)f0(y, −z − iK)
1401
+ � b(z)
1402
+ a(z).
1403
+ (D.1)
1404
+ Multiplying f(w,z∗)†σ
1405
+
1406
+ , w ≤ x to both sides of the above equation from right, we integrate the
1407
+ expression by z along the contour C1 + C2. First, let us evaluate the right-hand side. Defining
1408
+ Ωsc(x, w) :=
1409
+
1410
+ C1+C2
1411
+ dz
1412
+ 2π f0(x, −z − iK)b(z)
1413
+ a(z) f0(w, z∗)†σ,
1414
+ (D.2)
1415
+ and using the completeness relation (4.15), we find
1416
+ R.H.S. = Γ(x, w) + Ωsc(x, w) +
1417
+ � x
1418
+ −∞
1419
+ dyΓ(x, y)Ωsc(y, w).
1420
+ (D.3)
1421
+ In the contour integral of Ωsc, actually the integrals for scattering states only contribute, and
1422
+ hence it can be rewritten as Eq. (6.12).
1423
+ Next, let us evaluate the left-hand side. In the SG equation, generally a(z) can have
1424
+ higher-order zeros [24], but here we only consider the case where all zeros are of the first
1425
+ order. Let zeros of a(z) be z1, . . ., zn. As already mentioned before, by Eq. (5.11), the zeros
1426
+ of a(z) simultaneously emerge at z, −z∗, z − iK, −z∗ − iK. Therefore, not all zj’s can be freely
1427
+ chosen. Here, however, we formally assign independent labels to all zeros. Then, the left-hand
1428
+ side can be calculated using the residue theorem:
1429
+ L.H.S. =
1430
+ n
1431
+
1432
+ j=1
1433
+ if+(x, zj)f0(w, z∗
1434
+ j)†
1435
+ ˙a(zj)
1436
+ =
1437
+ n
1438
+
1439
+ j=1
1440
+ if−(x, −zj − iK)b(zj)f0(w, z∗
1441
+ j)†
1442
+ ˙a(zj)
1443
+ ,
1444
+ (D.4)
1445
+ where the relation f+(x, zj) = b(zj)f−(x, −zj − iK) arising from the condition a(zj) = 0 has
1446
+ been used. If we define
1447
+ Ωbd(x, w) :=
1448
+ n
1449
+
1450
+ j=1
1451
+ f0(x, −zj − iK)c2
1452
+ j f0(w, z∗
1453
+ j)†σ,
1454
+ c2
1455
+ j := b(zj)
1456
+ i˙a(zj),
1457
+ (D.5)
1458
+ then
1459
+ L.H.S. = −Ωbd(x, w) −
1460
+ � x
1461
+ −∞
1462
+ dyΓ(x, y)Ωbd(y, w).
1463
+ (D.6)
1464
+ To summarize, writing Ω = Ωsc + Ωbd, we obtain the final result
1465
+ Γ(x, w) + Ω(x, w) +
1466
+ � x
1467
+ −∞
1468
+ dyΓ(x, y)Ω(y, w) = 0,
1469
+ w ≤ x.
1470
+ (D.7)
1471
+ If we simplify Eq. (D.5) using Eqs. (4.13) and (4.14), it is rewritten as Eq. (6.10) with (6.11).
1472
+
1473
+ 19
1474
+ Appendix E. Calculation of determinant
1475
+ Here we calculate the asymptotic form of the multi-soliton solution for x → +∞. In particular,
1476
+ we provide the shift of the lattice x0 in Eq. (7.19). First, we write P = S 1 ˜PS 2 and Q = S 3 ˜QS 4,
1477
+ where
1478
+ S 1 = diag
1479
+ �Θ4(iz1)
1480
+ Θ1(iz1), . . ., Θ4(izn)
1481
+ Θ1(izn)
1482
+
1483
+ ,
1484
+ S 2 = diag
1485
+ �Θ2(iz1)
1486
+ Θ3(iz1), . . ., Θ2(izn)
1487
+ Θ3(izn)
1488
+
1489
+ ,
1490
+ (E.1)
1491
+ S 3 = diag
1492
+ �Θ4(iz1)
1493
+ Θ2(iz1), . . ., Θ4(izn)
1494
+ Θ2(izn)
1495
+
1496
+ ,
1497
+ S 4 = diag
1498
+ �Θ1(iz1)
1499
+ Θ3(iz1), . . ., Θ1(izn)
1500
+ Θ3(izn)
1501
+
1502
+ ,
1503
+ (E.2)
1504
+ and
1505
+ ˜Pi j =
1506
+ −Θ4Θ2( x
1507
+ √m + i(zi + zj))
1508
+ Θ2(i(zi + zj))Θ1( x
1509
+ √m) ,
1510
+ (E.3)
1511
+ ˜Qi j =
1512
+ Θ4Θ1( x
1513
+ √m + i(zi + zj))
1514
+ Θ2(i(zi + zj))Θ2( x
1515
+ √m) .
1516
+ (E.4)
1517
+ Then, using the formula in Ref. [27], appendix D, we obtain
1518
+ det ˜P
1519
+ det G = (−1)n Θ4( x
1520
+ √m)Θ1( x
1521
+ √m + nK + 2i �n
1522
+ j=1 zj)
1523
+ Θ1( x
1524
+ √m)Θ4( x
1525
+ √m + nK + 2i �n
1526
+ j=1 zj),
1527
+ (E.5)
1528
+ det ˜Q
1529
+ det G = (−1)n Θ4( x
1530
+ √m)Θ2( x
1531
+ √m + nK + 2i �n
1532
+ j=1 zj)
1533
+ Θ2( x
1534
+ √m)Θ4( x
1535
+ √m + nK + 2i �n
1536
+ j=1 zj).
1537
+ (E.6)
1538
+ This relation itself is generally valid even when all zj’s are independent and n is not even.
1539
+ As discussed in Sec. 9, for the real and bounded solution of the SG equation, n is even and zj
1540
+ and zj − iK simultaneously appear. In this case, we label the zeros, e.g., as zn/2+ j = zj − iK,
1541
+ j =
1542
+ n
1543
+ 2 + 1, . . ., n. Then, det S 1 = �n/2
1544
+ j=1
1545
+ Θ4(iz j)Θ3(iz j)
1546
+ Θ1(iz j)Θ2(iz j),
1547
+ det S 2 = (−1)n/2 det S −1
1548
+ 1 ,
1549
+ det S 4 =
1550
+ �n/2
1551
+ j=1
1552
+ Θ1(iz j)Θ2(iz j)
1553
+ Θ3(iz j)Θ4(iz j),
1554
+ det S 3 = (−1)n/2 det S −1
1555
+ 4 , and hence
1556
+ det P
1557
+ det G =
1558
+ Θ4( x
1559
+ √m)Θ1( x
1560
+ √m + 2i �n
1561
+ j=1 zj)
1562
+ Θ1( x
1563
+ √m)Θ4( x
1564
+ √m + 2i �n
1565
+ j=1 zj) = cos φ0(x−x0)
1566
+ 2
1567
+ cos φ0(x)
1568
+ 2
1569
+ ,
1570
+ (E.7)
1571
+ det Q
1572
+ det G =
1573
+ Θ4( x
1574
+ √m)Θ2( x
1575
+ √m + 2i �n
1576
+ j=1 zj)
1577
+ Θ2( x
1578
+ √m)Θ4( x
1579
+ √m + 2i �n
1580
+ j=1 zj) = sin φ0(x−x0)
1581
+ 2
1582
+ sin φ0(x)
1583
+ 2
1584
+ .
1585
+ (E.8)
1586
+ [1] G. L. Lamb, Jr., Elements of soliton theory, (Wiley, Hoboken, New Jersey, 1980).
1587
+ [2] P. M. Chaikin and T. C. Lubensky, Principles of Condensed Matter Physics, (Cambridge University Press,
1588
+ Cambridge, 2000).
1589
+ [3] Y. Togawa, T. Koyama, K. Takayanagi, S. Mori, Y. Kousaka, J. Akimitsu, S. Nishihara, K. Inoue, A. S.
1590
+ Ovchinnikov, and J. Kishine, Phys. Rev. Lett., 108, 107202 (2012).
1591
+ [4] A. B. Borisov, J. Kishine, I. G. Bostrem, and A. S. Ovchinnikov, Phys. Rev. B, 79, 134436 (2009).
1592
+ [5] T. Fulton and R. Dynes, Solid State Communications, 12(1), 57–61 (1973).
1593
+ [6] P. S. Lomdahl, O. H. Soerensen, and P. L. Christiansen, Phys. Rev. B, 25, 5737–5748 (1982).
1594
+ [7] T. Kato and M. Imada, J. Phys. Soc. Jpn., 66(5), 1445–1449 (1997).
1595
+ [8] A. B. Borisov and V. V. Kiseliev, Solid State Communications, 59(7), 445–448 (1986).
1596
+ [9] A. B. Borisov and V. V. Kiseliev, Physica D: Nonlinear Phenomena, 31(1), 49–64 (1988).
1597
+ [10] A. B. Borisov and V. V. Kiseliev, Inverse Problems, 5(6), 959–982 (1989).
1598
+ [11] D. E. Pelinovsky and R. E. White, Proc. R. Soc. A: Math. Phys. Eng. Sci., 476(2242) (2020).
1599
+
1600
+ 20
1601
+ [12] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett., 30, 1262–1264 (1973).
1602
+ [13] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math., 53, 249 (1974).
1603
+ [14] A. S. Budagov and L. A. Takhtadzhyan, Dokl. Akad. Nauk SSSR, 235, 805–808 (1977).
1604
+ [15] L. D. Faddeev and L. A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, (Springer, Berlin, 1987).
1605
+ [16] E. D. Belokolos, A. I. Bobenko, V. Z. Enol’skii, A. R. Its, and V. B. Matveev, Algebro-Geometric Approach to
1606
+ Nonlinear Integrable Equations, (Springer, Berlin, 1994).
1607
+ [17] L. A. Takhtadzhyan and L. D. Faddeev, Theor. Math. Phys., 21(2), 1046–1057 (1974).
1608
+ [18] L. A. Takhtadzhyan, Sov. Phys. JETP, 39, 228 (1974).
1609
+ [19] I. M. Krichever, Funct. Anal. Appl., 11(1), 12–26 (1977).
1610
+ [20] S. Kharchev and A. Zabrodin, J. Geom. Phys., 94, 19–31 (2015).
1611
+ [21] D. A. Takahashi and M. Nitta, Ann. Phys., 354, 101–156 (2015).
1612
+ [22] M. Abramowitz and I. A. Stegun,
1613
+ Handbook of Mathematical Functions with Formulas, Graphs, and
1614
+ Mathematical Tables, (Dover, Mineola, New York, 9th edition, 1965).
1615
+ [23] D. A. Takahashi, Prog. Theor. Exp. Phys., 2016(4), 043I01 (2016).
1616
+ [24] H. Tsuru and M. Wadati, J. Phys. Soc. Jpn., 53(9), 2908–2921 (1984).
1617
+ [25] T. Yajima and M. Wadati, J. Phys. Soc. Jpn., 56(9), 3069–3081 (1987).
1618
+ [26] V. E. Zakharov and A. B. Shabat, Funct. Anal. Its Appl., 8, 226–235 (1974).
1619
+ [27] D. A. Takahashi, Phys. Rev. E, 93, 062224 (2016).
1620
+ [28] A. Hurwitz and R. Courant,
1621
+ Vorlesungen ¨Uber Allgemeine Funktionentheorie Und Elliptische Funktionen,
1622
+ (Springer-Verlag, Berlin, Heidelberg, 4th edition, 1964).
1623
+ [29] D. A. Takahashi, M. Kobayashi, and M. Nitta, Phys. Rev. B, 91, 184501 (2015).
1624
+ [30] D. A. Takahashi, K. Ohashi, T. Fujimori, and M. Nitta, Phys. Rev. A, 96, 023626 (2017).
1625
+ [31] D. A. Takahashi and M. Nitta, J. Low Temp. Phys., 175(1-2), 250–257 (2014).
1626
+
RNFAT4oBgHgl3EQf0x4X/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
S9FLT4oBgHgl3EQfPy8r/content/tmp_files/2301.12029v1.pdf.txt ADDED
@@ -0,0 +1,1717 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Multi-task Highly Adaptive Lasso
2
+ Ivana Malenica 1 Rachael V. Phillips 2 Daniel Lazzareschi 3 Jeremy R. Coyle 4 Romain Pirracchio 3
3
+ Mark J. van der Laan 2
4
+ Abstract
5
+ We propose a novel, fully nonparametric approach
6
+ for the multi-task learning, the Multi-task Highly
7
+ Adaptive Lasso (MT-HAL). MT-HAL simultane-
8
+ ously learns features, samples and task associ-
9
+ ations important for the common model, while
10
+ imposing a shared sparse structure among sim-
11
+ ilar tasks. Given multiple tasks, our approach
12
+ automatically finds a sparse sharing structure.
13
+ The proposed MTL algorithm attains a power-
14
+ ful dimension-free convergence rate of op(n−1/4)
15
+ or better. We show that MT-HAL outperforms
16
+ sparsity-based MTL competitors across a wide
17
+ range of simulation studies, including settings
18
+ with nonlinear and linear relationships, varying
19
+ levels of sparsity and task correlations, and differ-
20
+ ent numbers of covariates and sample size.
21
+ 1. Introduction
22
+ Multi-task Learning (MTL) is a machine learning paradigm
23
+ in which multiple tasks are simultaneously learned by a
24
+ shared model. Originally motivated by insufficient data is-
25
+ sues, MTL proved broadly effective over the years even as
26
+ n got large —- attracting a lot of attention in the artificial in-
27
+ telligence and machine learning (ML) communities (Ruder,
28
+ 2017; Crawshaw, 2020; Zhang & Yang, 2022). Applications
29
+ of MTL are extensive and cross-disciplinary, ranging from
30
+ reinforcement learning and speech recognition, to bioinfor-
31
+ matics and systems biology (Cipolla et al., 2018; Tang et al.,
32
+ 2020; Dizaji et al., 2021; Sodhani et al., 2021; Zhang &
33
+ Yang, 2022; Wang & Sun, 2022). Deep multi-task learning
34
+ models have become particularly prevalent in computer vi-
35
+ sion and natural language processing (Misra et al., 2016;
36
+ Liu et al., 2019; Vandenhende, 2022).
37
+ 1Department of Statistics, Harvard University, Cambridge, MA,
38
+ USA 2Division of Biostatistics, University of California at Berke-
39
+ ley, Berkeley, CA, USA 3Department of Anesthesia and Periopera-
40
+ tive Care, University of California at San Francisco, San Francisco,
41
+ CA, USA 4Preva Group, Seattle, WA, USA. Correspondence to:
42
+ Ivana Malenica <[email protected]>.
43
+ The wide application of MTL can be attributed to its con-
44
+ nection to how humans learn: a single complicated process
45
+ can often be divided into several related (sub)tasks. Due to
46
+ their common latent structure, learning from all (sub)tasks
47
+ simultaneously proves to be more advantageous than simply
48
+ learning each one independently. In particular, MTL utilizes
49
+ shared knowledge to improve generalization performance,
50
+ as it allows for common representations to be effectively
51
+ leveraged by all considered tasks. This is in contrast to an-
52
+ other ML paradigm with a similar setup, known as transfer
53
+ learning — which seeks to improve performance of a sin-
54
+ gle task via knowledge transfer from source tasks (Zhuang
55
+ et al., 2019). Having access to kindred processes, MTL
56
+ learns more robust representations — resulting in better
57
+ knowledge sharing, and lower risk of catastrophic covariate
58
+ shifts and overfitting. In addition, multi-task learning (1)
59
+ increases the effective sample size for fitting a model, (2)
60
+ ignores the task data-dependent noise, (3) biases the model
61
+ to prefer representations that other tasks also prefer and (4)
62
+ allows for “eavesdroping” across related tasks, as some rela-
63
+ tionships might be easier to learn in particular tasks (Ruder,
64
+ 2017). Shared representations also increase data efficiency,
65
+ and can potentially yield faster learning speed and better
66
+ generalizations for future tasks (Crawshaw, 2020).
67
+ The key challenge in MTL is what, how and when to share
68
+ the common structure among all (or some subset of) tasks
69
+ (Zhang & Yang, 2022). In the following, we pay particular
70
+ attention on what to share, which implies how. More specif-
71
+ ically, the MTL literature on common task representation
72
+ typically focuses on instance, parameter or feature sharing.
73
+ Instance-based MTL aims to detect important occurrences
74
+ which can be useful for other tasks. Parameter-based MTL
75
+ shares coefficients, weights or layers to help learn model
76
+ parameters; the most common approaches include low-rank,
77
+ task clustering, task relation learning and decomposition
78
+ approaches (Zhang & Yang, 2022). In particular, the task
79
+ relation approach learns model parameters and pairwise
80
+ task relations simultaneously (Zhang et al., 2010; Zhang
81
+ & Yeung, 2014). The feature-based MTL learns common
82
+ predictors across tasks as a way to share knowledge. As
83
+ tasks are related, it’s intuitive to assume that different tasks
84
+ share some common feature representation. One particularly
85
+ interesting way of thought is to learn a subset of original
86
+ arXiv:2301.12029v1 [stat.ML] 27 Jan 2023
87
+
88
+ Multi-task Highly Adaptive Lasso
89
+ 2
90
+ features as the joint task representation; this has prompted
91
+ a rich literature on sparse structure learning (Lounici et al.,
92
+ 2009; Obozinski et al., 2011; Sun et al., 2019; Wang & Sun,
93
+ 2022).
94
+ In this work, we present the Multi-task Highly Adaptive
95
+ Lasso (MT-HAL) algorithm, which represents a fully non-
96
+ parameteric method for MTL. Most modern ML algorithms
97
+ assume similar behavior for all points sufficiently close ac-
98
+ cording to a given metric, referred to as local smoothness
99
+ assumptions (e.g., adaptive selection of the size of a neigh-
100
+ borhood). Reliance on local smoothness is often necessary
101
+ in order to ensure favorable statistical properties of the esti-
102
+ mator, especially in high dimensions. However, too much
103
+ reliance on it can render an estimator inefficient. Instead
104
+ of relying on parametric or local smoothness assumptions,
105
+ the proposed MTL algorithm builds on the Highly Adaptive
106
+ Lasso (HAL): a nonparametric estimator with remarkable
107
+ convergence rates that does not rely on local smoothness
108
+ assumptions and is not constructed using them (Benkeser
109
+ & van der Laan, 2016; van der Laan, 2017). Instead, HAL
110
+ restricts the global measure of smoothness by assuming that
111
+ the truth is cadlag (right-hand continuous with left-hand
112
+ limits) with a bounded sectional variation norm (“HAL” or
113
+ H class). To the best of our knowledge, HAL is the only
114
+ proven method which converges quickly enough for a large
115
+ class of functions, independent of the dimension of the co-
116
+ variate space (Tsiatis, 2006; van der Laan, 2017; Schuler &
117
+ van der Laan, 2022).
118
+ The proposed algorithm, MT-HAL, is a minimum loss-based
119
+ estimator in the HAL class of functions with a bounded vari-
120
+ ation norm. It depends on data-dependent basis functions
121
+ constructed over all samples, predictors and tasks. The con-
122
+ structed basis functions incorporate task interactions across
123
+ available samples and predictors. In contrast to the usual
124
+ feature-based MTL algorithms, MT-HAL does not require
125
+ a parametric specification of the relationship between pre-
126
+ dictors and outcome. MT-HAL also does not require any
127
+ functional form, model or prior knowledge on the relation-
128
+ ship between the different tasks. If prior knowledge on task
129
+ relationships is available, functional forms can be supplied
130
+ to MT-HAL and the generated basis functions will respect
131
+ the provided form. Roughly speaking, MT-HAL restricts
132
+ the amount of true function variation over its domain in a
133
+ global sense, instead of locally. Practically speaking, it re-
134
+ lies on the mixed-norm l2,1 to bound the variation norm and
135
+ produce an unique solution with a similar sparsity pattern
136
+ across tasks.
137
+ At a high-level, MT-HAL operates as a fully nonparametric
138
+ mixture of feature learning and task relation approach in
139
+ MTL. It learns common data-dependent basis functions (aka,
140
+ features based on original predictors), which are robust and
141
+ invariant to all available tasks. To avoid including unrelated
142
+ processes, MT-HAL also includes task interactions as a task
143
+ membership indicator and across the domain space of each
144
+ task. As such, it operates as a task relation parameter-based
145
+ MTL as well — it learns pairwise task relations simultane-
146
+ ously as model parameters. The final basis function coeffi-
147
+ cients therefore give us an interpretable insight into a subset
148
+ of features (and even feature domain), samples, and task
149
+ relationships relevant for the shared model. The learned
150
+ common representation reflects a joint sparsity structure as
151
+ well, due to the final cross-validation based bound on the
152
+ true variation norm.
153
+ Despite being a powerful fully nonparametric approach to
154
+ MTL, MT-HAL still preserves its dimension-free op(n−1/4)
155
+ rate even in a multi-task setting. As such, MT-HAL is
156
+ not only suited for finding a common model among tasks,
157
+ but has convergence rates necessary for semi-parametric
158
+ efficient estimation as well. We demonstrate superior per-
159
+ formance of MT-HAL across many different simulations,
160
+ testing how (non)linearity, level of sparsity, task relatedness,
161
+ dimension of covariate space and sample size affect its per-
162
+ formance. Finally, we apply MT-HAL to the benchmark
163
+ Parkinson’s disease dataset, which predicts disease clinical
164
+ symptom scores for each patient based on biomedical voice
165
+ measurements (Tsanas et al., 2009; Jawanpuria & Nath,
166
+ 2012).
167
+ 2. Formulation of the Statistical Problem
168
+ 2.1. Data and Likelihood
169
+ Let Ok denote data on the kth task, such that Ok =
170
+ (T k, Xk, Y k) = (W k, Y k) for k = 1, . . . , K. Each Ok
171
+ is of a fixed dimension, and an element of a Euclidean set
172
+ O. We assume that different tasks for each k = 1, . . . , K,
173
+ and the corresponding data {Ok}K
174
+ k=1, are possibly related
175
+ to each other.
176
+ Let Xk denote a vector of baseline co-
177
+ variates (“predictors”, “features”) for the kth task, such
178
+ that Xk ∈ RPk and Xk = (Xk
179
+ 1 , . . . , Xk
180
+ Pk). We denote
181
+ nk as the number of samples for task k, which could po-
182
+ tentially be different for each task. Then, we have that
183
+ Xk
184
+ p = {Xk
185
+ 1,p, . . . , Xk
186
+ nk,p} where Xk
187
+ i,p represents data on
188
+ covariate p for sample i in task k. Without loss of generality,
189
+ we assume all predictors in Xk have mean zero and standard
190
+ deviation one, but otherwise make no assumptions on the
191
+ dimension, form or correlation structure for the covariate
192
+ process. As such, for all predictors p, we let
193
+ nk
194
+
195
+ i=1
196
+ Xk
197
+ i,p = 0 and
198
+ nk
199
+
200
+ i=1
201
+ (Xk
202
+ i,p)2 = 1.
203
+ Further, we define Y k as a vector of outcomes, where
204
+ Y k = (Y k
205
+ 1 , . . . , Y k
206
+ nk), and Y k is a nk × 1 vector. We also
207
+ specifically define T k as categorical variable indicating kth
208
+ task membership: if sample i is part of task k, then T k
209
+ i = k.
210
+
211
+ Multi-task Highly Adaptive Lasso
212
+ 3
213
+ If we want to emphasize the set of all covariates in task k,
214
+ we write W k = (T k, Xk).
215
+ In order to define the combined set of all tasks, we specify a
216
+ more compact notation where n = �K
217
+ k=1 nk. In particular,
218
+ let Y = (Y 1, . . . , Y K) and T = (T 1, . . . , T K) where Y
219
+ and T are n × 1 vectors. The matrix of covariates, X =
220
+ (X1, . . . , XK) is a block-diagonal matrix with Xk being
221
+ the kth block. Let d = �K
222
+ k=1 Pk, so that X is a n × d
223
+ matrix; if all tasks have the same covariates, then we define
224
+ d as d = P. Consequently, we define n independent and
225
+ identically distributed (i.i.d.) observations of Oi for i ∈ [n]
226
+ where Oi = (Ti, Xi, Yi) and On = (O1, . . . , On) ∼ P0.
227
+ With that, we assume that all K tasks are sampled from
228
+ the same data-generating distribution P0, which is unknown
229
+ and unspecified. As such, Oi reflects observed data for unit
230
+ i sampled from P0, corresponding to a task specified by Ti.
231
+ We denote by M the statistical model, which represents
232
+ the set of laws from which On can be drawn. Intuitively,
233
+ the more we know (or are willing to assume) about the
234
+ experiment that produces the data, the smaller the statistical
235
+ model M. In this work, we define M as a nonparametric
236
+ model, with P0 ∈ M. We impose no assumptions on the
237
+ true data-generating distribution P0, except that all tasks
238
+ possibly share some unspecified structure. We further define
239
+ P as any distribution which also lies in M, such that P ∈
240
+ M. Let p0 denote the density of P0 with respect to (w.r.t) a
241
+ measure µ that dominates all elements of M. The likelihood
242
+ of On, p0(On), can be factorized according to the time-
243
+ ordering as follows:
244
+ n
245
+
246
+ i=1
247
+ p0,(t,x)(Ti, Xi)p0,y(Yi | Ti, Xi),
248
+ (1)
249
+ where p0,(t,x) marks the probability density for all the base-
250
+ line covariates, and p0,y is the conditional density of the
251
+ outcome given all the predictors. At times, it proves useful
252
+ to use notation from empirical process theory. Specifically,
253
+ we define Pf to be the empirical average of the function
254
+ f w.r.t. the distribution P, that is, Pf =
255
+
256
+ f(o)dP(o). We
257
+ use Pn to denote the empirical distribution of the sample,
258
+ which gives each observation weight 1/n, irrespective of
259
+ the task membership.
260
+ 2.2. Target Parameter
261
+ We define the relevant feature of the true data distribution
262
+ we are interested in as the statistical target parameter (short,
263
+ target parameter or estimand). We define a parameter map-
264
+ ping Ψ : M → R, and a parameter value ψ := Ψ(P) for
265
+ any given P ∈ M. The estimate, evaluated at (T, X), is
266
+ written as ψ(T, X) := Ψ(P)(T, X). In some cases, we
267
+ might be interested in learning the entire conditional distri-
268
+ bution P0,y. However, frequently the actual goal is to learn
269
+ a particular feature of the true distribution that satisfies a
270
+ scientific question of interest. In a multi-task problem, we
271
+ are interested in multivariate prediction of the entire set of
272
+ outcomes collected, given the task and observed covariates.
273
+ The target parameter then corresponds to
274
+ Ψ(P0)(T, X) = EP0(Y | T, X) = EP0(Y | W),
275
+ (2)
276
+ where the expectation on the right hand side is taken
277
+ w.r.t the truth, and the true parameter value is denoted
278
+ as ψ0 = Ψ(P0). In words, we are interested in learning
279
+ (T, X) �→ Ψ(P0)(T, X) using all the data and available
280
+ tasks. The prediction function for unit i is then obtained
281
+ with Ψ(P)(Ti, Xi), for any P ∈ M and i ∈ [n].
282
+ 2.3. Loss-based Parameter Definition
283
+ We define L as a valid loss function, chosen in accordance
284
+ with the target parameter. Specifically, we refer to a valid
285
+ loss for a given target as a function whose expectation w.r.t.
286
+ P0 is minimized by the true value of the parameter. Our
287
+ accent on appropriate loss functions strives from their multi-
288
+ ple use within our framework — as a theoretical criterion
289
+ for comparing the estimator and the truth, as well as a way
290
+ to compare multiple estimators of the target parameter (van
291
+ der Laan & Dudoit, 2003; Dudoit & van der Laan, 2005;
292
+ van der Vaart et al., 2006; van der Laan et al., 2006).
293
+ Let L be a loss adapted to the problem in question,
294
+ i.e.
295
+ a function that maps every Ψ(P) to L(Ψ(P)) :
296
+ (k, Xi, Yi) �→ L(Ψ(P))(k, Xi, Yi); note that we can equiv-
297
+ alently write L(Ψ(P))(k, Xi, Yi) as L(Ψ(P))(Ti, Xi, Yi)
298
+ or just L(Ψ(P))(Wi, Yi) for short notation. We define the
299
+ true risk as the expected value of L(Ψ(P))(Ti, Xi, Yi) w.r.t
300
+ the true conditional distribution P0 across all individuals
301
+ and tasks:
302
+ R(P0, ψ) = EP0[L(Ψ(P))(T, X, Y )].
303
+ The notation for the true risk, R(P0, ψ), emphasizes that ψ
304
+ is evaluated w.r.t. the true data-generating distribution (P0).
305
+ As specified by the definition of a valid loss, we define ψ0
306
+ as the minimizer over the true risk of all evaluated ψ in the
307
+ parameter space ΨΨΨ,
308
+ ψ0 = argmin
309
+ ψ∈Ψ
310
+ Ψ
311
+ Ψ
312
+ R(P0, ψ).
313
+ The estimator mapping, ˆΨ, is a function from the em-
314
+ pirical distribution to the parameter space. In particular,
315
+ let Pn,K denote the empirical distribution of n samples
316
+ collected across K tasks. Then, Pn,K �→ ˆΨ(Pn,K) rep-
317
+ resents a mapping from Pn,K into a predictive function
318
+ ˆΨ(Pn,K). Further, the predictive function ˆΨ(Pn,K) maps
319
+ (Ti, Xi) into a subject-specific outcome, Yi.
320
+ We write
321
+ ψn(Ti, Xi) := ˆΨ(Pn,K)(Ti, Xi) as the predicted outcome
322
+ for unit i of the estimator ˆΨ(Pn,K) based on (Ti, Xi). Fi-
323
+ nally, we note that the true risk establishes a true measure
324
+
325
+ Multi-task Highly Adaptive Lasso
326
+ 4
327
+ of performance of the estimator. In order to obtain an un-
328
+ biased estimate of the true risk, we resort to appropriate
329
+ cross-validation (CV).
