jackkuo commited on
Commit
25a1ce4
·
verified ·
1 Parent(s): c3fedae

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9E1T4oBgHgl3EQfUwOX/content/2301.03094v1.pdf +3 -0
  2. -9E1T4oBgHgl3EQfUwOX/vector_store/index.faiss +3 -0
  3. -9E1T4oBgHgl3EQfUwOX/vector_store/index.pkl +3 -0
  4. .gitattributes +38 -0
  5. 19FAT4oBgHgl3EQfDBzX/vector_store/index.faiss +3 -0
  6. 19FAT4oBgHgl3EQfDBzX/vector_store/index.pkl +3 -0
  7. 3NE4T4oBgHgl3EQfbAwV/content/2301.05068v1.pdf +3 -0
  8. 3NE4T4oBgHgl3EQfbAwV/vector_store/index.faiss +3 -0
  9. 3NE4T4oBgHgl3EQfbAwV/vector_store/index.pkl +3 -0
  10. 46dWaIoBww_ee65IHl0v/content/2301.00001v1.pdf +3 -0
  11. 46dWaIoBww_ee65IHl0v/vector_store/index.faiss +3 -0
  12. 46dWaIoBww_ee65IHl0v/vector_store/index.pkl +3 -0
  13. 49E4T4oBgHgl3EQfbgzb/content/2301.05075v1.pdf +3 -0
  14. 49E4T4oBgHgl3EQfbgzb/vector_store/index.faiss +3 -0
  15. 49E4T4oBgHgl3EQfbgzb/vector_store/index.pkl +3 -0
  16. 4NAyT4oBgHgl3EQfo_jf/content/2301.00519v1.pdf +3 -0
  17. 4NAyT4oBgHgl3EQfo_jf/vector_store/index.pkl +3 -0
  18. 4dE1T4oBgHgl3EQfAwIb/content/tmp_files/2301.02842v1.pdf.txt +775 -0
  19. 4dE1T4oBgHgl3EQfAwIb/content/tmp_files/load_file.txt +457 -0
  20. 6tE1T4oBgHgl3EQfTQPr/content/2301.03077v1.pdf +3 -0
  21. 6tE1T4oBgHgl3EQfTQPr/vector_store/index.pkl +3 -0
  22. 7NFLT4oBgHgl3EQfAC40/content/tmp_files/2301.11964v1.pdf.txt +1078 -0
  23. 7NFLT4oBgHgl3EQfAC40/content/tmp_files/load_file.txt +0 -0
  24. 7dAzT4oBgHgl3EQf-f5K/content/2301.01934v1.pdf +3 -0
  25. 7dAzT4oBgHgl3EQf-f5K/vector_store/index.pkl +3 -0
  26. 7tFJT4oBgHgl3EQfmyyq/content/2301.11589v1.pdf +3 -0
  27. 7tFJT4oBgHgl3EQfmyyq/vector_store/index.faiss +3 -0
  28. 7tFJT4oBgHgl3EQfmyyq/vector_store/index.pkl +3 -0
  29. 8tFQT4oBgHgl3EQfITXl/content/tmp_files/2301.13252v1.pdf.txt +595 -0
  30. 8tFQT4oBgHgl3EQfITXl/content/tmp_files/load_file.txt +344 -0
  31. 99E0T4oBgHgl3EQfgAA0/content/tmp_files/2301.02411v1.pdf.txt +0 -0
  32. 99E0T4oBgHgl3EQfgAA0/content/tmp_files/load_file.txt +0 -0
  33. 9NE5T4oBgHgl3EQfRA5T/content/2301.05517v1.pdf +3 -0
  34. 9NE5T4oBgHgl3EQfRA5T/vector_store/index.faiss +3 -0
  35. 9NE5T4oBgHgl3EQfRA5T/vector_store/index.pkl +3 -0
  36. 9NFLT4oBgHgl3EQfBy4O/vector_store/index.faiss +3 -0
  37. ANE1T4oBgHgl3EQfowXh/vector_store/index.faiss +3 -0
  38. ANE1T4oBgHgl3EQfowXh/vector_store/index.pkl +3 -0
  39. BtAzT4oBgHgl3EQfTfyw/content/tmp_files/2301.01251v1.pdf.txt +1243 -0
  40. BtAzT4oBgHgl3EQfTfyw/content/tmp_files/load_file.txt +0 -0
  41. CdE3T4oBgHgl3EQfUQrt/content/tmp_files/2301.04450v1.pdf.txt +720 -0
  42. CdE3T4oBgHgl3EQfUQrt/content/tmp_files/load_file.txt +0 -0
  43. DNE5T4oBgHgl3EQfUA_Z/content/2301.05541v1.pdf +3 -0
  44. DNE5T4oBgHgl3EQfUA_Z/vector_store/index.faiss +3 -0
  45. DtE5T4oBgHgl3EQfUQ_q/content/tmp_files/2301.05543v1.pdf.txt +570 -0
  46. DtE5T4oBgHgl3EQfUQ_q/content/tmp_files/load_file.txt +262 -0
  47. EtAzT4oBgHgl3EQfG_tj/content/tmp_files/2301.01037v1.pdf.txt +377 -0
  48. EtAzT4oBgHgl3EQfG_tj/content/tmp_files/load_file.txt +366 -0
  49. EtFLT4oBgHgl3EQfFS_K/content/2301.11987v1.pdf +3 -0
  50. EtFLT4oBgHgl3EQfFS_K/vector_store/index.pkl +3 -0
-9E1T4oBgHgl3EQfUwOX/content/2301.03094v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc620aa0d0e4c82ab825655d8b0cf8a401e1410c6f54723e6eb37bc07f98cfdc
3
+ size 1585378
-9E1T4oBgHgl3EQfUwOX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:464d060f6719d7e6066a613e6c8c47746291292953d47ce35e61e01ec22d534a
3
+ size 1835053
-9E1T4oBgHgl3EQfUwOX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:470679b09eadb82da321ba38e08d63573b9c9138152caa4df71121439b357c6c
3
+ size 82952
.gitattributes CHANGED
@@ -436,3 +436,41 @@ _tAzT4oBgHgl3EQfS_vY/content/2301.01243v1.pdf filter=lfs diff=lfs merge=lfs -tex
436
  JtAzT4oBgHgl3EQfyP50/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
437
  UNE0T4oBgHgl3EQf2gIi/content/2301.02712v1.pdf filter=lfs diff=lfs merge=lfs -text
438
  JtAzT4oBgHgl3EQfyP50/content/2301.01750v1.pdf filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436
  JtAzT4oBgHgl3EQfyP50/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
437
  UNE0T4oBgHgl3EQf2gIi/content/2301.02712v1.pdf filter=lfs diff=lfs merge=lfs -text
438
  JtAzT4oBgHgl3EQfyP50/content/2301.01750v1.pdf filter=lfs diff=lfs merge=lfs -text
439
+ ktAzT4oBgHgl3EQfpv1w/content/2301.01617v1.pdf filter=lfs diff=lfs merge=lfs -text
440
+ DNE5T4oBgHgl3EQfUA_Z/content/2301.05541v1.pdf filter=lfs diff=lfs merge=lfs -text
441
+ GdFKT4oBgHgl3EQfby5L/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
442
+ UNE4T4oBgHgl3EQfmg2h/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
443
+ 49E4T4oBgHgl3EQfbgzb/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
444
+ nNE5T4oBgHgl3EQfHw7p/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
445
+ DNE5T4oBgHgl3EQfUA_Z/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
446
+ -9E1T4oBgHgl3EQfUwOX/content/2301.03094v1.pdf filter=lfs diff=lfs merge=lfs -text
447
+ 46dWaIoBww_ee65IHl0v/content/2301.00001v1.pdf filter=lfs diff=lfs merge=lfs -text
448
+ UNE0T4oBgHgl3EQf2gIi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
449
+ 9NFLT4oBgHgl3EQfBy4O/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
450
+ -9E1T4oBgHgl3EQfUwOX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
451
+ 9NE5T4oBgHgl3EQfRA5T/content/2301.05517v1.pdf filter=lfs diff=lfs merge=lfs -text
452
+ GdFKT4oBgHgl3EQfby5L/content/2301.11813v1.pdf filter=lfs diff=lfs merge=lfs -text
453
+ 49E4T4oBgHgl3EQfbgzb/content/2301.05075v1.pdf filter=lfs diff=lfs merge=lfs -text
454
+ 9NE5T4oBgHgl3EQfRA5T/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
455
+ UNE4T4oBgHgl3EQfmg2h/content/2301.05169v1.pdf filter=lfs diff=lfs merge=lfs -text
456
+ 7tFJT4oBgHgl3EQfmyyq/content/2301.11589v1.pdf filter=lfs diff=lfs merge=lfs -text
457
+ gdE1T4oBgHgl3EQfzAU4/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
458
+ 3NE4T4oBgHgl3EQfbAwV/content/2301.05068v1.pdf filter=lfs diff=lfs merge=lfs -text
459
+ t9E1T4oBgHgl3EQfQgOR/content/2301.03041v1.pdf filter=lfs diff=lfs merge=lfs -text
460
+ t9E1T4oBgHgl3EQfQgOR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
461
+ 46dWaIoBww_ee65IHl0v/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
462
+ UNAzT4oBgHgl3EQfXvzs/content/2301.01325v1.pdf filter=lfs diff=lfs merge=lfs -text
463
+ _tAzT4oBgHgl3EQfS_vY/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
464
+ 6tE1T4oBgHgl3EQfTQPr/content/2301.03077v1.pdf filter=lfs diff=lfs merge=lfs -text
465
+ 7dAzT4oBgHgl3EQf-f5K/content/2301.01934v1.pdf filter=lfs diff=lfs merge=lfs -text
466
+ 4NAyT4oBgHgl3EQfo_jf/content/2301.00519v1.pdf filter=lfs diff=lfs merge=lfs -text
467
+ 7tFJT4oBgHgl3EQfmyyq/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
468
+ 19FAT4oBgHgl3EQfDBzX/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
469
+ gdE1T4oBgHgl3EQfzAU4/content/2301.03439v1.pdf filter=lfs diff=lfs merge=lfs -text
470
+ WdFJT4oBgHgl3EQf4i1g/content/2301.11666v1.pdf filter=lfs diff=lfs merge=lfs -text
471
+ ANE1T4oBgHgl3EQfowXh/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
472
+ 3NE4T4oBgHgl3EQfbAwV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
473
+ UNAzT4oBgHgl3EQfXvzs/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
474
+ EtFLT4oBgHgl3EQfFS_K/content/2301.11987v1.pdf filter=lfs diff=lfs merge=lfs -text
475
+ X9FRT4oBgHgl3EQf_DhA/content/2301.13693v1.pdf filter=lfs diff=lfs merge=lfs -text
476
+ ItAzT4oBgHgl3EQfx_5k/content/2301.01746v1.pdf filter=lfs diff=lfs merge=lfs -text
19FAT4oBgHgl3EQfDBzX/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7861d5c7b90481b3a51340144988a633372395bbe7121c7a9cb3853f1c41e8bd
3
+ size 3473453
19FAT4oBgHgl3EQfDBzX/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:748b2e5704c9e4ffaec169234e4acdbea475f4332e752cd92eb52b756d13f860
3
+ size 115476
3NE4T4oBgHgl3EQfbAwV/content/2301.05068v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6e9d1d654597287053fdbe3fcb4d92d6b35ddab429695855a7a273738162bc
3
+ size 828051
3NE4T4oBgHgl3EQfbAwV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8719708cfeef62a619e27d3d1aa8076bb788f450e9bff3747db7a445c1bfa7aa
3
+ size 6094893
3NE4T4oBgHgl3EQfbAwV/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7977f0d2e4964ada7ce904e0972f08a2bcf6b80298f97e387d5be52e47424714
3
+ size 192324
46dWaIoBww_ee65IHl0v/content/2301.00001v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a288e5a34c387ec36329091d6359470e84e098cb8dc91efbfcd320adf286f66a
3
+ size 765699
46dWaIoBww_ee65IHl0v/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:64013327466851fe04dc9cd27343c2f45002404e6139cba3736b0a3a3eed8208
3
+ size 2555949
46dWaIoBww_ee65IHl0v/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1df172bbaef27c67520a0551dfbd2019858b040961c4c26ea97ec0b5c0e3dac0
3
+ size 98774
49E4T4oBgHgl3EQfbgzb/content/2301.05075v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e84eafad470b72f96e2c52b231ab10f1515fb9ef268ed8160bf3f205e1f28203
3
+ size 3116814
49E4T4oBgHgl3EQfbgzb/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3cf4c3cd1756f4868c729a5f7c07c06eb1241fa868a5186a81681f47bfe5a04
3
+ size 2293805
49E4T4oBgHgl3EQfbgzb/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7556061973033cfed4e8e9f8952e8791f3d34f79e902cc4e2b38484854e3cd24
3
+ size 74535
4NAyT4oBgHgl3EQfo_jf/content/2301.00519v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cdb3e6ad9dd75d86e90a7526ba925f03ea1499a46e329638032dfc014e4de1d8
3
+ size 844504
4NAyT4oBgHgl3EQfo_jf/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736538a4a2474339b3ff709988580c962c992cf3ff47f29b58c24827210d8724
3
+ size 583770
4dE1T4oBgHgl3EQfAwIb/content/tmp_files/2301.02842v1.pdf.txt ADDED
@@ -0,0 +1,775 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02842v1 [math.AG] 7 Jan 2023
2
+ STRATIFIED BUNDLES ON THE HILBERT SCHEME OF n POINTS
3
+ SAURAV HOLME CHOUDHURY
4
+ Abstract. Let k be an algebraically closed field of characteristic p > 3 and S be a smooth projective
5
+ surface over k with k-rational point x. For n ≥ 2, let S[n] denote the Hilbert scheme of n points on S. In
6
+ this note, we compute the fundamental group scheme πalg(S[n], ˜
7
+ nx) defined by the Tannakian category of
8
+ stratified bundles on S[n].
9
+ 1. Introduction
10
+ For a variety X over C, one has the classical notion of the fundamental group π1(Xan, x) defined using
11
+ the analytic topology on X. Over arbitrary base fields k, one has several analogues of the fundamental group
12
+ defined in terms of algebro-geometric information.
13
+ In [SGA1], Grothendieck introduced the notion of ´etale fundamental group π´et(X, x), where X is a scheme
14
+ and x is a geometric point of X, in terms of the finite etale covers of X. In [N76], Nori defined the Nori
15
+ fundamental group scheme πN(X, x), where X is a connected, reduced and complete scheme over a perfect
16
+ field k and x is a k-rational point, via Tannakian reconstruction using the category of essentially finite vector
17
+ bundles on X. The definition of πN(X, x) was extended to the case of connected and reduced k-schemes in
18
+ [N82]. Another analogue, the S-fundamental group scheme πS(X, x) was introduced and studied by Langer
19
+ in [Lan11] and [Lan12] for smooth projective varieties X over an algebraically closed field k. It is defined via
20
+ Tannakian reconstruction using the category of numerically flat vector bundles on X. The S-fundamental
21
+ group scheme for a smooth projective curve C over an algebraically closed field k was already introduced
22
+ and studied in [BPS06].
23
+ The variant of the fundamental group scheme which is of prime importance in this note is the algebraic
24
+ fundamental group πalg(X, x). In [Gie75], Gieseker defined πalg(X, x) as the fundamental group scheme
25
+ corresponding to the Tannakian category of DX-modules, where DX is the sheaf of differential operators on
26
+ X. For X smooth over a field of positive characteristic, Gieseker introduced the notion of stratified bundles
27
+ and showed that the category of DX-modules is tensor equivalent to the category of stratified bundles on
28
+ X. Stratifed bundles were further studied in [dS07] and [BHdS21]. Precise definitions and statements will
29
+ be given in the next section.
30
+ Let S be a smooth projective surface over k. For n ≥ 2, let S[n] denote the Hilbert scheme n points on S.
31
+ It is well known that S[n] is a smooth projective variety of dimension 2n. In [PS20], the authors show that
32
+ for char k > 3 and n ≥ 2, there is an isomorphism of affine group schemes over k
33
+ π†(S, x)ab → π†(S[n], ˜
34
+ nx)
35
+ where † = S, N or ´et.
36
+ In this note, we extend their results to the case of πalg and prove the following theorem.
37
+ Theorem. Let char k > 3 and n ≥ 2. There is an isomorphism of affine group schemes over k
38
+ f : πalg(S, x)ab → πalg(S[n], ˜
39
+ nx)
40
+ In section 2, we recall the definition of stratified bundles and some of their basic properties. The formalism
41
+ of Tannakian reconstruction is recalled in section 3 and used to define the algebraic fundamental group
42
+ πalg(X, x).
43
+ 1
44
+
45
+ The geometrical properties of the Hilbert scheme of n points on a smooth projective surface are in section 4.
46
+ In section 5, we prove a result about descent of stratified bundles which allows us to define the homomorphism
47
+ f by defining the associated functor of Tannakian categories. The concluding section 6 establishes the main
48
+ theorem by showing that f is an isomorphism.
49
+ Acknowledgements. We would like to thank Indranil Biswas and Ronnie Sebastian for their comments
50
+ on earlier drafts of this note.
51
+ 2. Stratified bundles
52
+ Let k be a field of characteristic p and X be a noetherian scheme over k. Stratified bundles on X are
53
+ sequences of coherent sheaves on X satisfying infinite Frobenius descent. More precisely, the category of
54
+ stratified bundles on X, denoted S(X), consists of
55
+ • Objects (Ei, αi) are sequences of coherent OX-modules Ei, i ∈ N along with isomorphisms
56
+ αi : F ∗Ei+1 → Ei
57
+ for all i ∈ N, where F is the absolute Frobenius on X.
58
+ • Morphisms φ : (Ei, αi) → (Fi, βi) consists of a sequence of OX-module morphisms φi : Ei → Fi
59
+ such that φi ◦ αi = βi ◦ F ∗ (φi+1)
60
+ Let f : Y → X be a morphism and (Ei, αi) be a stratified bundle on X. Then we can define the pullback
61
+ along f, denoted f ∗(Ei, αi), as consisting of the sequence of OY coherent sheaves f ∗Ei and isomorphisms
62
+ are given by the composite maps
63
+ F ∗f ∗Ei+1
64
+ γEi+1
65
+ −−−→ f ∗F ∗Ei+1
66
+ f ∗(αi)
67
+ −−−−→ f ∗Ei
68
+ where γ : F ∗f ∗ → f ∗F ∗ is the natural isomorphism of functors.
69
+ Thus S(X) is contravariant functor in X. One also has a tensor product on S(X) defined by taking term
70
+ by term tensor product. Also S(X) is an abelian category [cf. [BHdS21], Proposition 4.4].
71
+ We recall some well known results about stratified bundles [cf [dS07], [Gie75]].
72
+ Proposition. If (Ei, αi) is a stratified bundle on X, then Ei is a locally free OX-module for all i ∈ N.
73
+ This allows us to define duals of stratified bundles, making S(X) into an abelian rigid tensor category.
74
+ The rank of a stratified bundle (Ei, αi) is defined to be the rank of E0. The trivial stratified bundles on X
75
+ are of the form ⊕(OX, ...; F ∗, ...).
76
+ Let DX be the sheaf of differential operators on X. The category of DX modules consists of
77
+ • Objects coherent OX modules E equipped with a DX action i.e a morphism of OX-algebras
78
+ DX → Endk(E)
79
+ • Morphisms OX-linear maps E → F compatible with the DX action
80
+ A theorem of Katz [[Gie75], Theorem 1.3] shows that for X smooth over k, then the category of stratified
81
+ bundles on X and the category of DX modules are tensor equivalent to each other.
82
+ We close this section with the definition of G equivariant stratified bundles on a variety X admitting
83
+ action of a group G on it.
84
+ Definition. A stratified bundle (Ei, αi) is said to be a G-equivariant stratified bundle if Ei are G-equivariant
85
+ vector bundles and αi are G-equivariant OX module morphisms.
86
+ 3. Tannakian categories and fundamental group schemes
87
+ In this section we recall the definition and basic properties of Tannakian categories.
88
+ We then recall
89
+ Gieseker’s definition of the fundamental group scheme πalg using the Tannakian formalism.
90
+ 2
91
+
92
+ 3.1. Tannakian Categories and affine group schemes. Tannakian categories were defined and studied
93
+ in [DM82] to formalize the properties of Repk(G), the category of finite dimensional k-representations of G,
94
+ an affine group scheme over k.
95
+ Definition (Neutral Tannakian Categories). A rigid abelian tensor category C with End I = k is a neutral
96
+ Tannakian category if it admits an exact faithful k-linear tensor functor ω : C → Veck. Any such functor is
97
+ said to be a fiber functor for C.
98
+ Given a neutral Tannakian category (C, ⊗, ω, I), we define the functor Aut⊗(ω) : k − algebra → Sets
99
+ such that for k-algebra R, Aut⊗(ω)(R) consists of the families (λX) for X ∈ ob(C), where λX is a R-linear
100
+ automorphism of X ⊗ R such that λX1⊗X2 = λX1 ⊗ λX2, λI = idR, and
101
+ λY ◦ (α ⊗ 1) = (α ⊗ 1) ◦ λX : X ⊗ R → Y ⊗ R
102
+ for all morphisms α : X → Y .
103
+ Theorem (Main theorem for neutral Tannakian categories, [DM82], Theorem 2.11). Let (C, ⊗) be a rigid
104
+ abelian tensor category such that k = End(I) and let ω : C → Veck be an exact faithful tensor functor. Then
105
+ • The functor Aut⊗(ω) of k-algebras is represented by an affine group scheme G.
106
+ • The functor C → Repk(G) is an equivalence of tensor categories.
107
+ Theorem. Let (C, ⊗, ω, I) and (C′, ⊗, ω′, I′) be neutral Tannakian categories which correspond to the repre-
108
+ sentation categories of the affine k group schemes G and G′ respectively. Then any functor of Tannakian
109
+ categories from C → C′ is induced by a unique morphism of affine k group schemes G′ → G.
110
+ This theorem allows us to define many variants of fundamental groups of a scheme X by considering
111
+ different Tannakian categories naturally associated with X. The following result is very useful in establishing
112
+ a given morphism between affine group schemes is an isomorphism.
113
+ Theorem ([DM82], Theorem 2.21). Let f : G → G′ be a homomorphism of group schemes over k and
114
+ Rep (f) : Rep (G′) → Rep (G) be the corresponding functor of Tannakian categories. Then
115
+ • f is faithfully flat if and only if Rep (f) is fully faithful and has essential image closed under subobjects
116
+ i.e for V ′ ∈ Rep (G′) and suboject W ⊂ Rep (f)(V ′), there is a subobject W ′ ⊂ V ′ in Rep (G′) such
117
+ that Rep (f)(W ′) ≃ W in Rep (G)
118
+ • f is closed immersion if and only if every object of Rep (G) is a subquotient of some object in the
119
+ essential image of Rep (f).
120
+ We finish by recalling a basic result on affine group schemes (we refer to section 4.1 in [PS20] for details).
121
+ Let G be a affine group scheme over k, Gab be its abelianization (i.e the maximal abelian quotient of G)
122
+ and α : G → Gab be the (faithfully flat) quotient morphism . We can then define the composite morphism
123
+ φ : Gn
124
+ αn
125
+ −−→ Gn
126
+ ab
127
+ m
128
+ −→ Gab
129
+ where m is the multiplication homomorphism. As Sn acts on the k-group scheme Gn, we can define the
130
+ notion of a Sn-invariant group morphism ψ : Gn → H for any k-group scheme H.
131
+ Lemma 3.1. Let G and H be two group schemes over k. For an integer n ≥ 2, the set of Sn-invariant
132
+ group morphisms Gn → H is in bijective correspondence with the set of group morphism Gab → H i.e any
133
+ morphism of k-group schemes φ : Gn → H which is Sn-invariant factors uniquely through a morphism
134
+ ψ : Gab → H such that φ = ψ ◦ h
135
+ 3.2. The group scheme πalg(X, x). Classically, over C, the Riemann-Hilbert correspondence identifies the
136
+ category of vector bundles equipped with integrable connections on a smooth connected projective variety
137
+ X/C with the category of representations of the topological fundamental group πtop(X, x) for some chosen
138
+ base point x. Via GAGA, this gives a purely algebraic description of the category of representations of the
139
+ topological fundamental group π(X, x). This category (equipped with the fiber functor (E, ∇) → Ex) is
140
+ a neutral Tannakian category and can be identified, via the Tannakian formalism, with the representation
141
+ 3
142
+
143
+ category of the proalgebraic completion of the topological fundamental group, denoted as πtop(X, x)alg.
144
+ Over a field k of characteristic 0, the category of flat connections on a smooth variety X is tensor equiva-
145
+ lent to the category of DX-modules. However over a field of characteristic p, the category of flat connections
146
+ on X is not as well behaved as the category of DX-modules and one defines a fundamental group scheme for
147
+ X by Tannakian formalism using the category of DX-modules. By Katz’s theorem mentioned before, the
148
+ fundamental group coincides with the one defined using S(X) below.
149
+ Let x ∈ X(k) be a k-rational point. Then the abelian rigid tensor category S(X) is neutralized by the
150
+ fiber functor
151
+ Tx : S(X) → V eck
152
+ The fundamental group scheme defined by the neutral Tannakian category (S(X), ⊗, Tx, (OX, F ∗)) is
153
+ called the algebraic fundamental group of X based at x and is denoted by πalg(X, x).
154
+ The following basic properties of πalg are well known.
155
+ • (Independence of basepoint) Let X be a geometrically connected, smooth projective k-scheme. Then
156
+ for all x1, x2 ∈ X(k), one has
157
+ πalg(X, x1) ≃ πalg(X, x2)
158
+ • (Product rule) For X1, X2 geometrically connected and smooth over k and xi ∈ Xi(k), there is an
159
+ isomorphism
160
+ πalg(X1, x1) × πalg(X2, x2) → πalg(X1 × X2, (x1, x2))
161
+ • For X smooth and open immersion U
162
+ i−→ X such that the complement of U in X has codimension
163
+ ≥ 2 and x ∈ U(k), then the homomorphism
164
+ πalg(U, x) → πalg(X, x)
165
+ associated to the restriction functor i∗ : S(X) → S(U) is an isomorphism.