330
+ 2.4. Cross-validation
331
+ Let C(i, k) denote, at a minimum, the task k- and unit i-
332
+ specific record C(i, k, ·) = (Oi, k, ·). To derive a general
333
+ representation for cross-validation, we define a split vector
334
+ Bn, where Bn(i, k) ∈ {0, 1}n. A realization of Bn de-
335
+ fines a particular split of the learning set into corresponding
336
+ disjoint subsets,
337
+ Bv
338
+ n(i, k) =
339
+
340
+ 0, C(i, k) in the training set
341
+ 1, C(i, k) in the validation set,
342
+ where Bv
343
+ n(i, k) denotes a v-fold assignment of unit i and
344
+ task k for split Bv
345
+ n. For example, we can partition the full
346
+ data into V splits of approximately equal size, such that
347
+ each fold v for v = 1, . . . , V has a balanced number of tasks
348
+ members. We define P 0
349
+ n,K,v and P 1
350
+ n,K,v as the empirical
351
+ distribution of the training and validation sets corresponding
352
+ to sample split v, respectively. To alleviate notation, we let
353
+ all sample indexes and tasks used for training be an element
354
+ of B0
355
+ v, and B1
356
+ v if in a validation set for fold v. The total
357
+ number of samples in the training and validation set are then
358
+ written as n0 and n1.
359
+ 3. Highly Adaptive Lasso
360
+ We define the multi-task setup and its objective as a statis-
361
+ tical parameter estimated via a loss-based paradigm in a
362
+ nonparametric model, which involves minimizing the cross-
363
+ validated risk. In the following, we elaborate on a specific
364
+ algorithm with favorable statistical properties we build on
365
+ in order to accommodate the multi-task objective.
366
+ Most modern nonparametric machine learning algorithms,
367
+ including neural networks, tree-based models and histogram
368
+ regression, assume similar behavior for all points sufficiently
369
+ close according to a given metric (Benkeser & van der Laan,
370
+ 2016). We refer to such assumption as local smoothness,
371
+ which typically translates to implicit or adaptive selection
372
+ of the size of a neighborhood and continuous differentia-
373
+ bility. Reliance on local smoothness is often necessary in
374
+ order to ensure favorable statistical properties of the esti-
375
+ mator, especially in high dimensions. However, too much
376
+ reliance on local smoothness can render an estimator inef-
377
+ ficient. While some methods provide a way to calculate
378
+ neighborhood size that optimizes the bias-variance trade-off
379
+ (e.g., kernel regression), it is generally unknown how to
380
+ adjust local smoothness assumptions when constructing a
381
+ nonparameteric estimator.
382
+ In contrast to most commonly used machine learning meth-
383
+ ods, the Highly Adaptive Lasso (HAL) is a nonparametric
384
+ estimator that does not rely, and is not constructed, using
385
+ local smoothness assumptions (Benkeser & van der Laan,
386
+ 2016; van der Laan, 2017). Instead, HAL restricts a global
387
+ measure of smoothness by assuming that the true target
388
+ parameter is cadlag (right-hand continuous with left-hand
389
+ limits) with a bounded sectional variation norm (“HAL” or
390
+ H class). In practice, such assumptions prove to be very
391
+ mild as (1) cadlag functions are very general, even allowing
392
+ for discontinuities; (2) the variation norm can be made ar-
393
+ bitrarily large and adapted to the problem (Schuler & van
394
+ der Laan, 2022). To the best of our knowledge, HAL is the
395
+ only algorithm with fast-enough convergence rates to allow
396
+ for efficient inference in nonparametric statistical models
397
+ regardless of the dimension of the problem. In particular,
398
+ its minimum rate does not depend on the underlying lo-
399
+ cal smoothness of the true regression function, ψ0. In the
400
+ following, we give a brief theoretical and practical descrip-
401
+ tion of HAL, necessary in order to understand the proposed
402
+ algorithm. The Highly Adaptive Lasso for the multi-task
403
+ objective is presented in Section 4.
404
+ 3.1. Cadlag functions with finite variation norm
405
+ We assume that ψ0 ∈ H, where H is a set of d-variate
406
+ real valued cadlag functions with τ as an upper bound on
407
+ all support. A function in H is right-continuous with left-
408
+ hand limits, as well as left-continuous at any point on the
409
+ right-edge of [0, τ]. In addition, we also assume that ψ0 has
410
+ a finite sectional variation norm bounded by some univer-
411
+ sal constant M < ∞. Note that any cadlag function with
412
+ bounded variation norm generates a finite measure, result-
413
+ ing in well defined integrals w.r.t the function. With that,
414
+ we define a sectional variation norm of a multivariate real
415
+ valued cadlag function ψ as
416
+ ∥ψ∥var = ψ(0) +
417
+
418
+ s⊂{1,...,d}
419
+ � τs
420
+ 0s
421
+ |ψs(dus)|,
422
+ where the sum is taken over all subsets of {1, . . . , d}. In
423
+ particular, for a given subset of s, we define us = (uj :
424
+ j ∈ s) and u−s = (uj : j /∈ s). To illustrate for X =
425
+ (X1, X2) and s = 1, we have that Xs = {X1} and X−s =
426
+ {X2}. We define the section ψs(us) ≡ ψ(us, 0−s), where
427
+ ψs varies along the variables in us according to ψ, but sets
428
+ the variables in u−s to zero.
429
+ 3.2. Minimum Loss-based Estimator in the HAL class
430
+ We denote a class of functions HM as HM
431
+ = {ψ :
432
+ ∥ψ∥var < M}, where M is an arbitrary large and unknown
433
+ constant. As introduced in subsection 2.3, we define the
434
+ true minimizer of the average loss in class HM as
435
+ ψ0,M = argmin
436
+ ψ∈HM
437
+ R(P0, ψ),
438
+
439
+ Multi-task Highly Adaptive Lasso
440
+ 5
441
+ with the MLE in HM defined as
442
+ ψn = ψn,M = argmin
443
+ ψ∈HM
444
+ 1
445
+ n
446
+ n
447
+
448
+ i=1
449
+ L(ψ)(Ti, Xi, Yi).
450
+ We emphasize that if ∥ψ0∥var < M, then ψ0,M = ψ0
451
+ as ψ0 ∈ HM. As most functions with infinite variation
452
+ norm tend to be pathological (e.g., sin(1/x) or x sin(1/x)),
453
+ having ∥ψ0∥var < M is a very mild assumption.
454
+ The true bound on the sectional variation norm is, however,
455
+ unlikely to be known in practice. One way of choosing M
456
+ is based on the cross-validated choice of the bound. To start,
457
+ we consider a grid of potential values, where M1 is the small-
458
+ est and MB the largest bound such that ∥ψ0∥var < MB. For
459
+ each b = 1, . . . , B corresponding to bounds M1, . . . , MB,
460
+ we have the parameter value ψn,Mb = ˆΨMb(Pn,K), where
461
+ ψn,Mb is the MLE in the H class with variation norm smaller
462
+ than Mb (HMb). Referring to the cross-validation notation
463
+ introduced in subsection 2.4, the cross-validation selector
464
+ Mn of M is the grid value with the lowest estimated cross-
465
+ validated risk:
466
+ Mn = argmin
467
+ b
468
+ 1
469
+ V
470
+ V
471
+
472
+ v=1
473
+ EP 1
474
+ n,K,vL(ˆΨMb(P 0
475
+ n,K,v)).
476
+ Finally, in order to study the difference between an estima-
477
+ tor and the truth (relevant for theoretical results presented in
478
+ subsection 4.2), we construct loss-based dissimilarity mea-
479
+ sures. In particular, for some ψ ∈ H, we define d0(ψ, ψ0)
480
+ as the loss-based dissimilarity measure corresponding to the
481
+ squared error loss where
482
+ d0(ψ, ψ0) = EP0[L(ψ) − L(ψ0)] = ∥ψ − ψ0∥2
483
+ P0.
484
+ (3)
485
+ 4. Multi-task Highly Adaptive Lasso
486
+ Keeping in mind the underpinnings presented in Section
487
+ 3, how can we construct a HAL estimator for the multi-
488
+ task objective? Practically, the original HAL is a minimum
489
+ loss-based estimator in the H class. Instead of specifying
490
+ a relationship between outcome and covariates, HAL uses
491
+ a special set of data-dependent basis functions. As such,
492
+ all the estimation is done completely nonparametrically,
493
+ only restricting the global amount of fluctuation of the true
494
+ function over its domain (instead of locally).
495
+ For the multi-task problem however, we want all tasks to be
496
+ learned simultaneously, instead of independently. We also
497
+ want it to be agnostic to the number of predictors and sam-
498
+ ples per task, as well as to learn task-specific associations
499
+ at the same time as the shared model. In case parameters
500
+ for different tasks share the same sparsity pattern, we want
501
+ the proposed algorithm to be able to learn that structure too.
502
+ Hence, when estimating the target parameter in Equation
503
+ (2), we opt for a joint sparsity regularization, instead of pe-
504
+ nalizing each task separately. Similarly to the multivariate
505
+ group lasso (Yuan & Lin, 2006; Obozinski et al., 2011; Si-
506
+ mon & Tibshirani, 2012), we consider a l1/lq mixed-norm
507
+ penalty with q > 1, which for l1/l2 corresponds to
508
+ ∥α∥2,1 :=
509
+
510
+
511
+ d
512
+
513
+ p=1
514
+ � K
515
+
516
+ k=1
517
+ |αk
518
+ p|2
519
+ �1/2�
520
+ � =
521
+ d
522
+
523
+ p=1
524
+ ∥αp∥2,
525
+ for some vector of coefficients α, K tasks, and d predictors.
526
+ The αk
527
+ p then represents coefficients for predictor p and task
528
+ k. Intuitively, norm ∥αp∥2 has the effect of enforcing the el-
529
+ ements of αp to achieve zeros simultaneously. The objective
530
+ of the l2,1 norm is to minimize the l2 norm of the columns,
531
+ followed by the l1 norm over all predictors — resulting in
532
+ a matrix with a sparse number of columns and a small l2
533
+ norm. The mixed-norm penalty allows us to impose a soft
534
+ constraint on the structure of the sparse solution that we are
535
+ looking for, thus promoting a group-wise sparsity pattern
536
+ across multiple tasks.
537
+ 4.1. Algorithm
538
+ In order to present the full algorithm, we first note that a
539
+ function with finite variation norm can be represented as
540
+ the sum over subsets of an integral w.r.t. a subset-specific
541
+ measure. Also, each subset-specific measure can be ap-
542
+ proximated by a discrete measure over support points; we
543
+ elaborate on this derivation in the Appendix. As a conse-
544
+ quence, we can define support by the actual n observations
545
+ across K tasks, which reduces the optimization problem
546
+ to a finite-dimensional one. Let Φ : W → {0, 1}N de-
547
+ fine a mapping where neither Φ or N are pre-specified, but
548
+ instead completely determined by the data (and thus data-
549
+ adaptive). With that, let φs,t denote a particular basis func-
550
+ tion, where s is a section in {1, . . . , d}, and t a knot point
551
+ corresponding to observed Wi. To enumerate all bases, we
552
+ have that Φ(W) = [φs1,t1(W), . . . , φsN,tN (W)], resulting
553
+ in a total of N basis functions, where N = n(2d − 1). We
554
+ emphasize that the bases depend only on observed values,
555
+ across all samples and tasks. In particular, let ˜ws,i denote
556
+ an observed value of W, where ˜ws,i = { ˜wc,i : c ∈ s} for
557
+ subset s with i = 1, . . . , nk in task k. Then, we define
558
+ φs,i = 1( ˜ws,i ≤ ws), where Φ constructs all the bases that
559
+ can be constructed using each observed Wi as a knot point,
560
+ across all possible sections. As such, applying Φ row-wise
561
+ to W results in an output Φ(W) of zeros and ones (as per
562
+ indicator function dependent on observed values across all
563
+ samples and tasks) , which is of �k
564
+ k=1 nk × N dimension:
565
+ Φ(
566
+
567
+ ��
568
+ W 1
569
+ ...
570
+ W k
571
+
572
+ ��
573
+
574
+ ��
575
+
576
+ n×d
577
+ ) →
578
+
579
+ ��
580
+ 1
581
+ . . .
582
+ 0
583
+ 0
584
+ . . .
585
+ 0
586
+ ...
587
+ 0
588
+ . . .
589
+ 0
590
+ 1
591
+ . . .
592
+ 1
593
+
594
+ ��
595
+
596
+ ��
597
+
598
+ n×N
599
+
600
+ Multi-task Highly Adaptive Lasso
601
+ 6
602
+ Note that passing all the tasks to Φ at once allows us to share
603
+ basis functions across tasks. What’s more, it allows us to
604
+ create task-interaction bases with separate coefficients. We
605
+ consider a minimization problem over all linear combina-
606
+ tions of the basis functions w → φs,i(w) = 1( ˜ws,i ≤ ws)
607
+ and corresponding coefficients βs,i, summed over all sub-
608
+ sets s and for each i (as such, over all tasks). Here we
609
+ emphasize that the sum of the absolute values of the coeffi-
610
+ cients is the variation norm, and must therefore be bounded.
611
+ A discrete approximation of ψ with support defined by the
612
+ observed n points may then be constructed as
613
+ ψβ = β0 +
614
+
615
+ s⊂{1,...,d}
616
+ K
617
+
618
+ k=1
619
+ nk
620
+
621
+ i=1
622
+ βs,i1( ˜ws,i ≤ ws)
623
+ = β0 +
624
+
625
+ s⊂{1,...,d}
626
+ K
627
+
628
+ k=1
629
+ nk
630
+
631
+ i=1
632
+ βs,iφs,i,
633
+ where β0 is the intercept corresponding to ψ(0). The empir-
634
+ ical minimization problem over all discrete measures with
635
+ support defined by the observed samples then corresponds
636
+ to
637
+ βn =
638
+ argmin
639
+ β,∥β∥2,1<M
640
+ PnL(ψβ),
641
+ where we remind that Pn denotes the empirical distribution
642
+ of the sample and β is a vector of coefficients for each basis
643
+ with a subspace
644
+ Hn,M =
645
+
646
+ Φ(W)β
647
+ s.t. ∥β∥2,1 ≤ M.
648
+ As our parameter of interest is a conditional mean, we could
649
+ use the weighted square error to define the loss. Accordingly,
650
+ for the ith sample we have that
651
+ L(ψβ)(Wi, Yi) = gk
652
+ i (Y k
653
+ i − ψβ(W k
654
+ i ))2,
655
+ with gk
656
+ i as the sample- and task- specific weight. The multi-
657
+ task HAL estimator is then formulated by minimizing the
658
+ squared loss with the l2,1 penalty:
659
+ ψβ = argmin
660
+ ψβ∈HM
661
+ K
662
+
663
+ k=1
664
+ nk
665
+
666
+ i=1
667
+ L(ψβ)(Wi, Yi) + λ
668
+ N
669
+
670
+ p=1
671
+ ∥βp∥2,
672
+ where
673
+ ∥βp∥2 =
674
+
675
+
676
+
677
+
678
+ K
679
+
680
+ k=1
681
+ |βkp|2 =
682
+
683
+
684
+
685
+
686
+ K
687
+
688
+ k=1
689
+ nk
690
+
691
+ i=1
692
+ |βi,p|2.
693
+ 4.2. Theoretical Properties
694
+ For the conditional mean as a target parameter, the MLE
695
+ (ψn) converges to its M-specific truth in loss-based dissimi-
696
+ larity at a rate faster than n1/2 (equivalently, no slower than
697
+ Algorithm 1 Multi-task Highly Adaptive Lasso
698
+ 1: Input: data Ok = (W k, Y k) for tasks k = 1, . . . , K,
699
+ loss function L, number of CV folds V
700
+ Algorithm:
701
+ 2: Create a combined set of tasks O = (W, Y ).
702
+ 3: Define a data-adaptive mapping Φ : W → {0, 1}N.
703
+ 4: Generate basis functions across all tasks, predictors and
704
+ samples: Φ(W) = [φs1,1, . . . , φsN,n].
705
+ 5: Define a grid M1, . . . , MB where ∥ψ0∥var < MB.
706
+ 6: for v = 1 to V do
707
+ 7:
708
+ for b = 1 to B do
709
+ 8:
710
+ Empirical minimization for the training set:
711
+ βn.v,b =
712
+ argmin
713
+ β,∥β∥2,1<Mb
714
+ P 0
715
+ n,K,vL(ψβ)
716
+ 9:
717
+ end for
718
+ 10: end for
719
+ 11: Pick the CV selector in the validation set:
720
+ Mn = argmin
721
+ b∈{1,...,B}
722
+ 1
723
+ V
724
+ V
725
+
726
+ v=1
727
+ P 1
728
+ n,K,vL(ψβn.v,b).
729
+ n1/4 w.r.t to a norm l2 under P0). This result holds even
730
+ if the parameter space is completely nonparametric, and,
731
+ remarkably, regardless of the dimension of W. As such,
732
+ the minimum rate of convergence does not depend on the
733
+ underlying smoothness of ψ0, as is typically the case for
734
+ machine learning algorithms. The result still applies even if
735
+ ψ0 is non-differentiable (Benkeser & van der Laan, 2016;
736
+ van der Laan, 2017). Under weak continuity conditions, the
737
+ HAL based estimator is also uniformly consistent (van der
738
+ Laan & Bibaut, 2017). Theorem 4.4 formalizes the theoret-
739
+ ical properties of HAL with a multi-task objective; in the
740
+ Appendix, we show that the proposed formulation adapted
741
+ to the multi-task problem is another valid way of bounding
742
+ the sectional variation norm. As such, the multi-task HAL
743
+ is a fast converging algorithm regardless of the dimension
744
+ of the covariate space or the considered number of tasks K.
745
+ Assumption 4.1.
746
+ sup
747
+ ψ∈HM
748
+ ∥L(ψ)∥var
749
+ ∥ψ∥var
750
+ < ∞.
751
+ Assumption 4.2.
752
+ sup
753
+ ψ∈HM
754
+ ∥L(ψ) − L(ψ0,M)∥2
755
+ P0
756
+ ∥ψ0 − ψ0,M∥2
757
+ P0
758
+ < ∞.
759
+ Assumption 4.3.
760
+ sup
761
+ ψ∈H,o∈O
762
+ |L(ψ)(o)| < ∞.
763
+
764
+ Multi-task Highly Adaptive Lasso
765
+ 7
766
+ Theorem 4.4 (Rate of convergence). For a square error
767
+ loss and under Assumptions (4.1) and (4.2), we have that
768
+ ∥ψn,M − ψ0,M∥P0 = OP (n−1/4−1/(8(d+1))).
769
+ If Mn is picked based on minimizing the CV risk, under
770
+ additional Assumption (4.3), we then have that
771
+ ∥ψn,Mn − ψ0,M∥P0 =OP (n−1/4−1/(8(d+1)))
772
+ + OP (n−1/2 log B),
773
+ for b = 1, . . . , B where MB corresponds to the largest
774
+ bound on the variation norm in a grid with ∥ψ0∥var < MB.
775
+ Proof. Let l(ψn, ψ0)
776
+ =
777
+ L(ψn,M) − L(ψ0,M), where
778
+ l(ψn, ψ0) falls in the P0-Donsker class with a variation
779
+ norm smaller than M. Then,
780
+ 0 ≤ d0(ψn,M, ψ0,M) = EP0[l(ψn, ψ0)]
781
+ = −EPn[l(ψn, ψ0)] + EP0[l(ψn, ψ0)] + EPn[l(ψn, ψ0)]
782
+ = −(Pn − P0)[l(ψn, ψ0)] + Pn[l(ψn, ψ0)]
783
+ ≤ −(Pn − P0)[l(ψn, ψ0)],
784
+ where first inequality follows from the definition of a
785
+ loss-based dissimilarity defined in Equation 3.
786
+ By As-
787
+ sumptions (4.1) and (4.2), we have that P0[l(ψn, ψ0)] and
788
+ ∥l(ψn, ψ0)∥2
789
+ P0 are Op(n−1/2). By results in empirical pro-
790
+ cess theory, we know that √n(Pn − P0)l(ψn, ψ0) →p 0
791
+ and P0l(ψn, ψ0)2 →p 0 as n → ∞ since l(ψn, ψ0) is
792
+ Donsker (van der Vaart & Wellner, 2013). Therefore, we
793
+ have that (Pn − P0)[l(ψn, ψ0)] = oP (n−1/2). As 0 ≤
794
+ d0(ψn,M, ψ0,M) ≤ −(Pn − P0)[l(ψn, ψ0)], it follows that
795
+ ∥ψn,M −ψ0,M∥2
796
+ P0 = oP (n−1/2) and ∥ψn,M −ψ0,M∥P0 =
797
+ oP (n−1/4). If M is not known, it remains to compare
798
+ the performance of ψn,Mn (where Mn is the choice of M
799
+ which minimizes the CV risk) to the oracle M ∗
800
+ n (where M ∗
801
+ n
802
+ is the choice of M which minimizes the true CV risk). The
803
+ OP (n−1/2 log B) comes from oracle results for the CV se-
804
+ lector w.r.t. a loss-based dissimilarity (Dudoit & van der
805
+ Laan, 2005; van der Laan & Dudoit, 2003; van der Vaart
806
+ et al., 2006; van der Laan et al., 2006). For the precise rate,
807
+ we refer to van der Laan (2017).
808
+ The
809
+ result
810
+ of
811
+ Theorem
812
+ 4.4
813
+ shows
814
+ that,
815
+ roughly,
816
+ do(ψn,M, ψ0,M) = oP (n−1/2) or ∥ψn,M − ψ0,M∥P0 =
817
+ oP (n−1/4).
818
+ What’s more, Theorem 4.4 states that by
819
+ choosing B such that n−1/2 log B → 0 as n → ∞, we
820
+ preserve the rate even when the true variation norm is
821
+ unknown.
822
+ Note that if ∥ψ0∥var < M, it follows that
823
+ ∥ψn,M − ψ0∥P0 = OP (n−1/4−1/(8(d+1))).
824
+ 5. Simulations
825
+ In this section, we report performance of the proposed multi-
826
+ task HAL in various simulation settings. In total, we con-
827
+ sider four different data-generating distributions and test
828
+ popular multi-task algorithms based on sparsity assumptions
829
+ in addition to MT-HAL (MT-lasso and MT-L21). Simula-
830
+ tion setups are indicated by the first letter of each setting: (1)
831
+ “N” for nonlinear data-generating process; (2) “H” for high
832
+ level of sparsity (60%) vs. “L” for low sparsity (20%); (3)
833
+ “S” for the same level of sparsity across tasks vs. “D” for
834
+ different sparsity levels. As such, simulation setup “NHS”
835
+ stands for nonlinear DGP with high level of sparsity that
836
+ is shared across all tasks. In all simulations we consider
837
+ K = 5 tasks and different number of samples for each task
838
+ (n = {100, 100, 150, 150, 100} corresponding task 1 to 5).
839
+ Although the number of covariates was the same across
840
+ all tasks (d = 6), we emphasize that our setup allows for
841
+ different (and non-overlapping) set of covariates. For each
842
+ multi-task method and simulation setup, we report the mean
843
+ squared error (MSE) and variable selection performance
844
+ (precision and accuracy), calculated on a separate test data
845
+ over 100 Monte Carlo simulations. Note that, in this setting,
846
+ true positives denote the true estimated nonzero coefficients.
847
+ Therefore, precision is calculated as true positives/(true pos-
848
+ itives + false positives), whereas accuracy is reported as the
849
+ number of true positives/(true positives + false negatives).
850
+ The data-generating processes corresponding to simulation
851
+ “NHS”, “NLS”, “NHD” and “NLD” are nonlinear models
852
+ with d = 6 covariates and normally distributed coefficients.
853
+ In particular, true coefficients for simulation “NHS” are
854
+ β0,NHS = (β0,1, . . . , β0,|NHS|, 0, . . . , 0), where each β0,j
855
+ for 1 ≤ j ≤ |NHS| is sampled from a standard normal
856
+ distribution. Similarly, the error term is normally distributed
857
+ (sampled from N(0, 0.1)), with coefficient 0.3. Covariates
858
+ with nonzero coefficients, constituting of binary, categorical
859
+ and continuous variables, are transformed via logarithmic,
860
+ cosine and squared operations of predictor interactions. For
861
+ simulations with the same level of sparsity across tasks,
862
+ highest level of sparsity was 60% (corresponding to around
863
+ 3 nonzero coefficients per task), whereas the lowest was
864
+ 20% (5 nonzero coefficients per task). For different sparsity
865
+ profiles across tasks, we considered random deviations from
866
+ true level of sparsity across different tasks: 40% − 80% and
867
+ 0.05%−40% for high and low level of sparsity, respectively.
868
+ Compared to other sparsity-based multi-task algorithms,
869
+ MT-HAL results in the lowest MSE across all considered
870
+ data-generating processes, often reducing the MSE by more
871
+ than a half. On average, it also tends to produce less false
872
+ negatives than considered competitors, resulting in high co-
873
+ efficient accuracy and comparable precision (slightly more
874
+ false positives on average in our simulations: this is to be
875
+ expected due to a rich space considered, and could be me-
876
+ diated with a finer grid). All algorithms perform best in
877
+ low sparsity settings, particularly if the sparsity structure
878
+ is shared across tasks. We report results for nonlinear sim-
879
+ ulations at n = 600 in Table (1). Additional simulation
880
+ results are available in the Appendix, and include perfor-
881
+
882
+ Multi-task Highly Adaptive Lasso
883
+ 8
884
+ mance of the proposed method in the following settings: (1)
885
+ different sample sizes, including very small n; (2) linear
886
+ data-generating processes with interactions and (3) high-
887
+ dimensional nonlinear setup.
888
+ Table 1. Mean squared error (MSE), precision (“Prec”) and accu-
889
+ rarcy (“Accu”) for each of the nonlinear simulation setups with
890
+ d = 6 covariates, K = 5 tasks, and total of n = 600 samples split
891
+ between the K tasks as {100, 100, 150, 150, 100}.
892
+ SETUP
893
+ METHOD
894
+ MSE
895
+ PREC %
896
+ ACCU %
897
+ NHS
898
+ MT-HAL
899
+ 0.68
900
+ 58.7
901
+ 75.0
902
+ NHS
903
+ MT-LASSO
904
+ 1.49
905
+ 64.4
906
+ 31.0
907
+ NHS
908
+ MT-L21
909
+ 1.48
910
+ 55.3
911
+ 40.9
912
+ NLS
913
+ MT-HAL
914
+ 0.68
915
+ 91.4
916
+ 80.5
917
+ NLS
918
+ MT-LASSO
919
+ 1.59
920
+ 98.5
921
+ 44.6
922
+ NLS
923
+ MT-L21
924
+ 1.54
925
+ 97.6
926
+ 60.5
927
+ NHD
928
+ MT-HAL
929
+ 0.45
930
+ 61.9
931
+ 69.0
932
+ NHD
933
+ MT-LASSO
934
+ 0.74
935
+ 65.5
936
+ 28.0
937
+ NHD
938
+ MT-L21
939
+ 0.71
940
+ 53.5
941
+ 36.7
942
+ NLD
943
+ MT-HAL
944
+ 0.67
945
+ 87.9
946
+ 80.5
947
+ NLD
948
+ MT-LASSO
949
+ 1.55
950
+ 98.0
951
+ 45.2
952
+ NLD
953
+ MT-L21
954
+ 1.52
955
+ 89.5
956
+ 59.9
957
+ 6. Data Analysis
958
+ Using a range of biomedical voice measurements obtained
959
+ from 42 adults with early-stage Parkinson’s disease (PD),
960
+ we predicted two clinical symptom scores, motor Unified
961
+ Parkinson’s Disease Rating Scale (UPDRS) and total UP-
962
+ DRS (Tsanas et al., 2009). These data come from a six-
963
+ month trial that aimed to assess the suitability of measure-
964
+ ments of dysphonia (impairment of voice production) for
965
+ telemonitoring of PD. The repeated measures data contains
966
+ 5,875 voice recordings from the 42 individuals. The follow-
967
+ ing variables were considered as covariates for predicting
968
+ the two outcomes: subject identifier, age, sex, and sixteen
969
+ biomedical voice measures.
970
+ For each MTL estimator considered in the simulations,
971
+ we examined predictive performance in the data analysis
972
+ in terms of the CV MSE. We considered a clustered CV
973
+ scheme with respect to the subject identifier (each subject’s
974
+ observations are always all together as training or test set ob-
975
+ servations across all CV folds) of k-fold/V-fold CV with ten
976
+ folds, and so the MSE reported represents an honest, inde-
977
+ pendent evaluation on a test dataset that was not seen during
978
+ training. The results from the data analysis are presented in
979
+ Table (2).
980
+ The MT-HAL resulted in the lowest cross-validated MSE
981
+ out of all the MTL algorithms considered. However, we note
982
+ that performance of all MTL algorithms in this setup is poor.
983
+ This could be due to a low signal in collected covariates
984
+ w.r.t. to the target outcomes. In a real-world application,
985
+ we also typically advocate for the use of a CV-based “super
986
+ Table 2. Predictive performance, measured in terms of the cross-
987
+ validated mean squared error for motor UPDRS, total UPDRS and
988
+ overall outcome, for each multi-task estimator considered in the
989
+ data application for predicting of Parkinson’s disease symptom
990
+ scores from biomedical voice measurements.
991
+ METHOD
992
+ MUPDRS
993
+ TUPDRS
994
+ OVERALL
995
+ MT-HAL
996
+ 58.9
997
+ 101.0
998
+ 79.9
999
+ MT-LASSO
1000
+ 60.5
1001
+ 103.9
1002
+ 82.2
1003
+ MT-L21
1004
+ 60.9
1005
+ 104.2
1006
+ 82.6
1007
+ learner” selector that, among a library of candidate MTL
1008
+ algorithms (including several variations of MT-HAL with
1009
+ different hyperparameter specifications), chooses the MTL
1010
+ algorithm with the lowest CV risk. A MTL “super learner”
1011
+ with a rich library of different MTL algorithms might be
1012
+ able to improve on the predictive performance, instead of
1013
+ considering each algorithm separately.
1014
+ 7. Discussion
1015
+ In this work, we propose a fully nonparametric approach for
1016
+ the multi-task learning problem. Our proposed framework
1017
+ simultaneously learns features, samples and task associa-
1018
+ tions important for the common model, while imposing a
1019
+ shared sparse structure among similar tasks. The problem
1020
+ formulation imposes no assumptions on the relationship
1021
+ between predictors and outcomes, or task interconnections,
1022
+ other than a global bound on the variation norm and func-
1023
+ tion space; these assumptions prove to be gather general
1024
+ in nature, often resulting in pathological examples if not
1025
+ respected. The proposed MTL algorithm attains a powerful
1026
+ dimension-free op(n−1/4) (or better) convergence rate, and
1027
+ outperforms all considered sparsity-based MTL competitors
1028
+ across a wide range of DGPs: including nonlinear and lin-
1029
+ ear setups, different levels of sparsity and task correlations,
1030
+ dimension of covariate space and sample sizes.
1031
+ As part of future work, there are several directions to be
1032
+ explored. First, we can make the procedure more computa-
1033
+ tionally scalable by relying on empirical loss minimization
1034
+ within nested Donsker classes (Schuler & van der Laan,
1035
+ 2022). For online or sequential data, one can consider for-
1036
+ mulating the multi-task problem as only part of the flexible
1037
+ ensemble model (Malenica et al., 2023). Along similar lines,
1038
+ the issue of “when to share” can be alleviated by formulating
1039
+ the question as a loss-based problem as well. In particular,
1040
+ one could define a problem setup where cross-validation is
1041
+ used to pick among single- and multi-task models, even con-
1042
+ sidering many different algorithms and task combinations.
1043
+ References
1044
+ Benkeser, D. and van der Laan, M. The Highly Adaptive
1045
+ Lasso Estimator. Proc Int Conf Data Sci Adv Anal, 2016:
1046
+
1047
+ Multi-task Highly Adaptive Lasso
1048
+ 9
1049
+ 689–696, 2016.
1050
+ Cipolla, R., Gal, Y., and Kendall, A. Multi-task learning
1051
+ using uncertainty to weigh losses for scene geometry and
1052
+ semantics. In 2018 IEEE/CVF Conference on Computer
1053
+ Vision and Pattern Recognition, pp. 7482–7491, 2018.
1054
+ doi: 10.1109/CVPR.2018.00781.
1055
+ Crawshaw, M. Multi-task learning with deep neural net-
1056
+ works: A survey, 2020. URL https://arxiv.org/
1057
+ abs/2009.09796.
1058
+ Dizaji, K. G., Chen, W., and Huang, H. Deep Large-Scale
1059
+ Multitask Learning Network for Gene Expression Infer-
1060
+ ence. J Comput Biol, 28(5):485–500, May 2021.
1061
+ Dudoit,
1062
+ S. and van der Laan,
1063
+ M.
1064
+ Asymptotics
1065
+ of cross-validated risk estimation in estimator se-
1066
+ lection and performance assessment.
1067
+ Statistical
1068
+ Methodology, 2(2):131 – 154, 2005.
1069
+ ISSN 1572-
1070
+ 3127.
1071
+ doi:
1072
+ https://doi.org/10.1016/j.stamet.2005.02.
1073
+ 003.
1074
+ URL http://www.sciencedirect.com/
1075
+ science/article/pii/S1572312705000158.
1076
+ Gill, R., van der Laan, M., and van der Wellner, J. Inefficient
1077
+ estimators of the bivariate survival function for three mod-
1078
+ els. Annales de l’I.H.P. Probabilit´es et statistiques, 31
1079
+ (3):545–597, 1995. URL http://eudml.org/doc/
1080
+ 77521.
1081
+ Jawanpuria, P. and Nath, J. S. A convex feature learning
1082
+ formulation for latent task structure discovery, 2012. URL
1083
+ https://arxiv.org/abs/1206.4611.
1084
+ Liu, X., He, P., Chen, W., and Gao, J. Multi-task deep
1085
+ neural networks for natural language understanding. In
1086
+ Proceedings of the 57th Annual Meeting of the Asso-
1087
+ ciation for Computational Linguistics, pp. 4487–4496,
1088
+ Florence, Italy, July 2019. Association for Computa-
1089
+ tional Linguistics. doi: 10.18653/v1/P19-1441. URL
1090
+ https://aclanthology.org/P19-1441.
1091
+ Lounici, K., Pontil, M., Tsybakov, A. B., and van de Geer, S.
1092
+ Taking advantage of sparsity in multi-task learning, 2009.
1093
+ URL https://arxiv.org/abs/0903.1468.
1094
+ Malenica, I., Phillips, R. V., Chambaz, A., Hubbard, A. E.,
1095
+ Pirracchio, R., and van der Laan, M. J.
1096
+ Personal-
1097
+ ized online ensemble machine learning with applica-
1098
+ tions for dynamic data streams. Statistics in Medicine,
1099
+ pp. 1– 32, 2023.
1100
+ doi:
1101
+ https://doi.org/10.1002/sim.
1102
+ 9655.
1103
+ URL https://onlinelibrary.wiley.
1104
+ com/doi/abs/10.1002/sim.9655.
1105
+ Misra, I., Shrivastava, A., Gupta, A., and Hebert, M.
1106
+ Cross-stitch networks for multi-task learning.
1107
+ In
1108
+ 2016 IEEE Conference on Computer Vision and
1109
+ Pattern Recognition (CVPR), pp. 3994–4003, Los
1110
+ Alamitos,
1111
+ CA, USA, jun 2016. IEEE Computer
1112
+ Society.
1113
+ doi:
1114
+ 10.1109/CVPR.2016.433.
1115
+ URL
1116
+ https://doi.ieeecomputersociety.org/
1117
+ 10.1109/CVPR.2016.433.
1118
+ Obozinski, G., Wainwright, M., and Jordan, M. Support
1119
+ union recovery in high-dimensional multivariate regres-
1120
+ sion. The Annals of Statistics, 39(1):1 – 47, 2011. doi:
1121
+ 10.1214/09-AOS776. URL https://doi.org/10.
1122
+ 1214/09-AOS776.
1123
+ Ruder, S. An overview of multi-task learning in deep neural
1124
+ networks, 2017. URL https://arxiv.org/abs/
1125
+ 1706.05098.
1126
+ Schuler, A. and van der Laan, M. The selectively adap-
1127
+ tive lasso, 2022. URL https://arxiv.org/abs/
1128
+ 2205.10697.
1129
+ Simon, N. and Tibshirani, R. Standardization and the group
1130
+ lasso penalty. Stat Sin, 22(3):983–1001, Jul 2012.
1131
+ Sodhani, S., Zhang, A., and Pineau, J.
1132
+ Multi-task
1133
+ reinforcement learning with context-based representa-
1134
+ tions.
1135
+ In Meila, M. and Zhang, T. (eds.), Proceed-
1136
+ ings of the 38th International Conference on Machine
1137
+ Learning, volume 139 of Proceedings of Machine
1138
+ Learning Research, pp. 9767–9779. PMLR, 18–24 Jul
1139
+ 2021. URL https://proceedings.mlr.press/
1140
+ v139/sodhani21a.html.
1141
+ Sun, T., Shao, Y., Li, X., Liu, P., Yan, H., Qiu, X., and
1142
+ Huang, X. Learning sparse sharing architectures for mul-
1143
+ tiple tasks, 2019. URL https://arxiv.org/abs/
1144
+ 1911.05034.
1145
+ Tang, Y., Pino, J., Wang, C., Ma, X., and Genzel, D. A
1146
+ general multi-task learning framework to leverage text
1147
+ data for speech to text tasks, 2020. URL https://
1148
+ arxiv.org/abs/2010.11338.
1149
+ Tsanas, A., Little, M., McSharry, P., and Ramig, L. Accurate
1150
+ telemonitoring of parkinson’s disease progression by non-
1151
+ invasive speech tests. Nature Precedings, pp. 1–1, 2009.
1152
+ Tsiatis, A.
1153
+ Semiparametric Theory and Missing Data.
1154
+ Springer New York, NY, 2006. ISBN 978-0-387-37345-4.
1155
+ van der Laan, M. A Generally Efficient Targeted Mini-
1156
+ mum Loss Based Estimator based on the Highly Adaptive
1157
+ Lasso. Int J Biostat, 13(2), 10 2017.
1158
+ van der Laan, M. and Bibaut, A. Uniform consistency of the
1159
+ highly adaptive lasso estimator of infinite dimensional
1160
+ parameters, 2017. URL https://arxiv.org/abs/
1161
+ 1709.06256.
1162
+
1163
+ Multi-task Highly Adaptive Lasso
1164
+ 10
1165
+ van der Laan, M. and Dudoit, S. Unified cross-validation
1166
+ methodology for selection among estimators and a
1167
+ general cross-validated adaptive epsilon-net estima-
1168
+ tor: Finite sample oracle inequalities and examples,
1169
+ 2003. URL https://biostats.bepress.com/
1170
+ ucbbiostat/paper130.
1171
+ van der Laan, M., Dudoit, S., and van der Vaart,
1172
+ A.
1173
+ The cross-validated adaptive epsilon-net estima-
1174
+ tor. Statistics & Risk Modeling, 24(3):1–23, December
1175
+ 2006. URL https://ideas.repec.org/a/bpj/
1176
+ strimo/v24y2006i3p23n4.html.
1177
+ van der Vaart, A. and Wellner, J. Weak Convergence and
1178
+ Empirical Processes. Springer-Verlag New York, 03 2013.
1179
+ ISBN 9781475725452.
1180
+ van der Vaart, A., Dudoit, S., and van der Laan,
1181
+ M.
1182
+ Oracle inequalities for multi-fold cross valida-
1183
+ tion. Statistics & Risk Modeling, 24(3):1–21, Decem-
1184
+ ber 2006. URL https://ideas.repec.org/a/
1185
+ bpj/strimo/v24y2006i3p21n3.html.
1186
+ Vandenhende, S. Multi-task learning for visual scene under-
1187
+ standing, 2022. URL https://arxiv.org/abs/
1188
+ 2203.14896.
1189
+ Wang, J. and Sun, L. Multi-task personalized learning with
1190
+ sparse network lasso. In Raedt, L. D. (ed.), Proceedings of
1191
+ the Thirty-First International Joint Conference on Artifi-
1192
+ cial Intelligence, IJCAI-22, pp. 3516–3522. International
1193
+ Joint Conferences on Artificial Intelligence Organization,
1194
+ 7 2022. doi: 10.24963/ijcai.2022/488. URL https:
1195
+ //doi.org/10.24963/ijcai.2022/488. Main
1196
+ Track.
1197
+ Yuan, M. and Lin, Y.
1198
+ Model selection and estima-
1199
+ tion in regression with grouped variables.
1200
+ Journal
1201
+ of the Royal Statistical Society:
1202
+ Series B (Sta-
1203
+ tistical Methodology),
1204
+ 68(1):49–67,
1205
+ 2006.
1206
+ doi:
1207
+ https://doi.org/10.1111/j.1467-9868.2005.00532.x.
1208
+ URL
1209
+ https://rss.onlinelibrary.wiley.
1210
+ com/doi/abs/10.1111/j.1467-9868.2005.
1211
+ 00532.x.
1212
+ Zhang, Y. and Yang, Q. A survey on multi-task learning.
1213
+ IEEE Transactions on Knowledge and Data Engineer-
1214
+ ing, 34(12):5586–5609, 2022. doi: 10.1109/TKDE.2021.
1215
+ 3070203.
1216
+ Zhang, Y. and Yeung, D.-Y. A regularization approach to
1217
+ learning task relationships in multitask learning. ACM
1218
+ Trans. Knowl. Discov. Data, 8(3), jun 2014. ISSN 1556-
1219
+ 4681. doi: 10.1145/2538028. URL https://doi.
1220
+ org/10.1145/2538028.
1221
+ Zhang, Y., Yeung, D.-Y., and Xu, Q.
1222
+ Probabilis-
1223
+ tic multi-task feature selection.
1224
+ In Lafferty,
1225
+ J.,
1226
+ Williams,
1227
+ C.,
1228
+ Shawe-Taylor,
1229
+ J.,
1230
+ Zemel,
1231
+ R.,
1232
+ and
1233
+ Culotta, A. (eds.), Advances in Neural Information Pro-
1234
+ cessing
1235
+ Systems,
1236
+ volume
1237
+ 23.
1238
+ Curran
1239
+ Associates,
1240
+ Inc.,
1241
+ 2010.
1242
+ URL
1243
+ https://proceedings.
1244
+ neurips.cc/paper/2010/file/
1245
+ 839ab46820b524afda05122893c2fe8e-Paper.
1246
+ pdf.
1247
+ Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong,
1248
+ H., and He, Q.
1249
+ A comprehensive survey on transfer
1250
+ learning, 2019. URL https://arxiv.org/abs/
1251
+ 1911.02685.
1252
+
1253
+ Multi-task Highly Adaptive Lasso
1254
+ 11
1255
+ A. Mixed-norm penalty controls the sectional variation norm
1256
+ In the following we give a sketch argument that the mixed-norm penalty l2,1 still controls the sectional variation norm of a
1257
+ cadlag function. First, let ψ ∈ H and ∥ψ∥var < ∞. Then by (Gill et al., 1995) we can write ψ(w) as
1258
+ ψ(w) = ψ(0) +
1259
+
1260
+ s⊂{1,...,d}
1261
+ � τs
1262
+ Os
1263
+ 1(u ≤ ws)ψs(du).
1264
+ We can approximate ψ using a discrete measure ψm and m support points. In particular, let s denote a section in {1, . . . , d}
1265
+ with t a knot point, such that (us,t : t) denotes all the support. Correspondingly, let dψm,s,t denote the pointmass assigned
1266
+ to us,t by ψm, resulting in an approximation of ψm(w) written as
1267
+ ψ(0) +
1268
+
1269
+ s⊂{1,...,d}
1270
+
1271
+ t
1272
+ 1(us,t ≤ ws)dψm,s,t.
1273
+ (4)
1274
+ Note that 1(us,t ≤ ws) is a basis function, with the corresponding coefficient dψm,s,t. The discrete approximation of ψ(w)
1275
+ is a linear combination of basis functions summed over all sections s and knots t. The sum of absolute values of dψm,s,t
1276
+ then corresponds to the variation norm of ψ,
1277
+ ∥ψm∥var = ψ(0) +
1278
+
1279
+ s⊂{1,...,d}
1280
+
1281
+ t
1282
+ |dψm,s,t|.
1283
+ As defined in Section 4.1, let ˜ws,i denote an observed value ˜ws,i = { ˜wc,i : c ∈ s} for subset s with i = 1, . . . , nk in task k.
1284
+ Applying result in Equation (4) for the support defined by the nk samples for each task k, we derive to the following new
1285
+ approximation for ψ(w):
1286
+ ψ(0) +
1287
+
1288
+ s⊂{1,...,d}
1289
+ K
1290
+
1291
+ k=1
1292
+ nk
1293
+
1294
+ i=1
1295
+ 1( ˜ws,i ≤ ws)dψm,s,t.
1296
+ where we can define φs,i = 1( ˜ws,i ≤ ws) and dψm,s,t = βs,i to ease notation. The variation norm of ψ is then
1297
+ ∥ψm∥var = ψ(0) +
1298
+
1299
+ s⊂{1,...,d}
1300
+ K
1301
+
1302
+ k=1
1303
+ nk
1304
+
1305
+ i=1
1306
+ |βs,i|,
1307
+ which corresponds to the l1 norm for the following optimization problem
1308
+ ψn = argmin
1309
+ ψ∈HM
1310
+ PnL(ψ)
1311
+ with
1312
+ HM =
1313
+
1314
+ ψ ∈ H
1315
+ s.t. ∥ψ∥var ≤ M.
1316
+ If ψ ∈ H, we need the true variation norm of ψ to be smaller than some universal constant M, which is equivalent to the
1317
+ amount of ”allowance” given by the l1 penalty (allowed upper bound on the sum of absolute values of the coefficients). It’s
1318
+ straight forward to show that
1319
+ ∥β∥1 =
1320
+ N
1321
+
1322
+ p=1
1323
+ ∥βp∥1 =
1324
+ N
1325
+
1326
+ p=1
1327
+ � K
1328
+
1329
+ k=1
1330
+
1331
+ |βkp|2
1332
+
1333
+
1334
+ N
1335
+
1336
+ p=1
1337
+
1338
+
1339
+
1340
+
1341
+
1342
+
1343
+ K
1344
+
1345
+ k=1
1346
+ |βkp|2
1347
+
1348
+ � =
1349
+ N
1350
+
1351
+ p=1
1352
+ ∥βp∥2
1353
+ = ∥β∥2,1,
1354
+ proving that l2,1 norm is less than or equal to the variation norm, thus controlling the amount of allowed variation.
1355
+
1356
+ Multi-task Highly Adaptive Lasso
1357
+ 12
1358
+ B. Additional Simulations
1359
+ B.1. Different sample sizes
1360
+ In the following, we provide results of additional simulations at various sample sizes. In particular, we report performance
1361
+ of MT-HAL, MT-lasso and MT-L21 for n = (50, 100, 200, . . . , 800, 900, 1000). All additional simulations correspond to
1362
+ nonlinear data-generating processes (DGPs) as described in Section 5. We consider nonlinear DGPs across various n with
1363
+ (1) high level of sparsity (60%, “H”) vs. low sparsity (20%, “L” ); (2) tasks with the same level of sparsity (“S”) vs. distinct
1364
+ sparsity levels across tasks (“D”). For all simulations, we consider K = 5 tasks and different number of samples for each k,
1365
+ in order to encourage different level of importance for each task in the optimization procedure. The number of covariates
1366
+ remains the same across all tasks (d = 6). We report the mean squared error (MSE) at each sample size and DGP in Figure
1367
+ 1, as well as coefficient precision and accuracy in Figures 2 and 3. All reported results are calculated on a separate test data
1368
+ over 100 Monte Carlo simulations.
1369
+ As reported for n = 600 in the main simulation results, MT-HAL achieves the lowest MSE across all DGPs and sample
1370
+ sizes considered. The improvement seen at n = 600 persists even for small sample sizes (n = 50), and consistently shows
1371
+ reduction in the MSE by more than a half. In terms of coefficient precision, the hardest settings across all algorithms and
1372
+ sample sizes are, as expected, DGPs with high sparsity, where MT-lasso seems to perform the best. However, accuracy
1373
+ results also demonstrate that MT-lasso tends to produce a lot of false negatives. Except for the very small samples sizes,
1374
+ MT-HAL results in best accuracy and comparable precision across all considered DGP settings.
1375
+ B.2. Linear Setup with Interactions
1376
+ The data-generating processes corresponding to simulation “LHS”, “LLS”, “LHD” and “LLD” are linear models with
1377
+ d = 6 covariates and normally distributed coefficients. The setup for linear simulations is the same as for nonlinear, we
1378
+ just omit the nonlinear transformations of the covariate space. For example, true coefficients for simulation “LHS” are
1379
+ β0,LHS = (β0,1, . . . , β0,|LHS|, 0, . . . , 0). Each β0,j for 1 ≤ j ≤ |LHS| is sampled from a standard normal distribution,
1380
+ and the error term is normal with final coefficient of 0.3. For simulations with the same level of sparsity across tasks, highest
1381
+ level of sparsity was 60%, whereas the lowest was 20%, as for the nonlinear DGPs. For different sparsity profiles across
1382
+ tasks, we considered random deviations from true level of sparsity across different tasks (40% − 80% for high level of
1383
+ sparsity and 0.05% − 40% for low). Covariates with nonzero coefficients consist of binary, categorical and continuous
1384
+ variables. Final outcome regression consist of only linear terms, but we add few interactions as well (up to second order).
1385
+ High-sparsity settings put most nonzero coefficients on terms that are not interactions, while low-sparsity setup includes
1386
+ interactions. We report results for linear simulations at n = 600 in Table (3).
1387
+ As expected, there is a vast improvement in overall performance for all methods for an easier (linear) setup. For high-sparsity
1388
+ simulations (LHS and LHD), the true model is linear with no interactions, hence both MT-lasso and MT-L21 operate within
1389
+ the true model. As MT-HAL starts from a nonparametric space, it is not surprising to see MT-lasso and MT-L21 perform
1390
+ better in this setup; it is, however, usually unrealistic to know the true DGP in advance. It is worth nothing that, even
1391
+ in a completely linear setting, as soon as the true DGP contains few interactions, performance of MT-lasso and MT-L21
1392
+ significantly drops in terms of the MSE. As observed in nonlinear simulations, MT-HAL preserves its advantage in terms of
1393
+ MSE performance for high-sparsity simulations; when MT-lasso and MT-l21 operate within their true model, MT-HAL
1394
+ remains very competitive.
1395
+ B.3. High-dimensional Setup
1396
+ Finally, we demonstrate performance of the multi-task HAL in high-dimensions in Table 4. In particular, the data-
1397
+ generating processes corresponding to simulation “HNHS”, “HNLS”, “HNHD” and “HNLD” are high-dimensional
1398
+ nonlinear models with d = 20 covariates per each task and normally distributed coefficients.
1399
+ The DGPs in the
1400
+ high-dimensional setting are as previously described in Section 5. The true coefficients for simulation “HNHS” are
1401
+ β0,HNHS = (β0,1, . . . , β0,|NHS|, 0, . . . , 0), where each β0,j for 1 ≤ j ≤ |HNHS| is sampled from a standard normal
1402
+ distribution. The corresponding error term is sampled from N(0, 0.1), with final coefficient of 0.3. Highest and lowest level
1403
+ of sparsity was 60% and 20% for simulations where a lot of sharing across tasks is expected. For different sparsity profiles
1404
+ across tasks, we considered random deviations from true level of sparsity across different tasks (40% − 80% for high level
1405
+ of sparsity and 0.05% − 40% for low). Covariates with nonzero coefficients are transformed via exponential, logarithmic,
1406
+ cosine and squared operations of predictors and predictor interactions. Final MSE, coefficient precision and accuracy results
1407
+
1408
+ Multi-task Highly Adaptive Lasso
1409
+ 13
1410
+ for high-dimensional nonlinear simulations at n = 600 are shown in Table (4).
1411
+ Similarly to other nonlinear simulations with smaller number of covariates (and less continuous predictors), MT-HAL
1412
+ remains the MTL algorithm with the smallest mean squared error. Across all DGPs considered, it consistently shows
1413
+ reduction in MSE by more than a half (as seen in previous simulations as well). Precision and accuracy show a significant
1414
+ decrease for all considered MTL algorithms, as expected for high-dimensional highly nonlinear settings. Despite not getting
1415
+ all non-zero coefficients right, MSE remains surprisingly low for all considered methods. As observed previously, MT-HAL
1416
+ universally produces better accuracy and comparable precision in terms of the non-zero coefficients, compared to considered
1417
+ competitors.
1418
+ Table 3. Mean squared error (MSE), precision (“Prec”) and accurarcy (“Accu”) for each of the linear simulation setups with d = 6
1419
+ covariates, K = 5 tasks, and total of n = 600 samples split between the K tasks as {100, 100, 150, 150, 100}. Reported results were
1420
+ generated across 100 Monte Carlo simulations.
1421
+ SETUP
1422
+ METHOD
1423
+ MSE
1424
+ PREC %
1425
+ ACCU %
1426
+ LHS
1427
+ MT-HAL
1428
+ 0.062
1429
+ 95.2
1430
+ 85.7
1431
+ LHS
1432
+ MT-LASSO
1433
+ 0.054
1434
+ 100
1435
+ 76.4
1436
+ LHS
1437
+ MT-L21
1438
+ 0.014
1439
+ 100
1440
+ 90.3
1441
+ LLS
1442
+ MT-HAL
1443
+ 0.144
1444
+ 94.1
1445
+ 74.1
1446
+ LLS
1447
+ MT-LASSO
1448
+ 0.395
1449
+ 99.8
1450
+ 65.1
1451
+ LLS
1452
+ MT-L21
1453
+ 0.324
1454
+ 99.7
1455
+ 74.9
1456
+ LHD
1457
+ MT-HAL
1458
+ 0.060
1459
+ 94.9
1460
+ 85.2
1461
+ LHD
1462
+ MT-LASSO
1463
+ 0.035
1464
+ 100
1465
+ 78.7
1466
+ LHD
1467
+ MT-L21
1468
+ 0.018
1469
+ 100
1470
+ 85.7
1471
+ LLD
1472
+ MT-HAL
1473
+ 0.284
1474
+ 95.9
1475
+ 78.0
1476
+ LLD
1477
+ MT-LASSO
1478
+ 0.717
1479
+ 100
1480
+ 64.5
1481
+ LLD
1482
+ MT-L21
1483
+ 0.644
1484
+ 99.8
1485
+ 77.2
1486
+ Table 4. Mean squared error (MSE), precision (“Prec”) and accurarcy (“Accu”) for each of the high-dimensional nonlinear simulation
1487
+ setups with d = 20 covariates, K = 5 tasks, and total of n = 600 samples split between the K tasks as {100, 100, 150, 150, 100}.
1488
+ Reported results were generated across 100 Monte Carlo simulations.
1489
+ SETUP
1490
+ METHOD
1491
+ MSE
1492
+ PREC %
1493
+ ACCU %
1494
+ HNHS
1495
+ MT-HAL
1496
+ 0.446
1497
+ 20.8
1498
+ 37.8
1499
+ HNHS
1500
+ MT-LASSO
1501
+ 0.863
1502
+ 44.2
1503
+ 27.5
1504
+ HNHS
1505
+ MT-L21
1506
+ 0.808
1507
+ 39.0
1508
+ 35.7
1509
+ HNLS
1510
+ MT-HAL
1511
+ 0.431
1512
+ 38.2
1513
+ 50.1
1514
+ HNLS
1515
+ MT-LASSO
1516
+ 1.01
1517
+ 46.1
1518
+ 31.3
1519
+ HNLS
1520
+ MT-L21
1521
+ 0.812
1522
+ 45.4
1523
+ 40.0
1524
+ HNHD
1525
+ MT-HAL
1526
+ 0.425
1527
+ 37.3
1528
+ 36.7
1529
+ HNHD
1530
+ MT-LASSO
1531
+ 0.841
1532
+ 34.3
1533
+ 26.4
1534
+ HNHD
1535
+ MT-L21
1536
+ 0.809
1537
+ 42.6
1538
+ 33.7
1539
+ HNLD
1540
+ MT-HAL
1541
+ 0.451
1542
+ 36.5
1543
+ 31.7
1544
+ HNLD
1545
+ MT-LASSO
1546
+ 1.01
1547
+ 46.1
1548
+ 30.5
1549
+ HNLD
1550
+ MT-L21
1551
+ 0.842
1552
+ 42.9
1553
+ 39.1
1554
+
1555
+ Multi-task Highly Adaptive Lasso
1556
+ 14
1557
+ Figure 1. Mean Squared Error (MSE) at sample sizes n = (50, 100, 200, . . . , 800, 900, 1000) for each of the nonlinear simulation setups:
1558
+ nonlinear, high sparsity, same sparsity profile across tasks (“NHS”); nonlinear, low sparsity, same sparsity profile across tasks (“NLS”);
1559
+ nonlinear, high sparsity, different sparsity profile across tasks (“NHD”); nonlinear, low sparsity, different sparsity profile across tasks
1560
+ (‘NLD”). All simulation setups contain d = 6 covariates and K = 5 tasks. Reported results were generated across 100 Monte Carlo
1561
+ simulations.
1562
+
1563
+ (a) NHS
1564
+ (b) NLS
1565
+ 3.0-
1566
+ 2.5
1567
+ 2.5
1568
+ 2.0
1569
+ MSE
1570
+ 2.0
1571
+ 1.5
1572
+ 1.5
1573
+ 1.0
1574
+ 1.0
1575
+ 0.5
1576
+ 250
1577
+ 500
1578
+ 750
1579
+ 1000
1580
+ 250
1581
+ 500
1582
+ 750
1583
+ 1000
1584
+ Method
1585
+ RMTL 121
1586
+ (c) NHD
1587
+ (d) NLD
1588
+ RMTLlasso
1589
+ MT HAL
1590
+ 2.5
1591
+ 1.2
1592
+ 1.0
1593
+ 2.0
1594
+ ISE
1595
+ M
1596
+ 0.8
1597
+ 1.5
1598
+ 0.6
1599
+ 1.0
1600
+ 0.4 -
1601
+ 250
1602
+ 500
1603
+ 750
1604
+ 1000
1605
+ 250
1606
+ 500
1607
+ 750
1608
+ 1000
1609
+ n
1610
+ nMulti-task Highly Adaptive Lasso
1611
+ 15
1612
+ Figure 2. Coefficient precision at sample sizes n = (50, 100, 200, . . . , 800, 900, 1000) for each of the nonlinear simulation setups:
1613
+ nonlinear, high sparsity, same sparsity profile across tasks (“NHS”); nonlinear, low sparsity, same sparsity profile across tasks (“NLS”);
1614
+ nonlinear, high sparsity, different sparsity profile across tasks (“NHD”); nonlinear, low sparsity, different sparsity profile across tasks
1615
+ (‘NLD”). All simulation setups contain d = 6 covariates and K = 5 tasks. Reported results were generated across 100 Monte Carlo
1616
+ simulations.
1617
+
1618
+ (a) NHS
1619
+ (b) NLS
1620
+ 70
1621
+ 100.0
1622
+ 97.5
1623
+ 65
1624
+ Precision
1625
+ 95.0
1626
+ 60
1627
+ 92.5
1628
+ 55
1629
+ 90.0
1630
+ 87.5
1631
+ 250
1632
+ 500
1633
+ 750
1634
+ 1000
1635
+ 250
1636
+ 500
1637
+ 750
1638
+ 1000
1639
+ Method
1640
+ RMTL 121
1641
+ (c) NHD
1642
+ (d) NLD
1643
+ RMTLlasso
1644
+ 100
1645
+ MT_HAL
1646
+ 65
1647
+ 95
1648
+ Precision
1649
+ 60
1650
+ 90
1651
+ 55
1652
+ 85
1653
+ 50
1654
+ 250
1655
+ 500
1656
+ 750
1657
+ 1000
1658
+ 250
1659
+ 500
1660
+ 750
1661
+ 1000
1662
+ n
1663
+ nMulti-task Highly Adaptive Lasso
1664
+ 16
1665
+ Figure 3. Coefficient accuracy at sample sizes n = (50, 100, 200, . . . , 800, 900, 1000) for each of the nonlinear simulation setups:
1666
+ nonlinear, high sparsity, same sparsity profile across tasks (“NHS”); nonlinear, low sparsity, same sparsity profile across tasks (“NLS”);
1667
+ nonlinear, high sparsity, different sparsity profile across tasks (“NHD”); nonlinear, low sparsity, different sparsity profile across tasks
1668
+ (‘NLD”). All simulation setups contain d = 6 covariates and K = 5 tasks. Reported results were generated across 100 Monte Carlo
1669
+ simulations.