166
+ 4. Geometry of Hilbert Scheme of points
167
+ Let S be a smooth projective surface over k. We fix notation as follows
168
+ • Sn denotes the n-fold cartesian product of S with itself.
169
+ • S(n) denotes the nth symmetric product of S defined as the quotient Sn/Sn, where Sn denotes the
170
+ symmetric group on n letters.
171
+ • S[n] denotes the Hilbert scheme of n points on S.
172
+ Let ρ : Sn → S(n) be the quotient map and h : S[n] → S(n) be the Hilbert-Chow morphism. We write
173
+ S(n)
174
+
175
+ for the open subset of S(n) consisting of distinct points with S[n]
176
+
177
+ := h−1(S(n)
178
+
179
+ ) and Sn
180
+ ◦ := ρ−1(S(n)
181
+
182
+ ).
183
+ The map hn,◦ : S[n]
184
+
185
+ → S(n)
186
+
187
+ is an isomorphism. We have the diagram:
188
+ S[n]
189
+ Sn
190
+ S(n)
191
+ hn
192
+ ρn
193
+ In general, Hilbert schemes of points on a projective variety display a lot of pathological features. But in
194
+ [Fog68] the author shows that, in the case of smooth projective surface S, S[n] is a smooth projective variety.
195
+ Thus, in this case, the Hilbert-Chow morphism h : S[n] → S(n) is a resolution of singularities.
196
+ 4
197
+
198
+ One can consider S(n) as the set of effective 0-cycles of degree n on S(n). In this case it is easy to see that
199
+ S(n) admits a stratification by type, where the type of a 0-cycle y of degree n is a tuple (n1, . . . , nr) where y
200
+ can be written as
201
+ y = Σr
202
+ j=1njxj
203
+ where xj are distinct points of S with multiplicities n1 ≥ n2 ≥ · · · ≥ nr, where nj are positive integers.
204
+ Let C(n1, . . . , nr) denote the subset of S(n) consisting of points of the type (n1, . . . , nr). Let S(n)
205
+
206
+ =
207
+ C(1, . . . , 1) � C(2, . . . , 1) denote the open subset of S(n) consisting of points of type (1, . . . , 1) and (2, . . . , 1).
208
+ Let S[n]
209
+
210
+ and Sn
211
+ ∗ denote the preimage of S(n)
212
+
213
+ under h and ρ respectively.
214
+ We recall some basic properties below which we will need later (we refer to [Fog68], [PS20] for details).
215
+ • The subsets C(n1, . . . , nr) are nonsingular of dimension 2r.
216
+ • The closed subset S(n) \ S(n)
217
+
218
+ is of codimension ≥ 2 in S(n).
219
+ • The closed subset S[n] \ S[n]
220
+
221
+ is of codimension 2 in S[n].
222
+ • The closed subset Sn \ Sn
223
+ ∗ is of codimension ≥ 4 in Sn.
224
+ • The closed subset S(n)
225
+
226
+ \ S(n)
227
+
228
+ is of codimension 2 in S(n)
229
+
230
+ .
231
+ • When characteristic of k ̸= 2, for y ∈ C(2, 1, . . . , 1), the scheme theoretic fiber h−1(y) is isomorphic
232
+ to P1
233
+ k. In fact, S[n]
234
+
235
+ is the blowup of S(n)
236
+
237
+ along C(2, 1, . . . , 1).
238
+ We end this section by recalling a result of Fogarty ([Fog77], Proposition 3.6).
239
+ Proposition. If L is a Sn-invariant line bundle on Sn, there exists a line bundle L′ on S(n) such that
240
+ h∗L′ ≃ L.
241
+ It follows that L′ in the proposition is isomorphic to σ∗(L)Sn
242
+ 5. The functor between Tannakian categories
243
+ Let S be a smooth projective surface over k and (Ei, αi) be a stratified bundle on S[n]. Restricting to S[n]
244
+
245
+ gives us a functor
246
+ i∗ : S(S[n]) → S(S[n]
247
+ ∗ )
248
+ which is a equivalence of categories as S[n]
249
+
250
+ is the complement of a codimension 2 closed subset of S[n].
251
+ Next we show that a stratified bundle on S[n]
252
+
253
+ can be pushed forward under h to get a stratified bundle on
254
+ S(n)
255
+
256
+ . First we begin by a result on descent of vector bundles along the morphism h : S[n]
257
+
258
+ → S(n)
259
+
260
+ . Similar
261
+ results have been established by authors in [Ish83] and [PS20].
262
+ Proposition 1. Assume char k ̸= 2. Let E be a vector bundle on S[n]
263
+
264
+ which restricts to trivial vector bundles
265
+ on the fibers of h over S(n)
266
+
267
+ . Then h∗E is a locally free OS(n)
268
+ ∗ -module. Moreover the natural map
269
+ h∗h∗(E) → E
270
+ is an isomorphism.
271
+ Proof. Let x ∈ S(n)
272
+
273
+ be a point of type (2, 1, . . ., 1). Then by assumption, the fiber of h over x is isomorphic
274
+ to P1
275
+ k. Let J be the ideal sheaf of the closed subscheme h−1(x) and Ix be the ideal sheaf of the closed point
276
+ x. We have
277
+ J = IxOS[n]
278
+
279
+ For all n ≥ 1, let Yn denote the closed subscheme of S[n]
280
+
281
+ corresponding to the ideal sheaf J n. Consider
282
+ the following short exact sequence of sheaves on S[n]
283
+
284
+ 0 → J ⊗ E → E → E|Y1 → 0
285
+ 5
286
+
287
+ Pushing forward by h, we get the following exact sequence of sheaves on S(n)
288
+
289
+ h∗E → H0(Y1, E|Y1) → R1h∗(J ⊗ E)
290
+ We claim that the completion of R1h∗(J ⊗ E) at the maximal ideal mx in OS(n)
291
+
292
+ ,x is 0. The proof uses
293
+ the theorem of formal functions which says that
294
+ (R1h∗(J ⊗ E))∧ ≃ lim
295
+ ←− H1(Yn, J ⊗ E ⊗ OS[n]
296
+ ∗ /J n)
297
+ We prove by induction that H1(Yn, J ⊗E ⊗OS[n]
298
+ ∗ /J n) = 0. As Y1 ≃ P1
299
+ k, the sheaves J n/J n+1 are locally
300
+ free. These sheaves are also globally generated over Y1 as we have the surjection
301
+ mn
302
+ x/mn+1
303
+ x
304
+ ⊗O
305
+ S(n)
306
+
307
+ ,x OS[n]
308
+
309
+ ≃ In
310
+ x /In+1
311
+ x
312
+ ⊗O
313
+ S(n)
314
+
315
+ OS[n]
316
+
317
+ ։ J n/J n+1
318
+ As J n/J n+1 is locally free on Y1 ≃ P1
319
+ k and globally generated, it is a direct sum of line bundles each of
320
+ which has degree ≥ 0. Thus one gets the base case of induction from degree considerations, as
321
+ H1(Y1, J ⊗ E ⊗ OS[n]
322
+ ∗ /J = H1(Y1, J /J 2 ⊗ EY1) = 0
323
+ Assume that the claim is true for n. Then the proof for n + 1 follows from the long exact sequence in
324
+ cohomology attached to the short exact sequence of sheaves on Yn+1
325
+ 0 → J n+1/J n+2 ⊗ E → J /J n+2 ⊗ E → J /J n+1 ⊗ E → 0
326
+ which gives us the exact sequence
327
+ H1(Yn+1, J n+1/J n+2 ⊗ E) → H1(Yn+1, J /J n+2 ⊗ E) → H1(Yn+1, J /J n+1 ⊗ E)
328
+ We know H1(Yn, J n+1/J n+2⊗E) = H1(Y1, J n+1/J n+2⊗E) = 0 (by degree consideration) and H1(Yn+1, J /J n+1⊗
329
+ E) = H1(Yn, J /J n+1 ⊗ E) = 0 (by induction hypothesis), thus we get
330
+ H1(Yn+1, J /J n+2 ⊗ E) = 0
331
+ Thus the stalk of R1h∗(J ⊗ E) at x is 0.
332
+ This shows that the natural map h∗E → H0(Y1, E|Y1) is surjective in a neighbourhood of x. Let f1, ..., fr
333
+ be a basis of H0(Y1, E|Y1). Let Spec(R) be an affine neighbourhood of x where the natural map is surjective
334
+ and let ˜fi ∈ Γ(Spec(R), h∗E) = Γ(h−1(Spec(R)), E) be lifts of fi. Using ˜fi one defines a homomorphism
335
+ O⊕r
336
+ S[n]
337
+ ∗ |h−1(Spec(R)) → E
338
+ on h−1(Spec(R) which is a surjection (and hence an isomorphism) on Y1. As h is proper, there exists a
339
+ smaller affine neighbourhood U of x over which there is an isomorphism
340
+ O⊕r
341
+ V
342
+ ≃ E
343
+ where V = h−1(U). Applying h∗, we get
344
+ (h∗OV )⊕r ≃ h∗E
345
+ As S(n)
346
+
347
+ is normal and h : S[n]
348
+
349
+ → S(n)
350
+
351
+ is birational with connected fibers, by a form of Zariski’s main
352
+ theorem [cf [Har77], Corollary 11.3 and 11.4], we have that h∗OV ≃ OU and thus h∗E is locally free. The
353
+ natural morphism
354
+ h∗h∗(E) → E
355
+ is clearly an isomorphism.
356
+
357
+ 6
358
+
359
+ Let VBS(n)
360
+
361
+ be the category of locally free sheaves on S(n)
362
+
363
+ and VBh
364
+ S[n]
365
+
366
+ be the category of locally free
367
+ sheaves on S[n]
368
+
369
+ which restrict to trivial vector bundles on the fibers of h. Proposition 1 above gives us an
370
+ equivalence of categories.
371
+ Proposition 2. Assume char k ̸= 2. The pushforward functor
372
+ h∗ : VBh
373
+ S[n]
374
+
375
+ → VBS(n)
376
+
377
+ is an equivalence of categories with the inverse given by
378
+ h∗ : VBS(n)
379
+
380
+ → VBh
381
+ S[n]
382
+
383
+ Proof. We observe that if E′ ≃ h∗(E), then E ≃ h∗E′. This shows that h∗ is essentially surjective. The
384
+ natural map
385
+ HomS(n)
386
+ ∗ (h∗E, h∗F) → HomS[n]
387
+ ∗ (E, F)
388
+ is bijective. Thus h∗ is an equivalence of categories.
389
+
390
+ Corollary. For all E ∈ VBh
391
+ S[n]
392
+ ∗ , the natural map
393
+ F ∗h∗(E) → h∗F ∗(E)
394
+ is an isomorphism over S(n)
395
+
396
+ .
397
+ Proof. As F ∗E is also an object of VBh
398
+ S[n]
399
+ ∗ , thus both sheaves are locally free of the same rank. Thus it
400
+ suffices to show that the natural map
401
+ F ∗h∗(E) → h∗F ∗(E)
402
+ is surjective. As F is faithfully flat on the smooth locus of S(n)
403
+
404
+ , the claim holds on the smooth locus. Let
405
+ x ∈ S(n)
406
+
407
+ be of type (2, 1, . . . , 1). Then the restriction of F ∗h∗(E) to x is naturally isomorphic to H0(Y1, E|Y1)
408
+ and the restriction of h∗F ∗(E) to x is H0(Y1, F ∗(E|Y1). The restriction of the natural map to x is the map
409
+ F ∗ : H0(Y1, E1) → H0(Y1, F ∗E1)
410
+ which is surjective.
411
+
412
+ By Theorem 2.2 of [Gie75], we have that every stratified bundle on P1
413
+ k is trivial. Thus the above results
414
+ give us
415
+ Proposition 3. Assume char k ̸= 2. Let (Ei, αi) be a stratified bundle on S[n]
416
+ ∗ . Then h∗(Ei) is locally free
417
+ OS(n)
418
+ ∗ -module for all i ∈ N. Moreover the natural map
419
+ h∗h∗(Ei) → Ei
420
+ is an isomorphism. Furthermore the natural map
421
+ F ∗h∗(Ei) → h∗F ∗(Ei)
422
+ is an isomorphism over S(n)
423
+
424
+ .
425
+ This allows us to define the pushforward of a stratified bundle (Ei, αi) on S[n]
426
+ ∗ . The pushforward denoted
427
+ h∗(Ei, αi) is given by the sequence of vector bundles h∗Ei for all i ∈ N and the isomorphisms are given by
428
+ the composite
429
+ F ∗h∗(Ei+1)
430
+ ηEi+1
431
+ −−−→ h∗F ∗(Ei+1)
432
+ h∗(αi)
433
+ −−−−→ h∗(Ei)
434
+ where η : F ∗h∗ → h∗F ∗ is the natural transformation.
435
+ 7
436
+
437
+ Thus we get a functor
438
+ h∗ : S(S[n]
439
+ ∗ ) → S(S(n)
440
+
441
+ )
442
+ h∗ is additive tensor functor as on the smooth locus S(n)
443
+
444
+ we have the isomorphisms
445
+ h∗((Ei, αi) ⊕ (Fi, βi))|S(n)
446
+
447
+ ≃ h∗(Ei, αi)|S(n)
448
+
449
+ ⊕ h∗(Fi, βi))|S(n)
450
+
451
+ h∗((Ei, αi) ⊗ (Fi, βi))|S(n)
452
+
453
+ ≃ h∗(Ei, αi)|S(n)
454
+
455
+ ⊗ h∗(Fi, βi))|S(n)
456
+
457
+ which extend to S(n)
458
+
459
+ due to codimension reasons.
460
+ The following commutative diagram shows that h∗h∗(Ei, αi) is isomorphic to (Ei, αi) as stratified bundles
461
+ with the isomorphism given by the natural morphisms h∗h∗Ei → Ei.
462
+ F ∗h∗h∗Ei+1
463
+ h∗F ∗h∗Ei+1
464
+ h∗h∗F ∗Ei+1
465
+ h∗h∗Ei
466
+ F ∗Ei+1
467
+ F ∗Ei+1
468
+ Ei
469
+ h∗ηEi+1
470
+ h∗h∗αi
471
+ αi
472
+ γh∗Ei+1
473
+ =
474
+ Consider the pullback functor
475
+ ρ∗ : S(S(n)
476
+
477
+ ) → S(Sn
478
+ ∗ )
479
+ which takes values in the category of Sn-equivariant stratified bundles on Sn
480
+ ∗ . Also we have the extension
481
+ functor
482
+ j∗ : S(Sn
483
+ ∗ ) → S(Sn)
484
+ which is an equivalence of categories. Composing these functors together, we get a functor
485
+ T : S(S[n]) → S(Sn)
486
+ given by
487
+ T = j∗ ◦ ρ∗ ◦ h∗ ◦ i∗
488
+ Clearly T is an additive tensor functor. Note that h∗ is fully faithful, ρ∗ : S(S(n)
489
+
490
+ ) → S(Sn
491
+ ∗ ) is fully faithful
492
+ (as ρ : Sn
493
+ ◦ → S(n)
494
+
495
+ is finite ´etale) and j∗ : S(Sn
496
+ ∗ ) → S(Sn) is an equivalence of categories (due to codimension
497
+ reasons). Thus T is fully faithful.
498
+ 5.1. The homomorphism. Fix n distinct k-valued points x1, . . . , xk ∈ S(k).
499
+ Let ˜x ∈ S[n] such that
500
+ h(˜x) = σ(x1, . . . , xn) = z ∈ S(n)
501
+
502
+ . Then the categories S(S[n]) and S(Sn) are neutralized by the respective
503
+ fiber functors
504
+ τ˜x : S(S[n]) → Veck
505
+ (Ei, αi) �→ (E0)˜x
506
+ τ(x1,...,xn) : S(Sn) → Veck
507
+ (Fi, βi) �→ (F0)(x1,...,xn)
508
+ If T ((Ei, αi)) = (Fi, βi) that we have natural isomorphisms (E0)˜x ≃ h∗(E0)z ≃ (F0)(x1,...,xn).
509
+ Thus we have a functor of Tannakian categories
510
+ T : (S(S[n]), ⊗, τ˜x, (OS[n], d)) → (S(Sn), ⊗, τ(x1,...,xn), (OSn, d))
511
+ 8
512
+
513
+ which by the independence of basepoint property of S induces a functor of Tannakian categories
514
+ T : (S(S[n]), ⊗, τ ˜
515
+ nx, (OS[n], d)) → (S(Sn), ⊗, τ(x,...,x), (OSn, d))
516
+ and hence a morphisms of the associated fundamental group schemes
517
+ ˜f : πalg(Sn, (x, . . . , x)) → πalg(S[n], ˜
518
+ nx)
519
+ Note that by proposition 3.2 we have
520
+ πalg(Sn, (x, . . . , x)) ≃ πalg(S, x)n
521
+ .
522
+ As
523
+ T : (S(S[n]), ⊗, T ˜
524
+ nx, (OS[n], d)) → (S(Sn), ⊗, T(x,...,x), (OSn, d))
525
+ takes stratified bundles on S[n] to Sn-equivariant stratified bundles on Sn and a Sn-equivariant stratified
526
+ bundles on Sn corresponds to a Sn-invariant representation of πalg(S, x)n, by 3.1, ˜f factors uniquely through
527
+ f : πalg(S, x)ab → πalg(S[n], ˜
528
+ nx)
529
+ 6. Isomorphism of fundamental group schemes
530
+ In this section, we show that f is an isomorphism of affine group schemes. We begin by proving a result
531
+ about Sn-equivariant stratified line bundles on Sn.
532
+ Proposition 4. Let (Li, αi) be a Sn-equivariant stratified line bundles on Sn. Then there exists a stratified
533
+ line bundle (Li, βi) such that ρ∗(Li, βi) ≃ (Li, αi)
534
+ Proof. By Fogarty’s result mentioned above, for any Sn-equivariant line bundle Li there exists line bundle
535
+ Li ≃ ρ∗LSn
536
+ i
537
+ such that ρ∗Li ≃ Li. Pushing forward αi and taking Sn invariants we get the isomorphism
538
+ ρ∗(F ∗Li+1)Sn
539
+ ρ∗(αi)Sn
540
+ −−−−−−→ ρ∗(Li)Sn
541
+ We show that the natural homomorphism
542
+ F ∗(ρ∗(Li)Sn) → (F ∗ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn)
543
+ is an isomorphism. Pulling back the morphism under ρ, we get the commutative diagram
544
+ ρ∗F ∗((ρ∗Li)Sn)
545
+ ρ∗((ρ∗F ∗Li)Sn)
546
+ F ∗Li
547
+ F ∗Li
548
+ =
549
+ where the vertical morphisms are the natural morphism which are isomorphisms by Fogarty’s theorem.
550
+ By pushing forward under ρ and taking Sn invariants we get that
551
+ F ∗(ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn)
552
+ is an isomorphism. We define βi to be the composite isomorphism
553
+ F ∗(ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn)
554
+ ρ∗(αi)Sn
555
+ −−−−−−→ ρ∗(Li)Sn
556
+ The commutative diagram also gives us that ρ∗(Li, βi) ≃ (Li, αi)
557
+
558
+ 9
559
+
560
+ 6.1. Faithfully flat. Next we show that the morphism f is faithfully flat
561
+ Proposition 5. The homomorphism
562
+ f : πalg(S, x)ab → πalg(S[n], ˜
563
+ nx)
564
+ is faithfully flat.
565
+ Proof. By [[DM82] Theorem 2.21], this is equivalent to showing that the functor
566
+ T : S(S[n]) → S(Sn)
567
+ is fully faithful and the essential image of T is closed under taking subobjects. We already know that T
568
+ is fully faithful. Let E• = (Ei, αi) be a stratified bundle on S[n] and F• := T (E•) be the corresponding
569
+ Sn-equivariant stratified bundle on Sn. If F′
570
+ • ⊂ F• is a Sn-equivariant stratified subbundle, then we need
571
+ to show there exists E′
572
+ • ⊂ E• such that T (E′
573
+ •) = F′
574
+ •.
575
+ The proof proceeds by induction on the rank of E•. If rank E• = 1, the proof is immediate. Let rank
576
+ E• ≥ 2
577
+ Then the stratified bundles F• and F′
578
+ • correspond to the representations
579
+ πalg(Sn, (x, . . . , x) → πalg(S, x)ab → GL(V )
580
+ and
581
+ πalg(Sn, (x, . . . , x) → πalg(S, x)ab → GL(V ′)
582
+ respectively.
583
+ As πalg(S, x)ab is an abelian affine group scheme over k, all its irreducible representations are one dimen-
584
+ sional. Thus one gets that the πalg(S, x)ab-module V/V ′ has a one dimensional quotient W. Thus there is
585
+ a πalg(S, x)ab-module surjection V → W such that the kernel contains V ′. Let L• be the Sn-equivariant
586
+ stratified bundle corresponding to W. Thus we have a short exact sequence of Sn-equivariant stratified
587
+ bundles
588
+ 0 → K• → F• → L• → 0
589
+ where F′
590
+ • ⊂ K•.
591
+ By proposition 1 above, we know that Li := ρ∗LSn
592
+ i
593
+ is a line bundle on S(n) and ρ∗Li = Li
594
+ We claim that the following complex of sheaves on S(n)
595
+
596
+ is exact for all i ∈ N
597
+ (1)
598
+ 0 → (ρ∗Ki)Sn|S(n)
599
+
600
+ → (ρ∗Fi)Sn|S(n)
601
+
602
+ → (ρ∗Li)Sn|S(n)
603
+
604
+ → 0
605
+ It is enough to show that (ρ∗Fi)Sn|S(n)
606
+
607
+ → (ρ∗Li)Sn|S(n)
608
+
609
+ is surjective. We note that (ρ∗Fi)Sn|S(n)
610
+
611
+ =
612
+ h∗(Ei|S[n]
613
+ ∗ ). Let C be the cokernel
614
+ h∗(Ei|S[n]
615
+ ∗ ) → (ρ∗Li)Sn|S(n)
616
+
617
+ → C → 0
618
+ Pulling back under ρ, we get the following commutative diagram on Sn
619
+
620
+ ρ∗h∗(Ei|S[n]
621
+ ∗ )
622
+ ρ∗((ρ∗Li)Sn|S(n)
623
+ ∗ )
624
+ ρ∗C
625
+ 0
626
+ Fi
627
+ Li|Sn
628
+
629
+ 0
630
+ =
631
+ =
632
+ 10
633
+
634
+ The rows are exact and hence ρ∗C = 0. As ρ is surjective, this implies C = 0. Thus Ki := (ρ∗Ki)Sn|S(n)
635
+
636
+ is locally free on S(n)
637
+
638
+ Pulling back the exact sequence (1) under h, we get a short exact sequence of locally free sheaves on S[n]
639
+
640
+ 0 → h∗Ki|S[n]
641
+
642
+ → Ei|S[n]
643
+
644
+ → ˜Li|S[n]
645
+
646
+ → 0
647
+ where ˜Li := h∗Li.
648
+ As the complement of S[n]
649
+
650
+ in S[n] is of codimension ≥ 2 and Ei, L are locally free, the surjective morphism
651
+ Ei|S[n]
652
+
653
+ → ˜Li|S[n]
654
+
655
+ extends to a unique morphism τi : Ei → ˜Li. This is surjective as L is of rank 1 and τ := (τi) give a
656
+ nonzero morphism of stratified bundles
657
+ E• → ˜L•
658
+ where ˜L• := h∗(ρ∗(L•)Sn). Let κ• be the kernel of the morphism E• → ˜L•. Then T (κ•) = K•. Thus, by
659
+ the induction hypothesis on rank, there exists a stratified subbundle E′
660
+ • ⊂ κ• ⊂ E• such that T (E′
661
+ •) = F′
662
+ •.
663
+
664
+ 6.2. Closed immersion. We begin by recalling a result from [PS20].
665
+ Let p ∈ S(n) be a point of type (n1, n2, . . . , nr). Let p′
666
+ i, for i = 1, 2, . . . m be the points in the fiber h−1(p).
667
+ Let A be the local ring OS(n),p and B be the semilocal ring OSn ⊗OS(n) A. Then B is a finite A module and
668
+ BSn = A.
669
+ Lemma 6.1. When char k > n1, any Sn-equivariant surjective B-module homomorphism f : M → N of
670
+ finitely generated B modules descends to surjective A-module homomorphism of the Sn-invariants M Sn →
671
+ N Sn
672
+ This allows us to prove the following analogue of Proposition 5.3.6 in [PS20].
673
+ Proposition. Let E• = (Ei, αi) be a Sn-equivariant stratified bundle on Sn
674
+ (1) Let p ∈ S(n) be a point of type (n1, n2, . . . , nr). If char k > n1, then the sheaf ρ∗ESn
675
+ i
676
+ is locally free
677
+ in a neighbourhood of p for all i.
678
+ (2) Let U denote the largest open subset where ρ∗ESn
679
+ i
680
+ is locally free, then on ρ−1(U), the natural mor-
681
+ phism
682
+ ρ∗ρ∗ESn
683
+ i
684
+ → Ei
685
+ is an isomorphism for all i ∈ N
686
+ Proof. The first assertion is proved by induction on the rank of E•. If E• is a Sn-equivariant stratified bundle
687
+ of rank 1, then by proposition 1, ρ∗ESn
688
+ i
689
+ is locally free on S(n) for all i. In general, as E• corresponds to a
690
+ representation of the abelian group scheme πalg(S, x)ab, there exists a Sn-equivariant short exact sequence
691
+ of locally free sheaves on Sn
692
+ 0 → K• → E• → L• → 0
693
+ Pushing forward by ρ and taking Sn-invariants we get the exact sequence for all i
694
+ 0 → ρ(Ki)Sn → ρ(Ei)Sn → ρ(Li)Sn
695
+ We claim that the homomorphism on the right is surjective in the neighbourhood of a point p of type
696
+ (n1, n2, . . . , nr). Surjectivity can be checked after passing to a formal neighbourhood of p and thus reduces to
697
+ lemma 6.1. By induction hypothesis on rank, both ρ(Ki)Sn and ρ(Li)Sn are locally free on a neighbourhood
698
+ of p and hence so is ρ(Ei)Sn.