1670
+
1671
+ (a) NHS
1672
+ (b) NLS
1673
+ 0.8
1674
+ 0.7
1675
+ 0.6
1676
+ 0.7
1677
+ Recall
1678
+ 0.5
1679
+ 0.6 -
1680
+ 0.4
1681
+ 0.5
1682
+ 0.3
1683
+ 250
1684
+ 500
1685
+ 750
1686
+ 1000
1687
+ 250
1688
+ 500
1689
+ 750
1690
+ 1000
1691
+ Method
1692
+ RMTL 121
1693
+ (c) NHD
1694
+ (d) NLD
1695
+ RMTLlasso
1696
+ MT HAL
1697
+ 0.7
1698
+ 0.8
1699
+ 0.6
1700
+ 0.7-
1701
+ Recall
1702
+ 0.5
1703
+ 0.6
1704
+ 0.4
1705
+ 0.5
1706
+ 0.3
1707
+ 0.4 -
1708
+ 250
1709
+ 500
1710
+ 750
1711
+ 1000
1712
+ 250
1713
+ 500
1714
+ 750
1715
+ 1000
1716
+ n
1717
+ n
S9FLT4oBgHgl3EQfPy8r/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
StAzT4oBgHgl3EQf0f7W/content/tmp_files/2301.01786v1.pdf.txt ADDED
@@ -0,0 +1,973 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01786v1 [hep-th] 4 Jan 2023
2
+ Is Yang-Mills Theory Unitary in Fractional Spacetime Dimensions?
3
+ Qingjun Jin,1, ∗ Ke Ren,2, 3, † Gang Yang,3, 4, 5, ‡ and Rui Yu6, 3, §
4
+ 1Graduate School of China Academy of Engineering Physics,
5
+ No. 10 Xibeiwang East Road, Haidian District, Beijing, 100193, China
6
+ 2School of Physics and Astronomy, Sun Yat-Sen University, Zhuhai 519082, China
7
+ 3CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,
8
+ Chinese Academy of Sciences, Beijing, 100190, China
9
+ 4School of Fundamental Physics and Mathematical Sciences,
10
+ Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
11
+ 5International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, China
12
+ 6Beijing Computational Science Research Center, Beijing 100193, China
13
+ We show that Yang-Mills theory is non-unitairy in non-integer spacetime dimensions. The viola-
14
+ tion of unitarity is due to the existence of evanescent operators that vanish in four dimensions but
15
+ are non-zero in general d dimensions. We show that the gluonic evanescent operators give rise to
16
+ both negative-norm states and complex anomalous dimensions.
17
+ INTRODUCTION
18
+ While the real world lives in four spacetime dimensions,
19
+ we often need to consider quantum field theories (QFTs)
20
+ in non-integer dimensions. One example is the dimen-
21
+ sional regularization method in which the spacetime is
22
+ analytically continued to d = 4 − 2ǫ dimensions [1]. An-
23
+ other example is the ǫ-expansion method used to com-
24
+ pute critical exponents [2], where theories at Wilson-
25
+ Fisher (WF) fixed points are defined in fractional dimen-
26
+ sions depending on ǫ.
27
+ Some other studies of QFTs in
28
+ non-integer dimensions can be found in e.g. [3–9].
29
+ Unitarity, as one fundamental physical assumption,
30
+ plays a key role in many studies of QFTs. Surprisingly,
31
+ it has been shown that the φ4 scalar field theory in non-
32
+ integer dimensions is not unitary [10, 11]. The source of
33
+ unitarity violation is the so-called evanescent operators,
34
+ which are non-zero in general d dimensions but vanish
35
+ in the limit d → 4. It was shown that these evanescent
36
+ operators give rise to negative norm states and also lead
37
+ to complex anomalous dimensions [10, 11]. The negative
38
+ norm states were also found in the Gross-Neveu-Yukawa
39
+ theory [12]. An important question is: does the similar
40
+ mechanism for the unitarity violation happen for more
41
+ general QFTs, in particular, the Yang-Mills (YM) theo-
42
+ ries?
43
+ In this paper, we address this question and provide
44
+ concrete evidence that the pure YM theory is non-
45
+ unitarity in 4 + ǫ dimensions.
46
+ Because of the extra
47
+ spin structure as well as the gauge symmetry, YM the-
48
+ ories are much more complicated than the scalar theo-
49
+ ries, making this generalization highly non-trivial. Our
50
+ study is closely based on the recent construction of glu-
51
+ onic evanescent operators in [13, 14]. We compute the
52
+ Gram matrix of gluonic operators and find that there are
53
+ negative norm states associated with the YM evanescent
54
+ operators.
55
+ Moreover, these operators lead to complex
56
+ anomalous dimensions which we show in the one-loop or-
57
+ der. Our new results for the YM theory thus suggest that
58
+ the unitarity violation should be ubiquitous in QFT at
59
+ non-integer spacetime dimensions.
60
+ We point out that compared to the scalar theory case,
61
+ there are important new features for the YM theory.
62
+ First, both the negative norm states and the complex
63
+ anomalous dimensions appear in the basis of dimension-
64
+ 12 operators (here we consider operators that are Lorentz
65
+ scalars). In contrast, in the scalar theory, the negative
66
+ norm states start at dimension-15 operators and complex
67
+ anomalous dimensions appear at much higher dimension-
68
+ 23 [11]. Second, unlike the scalar theory having an in-
69
+ frared (IR) fixed point, the pure YM theory is asymp-
70
+ totically free and is expected to have an ultraviolet (UV)
71
+ fixed point at spacetime dimension 4 + ǫ, see e.g. [15–
72
+ 17]. Our computation shows that there are negative norm
73
+ evanescent states appearing for 4 < d < 5. Interestingly,
74
+ the numbers of negative norm states match precisely with
75
+ the numbers of pairs of complex anomalous dimensions
76
+ for the length-4 operators (operators contain four Fµν’s)
77
+ up to mass dimension 16.
78
+ In the following we first give a brief review of the glu-
79
+ onic evanescent operators, then we discuss the negative
80
+ norm states and the complex anomalous dimensions, and
81
+ finally, we comment on the implications of the violation
82
+ of unitary for pure YM theory as well as some general-
83
+ izations.
84
+ GLUONIC EVANESCENT OPERATORS
85
+ In the pure YM theory, the local gauge invariant oper-
86
+ ators are built by taking products of the field strength
87
+ Fµν and covariant derivatives Dµ. The simplest opera-
88
+ tor is the term tr(FµνF µν) in the Lagrangian which has
89
+ mass dimension four. A special class of operators is the
90
+ so-called evanescent operators, which are defined in gen-
91
+ eral d dimensions but vanish in the limit d → 4. The
92
+ evanescent operators can be constructed by multiplying
93
+
94
+ 2
95
+ ∆0
96
+ 8
97
+ 10 12 14
98
+ 16
99
+ N p
100
+ 4
101
+ 20 82 232 550
102
+ N e
103
+ 0
104
+ 4
105
+ 25 92 259
106
+ TABLE I. Counting of single-trace length-4 basis up to di-
107
+ mension 16.
108
+ N p and N e are the numbers of physical and
109
+ evanescent operators, respectively.
110
+ a tensor operator by a Kronecker symbol δµ1···µn
111
+ ν1···νn with
112
+ n ≥ 5 and then taking Lorentz contraction, for example,
113
+ Oa = δµ1µ2µ3µ4µ5
114
+ ν1ν2ν3ν4ν5 tr(Dν5Fµ1µ2Dµ5Fν1ν2Fµ3µ4Fν3ν4). (1)
115
+ For convenience, we will refer to the non-evanescent op-
116
+ erators as physical operators.
117
+ In this paper we will focus on operators that are
118
+ Lorentz scalars with all Lorentz indices contracted. Be-
119
+ cause we study operators that are covariant in d di-
120
+ mensional spacetime, the Lorentz contractions involve no
121
+ Levi-Civita ǫ-tensor, thus all operators are parity even.
122
+ Gluonic evanescent operators start to appear at canon-
123
+ ical dimension 10 and involve at least four Fµν’s, such as
124
+ the one in (1). For the purpose of later computations,
125
+ it is important to have a classification of operators ac-
126
+ cording to their mass dimension ∆0. Two operators are
127
+ said to be equivalent if their difference is proportional to
128
+ the equation of motion (DµF µν = 0) or Bianchi identity
129
+ (DµFνρ + DνFρµ + DρFµν = 0). One can construct the
130
+ basis of operators at a given mass dimension by elimi-
131
+ nating such equivalence. We keep operators with total
132
+ derivatives in the operator basis. A systematic classifica-
133
+ tion of gluonic evanescent operators has been studied in
134
+ [13].
135
+ For the computation of the Gram matrix and one-loop
136
+ anomalous dimensions, we note that there is no mixing
137
+ between operators containing different numbers of Fµν.
138
+ In this work, we will mainly focus on the single-trace
139
+ length-4 operators (those containing four Fµν but an ar-
140
+ bitrary number of Dµ), which will be sufficient for the
141
+ study of unitarity violation. In Table I, we summarize
142
+ the counting of length-4 basis (including both evanescent
143
+ and physical operators) up to dimension 16.
144
+ NEGATIVE NORM
145
+ In this section, we show that the inner product of local
146
+ operators is not positive definite in the YM theory in
147
+ non-integer dimensions.
148
+ This problem can be studied
149
+ by considering the Gram matrix, which is a symmetric
150
+ matrix defined as Gij in the two-point Green function
151
+ ⟨Oi(x)Oj(0)⟩ =
152
+ Gij
153
+ |x2|∆i .
154
+ (2)
155
+ We will show that the Gram matrix is not positive defi-
156
+ nite, and so there are negative norm states which implies
157
+ that the theory is non-unitary.
158
+ For simplicity, we will compute the Gram matrix in
159
+ the free YM theory by setting the YM coupling g = 0.
160
+ This provides the leading order result of the Gram ma-
161
+ trix. We mention that in principle one can compute the
162
+ Gram matrix elements in (2) by Wick contraction, which
163
+ is however cumbersome for high dimensional operators.
164
+ Instead, we develop an efficient method for computing
165
+ the Gram matrix based on form factors; details will be
166
+ given in [18].
167
+ For Lorentz invariant operators, Gram matrices only
168
+ depend on the rank of gauge group Nc, the spacetime di-
169
+ mension d, and the canonical dimensions of operators. As
170
+ a simple example, the norm of the dimension-4 operator
171
+ tr(FµνF µν) is
172
+ GtrF 2,trF 2 = 8 N 2
173
+ c d(d − 1)(d − 2)3 .
174
+ (3)
175
+ The interesting feature of Gram matrices is the ap-
176
+ pearance of negative norms at d = 4 + ǫ for ǫ > 0. The
177
+ lowest canonical dimension allowing negative norm states
178
+ is ∆0 = 12. Take dimension-12 length-4 single-trace op-
179
+ erators as an example. This set contains 107 independent
180
+ operators (see Table I), and the corresponding Gram ma-
181
+ trix has a negative eigenvalue and therefore is not positive
182
+ definite. To explain the emergence of the negative-norm
183
+ states, consider the following operator
184
+ Ob = DρDσ
185
+
186
+ δµ1µ2µ4µ5ν1ρ
187
+ µ3ν2ν3ν4ν5σ tr(Dµ1Fµ2µ3Fµ4µ5Dν1Fν2ν3Fν4ν5)
188
+
189
+ .
190
+ (4)
191
+ This operator contains a rank-6 Kronecker symbol, so it
192
+ vanishes at d = 4 and d = 5. Explicitly, the norm of Ob
193
+ is
194
+ Gbb = 1152 N 2
195
+ c (N 2
196
+ c − 1)(3d + 8)(d + 2)(d + 1)d5
197
+ × (d − 1)2(d − 2)5(d − 3)(d − 4)(d − 5) ,
198
+ (5)
199
+ which is negative when 4 < d < 5.
200
+ Thus the Gram
201
+ matrix for the ∆0 = 12 operators is non-positive definite
202
+ at d = 4 + ǫ. As a comparison, for operators containing
203
+ a rank-5 Kronecker symbol, their norms have no factor
204
+ (d − 5) and still be positive for d = 4 + ǫ.
205
+ The above operator example Ob also implies that there
206
+ exist negative-norm states for operators with arbitrarily
207
+ higher canonical dimensions. Such operators can be con-
208
+ structed by inserting arbitrary pairs of Dµ (with µ con-
209
+ tracted) in the dimension-12 operator (4). The norm of
210
+ such an operator also has a factor linear in (d − 4) and
211
+ (d − 5) and thus is negative at d = 4 + ǫ.
212
+ We have computed Gram matrices for higher dimen-
213
+ sion bases and find the number of negative-norm states
214
+ grows as ∆0 increases. In Table II we show the num-
215
+ bers of positive and negative norm states of single-trace
216
+ length-4 operators up to to dimension-16, counted from
217
+ positive and negative eigenvalues of Gram matrices. The
218
+ number of negative eigenvalues can be also understood
219
+ from the counting of evanescent operators: following the
220
+ method of primitive operators in our previous work [13],
221
+
222
+ 3
223
+ ∆0
224
+ 8
225
+ 10
226
+ 12
227
+ 14
228
+ 16
229
+ N p
230
+ + = N p
231
+ 4
232
+ 20
233
+ 82
234
+ 232
235
+ 550
236
+ N e
237
+ +
238
+ 0
239
+ 4
240
+ 24
241
+ 88
242
+ 246
243
+ N e
244
+
245
+ 0
246
+ 0
247
+ 1
248
+ 4
249
+ 13
250
+ Nγ-complex
251
+ 0
252
+ 0
253
+ 1 × 2 4 × 2 13 × 2
254
+ TABLE II. Counting of states with positive and negative
255
+ norms for the single-trace length-4 basis up to mass dimen-
256
+ sion 16. N+ and N− are the numbers of positive and negative
257
+ norm states, respectively. Nγ-complex is the number of com-
258
+ plext anomalous dimensions.
259
+ all the basis operators with length-4 are constructed from
260
+ Kronecker symbols with rank five or six, and we find
261
+ that the numbers of negative eigenvalues always equal
262
+ the numbers of linearly independent evanescent opera-
263
+ tors containing rank-6 Kronecker symbols.
264
+ To give a better understanding of the feature of the YM
265
+ evanescent operators, let us make a comparison with the
266
+ scalar theory. In the YM theory, both the field strengths
267
+ Fµν and covariant derivatives Dµ carry Lorentz indices,
268
+ while in the scalar theory, all Lorentz indices are only
269
+ from the covariant derivatives. As a result, the evanes-
270
+ cent operators in the scalar theory must have length
271
+ L ≥ 5 (namely, containing at least five scalar fields).
272
+ This should explain why the negative norm states ap-
273
+ pear at higher-dimensional operators in the scalar the-
274
+ ory, for example, in [11] it was found that the first Gram
275
+ matrix block that contains both negative- and positive-
276
+ norm evanescent states appears at canonical dimension
277
+ ∆0 = 18 and length L = 6 and in the scalar theory.
278
+ In contrast, in the YM theory, the Lorentz structure of
279
+ the operators is much richer, and as we discussed above,
280
+ the similar Gram matrix with negative-norm states first
281
+ appears at dimension 12 and with length L = 4.
282
+ So far we have considered the Gram matrix in the
283
+ “free” YM theory with g = 0. This leading order result
284
+ is expected to capture the main feature. In the next sec-
285
+ tion, we will consider the interaction theory and compute
286
+ anomalous dimensions, and we will find the unitarity-
287
+ violating effect that is consistent with the above free the-
288
+ ory results.
289
+ COMPLEX ANOMALOUS DIMENSIONS
290
+ The scaling dimension ∆ of a local operator is defined as
291
+ the sum of its canonical (classical) dimension ∆0 and a
292
+ quantum correction part γ called anomalous dimension
293
+ (AD). In a unitary CFT, the spectrum of scaling dimen-
294
+ sions should be always real and bounded from below. In
295
+ this section, we will show that gluonic evanescent oper-
296
+ ators have complex ADs at the WF fixed point of the
297
+ YM theory, thus showing manifestly that the unitarity
298
+ property is violated.
299
+ We first briefly review how to compute the ADs of
300
+ local operators at the WF fixed point. For a set of bare
301
+ operators basis {Oi} with the same canonical dimension
302
+ ∆0, one can define the renormalized operators {Oi,R} as
303
+ OR
304
+ i = Z j
305
+ i Oj ,
306
+ (6)
307
+ where the renormalization matrix element Z j
308
+ i
309
+ represents
310
+ the mixing from Oi to Oj and is determined by UV poles
311
+ in ǫ in the minimal subtraction scheme. The dilatation
312
+ matrix is defined to be
313
+ D ≡ −µdZ
314
+ dµ Z−1 .
315
+ (7)
316
+ The eigenvalues of the dilatation matrix give the ADs,
317
+ which can be expanded as
318
+ γ =
319
+
320
+ l=1
321
+ �αs
322
+
323
+ �l
324
+ γ(l) ,
325
+ (8)
326
+ where αs is the renormalized YM coupling constant.
327
+ At the WF fixed point [2], the beta function vanishes
328
+ for the special value of the coupling α∗(ǫ) (we work in
329
+ d = 4 + ǫ dimensions), which at the lowest order is given
330
+ as
331
+ α∗(ǫ) = 2πǫ
332
+ β0
333
+ + O(ǫ2) .
334
+ (9)
335
+ In terms of α∗, the dilatation matrix and the ADs are
336
+ expanded in ǫ, and the leading order expansion is
337
+ γ∗ = ǫγ(1)
338
+
339
+ + O(ǫ2) ,
340
+ γ(1)
341
+
342
+ = γ(1)/(2β0) .
343
+ (10)
344
+ For example, for the operator tr(FµνF µν),
345
+ γ(1)
346
+ ∗,tr(F 2) = −1 .
347
+ (11)
348
+ We stress that since YM theory is asymptotically free
349
+ with β0 = 11Nc
350
+ 3
351
+ > 0, the WF fixed point is at d > 4,
352
+ i.e. ǫ > 0.
353
+ Let us give a short description of the strategy we use
354
+ to compute ADs, and one can refer to [13, 14] for de-
355
+ tailed discussion. We first calculate the bare loop form
356
+ factor [19], which is defined as
357
+ FO(1, .., n; q) =
358
+
359
+ ddxe−iq·x⟨g1, . . . , gn|O(x)|0⟩ .
360
+ (12)
361
+ Next, we subtract the IR divergences according to
362
+ Catani’s formulas [20] to get the UV divergence. The
363
+ UV divergence has the structure as a linear combination
364
+ of the tree-level form factors of the basis operators and
365
+ the coefficients are matrix elements Z j
366
+ i . Finally, one can
367
+ calculate the dilatation matrix according to the definition
368
+ (7) whose eigenvalues give ADs.
369
+ Now we present the results of ADs.
370
+ Since there is
371
+ no evanescent-to-physical operator mixing at one loop
372
+
373
+ 4
374
+ (namely, (Z(1)) p
375
+ e
376
+ = 0) [13], one can safely divide oper-
377
+ ators into evanescent and physical sectors and compute
378
+ their one-loop ADs separately.
379
+ Our calculation shows
380
+ that the one-loop complex ADs, which only happen in
381
+ the evanescent sectors, begin to appear at canonical di-
382
+ mension 12. This is consistent with the fact that negative
383
+ norm states start at this dimension as discussed in the
384
+ last section. The operator basis can be further classified
385
+ into small sectors according to their parity under charge
386
+ conjugation as well as Lorentz structures. The Z-matrix
387
+ will take a blockwise structure, and the ADs for opera-
388
+ tors in different sectors are just eigenvalues of different
389
+ sub-blocks.
390
+ As a concrete example, at length four, the lowest di-
391
+ mensional sector including complex ADs is a dimension-
392
+ 12 sector containing eight evanescent operators:
393
+ DνDρ
394
+
395
+ δ12456ν
396
+ 3789µρ
397
+
398
+ tr(D1F23F45D6F78F9µ) + Rev.)
399
+ ��
400
+ , (13)
401
+ DνDρ
402
+
403
+ δ1
404
+ 4δ2356ν
405
+ 789µρ
406
+
407
+ tr(D1F23F45D6F78F9µ) + Rev.)
408
+ ��
409
+ ,
410
+ DνDρ
411
+
412
+ δ1
413
+ 4δ2356ν
414
+ 789µρ
415
+
416
+ tr(D1F23D4F56F78F9µ) + Rev.)
417
+ ��
418
+ ,
419
+ DνDρ
420
+
421
+ δ1
422
+ 4δ2357ν
423
+ 689µρ
424
+
425
+ tr(D1F23D4F56F78F9µ) + Rev.)
426
+ ��
427
+ ,
428
+ DνDρ
429
+
430
+ δ1
431
+ 4δ2367ν
432
+ 589µρ
433
+
434
+ tr(D1F23F45D6F78F9µ) + Rev.)
435
+ ��
436
+ ,
437
+ DνDρ
438
+
439
+ δ1
440
+ 4δ2378ν
441
+ 569µρ
442
+
443
+ tr(D1F23D4F56F78F9µ) + Rev.)
444
+ ��
445
+ ,
446
+ DνDρ
447
+
448
+ δ1
449
+ 5δ2347ν
450
+ 689µρ
451
+
452
+ tr(D1F23D4F56F78F9µ) + Rev.)
453
+ ��
454
+ ,
455
+ DνDρ
456
+
457
+ δ2
458
+ 4δ1567ν
459
+ 389µρ
460
+
461
+ tr(D1F23F45D6F78F9µ) + Rev.)
462
+ ��
463
+ .
464
+ Note that the first operator in (13) is the only dimension-
465
+ 12 operator containing a tensor degree-6 Kronecker sym-
466
+ bol and is responsible for the existence of a negative
467
+ norm state. We mention that we have focused on op-
468
+ erators that are Lorentz scalars. An alert reader may
469
+ find that the above operators are actually total deriva-
470
+ tives of dimension-10 tensor-2 operators. We will see in
471
+ (15) below that the eigenvalue equation for these eight
472
+ operators is not factorizable (with rational coefficients),
473
+ which implies that their Z matrix cannot be decom-
474
+ posed into smaller blocks. Thus there should exist eight
475
+ dimension-10 tensor-2 primary operators which give the
476
+ same anomalous dimensions.
477
+ The one-loop Z-matrix of this sector reads
478
+
479
+
480
+
481
+
482
+
483
+
484
+
485
+
486
+
487
+
488
+
489
+
490
+
491
+
492
+ − 38
493
+
494
+ 2
495
+ ǫ
496
+ − 13
497
+ 12ǫ
498
+ 0
499
+ 14
500
+
501
+ 0
502
+ 14
503
+
504
+ 28
505
+
506
+ − 1
507
+
508
+ − 85
509
+
510
+ 2
511
+ ǫ
512
+ 5
513
+
514
+ − 2
515
+ 3ǫ − 5
516
+ 12ǫ − 7
517
+ 3ǫ − 16
518
+
519
+ 0
520
+ − 4
521
+ ǫ
522
+ − 22
523
+
524
+ 16
525
+
526
+ 0
527
+ − 4
528
+
529
+ 0
530
+ 16
531
+
532
+ 0
533
+ − 4
534
+
535
+ 7
536
+
537
+ − 34
538
+
539
+ 0
540
+ − 4
541
+
542
+ 0
543
+ 0
544
+ 1
545
+ 12ǫ
546
+ − 1
547
+ 12ǫ
548
+ − 3
549
+
550
+ 1
551
+ 12ǫ
552
+ − 44
553
+
554
+ 5
555
+
556
+ 1
557
+
558
+ 2
559
+ ǫ
560
+ 0
561
+ 4
562
+
563
+ 2
564
+
565
+ 0
566
+ 0
567
+ − 18
568
+ ǫ
569
+ 0
570
+ − 16
571
+
572
+ 1
573
+
574
+ 3
575
+
576
+ 9
577
+ 16ǫ
578
+ − 1
579
+
580
+ 29
581
+
582
+ − 5
583
+ 12ǫ − 49
584
+
585
+ 13
586
+
587
+ − 5
588
+
589
+ − 1
590
+
591
+ 13
592
+ 32ǫ
593
+ − 5
594
+
595
+ 3
596
+
597
+ 1
598
+
599
+ 5
600
+ 12ǫ
601
+ − 91
602
+
603
+
604
+
605
+
606
+
607
+
608
+
609
+
610
+
611
+
612
+
613
+
614
+
615
+
616
+
617
+ .
618
+ (14)
619
+ The one-loop ADs γ(1)
620
+
621
+ are roots of the following eigen-
622
+ value equation:
623
+ x8 − 609x7
624
+ 44
625
+ + 160645x6
626
+ 1936
627
+ − 2994289x5
628
+ 10648
629
+ + 137886093x4
630
+ 234256
631
+ − 1002685855x3
632
+ 1288408
633
+ + 17961071517x2
634
+ 28344976
635
+ − 22596287199x
636
+ 77948684
637
+ + 195122885985
638
+ 3429742096
639
+ = 0 ,
640
+ (15)
641
+ which is a non-trivial degree-8 polynomial equation. Re-
642
+ markably, two of the roots are complex with numerical
643
+ values:
644
+ 1.90386 ± 0.181142 i.
645
+ (16)
646
+ This provides further concrete evidence that pure YM
647
+ theory is non-unitary in non-integer dimensions [21].
648
+ We also compute the ADs for higher dimensional oper-
649
+ ators and find more complex ones. For the length-4 op-
650
+ erators up to ∆0 = 16, we observe an interesting pattern:
651
+ the number of complex ADs is exactly twice the number
652
+ of negative-norm states, which is summarized in Table II.
653
+ This kind of match is not a general feature though; for
654
+ example, the relation breaks down for the dimension-12
655
+ length-5 operators where there are 8 negative-norm states
656
+ but only 14 complex ADs. More details will be given in
657
+ [18].
658
+ Finally, we mention that the one-loop results already
659
+ give important implications for the property at high
660
+ loops. In particular, for a sector of operators that has
661
+ no complex AD and also has no degeneracy of ADs at
662
+ one loop, this sector will not have any complex AD at
663
+ higher loop orders. This may be understood by following
664
+ a standard perturbative calculation in quantum mechan-
665
+ ics, see e.g. [22].
666
+ DISCUSSION
667
+ In this paper, we provide concrete evidence showing that
668
+ the pure YM theory is non-unitarity in fractional space-
669
+ time dimensions d = 4 + ǫ. In particular, we find that
670
+ YM evanescent operators provide negative-norm states
671
+ and also generate complex anomalous dimensions, gener-
672
+ alizing the previous study for the scalar theory in [10, 11].
673
+ As mentioned in the introduction, the pure YM the-
674
+ ory is expected to have a UV conformal fixed point. If
675
+ we couple YM with a sufficiently large number of matter
676
+ fields (see e.g. [23]), the asymptotic freedom can disap-
677
+ pear and the theory has an IR conformal fixed point at
678
+ 4 − ǫ.
679
+ We expect that the unitarity violation still ex-
680
+ ists in such cases.
681
+ First, there are also negative-norm
682
+ states corresponding to evanescent operators containing
683
+ a rank-5 Kronecker symbol with the norm proportional to
684
+ (d−4). Second, for the ADs, the operator mixing matrix
685
+ will enlarge in general because of the appearance of new
686
+
687
+ 5
688
+ operators containing matter fields. A preliminary study
689
+ of the YM coupled to scalars shows that the complex
690
+ anomalous dimensions persist; details will be presented
691
+ in [18]. It would be interesting to check this for general
692
+ gauge theory models.
693
+ Besides the evidence of negative-norm states and com-
694
+ plex ADs, it would be worthwhile to explore if the
695
+ unitarity-violating effects could be manifest in other ob-
696
+ servables, such as correlation functions or S-matrix [24].
697
+ The unitarity violation certainly makes it questionable to
698
+ apply the conformal bootstrap method [25] for general
699
+ CFTs in non-integer dimensions.
700
+ Note that the boot-
701
+ strap method may provide good approximations in some
702
+ cases [26] (see also [27–29]), and this may be explained
703
+ by the fact that the unitarity violation effects occur at
704
+ relatively high dimensional states such that the unitarity-
705
+ violating effect is suppressed [10, 11]. In the YM the-
706
+ ory, since the operators with negative norms or complex
707
+ anomalous dimensions appear at lower dimensions than
708
+ in the scalar theory, we expect that the unitarity violat-
709
+ ing effects of the YM theory are stronger than the scalar
710
+ theory. We mention that other bootstrap methods that
711
+ do not rely on unitarity (see e.g. [30]) should still work
712
+ in this case.
713
+ Finally, it should be interesting to generalize our study
714
+ to gravitational theories in which similar evanescent op-
715
+ erators can be defined, for example, by replacing Fµν
716
+ with Rµν.
717
+ Note that local operators are not physical
718
+ observables in gravity, and one may need to consider
719
+ other observables like amplitudes (see e.g. [31, 32]) or
720
+ non-local operators.
721
+ Another important connection to
722
+ gravity is through the holographic duality [33–35] which
723
+ implies that a gauge theory in d dimensions would have
724
+ a holographic dual of gravity (string) theory in d + 1 di-
725
+ mensions. The non-unitary gauge theory in fractional d
726
+ dimensions thus implies that the dual gravity theory also
727
+ violates unitarity. It would be highly interesting to see
728
+ the violating effect explicitly on the gravity side.
729
+ Acknowledgments. We would like to thank Bo Feng,
730
+ Yunfeng Jiang, Jianxin Lu, and Tao Shi for discussion.
731
+ This work is supported in part by the National Natu-
732
+ ral Science Foundation of China (Grants No. 11935013,
733
+ 12175291, 12047503, 12047502, 11947301).
734
+ We also
735
+ thank the support of the HPC Cluster of ITP-CAS.
736
737
738
739
740
+ [1] G.
741
+ ’t
742
+ Hooft
743
+ and
744
+ M.
745
+ J.
746
+ G.
747
+ Veltman,
748
+ Nucl. Phys. B 44, 189 (1972).
749
+ [2] K.
750
+ G.
751
+ Wilson
752
+ and
753
+ M.
754
+ E.
755
+ Fisher,
756
+ Phys. Rev. Lett. 28, 240 (1972).
757
+ [3] G. Parisi, Phys. Lett. B 81, 357 (1979).
758
+ [4] K. Svozil, J. Phys. A 20, 3861 (1987).
759
+ [5] G. Eyink, Commun. Math. Phys. 125, 613 (1989).
760
+ [6] H. Kroger, Phys. Rept. 323, 81 (2000).
761
+ [7] G.
762
+ Calcagni,
763
+ JHEP 01, 065 (2012),
764
+ arXiv:1107.5041 [hep-th].
765
+ [8] V.
766
+ M.
767
+ Braun,
768
+ A.
769
+ N.
770
+ Manashov,
771
+ S.
772
+ O.
773
+ Moch,
774
+ and
775
+ M.
776
+ Strohmaier,
777
+ Phys. Lett. B 793, 78 (2019),
778
+ arXiv:1810.04993 [hep-th].
779
+ [9] S. Giombi, R. Huang, I. R. Klebanov, S. S. Pufu,
780
+ and G. Tarnopolsky, Phys. Rev. D 101, 045013 (2020),
781
+ arXiv:1910.02462 [hep-th].
782
+ [10] M.
783
+ Hogervorst,
784
+ S.
785
+ Rychkov,
786
+ and
787
+ B.
788
+ C.
789
+ van
790
+ Rees,
791
+ Phys. Rev. D 91, 025005 (2015),
792
+ arXiv:1409.1581 [hep-th].
793
+ [11] M.
794
+ Hogervorst,
795
+ S.
796
+ Rychkov,
797
+ and
798
+ B.
799
+ C.
800
+ van
801
+ Rees,
802
+ Phys. Rev. D 93, 125025 (2016),
803
+ arXiv:1512.00013 [hep-th].
804
+ [12] Y. Ji and M. Kelly, Phys. Rev. D 97, 105004 (2018),
805
+ arXiv:1802.03222 [hep-th].
806
+ [13] Q.
807
+ Jin,
808
+ K.
809
+ Ren,
810
+ G.
811
+ Yang,
812
+ and
813
+ R.
814
+ Yu,
815
+ JHEP 08, 141 (2022), arXiv:2202.08285 [hep-th].
816
+ [14] Q. Jin,
817
+ K. Ren,
818
+ G. Yang,
819
+ and R. Yu,
820
+ (2022),
821
+ arXiv:2208.08976 [hep-th].
822
+ [15] M. E. Peskin, Phys. Lett. B 94, 161 (1980).
823
+ [16] H.
824
+ Gies,
825
+ Phys. Rev. D 68, 085015 (2003),
826
+ arXiv:hep-th/0305208.
827
+ [17] T.
828
+ R.
829
+ Morris,
830
+ JHEP 01, 002 (2005),
831
+ arXiv:hep-ph/0410142.
832
+ [18] Q. Jin, K. Ren, G. Yang,
833
+ and R. Yu, In preparation
834
+ (2023).
835
+ [19] We comment that we can apply the on-shell unitarity-
836
+ cut method [36–38]. In our computation, both the tree-
837
+ level blocks as well as the helicity-sum operation are in
838
+ the fully d-dimensional Lorentz covariant form. In this
839
+ way, the obtained results are equivalent to the Feynman
840
+ diagram computation which is applicable to non-unitary
841
+ theories.
842
+ [20] S.
843
+ Catani,
844
+ Phys. Lett. B427, 161 (1998),
845
+ arXiv:hep-ph/9802439 [hep-ph].
846
+ [21] At one loop, the complex ADs also exist for the theory
847
+ in d + ǫ dimensions away from the WF fixed point.
848
+ [22] D. J. Griffiths and D. F. Schroeter, Introduction to quan-
849
+ tum mechanics (Cambridge university press, 2018).
850
+ [23] T. Banks and A. Zaks, Nucl. Phys. B 196, 189 (1982).
851
+ [24] We comment that in special theories, it may be possi-
852
+ ble that negative norm states lead to unitary S-matrix,
853
+ as in the Lee-Wick model [39]. The pure YM theory we
854
+ consider is certainly different.
855
+ [25] R. Rattazzi, V. S. Rychkov, E. Tonni,
856
+ and A. Vichi,
857
+ JHEP 12, 031 (2008), arXiv:0807.0004 [hep-th].
858
+ [26] S.
859
+ El-Showk,
860
+ M.
861
+ Paulos,
862
+ D.
863
+ Poland,
864
+ S.
865
+ Rychkov,
866
+ D.
867
+ Simmons-Duffin,
868
+ and
869
+ A.
870
+ Vichi,
871
+ Phys. Rev. Lett. 112, 141601 (2014),
872
+ arXiv:1309.5089 [hep-th].
873
+ [27] A.
874
+ Codello,
875
+ N.
876
+ Defenu,
877
+ and
878
+ G.
879
+ D’Odorico,
880
+ Phys. Rev. D 91, 105003 (2015),
881
+ arXiv:1410.3308 [hep-th].
882
+ [28] J. Golden and M. F. Paulos, JHEP 03, 167 (2015),
883
+ arXiv:1411.7932 [hep-th].
884
+ [29] S.
885
+ M.
886
+ Chester,
887
+ S.
888
+ S.
889
+ Pufu,
890
+ and
891
+ R.
892
+ Ya-
893
+ coby,
894
+ Phys. Rev. D 91, 086014 (2015),
895
+ arXiv:1412.7746 [hep-th].
896
+ [30] F.
897
+ Gliozzi,
898
+ Phys. Rev. Lett. 111, 161602 (2013),
899
+
900
+ 6
901
+ arXiv:1307.3111 [hep-th].
902
+ [31] Z. Bern, C. Cheung, H.-H. Chi, S. Davies, L. Dixon,
903
+ and
904
+ J.
905
+ Nohle,
906
+ Phys. Rev. Lett. 115, 211301 (2015),
907
+ arXiv:1507.06118 [hep-th].
908
+ [32] Z.
909
+ Bern,
910
+ H.-H.
911
+ Chi,
912
+ L.
913
+ Dixon,
914
+ and
915
+ A.
916
+ Edison,
917
+ Phys. Rev. D 95, 046013 (2017),
918
+ arXiv:1701.02422 [hep-th].
919
+ [33] G.
920
+ ’t
921
+ Hooft,
922
+ Conf.
923
+ Proc.
924
+ C
925
+ 930308,
926
+ 284
927
+ (1993),
928
+ arXiv:gr-qc/9310026.
929
+ [34] L.
930
+ Susskind,
931
+ J. Math. Phys. 36, 6377 (1995),
932
+ arXiv:hep-th/9409089.
933
+ [35] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998),
934
+ arXiv:hep-th/9711200.
935
+ [36] Z.
936
+ Bern,
937
+ L.
938
+ J.
939
+ Dixon,
940
+ D.
941
+ C.
942
+ Dunbar,
943
+ and
944
+ D.
945
+ A.
946
+ Kosower,
947
+ Nucl. Phys. B435, 59 (1995),
948
+ arXiv:hep-ph/9409265 [hep-ph].
949
+ [37] Z.
950
+ Bern,
951
+ L.
952
+ J.
953
+ Dixon,
954
+ D.
955
+ C.
956
+ Dunbar,
957
+ and
958
+ D.
959
+ A.
960
+ Kosower,
961
+ Nucl.Phys. B425, 217 (1994),
962
+ arXiv:hep-ph/9403226 [hep-ph].
963
+ [38] R.
964
+ Britto,
965
+ F.
966
+ Cachazo,
967
+ and
968
+ B.
969
+ Feng,
970
+ Nucl.Phys. B725, 275 (2005),
971
+ arXiv:hep-th/0412103 [hep-th].
972
+ [39] T. D. Lee and G. C. Wick, Nucl. Phys. B 9, 209 (1969).
973
+
StAzT4oBgHgl3EQf0f7W/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
TtFJT4oBgHgl3EQfMiyz/content/tmp_files/2301.11474v1.pdf.txt ADDED
@@ -0,0 +1,2263 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Generated using the official AMS LATEX template v6.1 two-column layout. This work has been submitted for
2
+ publication. Copyright in this work may be transferred without further notice, and this version may no longer be
3
+ accessible.
4
+ Surface heating steers planetary-scale ocean circulation
5
+ Dhruv Bhagtani,a Andrew McC. Hogg,a Ryan M. Holmes,b Navid C. Constantinou,a
6
+ a Research School of Earth Sciences & ARC Center of Excellence for Climate Extremes, Australian National University, Canberra,
7
+ Australia
8
+ b School of Geosciences, University of Sydney, Sydney, Australia
9
+ ABSTRACT: Gyres are central features of large-scale ocean circulation and are involved in transporting tracers such as heat, nutrients, and
10
+ carbon-dioxide within and across ocean basins. Traditionally, the gyre circulation is thought to be driven by surface winds and quantified
11
+ via Sverdrup balance, but it has been proposed that surface buoyancy fluxes may also contribute to gyre forcing. Through a series of
12
+ eddy-permitting global ocean model simulations with perturbed surface forcing, the relative contribution of wind stress and surface heat
13
+ flux forcing to the large-scale ocean circulation is investigated, focusing on the subtropical gyres. In addition to gyre strength being linearly
14
+ proportional to wind stress, it is shown that the gyre circulation is strongly impacted by variations in the surface heat flux (specifically, its
15
+ meridional gradient) through a rearrangement of the ocean’s buoyancy structure. On shorter timescales (∼ decade), the gyre circulation
16
+ anomalies are proportional to the magnitude of the surface heat flux gradient perturbation, with up to ∼ 0.15Sv anomaly induced per Wm−2
17
+ change in the surface heat flux. On timescales longer than a decade, the gyre response to surface buoyancy flux gradient perturbations
18
+ becomes non-linear as ocean circulation anomalies feed back onto the buoyancy structure induced by the surface buoyancy fluxes. These
19
+ interactions complicate the development of a buoyancy-driven theory for the gyres to complement the Sverdrup relation. The present study
20
+ challenges the conventional understanding of the interplay between fundamental drivers of the large-scale ocean circulation.
21
+ SIGNIFICANCE STATEMENT:
22
+ Ocean gyres are
23
+ large swirling circulation features that redistribute heat
24
+ across ocean basins.
25
+ It is commonly believed that sur-
26
+ face winds are the sole driver of ocean gyres, but recent
27
+ literature suggests that other mechanisms could also be
28
+ influential. Here, we perform a series of numerical sim-
29
+ ulations in which we artificially change the winds or the
30
+ heating at the ocean’s surface and investigate how each
31
+ factor independently affects the ocean gyres. We find that
32
+ gyres are steered by both winds and surface heating, and
33
+ that the ocean circulation behaves differently to heating
34
+ on short and long timescales. In addition, the circulation
35
+ depends on where the heating is applied at the ocean’s sur-
36
+ face. Through these simulations, we argue that a complete
37
+ theory explaining the formation of gyres should consider
38
+ heating at the ocean’s surface as a possible driver, in addi-
39
+ tion to the winds.
40
+ 1. Introduction
41
+ The large-scale ocean circulation derives its energy from
42
+ a variety of sources including wind stress (Wunsch and
43
+ Ferrari 2004; Hughes and Wilson 2008; Jamet et al. 2021),
44
+ tidal forces (Oka and Niwa 2013), and surface and geother-
45
+ mal buoyancy fluxes (Hughes et al. 2009; Hogg and Gayen
46
+ 2020). Gyres are fundamental elements of the large-scale
47
+ circulation and play a crucial role in the biogeochemical
48
+ and hydrological cycles in the ocean by transporting mo-
49
+ mentum, heat, nutrients and chemicals within and across
50
+ ocean basins (Webb 2017). In particular, gyres contribute
51
+ Corresponding author: D. Bhagtani, [email protected]
52
+ to global heat transport by transferring heat poleward (Pal-
53
+ ter 2015; Zhang et al. 2021; Li et al. 2022). Despite their
54
+ importance in regulating large-scale weather and climate
55
+ patterns, the interplay between the processes leading to
56
+ the formation and evolution of ocean gyres are not fully
57
+ understood.
58
+ Traditional oceanographic literature on the drivers of
59
+ ocean circulation suggest that near-surface horizontal flows
60
+ are primarily caused by mechanical forcing due to wind
61
+ stress (Sverdrup 1947) and tidal forces (Wunsch and Ferrari
62
+ 2004; Oka and Niwa 2013), and the meridional overturning
63
+ circulation (MOC) is chiefly driven by surface buoyancy
64
+ fluxes (Stommel and Arons 1959). However, this simpli-
65
+ fied viewpoint has been amended with time. Recent litera-
66
+ ture points to a definitive role played by wind stress on the
67
+ MOC through isopycnal upwelling in the Southern Ocean
68
+ (Abernathey and Ferreira 2015; Hogg et al. 2017) and
69
+ bottom-enhanced diapycnal mixing (Stanley and Saenko
70
+ 2014; Drake et al. 2020). Similarly, buoyancy forcing is
71
+ thought to exert a significant control on horizontal cir-
72
+ culation through the conversion from potential to kinetic
73
+ energy (Tailleux 2009; Hughes et al. 2009) and control of
74
+ the stratification in the ocean (Shi et al. 2020), consistent
75
+ with the fundamental dynamics of rotating horizontal con-
76
+ vection (Gayen and Griffiths 2021). In this paper, we aim
77
+ to evaluate the interplay between wind stress and surface
78
+ buoyancy forcing in driving various features of the large-
79
+ scale ocean circulation, with an emphasis on basin-scale
80
+ ocean gyres.
81
+ Considerable progress has been made to elucidate the
82
+ impact of surface wind stress on ocean gyres (Sverdrup
83
+ 1
84
+ arXiv:2301.11474v1 [physics.ao-ph] 27 Jan 2023
85
+
86
+ 2
87
+ 1947; Stommel 1948; Munk 1950; Rhines and Young 1982;
88
+ Luyten et al. 1983; Pedlosky 1986). Munk (1950) pro-
89
+ posed the Sverdrup relation by constructing a relationship
90
+ between the curl of the wind stress and the depth-integrated
91
+ meridional geostrophic transport, valid in the ocean inte-
92
+ rior away from coastlines,
93
+ 𝑉 = ˆz · (∇×τ)
94
+ 𝛽
95
+ ,
96
+ (1)
97
+ where 𝑉 = 𝜌0
98
+
99
+ 𝜐d𝑧 is the time-mean depth-integrated
100
+ meridional mass transport with 𝜌0 the ocean’s reference
101
+ density, ˆz is the unit vector in the vertical, τ = 𝜏𝑥 ˆx+ 𝜏𝑦 ˆy
102
+ the time-mean horizontal wind stress at the ocean’s surface,
103
+ and 𝛽 = 𝜕 𝑓 /𝜕𝑦 is the meridional gradient of the Coriolis
104
+ frequency 𝑓 . The return flow occurs as an intense iner-
105
+ tial western boundary flow (see, e.g., Hughes and Cuevas
106
+ (2001)). The Sverdrup relation (1) describes the depen-
107
+ dence of the horizontal structure of barotropic gyres on
108
+ the wind stress curl, and to date, remains the corner-stone
109
+ theory of wind-driven gyres.
110
+ The Sverdrup relation focuses on understanding the hor-
111
+ izontal structure of the vertically-integrated gyre transport.
112
+ The ventilated thermocline theory, developed by Luyten
113
+ et al. (1983), made further strides in interpreting the ver-
114
+ tical structure of ocean gyres forced by wind stress. They
115
+ obtained a layer-wise meridional transport for gyres but
116
+ restricted gyre transport to only ventilated isopycnals; that
117
+ is, isopycnals outcropping to the surface of the ocean, with
118
+ non-ventilated isopycnals at rest. However, several studies
119
+ point to a net re-circulatory transport in the non-ventilated
120
+ isopycnal layers (Rhines and Young 1982; McDowell et al.
121
+ 1982) so long as they do not interact with the ocean’s sur-
122
+ face or topography. Therefore, ocean gyres can be viewed
123
+ as a combination of ventilation and recirculation regimes,
124
+ and are controlled by surface wind stress curl.
125
+ Wind-driven theories encapsulate gyre circulation to ze-
126
+ roth order, however, observational studies show deviations
127
+ from the Sverdrup relation.
128
+ Gray and Riser (2014) ex-
129
+ amined the validity of Sverdrup dynamics in a point-wise
130
+ manner using observations from Argo floats (Roemmich
131
+ et al. 2004) and found that it agrees well with observations
132
+ in the interior subtropical gyres, with significant devia-
133
+ tions in subpolar regions. Colin De Verdière and Ollitrault
134
+ (2016) obtained a depth-integrated geostrophic transport
135
+ using Argo data (Ollitrault and Rannou 2013) and World
136
+ Ocean Atlas 2009 (Locarnini et al. 2010) to estimate a
137
+ global Sverdrup streamfunction, which was found to un-
138
+ derrepresent the subtropical and subpolar gyre strength by
139
+ a factor of 2. These discrepancies indicate the presence of
140
+ other processes playing a role in the vorticity balance, such
141
+ as bottom pressure torques (Hughes and Cuevas 2001), di-
142
+ apycnal mixing (Lavergne et al. 2021), buoyancy forcing
143
+ (Hogg and Gayen 2020; Liu et al. 2022) and coupling
144
+ with the meridional overturning (Klockmann et al. 2020;
145
+ Berglund et al. 2022). At present, a unified theory en-
146
+ capsulating all the previously stated mechanisms is not
147
+ available, which limits our understanding of the coupling
148
+ between these processes, as well as their combined effects
149
+ on ocean circulation. The present paper makes an attempt
150
+ to isolate and understand the roles of wind stress and sur-
151
+ face buoyancy forcing in shaping the planetary-scale ocean
152
+ gyres.
153
+ Surface buoyancy forcing alters the ocean’s density
154
+ structure through heat and freshwater fluxes (Large and
155
+ Yeager 2009; Talley et al. 2011). Together with the ther-
156
+ mal wind relation,
157
+ 𝑓 𝜕u
158
+ 𝜕𝑧 = ˆz ×∇𝑏,
159
+ (2)
160
+ where 𝑏(x,𝑡) = 𝑔(1 − 𝜌(x,𝑡)/𝜌0) is the buoyancy, with
161
+ 𝑔 the gravitational acceleration, these density structure
162
+ changes can be used to understand how changes in surface
163
+ buoyancy forcing might impact ocean circulation. How-
164
+ ever, the relationship between surface buoyancy forcing
165
+ and the horizontal circulation is complicated. For exam-
166
+ ple, variations in mixed layer depth and non-linear feed-
167
+ backs with the ocean circulation both influence how the
168
+ surface buoyancy forcing is “felt” within the ocean. The
169
+ mixed layer ingests a fraction of the surface buoyancy flux,
170
+ which is reflected in the anomalous ocean’s density within
171
+ the layer. The amount of buoyancy forcing reaching the
172
+ layers below is thus inversely related to the mixed layer
173
+ depth, with a deeper mixed layer taking a longer time to re-
174
+ lay the excess buoyancy forcing into the subsurface layers
175
+ (Xie et al. 2010) due to its higher effective heat capacity.
176
+ Furthermore, the circulation modifies the influence of sur-
177
+ face buoyancy forcing on the ocean’s buoyancy structure
178
+ through heat advection (Bryden et al. 1991). Advection
179
+ acts to alter the buoyancy structure remote from the forc-
180
+ ing, which, in view of (2), would also cause anomalies
181
+ in the ocean circulation in that remote location. In this
182
+ paper, we evaluate the variability in ocean’s stratification
183
+ over time to better understand the non-linear and non-local
184
+ connection between the surface buoyancy forcing and the
185
+ gyres.
186
+ Past studies examined the role of surface buoyancy forc-
187
+ ing in restructuring ocean gyres. Goldsbrough (1933) ob-
188
+ served that freshwater fluxes can drive horizontal circu-
189
+ lation via induced sea surface height anomalies. Luyten
190
+ et al. (1985) and Pedlosky (1986) extended the ventilated
191
+ thermocline theory (Luyten et al. 1983) to include an in-
192
+ terfacial mass flux between various isopycnal layers (to
193
+ represent surface buoyancy forcing), and using a simpli-
194
+ fied ocean model, demonstrated a geostrophic baroclinic
195
+ flow induced by the buoyancy flux and steered by wind
196
+ stress. Colin de Verdière (1989) used a model similar to
197
+ Cox and Bryan (1984) but coupled the surface buoyancy
198
+ forcing to wind stress via a bulk formula and concluded
199
+
200
+ 3
201
+ that the former drives a baroclinic mode to significantly
202
+ recast the horizontal and vertical structure of subtropical
203
+ gyres. Gjermundsen et al. (2018) instead considered simu-
204
+ lations conducted in the absence of any surface momentum
205
+ inputs and applied buoyancy flux at the ocean’s surface
206
+ through a meridionally varying surface temperature restor-
207
+ ing profile. They observed a broad eastward zonal flow as
208
+ a consequence of the surface buoyancy flux structure and
209
+ the thermal wind balance as well as a western boundary
210
+ current. Hogg and Gayen (2020) conducted a series of
211
+ numerical simulations with a restoring temperature profile
212
+ and no wind stress in two configurations: a direct numer-
213
+ ical simulation in a 3D box domain, and a layered gen-
214
+ eral circulation model in a sector configuration, and found
215
+ a double (resembling a subtropical and subpolar) gyre in
216
+ both scenarios. With a multitude of contrasting viewpoints
217
+ on the processes leading to the formation of gyres, we are
218
+ motivated to examine further the role of surface buoyancy
219
+ forcing in driving ocean gyres.
220
+ It is worth emphasizing here that ocean gyres do not
221
+ exist in isolation – they interact with other fundamental
222
+ aspects of ocean circulation, such as the MOC. The MOC
223
+ complements gyre circulation in transporting tracers such
224
+ as heat, chemicals, and nutrients globally between ocean
225
+ basins. It has been argued that thermohaline forcing is re-
226
+ sponsible for driving the MOC (Stommel and Arons 1959;
227
+ Stommel 1961), with gyres being driven by wind stress
228
+ (Munk 1950). Luyten et al. (1985) contradicted this sim-
229
+ plified view by establishing a link between wind stress and
230
+ heat gain for the North Atlantic subpolar gyre. Yeager and
231
+ Danabasoglu (2014) and Yeager (2015) used a coupled
232
+ ocean-sea-ice configuration of the Community Earth Sys-
233
+ tem Model with perturbed forcing, and found that most of
234
+ the decadal variability in both the Atlantic MOC (AMOC)
235
+ and the North Atlantic subpolar gyre was due to variability
236
+ in surface buoyancy forcing, while changes in interannual
237
+ variability were attributed to wind stress anomalies. Mod-
238
+ eling studies (Yeager 2015; Larson et al. 2020) identify a
239
+ direct relationship between the mid-depth overturning cell
240
+ and the North Atlantic subtropical gyre transport on the
241
+ basis that the two circulatory features are linked through
242
+ the northward flowing Gulf Stream. Thus, ocean gyres
243
+ and the MOC are coupled dynamical features (Klockmann
244
+ et al. 2020; Berglund et al. 2022), and a thorough analysis
245
+ of the drivers behind the formation of ocean gyres requires
246
+ a quantitative understanding of other processes of ocean
247
+ circulation.
248
+ The objectives of the present paper are: (i) to quantify
249
+ how the surface buoyancy forcing affects the structure of
250
+ ocean gyres, and (ii) to understand how wind stress and
251
+ surface buoyancy fluxes act in concert to drive large-scale
252
+ ocean circulation. Section 2 outlines the simulation setup
253
+ and a gyre metric used to analyze the ocean’s circulation.
254
+ Section 3 examines the sensitivity of gyre circulation to
255
+ changes in surface wind stress, followed by a brief discus-
256
+ sion of the coupling between gyres and other large-scale
257
+ circulation features in the ocean. Section 4 further inves-
258
+ tigates the role of surface buoyancy forcing gradients in
259
+ steering the ocean circulation. In section 5 we look at a
260
+ uniform warming experiment to illustrate that changes in
261
+ ocean circulation can also occur in the absence of a merid-
262
+ ional gradient in buoyancy forcing anomaly. In section 6,
263
+ we conclude by emphasizing the connected roles of wind
264
+ stress and surface buoyancy fluxes in driving ocean cir-
265
+ culation, the importance of surface buoyancy forcing in
266
+ driving ocean gyres, and future directions to advance our
267
+ understanding of ocean circulation.
268
+ 2. Models and Methods
269
+ a. Flux-forced simulations
270
+ Surface buoyancy fluxes in ocean-sea ice general cir-
271
+ culation models are usually parameterized using bulk for-
272
+ mulae (Large et al. 1994), and are therefore dependent on
273
+ the model’s dynamic sea surface temperature, as well as
274
+ the externally prescribed atmospheric winds, humidity, air
275
+ temperature and radiative fluxes. Therefore, any changes
276
+ in circulation (for example due to changes in wind stress)
277
+ have the ability to alter the surface buoyancy forcing. To
278
+ isolate the impacts of wind and surface buoyancy forc-
279
+ ing from each other, in this study we construct a series of
280
+ global simulations where we force the ocean using fluxes
281
+ at the surface. We call them “flux-forced” simulations.
282
+ The flux-forced simulations permit us to modify the sur-
283
+ face boundary fluxes independently, in that they decouple
284
+ the wind and surface buoyancy forcing from each other.
285
+ Forcing for the flux-forced control experiment is
286
+ constructed from a 200-year control simulation using
287
+ ACCESS-OM2-025 (Kiss et al. 2020), a global ocean-
288
+ sea ice model at 0.25◦ resolution and 50 vertical layers.
289
+ ACCESS-OM2-025 is an amalgamation of the Modular
290
+ Ocean Model v5.1 ocean model (Griffies 2012) and the
291
+ CICE v5.1.2 (Hunke et al. 2015) sea ice model. We ap-
292
+ ply a repeat-year atmospheric forcing using the JRA55-
293
+ do v1.3 reanalysis product (Tsujino et al. 2018) to drive the
294
+ ACCESS-OM2-025 control simulation. We use the period
295
+ 1st May 1990 to 30th April 1991 as the repeat year for
296
+ atmospheric forcing following Stewart et al. (2020). The
297
+ ACCESS-OM2-025 control experiment is initialized using
298
+ temperature and salinity data from the World Ocean Atlas
299
+ 2013 (Locarnini et al. 2013; Zweng et al. 2013), and in-
300
+ corporates the Gent-McWilliams parameterization (Gent
301
+ and McWilliams 1990) (with a maximum diffusivity of
302
+ 200 m2 s−1) to complement partially resolved mesoscale
303
+ eddy fluxes.
304
+ Vertical mixing is parameterized using a
305
+ slightly altered K-profile parameterization (Large et al.
306
+ 1994) (see Appendix). The 200-year control ACCESS-
307
+ OM2-025 simulation is used to create a climatology of
308
+ surface boundary fluxes at 3-hourly temporal frequency,
309
+
310
+ 4
311
+ obtained by combining the last 20 years of surface forcing
312
+ data.
313
+ The flux-forced simulations apply the climatology of
314
+ surface boundary fluxes to a stand-alone implementation
315
+ of the Modular Ocean Model v5.1 (Griffies 2012). The
316
+ flux-forced control experiment is initialized from the end
317
+ of the ACCESS-OM2 control experiment and run for 100
318
+ years, after which we branch off a series of flux-forced per-
319
+ turbation simulations with modified surface fluxes. These
320
+ perturbation experiments are run for another 100 years.
321
+ Although 100 years is not sufficient for the deep ocean
322
+ to reach equilibrium, it is enough for the upper and mid-
323
+ ocean circulation to respond to changes in surface forcing
324
+ (Saenko 2009).
325
+ We conduct three types of sensitivity experiments:
326
+ (i) Perturbations in surface wind stress,
327
+ (ii) Perturbations in surface meridional heat flux gradi-
328
+ ents, and
329
+ (iii) A ‘uniform warming’ perturbation.
330
+ A list of all flux-forced experiments is given in Table 1.
331
+ Each set of experiments is described below.
332
+ We perform wind perturbation experiments by increas-
333
+ ing or decreasing the global wind stresses by a multiplica-
334
+ tive factor of 0.5 or 1.5 respectively (Table 1).
335
+ The construction of surface buoyancy flux gradient per-
336
+ turbation experiments is based on the thermal wind rela-
337
+ tion (2), which suggests a dependence of the ocean circu-
338
+ lation on horizontal density gradients, which in turn could
339
+ be modified by prescribing a spatially varying buoyancy
340
+ flux perturbation at the ocean’s surface. Herein, we apply
341
+ buoyancy flux perturbations by varying the prescribed sur-
342
+ face heat fluxes. The largest heat losses in the ocean occur
343
+ in focused regions over the subtropical western boundary
344
+ currents (Fig. 1a). The fine-scale spatial structure in the
345
+ surface heat fluxes differs from the broader patterns of the
346
+ wind stress forcing, and for that reason, choosing a multi-
347
+ plicative approach for surface buoyancy flux perturbations
348
+ would enhance this fine-scale structure, which could po-
349
+ tentially instigate spurious behavior in ocean circulation.
350
+ Furthermore, a multiplicative approach would potentially
351
+ lead to strong convection over the western boundary cur-
352
+ rents where heat loss in the control is strongest (Fig. 1b).
353
+ Therefore, for our buoyancy flux gradient perturbations we
354
+ choose instead to add or subtract a broad surface heat flux
355
+ pattern (Fig. 1) to the flux-forced control simulation, mul-
356
+ tiplied by a constant flux amplitude for each experiment
357
+ (Table 1) to enhance or reduce the meridional buoyancy
358
+ gradients. We ensure that the global integral of the pat-
359
+ tern is zero by adjusting the magnitude of the heat flux
360
+ in subpolar and polar regions to be double the magnitude
361
+ of heat flux in subtropical regions (which has twice the
362
+ area), with zero perturbation in the tropics. To minimize
363
+ any spurious behavior in ocean circulation due to the ap-
364
+ plied buoyancy perturbation, we employ a hyperbolic tan-
365
+ gent function (tanh [(𝑦 − 𝑦0)/Δ𝑦] over the latitude band of
366
+ Δ𝑦 = 12.5◦, with 𝑦0 the transition latitude; see Fig. 1b) at
367
+ the junction between subtropical and subpolar buoyancy
368
+ anomalies. Buoyancy perturbation experiments for which
369
+ the mask is multiplied by a positive value have surface
370
+ heat fluxes that enhance the near-surface meridional buoy-
371
+ ancy gradients, and are labeled as “increased buoyancy flux
372
+ contrast” experiments. Conversely, all experiments where
373
+ the buoyancy perturbation mask is multiplied by a nega-
374
+ tive value are labeled as “reduced buoyancy flux contrast”
375
+ experiments. We were unable to run a −30 Wm−2 simula-
376
+ tion as it became unstable due to unrealistically warm sea
377
+ surface temperatures at high latitudes.