699
+ 11
700
+
701
+ The second assertion follows from the observation that the natural homomorphism
702
+ ρ∗ρ∗ESn
703
+ i
704
+ → Ei
705
+ is an isomorphism on ρ−1(S(n)
706
+
707
+ ) as as ρ : Sn
708
+ ◦ → S(n)
709
+
710
+ is finite ´etale. As the complement of Sn
711
+ ◦ in ρ−1(U) is of
712
+ codimension ≥ 2 and both sheaves are locally free on ρ−1(U), thus the natural morphism is an isomorphism.
713
+
714
+ Proposition 6. Let char k > 3. The homomorphism
715
+ f : πalg(S, x)ab → πalg(S[n], ˜
716
+ nx)
717
+ is faithfully flat.
718
+ Proof. By [[DM82], Theorem 2.21], it is enough to show that the functor
719
+ T : S(S[n]) → S(Sn)
720
+ is essentially surjective. Thus we want to show that for any Sn-equivariant stratified bundle E• on Sn, there
721
+ exists a stratified bundle F• on S[n] such that T (F•) = E•.
722
+ Let U be the open subset of S(n) consisting of points of type (1, 1, . . . , 1), (2, 1, . . . , 1), (3, 1, . . ., 1) and
723
+ (2, 1, 1, . . ., 1). By assumption on characteristic of k and the previous proposition, we get that ρ∗ESn
724
+ i
725
+ is
726
+ locally free on U. Also we have on ρ−1(U), the natural morphism
727
+ ρ∗ρ∗ESn
728
+ i
729
+ → Ei
730
+ is an isomorphism. Imitating proposition 1 above, this allows us to define a stratified bundle (ρ∗ESn
731
+ i
732
+ , βi) on
733
+ U such that ρ∗(ρ∗ESn
734
+ i
735
+ , βi) ≃ E•. Pulling back under h to h−1(U) (whose complement in S[n] has codimension
736
+ ≥ 3) and extending to S[n], we get a stratified bundle F• such that T (F•) = E•
737
+
738
+ As f is both faithfully flat and a closed immersion, we get the following theorem
739
+ Theorem 6.2. Let char k > 3. The homomorphism
740
+ f : πalg(S, x)ab → πalg(S[n], ˜
741
+ nx)
742
+ is an isomorphism.
743
+ References
744
+ [BHdS21] Biswas, Indranil, Ph`ung Hˆo Hai, and Jo˜ao Pedro Dos Santos. ”On the fundamental group schemes of certain quotient
745
+ varieties.” Tohoku Mathematical Journal 73, no. 4 (2021): 565-595.
746
+ [BPS06] Biswas, Indranil, A. J. Parameswaran, and S. Subramanian. ”Monodromy group for a strongly semistable principal
747
+ bundle over a curve.” Duke Mathematical Journal 132, no. 1 (2006): 1-48.
748
+ [DM82] Deligne, Pierre; Milne, James (1982), ”Tannakian categories”, in Deligne, Pierre; Milne, James; Ogus, Arthur; Shih,
749
+ Kuang-yen (eds.), Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol. 900, Springer, pp.
750
+ 101–228
751
+ [dS07] Dos Santos, Jo˜ao Pedro Pinto. ”Fundamental group schemes for stratified sheaves.” Journal of Algebra 317, no. 2 (2007):
752
+ 691-713.
753
+ [Fog68] Fogarty, John. ”Algebraic families on an algebraic surface.” American Journal of Mathematics 90, no. 2 (1968): 511-521.
754
+ [Fog77] Fogarty, John. ”Line bundles on quasi-symmetric powers of varieties.” Journal of Algebra 44, no. 1 (1977): 169-180.
755
+ [Gie75] Gieseker, David. ”Flat vector bundles and the fundamental group in non-zero characteristics.” Annali della Scuola
756
+ Normale Superiore di Pisa-Classe di Scienze 2, no. 1 (1975): 1-31.
757
+ [Har77] Hartshorne, Robin. Algebraic geometry. Vol. 52. Springer Science & Business Media, 2013.
758
+ [Ish83] Ishimura, Sadao. ”A descent problem of vector bundles and its applications.” Journal of Mathematics of Kyoto University
759
+ 23, no. 1 (1983): 73-83.
760
+ [Lan11] Langer, Adrian. ”On the S-fundamental group scheme.” In Annales de l’Institut Fourier, vol. 61, no. 5, pp. 2077-2119.
761
+ 2011.
762
+ [Lan12] Langer, Adrian. ”On the S-fundamental group scheme. II.” Journal of the Institute of Mathematics of Jussieu 11, no.
763
+ 4 (2012): 835-854.
764
+ [N76] Nori, Madhav V. ”On the representations of the fundamental group.” Compositio Mathematica 33, no. 1 (1976): 29-41.
765
+ [N82] Nori, Madhav V. ”The fundamental group-scheme.” Proceedings Mathematical Sciences 91, no. 2 (1982): 73-122.
766
+ [PS20] Paul, Arjun, and Ronnie Sebastian. ”Fundamental group schemes of Hilbert scheme of n points on a smooth projective
767
+ surface.” Bulletin des Sciences Math´ematiques 164 (2020): 102898.
768
+ 12
769
+
770
+ [SGA1] Grothendieck, Alexander, and Michele Raynaud. ”Revˆetements´etales et groupe fondamental (SGA 1).” arXiv preprint
771
+ math/0206203 (2002).
772
+ The Institute of Mathematical Sciences, (HBNI), Chennai 600113.
773
+ Email address: [email protected]
774
+ 13
775
+
4dE1T4oBgHgl3EQfAwIb/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf,len=456
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
3
+ page_content='02842v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
4
+ page_content='AG] 7 Jan 2023 STRATIFIED BUNDLES ON THE HILBERT SCHEME OF n POINTS SAURAV HOLME CHOUDHURY Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
5
+ page_content=' Let k be an algebraically closed field of characteristic p > 3 and S be a smooth projective surface over k with k-rational point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
6
+ page_content=' For n ≥ 2, let S[n] denote the Hilbert scheme of n points on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
7
+ page_content=' In this note, we compute the fundamental group scheme πalg(S[n], ˜ nx) defined by the Tannakian category of stratified bundles on S[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
8
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
9
+ page_content=' Introduction For a variety X over C, one has the classical notion of the fundamental group π1(Xan, x) defined using the analytic topology on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
10
+ page_content=' Over arbitrary base fields k, one has several analogues of the fundamental group defined in terms of algebro-geometric information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
11
+ page_content=' In [SGA1], Grothendieck introduced the notion of ´etale fundamental group π´et(X, x), where X is a scheme and x is a geometric point of X, in terms of the finite etale covers of X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
12
+ page_content=' In [N76], Nori defined the Nori fundamental group scheme πN(X, x), where X is a connected, reduced and complete scheme over a perfect field k and x is a k-rational point, via Tannakian reconstruction using the category of essentially finite vector bundles on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
13
+ page_content=' The definition of πN(X, x) was extended to the case of connected and reduced k-schemes in [N82].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
14
+ page_content=' Another analogue, the S-fundamental group scheme πS(X, x) was introduced and studied by Langer in [Lan11] and [Lan12] for smooth projective varieties X over an algebraically closed field k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
15
+ page_content=' It is defined via Tannakian reconstruction using the category of numerically flat vector bundles on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
16
+ page_content=' The S-fundamental group scheme for a smooth projective curve C over an algebraically closed field k was already introduced and studied in [BPS06].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
17
+ page_content=' The variant of the fundamental group scheme which is of prime importance in this note is the algebraic fundamental group πalg(X, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
18
+ page_content=' In [Gie75], Gieseker defined πalg(X, x) as the fundamental group scheme corresponding to the Tannakian category of DX-modules, where DX is the sheaf of differential operators on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
19
+ page_content=' For X smooth over a field of positive characteristic, Gieseker introduced the notion of stratified bundles and showed that the category of DX-modules is tensor equivalent to the category of stratified bundles on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
20
+ page_content=' Stratifed bundles were further studied in [dS07] and [BHdS21].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
21
+ page_content=' Precise definitions and statements will be given in the next section.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
22
+ page_content=' Let S be a smooth projective surface over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
23
+ page_content=' For n ≥ 2, let S[n] denote the Hilbert scheme n points on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
24
+ page_content=' It is well known that S[n] is a smooth projective variety of dimension 2n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
25
+ page_content=' In [PS20], the authors show that for char k > 3 and n ≥ 2, there is an isomorphism of affine group schemes over k π†(S, x)ab → π†(S[n], ˜ nx) where † = S, N or ´et.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
26
+ page_content=' In this note, we extend their results to the case of πalg and prove the following theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
27
+ page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
28
+ page_content=' Let char k > 3 and n ≥ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
29
+ page_content=' There is an isomorphism of affine group schemes over k f : πalg(S, x)ab → πalg(S[n], ˜ nx) In section 2, we recall the definition of stratified bundles and some of their basic properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
30
+ page_content=' The formalism of Tannakian reconstruction is recalled in section 3 and used to define the algebraic fundamental group πalg(X, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
31
+ page_content=' 1 The geometrical properties of the Hilbert scheme of n points on a smooth projective surface are in section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
32
+ page_content=' In section 5, we prove a result about descent of stratified bundles which allows us to define the homomorphism f by defining the associated functor of Tannakian categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
33
+ page_content=' The concluding section 6 establishes the main theorem by showing that f is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
34
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
35
+ page_content=' We would like to thank Indranil Biswas and Ronnie Sebastian for their comments on earlier drafts of this note.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
37
+ page_content=' Stratified bundles Let k be a field of characteristic p and X be a noetherian scheme over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
38
+ page_content=' Stratified bundles on X are sequences of coherent sheaves on X satisfying infinite Frobenius descent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
39
+ page_content=' More precisely, the category of stratified bundles on X, denoted S(X), consists of Objects (Ei, αi) are sequences of coherent OX-modules Ei, i ∈ N along with isomorphisms αi : F ∗Ei+1 → Ei for all i ∈ N, where F is the absolute Frobenius on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
40
+ page_content=' Morphisms φ : (Ei, αi) → (Fi, βi) consists of a sequence of OX-module morphisms φi : Ei → Fi such that φi ◦ αi = βi ◦ F ∗ (φi+1) Let f : Y → X be a morphism and (Ei, αi) be a stratified bundle on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
41
+ page_content=' Then we can define the pullback along f, denoted f ∗(Ei, αi), as consisting of the sequence of OY coherent sheaves f ∗Ei and isomorphisms are given by the composite maps F ∗f ∗Ei+1 γEi+1 −−−→ f ∗F ∗Ei+1 f ∗(αi) −−−−→ f ∗Ei where γ : F ∗f ∗ → f ∗F ∗ is the natural isomorphism of functors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
42
+ page_content=' Thus S(X) is contravariant functor in X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
43
+ page_content=' One also has a tensor product on S(X) defined by taking term by term tensor product.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
44
+ page_content=' Also S(X) is an abelian category [cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
45
+ page_content=' [BHdS21], Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
46
+ page_content='4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
47
+ page_content=' We recall some well known results about stratified bundles [cf [dS07], [Gie75]].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
48
+ page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
49
+ page_content=' If (Ei, αi) is a stratified bundle on X, then Ei is a locally free OX-module for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
50
+ page_content=' This allows us to define duals of stratified bundles, making S(X) into an abelian rigid tensor category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
51
+ page_content=' The rank of a stratified bundle (Ei, αi) is defined to be the rank of E0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
52
+ page_content=' The trivial stratified bundles on X are of the form ⊕(OX, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
53
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
54
+ page_content=';' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
55
+ page_content=' F ∗, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
56
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
57
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
58
+ page_content=' Let DX be the sheaf of differential operators on X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
59
+ page_content=' The category of DX modules consists of Objects coherent OX modules E equipped with a DX action i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
60
+ page_content='e a morphism of OX-algebras DX → Endk(E) Morphisms OX-linear maps E → F compatible with the DX action A theorem of Katz [[Gie75], Theorem 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
61
+ page_content='3] shows that for X smooth over k, then the category of stratified bundles on X and the category of DX modules are tensor equivalent to each other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
62
+ page_content=' We close this section with the definition of G equivariant stratified bundles on a variety X admitting action of a group G on it.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
63
+ page_content=' Definition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
64
+ page_content=' A stratified bundle (Ei, αi) is said to be a G-equivariant stratified bundle if Ei are G-equivariant vector bundles and αi are G-equivariant OX module morphisms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
65
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
66
+ page_content=' Tannakian categories and fundamental group schemes In this section we recall the definition and basic properties of Tannakian categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
67
+ page_content=' We then recall Gieseker’s definition of the fundamental group scheme πalg using the Tannakian formalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
68
+ page_content=' 2 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
69
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
70
+ page_content=' Tannakian Categories and affine group schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
71
+ page_content=' Tannakian categories were defined and studied in [DM82] to formalize the properties of Repk(G), the category of finite dimensional k-representations of G, an affine group scheme over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
72
+ page_content=' Definition (Neutral Tannakian Categories).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
73
+ page_content=' A rigid abelian tensor category C with End I = k is a neutral Tannakian category if it admits an exact faithful k-linear tensor functor ω : C → Veck.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
74
+ page_content=' Any such functor is said to be a fiber functor for C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
75
+ page_content=' Given a neutral Tannakian category (C, ⊗, ω, I), we define the functor Aut⊗(ω) : k − algebra → Sets such that for k-algebra R, Aut⊗(ω)(R) consists of the families (λX) for X ∈ ob(C), where λX is a R-linear automorphism of X ⊗ R such that λX1⊗X2 = λX1 ⊗ λX2, λI = idR, and λY ◦ (α ⊗ 1) = (α ⊗ 1) ◦ λX : X ⊗ R → Y ⊗ R for all morphisms α : X → Y .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
76
+ page_content=' Theorem (Main theorem for neutral Tannakian categories, [DM82], Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
77
+ page_content='11).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
78
+ page_content=' Let (C, ⊗) be a rigid abelian tensor category such that k = End(I) and let ω : C → Veck be an exact faithful tensor functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
79
+ page_content=' Then The functor Aut⊗(ω) of k-algebras is represented by an affine group scheme G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
80
+ page_content=' The functor C → Repk(G) is an equivalence of tensor categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
81
+ page_content=' Theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
82
+ page_content=' Let (C, ⊗, ω, I) and (C′, ⊗, ω′, I′) be neutral Tannakian categories which correspond to the repre- sentation categories of the affine k group schemes G and G′ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
83
+ page_content=' Then any functor of Tannakian categories from C → C′ is induced by a unique morphism of affine k group schemes G′ → G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
84
+ page_content=' This theorem allows us to define many variants of fundamental groups of a scheme X by considering different Tannakian categories naturally associated with X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
85
+ page_content=' The following result is very useful in establishing a given morphism between affine group schemes is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
86
+ page_content=' Theorem ([DM82], Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
87
+ page_content='21).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
88
+ page_content=' Let f : G → G′ be a homomorphism of group schemes over k and Rep (f) : Rep (G′) → Rep (G) be the corresponding functor of Tannakian categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
89
+ page_content=' Then f is faithfully flat if and only if Rep (f) is fully faithful and has essential image closed under subobjects i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
90
+ page_content='e for V ′ ∈ Rep (G′) and suboject W ⊂ Rep (f)(V ′), there is a subobject W ′ ⊂ V ′ in Rep (G′) such that Rep (f)(W ′) ≃ W in Rep (G) f is closed immersion if and only if every object of Rep (G) is a subquotient of some object in the essential image of Rep (f).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
91
+ page_content=' We finish by recalling a basic result on affine group schemes (we refer to section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
92
+ page_content='1 in [PS20] for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
93
+ page_content=' Let G be a affine group scheme over k, Gab be its abelianization (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
94
+ page_content='e the maximal abelian quotient of G) and α : G → Gab be the (faithfully flat) quotient morphism .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
95
+ page_content=' We can then define the composite morphism φ : Gn αn −−→ Gn ab m −→ Gab where m is the multiplication homomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
96
+ page_content=' As Sn acts on the k-group scheme Gn, we can define the notion of a Sn-invariant group morphism ψ : Gn → H for any k-group scheme H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
97
+ page_content=' Lemma 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
98
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
99
+ page_content=' Let G and H be two group schemes over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
100
+ page_content=' For an integer n ≥ 2, the set of Sn-invariant group morphisms Gn → H is in bijective correspondence with the set of group morphism Gab → H i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
101
+ page_content='e any morphism of k-group schemes φ : Gn → H which is Sn-invariant factors uniquely through a morphism ψ : Gab → H such that φ = ψ ◦ h 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
102
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
103
+ page_content=' The group scheme πalg(X, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
104
+ page_content=' Classically, over C, the Riemann-Hilbert correspondence identifies the category of vector bundles equipped with integrable connections on a smooth connected projective variety X/C with the category of representations of the topological fundamental group πtop(X, x) for some chosen base point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
105
+ page_content=' Via GAGA, this gives a purely algebraic description of the category of representations of the topological fundamental group π(X, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
106
+ page_content=' This category (equipped with the fiber functor (E, ∇) → Ex) is a neutral Tannakian category and can be identified, via the Tannakian formalism, with the representation 3 category of the proalgebraic completion of the topological fundamental group, denoted as πtop(X, x)alg.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
107
+ page_content=' Over a field k of characteristic 0, the category of flat connections on a smooth variety X is tensor equiva- lent to the category of DX-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
108
+ page_content=' However over a field of characteristic p, the category of flat connections on X is not as well behaved as the category of DX-modules and one defines a fundamental group scheme for X by Tannakian formalism using the category of DX-modules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
109
+ page_content=' By Katz’s theorem mentioned before, the fundamental group coincides with the one defined using S(X) below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
110
+ page_content=' Let x ∈ X(k) be a k-rational point.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
111
+ page_content=' Then the abelian rigid tensor category S(X) is neutralized by the fiber functor Tx : S(X) → V eck The fundamental group scheme defined by the neutral Tannakian category (S(X), ⊗, Tx, (OX, F ∗)) is called the algebraic fundamental group of X based at x and is denoted by πalg(X, x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
112
+ page_content=' The following basic properties of πalg are well known.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
113
+ page_content=' (Independence of basepoint) Let X be a geometrically connected, smooth projective k-scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
114
+ page_content=' Then for all x1, x2 ∈ X(k), one has πalg(X, x1) ≃ πalg(X, x2) (Product rule) For X1, X2 geometrically connected and smooth over k and xi ∈ Xi(k), there is an isomorphism πalg(X1, x1) × πalg(X2, x2) → πalg(X1 × X2, (x1, x2)) For X smooth and open immersion U i−→ X such that the complement of U in X has codimension ≥ 2 and x ∈ U(k), then the homomorphism πalg(U, x) → πalg(X, x) associated to the restriction functor i∗ : S(X) → S(U) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
115
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
116
+ page_content=' Geometry of Hilbert Scheme of points Let S be a smooth projective surface over k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
117
+ page_content=' We fix notation as follows Sn denotes the n-fold cartesian product of S with itself.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
118
+ page_content=' S(n) denotes the nth symmetric product of S defined as the quotient Sn/Sn, where Sn denotes the symmetric group on n letters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
119
+ page_content=' S[n] denotes the Hilbert scheme of n points on S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
120
+ page_content=' Let ρ : Sn → S(n) be the quotient map and h : S[n] → S(n) be the Hilbert-Chow morphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
121
+ page_content=' We write S(n) for the open subset of S(n) consisting of distinct points with S[n] := h−1(S(n) ) and Sn := ρ−1(S(n) ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
122
+ page_content=' The map hn,◦ : S[n] → S(n) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
123
+ page_content=' We have the diagram: S[n] Sn S(n) hn ρn In general, Hilbert schemes of points on a projective variety display a lot of pathological features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
124
+ page_content=' But in [Fog68] the author shows that, in the case of smooth projective surface S, S[n] is a smooth projective variety.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
125
+ page_content=' Thus, in this case, the Hilbert-Chow morphism h : S[n] → S(n) is a resolution of singularities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
126
+ page_content=' 4 One can consider S(n) as the set of effective 0-cycles of degree n on S(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
127
+ page_content=' In this case it is easy to see that S(n) admits a stratification by type, where the type of a 0-cycle y of degree n is a tuple (n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
128
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
129
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
130
+ page_content=' , nr) where y can be written as y = Σr j=1njxj where xj are distinct points of S with multiplicities n1 ≥ n2 ≥ · · · ≥ nr, where nj are positive integers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
131
+ page_content=' Let C(n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
132
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
133
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
134
+ page_content=' , nr) denote the subset of S(n) consisting of points of the type (n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
135
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
136
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
137
+ page_content=' , nr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
138
+ page_content=' Let S(n) ∗ = C(1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
139
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
140
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
141
+ page_content=' , 1) � C(2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
142
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
143
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
144
+ page_content=' , 1) denote the open subset of S(n) consisting of points of type (1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
145
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
146
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
147
+ page_content=' , 1) and (2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
148
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
149
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
150
+ page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
151
+ page_content=' Let S[n] ∗ and Sn ∗ denote the preimage of S(n) ∗ under h and ρ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
152
+ page_content=' We recall some basic properties below which we will need later (we refer to [Fog68], [PS20] for details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
153
+ page_content=' The subsets C(n1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
154
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
155
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
156
+ page_content=' , nr) are nonsingular of dimension 2r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
157
+ page_content=' The closed subset S(n) \\ S(n) ∗ is of codimension ≥ 2 in S(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
158
+ page_content=' The closed subset S[n] \\ S[n] ∗ is of codimension 2 in S[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
159
+ page_content=' The closed subset Sn \\ Sn ∗ is of codimension ≥ 4 in Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
160
+ page_content=' The closed subset S(n) ∗ \\ S(n) is of codimension 2 in S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
161
+ page_content=' When characteristic of k ̸= 2, for y ∈ C(2, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
162
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
163
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
164
+ page_content=' , 1), the scheme theoretic fiber h−1(y) is isomorphic to P1 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
165
+ page_content=' In fact, S[n] ∗ is the blowup of S(n) ∗ along C(2, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
166
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
167
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
168
+ page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
169
+ page_content=' We end this section by recalling a result of Fogarty ([Fog77], Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
170
+ page_content='6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
171
+ page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
172
+ page_content=' If L is a Sn-invariant line bundle on Sn, there exists a line bundle L′ on S(n) such that h∗L′ ≃ L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
173
+ page_content=' It follows that L′ in the proposition is isomorphic to σ∗(L)Sn 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
174
+ page_content=' The functor between Tannakian categories Let S be a smooth projective surface over k and (Ei, αi) be a stratified bundle on S[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
175
+ page_content=' Restricting to S[n] ∗ gives us a functor i∗ : S(S[n]) → S(S[n] ∗ ) which is a equivalence of categories as S[n] ∗ is the complement of a codimension 2 closed subset of S[n].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
176
+ page_content=' Next we show that a stratified bundle on S[n] ∗ can be pushed forward under h to get a stratified bundle on S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
177
+ page_content=' First we begin by a result on descent of vector bundles along the morphism h : S[n] ∗ → S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
178
+ page_content=' Similar results have been established by authors in [Ish83] and [PS20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
179
+ page_content=' Proposition 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
180
+ page_content=' Assume char k ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
181
+ page_content=' Let E be a vector bundle on S[n] ∗ which restricts to trivial vector bundles on the fibers of h over S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
182
+ page_content=' Then h∗E is a locally free OS(n) ∗ -module.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
183
+ page_content=' Moreover the natural map h∗h∗(E) → E is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
184
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
185
+ page_content=' Let x ∈ S(n) ∗ be a point of type (2, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
186
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
187
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
188
+ page_content=', 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
189
+ page_content=' Then by assumption, the fiber of h over x is isomorphic to P1 k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
190
+ page_content=' Let J be the ideal sheaf of the closed subscheme h−1(x) and Ix be the ideal sheaf of the closed point x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
191
+ page_content=' We have J = IxOS[n] ∗ For all n ≥ 1, let Yn denote the closed subscheme of S[n] ∗ corresponding to the ideal sheaf J n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
192
+ page_content=' Consider the following short exact sequence of sheaves on S[n] ∗ 0 → J ⊗ E → E → E|Y1 → 0 5 Pushing forward by h, we get the following exact sequence of sheaves on S(n) ∗ h∗E → H0(Y1, E|Y1) → R1h∗(J ⊗ E) We claim that the completion of R1h∗(J ⊗ E) at the maximal ideal mx in OS(n) ∗ ,x is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
193
+ page_content=' The proof uses the theorem of formal functions which says that (R1h∗(J ⊗ E))∧ ≃ lim ←− H1(Yn, J ⊗ E ⊗ OS[n] ∗ /J n) We prove by induction that H1(Yn, J ⊗E ⊗OS[n] ∗ /J n) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
194
+ page_content=' As Y1 ≃ P1 k, the sheaves J n/J n+1 are locally free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
195
+ page_content=' These sheaves are also globally generated over Y1 as we have the surjection mn x/mn+1 x ⊗O S(n) ∗ ,x OS[n] ∗ ≃ In x /In+1 x ⊗O S(n) ∗ OS[n] ∗ ։ J n/J n+1 As J n/J n+1 is locally free on Y1 ≃ P1 k and globally generated, it is a direct sum of line bundles each of which has degree ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
196
+ page_content=' Thus one gets the base case of induction from degree considerations, as H1(Y1, J ⊗ E ⊗ OS[n] ∗ /J = H1(Y1, J /J 2 ⊗ EY1) = 0 Assume that the claim is true for n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
197
+ page_content=' Then the proof for n + 1 follows from the long exact sequence in cohomology attached to the short exact sequence of sheaves on Yn+1 0 → J n+1/J n+2 ⊗ E → J /J n+2 ⊗ E → J /J n+1 ⊗ E → 0 which gives us the exact sequence H1(Yn+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
198
+ page_content=' J n+1/J n+2 ⊗ E) → H1(Yn+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
199
+ page_content=' J /J n+2 ⊗ E) → H1(Yn+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
200
+ page_content=' J /J n+1 ⊗ E) We know H1(Yn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
201
+ page_content=' J n+1/J n+2⊗E) = H1(Y1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
202