378
+ Finally, we conduct a globally uniform warming exper-
379
+ iment, which differs from the surface meridional heat flux
380
+ gradient perturbation experiments in that we do not ex-
381
+ ternally induce a surface buoyancy gradient in the ocean.
382
+ However, we still anticipate anomalies in the circulation
383
+ owing to its non-local and non-linear feedback with the sur-
384
+ face buoyancy forcing, and lateral variations in the mixed
385
+ layer depth.
386
+ Our flux-forced control simulation is not fully equili-
387
+ brated as shown in Fig. 1c, where the mean sea surface tem-
388
+ peratures gradually increase with time (≈ 0.1◦ Cdecade−1).
389
+ The systematic increase is due to frazil formation in polar
390
+ latitudes, which is modeled via an additional heat input.
391
+ This heat gain is a proxy for heat transferred by a fictional
392
+ ice model coupled to the flux-forced ocean model, as cold
393
+ water is converted to ice. Frazil formation in our experi-
394
+ ments is not prescribed like the other surface heat fluxes;
395
+ instead, it depends on ocean temperature and acts to allevi-
396
+ ate excessive cooling in polar regions. The dependence of
397
+ frazil formation on the surface buoyancy forcing limits the
398
+ magnitude of buoyancy flux perturbation we can apply at
399
+ the ocean’s surface without the simulation becoming un-
400
+ stable. Moreover, the heat gain due to frazil formation is
401
+ amplified in increased buoyancy contrast experiments with
402
+ a stronger heat loss in subpolar and polar regions. This net
403
+ heat gain is partially mitigated by applying a globally uni-
404
+ form heat loss of 1.28Wm−2 to all increased buoyancy flux
405
+ contrast experiments. The resulting heat flux anomalies
406
+ due to frazil formation are much smaller than the buoy-
407
+ ancy perturbations applied in our sensitivity experiments,
408
+ and therefore, we do not expect any significant departures
409
+ in ocean circulation due to this frazil formation induced
410
+ buoyancy gain.
411
+ b. Gyre metrics
412
+ Gyre strength is generally defined as the vertically inte-
413
+ grated mass transport from surface to bottom . However,
414
+ this procedure of estimating gyre strength disregards the
415
+ baroclinic component of gyre strength, which integrates
416
+
417
+ 5
418
+ Fig. 1: Model setup for sensitivity experiments. (a) Climatological net surface heating for flux-forced control simulation.
419
+ (b) Surface buoyancy flux perturbation pattern. This pattern is multiplied by a scale factor and then applied to panel (a)
420
+ to construct the surface buoyancy flux perturbation experiments. The perturbation pattern is −1.0 in subpolar and
421
+ polar regions, and +0.5 in subtropical regions, with a 1.5 meridional contrast between the two extrema. A hyperbolic
422
+ tangent function is used to smoothly connect: (i) subtropical and subpolar regions and (ii) subtropics and tropics.
423
+ (c) Global average surface temperature from each simulation performed in this study, illustrating the model spinup
424
+ method. Simulation time is referenced with respect to the beginning of the flux-forced perturbation experiments.
425
+ Table 1: List of experiments. G denotes perturbation applied globally and G−T perturbations that exclude the tropics,
426
+ defined as the equatorward extent of subtropical gyres in the equilibrated flux-forced control simulation (see Fig. 1b).
427
+ Experiment
428
+ Wind Factor
429
+ Surface Buoyancy Flux Contrast Δ𝐵 (Wm−2)
430
+ Region
431
+ Control
432
+ 1
433
+ 0
434
+ G
435
+ 0.5×W
436
+ 0.5
437
+ 0
438
+ G
439
+ 1.5×W
440
+ 1.5
441
+ 0
442
+ G
443
+ −15 Wm−2
444
+ 1
445
+ −15
446
+ G−T
447
+ −7.5 Wm−2
448
+ 1
449
+ −7.5
450
+ G−T
451
+ +7.5 Wm−2
452
+ 1
453
+ +7.5
454
+ G−T
455
+ +15 Wm−2
456
+ 1
457
+ +15
458
+ G−T
459
+ +30 Wm−2
460
+ 1
461
+ +30
462
+ G−T
463
+ Uniform warming
464
+ 1
465
+ 0, instead spatially uniform +5
466
+ G
467
+ to zero in depth. To circumvent this issue, we estimate
468
+ the subtropical gyre strength using an “isopycnal outcrop-
469
+ ping method". We integrate the horizontal mass transport
470
+ from the surface only to the depth of the densest isopycnal
471
+ (measured using potential density referenced to 2000 dbar
472
+ and denoted as 𝜎max) that outcrops to the ocean’s surface
473
+
474
+ a. Control surface heat flux
475
+ b. Normalised buoyancy perturbation
476
+ 80
477
+ 0
478
+ 0
479
+ W
480
+ -0.5
481
+ -80
482
+ -1
483
+ c. Spinup configuration
484
+ 40
485
+ Surface temperature (°C)
486
+ 35
487
+ 30
488
+ 25
489
+ 20
490
+ 15
491
+ -150
492
+ -300
493
+ -250
494
+ -200
495
+ -100
496
+ -50
497
+ 0
498
+ 50
499
+ 100
500
+ Time (years)
501
+ ACCESS-OM2 control
502
+ -15 Wm-2
503
+ +7.5 W m-2
504
+ +30 W m-2
505
+ 1.5xW
506
+ Flux-forced control
507
+ -7.5 W m-2
508
+ +15 W m-2
509
+ 0.5xW
510
+ Uniform warming6
511
+ in a given basin (marked by the red boxes in Fig. 2). For
512
+ simplicity, we choose 𝜎max = 1035.8 kgm−3 for all four
513
+ subtropical gyres in each flux-forced simulation. Then,
514
+ to arrive at a single scalar estimate of the gyre’s strength,
515
+ we select the 95th percentile (to filter out vigorous inertial
516
+ re-circulating eddies near the western boundary region) of
517
+ a 5-year running mean (to filter out transient eddies and
518
+ seasonal isopycnal outcropping) of the resulting density-
519
+ integrated horizontal transport streamfunction.
520
+ The isopycnal outcropping method captures the baro-
521
+ clinic component of gyres, and is used in all flux-forced
522
+ simulations to compare the gyre strength.
523
+ However, it
524
+ suffers from two limitations:
525
+ 1. Surface buoyancy perturbations could restructure the
526
+ ocean’s stratification, which may alter the isopyc-
527
+ nal regime occupied by the gyres.
528
+ These changes
529
+ are not well-represented in the isopycnal outcropping
530
+ method, since the method integrates the entire circu-
531
+ lation from the surface to 𝜎max = 1035.8 kgm−3. We
532
+ use a deep isopycnal for 𝜎max to ensure we fully cap-
533
+ ture the subtropical gyres. In doing so, we may record
534
+ a portion of abyssal circulation, which is usually
535
+ much weaker than near-surface circulation. Thus, this
536
+ method characterizes the subtropical gyre strength.
537
+ 2. Computing the streamfunction requires that the flow
538
+ is divergence-free, which is not guaranteed due to the
539
+ possibility of a net transport across the 𝜎max isopy-
540
+ cnal. However, in the ocean’s interior, flow across
541
+ isopycnals is much more restricted compared to flow
542
+ along isopycnals (see, e.g., Abernathey et al. 2022)
543
+ and, therefore, our streamfunction calculations are
544
+ correct to leading order.
545
+ 3. Wind stress perturbation experiments
546
+ In this section, we investigate two perturbation exper-
547
+ iments wherein we change the magnitude of wind stress
548
+ by 0.5 and 1.5 times the control experiment, which alters
549
+ the time-mean vorticity input due to the wind stress curl
550
+ by the same factor. We analyze short-term and long-term
551
+ variations in the subtropical gyre transport for Atlantic and
552
+ Pacific oceans for both hemispheres, along with a brief
553
+ discussion of their coupling with the Meridional Overturn-
554
+ ing Circulation (MOC) and Antarctic Circumpolar Current
555
+ (ACC). Since our flux-forced experiments do not incorpo-
556
+ rate sea-ice dynamics, changes in Weddell and Ross gyres
557
+ are not reported in the paper, as sea-ice can significantly
558
+ alter gyre dynamics in polar regions.
559
+ The dashed lines in the time series in Fig. 2 show the
560
+ expected transport as predicted by the Sverdrup linear scal-
561
+ ing of the average gyre transport in the control experiment
562
+ for the last 100 years of the simulation. Subtropical gyres
563
+ follow Sverdrup scaling to a large extent, consistent with
564
+ the ventilated thermocline theory (Luyten et al. 1983); de-
565
+ viations are observed in the North Atlantic subtropical gyre
566
+ in both wind perturbation simulations, and in the 0.5×W
567
+ simulation in the North Pacific subtropical gyre.
568
+ The gyre strengths adjust quickly to changes in wind
569
+ forcing (solid curves in the time series in Fig. 2), which is
570
+ likely due to a quick adjustment of the western boundary
571
+ current by barotropic Rossby waves (Veronis and Stom-
572
+ mel 1956; Anderson and Gill 1975). Subsequent smaller
573
+ changes in gyre transports may be attributed to baroclinic
574
+ Rossby waves, which propagate slowly and have a smaller
575
+ effect on the gyre circulation (Anderson and Gill 1975).
576
+ The time series also show that after the initial response,
577
+ gyres in the Pacific Ocean are more stable than in the At-
578
+ lantic Ocean.
579
+ Next, we analyze the impact of the perturbations in
580
+ wind stress forcing on other large scale flow metrics, start-
581
+ ing with the AMOC. For the first 10 years, the AMOC
582
+ strength is inversely related to the wind stress magnitude
583
+ (Fig. 3a), which is likely linked to a change in northward
584
+ Gulf Stream barotropic transport, part of which lies within
585
+ the AMOC (evaluated between 𝜎2 ∈ [1035.5,1038] kgm−3
586
+ density classes, which captures the bulk of the overturn-
587
+ ing circulation).
588
+ Similar results have been reported by
589
+ Hazeleger and Drijfhout (2006) and Yang et al. (2016).
590
+ After the initial transient response, we observe a slight de-
591
+ cline in AMOC strength for the 0.5×W experiment com-
592
+ pared with the control, consistent with previous studies
593
+ (e.g. Lohmann et al. 2021). However, we also observe a
594
+ reduction in the AMOC in the 1.5×W experiment in the
595
+ first 60 years, while a gradual increase to about 10% com-
596
+ pared with the control experiment is observed in the next
597
+ 40 years. These positive anomalies in AMOC in the last
598
+ 40 years with increased wind stress could be associated
599
+ with eddy compensation in the Southern Ocean (Morrison
600
+ and Hogg 2013), or other non-linear feedback in the ocean
601
+ circulation.
602
+ We observe only slight (≈ 4%) changes in the ACC trans-
603
+ port in both 0.5×W and 1.5×W simulations compared to
604
+ the control (Fig. 3b), which is consistent with several nu-
605
+ merical studies that the ACC is weakly sensitive to the
606
+ strength of the wind stress due to a process known as
607
+ eddy saturation (Munday et al. 2013; Marshall et al. 2017;
608
+ Constantinou and Hogg 2019). However, the validity of
609
+ ACC transport (especially the inconsistent reduction in the
610
+ 1.5×W simulation) may be questioned on the basis that
611
+ the control flux-forced experiment is not equilibrated, and
612
+ declines steadily (≈ 9%) during the same time period.
613
+ We observe a near-linear relationship between the glob-
614
+ ally integrated kinetic energy (Fig. 3c) and wind stress
615
+ magnitude. Winds supply energy to the ocean through gen-
616
+ eration of eddies and enhanced circulation, which leads to
617
+ an increase in the global kinetic energy (Wunsch and Fer-
618
+ rari 2004). We discern that the change in kinetic energy
619
+ due to wind stress is partially due to a change in the gyre
620
+
621
+ 7
622
+ Fig. 2: The barotropic streamfunction averaged over the last 15 years of the flux-forced control experiment. The
623
+ streamfunction is multiplied with sign( 𝑓 ). The subpanels show time series of gyre strength for the control (black),
624
+ 0.5×W (pink), and 1.5×W (purple) experiments in the (a) North Pacific subtropical gyre, (b) North Atlantic subtropical
625
+ gyre, (c) South Pacific subtropical gyre, and (d) South Atlantic subtropical gyre. An equal y-tick spacing is used on the
626
+ y-axis to facilitate comparison between the different gyres. Red boxes show the extent of each basin used to estimate the
627
+ 95th percentile subtropical gyre strength using the isopycnal outcropping method. Dashed lines show the gyre transport
628
+ predictions based on Sverdrup linear scaling, i.e., the time-mean gyre strength in the control multiplied by the wind
629
+ perturbation factor.
630
+ circulation (Fig. 2) as well as mesoscale eddies, and only
631
+ weakly related to the MOC and ACC (Fig. 3). A complete
632
+ energy budget calculation is not presented here, as it is
633
+ beyond the scope of the study.
634
+ 4. Surface buoyancy flux contrast perturbation experi-
635
+ ments
636
+ a. Reduced surface buoyancy flux contrast experiments
637
+ In the previous section, we analyzed the effects of wind
638
+ stress on the large-scale circulation. In this section, we
639
+ discuss two sensitivity experiments wherein we reduce the
640
+
641
+ 8
642
+ 0
643
+ 20
644
+ 40
645
+ 60
646
+ 80
647
+ 100
648
+ 12
649
+ 14
650
+ 16
651
+ 18
652
+ Transport (Sv)
653
+ a. Atlantic Meridional Overturning Circulation
654
+ 0
655
+ 20
656
+ 40
657
+ 60
658
+ 80
659
+ 100
660
+ 85
661
+ 90
662
+ 95
663
+ Transport (Sv)
664
+ b. Antarctic Circumpolar Current
665
+ 0
666
+ 20
667
+ 40
668
+ 60
669
+ 80
670
+ 100
671
+ Time (years)
672
+ 1500
673
+ 2000
674
+ 2500
675
+ 3000
676
+ Energy (Joules)
677
+ c. Globally Integrated Kinetic Energy
678
+ 0.5xW
679
+ Control
680
+ 1.5xW
681
+ Fig. 3: Monthly-mean time-series circulation metrics for
682
+ the wind perturbation flux-forced simulations:
683
+ 0.5×W
684
+ (pink), control (black) and 1.5×W (purple) after a 5-year
685
+ rolling mean was applied. (a) Atlantic meridional over-
686
+ turning circulation: integrated meridional transport for
687
+ 𝜎2 ∈ [1035.5,1038.0] kgm−3 at 26◦N for longitudes be-
688
+ tween 103◦W and 5◦W. (b) Antarctic Circumpolar Current
689
+ transport through the Drake Passage. (c) Globally inte-
690
+ grated kinetic energy.
691
+ intergyre surface meridional buoyancy difference at the
692
+ poleward zonal peripheries of subtropical gyres by 7.5 and
693
+ 15Wm−2. The buoyancy contrast perturbation is expected
694
+ to cause variations in horizontal density gradients: from
695
+ the thermal wind relation (2), these variations could lead
696
+ to anomalies in the ocean circulation.
697
+ We analyze short (< 1 decade) and long (> 1 decade)
698
+ time responses of the four subtropical gyres to delineate
699
+ the linear and non-linear behavior of the ocean circulation
700
+ due to the surface buoyancy flux gradient anomalies. The
701
+ subtropical gyres, with the exception of the South Pacific
702
+ gyre, initially reduce compared with the control simulation
703
+ (Fig. 4). This first-decade reduction is approximately linear
704
+ with respect to the magnitude of the surface buoyancy flux
705
+ gradient anomaly, as shown by the red bars in Figs. 4a-
706
+ c for the −7.5 Wm−2 and −15 Wm−2 experiments. The
707
+ relaxation in gyre strength is consistent with the thermal
708
+ wind relation (2): reduction in buoyancy gradients acts
709
+ to reduce horizontal flow. The bar graphs alongside the
710
+ gyre strength time series in Fig. 4 reveal that the Atlantic
711
+ subtropical gyres initially react 2 to 4 times more strongly
712
+ (measured by the percentage change in the gyre transport)
713
+ to changes in surface heat fluxes than the Pacific subtropical
714
+ gyres.
715
+ However, with time, the Pacific gyres display a
716
+ greater change than the Atlantic gyres. The time series
717
+ reveal that the Atlantic gyres are more susceptible to a
718
+ reduction in surface meridional buoyancy forcing contrast
719
+ than the Pacific Ocean on short timescales.
720
+ Figures 5 and 6 highlight spatial and temporal varia-
721
+ tions in the ocean’s density structure due to the applied
722
+ heat flux anomaly. Focusing on the −7.5 Wm−2 simula-
723
+ tion, Figs. 5a and 6a highlight minor stratification anoma-
724
+ lies in the ���rst 7 years of the simulation period, with the
725
+ subtropical Atlantic Ocean demonstrating slightly larger
726
+ meridional buoyancy gradient anomalies than the subtrop-
727
+ ical Pacific Ocean. These gradients are consistent with
728
+ stronger circulation anomalies (through (2)) in the two At-
729
+ lantic subtropical gyres in the initial stages of the simula-
730
+ tion.
731
+ In addition to the gyre circulation being linear with re-
732
+ spect to the magnitude of the surface buoyancy flux gra-
733
+ dient perturbation in the first decade, anomalies in the
734
+ ocean’s buoyancy structure develop linearly with time for
735
+ the −7.5 Wm−2 simulation. As an example, the potential
736
+ density latitude-depth transect for the −7.5 Wm−2 simula-
737
+ tion at the end of 95 years (Figs. 5c) and 6c) is quite similar
738
+ to the potential density transect for −15 Wm−2 simulation
739
+ at the end of 50 years (Figs. 5e and 6e).
740
+ The manifestation of surface buoyancy fluxes on the
741
+ density structure of the ocean, especially on longer time
742
+ scales, is not always linear, which may lead to a com-
743
+ plex circulatory response. Unlike the −7.5 Wm−2 simu-
744
+ lation, Figs. 5d-f and 6d-f suggest that the anomalies in
745
+ the Atlantic and Pacific Ocean’s density structure in the
746
+ −15 Wm−2 simulation evolve non-linearly with time in the
747
+ latter stages of the simulation period due to heat advec-
748
+ tion by the circulation. Comparing Fig. 5e and Fig. 5f, we
749
+ notice an increase in potential density in the upper ocean
750
+ subtropical region in year 95, which is overshadowed by a
751
+ relatively stronger (to year 50) potential density increase in
752
+ the subpolar region. The overall effect is a relative (to year
753
+ 50) increase in meridional density gradients, and therefore,
754
+ spin up of the northern region of the subtropical gyre in
755
+ the −15 Wm−2 simulation by ≈ 18% in the last 20 years
756
+ of the simulation (Fig. 4a). In summary, surface buoyancy
757
+ forcing anomalies alter the density structure of the mixed
758
+ layer and gradually infiltrate to deeper layers. However,
759
+ this downward infiltration is continuously modified by the
760
+ ocean circulation through heat redistribution, leading to a
761
+
762
+ 9
763
+ 0
764
+ 20
765
+ 40
766
+ 60
767
+ 80
768
+ 100
769
+ Time (years)
770
+ 20
771
+ 22
772
+ 24
773
+ 26
774
+ 28
775
+ 30
776
+ Transport (Sv)
777
+ a. North Atlantic
778
+ -15
779
+ -7.5
780
+ B (W m
781
+ 2)
782
+ 28
783
+ 21
784
+ 14
785
+ 7
786
+ 0
787
+ Fractional change (%)
788
+ -1.8
789
+ -1.0
790
+ -3.4
791
+ -2.1
792
+ 0
793
+ 20
794
+ 40
795
+ 60
796
+ 80
797
+ 100
798
+ Time (years)
799
+ 20
800
+ 22
801
+ 24
802
+ 26
803
+ 28
804
+ 30
805
+ Transport (Sv)
806
+ b. North Pacific
807
+ -15
808
+ -7.5
809
+ B (W m
810
+ 2)
811
+ 28
812
+ 21
813
+ 14
814
+ 7
815
+ 0
816
+ Fractional change (%)
817
+ -0.5
818
+ -0.3
819
+ -5.7
820
+ -2.2
821
+ 0
822
+ 20
823
+ 40
824
+ 60
825
+ 80
826
+ 100
827
+ Time (years)
828
+ 16
829
+ 18
830
+ 20
831
+ Transport (Sv)
832
+ c. South Atlantic
833
+ -15
834
+ -7.5
835
+ B (W m
836
+ 2)
837
+ 28
838
+ 21
839
+ 14
840
+ 7
841
+ 0
842
+ Fractional change (%)
843
+ -1.8
844
+ -0.5
845
+ -1.9
846
+ -1.7
847
+ 0
848
+ 20
849
+ 40
850
+ 60
851
+ 80
852
+ 100
853
+ Time (years)
854
+ 10
855
+ 12
856
+ 14
857
+ Transport (Sv)
858
+ d. South Pacific
859
+ -15
860
+ -7.5
861
+ B (W m
862
+ 2)
863
+ 28
864
+ 21
865
+ 14
866
+ 7
867
+ 0
868
+ Fractional change (%)
869
+ -0.1
870
+ -0.2
871
+ -3.1
872
+ -2.3
873
+ -15 W m
874
+ 2
875
+ -7.5 W m
876
+ 2
877
+ Control
878
+ Fig. 4: Comparison of subtropical gyre strength for the reduced surface buoyancy flux contrast experiments. For each
879
+ gyre, the left panel shows the time series for −15 Wm−2 (dark green), −7.5 Wm−2 (light green), and control (black)
880
+ simulations, and the right panel shows the fractional change in gyre strength with respect to control for the first 10 (red)
881
+ and last 10 (blue) years of the simulation. Values on each bar depict the absolute change in gyre strength (in Sv) relative
882
+ to the control.
883
+ non-linear evolution of the density structure, and hence the
884
+ gyre circulation on longer timescales.
885
+ In these experiments we observe a weakening of the
886
+ AMOC with time (Fig. 7a), as a reduction in the sur-
887
+ face buoyancy flux gradients causes the subpolar and polar
888
+ regions to experience a stronger stratification.
889
+ Stronger
890
+ stratification suppresses deep water formation in the North
891
+ Atlantic, which is a major source of the AMOC (Togg-
892
+ weiler and Samuels 1995; Marshall and Speer 2012). The
893
+ AMOC steadily reduces in the first 60 years of the re-
894
+ duced buoyancy contrast simulations, after which it begins
895
+ to recover in the −15 Wm−2 simulation, as opposed to the
896
+ −7.5 Wm−2 where it continues to slow down. Moreover,
897
+ we observe a temporal correlation between the North At-
898
+ lantic subtropical gyre strength and the AMOC (Figs. 4a
899
+ and 7a).
900
+ There is a nominal (≈2.5%) reduction in the circumpolar
901
+ transport for both −7.5 Wm−2 and −15 Wm−2 experiments
902
+ at the end of 100 years (Fig. 7b). Several competing factors
903
+ such as reduced meridional buoyancy gradients over the
904
+ ACC latitude band (Hogg 2010), deepening and shoaling of
905
+ the thermocline respectively over the northern and southern
906
+ regions of the ACC, variations in lateral mixing (Ragen
907
+ et al. 2020), and alterations to the Antarctic bottom water
908
+ production (Morrison and Hogg 2013) could influence the
909
+ ACC strength – a thorough analysis is beyond the scope of
910
+ this study.
911
+ Finally, we briefly discuss the changes in ocean circu-
912
+ lation due to surface buoyancy forcing anomalies from an
913
+ energetics perspective. In addition to anomalies observed
914
+ in the large-scale circulatory features (Figs. 4 and 7a-b),
915
+ the variations in globally integrated kinetic energy (Fig. 7d)
916
+ supplement our understanding that surface buoyancy forc-
917
+ ing is an important mechanism in steering the ocean cir-
918
+ culation. A reduction in surface buoyancy flux gradients
919
+ inhibits the production of available potential energy, which
920
+ reduces the conversion from available potential energy to
921
+ kinetic energy.
922
+ b. Increased surface buoyancy flux contrast experiments
923
+ In the previous subsection, we considered the short-term
924
+ and long-term ramifications of reducing surface buoyancy
925
+ flux gradients on the ocean circulation. A natural follow-
926
+ up question is: How would the circulation respond to an
927
+ increase in meridional surface buoyancy flux gradients?
928
+ Here, we analyze two surface buoyancy perturbation ex-
929
+ periments where we increase the meridional surface heat
930
+ contrast by +7.5 Wm−2 and +15 Wm−2 at the latitude of
931
+ western boundary separation for subtropical gyres using
932
+ the heat flux perturbation map in Fig. 1b.
933
+ Similar to the reduced surface buoyancy flux contrast
934
+ experiments, the anomalies in the Atlantic Ocean in the in-
935
+ creased surface buoyancy flux contrast experiments are in-
936
+ duced more quickly than in the Pacific (compare the red bar
937
+
938
+ 10
939
+ 50
940
+ 0
941
+ 50
942
+ 200
943
+ 400
944
+ 600
945
+ 800
946
+ 1000
947
+ a. -7.5 W m
948
+ 2: Year 7
949
+ 50
950
+ 0
951
+ 50
952
+ b. -7.5 W m
953
+ 2: Year 50
954
+ 50
955
+ 0
956
+ 50
957
+ c. -7.5 W m
958
+ 2: Year 95
959
+ 50
960
+ 0
961
+ 50
962
+ 200
963
+ 400
964
+ 600
965
+ 800
966
+ 1000
967
+ d. -15 W m
968
+ 2: Year 7
969
+ 50
970
+ 0
971
+ 50
972
+ e. -15 W m
973
+ 2: Year 50
974
+ 50
975
+ 0
976
+ 50
977
+ f. -15 W m
978
+ 2: Year 95
979
+ 1.8
980
+ 1.2
981
+ 0.6
982
+ 0.0
983
+ 0.6
984
+ 1.2
985
+ 1.8
986
+ 2 (kg m
987
+ 3)
988
+ Latitude (degrees)
989
+ Depth (m)
990
+ Fig. 5: Potential density (𝜎2) anomalies for a longitudinal slice of the upper Atlantic Ocean in the −7.5 Wm−2 (top row)
991
+ and −15 Wm−2 (bottom row) experiments for year 7 (left column), year 50 (middle column) and year 95 (right column),
992
+ obtained by averaging between 60◦W and 30◦W for all latitudes. Blue indicates increase in potential density, associated
993
+ with cooling and/or salinification, whereas red indicates decrease in potential density, associated with heating and/or
994
+ freshening.
995
+ 50
996
+ 0
997
+ 50
998
+ 200
999
+ 400
1000
+ 600
1001
+ 800
1002
+ 1000
1003
+ a. -7.5 W m
1004
+ 2: Year 7
1005
+ 50
1006
+ 0
1007
+ 50
1008
+ b. -7.5 W m
1009
+ 2: Year 50
1010
+ 50
1011
+ 0
1012
+ 50
1013
+ c. -7.5 W m
1014
+ 2: Year 95
1015
+ 50
1016
+ 0
1017
+ 50
1018
+ 200
1019
+ 400
1020
+ 600
1021
+ 800
1022
+ 1000
1023
+ d. -15 W m
1024
+ 2: Year 7
1025
+ 50
1026
+ 0
1027
+ 50
1028
+ e. -15 W m
1029
+ 2: Year 50
1030
+ 50
1031
+ 0
1032
+ 50
1033
+ f. -15 W m
1034
+ 2: Year 95
1035
+ 1.8
1036
+ 1.2
1037
+ 0.6
1038
+ 0.0
1039
+ 0.6
1040
+ 1.2
1041
+ 1.8
1042
+ 2 (kg m
1043
+ 3)
1044
+ Latitude (degrees)
1045
+ Depth (m)
1046
+ Fig. 6: Potential density (𝜎2) anomalies for a longitudinal slice of the upper Pacific Ocean in the −7.5 Wm−2 (top
1047
+ row) and −15 Wm−2 (bottom row) experiments for year 7 (left column), year 50 (middle column) and year 95 (right
1048
+ column), obtained by averaging between 220◦W and 140◦W for all latitudes. Blue indicates increase in potential density,
1049
+ associated with cooling and/or salinification, whereas red indicates decrease in potential density, associated with heating
1050
+ and/or freshening.
1051
+
1052
+ 11
1053
+ 0
1054
+ 20
1055
+ 40
1056
+ 60
1057
+ 80
1058
+ 100
1059
+ 10
1060
+ 12
1061
+ 14
1062
+ 16
1063
+ Transport (Sv)
1064
+ a. Atlantic Meridional Overturning Circulation
1065
+ 0
1066
+ 20
1067
+ 40
1068
+ 60
1069
+ 80
1070
+ 100
1071
+ 87.5
1072
+ 90.0
1073
+ 92.5
1074
+ 95.0
1075
+ Transport (Sv)
1076
+ b. Antarctic Circumpolar Current
1077
+ 0
1078
+ 20
1079
+ 40
1080
+ 60
1081
+ 80
1082
+ 100
1083
+ Time (years)
1084
+ 1800
1085
+ 1900
1086
+ 2000
1087
+ Energy (Joules)
1088
+ c. Globally Integrated Kinetic Energy
1089
+ -15 W m
1090
+ 2
1091
+ -7.5 W m
1092
+ 2
1093
+ Control
1094
+ Fig. 7: Circulation metrics for the reduced surface buoy-
1095
+ ancy flux contrast simulations: −15 Wm−2 (light green),
1096
+ −7.5 Wm−2 (dark green), and control (black) after a 5-
1097
+ year rolling mean was applied.
1098
+ (a) Atlantic meridional
1099
+ overturning circulation: integrated meridional transport
1100
+ for 𝜎2 ∈ [1035.5,1038.0] kgm−3 at 26◦N for longitudes
1101
+ between 103◦W and 5◦W. (b) Antarctic Circumpolar Cur-
1102
+ rent transport through the Drake Passage.
1103
+ (c) Globally
1104
+ integrated kinetic energy.
1105
+ graphs in Fig. 8), with the Atlantic gyres in the +15 Wm−2
1106
+ simulation intensifying by ≈ 20% after 15 years. A linear
1107
+ regression model of the form:
1108
+ Δ𝜓 = 𝑚Δ𝐵,
1109
+ (3)
1110
+ is applied, using outputs from the first decade of both
1111
+ the reduced and increased surface buoyancy flux contrast
1112
+ experiments. In this equation, Δ𝜓 is the change in gyre
1113
+ circulation, and 𝑚 = Δ𝜓/Δ𝐵 represents the variation in
1114
+ circulation due to the surface buoyancy contrast Δ𝐵. The
1115
+ regression model predicts a strong linear behavior with
1116
+ reference to the applied surface buoyancy flux contrast for
1117
+ the Atlantic and North Pacific subtropical gyres (inferred
1118
+ from the high R2 scores in Table 2). Variations in the South
1119
+ Pacific subtropical gyre due to an applied surface buoyancy
1120
+ contrast in the first 10 years is negligible (Table 2).
1121
+ On longer timescales, the regression model (3) performs
1122
+ poorly, as the relationship between gyre circulation and
1123
+ anomalous surface buoyancy flux contrast becomes non-
1124
+ linear with time. This is accompanied by an oscillatory
1125
+ behavior in the gyre strength, as can be observed in the
1126
+ time series in Fig. 8. Although the North Atlantic gyre
1127
+ strength time series shows high variability, the circulation
1128
+ estimates for both +7.5 Wm−2 and +15 Wm−2 simula-
1129
+ tions are generally greater than the control.
1130
+ The North
1131
+ Pacific subtropical gyre strength anomalies monotonically
1132
+ increase with time for the +15 Wm−2 simulation (Fig. 8b),
1133
+ but show no temporal relation for the +7.5 Wm−2 sim-
1134
+ ulation. The South Atlantic subtropical gyre strength is
1135
+ enhanced in the first decade of the simulations (Fig. 8c),
1136
+ followed by a plateauing for about 20-25 years. The re-
1137
+ duction in the South Atlantic subtropical gyre strength in
1138
+ the last 50 years can be attributed to an inaccurate esti-
1139
+ mate of the circulation: integrating meridional transport
1140
+ for all isopycnals having 𝜎2 ≤ 1035.8 kgm−3 captures a
1141
+ part of the mid-depth overturning circulation. The South
1142
+ Pacific subtropical gyre strength anomalies are minimal for
1143
+ both +7.5 Wm−2 and +15 Wm−2 simulations in the first
1144
+ decade, but grow with time, with the gyre strength in the
1145
+ +15 Wm−2 simulation fluctuating around the control. In
1146
+ conclusion, an oscillatory response is present in all four
1147
+ subtropical gyres, suggesting that there is a complicated
1148
+ feedback between ocean circulation and surface buoyancy
1149
+ forcing.
1150
+ Table 2: Linear regression model (8) for the subtropical
1151
+ gyre perturbations over the first 10 years. R2 score indi-
1152
+ cates the extent of gyre variability due to buoyancy forcing
1153
+ that is captured by the linear regression model.
1154
+ Gyre basin
1155
+ 𝑚 (Sv m2W−1)
1156
+ R2 score
1157
+ North Atlantic
1158
+ 0.15
1159
+ 0.99
1160
+ South Atlantic
1161
+ 0.10
1162
+ 0.98
1163
+ North Pacific
1164
+ 0.02
1165
+ 0.91
1166
+ South Pacific
1167
+ 0.00
1168
+ -0.65
1169
+ The North Atlantic subtropical gyre shows an oscilla-
1170
+ tory response in terms of strength (Fig. 8a) as well as the
1171
+ western boundary separation latitude (Fig. 9a). The con-
1172
+ traction of the northern extent of the subtropical gyre is
1173
+ accompanied by a shoaling and southward expansion of
1174
+ the cyclonic North Atlantic subpolar gyre (compare green
1175
+ contours in Figs. 9c and 9d). The shoaled subpolar gyre
1176
+ carries colder water to the subtropical regions in the near-
1177
+ surface layers, which sits above the less dense subtropical
1178
+ gyre. The unstable vertical structure leads to convection in
1179
+ the northern half of the western boundary region, resulting
1180
+
1181
+ 12
1182
+ 0
1183
+ 20
1184
+ 40
1185
+ 60
1186
+ 80
1187
+ 100
1188
+ Time (years)
1189
+ 23
1190
+ 26
1191
+ 29
1192
+ 32
1193
+ 35
1194
+ Transport (Sv)
1195
+ a. North Atlantic
1196
+ +7.5 +15
1197
+ B (W m
1198
+ 2)
1199
+ 20
1200
+ 0
1201
+ 20
1202
+ Fractional change (%)
1203
+ 0.8
1204
+ 2.2
1205
+ 1.9
1206
+ -1.9
1207
+ 0
1208
+ 20
1209
+ 40
1210
+ 60
1211
+ 80
1212
+ 100
1213
+ Time (years)
1214
+ 27
1215
+ 30
1216
+ Transport (Sv)
1217
+ b. North Pacific
1218
+ +7.5 +15
1219
+ B (W m
1220
+ 2)
1221
+ 20
1222
+ 0
1223
+ 20
1224
+ Fractional change (%)
1225
+ 0.3
1226
+ 0.3
1227
+ -0.1
1228
+ 2.4
1229
+ 0
1230
+ 20
1231
+ 40
1232
+ 60
1233
+ 80
1234
+ 100
1235
+ Time (years)
1236
+ 11
1237
+ 14
1238
+ 17
1239
+ 20
1240
+ Transport (Sv)
1241
+ c. South Atlantic
1242
+ +7.5 +15
1243
+ B (W m
1244
+ 2)
1245
+ 60
1246
+ 40
1247
+ 20
1248
+ 0
1249
+ 20
1250
+ Fractional change (%)
1251
+ 0.5
1252
+ 1.3
1253
+ -4.3
1254
+ -6.6
1255
+ 0
1256
+ 20
1257
+ 40
1258
+ 60
1259
+ 80
1260
+ 100
1261
+ Time (years)
1262
+ 13
1263
+ 16
1264
+ Transport (Sv)
1265
+ d. South Pacific
1266
+ +7.5 +15
1267
+ B (W m
1268
+ 2)
1269
+ 20
1270
+ 0
1271
+ 20
1272
+ Fractional change (%)
1273
+ -0.0
1274
+ -0.0
1275
+ 0.8
1276
+ -0.7
1277
+ Control
1278
+ +7.5W m
1279
+ 2
1280
+ +15 W m
1281
+ 2
1282
+ Fig. 8: Comparison of subtropical gyre strength for the increased surface buoyancy flux contrast experiments. For each
1283
+ gyre, the left panel shows the time series for control (black), +7.5Wm−2 (orange), and +15Wm−2 (red) simulations, and
1284
+ the right panel shows the fractional change in gyre strength with respect to control for the first 10 (red) and last 10 (blue)
1285
+ years of the simulation. Values on each bar depict the absolute change in gyre strength (in Sv) relative to the control.
1286
+ in excessively deep mixing layers during that time period
1287
+ (Fig. 9b).
1288
+ The onset of convection in the North Atlantic basin is
1289
+ associated with the development of an oscillating abyssal
1290
+ anticyclonic gyre below 4000m (Fig. 9e and Fig. 9f). The
1291
+ strength of the abyssal gyre correlates well with the mixing
1292
+ layer depth (Fig. 9b), which in turn is induced by convec-
1293
+ tion in the western boundary of the subtropical gyre. The
1294
+ formation of the abyssal gyre could be explained by two
1295
+ hypotheses: (i) Excessively deep mixing layers due to con-
1296
+ vection could relay vorticity input due to the surface wind
1297
+ stress directly to the abyssal circulation, or (ii) the south-
1298
+ ward extension of cyclonic subpolar gyre at the surface
1299
+ could baroclinically stimulate an anti-cyclonic circulation
1300
+ in the deeper layers. A complete analysis of the processes
1301
+ leading to the formation of the abyssal gyre is outside the
1302
+ scope of this study.
1303
+ In the reduced buoyancy contrast experiments, the den-
1304
+ sity anomalies for the −7.5 Wm−2 experiment at the end of
1305
+ 100 years closely match with the −15 Wm−2 simulation at
1306
+ the end of 50 years, suggesting that small reductions in sur-
1307
+ face buoyancy flux gradients are manifested linearly in the
1308
+ ocean’s buoyancy structure. However, this is not true for
1309
+ the positive buoyancy flux anomaly experiments (compare
1310
+ the Atlantic basin in Figs. 10c and 10e, and the Pacific
1311
+ basin in Figs. 11c and 11e). Likewise, we observe a non-
1312
+ linear evolution of the ocean’s buoyancy structure in the
1313
+ Atlantic and Pacific basins for the +30 Wm−2 simulation
1314
+ (not presented here).
1315
+ The AMOC in the increased surface buoyancy flux con-
1316
+ trast simulations initially spins up with time, followed by an
1317
+ oscillatory behavior (Fig. 12a). The time taken to display
1318
+ this oscillatory behavior is inversely related to the magni-
1319
+ tude of the surface buoyancy flux gradient anomaly. The
1320
+ oscillation of the North Atlantic subtropical gyre strength
1321
+ (Fig. 8a) is similar to that of the AMOC, suggesting a direct
1322
+ relationship between the two. Increased cooling in subpo-
1323
+ lar regions stimulates the production of NADW, which may
1324
+ cause an acceleration of the mid-depth circulation (Morri-
1325
+ son et al. 2011).
1326
+ The reduced buoyancy flux contrast experiments re-
1327
+ vealed a weak dependence of circumpolar transport on
1328
+ meridional surface buoyancy gradients (Fig. 7c), with tem-
1329
+ poral variability within experiments being stronger than
1330
+ the anomalies. However, increasing the latitudinal surface
1331
+ buoyancy contrast produces a robust increase in the ACC
1332
+ (Fig. 12b), in agreement with Hogg (2010) and Morrison
1333
+ and Hogg (2013). An increase in the surface buoyancy
1334
+ flux gradients also promotes the conversion of available
1335
+ potential energy to kinetic energy (Fig. 12c), consistent
1336
+ with Tailleux (2009).
1337
+ 5. Uniform warming perturbation experiment
1338
+ In the previous section, we showed that variations in
1339
+ surface heat fluxes, with opposite signed anomalies ap-
1340
+ plied over subpolar and subtropical regions, can produce
1341
+ anomalies in the ocean circulation. In this section we ask;
1342
+
1343
+ 13
1344
+ Fig. 9: (a) Western boundary separation latitude of the North Atlantic subtropical gyre for the control (black) and
1345
+ +15 Wm−2 (red) simulations. (b) Temporal correlation between mixing layer depth (light red) and strength of the
1346
+ abyssal gyre (dark red) for +15 Wm−2 simulation. The mixing layer depth is estimated by spatially averaging over
1347
+ the red box in panel (f). The abyssal circulation is measured by taking the 95th percentile of all density classes lying
1348
+ below 3000m in red box in panel (f). (c)-(f) Streamfunction of the North Atlantic basin for the +15 Wm−2 simulation.
1349
+ Compare the emergence of abyssal gyre (red box in panel (f)) with the beginning of the simulation (panels e), when the
1350
+ entire anticyclonic circulation is confined in the upper 1500 m of the basin. The western boundary separation latitude
1351
+ time series in panel (a) denotes the times (see red dots in panel (a)) that correspond to these streamfunctions.
1352
+ is the same true if the surface heat flux anomalies are glob-
1353
+ ally uniform? We expect changes in the ocean circulation
1354
+ due to a spatially uniform surface heat flux due to sev-
1355
+ eral processes. Firstly, lateral variations in mixed layer
1356
+ depth imply that buoyancy anomalies induced by the uni-
1357
+ form heating will be non-uniform. In addition, changes
1358
+ in circulation continuously alter the buoyancy structure
1359
+ of the ocean through advection. To understand the com-
1360
+ bined effects of mixed layer depth variations and advective
1361
+ feedbacks on the ocean circulation, we analyze a uniform
1362
+ warming experiment, where a globally constant heat flux
1363
+ of +5 Wm−2 is applied at the ocean’s surface.
1364
+ Changes in the strength of each gyre do occur under the
1365
+ uniform warming perturbation (Fig. 13a-c). Focusing first
1366
+ on the North Pacific basin (Fig. 13b), we observe ∼22% in-
1367
+ tensification of the subtropical gyre, consistent with the re-
1368
+ sults of Sakamoto et al. (2005) and Chen et al. (2019). This
1369
+ increase could be attributed to spatial variations in mixed
1370
+ layer depth near the western boundary region. The mixed
1371
+ layer traps the excess heat received from the ocean’s sur-
1372
+ face and distributes only a fraction of this heat to the layer
1373
+ below. Furthermore, a deeper mixed layer has a higher
1374
+ heat capacity due to its ability to store more heat. Deep
1375
+ mixed layers at the western boundary of the North Pacific
1376
+ subtropical gyre moderately shield the region from devel-
1377
+ oping stratification. Conversely, shallower mixed layers to
1378
+ the east of the western boundary lead to more stratification
1379
+ in that region. The spatially uneven growth of stratification
1380
+ in the subtropical gyre strengthens zonal buoyancy gradi-
1381
+ ents near the western boundary region, which in view of
1382
+ the thermal wind relation, intensifies the meridional gyre
1383
+ flow.
1384
+ We record a strong (∼50%) intensification of the South
1385
+ Atlantic subtropical gyre (Fig. 13c) due to a similar later-
1386
+ ally varying mixed layer depth as observed in the North
1387
+ Pacific basin, which augments the zonal buoyancy gra-
1388
+ dients near the western boundary in response to surface
1389
+ heating. Finally, the South Pacific gyre anomalies show
1390
+ minor oscillations (with an amplitude of ∼ 1.5Sv) due to
1391
+ uniform surface heating (not shown).
1392
+ We observe positive anomalies in the North Atlantic
1393
+ subtropical gyre strength for the first 20 years of the uni-
1394
+
1395
+ c. Top 1500 m, Year 10
1396
+ d. Top 1500 m, Year 82
1397
+ e. 1500-5000 m, Year 10
1398
+ f. 1500-5000 m, Year 82
1399
+ 36
1400
+ 73°
1401
+ Latitude (degrees)
1402
+ 24
1403
+ Transport (Sv)
1404
+ 65°N
1405
+ 12
1406
+ 0
1407
+ 55°N
1408
+ 40°N
1409
+ 24
1410
+ -36
1411
+ 20°N
1412
+ M.0E M.09 M.06
1413
+
1414
+ M.0E M.09 M.06
1415
+
1416
+ 90°W 60°W
1417
+ 30°W
1418
+
1419
+ M.0E M.09 M.06
1420
+
1421
+ Longitude (degrees)14
1422
+ 50
1423
+ 0
1424
+ 50
1425
+ 200
1426
+ 400
1427
+ 600
1428
+ 800
1429
+ 1000
1430
+ a. +7.5 W m
1431
+ 2: Year 7
1432
+ 50
1433
+ 0
1434
+ 50
1435
+ b. +7.5 W m
1436
+ 2: Year 50
1437
+ 50
1438
+ 0
1439
+ 50
1440
+ c. +7.5 W m
1441
+ 2: Year 95
1442
+ 50
1443
+ 0
1444
+ 50
1445
+ 200
1446
+ 400
1447
+ 600
1448
+ 800
1449
+ 1000
1450
+ d. +15 W m
1451
+ 2: Year 7
1452
+ 50
1453
+ 0
1454
+ 50
1455
+ e. +15 W m
1456
+ 2: Year 50
1457
+ 50
1458
+ 0
1459
+ 50
1460
+ f. +15 W m
1461
+ 2: Year 95
1462
+ 1.8
1463
+ 1.2
1464
+ 0.6
1465
+ 0.0
1466
+ 0.6
1467
+ 1.2
1468
+ 1.8
1469
+ 2 (kg m
1470
+ 3)
1471
+ Latitude (degrees)
1472
+ Depth (m)
1473
+ Fig. 10: Potential density (𝜎2) anomalies for a longitudinal slice of the upper Atlantic Ocean for +7.5 Wm−2 (top row)
1474
+ and +15 Wm−2 (bottom row) simulation for year 7 (left column), year 50 (middle column) and year 95 (right column),
1475
+ obtained by averaging between 60◦W and 30◦W for all latitudes. Blue indicates increase in potential density, associated
1476
+ with cooling, whereas red indicates decrease in potential density, associated with heating.
1477
+ 50
1478
+ 0
1479
+ 50
1480
+ 200
1481
+ 400
1482
+ 600
1483
+ 800
1484
+ 1000
1485
+ a. +7.5 W m
1486
+ 2: Year 7
1487
+ 50
1488
+ 0
1489
+ 50
1490
+ b. +7.5 W m
1491
+ 2: Year 50
1492
+ 50
1493
+ 0
1494
+ 50
1495
+ c. +7.5 W m
1496
+ 2: Year 95
1497
+ 50
1498
+ 0
1499
+ 50
1500
+ 200
1501
+ 400
1502
+ 600
1503
+ 800
1504
+ 1000
1505
+ d. +15 W m
1506
+ 2: Year 7
1507
+ 50
1508
+ 0
1509
+ 50
1510
+ e. +15 W m
1511
+ 2: Year 50
1512
+ 50
1513
+ 0
1514
+ 50
1515
+ f. +15 W m
1516
+ 2: Year 95
1517
+ 1.8
1518
+ 1.2
1519
+ 0.6
1520
+ 0.0
1521
+ 0.6
1522
+ 1.2
1523
+ 1.8
1524
+ 2 (kg m
1525
+ 3)
1526
+ Latitude (degrees)
1527
+ Depth (m)
1528
+ Fig. 11: Potential density (𝜎2) anomalies for a longitudinal slice of the upper Pacific Ocean for +7.5 Wm−2 (top row)
1529
+ and +15 Wm−2 (bottom row) simulation for year 7 (left column), year 50 (middle column) and year 95 (right column),
1530
+ obtained by averaging between 220◦W and 140◦W for all latitudes. Blue indicates increase in potential density, associated
1531
+ with cooling, whereas red indicates decrease in potential density, associated with heating.
1532
+
1533
+ 15
1534
+ 0
1535
+ 20
1536
+ 40
1537
+ 60
1538
+ 80
1539
+ 100
1540
+ 15
1541
+ 20
1542
+ 25
1543
+ Transport (Sv)
1544
+ a. Atlantic Meridional Overturning Circulation
1545
+ 0
1546
+ 20
1547
+ 40
1548
+ 60
1549
+ 80
1550
+ 100
1551
+ 90
1552
+ 100
1553
+ 110
1554
+ 120
1555
+ Transport (Sv)
1556
+ b. Antarctic Circumpolar Current
1557
+ 0
1558
+ 20
1559
+ 40
1560
+ 60
1561
+ 80
1562
+ 100
1563
+ Time (years)
1564
+ 2000
1565
+ 2200
1566
+ 2400
1567
+ Energy (Joules)
1568
+ c. Globally Integrated Kinetic Energy
1569
+ Control
1570
+ +7.5 W m
1571
+ 2
1572
+ +15 W m
1573
+ 2
1574
+ Fig. 12:
1575
+ Monthly-mean time-series circulation metrics
1576
+ for the wind perturbation flux-forced simulations: control
1577
+ (black), +7.5 Wm−2 (orange), and +15 Wm−2 (red) after
1578
+ a 5-year rolling mean was applied. (a) Atlantic meridional
1579
+ overturning circulation: integrated meridional transport
1580
+ for 𝜎2 ∈ [1035.5,1038.0] kgm−3 at 26◦N for longitudes
1581
+ between 103◦W and 5◦W. (b) Antarctic Circumpolar Cur-
1582
+ rent transport through the Drake Passage.
1583
+ (c) Globally
1584
+ integrated kinetic energy.
1585
+ form warming simulation due to differing heat capacities
1586
+ of mixed layer near the Gulf Stream (Fig. 13a). However,
1587
+ the initial spin-up is followed by a systematic slowdown
1588
+ over the next 75 years. Several modeling studies have re-
1589
+ ported a correlation between the North Atlantic subtropical
1590
+ gyre strength and the AMOC (Yeager 2015; Larson et al.
1591
+ 2020), and we observe a reduction in the AMOC over the
1592
+ same time period (Fig. 13d). This reduction is explained
1593
+ by two processes: (i) the first 20 years of increased gyre
1594
+ strength transports a larger volume of warm water through
1595
+ the Gulf Stream from tropical and subtropical latitudes to
1596
+ the subpolar regions, and (ii) the uniform warming applied
1597
+ at the ocean’s surface promotes the generation of lighter
1598
+ waters in the subpolar regions at the ocean’s surface. These
1599
+ two processes limit North Atlantic deep water formation,
1600
+ causing an AMOC slowdown (Lohmann et al. 2008; Cheng
1601
+ et al. 2013).
1602
+ There is an intensification of the circumpolar transport
1603
+ (Fig. 13e), which could be linked to increased meridional
1604
+ buoyancy gradients due to uneven ingestion of surface
1605
+ buoyancy flux into deeper layers. These irregularities are
1606
+ caused by spatial variations in the mixed layer depth across
1607
+ the latitudinal band of the ACC.
1608
+ Finally, the globally integrated kinetic energy increases
1609
+ by almost 50% over the full experiment (Fig. 13f). We
1610
+ can ascribe the resulting kinetic energy increase to mean
1611
+ (for example, gyres, ACC) flows as well as mesoscale ed-
1612
+ dies, and is consistent with the energy conversion argument
1613
+ put forth by Tailleux (2009) that surface buoyancy forcing
1614
+ could induce kinetic energy in the system through a con-
1615
+ version from available potential energy.
1616
+ 6. Summary and Discussion
1617
+ In this study, we conducted a series of perturbed forcing
1618
+ simulations using a partially eddy-resolving ocean model
1619
+ (at a 0.25◦ lateral resolution) to understand the importance
1620
+ of wind stress and surface buoyancy forcing in steering
1621
+ planetary-scale ocean circulation. These perturbation ex-
1622
+ periments (listed in Table 1) are forced for 100 years each
1623
+ using surface boundary fluxes (and are thus called “flux-
1624
+ forced simulations”) to separate the contribution of winds
1625
+ and surface buoyancy in driving the circulation, and are
1626
+ classified into three categories: (i) wind perturbation ex-
1627
+ periments, (ii) surface buoyancy flux contrast perturba-
1628
+ tions, and (iii) a spatially uniform warming perturbation.
1629
+ The flux-forced simulations illustrate that both wind
1630
+ stress (Fig. 2) and surface buoyancy forcing (Figs. 4, 8,
1631
+ and 13a-c) are crucial in shaping the planetary-scale sub-
1632
+ tropical gyres. We find that perturbations in surface buoy-
1633
+ ancy flux gradients modify the ocean’s buoyancy structure
1634
+ (Fig. 5, 6, 10, and 11), and thus the circulation through
1635
+ the thermal wind relation (2). In addition, anomalies in
1636
+ horizontal buoyancy gradients (and hence, the circulation
1637
+ (Fig. 13)) could also be induced using a spatially uniform
1638
+ surface heat flux due to lateral differences in mixed layer
1639
+ depth and heat advection by the circulation.
1640
+ The anomalous horizontal density gradients are propor-
1641
+ tional to the surface buoyancy flux gradient perturbations
1642
+ on short (< 1 decade) timescales (compare Figs. 5a and d;
1643
+ Figs. 6a and d; Figs. 10a and d; Figs. 11a and d). Through
1644
+ the thermal wind relation (2), we diagnose a linear rela-
1645
+ tionship (R2 > 0.9 in Table 2) between the anomalous gyre
1646
+ circulation and the magnitude of the surface buoyancy flux
1647
+ gradient perturbation on short timescales. Over this pe-
1648
+ riod, the Atlantic gyres are observed to be 2-4 times more
1649
+ susceptible to changes in surface buoyancy flux gradients
1650
+ than the Pacific gyres, with as much as a 0.15Sv anomaly
1651
+ per Wm−2 change in the subtropical/subpolar surface heat
1652
+ flux in the North Atlantic subtropical gyre.
1653
+
1654
+ 16
1655
+ 0
1656
+ 20
1657
+ 40
1658
+ 60
1659
+ 80
1660
+ 100
1661
+ 23
1662
+ 26
1663
+ 29
1664
+ 32
1665
+ Transport (Sv)
1666
+ a. North Atlantic
1667
+ 0
1668
+ 20
1669
+ 40
1670
+ 60
1671
+ 80
1672
+ 100
1673
+ 25
1674
+ 28
1675
+ 31
1676
+ 34
1677
+ 37
1678
+ Transport (Sv)
1679
+ b. North Pacific
1680
+ 0
1681
+ 20
1682
+ 40
1683
+ 60
1684
+ 80
1685
+ 100
1686
+ 18
1687
+ 21
1688
+ 24
1689
+ 27
1690
+ 30
1691
+ 33
1692
+ Transport (Sv)
1693
+ c. South Atlantic
1694
+ 0
1695
+ 20
1696
+ 40
1697
+ 60
1698
+ 80
1699
+ 100
1700
+ 6
1701
+ 9
1702
+ 12
1703
+ 15
1704
+ 18
1705
+ Transport (Sv)
1706
+ d. Atlantic Meridional Overturning Circulation
1707
+ 0
1708
+ 20
1709
+ 40
1710
+ 60
1711
+ 80
1712
+ 100
1713
+ Time (years)
1714
+ 87
1715
+ 90
1716
+ 93
1717
+ 96
1718
+ 99
1719
+ 102
1720
+ Transport (Sv)
1721
+ e. Antarctic Circumpolar Current
1722
+ 0
1723
+ 20
1724
+ 40
1725
+ 60
1726
+ 80
1727
+ 100
1728
+ Time (years)
1729
+ 2000
1730
+ 2250
1731
+ 2500
1732
+ 2750
1733
+ 3000
1734
+ 3250
1735
+ Energy (Joules)
1736
+ f. Globally Integrated Kinetic Energy
1737
+ Control
1738
+ +5W m
1739
+ 2 uniform
1740
+ Fig. 13:
1741
+ (a)-(c) Comparison of subtropical gyre strength time series for control (black) and uniform warm-
1742
+ ing (dark red) simulations.
1743
+ (d) Atlantic meridional overturning circulation:
1744
+ integrated meridional transport for
1745
+ 𝜎2 ∈ [1035.5,1038.0] kgm−3 at 26◦N for longitudes between 103◦W and 5◦W. (e) Antarctic Circumpolar Current
1746
+ transport through the Drake Passage. (f) Globally integrated kinetic energy.
1747
+ Over time, the lateral buoyancy gradients become less
1748
+ proportional to the surface buoyancy flux perturbations
1749
+ (compare Figs. 5c and f; Figs. 6c and f; Figs. 10c and
1750
+ f; Figs. 11c and f). A divergence from this linear rela-
1751
+ tionship with time could be attributed to several factors
1752
+ such as lateral variations in mixed layer depth (Xie et al.
1753
+ 2010) and advective feedbacks between the surface buoy-
1754
+ ancy forcing anomalies and the ocean circulation (Bryden
1755
+ et al. 1991). For example, in the −15Wm−2 simulation,
1756
+ this non-linear connection can be most clearly observed in
1757
+ the spin-up of the North Atlantic subtropical gyre in the
1758
+ last 20 years (Fig. 4a) and a surge in the AMOC in the
1759
+ last 40 years (Fig. 7a). The ocean circulation in the in-
1760
+ creased surface buoyancy flux contrast simulations is more
1761
+ non-linearly related to surface buoyancy flux gradient per-
1762
+ turbation than the reduced surface buoyancy flux contrast
1763
+ simulations. For example, we observe a slowdown in North
1764
+ Atlantic, South Atlantic, and South Pacific gyre strength in
1765
+ the last 40 years of the +15Wm−2 simulation (Fig. 8) and
1766
+ an oscillatory AMOC in both +7.5Wm−2 and +15Wm−2
1767
+ simulations (Fig. 12a).
1768
+ The flux-forced simulations allowed us to conduct per-
1769
+ turbation simulations in which each surface forcing could
1770
+ be altered independently. However, the present study has
1771
+ numerous caveats. Firstly, in reality the wind and buoyancy
1772
+ forcing are strongly coupled. In earlier experiments that
1773
+ used bulk formula for the surface heat fluxes (not shown),
1774
+ we found that decreasing the wind forcing strongly reduced
1775
+ the surface buoyancy fluxes as well due to the reduction in
1776
+ poleward heat transport. Next, the flux-forced simulations
1777
+ are conducted at 0.25◦ resolution and can only partially
1778
+ capture the mesoscale eddies. Moreover, the flux-forced
1779
+ control simulation is not fully equilibrated (see Fig. 1c) due
1780
+ to the dynamic frazil formation at high latitudes, which
1781
+
1782
+ 17
1783
+ continuously adds heat in the polar regions.
1784
+ The frazil
1785
+ formation limits the magnitude of surface buoyancy flux
1786
+ perturbation we can apply in the polar regions. We have
1787
+ partially muted the frazil heat gain in the increased sur-
1788
+ face buoyancy flux contrast experiments through adding a
1789
+ globally uniform heat loss. In regions of extreme buoyancy
1790
+ anomalies, the isopycnal outcropping method (section 2b)
1791
+ is prone to capturing other elements of ocean circulation
1792
+ especially in regions of heat gain, such as the deep cell of
1793
+ the AMOC, which may produce erroneous results. Finally,
1794
+ the surface buoyancy flux perturbation experiments have
1795
+ not equilibrated even after 100 years, and hence, should
1796
+ not be misunderstood as the final response.
1797
+ The present study reinforces recent evidence supporting
1798
+ the existence of a buoyancy-driven component in ocean
1799
+ gyres (Gjermundsen et al. 2018; Hogg and Gayen 2020; Liu
1800
+ et al. 2022). We envisage that a complete theory describing
1801
+ the formation of ocean gyres should incorporate the effects
1802
+ of surface buoyancy forcing, in addition to surface wind
1803
+ stress (Munk 1950).
1804
+ However, the influence of surface
1805
+ buoyancy forcing on gyres depends on the ocean state,
1806
+ allowing non-linear and non-local feedbacks with the ocean
1807
+ circulation that obscure the formulation of a simple theory.
1808
+ These feedbacks may include the role of the mixed layer in
1809
+ capturing excess heat and the horizontal transport of heat
1810
+ by the circulation, both of which influence the background
1811
+ stratification.
1812
+ Acknowledgments.
1813
+ We would like to thank the
1814
+ community
1815
+ of
1816
+ the
1817
+ Consortium
1818
+ for
1819
+ Ocean–Sea
1820
+ Ice
1821
+ Modeling in Australia (http://cosima.org.au) for
1822
+ helpful
1823
+ discussions
1824
+ and
1825
+ for
1826
+ the
1827
+ development
1828
+ and
1829
+ maintenance of cosima-cookbook package (https:
1830
+ //github.com/COSIMA/cosima-cookbook)
1831
+ and
1832
+ the
1833
+ cosima-recipes repository (https://github.com/
1834
+ COSIMA/cosima-recipes), both of which are indis-
1835
+ pensable for our workflow.