+ page_content=' J n+1/J n+2⊗E) = 0 (by degree consideration) and H1(Yn+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
203
+ page_content=' J /J n+1⊗ E) = H1(Yn,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
204
+ page_content=' J /J n+1 ⊗ E) = 0 (by induction hypothesis),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
205
+ page_content=' thus we get H1(Yn+1,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
206
+ page_content=' J /J n+2 ⊗ E) = 0 Thus the stalk of R1h∗(J ⊗ E) at x is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
207
+ page_content=' This shows that the natural map h∗E → H0(Y1, E|Y1) is surjective in a neighbourhood of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
208
+ page_content=' Let f1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
209
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
210
+ page_content=', fr be a basis of H0(Y1, E|Y1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
211
+ page_content=' Let Spec(R) be an affine neighbourhood of x where the natural map is surjective and let ˜fi ∈ Γ(Spec(R), h∗E) = Γ(h−1(Spec(R)), E) be lifts of fi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
212
+ page_content=' Using ˜fi one defines a homomorphism O⊕r S[n] ∗ |h−1(Spec(R)) → E on h−1(Spec(R) which is a surjection (and hence an isomorphism) on Y1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
213
+ page_content=' As h is proper, there exists a smaller affine neighbourhood U of x over which there is an isomorphism O⊕r V ≃ E where V = h−1(U).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
214
+ page_content=' Applying h∗, we get (h∗OV )⊕r ≃ h∗E As S(n) ∗ is normal and h : S[n] ∗ → S(n) ∗ is birational with connected fibers, by a form of Zariski’s main theorem [cf [Har77], Corollary 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
215
+ page_content='3 and 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
216
+ page_content='4], we have that h∗OV ≃ OU and thus h∗E is locally free.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
217
+ page_content=' The natural morphism h∗h∗(E) → E is clearly an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
218
+ page_content=' □ 6 Let VBS(n) ∗ be the category of locally free sheaves on S(n) ∗ and VBh S[n] ∗ be the category of locally free sheaves on S[n] ∗ which restrict to trivial vector bundles on the fibers of h.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
219
+ page_content=' Proposition 1 above gives us an equivalence of categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
220
+ page_content=' Proposition 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
221
+ page_content=' Assume char k ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
222
+ page_content=' The pushforward functor h∗ : VBh S[n] ∗ → VBS(n) ∗ is an equivalence of categories with the inverse given by h∗ : VBS(n) ∗ → VBh S[n] ∗ Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
223
+ page_content=' We observe that if E′ ≃ h∗(E), then E ≃ h∗E′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
224
+ page_content=' This shows that h∗ is essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
225
+ page_content=' The natural map HomS(n) ∗ (h∗E, h∗F) → HomS[n] ∗ (E, F) is bijective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
226
+ page_content=' Thus h∗ is an equivalence of categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
227
+ page_content=' □ Corollary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
228
+ page_content=' For all E ∈ VBh S[n] ∗ , the natural map F ∗h∗(E) → h∗F ∗(E) is an isomorphism over S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
229
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
230
+ page_content=' As F ∗E is also an object of VBh S[n] ∗ , thus both sheaves are locally free of the same rank.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
231
+ page_content=' Thus it suffices to show that the natural map F ∗h∗(E) → h∗F ∗(E) is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
232
+ page_content=' As F is faithfully flat on the smooth locus of S(n) ∗ , the claim holds on the smooth locus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
233
+ page_content=' Let x ∈ S(n) ∗ be of type (2, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
234
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
235
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
236
+ page_content=' , 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
237
+ page_content=' Then the restriction of F ∗h∗(E) to x is naturally isomorphic to H0(Y1, E|Y1) and the restriction of h∗F ∗(E) to x is H0(Y1, F ∗(E|Y1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
238
+ page_content=' The restriction of the natural map to x is the map F ∗ : H0(Y1, E1) → H0(Y1, F ∗E1) which is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
239
+ page_content=' □ By Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
240
+ page_content='2 of [Gie75], we have that every stratified bundle on P1 k is trivial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
241
+ page_content=' Thus the above results give us Proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
242
+ page_content=' Assume char k ̸= 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
243
+ page_content=' Let (Ei, αi) be a stratified bundle on S[n] ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
244
+ page_content=' Then h∗(Ei) is locally free OS(n) ∗ -module for all i ∈ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
245
+ page_content=' Moreover the natural map h∗h∗(Ei) → Ei is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
246
+ page_content=' Furthermore the natural map F ∗h∗(Ei) → h∗F ∗(Ei) is an isomorphism over S(n) ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
247
+ page_content=' This allows us to define the pushforward of a stratified bundle (Ei, αi) on S[n] ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
248
+ page_content=' The pushforward denoted h∗(Ei, αi) is given by the sequence of vector bundles h∗Ei for all i ∈ N and the isomorphisms are given by the composite F ∗h∗(Ei+1) ηEi+1 −−−→ h∗F ∗(Ei+1) h∗(αi) −−−−→ h∗(Ei) where η : F ∗h∗ → h∗F ∗ is the natural transformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
249
+ page_content=' 7 Thus we get a functor h∗ : S(S[n] ∗ ) → S(S(n) ∗ ) h∗ is additive tensor functor as on the smooth locus S(n) we have the isomorphisms h∗((Ei, αi) ⊕ (Fi, βi))|S(n) ≃ h∗(Ei, αi)|S(n) ⊕ h∗(Fi, βi))|S(n) h∗((Ei, αi) ⊗ (Fi, βi))|S(n) ≃ h∗(Ei, αi)|S(n) ⊗ h∗(Fi, βi))|S(n) which extend to S(n) ∗ due to codimension reasons.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
250
+ page_content=' The following commutative diagram shows that h∗h∗(Ei, αi) is isomorphic to (Ei, αi) as stratified bundles with the isomorphism given by the natural morphisms h∗h∗Ei → Ei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
251
+ page_content=' F ∗h∗h∗Ei+1 h∗F ∗h∗Ei+1 h∗h∗F ∗Ei+1 h∗h∗Ei F ∗Ei+1 F ∗Ei+1 Ei h∗ηEi+1 h∗h∗αi αi γh∗Ei+1 = Consider the pullback functor ρ∗ : S(S(n) ∗ ) → S(Sn ∗ ) which takes values in the category of Sn-equivariant stratified bundles on Sn ∗ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
252
+ page_content=' Also we have the extension functor j∗ : S(Sn ∗ ) → S(Sn) which is an equivalence of categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
253
+ page_content=' Composing these functors together, we get a functor T : S(S[n]) → S(Sn) given by T = j∗ ◦ ρ∗ ◦ h∗ ◦ i∗ Clearly T is an additive tensor functor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
254
+ page_content=' Note that h∗ is fully faithful, ρ∗ : S(S(n) ∗ ) → S(Sn ∗ ) is fully faithful (as ρ : Sn → S(n) is finite ´etale) and j∗ : S(Sn ∗ ) → S(Sn) is an equivalence of categories (due to codimension reasons).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
255
+ page_content=' Thus T is fully faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
256
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
257
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
258
+ page_content=' The homomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
259
+ page_content=' Fix n distinct k-valued points x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
260
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
261
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
262
+ page_content=' , xk ∈ S(k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
263
+ page_content=' Let ˜x ∈ S[n] such that h(˜x) = σ(x1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
264
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
265
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
266
+ page_content=' , xn) = z ∈ S(n) .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
267
+ page_content=' Then the categories S(S[n]) and S(Sn) are neutralized by the respective fiber functors τ˜x : S(S[n]) → Veck (Ei, αi) �→ (E0)˜x τ(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
268
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
269
+ page_content=',xn) : S(Sn) → Veck (Fi, βi) �→ (F0)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
270
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
271
+ page_content=',xn) If T ((Ei, αi)) = (Fi, βi) that we have natural isomorphisms (E0)˜x ≃ h∗(E0)z ≃ (F0)(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
272
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
273
+ page_content=',xn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
274
+ page_content=' Thus we have a functor of Tannakian categories T : (S(S[n]), ⊗, τ˜x, (OS[n], d)) → (S(Sn), ⊗, τ(x1,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
275
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
276
+ page_content=',xn), (OSn, d)) 8 which by the independence of basepoint property of S induces a functor of Tannakian categories T : (S(S[n]), ⊗, τ ˜ nx, (OS[n], d)) → (S(Sn), ⊗, τ(x,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
277
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
278
+ page_content=',x), (OSn, d)) and hence a morphisms of the associated fundamental group schemes ˜f : πalg(Sn, (x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
279
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
280
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
281
+ page_content=' , x)) → πalg(S[n], ˜ nx) Note that by proposition 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
282
+ page_content='2 we have πalg(Sn, (x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
283
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
284
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
285
+ page_content=' , x)) ≃ πalg(S, x)n .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
286
+ page_content=' As T : (S(S[n]), ⊗, T ˜ nx, (OS[n], d)) → (S(Sn), ⊗, T(x,.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
287
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
288
+ page_content=',x), (OSn, d)) takes stratified bundles on S[n] to Sn-equivariant stratified bundles on Sn and a Sn-equivariant stratified bundles on Sn corresponds to a Sn-invariant representation of πalg(S, x)n, by 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
289
+ page_content='1, ˜f factors uniquely through f : πalg(S, x)ab → πalg(S[n], ˜ nx) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
290
+ page_content=' Isomorphism of fundamental group schemes In this section, we show that f is an isomorphism of affine group schemes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
291
+ page_content=' We begin by proving a result about Sn-equivariant stratified line bundles on Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
292
+ page_content=' Proposition 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
293
+ page_content=' Let (Li, αi) be a Sn-equivariant stratified line bundles on Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
294
+ page_content=' Then there exists a stratified line bundle (Li, βi) such that ρ∗(Li, βi) ≃ (Li, αi) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
295
+ page_content=' By Fogarty’s result mentioned above, for any Sn-equivariant line bundle Li there exists line bundle Li ≃ ρ∗LSn i such that ρ∗Li ≃ Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
296
+ page_content=' Pushing forward αi and taking Sn invariants we get the isomorphism ρ∗(F ∗Li+1)Sn ρ∗(αi)Sn −−−−−−→ ρ∗(Li)Sn We show that the natural homomorphism F ∗(ρ∗(Li)Sn) → (F ∗ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
297
+ page_content=' Pulling back the morphism under ρ, we get the commutative diagram ρ∗F ∗((ρ∗Li)Sn) ρ∗((ρ∗F ∗Li)Sn) F ∗Li F ∗Li = where the vertical morphisms are the natural morphism which are isomorphisms by Fogarty’s theorem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
298
+ page_content=' By pushing forward under ρ and taking Sn invariants we get that F ∗(ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
299
+ page_content=' We define βi to be the composite isomorphism F ∗(ρ∗(Li)Sn) → (ρ∗F ∗(Li)Sn) ρ∗(αi)Sn −−−−−−→ ρ∗(Li)Sn The commutative diagram also gives us that ρ∗(Li, βi) ≃ (Li, αi) □ 9 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
300
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
301
+ page_content=' Faithfully flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
302
+ page_content=' Next we show that the morphism f is faithfully flat Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
303
+ page_content=' The homomorphism f : πalg(S, x)ab → πalg(S[n], ˜ nx) is faithfully flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
304
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
305
+ page_content=' By [[DM82] Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
306
+ page_content='21], this is equivalent to showing that the functor T : S(S[n]) → S(Sn) is fully faithful and the essential image of T is closed under taking subobjects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
307
+ page_content=' We already know that T is fully faithful.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
308
+ page_content=' Let E• = (Ei, αi) be a stratified bundle on S[n] and F• := T (E•) be the corresponding Sn-equivariant stratified bundle on Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
309
+ page_content=' If F′ ⊂ F• is a Sn-equivariant stratified subbundle, then we need to show there exists E′ ⊂ E• such that T (E′ ) = F′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
310
+ page_content=' The proof proceeds by induction on the rank of E•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
311
+ page_content=' If rank E• = 1, the proof is immediate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
312
+ page_content=' Let rank E• ≥ 2 Then the stratified bundles F• and F′ correspond to the representations πalg(Sn, (x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
313
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
314
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
315
+ page_content=' , x) → πalg(S, x)ab → GL(V ) and πalg(Sn, (x, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
316
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
317
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
318
+ page_content=' , x) → πalg(S, x)ab → GL(V ′) respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
319
+ page_content=' As πalg(S, x)ab is an abelian affine group scheme over k, all its irreducible representations are one dimen- sional.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
320
+ page_content=' Thus one gets that the πalg(S, x)ab-module V/V ′ has a one dimensional quotient W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
321
+ page_content=' Thus there is a πalg(S, x)ab-module surjection V → W such that the kernel contains V ′.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
322
+ page_content=' Let L• be the Sn-equivariant stratified bundle corresponding to W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
323
+ page_content=' Thus we have a short exact sequence of Sn-equivariant stratified bundles 0 → K• → F• → L• → 0 where F′ ⊂ K•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
324
+ page_content=' By proposition 1 above, we know that Li := ρ∗LSn i is a line bundle on S(n) and ρ∗Li = Li We claim that the following complex of sheaves on S(n) ∗ is exact for all i ∈ N (1) 0 → (ρ∗Ki)Sn|S(n) ∗ → (ρ∗Fi)Sn|S(n) ∗ → (ρ∗Li)Sn|S(n) ∗ → 0 It is enough to show that (ρ∗Fi)Sn|S(n) ∗ → (ρ∗Li)Sn|S(n) ∗ is surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
325
+ page_content=' We note that (ρ∗Fi)Sn|S(n) ∗ = h∗(Ei|S[n] ∗ ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
326
+ page_content=' Let C be the cokernel h∗(Ei|S[n] ∗ ) → (ρ∗Li)Sn|S(n) ∗ → C → 0 Pulling back under ρ, we get the following commutative diagram on Sn ∗ ρ∗h∗(Ei|S[n] ∗ ) ρ∗((ρ∗Li)Sn|S(n) ∗ ) ρ∗C 0 Fi Li|Sn ∗ 0 = = 10 The rows are exact and hence ρ∗C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
327
+ page_content=' As ρ is surjective, this implies C = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
328
+ page_content=' Thus Ki := (ρ∗Ki)Sn|S(n) ∗ is locally free on S(n) ∗ Pulling back the exact sequence (1) under h, we get a short exact sequence of locally free sheaves on S[n] ∗ 0 → h∗Ki|S[n] ∗ → Ei|S[n] ∗ → ˜Li|S[n] ∗ → 0 where ˜Li := h∗Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
329
+ page_content=' As the complement of S[n] ∗ in S[n] is of codimension ≥ 2 and Ei, L are locally free, the surjective morphism Ei|S[n] ∗ → ˜Li|S[n] ∗ extends to a unique morphism τi : Ei → ˜Li.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
330
+ page_content=' This is surjective as L is of rank 1 and τ := (τi) give a nonzero morphism of stratified bundles E• → ˜L• where ˜L• := h∗(ρ∗(L•)Sn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
331
+ page_content=' Let κ• be the kernel of the morphism E• → ˜L•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
332
+ page_content=' Then T (κ•) = K•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
333
+ page_content=' Thus, by the induction hypothesis on rank, there exists a stratified subbundle E′ ⊂ κ• ⊂ E• such that T (E′ ) = F′ .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
334
+ page_content=' □ 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
335
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
336
+ page_content=' Closed immersion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
337
+ page_content=' We begin by recalling a result from [PS20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
338
+ page_content=' Let p ∈ S(n) be a point of type (n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
339
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
340
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
341
+ page_content=' , nr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
342
+ page_content=' Let p′ i, for i = 1, 2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
343
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
344
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
345
+ page_content=' m be the points in the fiber h−1(p).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
346
+ page_content=' Let A be the local ring OS(n),p and B be the semilocal ring OSn ⊗OS(n) A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
347
+ page_content=' Then B is a finite A module and BSn = A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
348
+ page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
349
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
350
+ page_content=' When char k > n1, any Sn-equivariant surjective B-module homomorphism f : M → N of finitely generated B modules descends to surjective A-module homomorphism of the Sn-invariants M Sn → N Sn This allows us to prove the following analogue of Proposition 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
351
+ page_content='3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
352
+ page_content='6 in [PS20].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
353
+ page_content=' Proposition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
354
+ page_content=' Let E• = (Ei, αi) be a Sn-equivariant stratified bundle on Sn (1) Let p ∈ S(n) be a point of type (n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
355
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
356
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
357
+ page_content=' , nr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
358
+ page_content=' If char k > n1, then the sheaf ρ∗ESn i is locally free in a neighbourhood of p for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
359
+ page_content=' (2) Let U denote the largest open subset where ρ∗ESn i is locally free, then on ρ−1(U), the natural mor- phism ρ∗ρ∗ESn i → Ei is an isomorphism for all i ∈ N Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
360
+ page_content=' The first assertion is proved by induction on the rank of E•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
361
+ page_content=' If E• is a Sn-equivariant stratified bundle of rank 1, then by proposition 1, ρ∗ESn i is locally free on S(n) for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
362
+ page_content=' In general, as E• corresponds to a representation of the abelian group scheme πalg(S, x)ab, there exists a Sn-equivariant short exact sequence of locally free sheaves on Sn 0 → K• → E• → L• → 0 Pushing forward by ρ and taking Sn-invariants we get the exact sequence for all i 0 → ρ(Ki)Sn → ρ(Ei)Sn → ρ(Li)Sn We claim that the homomorphism on the right is surjective in the neighbourhood of a point p of type (n1, n2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
363
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
364
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
365
+ page_content=' , nr).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
366
+ page_content=' Surjectivity can be checked after passing to a formal neighbourhood of p and thus reduces to lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
367
+ page_content='1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
368
+ page_content=' By induction hypothesis on rank, both ρ(Ki)Sn and ρ(Li)Sn are locally free on a neighbourhood of p and hence so is ρ(Ei)Sn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
369
+ page_content=' 11 The second assertion follows from the observation that the natural homomorphism ρ∗ρ∗ESn i → Ei is an isomorphism on ρ−1(S(n) ) as as ρ : Sn → S(n) is finite ´etale.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
370
+ page_content=' As the complement of Sn in ρ−1(U) is of codimension ≥ 2 and both sheaves are locally free on ρ−1(U), thus the natural morphism is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
371
+ page_content=' □ Proposition 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
372
+ page_content=' Let char k > 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
373
+ page_content=' The homomorphism f : πalg(S, x)ab → πalg(S[n], ˜ nx) is faithfully flat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
374
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
375
+ page_content=' By [[DM82], Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
376
+ page_content='21], it is enough to show that the functor T : S(S[n]) → S(Sn) is essentially surjective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
377
+ page_content=' Thus we want to show that for any Sn-equivariant stratified bundle E• on Sn, there exists a stratified bundle F• on S[n] such that T (F•) = E•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
378
+ page_content=' Let U be the open subset of S(n) consisting of points of type (1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
379
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
380
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
381
+ page_content=' , 1), (2, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
382
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
383
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
384
+ page_content=' , 1), (3, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
385
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
386
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
387
+ page_content=', 1) and (2, 1, 1, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
388
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
389
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
390
+ page_content=', 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
391
+ page_content=' By assumption on characteristic of k and the previous proposition, we get that ρ∗ESn i is locally free on U.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
392
+ page_content=' Also we have on ρ−1(U), the natural morphism ρ∗ρ∗ESn i → Ei is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
393
+ page_content=' Imitating proposition 1 above, this allows us to define a stratified bundle (ρ∗ESn i , βi) on U such that ρ∗(ρ∗ESn i , βi) ≃ E•.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
394
+ page_content=' Pulling back under h to h−1(U) (whose complement in S[n] has codimension ≥ 3) and extending to S[n], we get a stratified bundle F• such that T (F•) = E• □ As f is both faithfully flat and a closed immersion, we get the following theorem Theorem 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
395
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
396
+ page_content=' Let char k > 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
397
+ page_content=' The homomorphism f : πalg(S, x)ab → πalg(S[n], ˜ nx) is an isomorphism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
398
+ page_content=' References [BHdS21] Biswas, Indranil, Ph`ung Hˆo Hai, and Jo˜ao Pedro Dos Santos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
399
+ page_content=' ”On the fundamental group schemes of certain quotient varieties.” Tohoku Mathematical Journal 73, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
400
+ page_content=' 4 (2021): 565-595.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
401
+ page_content=' [BPS06] Biswas, Indranil, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
402
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
403
+ page_content=' Parameswaran, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
404
+ page_content=' Subramanian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
405
+ page_content=' ”Monodromy group for a strongly semistable principal bundle over a curve.” Duke Mathematical Journal 132, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
406
+ page_content=' 1 (2006): 1-48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
407
+ page_content=' [DM82] Deligne, Pierre;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
408
+ page_content=' Milne, James (1982), ”Tannakian categories”, in Deligne, Pierre;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
409
+ page_content=' Milne, James;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
410
+ page_content=' Ogus, Arthur;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
411
+ page_content=' Shih, Kuang-yen (eds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
412
+ page_content=' ), Hodge Cycles, Motives, and Shimura Varieties, Lecture Notes in Mathematics, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
413
+ page_content=' 900, Springer, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
414
+ page_content=' 101–228 [dS07] Dos Santos, Jo˜ao Pedro Pinto.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
415
+ page_content=' ”Fundamental group schemes for stratified sheaves.” Journal of Algebra 317, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
416
+ page_content=' 2 (2007): 691-713.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
417
+ page_content=' [Fog68] Fogarty, John.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
418
+ page_content=' ”Algebraic families on an algebraic surface.” American Journal of Mathematics 90, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
419
+ page_content=' 2 (1968): 511-521.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
420
+ page_content=' [Fog77] Fogarty, John.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
421
+ page_content=' ”Line bundles on quasi-symmetric powers of varieties.” Journal of Algebra 44, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
422
+ page_content=' 1 (1977): 169-180.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
423
+ page_content=' [Gie75] Gieseker, David.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
424
+ page_content=' ”Flat vector bundles and the fundamental group in non-zero characteristics.” Annali della Scuola Normale Superiore di Pisa-Classe di Scienze 2, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
425
+ page_content=' 1 (1975): 1-31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
426
+ page_content=' [Har77] Hartshorne, Robin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
427
+ page_content=' Algebraic geometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
428
+ page_content=' Vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
429
+ page_content=' 52.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
430
+ page_content=' Springer Science & Business Media, 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
431
+ page_content=' [Ish83] Ishimura, Sadao.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
432
+ page_content=' ”A descent problem of vector bundles and its applications.” Journal of Mathematics of Kyoto University 23, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
433
+ page_content=' 1 (1983): 73-83.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
434
+ page_content=' [Lan11] Langer, Adrian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
435
+ page_content=' ”On the S-fundamental group scheme.” In Annales de l’Institut Fourier, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
436
+ page_content=' 61, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
437
+ page_content=' 5, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
438
+ page_content=' 2077-2119.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
439
+ page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
440
+ page_content=' [Lan12] Langer, Adrian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
441
+ page_content=' ”On the S-fundamental group scheme.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
442
+ page_content=' II.” Journal of the Institute of Mathematics of Jussieu 11, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
443
+ page_content=' 4 (2012): 835-854.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
444
+ page_content=' [N76] Nori, Madhav V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
445
+ page_content=' ”On the representations of the fundamental group.” Compositio Mathematica 33, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
446
+ page_content=' 1 (1976): 29-41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
447
+ page_content=' [N82] Nori, Madhav V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
448
+ page_content=' ”The fundamental group-scheme.” Proceedings Mathematical Sciences 91, no.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
449
+ page_content=' 2 (1982): 73-122.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
450
+ page_content=' [PS20] Paul, Arjun, and Ronnie Sebastian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
451
+ page_content=' ”Fundamental group schemes of Hilbert scheme of n points on a smooth projective surface.” Bulletin des Sciences Math´ematiques 164 (2020): 102898.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
452
+ page_content=' 12 [SGA1] Grothendieck, Alexander, and Michele Raynaud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
453
+ page_content=' ”Revˆetements´etales et groupe fondamental (SGA 1).” arXiv preprint math/0206203 (2002).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
454
+ page_content=' The Institute of Mathematical Sciences, (HBNI), Chennai 600113.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
455
+ page_content=' Email address: sauravhc@imsc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
456
+ page_content='res.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
457
+ page_content='in 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/4dE1T4oBgHgl3EQfAwIb/content/2301.02842v1.pdf'}
6tE1T4oBgHgl3EQfTQPr/content/2301.03077v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dbb779335fecdcd6ec06bc7912a00cb901b6477d2608a67c0d39887038ed49f2
3
+ size 353481
6tE1T4oBgHgl3EQfTQPr/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9beccb9bc14dbdfba8de81f25eb2982df4100c2e46f24f816590559527bdd854
3
+ size 146220
7NFLT4oBgHgl3EQfAC40/content/tmp_files/2301.11964v1.pdf.txt ADDED
@@ -0,0 +1,1078 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Adversarial Networks and Machine Learning for
2
+ File Classification
3
+ Ken St. Germain1, Josh Angichiodo
4
+ Department of Cyber Science
5
+ United States Naval Academy
6
+ Annapolis, MD
7
8
+ Abstract—Correctly identifying the type of file under exam-
9
+ ination is a critical part of a forensic investigation. The file
10
+ type alone suggests the embedded content, such as a picture,
11
+ video, manuscript, spreadsheet, etc. In cases where a system
12
+ owner might desire to keep their files inaccessible or file type
13
+ concealed, we propose using an adversarially-trained machine
14
+ learning neural network to determine a file’s true type even
15
+ if the extension or file header is obfuscated to complicate its
16
+ discovery. Our semi-supervised generative adversarial network
17
+ (SGAN) achieved 97.6% accuracy in classifying files across
18
+ 11 different types. We also compared our network against a
19
+ traditional standalone neural network and three other machine
20
+ learning algorithms. The adversarially-trained network proved
21
+ to be the most precise file classifier especially in scenarios
22
+ with few supervised samples available. Our implementation of
23
+ a file classifier using an SGAN is implemented on GitHub
24
+ (https://ksaintg.github.io/SGAN-File-Classier/).
25
+ I. INTRODUCTION
26
+ M learning can be used to determine file types based on
27
+ a file’s byte value distribution. In this work, we introduce an
28
+ adversarial learning approach to accurately identify file types
29
+ regardless of file extension, headers, or footers. By inspecting
30
+ the histogram-based distribution of byte values in a file, we
31
+ can greatly reduce the time and effort expended by subject
32
+ matter experts during the course of a forensic investigation.
33
+ Machine learning algorithms are designed to extract relevant
34
+ information from data [1], and the field of deep learning has
35
+ been shown effective in solving classification problems [2]. In
36
+ this paper we use a generative adversarial network (GAN) to
37
+ determine the type of file under investigation. Specifically, we
38
+ employ a GAN model with semi-supervised learning known
39
+ as a semi-supervised GAN (SGAN) [3] where only a small
40
+ portion of the training dataset is labeled.
41
+ A. Hiding files
42
+ Privacy advocates [4] urge users to protect their private in-
43
+ formation from criminal interception or unlawful government
44
+ overreach, and protecting the digital data stored on users’
45
+ computers, phones, and other devices can include denying
46
+ physical access or employing encryption. While encryption has
47
+ become more commonplace and accessible [5], users desiring
48
+ more security against cryptographic weaknesses [6], [7] may
49
+ apply additional measures to safeguard their information.
50
+ By changing file extensions or removing them altogether, a
51
+ user can obfuscate the true file type. While this rudimentary
52
+ technique applied to a small number of files may not be a
53
+ challenge to computer forensic investigators, it may be more
54
+ effective if used across a large body of files composed of
55
+ varying types.
56
+ Many operating systems will select (or suggest) an appli-
57
+ cation to open a file based on the file extension [8]. For
58
+ example, Microsoft Windows will use the file extension, such
59
+ as .docx to determine the application to open the file. A
60
+ file named cat.docx suggests that the file is a document
61
+ that can be opened by Microsoft Word. However, users can
62
+ change the names and extensions of the file to any arbitrary
63
+ string of characters. A file originally created as a bitmap file
64
+ named cat.bmp and renamed to cat.docx will not open
65
+ and render correctly using Microsoft Word.
66
+ There are a variety of reasons to keep the nature of a
67
+ file unknown to all but the user. By obfuscating file types,
68
+ malware developers may hope to evade email filters or anti-
69
+ virus software [9] [10]. A user engaged in illicit activities may
70
+ desire to hinder law enforcement by complicating evidence
71
+ discovery [11]. Whatever the user’s motivation, without the
72
+ correct file extension and absent a brute-force approach, an
73
+ investigator will require a tool to efficiently discover the
74
+ appropriate program to open the file.
75
+ B. Finding files
76
+ Many file types can be determined by examining the file
77
+ header and footer information, also known as a “magic num-
78
+ ber”. The file header is the first few bytes in a file and the
79
+ footer is the last few bytes in a file. Depending on file type,
80
+ the file headers and footers will be of various lengths and have
81
+ different values. Many file types will have unique headers and
82
+ footers, yet some file types will share header and footer values,
83
+ e.g., .xls, .doc, .ppt [12].
84
+ File headers and footers can be analyzed through command-
85
+ line tools that perform a binary or hexadecimal dump, or
86
+ by using binary or hexadecimal readers/editors to provide
87
+ insight to the file type. Alternatively, tools like Scalpel [13]
88
+ search a chunk of data that may contain multiple files, and
89
+ based on user-configured options, will perform file carving
90
+ that allows the investigator to see the chunk’s number and file
91
+ types within. Scalpel’s configurable options use header and
92
+ footer values as well as common signatures within a file. For
93
+ arXiv:2301.11964v1 [cs.LG] 27 Jan 2023
94
+
95
+ example, although an html file is plaintext and will not have
96
+ a header, it will likely include the text string <html>.
97
+ Regardless of an investigator’s methods, specialized knowl-
98
+ edge is required to conclude the type of file under examination.
99
+ If the hexadecimal string D0 CF 11 E0 A1 B1 1A E1 is
100
+ found in the header, this could be one of five Microsoft Office
101
+ file types [12]. When several thousand or more files require
102
+ classification, the time demand on the most experienced in-
103
+ vestigator greatly increases.
104
+ C. Contributions
105
+ This work uses machine learning algorithms trained on
106
+ extracted file features to identify the type of file under in-
107
+ vestigation. We created histograms based on the frequency of
108
+ byte-values (ranging from zero to 255) to train and then test
109
+ our machine learning algorithms. Specifically, our contribution
110
+ provides:
111
+ • A classifier from a semi-supervised generative adversarial
112
+ network designed to identify file types
113
+ • Comparison of classifier accuracy with the performance
114
+ of a traditionally-trained multi-layer perceptron (MLP)
115
+ network
116
+ • Comparison and analysis of the neural network method
117
+ compared to the results from non-neural network machine
118
+ learning algorithms, specifically Decision Tree, extreme
119
+ gradient boosting (XGBoost), and k-Nearest Neighbor
120
+ (kNN)
121
+ To the best of our knowledge, no other work has used a
122
+ classifier of an adversarially-trained neural network to conduct
123
+ file type classification. We show improved accuracy over pre-
124
+ viously explored methods can be achieved with reduced expert
125
+ analysis required to create samples for a training dataset.
126
+ This paper provides background and discussion of related
127
+ works in Section II. We then discuss our dataset and how
128
+ we derive our samples for machine learning in Section III.
129
+ We present our SGAN architecture in Section IV and discuss
130
+ other machine learning algorithms in Section V. The results
131
+ of our work are summarized in Section VI and we provide our
132
+ conclusions and future work in Section VII.
133
+ II. BACKGROUND
134
+ This section examines previous work in file classification
135
+ and introduces the SGAN. We summarize the use of byte
136
+ values within files to determine file types and we discuss
137
+ the use of machine learning in file classification. Finally, we
138
+ discuss the nature of adversarial networks and examine the
139
+ SGAN model.
140
+ A. Classification using byte values
141
+ As an alternative to header and footer inspection, McDaniel
142
+ and Heydari used the binary content of files to identify the
143
+ type in [14]. They used several algorithms based on a byte
144
+ frequency distribution fingerprint to determine a file type,
145
+ showing that file classification can be accomplished by com-
146
+ paring a candidate file’s byte distribution to the distribution of
147
+ 120 other files of known type. The accuracy of their proposed
148
+ algorithms was just under 96% when they grouped together
149
+ .acd, .doc, .xls, and .ppt file types into one class.
150
+ When these files were separately classified, the accuracy rate
151
+ dropped to 85%. Based on the binary frequency distribution
152
+ in [14], several authors have extended the research on file
153
+ classification.
154
+ In [15], Li et al. were able to improve on McDaniel and
155
+ Heydari’s accuracy in [14] using a centroid-based approach
156
+ and saw improved accuracy when truncating the files. Li used
157
+ the Manhattan Distance for each files’ byte distributions to
158
+ compare files and determine the appropriate classification. Be-
159
+ cause of file header similarity, Li created centroid models that
160
+ combined file types similar to McDaniel’s approach in [14].
161
+ Specifically, there was one model that combined .exe and
162
+ .dll files into one class, and another model that combined
163
+ .doc, .xls, and .ppt files together in another class.
164
+ Moody and Erbacher introduced the Statistical Analysis
165
+ Data Identification (SADI) algorithm in [16]. After calculating
166
+ byte values for each file, a range of statistical information
167
+ was gathered and subsequently used to determine file types.
168
+ The accuracy of SADI had varying success with nine different
169
+ file types, reaching 76% accuracy of all file types after initial
170
+ analysis. A secondary assessment on file types that previously
171
+ did not reach greater than 92% accuracy showed improvement
172
+ when characteristic patterns were considered.
173
+ Using fragments of .pdf, .rtf, and .doc files from a
174
+ publicly-available dataset [17], Rahmet et al. leveraged longest
175
+ common sub-sequences to identify file fragments in [18]. The
176
+ authors’ algorithm successfully classified these file fragments
177
+ with 92.91% overall accuracy.
178
+ Our work extends the efforts discussed here, and we also
179
+ made use of byte values and the frequency in which they arose
180
+ in a file. The byte value distribution was provided to machine
181
+ learning algorithms, and each file type was classified. While
182
+ we also used file types that shared the same header strings
183
+ and files that did not contain headers, we created models that
184
+ differentiated the files uniquely instead of choosing to group
185
+ them together.
186
+ B. Machine learning for file classification
187
+ In [19], Amirani et al. used principle component analysis
188
+ (PCA) and neural networks to achieve file classification accu-
189
+ racy of 98.33% against a pool of six different file types. The
190
+ authors used two neural networks: a five-layer MLP network
191
+ that uses PCA features as the input, and a second three-layer
192
+ MLP network to conduct file classification. Each of their six
193
+ file types were equally represented in the dataset, with 120
194
+ files of each type.
195
+ Konaray et al. conducted several experiments using a variety
196
+ of machine learning algorithms in [20]. The dataset used by
197
+ Konaray were composed of 13 text-based files (e.g., .html,
198
+ .py, .bat, etc.). The authors were able to achieve an
199
+ accuracy of 97.83% using the XGBoost algorithm [21].
200
+ Comparing statistical classification algorithms such as sup-
201
+ port vector machine (SVM) and kNN with commercially
202
+ available tools, Gopal et al. showed that machine learning
203
+
204
+ algorithms could outperform commercial products in [22]. The
205
+ authors collected byte values for their experiments using an
206
+ n-gram approach. They showed that kNN with 1-gram byte
207
+ values and SVM with 2-gram byte values greatly outperformed
208
+ commercial tools in terms of accuracy.
209
+ Inspired by the efforts in machine learning research, we
210
+ also hope to improve file classification accuracy. As we will
211
+ discuss in Section III, the dataset we used provided access to
212
+ more file types and of a wider variety than those mentioned
213
+ in the works here. The present work uses 11 types of files,
214
+ including some that are solely composed of ASCII characters
215
+ such as .txt and .html. In order to further research in this
216
+ domain, we investigated the SGAN-trained classifier.
217
+ C. Semi-supervised GAN
218
+ Semi-supervised learning requires that only a portion of the
219
+ training data be labeled. Semi-supervised learning differs from
220
+ supervised learning where all training data is labeled, and also
221
+ unsupervised learning, where no labels exist and the networks
222
+ must find their own way to organize the data. Semi-supervised
223
+ learning is valuable for large training data sets when it would
224
+ be laborious and time-intensive to manually label each file.
225
+ When training an unsupervised GAN, the discriminator,
226
+ D, is a two-class classifier that receives authentic samples
227
+ from the training dataset or spoofed samples created by
228
+ the generator, G. The generator uses random variable input
229
+ to create the fake samples and the parameters in G. The
230
+ discriminator assigns a probability from zero to one based on
231
+ its assessment that the sample is fake (0.0) or authentic (1.0).
232
+ The value function that describes this relationships from the
233
+ original work by Goodfellow [23] is given by
234
+ min
235
+ G max
236
+ D V (D, G) = Ex∼pdata(x)[log D(x)]
237
+ + Ez∼pz(z)[log(1 − D(G(z)))]
238
+ (1)
239
+ where D(x) is the probability that x came from the data
240
+ distribution pdata(x) containing authentic training samples,
241
+ and D(G(z)) is the estimate of the probability that the dis-
242
+ criminator incorrectly identifies the fake instance as authentic.
243
+ The generator network attempts to maximize D(G(z)), while
244
+ the discriminator network tries to minimize it. The generator
245
+ creates samples, G(z), based on the parameter values in G
246
+ and the random values z provided to the generator consistent
247
+ with pz(z).
248
+ With semi-supervised learning, a small percentage of the
249
+ training data is labeled and the discriminator becomes a multi-
250
+ class classifier. For N classes, the model requires N + 1
251
+ outputs to account for all the authentic classes plus one
252
+ additional class for the fake generated class. This can be
253
+ implemented in a variety of ways. Following Salimans et
254
+ al. [24], we can build an N-class classifier network, C, with
255
+ output logits {l1, l2, . . . , lN} prior to a softmax activation for
256
+ C. The logits vector is used as the input to a single perceptron
257
+ followed by the sigmoid activation function for D. The sigmoid
258
+ function is given as σ(z) =
259
+ 1
260
+ 1+e−z , where z is the output
261
+ value of the discriminator output layer perceptron. Because
262
+ D and C share the same input and hidden layer weights, both
263
+ networks act as a single network, D/C, that is updated during
264
+ backpropagation based on their respective loss functions, J(D)
265
+ and J(C). The generator loss function is given by J(G).
266
+ Figure 1 shows a functional depiction of an SGAN in
267
+ training. The training dataset is partially labeled and provided
268
+ to the D/C model for classification by C. The remainder of the
269
+ training dataset as well as the generated samples from G are
270
+ used as input to D/C for discrimination where D will predict
271
+ whether the sample came from the training dataset or if it was
272
+ created by G.
273
+ III. DATASET
274
+ A dataset containing a variety of different files was desired
275
+ to ensure we could discern among a range of files. We used
276
+ Govdocs1, a publicly-available repository of about one million
277
+ files taken from webservers in the .gov domain [17]. The entire
278
+ Govdocs1 corpus consists of 1,000 directories, however we
279
+ only used the first three folders (000, 001, and 002) creating
280
+ a total dataset of 2,946 files, totaling 1.56 GB. We chose to
281
+ limit the dataset to ensure the processing demands would not
282
+ require exceptional computational resources. This work was
283
+ accomplished using a laptop computer with a 2.60 GHz Intel
284
+ i7 processor and 32 GB RAM. Limiting the dataset also allows
285
+ our work to be easily reproduced.
286
+ The dataset contained many common file types to include
287
+ .csv, .doc, .gif, .html, .jpg, .pdf, .txt, .xls,
288
+ etc. We noted an unequal distribution of these files such as 28
289
+ .csv files, 254 .doc files, and 726 .pdf files. Unfortunately
290
+ there were some types that were especially underrepresented,
291
+ including one .gls file and two .java files.
292
+ A. Histograms
293
+ To capture byte value distributions, every file was converted
294
+ to a histogram. Each histogram contained 256 bins in the
295
+ range [0 , 255], representing the decimal value of each byte
296
+ in the file. For every bin, the frequency of that decimal value
297
+ occurring in the file was recorded. Histogram examples are
298
+ shown in Figure 2. In each plot, the bins are shown on the
299
+ N
300
+ classes
301
+ Unlabeled
302
+ samples
303
+ Labeled samples
304
+ Error
305
+ Error
306
+ [[Class1]
307
+ [Class2]
308
+ ...
309
+ [ClassN]]
310
+ [0,1]
311
+ Noise
312
+ Fake samples
313
+ Fig. 1: Training a semi-supervised generative adversarial net-
314
+ work with N classes.
315
+
316
+ 0
317
+ 128
318
+ 255
319
+ 0
320
+ 200000
321
+ 400000
322
+ .log
323
+ 0
324
+ 128
325
+ 255
326
+ 0
327
+ 50
328
+ 100
329
+ 150
330
+ .html
331
+ 0
332
+ 128
333
+ 255
334
+ 0
335
+ 20
336
+ 40
337
+ 60
338
+ 80
339
+ .html
340
+ 0
341
+ 128
342
+ 255
343
+ 0
344
+ 200
345
+ 400
346
+ 600
347
+ .html
348
+ 0
349
+ 128
350
+ 255
351
+ 0
352
+ 20
353
+ 40
354
+ 60
355
+ 80
356
+ .jpg
357
+ 0
358
+ 128
359
+ 255
360
+ 0
361
+ 10000
362
+ 20000
363
+ 30000
364
+ .doc
365
+ 0
366
+ 128
367
+ 255
368
+ 0
369
+ 200
370
+ 400
371
+ 600
372
+ .xml
373
+ 0
374
+ 128
375
+ 255
376
+ 0
377
+ 20000
378
+ 40000
379
+ .txt
380
+ 0
381
+ 128
382
+ 255
383
+ 0
384
+ 500
385
+ 1000
386
+ 1500
387
+ 2000
388
+ .html
389
+ 0
390
+ 128
391
+ 255
392
+ 0
393
+ 500
394
+ 1000
395
+ .txt
396
+ Fig. 2: Sample of histograms showing byte value distribution for various files.
397
+ horizontal axis while the frequency value is represented on the
398
+ vertical axis.
399
+ As Figure 2 shows, there are differences in the byte dis-
400
+ tribution between both files of the same type and files of
401
+ different types, but there are also similarities in different file
402
+ types such as .txt and .html files. Machine learning is an
403
+ appropriate tool to capture the histogram distributions and not
404
+ only differentiate among the different file types but also group
405
+ together files of matching type despite varying byte values.
406
+ B. Samples
407
+ After creating histograms for each file, we then processed
408
+ the histograms into samples. To ensure consistency across our
409
+ samples regardless of file size, we normalized each histogram,
410
+ scaling each to a cumulative distribution of 1.0. Figure 3
411
+ shows the same .pdf file where Figure 3a is the original
412
+ and Figure 3b is normalized.
413
+ Since insufficient sample sizes for each class can precipi-
414
+ tate classification error [25], we removed the file types that
415
+ appeared less than 20 times, representing less than 0.7% of
416
+ the total. There were 14 different file types and 86 total
417
+ files removed, leaving our dataset with 11 classes and 2860
418
+ samples. Our dataset’s composition is shown in Table I. The
419
+ sample order was then shuffled and finally split into training
420
+ 0
421
+ 50
422
+ 100
423
+ 150
424
+ 200
425
+ 250
426
+ 0
427
+ 200
428
+ 400
429
+ 600
430
+ 800
431
+ (a)
432
+ 0
433
+ 50
434
+ 100
435
+ 150
436
+ 200
437
+ 250
438
+ 0.000
439
+ 0.025
440
+ 0.050
441
+ 0.075
442
+ 0.100
443
+ 0.125
444
+ 0.150
445
+ 0.175
446
+ (b)
447
+ Fig. 3: Example histogram samples showing (a) an unscaled
448
+ .pdf file and (b) a normalized .pdf file.
449
+ and testing datasets. The training dataset used 80% of the total
450
+ samples, while the remaining 20% were reserved for testing.
451
+ IV. SGAN ARCHITECTURE
452
+ The adversarial competition in the SGAN is a minimax
453
+ game described by (1) where the discriminative model at-
454
+ tempts to correctly identify authentic training samples from
455
+ a distribution produced by the scaled histograms representing
456
+ the dataset files, pdata, and fake training samples created by
457
+ the generator.
458
+ While D and G adversarially train each other, they learn
459
+ to improve their individual performances. Additionally, C is
460
+ trained on labeled samples from the training dataset. Although
461
+ C does not directly receive unlabeled authentic or fake sam-
462
+ ples, the weights of C are affected by unsupervised training
463
+ since it shares weights with D in the D/C implementation.
464
+ The SGAN was implemented using the Python program-
465
+ ming language, Keras [26] front-end, and Tensorflow [27]
466
+ back-end. Additionally, Numpy, and Matplotlib Python li-
467
+ braries were used. The overall SGAN design is summarized
468
+ in Table II, with a total of 417,271 parameters for the dis-
469
+ criminator and the generator, and 304,779 parameters for the
470
+ classifier. The file size of the classifier was 3,634 KB.
471
+ The discriminator/classifier network, D/C, is a densely or
472
+ fully connected MLP deep neural network (DNN) with a single
473
+ input for the file histograms. Four additional fully connected
474
+ layers of size 512, 256, 128 and 64 are followed with rectified
475
+ linear unit (ReLU) activation functions. The ReLU function,
476
+ g is given by g(z) = max(0, z). The four hidden layers use
477
+ Dropout of 0.3 to prevent overfitting. Prior to the output layers,
478
+ a fully connected layer of size 11 is used to capture the number
479
+ of file types to be classified. The discriminator output layer of
480
+ size 1 is fully connected and uses a sigmoid activation function
481
+ to provide values [0.0, 1.0] as discussed in Section II-C. The
482
+ classifier output is a softmax activation connected to the 11
483
+ TABLE I: Dataset file composition
484
+ file type
485
+ .csv
486
+ .doc
487
+ .gif
488
+ .html
489
+ .jpg
490
+ .pdf
491
+ .ppt
492
+ .ps
493
+ .txt
494
+ .xls
495
+ .xml
496
+ samples
497
+ 28
498
+ 254
499
+ 40
500
+ 681
501
+ 229
502
+ 726
503
+ 207
504
+ 40
505
+ 486
506
+ 137
507
+ 32
508
+
509
+ TABLE II: SGAN architecture
510
+ Discriminator/Classifier:
511
+ layer
512
+ output size
513
+ activation
514
+ Input: x ∼ pdata(x)
515
+ 256
516
+ Fully Connected
517
+ 512
518
+ ReLU
519
+ Dropout = 0.3
520
+ Fully Connected
521
+ 256
522
+ ReLU
523
+ Dropout = 0.3
524
+ Fully Connected
525
+ 128
526
+ ReLU
527
+ Dropout = 0.3
528
+ Fully Connected
529
+ 64
530
+ ReLU
531
+ Dropout = 0.3
532
+ Fully Connected
533
+ 11 ln = {l1, l2, . . . , l11}
534
+ Discriminator Output
535
+ 1
536
+ sigmoid
537
+ Classifier Output
538
+ 11
539
+ softmax
540
+ Generator:
541
+ layer
542
+ output
543
+ activation
544
+ Input: z ∼ pz(z)
545
+ 100
546
+ Fully Connected
547
+ 32
548
+ ReLU
549
+ Dropout = 0.3
550
+ Fully Connected
551
+ 64
552
+ ReLU
553
+ Dropout = 0.3
554
+ Fully Connected
555
+ 128
556
+ ReLU
557
+ Dropout = 0.3
558
+ Fully Connected
559
+ 256
560
+ ReLU
561
+ Output
562
+ 256
563
+ sigmoid
564
+ node layer. The softmax function indicates the most likely class
565
+ to which the input belongs. The learning rate for D/C was
566
+ 0.0005 using the Adam [28] optimizer and training was done
567
+ with batches of 32 samples.
568
+ The generator network, G, has a single input with 100 nodes
569
+ fully connected to the first hidden layer of size 32. Two
570
+ additional hidden layers of sizes 64 and 128 are again fully
571
+ connected using ReLU activations. Finally, a layer of size 256
572
+ is connected to the output layer and sigmoid activation that
573
+ ultimately creates the fake histograms samples. The learning
574
+ rate for G was 0.0005 using the Adam optimizer.
575
+ V. MACHINE LEARNING ALGORITHMS
576
+ In order to illustrate the SGAN’s performance when clas-
577
+ sifying files, we used additional machine learning algorithms.
578
+ We assessed another neural network, the decision trees learn-
579
+ ing method, the XGBoost algorithm, and the nearest neighbors
580
+ algorithm. The same training and testing dataset were used
581
+ for each machine learning model. The SGAN was the most
582
+ complex to train due to using multiple neural networks and
583
+ no convergence to a global minima.
584
+ In terms of structure, the closest model to the SGAN is a
585
+ supervised learning-based neural network. We created an MLP
586
+ network with identical architecture to our SGAN classifier.
587
+ The standalone MLP network was trained in a fully supervised
588
+ manner to accurately select the correct file type based on input.
589
+ Both the SGAN and standalone MLP models were trained with
590
+ a batch size of 32 samples, and training was limited to no more
591
+ than 300 epochs. Following training, the best classifiers were
592
+ selected based on their accuracy against the training dataset.
593
+ These classifiers were then evaluated on the test dataset as
594
+ reported in Section VI.
595
+ Decision trees are a supervised learning approach that can
596
+ be used to accomplish multi-class classification [29]. Using
597
+ the features of the histograms, the decision tree algorithm
598
+ examines the parametric values in each sample and attempts
599
+ to accurately classify the file based on a series of decisions
600
+ based on learned thresholds.
601
+ The XGBoost algorithm was implemented as a classifier.
602
+ XGBoost is a supervised learning tool that can be used to
603
+ help us predict the correct file type category. With multiple
604
+ classes, the multi-class logistic loss function was used to train
605
+ the model.
606
+ Finally, the nearest neighbors classification algorithm com-
607
+ pares measurements of the input data and training data [29]
608
+ based on previously stored training information. The classifi-
609
+ cation result is determined by the number of samples selected,
610
+ k, with the smallest Euclidean distance among the sample
611
+ attributes. We iterated k from one to six to determine the most
612
+ appropriate number of neighbors to consider when deciding
613
+ the classification.
614
+ VI. RESULTS
615
+ Our results are summarized in Table III. The SGAN was
616
+ most accurate among all other machine learning algorithms
617
+ regardless of the number of supervised samples used in train-
618
+ ing. When using the entirety of the training data for training
619
+ the SGAN classifier, we achieved the highest classification
620
+ performance with the SGAN at 97.552% accuracy. Figure 4
621
+ shows the confusion matrix of the SGAN when the classifier
622
+ had access to the entire training data. We see that the SGAN
623
+ performed worst at identifying .xml files at 83% accuracy,
624
+ confusing them with .html files. Looking over our dataset,
625
+ we note that .xml files were among the fewest number of
626
+ samples available for training. For some test samples, the
627
+ SGAN confused .ppt files with .doc files, and some .pdf
628
+ files were misidentified as .jpg files. The standalone MLP
629
+ network was nearly as accurate, reaching 96.15%.