1836
+ D.B. would like to thank
1837
+ Bishakhdatta Gayen, Aviv Solodoch, Andy Thompson,
1838
+ and Christopher Wolfe for stimulating discussions during
1839
+ early stages of this work. D.B. expresses gratitude to the
1840
+ Computational Modeling Systems group at the Australian
1841
+ Research Council Center for Climate Extremes for their
1842
+ assistance in conducting the flux-forced simulations. Our
1843
+ analyses were facilitated with the Python packages dask
1844
+ (Rocklin 2015) and xarray (Hoyer and Hamman 2017).
1845
+ Computational resources were provided by the Australian
1846
+ National Computational Infrastructure at the ANU, which
1847
+ is supported by the Commonwealth Government of Aus-
1848
+ tralia.
1849
+ R.M.H. is supported by the Australian Research
1850
+ Council DECRA Fellowship DE210100004.
1851
+ N.C.C. is
1852
+ supported by the Australian Research Council DECRA
1853
+ Fellowship DE210100749.
1854
+ Data availability statement.
1855
+ Python code used for gen-
1856
+ erating figures are available at https://github.com/
1857
+ dhruvbhagtani/varying-surface-forcing. Output
1858
+ to reproduce figures will be available in a Zenodo repos-
1859
+ itory upon acceptance of manuscript.
1860
+ MOM5 source
1861
+ code for flux-forced simulations is available at https:
1862
+ //github.com/dhruvbhagtani/MOM5.
1863
+ APPENDIX
1864
+ K-profile ocean surface boundary layer
1865
+ parameterization
1866
+ The ACCESS-OM2 control and flux-forced simulations
1867
+ estimate the mixing layer depth using the K-profile param-
1868
+ eterization (Large et al. 1994). The mixing layer depth
1869
+ depends on many factors, such as Langmuir turbulence
1870
+ (Belcher et al. 2012), surface buoyancy forcing (Yoshikawa
1871
+ 2015), wind stress (Grant and Belcher 2011), and convec-
1872
+ tion (Sohail et al. 2020). The effect of these processes on
1873
+ the mixing layer depth can be encapsulated in the Richard-
1874
+ son number, which is the ratio of stratification, 𝜕𝑧𝑏, and
1875
+ vertical flow shear squared, |𝜕𝑧u|2. The K-profile param-
1876
+ eterization uses the bulk Richardson number Ri𝑏 (Stull
1877
+ 1988) defined over a depth ℎ:
1878
+ Ri𝑏(ℎ) =
1879
+ [𝑏(0) − 𝑏(−ℎ)]/ℎ
1880
+ |u(0) −u(−ℎ)|2/ℎ2 +𝑢2
1881
+ turb/ℎ2 ,
1882
+ (A1)
1883
+ where, e.g., 𝑏(−ℎ) ≡ 𝑏(𝑥, 𝑦,𝑧 = −ℎ,𝑡). In (A1), the numer-
1884
+ ator is the mean stratification averaged over depth ℎ and in
1885
+ the denominator, |u(0) −u(−ℎ)|/ℎ is the magnitude of the
1886
+ resolved velocity shear averaged over depth ℎ while term
1887
+ 𝑢turb/ℎ quantifies the unresolved/turbulent velocity shear.
1888
+ The parameterization determines the mixing layer depth ℎ
1889
+ such that Ri𝑏(ℎ) is equal to a critical Richardson number,
1890
+ typically taken to be 0.25-0.3.
1891
+ Prior to creating the flux-forced simulations, we con-
1892
+ ducted wind sensitivity experiments using ACCESS-OM2-
1893
+ 025 (not presented here) along with the traditional K-profile
1894
+ parameterization reported in Large et al. (1994). However,
1895
+ the surface buoyancy forcing was inadvertently modified
1896
+ in these sensitivity experiments through anomalies in the
1897
+ mixing layer depth and ocean circulation. In an attempt to
1898
+ minimize surface buoyancy flux variations in the ACCESS-
1899
+ OM2-025 wind stress sensitivity experiments, we recon-
1900
+ structed the resolved velocity shear term |u(0) −u(−ℎ)|/ℎ
1901
+ in (A1) in the K-profile parameterization, which was found
1902
+ to primarily cause mixing layer depth anomalies in the sen-
1903
+ sitivity experiments. We parameterized |u(0) −u(−ℎ)| as
1904
+ a function of the friction velocity, 𝑢∗ = (|τ|/𝜌0)1/2 and
1905
+ depth ℎ:
1906
+ |u(0) −u(−ℎ)|2 = (𝑐𝑎𝑢2
1907
+ ∗ +𝑐𝑏𝑢∗)(1−e−𝑐𝑒ℎ/√𝑢∗),
1908
+ (A2)
1909
+ where 𝑐𝑎, 𝑐𝑏, and 𝑐𝑒 were coefficients found using multi-
1910
+ variate linear regression. Table A1 lists typical ranges of
1911
+ the three parameters for an optimal solution. The parame-
1912
+ terization (A2) performs well in the tropical and subtropical
1913
+
1914
+ 18
1915
+ regions. Errors in the polar regions are expected because
1916
+ our parameterization (A2) does not account for sea ice and
1917
+ marginal ice zone so as to stay consistent with the flux-
1918
+ forced experiments, which could alter resolved velocity
1919
+ shear in these regions.
1920
+ Table A1: Ranges of parameters for resolved velocity
1921
+ shear obtained using multi-variate linear-regression.
1922
+ Coefficient
1923
+ Range
1924
+ 𝑐𝑎
1925
+ 50−70
1926
+ 𝑐𝑏
1927
+ 0.8−1.2 m s−1
1928
+ 𝑐𝑒
1929
+ 0.009−0.011 (m s)−1/2
1930
+ The parameterization prevented discrepancies in the
1931
+ mixing layer depth due to alterations in the wind stress,
1932
+ and was implemented in the ACCESS-OM2-025 control
1933
+ experiment (Fig. 1c). To maintain consistency with the
1934
+ ACCESS-OM2-025 control simulation, we retained the
1935
+ resolved shear parameterization in the flux-forced simula-
1936
+ tions.
1937
+ References
1938
+ Abernathey, R., and D. Ferreira, 2015: Southern Ocean isopycnal mix-
1939
+ ing and ventilation changes driven by winds. Geophysical Research
1940
+ Letters, 42, 10 357–10 365, https://doi.org/10.1002/2015GL066238.
1941
+ Abernathey, R. P., A. Gnanadesikan, M.-A. Pradal, and M. A. Sun-
1942
+ dermeyer, 2022:
1943
+ Chapter 9 - Isopycnal mixing. Ocean Mixing,
1944
+ M. Meredith, and A. Naveira Garabato, Eds., Elsevier, 215–256,
1945
+ https://doi.org/10.1016/B978-0-12-821512-8.00016-5.
1946
+ Anderson, D. L., and A. E. Gill, 1975:
1947
+ Spin-up of a stratified
1948
+ ocean, with applications to upwelling. Deep-Sea Research and
1949
+ Oceanographic Abstracts, 22, 583–596, https://doi.org/10.1016/
1950
+ 0011-7471(75)90046-7.
1951
+ Belcher, S. E., and Coauthors, 2012: A global perspective on Langmuir
1952
+ turbulence in the ocean surface boundary layer. Geophysical Research
1953
+ Letters, 39, 1–9, https://doi.org/10.1029/2012GL052932.
1954
+ Berglund, S., K. Döös, S. Groeskamp, and T. J. McDougall, 2022:
1955
+ The downward spiralling nature of the North Atlantic subtropi-
1956
+ cal gyre. Nature Communications, 13, 1–9, https://doi.org/10.1038/
1957
+ s41467-022-29607-8.
1958
+ Bryden, H. L., D. H. Roemmich, and J. A. Church, 1991: Ocean
1959
+ heat transport across 24°n in the Pacific. Deep Sea Research Part
1960
+ A, Oceanographic Research Papers, 38, https://doi.org/10.1016/
1961
+ 0198-0149(91)90070-V.
1962
+ Chen, C., G. Wang, S. P. Xie, and W. Liu, 2019: Why does global warm-
1963
+ ing weaken the Gulf Stream but intensify the Kuroshio? Journal of
1964
+ Climate, 32, 7437–7451, https://doi.org/10.1175/JCLI-D-18-0895.1.
1965
+ Cheng, W., J. C. Chiang, and D. Zhang, 2013: Atlantic Meridional
1966
+ Overturning Circulation (AMOC) in CMIP5 models: RCP and histor-
1967
+ ical simulations. Journal of Climate, 26, 7187–7197, https://doi.org/
1968
+ 10.1175/JCLI-D-12-00496.1.
1969
+ Colin de Verdière, A., 1989: On the interaction of wind and buoy-
1970
+ ancy driven gyres. Journal of Marine Research, 47, 595–633,
1971
+ https://doi.org/10.1357/002224089785076172.
1972
+ Colin De Verdière, A., and M. Ollitrault, 2016: A direct determination of
1973
+ the world ocean barotropic circulation. Journal of Physical Oceanog-
1974
+ raphy, 46, 255–273, https://doi.org/10.1175/JPO-D-15-0046.1.
1975
+ Constantinou, N. C., and A. M. C. Hogg, 2019: Eddy saturation of
1976
+ the Southern Ocean: A baroclinic versus barotropic perspective.
1977
+ Geophysical Research Letters, 46, 12 202–12 212, https://doi.org/10.
1978
+ 1029/2019GL084117.
1979
+ Cox, M. D., and K. Bryan, 1984: A numerical model of the ven-
1980
+ tilated thermocline. Journal of Physical Oceanography, 14, 674–
1981
+ 687, https://doi.org/10.1175/1520-0485(1984)014<0674:anmotv>2.
1982
+ 0.co;2.
1983
+ Drake, H. F., R. Ferrari, and J. Callies, 2020: Abyssal circulation driven
1984
+ by near-boundary mixing: Water mass transformations and interior
1985
+ stratification. Journal of Physical Oceanography, 50, 2203–2226,
1986
+ https://doi.org/10.1175/JPO-D-19-0313.1.
1987
+ Gayen, B., and R. W. Griffiths, 2021: Rotating horizontal convection.
1988
+ Annual Review of Fluid Mechanics, 54, 105–132, https://doi.org/
1989
+ 10.1146/annurev-fluid-030121-115729.
1990
+ Gent, P. R., and J. C. McWilliams, 1990:
1991
+ Isopycnal mixing in
1992
+ ocean circulation models. Journal of Physical Oceanography,
1993
+ 20, 150–155, https://doi.org/10.1175/1520-0485(1990)020<0150:
1994
+ IMIOCM>2.0.CO;2.
1995
+ Gjermundsen, A., J. H. Lacasce, and L. Denstad, 2018: The ther-
1996
+ mally driven ocean circulation with realistic bathymetry. Journal
1997
+ of Physical Oceanography, 48, 647–665, https://doi.org/10.1175/
1998
+ JPO-D-17-0147.1.
1999
+ Goldsbrough, G. R., 1933: Ocean currents produced by evaporation and
2000
+ precipitation. Proceedings of the Royal Society of London. Series A,
2001
+ Containing Papers of a Mathematical and Physical Character, 141,
2002
+ 512–517, https://doi.org/10.1098/rspa.1933.0135.
2003
+ Grant, A. L. M., and S. E. Belcher, 2011: Wind-driven mixing below the
2004
+ oceanic mixed layer. Journal of Physical Oceanography, 41, 1556–
2005
+ 1575, https://doi.org/10.1175/JPO-D-10-05020.1.
2006
+ Gray, A. R., and S. C. Riser, 2014: A global analysis of Sverdrup
2007
+ balance using absolute geostrophic velocities from Argo. Journal
2008
+ of Physical Oceanography, 44, 1213–1229, https://doi.org/10.1175/
2009
+ JPO-D-12-0206.1.
2010
+ Griffies, S. M., 2012: Elements of the Modular Ocean Model (MOM)
2011
+ 2012 release with updates. URL www.gfdl.noaa.gov/fms.
2012
+ Hazeleger, W., and S. Drijfhout, 2006: Subtropical cells and Meridional
2013
+ Overturning Circulation pathways in the tropical Atlantic. Journal of
2014
+ Geophysical Research: Oceans, 111, 1–13, https://doi.org/10.1029/
2015
+ 2005JC002942.
2016
+ Hogg, A. M., 2010:
2017
+ An Antarctic Circumpolar Current driven by
2018
+ surface buoyancy forcing. Geophysical Research Letters, 37, 1–5,
2019
+ https://doi.org/10.1029/2010GL044777.
2020
+ Hogg, A. M., P. Spence, O. A. Saenko, and S. M. Downes, 2017: The en-
2021
+ ergetics of Southern Ocean upwelling. Journal of Physical Oceanog-
2022
+ raphy, 47, 135–153, https://doi.org/10.1175/JPO-D-16-0176.1.
2023
+ Hogg, A. M. C., and B. Gayen, 2020: Ocean gyres driven by sur-
2024
+ face buoyancy forcing. Geophysical Research Letters, 47, 1–10,
2025
+ https://doi.org/10.1029/2020GL088539.
2026
+
2027
+ 19
2028
+ Hoyer, S., and J. Hamman, 2017: xarray: N-D labeled arrays and
2029
+ datasets in Python. Journal of Open Research Software, 5, 1–10,
2030
+ https://doi.org/10.5334/jors.148.
2031
+ Hughes, C. W., and B. A. D. Cuevas, 2001: Why western bound-
2032
+ ary currents in realistic oceans are inviscid:
2033
+ A link between
2034
+ form stress and bottom pressure torques. Journal of Physical
2035
+ Oceanography, 31, 2871–2885, https://doi.org/https://doi.org/10.
2036
+ 1175/1520-0485(2001)031<2871:WWBCIR>2.0.CO;2.
2037
+ Hughes, C. W., and C. Wilson, 2008: Wind work on the geostrophic
2038
+ ocean circulation: An observational study of the effect of small scales
2039
+ in the wind stress. Journal of Geophysical Research: Oceans, 113,
2040
+ 1–10, https://doi.org/10.1029/2007JC004371.
2041
+ Hughes, G. O., A. M. Hogg, and R. W. Griffiths, 2009: Available
2042
+ potential energy and irreversible mixing in the Meridional Overturn-
2043
+ ing Circulation. Journal of Physical Oceanography, 39, 3130–3146,
2044
+ https://doi.org/10.1175/2009JPO4162.1.
2045
+ Hunke, E. C., W. H. Lipscomb, A. K. Turner, N. Jeffery, and S. Elliott,
2046
+ 2015: CICE: the Los Alamos Sea Ice Model documentation and
2047
+ software user’s manual version 5.1 la-cc-06-012. URL https://github.
2048
+ com/CICE-Consortium/CICE/wiki.
2049
+ Jamet, Q., B. Deremble, N. Wienders, T. Uchida, and W. K. Dewar,
2050
+ 2021: On wind-driven energetics of subtropical gyres. Journal of
2051
+ Advances in Modeling Earth Systems, 13, 1–23, https://doi.org/10.
2052
+ 1029/2020MS002329.
2053
+ Kiss, A. E., and Coauthors, 2020:
2054
+ ACCESS-OM2 v1.0:
2055
+ a global
2056
+ ocean–sea ice model at three resolutions. Geoscientific Model De-
2057
+ velopment, 13, 401–442, https://doi.org/10.5194/gmd-13-401-2020.
2058
+ Klockmann, M., U. Mikolajewicz, H. Kleppin, and J. Marotzke, 2020:
2059
+ Coupling of the subpolar gyre and the overturning circulation during
2060
+ abrupt glacial climate transitions. Geophysical Research Letters, 47,
2061
+ 1–11, https://doi.org/10.1029/2020GL090361.
2062
+ Large, W. G., J. C. McWilliams, and S. C. Doney, 1994: Oceanic vertical
2063
+ mixing: A review and a model with a nonlocal boundary layer param-
2064
+ eterization. Reviews of Geophysics, 32 (4), 363–403, https://doi.org/
2065
+ 10.1029/94RG01872.
2066
+ Large, W. G., and S. G. Yeager, 2009: The global climatology of an
2067
+ interannually varying air - sea flux data set. Climate Dynamics, 33,
2068
+ https://doi.org/10.1007/s00382-008-0441-3.
2069
+ Larson, S. M., M. W. Buckley, and A. C. Clement, 2020: Extract-
2070
+ ing the buoyancy-driven Atlantic Meridional Overturning Circula-
2071
+ tion. Journal of Climate, 33, 4697–4714, https://doi.org/10.1175/
2072
+ JCLI-D-19-0590.1.
2073
+ Lavergne, C. D., S. Groeskamp, J. Zika, and H. L. Johnson, 2021: The
2074
+ role of mixing in the large-scale ocean circulation. Elsevier, 35-63
2075
+ pp., https://doi.org/10.1016/B978-0-12-821512-8.00010-4.
2076
+ Li, J., M. Roughan, and C. Kerry, 2022: Drivers of ocean warm-
2077
+ ing in the western boundary currents of the Southern Hemi-
2078
+ sphere. Nature Climate Change, 12, 901–909, https://doi.org/10.
2079
+ 1038/s41558-022-01473-8.
2080
+ Liu, T., H. W. Ou, X. Liu, Y. K. Qian, and D. Chen, 2022:
2081
+ The dependence of upper ocean gyres on wind and buoy-
2082
+ ancy forcing. Geoscience Letters, 9, 1–8, https://doi.org/10.1186/
2083
+ s40562-022-00213-2.
2084
+ Locarnini, R. A., A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E.
2085
+ Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, 2010:
2086
+ World Ocean Atlas 2009, vol. 1. Temperature, NOAA Atlas NESDIS,
2087
+ 68.
2088
+ Locarnini, R. A., and Coauthors, 2013: World Ocean Atlas 2013. vol.
2089
+ 1: Temperature. 1-48 pp.
2090
+ Lohmann, G., H. Haak, and J. H. Jungclaus, 2008: Estimating trends of
2091
+ Atlantic Meridional Overturning Circulation from long-term hydro-
2092
+ graphic data and model simulations. Ocean Dynamics, 58, 127–138,
2093
+ https://doi.org/10.1007/s10236-008-0136-7.
2094
+ Lohmann, K., D. A. Putrasahan, J. S. von Storch, O. Gutjahr, J. H.
2095
+ Jungclaus, and H. Haak, 2021: Response of northern North At-
2096
+ lantic and Atlantic Meridional Overturning Circulation to reduced
2097
+ and enhanced wind stress forcing. Journal of Geophysical Research:
2098
+ Oceans, 126, 1–22, https://doi.org/10.1029/2021JC017902.
2099
+ Luyten, J., H. Stommel, and C. Wunsch, 1985: A diagnostic study of the
2100
+ northern Atlantic subpolar gyre. Journal of Physical Oceanography,
2101
+ 15, 1344–1348, https://doi.org/10.1175/1520-0485(1985)015<1344:
2102
+ adsotn>2.0.co;2.
2103
+ Luyten, J. R., J. Pedlosky, and H. Stommel, 1983:
2104
+ The venti-
2105
+ lated thermocline. Journal of Physical Oceanography, 13, 292–
2106
+ 309, https://doi.org/10.1175/1520-0485(1983)013<0292:TVT>2.0.
2107
+ CO;2.
2108
+ Marshall, D. P., M. H. Ambaum, J. R. Maddison, D. R. Munday, and
2109
+ L. Novak, 2017: Eddy saturation and frictional control of the Antarc-
2110
+ tic Circumpolar Current. Geophysical Research Letters, 44, 286–292,
2111
+ https://doi.org/10.1002/2016GL071702.
2112
+ Marshall, J., and K. Speer, 2012: Closure of the Meridional Overturning
2113
+ Circulation through Southern Ocean upwelling. Nature Geoscience,
2114
+ 5, 171–180, https://doi.org/10.1038/ngeo1391.
2115
+ McDowell, S., P. Rhines, and T. Keffer, 1982: North Atlantic po-
2116
+ tential vorticity and its relation to the general circulation. Jour-
2117
+ nal of Physical Oceanography, 12, 1417–1436, https://doi.org/
2118
+ 10.1175/1520-0485(1982)012<1417:napvai>2.0.co;2.
2119
+ Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity
2120
+ of the Southern Ocean overturning circulation to surface buoyancy
2121
+ forcing. Geophysical Research Letters, 38, 1–5, https://doi.org/10.
2122
+ 1029/2011GL048031.
2123
+ Morrison, A. K., and A. M. C. Hogg, 2013:
2124
+ On the relationship
2125
+ between Southern Ocean overturning and ACC transport. Journal
2126
+ of Physical Oceanography, 43, 140–148, https://doi.org/10.1175/
2127
+ JPO-D-12-057.1.
2128
+ Munday, D. R., H. L. Johnson, and D. P. Marshall, 2013: Eddy saturation
2129
+ of equilibrated circumpolar currents. Journal of Physical Oceanog-
2130
+ raphy, 43, 507–532, https://doi.org/10.1175/JPO-D-12-095.1.
2131
+ Munk, W. H., 1950: On the wind-driven ocean circulation. Journal
2132
+ of Meteorology, 7, 80–93, https://doi.org/10.1175/1520-0469(1950)
2133
+ 007<0080:OTWDOC>2.0.CO;2.
2134
+ Oka, A., and Y. Niwa, 2013: Pacific deep circulation and ventilation
2135
+ controlled by tidal mixing away from the sea bottom. Nature Com-
2136
+ munications, 4, 1–8, https://doi.org/10.1038/ncomms3419.
2137
+ Ollitrault, M., and J. P. Rannou, 2013: ANDRO: An Argo-based deep
2138
+ displacement dataset. Journal of Atmospheric and Oceanic Technol-
2139
+ ogy, 30, 759–788, https://doi.org/10.1175/JTECH-D-12-00073.1.
2140
+ Palter, J. B., 2015: The role of the Gulf Stream in European climate.
2141
+ Annual Review of Marine Science, 7, 113–137, https://doi.org/10.
2142
+ 1146/annurev-marine-010814-015656.
2143
+
2144
+ 20
2145
+ Pedlosky,
2146
+ J.,
2147
+ 1986:
2148
+ The buoyancy and wind-driven ventilated
2149
+ thermocline. Journal of Physical Oceanography,
2150
+ 16,
2151
+ 1077–
2152
+ 1087,
2153
+ https://doi.org/10.1175/1520-0485(1986)016<1077:
2154
+ TBAWDV>2.0.CO;2.
2155
+ Ragen, S., M. A. Pradal, and A. Gnanadesikan, 2020: The impact of
2156
+ parameterized lateral mixing on the Antarctic Circumpolar Current
2157
+ in a coupled climate model. Journal of Physical Oceanography, 50,
2158
+ 965–982, https://doi.org/10.1175/JPO-D-19-0249.1.
2159
+ Rhines, P. B., and W. R. Young, 1982: Homogenization of potential
2160
+ vorticity in planetary gyres. Journal of Fluid Mechanics, 122, 347–
2161
+ 367, https://doi.org/10.1017/S0022112082002250.
2162
+ Rocklin, M., 2015: Dask: Parallel computation with blocked algorithms
2163
+ and task scheduling. Proceedings of the 14th Python in Science Con-
2164
+ ference, K. Huff, and J. Bergstra, Eds., 126–132, https://doi.org/
2165
+ 10.25080/Majora-7b98e3ed-013.
2166
+ Roemmich, D., S. Riser, R. Davis, and Y. Desaubies, 2004:
2167
+ Au-
2168
+ tonomous profiling floats: Workhorse for broad-scale ocean observa-
2169
+ tions. Marine Technology Society Journal, 38, 21–29, https://doi.org/
2170
+ 10.4031/002533204787522802.
2171
+ Saenko, O. A., 2009: On the climatic impact of wind stress. Jour-
2172
+ nal of Physical Oceanography, 39, 89–106, https://doi.org/10.1175/
2173
+ 2008JPO3981.1.
2174
+ Sakamoto, T. T., H. Hasumi, M. Ishii, S. Emori, T. Suzuki, T. Nishimura,
2175
+ and A. Sumi, 2005: Responses of the Kuroshio and the Kuroshio
2176
+ extension to global warming in a high-resolution climate model.
2177
+ Geophysical Research Letters, 32, 1–4, https://doi.org/10.1029/
2178
+ 2005GL023384.
2179
+ Shi, J. R., L. D. Talley, S. P. Xie, W. Liu, and S. T. Gille, 2020:
2180
+ Effects of buoyancy and wind forcing on Southern Ocean cli-
2181
+ mate change. Journal of Climate, 33, 10 003–10 020, https://doi.org/
2182
+ 10.1175/JCLI-D-19-0877.1.
2183
+ Sohail, T., B. Gayen, and A. M. Hogg, 2020:
2184
+ The dynamics of
2185
+ mixed layer deepening during open-ocean convection. Journal of
2186
+ Physical Oceanography, 50, 1625–1641, https://doi.org/10.1175/
2187
+ JPO-D-19-0264.1.
2188
+ Stanley, G. J., and O. A. Saenko, 2014: Bottom-enhanced diapycnal
2189
+ mixing driven by mesoscale eddies: Sensitivity to wind energy sup-
2190
+ ply. Journal of Physical Oceanography, 44, 68–85, https://doi.org/
2191
+ 10.1175/JPO-D-13-0116.1.
2192
+ Stewart, K., and Coauthors, 2020: JRA55-do-based repeat year forcing
2193
+ datasets for driving ocean–sea-ice models. Ocean Modelling, 147,
2194
+ 1–27, https://doi.org/10.1016/j.ocemod.2019.101557.
2195
+ Stommel, H., 1948: The westward intensification of wind-driven ocean
2196
+ currents. Transactions, American Geophysical Union, 29, 202–206,
2197
+ https://doi.org/10.1029/TR029i002p00202.
2198
+ Stommel, H., 1961: Thermohaline convection with two stable regimes of
2199
+ flow. Tellus, 13, 224–230, https://doi.org/10.1111/j.2153-3490.1961.
2200
+ tb00079.x.
2201
+ Stommel, H., and A. B. Arons, 1959:
2202
+ On the abyssal circula-
2203
+ tion of the world ocean-I. Stationary planetary flow patterns on
2204
+ a sphere. Deep Sea Research (1953), 6, 217–233, https://doi.org/
2205
+ 10.1016/0146-6313(59)90065-6.
2206
+ Stull, R. B., 1988: An introduction to boundary layer meteorology.
2207
+ 1-670 pp., https://doi.org/10.1007/978-94-009-3027-8.
2208
+ Sverdrup, H. U., 1947: Wind-driven currents in a baroclinic ocean;
2209
+ with application to the equatorial currents of the eastern Pacific.
2210
+ Proceedings of the National Academy of Sciences, 33, 318–326,
2211
+ https://doi.org/10.1073/pnas.33.11.318.
2212
+ Tailleux, R., 2009: On the energetics of stratified turbulent mixing, irre-
2213
+ versible thermodynamics, Boussinesq models and the ocean heat
2214
+ engine controversy. Journal of Fluid Mechanics, 638, 339–382,
2215
+ https://doi.org/10.1017/S002211200999111X.
2216
+ Talley, L. D., G. L. Pickard, W. J. Emery, and J. H. Swift, 2011: Descrip-
2217
+ tive physical oceanography: An introduction: Sixth edition. Aca-
2218
+ demic Press, 1-555 pp., https://doi.org/10.1016/C2009-0-24322-4.
2219
+ Toggweiler, J. R., and B. Samuels, 1995: Effect of Drake Passage on
2220
+ the global thermohaline circulation. Deep-Sea Research Part I, 42,
2221
+ 477–500, https://doi.org/10.1016/0967-0637(95)00012-U.
2222
+ Tsujino, H., and Coauthors, 2018: JRA55 based surface dataset for
2223
+ driving ocean–sea-ice models (JRA55-do). Ocean Modelling, 130,
2224
+ 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002.
2225
+ Veronis, G., and H. Stommel, 1956: The action of variable wind stresses
2226
+ on a stratified ocean. Journal of Marine Research, 15, 43–75.
2227
+ Webb, P., 2017:
2228
+ Introduction to oceanography. Online OER Text-
2229
+ book, Roger Williams University, URL https://pressbooks.pub/
2230
+ webboceanography1/.
2231
+ Wunsch, C., and R. Ferrari, 2004: Vertical mixing, energy, and the gen-
2232
+ eral circulation of the oceans. Annual Review of Fluid Mechanics, 36,
2233
+ 281–314, https://doi.org/10.1146/annurev.fluid.36.050802.122121.
2234
+ Xie, S. P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg,
2235
+ 2010: Global warming pattern formation: Sea surface temperature
2236
+ and rainfall. Journal of Climate, 23, 966–986, https://doi.org/10.
2237
+ 1175/2009JCLI3329.1.
2238
+ Yang, H., K. Wang, H. Dai, Y. Wang, and Q. Li, 2016: Wind effect
2239
+ on the Atlantic Meridional Overturning Circulation via sea ice and
2240
+ vertical diffusion. Climate Dynamics, 46, 3387–3403, https://doi.org/
2241
+ 10.1007/s00382-015-2774-z.
2242
+ Yeager, S., 2015: Topographic coupling of the Atlantic overturning and
2243
+ gyre circulations. Journal of Physical Oceanography, 45, 1258–1284,
2244
+ https://doi.org/10.1175/JPO-D-14-0100.1.
2245
+ Yeager,
2246
+ S.,
2247
+ and G. Danabasoglu,
2248
+ 2014:
2249
+ The origins of late-
2250
+ twentieth-century variations in the large-scale North Atlantic circu-
2251
+ lation. Journal of Climate, 27, 3222–3247, https://doi.org/10.1175/
2252
+ JCLI-D-13-00125.1.
2253
+ Yoshikawa, Y., 2015: Scaling surface mixing/mixed layer depth under
2254
+ stabilizing buoyancy flux. Journal of Physical Oceanography, 45,
2255
+ 247–258, https://doi.org/10.1175/JPO-D-13-0190.1.
2256
+ Zhang, Y., X. Zheng, D. Kong, H. Yan, and Z. Liu, 2021:
2257
+ En-
2258
+ hanced North Pacific subtropical gyre circulation during the late
2259
+ Holocene. Nature Communications, 12, 1–10, https://doi.org/10.
2260
+ 1038/s41467-021-26218-7.
2261
+ Zweng, M. M., and Coauthors, 2013: World Ocean Atlas 2013, volume
2262
+ 2: Salinity. 1-47 pp.
2263
+