630
+ .csv
631
+ .doc
632
+ .gif
633
+ .html
634
+ .jpg
635
+ .pdf
636
+ .ppt
637
+ .ps
638
+ .txt
639
+ .xls
640
+ .xml
641
+ Predicted label
642
+ .csv
643
+ .doc
644
+ .gif
645
+ .html
646
+ .jpg
647
+ .pdf
648
+ .ppt
649
+ .ps
650
+ .txt
651
+ .xls
652
+ .xml
653
+ True label
654
+ 1.0
655
+ 1.0
656
+ 1.0
657
+ 0.97
658
+ 1.0
659
+ 0.96
660
+ 0.97
661
+ 1.0
662
+ 0.98
663
+ 1.0
664
+ 0.83
665
+ SGAN File Classifier
666
+ 0.0
667
+ 0.2
668
+ 0.4
669
+ 0.6
670
+ 0.8
671
+ 1.0
672
+ Fig. 4: Confusion matrix for fully-supervised SGAN.
673
+
674
+ TABLE III: Classification Accuracy
675
+ Number of
676
+ supervised samples
677
+ SGAN
678
+ Standalone
679
+ MLP
680
+ Decision Tree
681
+ XGBoost
682
+ kNN, k = 1
683
+ kNN, k = 2
684
+ kNN, k = 3
685
+ kNN, k = 4
686
+ kNN, k = 5
687
+ kNN, k = 6
688
+ 2288
689
+ 0.97552
690
+ 0.96154
691
+ 0.90734
692
+ 0.90384
693
+ 0.88986
694
+ 0.82692
695
+ 0.874126
696
+ 0.83042
697
+ 0.85490
698
+ 0.81293
699
+ 1144
700
+ 0.93357
701
+ 0.92132
702
+ 0.86363
703
+ 0.87413
704
+ 0.86713
705
+ 0.79720
706
+ 0.84091
707
+ 0.75350
708
+ 0.81469
709
+ 0.76049
710
+ 500
711
+ 0.91783
712
+ 0.9021
713
+ 0.82168
714
+ 0.77972
715
+ 0.84965
716
+ 0.71504
717
+ 0.76573
718
+ 0.62063
719
+ 0.74650
720
+ 0.65734
721
+ 100
722
+ 0.87413
723
+ 0.81469
724
+ 0.48252
725
+ 0.65559
726
+ 0.71504
727
+ 0.44406
728
+ 0.61189
729
+ 0.48427
730
+ 0.52800
731
+ 0.38990
732
+ 50
733
+ 0.81993
734
+ 0.62062
735
+ 0.26573
736
+ 0.56818
737
+ 0.66084
738
+ 0.38112
739
+ 0.54895
740
+ 0.43007
741
+ 0.30944
742
+ 0.08741
743
+ If we reduce the number of supervised samples provided
744
+ to our machine learning algorithms, we expect our testing
745
+ accuracy will be somewhat reduced. In the course of a forensic
746
+ investigation, subject matter expertise and a finite amount of
747
+ time must be prioritized, and since creating a fully-labeled
748
+ dataset is resource intensive, a worthy goal might be to balance
749
+ diminishing returns from further training a machine learning
750
+ algorithm against the time requirements needed for other tasks.
751
+ When drastically reducing the training input down to a sample
752
+ size of 50, only 2.2% of the training dataset, the SGAN
753
+ achieved 81.99% accuracy while the standalone MLP dropped
754
+ to 62.06% accuracy. The confusion matrices for this case are
755
+ shown in Figure 5.
756
+ Comparing Figure 5a and Figure 5b, we see that with
757
+ fewer samples, both neural networks continued to struggle
758
+ in categorizing .xml and .gif files. However, with 50
759
+ supervised samples, both the SGAN and standalone MLP had
760
+ more confusion between .xml files and .html files. The
761
+ .gif files were incorrectly predicted to be .ppt files as
762
+ before, but also as .jpg files. We also see .xls files were
763
+ incorrectly categorized as .doc files, which is notable as
764
+ they are both Microsoft products and share the same header
765
+ information.
766
+ The decision tree, XGBoost, and kNN algorithms performed
767
+ relatively poorly with respect to classification accuracy com-
768
+ pared to the neural networks, especially as the number of
769
+ supervised samples were reduced. This is likely due to the
770
+ number of dimensions under assessment with our training
771
+ and testing samples. The “curse of dimensionality” [30] can
772
+ sometimes be overcome with enough samples, so reducing
773
+ a training dataset has a predictably deleterious effect on
774
+ performance.
775
+ The fully supervised SGAN model is implemented on
776
+ GitHub (https://ksaintg.github.io/SGAN-File-Classier/). Re-
777
+ searchers can make use of this implementation to test how
778
+ altering file headers, changing byte values, deleting portions
779
+ of files, etc. will affect classification accuracy. To determine if
780
+ the file headers would change the SGAN accuracy, we tested
781
+ our fully-supervised SGAN with a test dataset with altered file
782
+ headers. Except for .xml, .html, and .txt files which do
783
+ not make use of file headers, we replaced the first six bytes
784
+ of each test dataset file with the hexadecimal string AA BB
785
+ CC DD EE FF. The test accuracy for determining the file
786
+ type between files with altered and unaltered file headers was
787
+ nearly identical. Training for up to 300 epochs on a fully-
788
+ supervised training dataset with unaltered headers, there was
789
+ only a disparity in altered vs. unaltered test accuracy at epoch
790
+ 135, where the difference was 0.14%.
791
+ .csv
792
+ .doc
793
+ .gif
794
+ .html
795
+ .jpg
796
+ .pdf
797
+ .ppt
798
+ .ps
799
+ .txt
800
+ .xls
801
+ .xml
802
+ Predicted label
803
+ .csv
804
+ .doc
805
+ .gif
806
+ .html
807
+ .jpg
808
+ .pdf
809
+ .ppt
810
+ .ps
811
+ .txt
812
+ .xls
813
+ .xml
814
+ True label
815
+ 1.0
816
+ 0.8
817
+ 0.62
818
+ 0.81
819
+ 0.9
820
+ 0.93
821
+ 0.93
822
+ 0.85
823
+ 0.64
824
+ 0.65
825
+ 0.5
826
+ SGAN File Classifier
827
+ 0.0
828
+ 0.2
829
+ 0.4
830
+ 0.6
831
+ 0.8
832
+ 1.0
833
+ (a)
834
+ .csv
835
+ .doc
836
+ .gif
837
+ .html
838
+ .jpg
839
+ .pdf
840
+ .ppt
841
+ .ps
842
+ .txt
843
+ .xls
844
+ .xml
845
+ Predicted label
846
+ .csv
847
+ .doc
848
+ .gif
849
+ .html
850
+ .jpg
851
+ .pdf
852
+ .ppt
853
+ .ps
854
+ .txt
855
+ .xls
856
+ .xml
857
+ True label
858
+ 1.0
859
+ 0.86
860
+ 0.62
861
+ 0.67
862
+ 0.67
863
+ 0.75
864
+ 0.86
865
+ 0.46
866
+ 0.3
867
+ 0.39
868
+ 0.5
869
+ Standalone MLP File Classifier
870
+ 0.0
871
+ 0.2
872
+ 0.4
873
+ 0.6
874
+ 0.8
875
+ 1.0
876
+ (b)
877
+ Fig. 5: Confusion matrices for (a) SGAN and (b) stan-
878
+ dalone MLP trained with 50 supervised samples.
879
+ .
880
+ VII. CONCLUSION AND FUTURE WORK
881
+ The adversarial training of a neural network produced
882
+ encouraging results in terms of classification accuracy. While
883
+ the neural networks were more complex to train than the
884
+ other machine learning algorithms, the accuracy results were
885
+ far superior. Though the SGAN was the most complex of all
886
+ the models, its accuracy was the best at correctly classifying
887
+ files based on their byte value distribution, especially with
888
+
889
+ few supervised samples. Once trained, the time difference in
890
+ classifying the dataset between any of the algorithms was
891
+ indistinguishable. This work leads to future research using
892
+ additional neural network architectures and using our spoofed
893
+ histograms from the generator network to improve other
894
+ machine learning algorithms.
895
+ REFERENCES
896
+ [1] M. P. Deisenroth, A. A. Faisal, and C. S. Ong, Mathematics for Machine
897
+ Learning.
898
+ Cambridge University Press, Apr. 2020.
899
+ [2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
900
+ MIT
901
+ Press, 2016. [Online]. Available: http://www.deeplearningbook.org
902
+ [3] A. Odena, “Semi-Supervised Learning with Generative Adversarial
903
+ Networks,” arXiv:1606.01583 [cs, stat], Oct. 2016. [Online]. Available:
904
+ http://arxiv.org/abs/1606.01583
905
+ [4] H. Fakhoury and D. Kayyali, “Know Your Rights,” Electronic Frontier
906
+ Foundation, Oct. 2014. [Online]. Available: https://www.eff.org/issues/
907
+ know-your-rights
908
+ [5] A. Peterson, “Everything you need to know about encryption: Hint,
909
+ you’re already using it.” Washington Post, Dec. 2015. [Online]. Avail-
910
+ able: https://www.washingtonpost.com/news/the-switch/wp/2015/12/08/
911
+ you-already-use-encryption-heres-what-you-need-to-know-about-it/
912
+ [6] A. Barenghi, L. Breveglieri, I. Koren, and D. Naccache, “Fault Injection
913
+ Attacks on Cryptographic Devices: Theory, Practice, and Countermea-
914
+ sures,” Proceedings of the IEEE, vol. 100, no. 11, pp. 3056–3076, Nov.
915
+ 2012.
916
+ [7] A. Mukherjee, S. A. A. Fakoorian, J. Huang, and A. L. Swindlehurst,
917
+ “Principles of Physical Layer Security in Multiuser Wireless Networks:
918
+ A Survey,” IEEE Communications Surveys Tutorials, vol. 16, no. 3, pp.
919
+ 1550–1573, 2014.
920
+ [8] “Filename
921
+ extension
922
+ definition,”
923
+ The
924
+ Linux
925
+ Information
926
+ Project
927
+ (LINFO), Jul. 2006. [Online]. Available: http://www.linfo.org/filename
928
+ extension.html
929
+ [9] Microsoft,
930
+ “Blocked
931
+ attachments
932
+ in
933
+ Outlook.”
934
+ [Online].
935
+ Avail-
936
+ able:
937
+ https://support.microsoft.com/en-us/office/blocked-attachments-
938
+ in-outlook-434752e1-02d3-4e90-9124-8b81e49a8519
939
+ [10] B.
940
+ Collins,
941
+ “Don’t
942
+ Click
943
+ On
944
+ These
945
+ 5
946
+ Danger-
947
+ ous
948
+ Email
949
+ Attachments,”
950
+ Jan.
951
+ 2021.
952
+ [Online].
953
+ Avail-
954
+ able: https://www.forbes.com/sites/barrycollins/2021/01/16/dont-click-
955
+ on-these-5-dangerous-email-attachments/
956
+ [11] L. Freeh, “The Impact of Encryption on Public Safety,” Statement
957
+ Before
958
+ the
959
+ Permanent
960
+ Select
961
+ Committee
962
+ on
963
+ Intelligence
964
+ United
965
+ States House of Representatives, Sep. 1997. [Online]. Available:
966
+ https://irp.fas.org/congress/1997 hr/h970909f.htm
967
+ [12] D.
968
+ Rentz,
969
+ “The
970
+ Microsoft
971
+ Compound
972
+ Document
973
+ File
974
+ Format,”
975
+ Aug.
976
+ 2007.
977
+ [Online].
978
+ Available:
979
+ http://www.openoffice.org/sc/
980
+ compdocfileformat.pdf
981
+ [13] G. G. Richard III and V. Roussev, “Scalpel: A Frugal, High Performance
982
+ File Carver.” in The Digital Forensics Research Conference, New
983
+ Orleans, LA, USA, Aug. 2005. [Online]. Available: https://dfrws.org/
984
+ presentation/scalpel-a-frugal-high-performance-file-carver/
985
+ [14] M. McDaniel and M. Heydari, “Content based file type detection
986
+ algorithms,” in 36th Annual Hawaii International Conference on System
987
+ Sciences, 2003. Proceedings of the, Jan. 2003.
988
+ [15] W.-J. Li, K. Wang, S. Stolfo, and B. Herzog, “Fileprints: identifying file
989
+ types by n-gram analysis,” in Proceedings from the Sixth Annual IEEE
990
+ SMC Information Assurance Workshop, Jun. 2005, pp. 64–71.
991
+ [16] S. J. Moody and R. F. Erbacher, “S ´ADI - Statistical Analysis for
992
+ Data Type Identification,” in 2008 Third International Workshop on
993
+ Systematic Approaches to Digital Forensic Engineering, May 2008, pp.
994
+ 41–54.
995
+ [17] S. Garfinkel, P. Farrell, V. Roussev, and G. Dinolt, “Bringing
996
+ science to digital forensics with standardized forensic corpora,” Digital
997
+ Investigation, vol. 6, pp. S2–S11, Sep. 2009. [Online]. Available:
998
+ https://linkinghub.elsevier.com/retrieve/pii/S1742287609000346
999
+ [18] R. F. Rahmat, F. Nicholas, S. Purnamawati, and O. S. Sitompul,
1000
+ “File Type Identification of File Fragments using Longest Common
1001
+ Subsequence (LCS),” Journal of Physics: Conference Series, vol. 801,
1002
+ p. 012054, Jan. 2017, publisher: IOP Publishing. [Online]. Available:
1003
+ https://doi.org/10.1088/1742-6596/801/1/012054
1004
+ [19] M. C. Amirani, M. Toorani, and A. Beheshti, “A new approach to
1005
+ content-based file type detection,” in 2008 IEEE Symposium on Comput-
1006
+ ers and Communications, Jul. 2008, pp. 1103–1108, iSSN: 1530-1346.
1007
+ [20] S. K. Konaray, A. Toprak, G. M. Pek, H. Akc¸ekoce, and D. Kılınc¸,
1008
+ “Detecting File Types Using Machine Learning Algorithms,” in 2019
1009
+ Innovations in Intelligent Systems and Applications Conference (ASYU),
1010
+ Oct. 2019, pp. 1–4.
1011
+ [21] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
1012
+ in Proceedings of the 22nd ACM SIGKDD International Conference
1013
+ on Knowledge Discovery and Data Mining, ser. KDD ’16.
1014
+ New York,
1015
+ NY, USA: Association for Computing Machinery, Aug. 2016, pp.
1016
+ 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785
1017
+ [22] S. Gopal, Y. Yang, K. Salomatin, and J. Carbonell, “Statistical Learning
1018
+ for File-Type Identification,” in 2011 10th International Conference on
1019
+ Machine Learning and Applications and Workshops, vol. 1, Dec. 2011,
1020
+ pp. 68–73.
1021
+ [23] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
1022
+ S. Ozair, A. Courville, and Y. Bengio, “Generative Adversarial Nets,” in
1023
+ Proceedings of the 27th International Conference on Neural Information
1024
+ Processing Systems - Volume 2, ser. NIPS’14.
1025
+ Cambridge, MA, USA:
1026
+ MIT Press, 2014, pp. 2672–2680.
1027
+ [24] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford,
1028
+ and
1029
+ X.
1030
+ Chen,
1031
+ “Improved
1032
+ Techniques
1033
+ for
1034
+ Training
1035
+ GANs,”
1036
+ in
1037
+ Advances in Neural Information Processing Systems 29, D. D. Lee,
1038
+ M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett, Eds.
1039
+ Curran
1040
+ Associates, Inc., 2016, pp. 2234–2242. [Online]. Available: http:
1041
+ //papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf
1042
+ [25] S. Raudys and A. Jain, “Small sample size effects in statistical pattern
1043
+ recognition: recommendations for practitioners,” IEEE Transactions on
1044
+ Pattern Analysis and Machine Intelligence, vol. 13, no. 3, pp. 252–264,
1045
+ Mar. 1991, conference Name: IEEE Transactions on Pattern Analysis
1046
+ and Machine Intelligence.
1047
+ [26] F. Chollet, et al., Keras, 2015, https://keras.io. [Online]. Available:
1048
+ https://keras.io
1049
+ [27] M.
1050
+ Abadi,
1051
+ et
1052
+ al.,
1053
+ “TensorFlow:
1054
+ Large-Scale
1055
+ Machine
1056
+ Learning
1057
+ on
1058
+ Heterogeneous
1059
+ Systems,”
1060
+ 2015.
1061
+ [Online].
1062
+ Available:
1063
+ https://
1064
+ www.tensorflow.org/
1065
+ [28] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
1066
+ Proceedings of the 3rd International Conference on Learning Represen-
1067
+ tations (ICLR), Dec. 2014.
1068
+ [29] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
1069
+ O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
1070
+ J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
1071
+ d. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of
1072
+ Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011.
1073
+ [Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html
1074
+ [30] K. Murphy, Probabilistic Machine Learning: An introduction.
1075
+ MIT
1076
+ Press, 2022. [Online]. Available: https://probml.github.io/pml-book/
1077
+ book1.html
1078
+
7NFLT4oBgHgl3EQfAC40/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dAzT4oBgHgl3EQf-f5K/content/2301.01934v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e1654535495ea9a22c317d942ef6d93439d80075a8e048b7c11e79f2579e3f
3
+ size 413180
7dAzT4oBgHgl3EQf-f5K/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8bf9e1b0b552c4b1ceea5149c6714f3678459dfc571e56f655e2ed4f9edf64c0
3
+ size 156522
7tFJT4oBgHgl3EQfmyyq/content/2301.11589v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8c3aae8f93028f9716dfefaa7522dabf30fe3a061bc708fe0a2e940a5ba3abdd
3
+ size 461275
7tFJT4oBgHgl3EQfmyyq/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36f496b05a3365bccccf816ceef6d00bb8bfed0d62d4ed1888df939575af695c
3
+ size 1900589
7tFJT4oBgHgl3EQfmyyq/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9c93f954a2ac5ec68d697a8ce6a675ff4f85d55eb02e89018f99a43df230d53
3
+ size 85902
8tFQT4oBgHgl3EQfITXl/content/tmp_files/2301.13252v1.pdf.txt ADDED
@@ -0,0 +1,595 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Received 20 December 2022;
2
+ Revised 06 January 2023;
3
+ Accepted 06 January 2023
4
+ DOI: xxx/xxxx
5
+ PROCEEDINGS
6
+ Equations of State for Dense Matter and Atrophysical Constraints
7
+ Rafael Bán Jacobsen1 | Verônica Dexheimer2 | Ricardo Luciano Sonego Farias1
8
+ 1Universidade Federal de Santa Maria
9
+ (UFSM), Santa Maria, Brazil
10
+ 2Department of Physics, Kent State
11
+ University, Kent, OH 44243, USA
12
+ ABSTRACT: This conference proceeding presents an overview of the modern
13
+ approaches in the study of baryonic matter at high densities, focusing on the use of
14
+ online repositories such as CompOSE and MUSES for the calculation of neutron
15
+ star properties. In this context, relevant astrophysical constraints for the equations of
16
+ state (mass-radius relation, speed of sound, tidal deformability) are discussed.
17
+ KEYWORDS:
18
+ Neutron Star EoS, Dense matter, Astrophysical constraints, CompOSE, MUSES
19
+ 1
20
+ GENERAL ASPECTS OF THE
21
+ EQUATION OF STATE FOR DENSE MATTER
22
+ The study of the properties of compressed baryonic matter,
23
+ or, more specifically, strongly interacting matter at high densi-
24
+ ties, is a mostly relevant topic for current research in Physics,
25
+ with implications both in the microscopic and in the large scale
26
+ realms of nature. In the first domain, heavy-ion collision exper-
27
+ iments, such as those carried out by the Relativistic Heavy
28
+ Ion Collider (RHIC) at Brookhaven National Laboratory and
29
+ the Large Hadron Collider (LHC) at CERN, provide numerous
30
+ data on the behavior of baryonic matter at extreme condi-
31
+ tions of density and temperature. Additionally, in the second
32
+ domain, astronomic observations of neutron stars, from both
33
+ orbiting and ground based observatories, spanning the electro-
34
+ magnetic spectrum from 훾-rays to radio wavelengths and now
35
+ also including gravitational waves, can unveil significant prop-
36
+ erties of baryonic matter at high densities, since neutron stars
37
+ contain compressed baryonic matter in their centers. These
38
+ remnants of massive stars after core-collapse supernova explo-
39
+ sions are typically about 12 kilometers across and may contain
40
+ up to 2 solar masses (2푀⊙), implying core densities as high as
41
+ 10 times nuclear saturation density (∼ 1015푔∕푐푚3).
42
+ In both cases, linking data to theoretical description of bary-
43
+ onic matter depends on the equation of state (EoS) adopted.
44
+ In a broad sense, an EoS is a thermodynamic equation relat-
45
+ ing state variables (and usually including the pressure). In the
46
+ specific field of nuclear astrophysics, it is also expected that
47
+ an EoS provides a full thermodynamic list of variables (e.g.,
48
+ chemical potentials, entropy per baryon), particle composition
49
+ of the system (the proportion of the different types of lep-
50
+ tons, nucleons, and hyperons), microscopic information (e.g.,
51
+ effective masses and pairing gaps) and stellar properties (e.g.,
52
+ maximum mass and radius, tidal deformability).
53
+ EoS input tables for astrophysical simulations usually
54
+ includes baryon number density (푛퐵), charge fraction (푌푄), and
55
+ temperature (푇 ) as independent variables. A 1-dimensional
56
+ EoS table depends only on the parameter 푛퐵 and may describe
57
+ cold isospin-symmetric matter (푇 = 0 and 푌푄 = 0.5), cold
58
+ neutron matter (푇 = 0 and 푌푄 = 0.0), or cold 훽-equilibrated
59
+ matter (푇 = 0 and 푌푄 determined by the conditions of 훽-
60
+ equilibrium and charge neutrality). A 2-dimensional EoS table
61
+ depends on two of the three aforementioned independent vari-
62
+ ables and may describe, for example, dense matter at zero tem-
63
+ perature (varying 푛퐵 and 푌푄 with 푇 = 0), symmetric matter
64
+ (varying 푛퐵 and 푇 with 푌푄 = 0.5), neutron matter (varying 푛퐵
65
+ and 푇 with 푌푄 = 0), and 훽-equilibrated matter (varying 푛퐵 and
66
+ 푇 , and calculating 푌푄 according to 훽-equilibrium and charge
67
+ neutrality). Nonetheless, a 3-dimensional EoS table depends
68
+ on all three free parameters and serves for general purposes.
69
+ Namely, a 3-dimensional EoS table is required for supernova
70
+ and mergers simulations as long as, differently from neutron
71
+ stars, the matter in proto-neutron stars and in hypermassive
72
+ stars is hot and not 훽-equilibrated.
73
+ A complete EoS for neutron stars is expected to describe
74
+ a system with nuclei in the lower density regime, evolving to
75
+ bulk hadronic matter (nucleons, hyperons, deconfined quarks)
76
+ at higher densities. Inside neutron stars, this corresponds to the
77
+ crust and core, respectively (see Fig. 1 ).
78
+ arXiv:2301.13252v1 [astro-ph.HE] 30 Jan 2023
79
+
80
+ 2
81
+ V. Dexheimer, R.B. Jacobsen, R.L.S. Farias
82
+ FIGURE 1 Schematic structure of a neutron star. Figure
83
+ modified from Weber et al. (2014).
84
+ An EoS for dense and hot matter must be based on a quan-
85
+ tum relativistic description, because this framework ensures
86
+ respect to causality, as long as vector interactions are not too
87
+ strong. A realistic dense and hot EoS must also obey a series
88
+ of nuclear and quantum chromodynamics (QCD) constraints:
89
+ • To reproduce chiral symmetry restoration, as demanded
90
+ by QCD at large densities and temperatures (with a cor-
91
+ respondent decrease in the overall baryonic masses);
92
+ • To reproduce lattice QCD results at finite temperature
93
+ (which are provided at any isospin and strangeness, but
94
+ are restricted to low density relative to the temperature);
95
+ • To be in agreement with the (nearly) isospin-symmetric
96
+ and zero net strangeness heavy-ion collision physics at
97
+ finite temperature;
98
+ • To reproduce perturbative QCD results in the relevant
99
+ regime.
100
+ • To
101
+ reproduce
102
+ standard
103
+ zero-temperature
104
+ isospin-
105
+ symmetric nuclear physics results around saturation
106
+ density.
107
+ 2
108
+ MODERN SOURCES FOR EQUATIONS
109
+ OF STATE
110
+ In order to face the challenge of finding an adequate EoS for
111
+ dense matter in this variety of phenomena, online repositories
112
+ of equations of state have been built in recent years. CompOSE
113
+ and MUSES are among these modern sources for 1-, 2-, and
114
+ 3-dimensional EoS tables.
115
+ 2.1
116
+ COMPOSE
117
+ CompOSE (CompStar Online Supernovae Equations of
118
+ State)1 is the largest repository of this kind, offering almost 300
119
+ equations of state, divided in families (cold neutron star EoS,
120
+ cold matter EoS, neutron matter EoS, general purpose EoS,
121
+ and neutron star crust EoS) and their subgroups (models with
122
+ hyperons and delta resonances, hybrid quark-hadron models,
123
+ models with hyperons, models with kaon condensate, nucle-
124
+ onic models, and quark models). The repository also provides
125
+ a software to interpolate data, calculate additional quantities,
126
+ and graph EoS dependencies. Data tables, associated software
127
+ and the manual, can be freely downloaded, cf. Dexheimer et
128
+ al. (2022); Typel et al. (2022).
129
+ Paradigmatic examples of the usefulness of such a database
130
+ can be found in studies that carry out comparisons of the
131
+ predictions made by different models for the same phys-
132
+ ical system. For instance, a set of microscopic, covariant
133
+ density-functional, and non-relativistic Skyrme-type equations
134
+ of state, obtained from CompOSE, has been employed to
135
+ study the structure of purely nucleonic 훽-equilibrated neu-
136
+ tron stars at finite temperature (Wei, Burgio, Raduta, &
137
+ Schulze, 2021). Considering the agreement with presently
138
+ available astrophysical observational constraints, this study
139
+ showed that the magnitude of thermal effects depends on
140
+ the nucleon effective mass as well as on the stiffness of
141
+ the cold equation of state. Regarding the equations of state
142
+ themselves, an appropriate quantity to analyze in this con-
143
+ text is the relative thermal pressure, defined as 푝푟푎푡푖표
144
+ =
145
+ 푝푡ℎ∕푝0 = [푝(휌퐵, 푥푇 , 푇 ) − 푝(휌퐵, 푥0, 0)] ∕푝(휌퐵, 푥0, 0), where 휌퐵
146
+ is the baryonic density, 푇 is temperature and 푥0 and 푥푇 are
147
+ the respective proton fractions of cold and hot matter. The
148
+ ratio of thermal pressure as a function of density is shown
149
+ in the upper panel of Fig. 2 for the different equations of
150
+ state studied. Moreover, in order to appreciate the astrophysi-
151
+ cal implications of these equations of state, the relative change
152
+ of the maximum gravitational neutron-star mass, defined as
153
+ 푀푟푎푡푖표 = (푀ℎ표푡
154
+ 푚푎푥 − 푀푐표푙푑
155
+ 푚푎푥
156
+ ) ∕푀푐표푙푑, can be plotted as a function
157
+ of the thermal pressure ratio. The result is shown in the lower
158
+ panel of Fig. 2 .
159
+ 2.2
160
+ MUSES
161
+ MUSES (Modular Unified Solver of the Equation of State)2 is
162
+ a large collaboration project that is developing a new cyber-
163
+ infrastructure to provide novel tools to answer critical inter-
164
+ disciplinary questions in nuclear physics, gravitational wave
165
+ astrophysics and heavy-ion physics. The MUSES collabora-
166
+ tion consists of many researchers and technical professionals
167
+ 1https://compose.obspm.fr
168
+ 2https://muses.physics.illinois.edu/
169
+
170
+ NeutronStar
171
+ Surface
172
+ .Hydrogen/Heliumplasma
173
+ Ironnuclei
174
+ OuterCrust
175
+ .lons
176
+ .Electrongas
177
+ InnerCrust
178
+ Heavyions
179
+ Relativisticelectrongas
180
+ Superfluidneutrons
181
+ OuterCore
182
+ .Neutrons,protons
183
+ .Electrons,muons
184
+ InnerCore
185
+ Neutrons
186
+ Superconductingprotons
187
+ Electrons,muons
188
+ Hyperons(Z,A,三)
189
+ Deltas (△)
190
+ Boson(元,K)condensates
191
+ Deconfined(u,d,s)quarks/color-
192
+ superconductingquarkmatterV. Dexheimer, R.B. Jacobsen, R.L.S. Farias
193
+ 3
194
+ ���
195
+ ���
196
+ ���
197
+ ���
198
+ ���
199
+ ���
200
+ ���
201
+ ����
202
+ ���
203
+
204
+ �����
205
+ �������
206
+ �����
207
+ ���
208
+ ����
209
+ ����
210
+ �������
211
+ �������
212
+ ��������
213
+ ������
214
+ �����
215
+ ���������
216
+ �������
217
+ ������
218
+ ������
219
+ ������
220
+ �����
221
+ �����
222
+ ����
223
+ ����
224
+ ����
225
+ ����
226
+ ����
227
+ ����
228
+ ����
229
+ ����
230
+ �����
231
+ �����
232
+ ����
233
+ ����
234
+ ����
235
+ ����
236
+ ����
237
+ ����
238
+ ��
239
+ ��
240
+ ��
241
+
242
+ ��
243
+ ������������
244
+ ��������
245
+ ���������
246
+ ������������
247
+ �����������
248
+ �����������
249
+ ������������
250
+ ������������
251
+ �����������
252
+ ������������
253
+ ��������
254
+ ����������
255
+ �������
256
+ �������
257
+ �������
258
+ �������
259
+ ��������
260
+ ���������
261
+ ���������
262
+ ���������
263
+ ����������
264
+ ����������
265
+ ���������������
266
+ ��������������
267
+ ��������������
268
+ ��
269
+ ��
270
+ ��
271
+
272
+
273
+
274
+
275
+ ������
276
+ ������
277
+
278
+
279
+
280
+ ��
281
+
282
+ ��
283
+ ��
284
+ ��
285
+ ��
286
+ ��
287
+ ��
288
+ ��
289
+ ��
290
+ FIGURE 2 Upper panel: Ratio of thermal pressure as a func-
291
+ tion of density for several equations of state. Lower panel:
292
+ Relative change of the maximum gravitational mass as a func-
293
+ tion of the pressure ratio at the center of the star. Figures
294
+ modified from Fig.6 and Fig.8 in (Wei et al., 2021).
295
+ across dozens of institutions spread across the globe who are
296
+ building and using a collaborative platform which is modular
297
+ because, while at low baryonic chemical potential the EoS is
298
+ known from first principles, at high there will be different mod-
299
+ els for the user to choose; besides, it is unified in as much as
300
+ different modules will be merged together to ensure maximal
301
+ coverage of the phase diagram. Building up MUSES, physi-
302
+ cists and computer scientists will work together to develop the
303
+ software that generates equations of state over large ranges of
304
+ temperature and chemical potentials to cover the whole QCD
305
+ phase diagram. The group of users is composed by interested
306
+ scientists from different communities, who provide input to the
307
+ future open-source cyberinfrastructure.
308
+ 3
309
+ ASTROPHYSICAL CONSTRAINTS
310
+ Any consistent EoS has to pass the test posed by the astrophys-
311
+ ical constraints related to neutron stars, the most fundamen-
312
+ tal being the mass-radius relation for these compact objects.
313
+ Nonetheless, many relevant features cannot be appreciated on
314
+ such a basis; for example, the possible existence of different
315
+ exotic matter associated with different phase transitions inside
316
+ a neutron star can easily be seen in the speed of sound (푐푆)
317
+ behavior but not necessarily in the mass-radius relation. As a
318
+ matter of fact, 2푀⊙ stars demand a stiff EoS (with 푐푆
319
+ 2 ←→ 1
320
+ in natural units) at intermediate densities; on the other hand,
321
+ 푐푆
322
+ 2
323
+ ←→ 1∕3 from below at asymptotically large densities
324
+ because of the conformal limit of massless free quarks. Thus,
325
+ a non-monotonic behavior is expected for 푐푆, implying the
326
+ occurrence of bumps related to the softening of the EoS due to
327
+ new degrees of freedom, cf.Bedaque & Steiner (2015).
328
+ Figure 3 , adapted from Tan, Dore, Dexheimer, Noronha-
329
+ Hostler, & Yunes (2022), show how bumps (that also appear
330
+ in realistic microscopic models) can be produced under a con-
331
+ trolled 푐푠 parametrization, allowing a correlation between the
332
+ density at which the bump appears and curves in the neutron
333
+ star mass-radius diagram. Thus, this more systematic para-
334
+ metric form for the speed of sound can help to determine
335
+ neutron-star composition; besides, maximum stellar mass and
336
+ radius can determine width, density, and height of the bumps.
337
+ The non-smooth structure of the speed of 푐푆 related to phase
338
+ transitions in dense matter makes feasible the constitution of
339
+ ultra-heavy neutron stars (with masses larger than 2.5푀⊙).
340
+ These stars pass all observational and theoretical constraints,
341
+ including those imposed by recent LIGO/Virgo gravitational-
342
+ wave observations and NICER X-ray observations.
343
+ Another observational test that may be used to constrain
344
+ equations of state is the evaluation of tidal deformabilities in
345
+ neutron stars inferred from gravitational-wave measurements.
346
+ In a coalescing binary of neutron stars, the gravitational field
347
+ of one star perturbs the field of the other (and vice-versa), caus-
348
+ ing an acceleration in their inspiral. This change in the inspiral
349
+ rate shapes the gravitational-wave emitted, and this wave thus
350
+ provides information about the tidal deformabilities Λ1,2 of
351
+ the neutron stars. Considering a sequence of central densi-
352
+ ties for a given EoS and a fixed mass ratio, one can construct
353
+ the binary Love relations (BLRs) Λ푠 and Λ푎, definined with
354
+ the symmetric and anti-symmetric tidal deformabilities Λ푠,푎 =
355
+ (Λ1 ±Λ2)∕2. Due to phase transitions and the consequent non-
356
+ smooth structure of the speed of sound 푐푆, which may tilt the
357
+ mass-radius diagram, peculiar structures (such as slopes, hills,
358
+ drops and swooshes) are created in the BLRs (Tan, Dexheimer,
359
+ Noronha-Hostler, & Yunes, 2022), as shown in Figure 4 .
360
+ The change in slope in the BLRs may be observable already
361
+ during the fifth LIGO observing run if a sufficiently loud and
362
+
363
+ 4
364
+ V. Dexheimer, R.B. Jacobsen, R.L.S. Farias
365
+ ε=3p
366
+ causal limit
367
+
368
+ ●××
369
+
370
+ □●××▲
371
+ max central nB/nsat
372
+ (a)
373
+ eos1
374
+ eos2
375
+ eos3
376
+ eos4
377
+ 0
378
+ 2
379
+ 4
380
+ 6
381
+ 8
382
+ 0.0
383
+ 0.2
384
+ 0.4
385
+ 0.6
386
+ 0.8
387
+ 1.0
388
+ 1.2
389
+ nB/nsat
390
+ cs
391
+ 2
392
+ J0740+6620
393
+ GW190814
394
+ GW170817
395
+ J0030+0451
396
+ (c)
397
+ 10
398
+ 11
399
+ 12
400
+ 13
401
+ 14
402
+ 15
403
+ 16
404
+ 0.5
405
+ 1.0
406
+ 1.5
407
+ 2.0
408
+ 2.5
409
+ 3.0
410
+ R [km]
411
+ M [M⊙]
412
+ ε=3p
413
+ causal limit
414
+ □ ● ×× ▲
415
+ □●××▲
416
+ max central nB/nsat
417
+ (a)
418
+ eos1
419
+ eos2
420
+ eos3
421
+ eos4
422
+ 0
423
+ 2
424
+ 4
425
+ 6
426
+ 8
427
+ 0.0
428
+ 0.2
429
+ 0.4
430
+ 0.6
431
+ 0.8
432
+ 1.0
433
+ 1.2
434
+ nB/nsat
435
+ cs
436
+ 2
437
+ J0740+6620
438
+ GW190814
439
+ GW170817
440
+ J0030+0451
441
+ (c)
442
+ 10
443
+ 11
444
+ 12
445
+ 13
446
+ 14
447
+ 15
448
+ 16
449
+ 0.5
450
+ 1.0
451
+ 1.5
452
+ 2.0
453
+ 2.5
454
+ 3.0
455
+ R [km]
456
+ M [M⊙]
457
+ FIGURE 3 Upper panels: Speed of sound (left) and mass-
458
+ radius diagram (right) for a subfamily of equations of state with
459
+ peaks in the speed of sound of different widths at the same
460
+ location. Lower panels: Speed of sound (left) and mass-radius
461
+ diagram (right) for a subfamily of equations of state with peaks
462
+ in the speed of sound of the same width at different locations.
463
+ Modified from Fig.4 in Tan, Dore, et al. (2022).
464
+ low mass neutron-star binary is detected. The detection of
465
+ drops and swooshes is more challenging, because both occur
466
+ at very small Λ푎, and such detection would require very low
467
+ uncertainties in the measurements, which are achievable only
468
+ if an exceptionally loud signal is detected.
469
+ 4
470
+ CONCLUSIONS
471
+ From the recent developments here reported, one my infer that
472
+ new tight constraints from experiment, observation and the-
473
+ ory are slowly determining dense matter and neutron-star core
474
+ properties. In this context, EoS repositories (such as Com-
475
+ pOSE and MUSES) help speeding up the understanding of
476
+ dense matter. Furthermore, astrophysical constraints must be
477
+ taken into account and, in this context, gravitational waves are
478
+ providing new ways to study the dense matter EoS. Besides
479
+ the basic mass-radius relation of neutron stars, more specific
480
+ and subtle quantities (such as the speed of sound and tidal
481
+ deformabilities for these objects) can be used to probe differ-
482
+ ent equations of state. Advances in this field can be expected
483
+ shortly, since LIGO, Virgo, and KAGRA are coordinating a
484
+ new observing run in March 2023. Thus, open questions in
485
+ nuclear astrophysics may soon find their answers and induce
486
+ further interrogations about the intimate structure of matter.
487
+ EoS5
488
+ EoS6
489
+ EoS7
490
+ EoS8
491
+ 0
492
+ 1
493
+ 2
494
+ 3
495
+ 4
496
+ 5
497
+ 6
498
+ 7
499
+ 0.0
500
+ 0.2
501
+ 0.4
502
+ 0.6
503
+ 0.8
504
+ 1.0
505
+ n/nsat
506
+ cs
507
+ 2
508
+ (a)
509
+ J0740+6620
510
+ J0030+0451
511
+ Am
512
+ IL/MD
513
+ Am
514
+ IL/MD
515
+ 10
516
+ 11
517
+ 12
518
+ 13
519
+ 14
520
+ 15
521
+ 16
522
+ 0.8
523
+ 1.2
524
+ 1.6
525
+ 2.
526
+ 2.4
527
+ R [km]
528
+ M [M⊙]
529
+ (b)
530
+ type (B.1)
531
+ type (B.2)
532
+ 60
533
+ 80
534
+ 100
535
+ 120
536
+ 140
537
+ -100
538
+ -50
539
+ 0
540
+ 50
541
+ 100
542
+ Λs
543
+ Λa
544
+ (c)
545
+ type (A)
546
+ type (C)
547
+ 0
548
+ 50
549
+ 100
550
+ 150
551
+ 200
552
+ 0
553
+ 2
554
+ 4
555
+ 6
556
+ 8
557
+ 10
558
+ 12
559
+ Λs
560
+ Λa
561
+ (d)
562
+ FIGURE 4 Upper panels: Speed of sound (left) and mass-
563
+ radius diagram (right) for for different equations of state.
564
+ First-order phase transitions (푐푆 = 0) introduce a second sta-
565
+ ble branch in the mass-radius curves. Lower panels: BLRs
566
+ between stars (with a mass ratio 0.75) in the same branch (types
567
+ A and C) or in different branches (types B.1 and B.2) produce
568
+ a slope, hill, drop, and swoosh. Figure modified from Fig.1
569
+ in Tan, Dexheimer, et al. (2022).
570
+ ACKNOWLEDGEMENTS
571
+ V. D. acknowledges support from the National Science Foun-
572
+ dation under grants PHY1748621, MUSES OAC-2103680,
573
+ and NP3M PHY-2116686. R.L.S.F. acknowledges support
574
+ from Conselho Nacional de Desenvolvimento Científico e
575
+ Tecnológico (CNPq), Grant No. 309598/2020-6 and Fundação
576
+ de Amparo à Pesquisa do Estado do Rio Grande do Sul
577
+ (FAPERGS), Grants Nos. 19/2551- 0000690-0 and 19/2551-
578
+ 0001948-3.
579
+ REFERENCES
580
+ Bedaque, P., & Steiner, A. W. 2015, Phys. Rev. Lett., 114(3), 031103.
581
+ Dexheimer, V., Mancini, M., Oertel, M., Providência, C., Tolos, L.,
582
+ & Typel, S. 2022, Particles, 5(3), 346.
583
+ Tan, H., Dexheimer, V., Noronha-Hostler, J., & Yunes, N.
584
+ 2022,
585
+ Physical Review Letters, 128(16).
586
+ Tan, H., Dore, T., Dexheimer, V., Noronha-Hostler, J., & Yunes, N.
587
+ 2022, Physical Review D, 105(2).
588
+ Typel, S., Oertel, M., Klähn, T. et al. 2022, Eur. Phys. J. A, 58(11),
589
+ 221.
590
+ Weber, F., Contrera, G. A., Orsaria, M. G., Spinella, W., & Zubairi,
591
+ O. 2014, Modern Physics Letters A, 29, 1430022.
592
+ Wei, J.-B., Burgio, G. F., Raduta, A. R., & Schulze, H.-J.
593
+ 2021,
594
+ Physical Review C, 104(6).
595
+
8tFQT4oBgHgl3EQfITXl/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,344 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf,len=343
2
+ page_content='Received 20 December 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
3
+ page_content=' Revised 06 January 2023;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
4
+ page_content=' Accepted 06 January 2023 DOI: xxx/xxxx PROCEEDINGS Equations of State for Dense Matter and Atrophysical Constraints Rafael Bán Jacobsen1 | Verônica Dexheimer2 | Ricardo Luciano Sonego Farias1 1Universidade Federal de Santa Maria (UFSM),' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
5
+ page_content=' Santa Maria,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
6
+ page_content=' Brazil 2Department of Physics,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
7
+ page_content=' Kent State University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
8
+ page_content=' Kent,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
9
+ page_content=' OH 44243,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
10
+ page_content=' USA ABSTRACT: This conference proceeding presents an overview of the modern approaches in the study of baryonic matter at high densities,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
11
+ page_content=' focusing on the use of online repositories such as CompOSE and MUSES for the calculation of neutron star properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
12
+ page_content=' In this context, relevant astrophysical constraints for the equations of state (mass-radius relation, speed of sound, tidal deformability) are discussed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
13
+ page_content=' KEYWORDS: Neutron Star EoS, Dense matter, Astrophysical constraints, CompOSE, MUSES 1 GENERAL ASPECTS OF THE EQUATION OF STATE FOR DENSE MATTER The study of the properties of compressed baryonic matter, or, more specifically, strongly interacting matter at high densi- ties, is a mostly relevant topic for current research in Physics, with implications both in the microscopic and in the large scale realms of nature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
14
+ page_content=' In the first domain, heavy-ion collision exper- iments, such as those carried out by the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory and the Large Hadron Collider (LHC) at CERN, provide numerous data on the behavior of baryonic matter at extreme condi- tions of density and temperature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
15
+ page_content=' Additionally, in the second domain, astronomic observations of neutron stars, from both orbiting and ground based observatories, spanning the electro- magnetic spectrum from 훾-rays to radio wavelengths and now also including gravitational waves, can unveil significant prop- erties of baryonic matter at high densities, since neutron stars contain compressed baryonic matter in their centers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
16
+ page_content=' These remnants of massive stars after core-collapse supernova explo- sions are typically about 12 kilometers across and may contain up to 2 solar masses (2푀⊙), implying core densities as high as 10 times nuclear saturation density (∼ 1015푔∕푐푚3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
17
+ page_content=' In both cases, linking data to theoretical description of bary- onic matter depends on the equation of state (EoS) adopted.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
18
+ page_content=' In a broad sense, an EoS is a thermodynamic equation relat- ing state variables (and usually including the pressure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
19
+ page_content=' In the specific field of nuclear astrophysics, it is also expected that an EoS provides a full thermodynamic list of variables (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
20
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
21
+ page_content=', chemical potentials, entropy per baryon), particle composition of the system (the proportion of the different types of lep- tons, nucleons, and hyperons), microscopic information (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
22
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
23
+ page_content=', effective masses and pairing gaps) and stellar properties (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
24
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
25
+ page_content=', maximum mass and radius, tidal deformability).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
26
+ page_content=' EoS input tables for astrophysical simulations usually includes baryon number density (푛퐵), charge fraction (푌푄), and temperature (푇 ) as independent variables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
27
+ page_content=' A 1-dimensional EoS table depends only on the parameter 푛퐵 and may describe cold isospin-symmetric matter (푇 = 0 and 푌푄 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
28
+ page_content='5), cold neutron matter (푇 = 0 and 푌푄 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
29
+ page_content='0), or cold 훽-equilibrated matter (푇 = 0 and 푌푄 determined by the conditions of 훽- equilibrium and charge neutrality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
30
+ page_content=' A 2-dimensional EoS table depends on two of the three aforementioned independent vari- ables and may describe, for example, dense matter at zero tem- perature (varying 푛퐵 and 푌푄 with 푇 = 0), symmetric matter (varying 푛퐵 and 푇 with 푌푄 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
31
+ page_content='5), neutron matter (varying 푛퐵 and 푇 with 푌푄 = 0), and 훽-equilibrated matter (varying 푛퐵 and 푇 , and calculating 푌푄 according to 훽-equilibrium and charge neutrality).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
32
+ page_content=' Nonetheless, a 3-dimensional EoS table depends on all three free parameters and serves for general purposes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
33
+ page_content=' Namely, a 3-dimensional EoS table is required for supernova and mergers simulations as long as, differently from neutron stars, the matter in proto-neutron stars and in hypermassive stars is hot and not 훽-equilibrated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
34
+ page_content=' A complete EoS for neutron stars is expected to describe a system with nuclei in the lower density regime, evolving to bulk hadronic matter (nucleons, hyperons, deconfined quarks) at higher densities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
35
+ page_content=' Inside neutron stars, this corresponds to the crust and core, respectively (see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
36
+ page_content=' 1 ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
37
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
38
+ page_content='13252v1 [astro-ph.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
39
+ page_content='HE] 30 Jan 2023 2 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
40
+ page_content=' Dexheimer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
41
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
42
+ page_content=' Jacobsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
43
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
44
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
45
+ page_content=' Farias FIGURE 1 Schematic structure of a neutron star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
46
+ page_content=' Figure modified from Weber et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
47
+ page_content=' (2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
48
+ page_content=' An EoS for dense and hot matter must be based on a quan- tum relativistic description, because this framework ensures respect to causality, as long as vector interactions are not too strong.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
49
+ page_content=' A realistic dense and hot EoS must also obey a series of nuclear and quantum chromodynamics (QCD) constraints: To reproduce chiral symmetry restoration, as demanded by QCD at large densities and temperatures (with a cor- respondent decrease in the overall baryonic masses);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
50
+ page_content=' To reproduce lattice QCD results at finite temperature (which are provided at any isospin and strangeness, but are restricted to low density relative to the temperature);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
51
+ page_content=' To be in agreement with the (nearly) isospin-symmetric and zero net strangeness heavy-ion collision physics at finite temperature;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
52
+ page_content=' To reproduce perturbative QCD results in the relevant regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
53
+ page_content=' To reproduce standard zero-temperature isospin- symmetric nuclear physics results around saturation density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
54
+ page_content=' 2 MODERN SOURCES FOR EQUATIONS OF STATE In order to face the challenge of finding an adequate EoS for dense matter in this variety of phenomena, online repositories of equations of state have been built in recent years.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
55
+ page_content=' CompOSE and MUSES are among these modern sources for 1-, 2-, and 3-dimensional EoS tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
56
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
57
+ page_content='1 COMPOSE CompOSE (CompStar Online Supernovae Equations of State)1 is the largest repository of this kind, offering almost 300 equations of state, divided in families (cold neutron star EoS, cold matter EoS, neutron matter EoS, general purpose EoS, and neutron star crust EoS) and their subgroups (models with hyperons and delta resonances, hybrid quark-hadron models, models with hyperons, models with kaon condensate, nucle- onic models, and quark models).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
58
+ page_content=' The repository also provides a software to interpolate data, calculate additional quantities, and graph EoS dependencies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
59
+ page_content=' Data tables, associated software and the manual, can be freely downloaded, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
60
+ page_content=' Dexheimer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
61
+ page_content=' (2022);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
62
+ page_content=' Typel et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
63
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
64
+ page_content=' Paradigmatic examples of the usefulness of such a database can be found in studies that carry out comparisons of the predictions made by different models for the same phys- ical system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
65
+ page_content=' For instance, a set of microscopic, covariant density-functional, and non-relativistic Skyrme-type equations of state, obtained from CompOSE, has been employed to study the structure of purely nucleonic 훽-equilibrated neu- tron stars at finite temperature (Wei, Burgio, Raduta, & Schulze, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
66
+ page_content=' Considering the agreement with presently available astrophysical observational constraints, this study showed that the magnitude of thermal effects depends on the nucleon effective mass as well as on the stiffness of the cold equation of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
67
+ page_content=' Regarding the equations of state themselves, an appropriate quantity to analyze in this con- text is the relative thermal pressure, defined as 푝푟푎푡푖표 = 푝푡ℎ∕푝0 = [푝(휌퐵, 푥푇 , 푇 ) − 푝(휌퐵, 푥0, 0)] ∕푝(휌퐵, 푥0, 0), where 휌퐵 is the baryonic density, 푇 is temperature and 푥0 and 푥푇 are the respective proton fractions of cold and hot matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
68
+ page_content=' The ratio of thermal pressure as a function of density is shown in the upper panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
69
+ page_content=' 2 for the different equations of state studied.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
70
+ page_content=' Moreover, in order to appreciate the astrophysi- cal implications of these equations of state, the relative change of the maximum gravitational neutron-star mass, defined as 푀푟푎푡푖표 = (푀ℎ표푡 푚푎푥 − 푀푐표푙푑 푚푎푥 ) ∕푀푐표푙푑, can be plotted as a function of the thermal pressure ratio.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
71
+ page_content=' The result is shown in the lower panel of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
72
+ page_content=' 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
73
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
74
+ page_content='2 MUSES MUSES (Modular Unified Solver of the Equation of State)2 is a large collaboration project that is developing a new cyber- infrastructure to provide novel tools to answer critical inter- disciplinary questions in nuclear physics, gravitational wave astrophysics and heavy-ion physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
75
+ page_content=' The MUSES collabora- tion consists of many researchers and technical professionals 1https://compose.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
76
+ page_content='obspm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
77
+ page_content='fr 2https://muses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
78
+ page_content='physics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
79
+ page_content='illinois.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
80
+ page_content='edu/ NeutronStar Surface .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
81
+ page_content='Hydrogen/Heliumplasma Ironnuclei OuterCrust .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
82
+ page_content='lons .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
83
+ page_content='Electrongas InnerCrust Heavyions Relativisticelectrongas Superfluidneutrons OuterCore .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
84
+ page_content='Neutrons,protons .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
85
+ page_content='Electrons,muons InnerCore Neutrons Superconductingprotons Electrons,muons Hyperons(Z,A,三) Deltas (△) Boson(元,K)condensates Deconfined(u,d,s)quarks/color- superconductingquarkmatterV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
86
+ page_content=' Dexheimer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
87
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
88
+ page_content=' Jacobsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
89
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
90
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
91
+ page_content=' Farias ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
92
+ page_content='3 ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
93
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
94
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
95
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
96
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
97
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
98
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
99
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
100
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
101
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
102
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
103
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
104
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
105
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
106
+ page_content='��� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
107
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
108
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
109
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
110
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
111
+ page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
112
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
113
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
114
+ page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
115
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
116
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
117
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
118
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
119
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
120
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
121
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
122
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
123
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
124
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
125
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
126
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
127
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
128
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
129
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
130
+ page_content='����� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
131
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
132
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
133
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
134
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
135
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
136
+ page_content='���� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
137
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
138
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
139
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
140
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
141
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
142
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
143
+ page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
144
+ page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
145
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
146
+ page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
147
+ page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
148
+ page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
149
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
150
+ page_content='����������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
151
+ page_content='������������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
152
+ page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
153
+ page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
154
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
155
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
156
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
157
+ page_content='������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
158
+ page_content='�������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
159
+ page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
160
+ page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
161
+ page_content='��������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
162
+ page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
163
+ page_content='���������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
164
+ page_content='��������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
165
+ page_content='�������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
166
+ page_content='�������������� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
167
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
168
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
169
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
170
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
171
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
172
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
173
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
174
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
175
+ page_content='������ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
176
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
177
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
178
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
179
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
180
+ page_content='� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
181
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
182
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
183
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
184
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
185
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
186
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
187
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
188
+ page_content='�� ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
189
+ page_content='FIGURE 2 Upper panel: Ratio of thermal pressure as a func- ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
190
+ page_content='tion of density for several equations of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
191
+ page_content=' Lower panel: Relative change of the maximum gravitational mass as a func- tion of the pressure ratio at the center of the star.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
192
+ page_content=' Figures modified from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
193
+ page_content='6 and Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
194
+ page_content='8 in (Wei et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
195
+ page_content=', 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
196
+ page_content=' across dozens of institutions spread across the globe who are building and using a collaborative platform which is modular because, while at low baryonic chemical potential the EoS is known from first principles, at high there will be different mod- els for the user to choose;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
197
+ page_content=' besides, it is unified in as much as different modules will be merged together to ensure maximal coverage of the phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
198
+ page_content=' Building up MUSES, physi- cists and computer scientists will work together to develop the software that generates equations of state over large ranges of temperature and chemical potentials to cover the whole QCD phase diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
199
+ page_content=' The group of users is composed by interested scientists from different communities, who provide input to the future open-source cyberinfrastructure.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
200
+ page_content=' 3 ASTROPHYSICAL CONSTRAINTS Any consistent EoS has to pass the test posed by the astrophys- ical constraints related to neutron stars, the most fundamen- tal being the mass-radius relation for these compact objects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
201
+ page_content=' Nonetheless, many relevant features cannot be appreciated on such a basis;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
202
+ page_content=' for example, the possible existence of different exotic matter associated with different phase transitions inside a neutron star can easily be seen in the speed of sound (푐푆) behavior but not necessarily in the mass-radius relation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
203
+ page_content=' As a matter of fact, 2푀⊙ stars demand a stiff EoS (with 푐푆 2 ←→ 1 in natural units) at intermediate densities;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
204
+ page_content=' on the other hand, 푐푆 2 ←→ 1∕3 from below at asymptotically large densities because of the conformal limit of massless free quarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
205
+ page_content=' Thus, a non-monotonic behavior is expected for 푐푆, implying the occurrence of bumps related to the softening of the EoS due to new degrees of freedom, cf.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
206
+ page_content='Bedaque & Steiner (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
207
+ page_content=' Figure 3 , adapted from Tan, Dore, Dexheimer, Noronha- Hostler, & Yunes (2022), show how bumps (that also appear in realistic microscopic models) can be produced under a con- trolled 푐푠 parametrization, allowing a correlation between the density at which the bump appears and curves in the neutron star mass-radius diagram.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
208
+ page_content=' Thus, this more systematic para- metric form for the speed of sound can help to determine neutron-star composition;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
209
+ page_content=' besides, maximum stellar mass and radius can determine width, density, and height of the bumps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
210
+ page_content=' The non-smooth structure of the speed of 푐푆 related to phase transitions in dense matter makes feasible the constitution of ultra-heavy neutron stars (with masses larger than 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
211
+ page_content='5푀⊙).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
212
+ page_content=' These stars pass all observational and theoretical constraints, including those imposed by recent LIGO/Virgo gravitational- wave observations and NICER X-ray observations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
213
+ page_content=' Another observational test that may be used to constrain equations of state is the evaluation of tidal deformabilities in neutron stars inferred from gravitational-wave measurements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
214
+ page_content=' In a coalescing binary of neutron stars, the gravitational field of one star perturbs the field of the other (and vice-versa), caus- ing an acceleration in their inspiral.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
215
+ page_content=' This change in the inspiral rate shapes the gravitational-wave emitted, and this wave thus provides information about the tidal deformabilities Λ1,2 of the neutron stars.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
216
+ page_content=' Considering a sequence of central densi- ties for a given EoS and a fixed mass ratio, one can construct the binary Love relations (BLRs) Λ푠 and Λ푎, definined with the symmetric and anti-symmetric tidal deformabilities Λ푠,푎 = (Λ1 ±Λ2)∕2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
217
+ page_content=' Due to phase transitions and the consequent non- smooth structure of the speed of sound 푐푆, which may tilt the mass-radius diagram, peculiar structures (such as slopes, hills, drops and swooshes) are created in the BLRs (Tan, Dexheimer, Noronha-Hostler, & Yunes, 2022), as shown in Figure 4 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
218
+ page_content=' The change in slope in the BLRs may be observable already during the fifth LIGO observing run if a sufficiently loud and 4 V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
219
+ page_content=' Dexheimer, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
220
+ page_content='B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
221
+ page_content=' Jacobsen, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
222
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
223
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
224
+ page_content=' Farias ε=3p causal limit □ ×× ▲ □●××▲ max central nB/nsat (a) eos1 eos2 eos3 eos4 0 2 4 6 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
225
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
226
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
227
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
228
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
229
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
230
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
231
+ page_content='2 nB/nsat cs 2 J0740+6620 GW190814 GW170817 J0030+0451 (c) 10 11 12 13 14 15 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
232
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
233
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
234
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
235
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
236
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
237
+ page_content='0 R [km] M [M⊙] ε=3p causal limit □ ● ×× ▲ □●××▲ max central nB/nsat (a) eos1 eos2 eos3 eos4 0 2 4 6 8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
238
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
239
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
240
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
241
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
242
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
243
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
244
+ page_content='2 nB/nsat cs 2 J0740+6620 GW190814 GW170817 J0030+0451 (c) 10 11 12 13 14 15 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
245
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
246
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
247
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
248
+ page_content='0 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
249
+ page_content='5 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
250
+ page_content='0 R [km] M [M⊙] FIGURE 3 Upper panels: Speed of sound (left) and mass- radius diagram (right) for a subfamily of equations of state with peaks in the speed of sound of different widths at the same location.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
251
+ page_content=' Lower panels: Speed of sound (left) and mass-radius diagram (right) for a subfamily of equations of state with peaks in the speed of sound of the same width at different locations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
252
+ page_content=' Modified from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
253
+ page_content='4 in Tan, Dore, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
254
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
255
+ page_content=' low mass neutron-star binary is detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
256
+ page_content=' The detection of drops and swooshes is more challenging, because both occur at very small Λ푎, and such detection would require very low uncertainties in the measurements, which are achievable only if an exceptionally loud signal is detected.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
257
+ page_content=' 4 CONCLUSIONS From the recent developments here reported, one my infer that new tight constraints from experiment, observation and the- ory are slowly determining dense matter and neutron-star core properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
258
+ page_content=' In this context, EoS repositories (such as Com- pOSE and MUSES) help speeding up the understanding of dense matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
259
+ page_content=' Furthermore, astrophysical constraints must be taken into account and, in this context, gravitational waves are providing new ways to study the dense matter EoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
260
+ page_content=' Besides the basic mass-radius relation of neutron stars, more specific and subtle quantities (such as the speed of sound and tidal deformabilities for these objects) can be used to probe differ- ent equations of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
261
+ page_content=' Advances in this field can be expected shortly, since LIGO, Virgo, and KAGRA are coordinating a new observing run in March 2023.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
262
+ page_content=' Thus, open questions in nuclear astrophysics may soon find their answers and induce further interrogations about the intimate structure of matter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
263
+ page_content=' EoS5 EoS6 EoS7 EoS8 0 1 2 3 4 5 6 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
264
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
265
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
266
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
267
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
268
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
269
+ page_content='0 n/nsat cs 2 (a) J0740+6620 J0030+0451 Am IL/MD Am IL/MD 10 11 12 13 14 15 16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
270
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
271
+ page_content='2 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
272
+ page_content='6 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
273
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
274
+ page_content='4 R [km] M [M⊙] (b) type (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
275
+ page_content='1) type (B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
276
+ page_content='2) 60 80 100 120 140 100 50 0 50 100 Λs Λa (c) type (A) type (C) 0 50 100 150 200 0 2 4 6 8 10 12 Λs Λa (d) FIGURE 4 Upper panels: Speed of sound (left) and mass- radius diagram (right) for for different equations of state.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
277
+ page_content=' First-order phase transitions (푐푆 = 0) introduce a second sta- ble branch in the mass-radius curves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
278
+ page_content=' Lower panels: BLRs between stars (with a mass ratio 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
279
+ page_content='75) in the same branch (types A and C) or in different branches (types B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
280
+ page_content='1 and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
281
+ page_content='2) produce a slope, hill, drop, and swoosh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
282
+ page_content=' Figure modified from Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
283
+ page_content='1 in Tan, Dexheimer, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
284
+ page_content=' (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
285
+ page_content=' ACKNOWLEDGEMENTS V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
286
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
287
+ page_content=' acknowledges support from the National Science Foun- dation under grants PHY1748621, MUSES OAC-2103680, and NP3M PHY-2116686.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
288
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
289
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
290
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
291
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
292
+ page_content=' acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grant No.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
293
+ page_content=' 309598/2020-6 and Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul (FAPERGS), Grants Nos.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
294
+ page_content=' 19/2551- 0000690-0 and 19/2551- 0001948-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
295
+ page_content=' REFERENCES Bedaque, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
296
+ page_content=', & Steiner, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
297
+ page_content=' W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
298
+ page_content=' 2015, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
299
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
300
+ page_content=' Lett.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
301
+ page_content=', 114(3), 031103.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
302
+ page_content=' Dexheimer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
303
+ page_content=', Mancini, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
304
+ page_content=', Oertel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
305
+ page_content=', Providência, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
306
+ page_content=', Tolos, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
307
+ page_content=', & Typel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
308
+ page_content=' 2022, Particles, 5(3), 346.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
309
+ page_content=' Tan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
310
+ page_content=', Dexheimer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
311
+ page_content=', Noronha-Hostler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
312
+ page_content=', & Yunes, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
313
+ page_content=' 2022, Physical Review Letters, 128(16).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
314
+ page_content=' Tan, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
315
+ page_content=', Dore, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
316
+ page_content=', Dexheimer, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
317
+ page_content=', Noronha-Hostler, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
318
+ page_content=', & Yunes, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
319
+ page_content=' 2022, Physical Review D, 105(2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
320
+ page_content=' Typel, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
321
+ page_content=', Oertel, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
322
+ page_content=', Klähn, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
323
+ page_content=' et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
324
+ page_content=' 2022, Eur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
325
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
326
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
327
+ page_content=' A, 58(11), 221.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
328
+ page_content=' Weber, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
329
+ page_content=', Contrera, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
330
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
331
+ page_content=', Orsaria, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
332
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
333
+ page_content=', Spinella, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
334
+ page_content=', & Zubairi, O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
335
+ page_content=' 2014, Modern Physics Letters A, 29, 1430022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
336
+ page_content=' Wei, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
337
+ page_content='-B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
338
+ page_content=', Burgio, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
339
+ page_content=' F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
340
+ page_content=', Raduta, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
341
+ page_content=' R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
342
+ page_content=', & Schulze, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
343
+ page_content='-J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
344
+ page_content=' 2021, Physical Review C, 104(6).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/8tFQT4oBgHgl3EQfITXl/content/2301.13252v1.pdf'}
99E0T4oBgHgl3EQfgAA0/content/tmp_files/2301.02411v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
99E0T4oBgHgl3EQfgAA0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
9NE5T4oBgHgl3EQfRA5T/content/2301.05517v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e88a9bfbdcb28d48ff8aabe0c0b28589ad0b1fd2f70353125b6d2490637bafa8
3
+ size 385476
9NE5T4oBgHgl3EQfRA5T/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f2c5a9daa79a86c939a140328709879332a4ed97f3f1cb5942e2806be5be970
3
+ size 1769517
9NE5T4oBgHgl3EQfRA5T/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2aee50ab517f83cdca4629d30b2b95c566d1cb366780280ea5ed34abd4514a3
3
+ size 73536
9NFLT4oBgHgl3EQfBy4O/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc77c1faf429d2804d18325fea1574460523ab981ba1c86021d036115caf3616
3
+ size 6357037
ANE1T4oBgHgl3EQfowXh/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c481c41c05720e00937c3ad3953e492c418f366514dbbb2e4c320ae3bc4de34b
3
+ size 4063277
ANE1T4oBgHgl3EQfowXh/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ad39d418ee7920c9644c411e1247c9f4acf24f900bff2ca9c7f698b5800098b
3
+ size 140442
BtAzT4oBgHgl3EQfTfyw/content/tmp_files/2301.01251v1.pdf.txt ADDED
@@ -0,0 +1,1243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Introducing Variational Inference in
2
+ Undergraduate Statistics and Data Science
3
+ Curriculum
4
+ Vojtech Kejzlar
5
+ Department of Mathematics and Statistics, Skidmore College
6
+ and
7
+ Jingchen Hu
8
+ Department of Mathematics and Statistics, Vassar College
9
+ January 4, 2023
10
+ Abstract
11
+ Probabilistic models such as logistic regression, Bayesian classification, neural net-
12
+ works, and models for natural language processing, are increasingly more present in
13
+ the undergraduate statistics and data science curriculum due to their wide range of
14
+ applications. In this paper, we present a one-week undergraduate course module on
15
+ variational inference, a popular optimization-based approach for approximate infer-
16
+ ence with probabilistic models. Our proposed module is guided by active learning
17
+ principles: In addition to lecture materials on variational inference, we provide an
18
+ accompanying class activity, an R shiny app, and a guided lab based on a real data
19
+ application of clustering documents using Latent Dirichlet Allocation with R code.
20
+ The main goal of our module is to expose undergraduate students to a method that
21
+ facilitates statistical modeling and inference with large datasets. Using our proposed
22
+ module as a foundation, instructors can adopt it and adapt to introduce more realistic
23
+ use cases and applications in data science, Bayesian statistics, multivariate analysis,
24
+ and statistical machine learning courses.
25
+ Keywords: Active learning, Bayesian Statistics, Statistical Computing, Probabilistic Mod-
26
+ els, Undergraduate Curriculum
27
+ 1
28
+ arXiv:2301.01251v1 [stat.OT] 3 Jan 2023
29
+
30
+ 1
31
+ Introduction
32
+ With the recent and rapid expansion of undergraduate curricula with offerings in data
33
+ science, Bayesian statistics, multivariate data analysis, and statistical machine learning,
34
+ probabilistic models and Bayesian methods have grown to become more popular (Schwab-
35
+ McCoy et al. 2021, Dogucu & Hu (2022)). In many settings, a central task in applications
36
+ of probabilistic models is the evaluation of posterior distribution p(θ | y) of m model
37
+ parameters θ ∈ Rm (m ≥ 1) conditioned on the observed data y = (y1, . . . , yn) provided
38
+ by the Bayes’ theorem
39
+ p(θ | y) = p(y | θ)p(θ)
40
+ p(y)
41
+ ∝ p(y | θ)p(θ).
42
+ (1)
43
+ Here, p(y | θ) is the sampling density given by the underlying probabilistic model for data,
44
+ p(θ) is the prior density that represents our prior beliefs about θ before seeing the data,
45
+ and p(y) is the marginal data distribution. The posterior distribution p(θ | y), however,
46
+ has closed form only in a limited number of scenarios (e.g., conjugate priors) and there-
47
+ fore typically requires approximation. By far the most popular approximation methods
48
+ are Markov chain Monte Carlo (MCMC) algorithms including Gibbs sampler, Metropo-
49
+ lis, Metropolis-Hastings, and Hamiltonian Monte Carlo (Gelman et al. 2013), to name a
50
+ few. See Albert & Hu (2020) for a review of these algorithms in undergraduate Bayesian
51
+ courses. While useful for certain scenarios, these MCMC algorithms do not scale well with
52
+ large datasets and can have a hard time approximating multimodal posteriors (Rudoy &
53
+ Wolfe 2006, Bardenet et al. (2017)). Such challenges therefore limit the applications of
54
+ probabilistic models that can be discussed in the classroom and restrict students’ exposure
55
+ to more realistic use cases that include applying neural networks, pattern recognition, and
56
+ natural language processing to massive datasets.
57
+ Variational inference is an alternative to the sampling-based approximation via MCMC
58
+ that approximates a target density through optimization. Statisticians and computer sci-
59
+ entists (starting with Peterson & Anderson (1987), Jordan et al. (1999), Blei et al. (2017))
60
+ have been using variational techniques in a variety of settings because these techniques tend
61
+ to be faster and easier to scale to massive datasets. Despite its popularity among statistics
62
+ and data science practitioners, variational inference is rarely discussed in undergraduate
63
+ 2
64
+
65
+ courses as it is believed to be a rather advanced topic (Dogucu & Hu 2022). With this in
66
+ mind, we have developed a one-week course module to disrupt this notion of being an ad-
67
+ vanced topic and help instructors to introduce variational techniques in their undergraduate
68
+ courses for more realistic use cases of probabilistic models. Our proposed one-week module
69
+ is based on the best practices of active learning, which have been shown to improve student
70
+ learning and engagement (Michael 2006, Freeman et al. (2014), Deslauriers et al. (2019)).
71
+ Our main guiding principle in designing the module is to involve students in the learning
72
+ process by introducing student-centered class activities and labs. The guiding principle
73
+ also includes assigning open-ended questions, focusing on problem-solving, providing ap-
74
+ propriate scaffolding for activities, and creating opportunities to work collaboratively with
75
+ peers.
76
+ Our module is designed for students to gain a fundamental understanding and practical
77
+ experience with variational inference over the course of two class meetings. During the first
78
+ meeting, students are exposed to the fundamentals of variational inferences including the
79
+ Kullback-Leibler divergence, evidence lower bound, gradient ascent, and coordinate ascent.
80
+ Additionally, they gain their first hands-on experience by applying variational inference to
81
+ a simple probabilistic model for count data. To encourage and empower undergraduate
82
+ instructors to adopt and adapt this variational inference module, we provide an accompa-
83
+ nying in-class handout and an R Shiny app with details explained in the supplementary
84
+ materials. During the second class meeting, students work on a guided R lab to apply
85
+ variational inference to a realistic scenario of clustering documents with Latent Dirichlet
86
+ Allocation (Blei et al. 2003). See Table 1 for the breakdown of the module.
87
+ Content
88
+ 1st class
89
+ Lecture: Fundamentals of variational inference
90
+ Class activity: Probabilistic model for count data with variational inference
91
+ 2nd class
92
+ Lab: Document clustering
93
+ Table 1:
94
+ Outline of the one-week variational inference module.
95
+ As for the audience, we believe that the module can be seamlessly integrated into any
96
+ intermediate- or upper-level undergraduate course in data science, Bayesian statistics, mul-
97
+ tivariate data analysis, and statistical machine learning that covers topics on clustering,
98
+ 3
99
+
100
+ classification, or text analysis. The prerequisites needed for the module are a basic under-
101
+ standing of statistical modeling, probability distributions, and elementary calculus.
102
+ The remainder of the paper is organized as the following. In Section 2, we provide an
103
+ overview of variational inference essentials that can be readily used as a basis for a lecture
104
+ instruction. Section 3 presents a motivating example and the Gamma-Poisson model for
105
+ count data that serves as the first hands-on class activity with variational inference. In
106
+ Section 4, we offer a realistic use case for variational inference based on a Latent Dirichlet
107
+ Allocation model for document clustering with implementation details in R, which can be
108
+ used as a computing lab. We end the paper in Section 5 with a few concluding remarks.
109
+ 2
110
+ Lecture: Foundations of Variantional Inference
111
+ In this section, we introduce concepts and definitions of variational inference in Section
112
+ 2.1, discuss the choices of variational families in Section 2.2, and present details of ELBO
113
+ optimization in Section 2.3. We also include recommendations of variational families and
114
+ ELBO optimization strategies with pedagogical considerations for an undergraduate audi-
115
+ ence. Instructors can design their lecture based on these materials tailored to their needs.
116
+ 2.1
117
+ Concepts and Definitions
118
+ The main idea behind variational inference is to approximate the target probability density
119
+ p(θ | y) by a member of some relatively simple family of densities q(θ | λ), indexed by
120
+ the variational parameter λ ∈ Rm′ (m′ ≥ 1), over the space of model parameters θ. Note
121
+ that λ = (λ1, . . . , λm) has m components of (potentially) varying dimensions. Variational
122
+ approximation is done by finding the member of variational family that minimizes the
123
+ Kullback-Leibler (KL) divergence of q(θ | λ) from p(θ | y):
124
+ q∗ = arg min
125
+ q(θ|λ)
126
+ KL(q(θ | λ)||p(θ | y)),
127
+ (2)
128
+ with KL divergence being the expectation of the log ratio between the q(θ | λ) and p(θ | y)
129
+ with respect to q(θ | λ):
130
+ KL(q(θ | λ)||p(θ | y)) = Eq
131
+
132
+ log q(θ | λ)
133
+ p(θ | y)
134
+
135
+ .
136
+ (3)
137
+ 4
138
+
139
+ Figure 1: Illustration of variational inference as the optimization-based approximation. The
140
+ goal of variational inference is to find a member of the variational family that minimizes
141
+ KL divergence with the target distribution.
142
+ The KL divergence measures how different is the probability distribution q(θ | λ) from
143
+ p(θ | y) (Kullback & Leibler 1951). Note that while we use the KL divergence to measure
144
+ the similarity between two densities, it is not a metric because the KL divergence is not
145
+ symmetric and does not satisfy the triangle inequality. In fact, the order of q(θ | λ) and
146
+ p(θ | y) in Equation (2) is deliberate as it leads to taking the expectation with respect
147
+ to the variational distribution q(θ | λ). One can naturally think of reversing the roles of
148
+ q(θ | λ) and p(θ | y). However, this leads to a “different kind” of variational inference called
149
+ expectation propagation (Minka (2001)), which loses computational efficiency of variational
150
+ inference defined in Equation (2).
151
+ In a nutshell, rather than sampling, variational inference approximates densities us-
152
+ ing optimization. See Figure 1 for a graphical illustration, i.e., by finding the values of
153
+ variational parameters from λinit to λ∗ through optimization which lead to a variational
154
+ distribution q(θ | λ) that is close to the target posterior distribution p(θ | y) defined by
155
+ the smallest KL divergence. Finding the optimal q∗ is done in practice by maximizing an
156
+ equivalent objective function, L(λ), the evidence lower bound (ELBO), because the KL
157
+ 5
158
+
159
+ q(0|入)
160
+ Optimization
161
+ init
162
+ Smallest KL
163
+ p(0ly)divergence is intractable as it requires the evaluation of the marginal distribution p(y):
164
+ L(λ) =
165
+ Eq[log p(y, θ) − log q(θ|λ)]
166
+ =
167
+ Eq[log p(y|θ)]
168
+
169
+ ��
170
+
171
+ Expected log-likelihood of data
172
+
173
+ KL(q(θ|λ)||p(θ))
174
+
175
+ ��
176
+
177
+ KL div. between the variational and prior densities
178
+ .
179
+ (4)
180
+ The ELBO is the sum between the negative KL divergence of the variational density from
181
+ the target density and the log of the marginal density p(y). Since the term log p(y) is
182
+ constant with respect to q(θ | λ), the objective functions in Equation (3) and Equation (4)
183
+ are equivalent. Examining the ELBO also reveals the intuition behind variational inference.
184
+ On the one hand, the first term in Equation (4) encourages the variational approximation
185
+ to place mass on parameter values that maximize the sampling density p(y | θ). On the
186
+ other hand, the second term in Equation (4) prefers closeness of the variational density to
187
+ the prior. Therefore, the ELBO shows a similar tension between the sampling density and
188
+ the prior known in Bayesian inference.
189
+ 2.2
190
+ Variational Families with Pedagogical Recommendations
191
+ We now move on to the implementation details of variational inference starting with the
192
+ selection of the variational family q(θ | λ). This choice is crucial as it affects the complexity
193
+ of optimization outlined in Section 2.1 as well as the quality of variational approximation.
194
+ Mean-field Variational Family
195
+ By far the most popular is the mean-field variational family which assumes that all the
196
+ unknown parameters are mutually independent, each approximated by its own univariate
197
+ variational density:
198
+ q(θ | λ) =
199
+ m
200
+
201
+ i=1
202
+ q(θi | λi).
203
+ (5)
204
+ For example, a typical choice for real-valued parameters is the normal variational family
205
+ q(θ | µ, σ2) and the log-normal or Gamma for non-negative parameters. The main advan-
206
+ tage of the mean-field family is in its simplicity as it requires only a minimum number
207
+ of parameters to be estimated (no correlation parameters) and often leads to uncompli-
208
+ cated optimization. However, the mutually independent parameter assumption comes at
209
+ 6
210
+
211
+ a price because the mean-field family cannot capture relationships between model param-
212
+ eters. To illustrate the pitfalls of mean-field approximation, consider a simple case of a
213
+ two-dimensional normal target density with highly correlated components. Figure 2 shows
214
+ the optimal mean-field variational approximation given by the product of two normal den-
215
+ sities. One can clearly see that the optimal variational densities match well with the means
216
+ of the target density, but the marginal variances are underestimated. To further understand
217
+ this common flaw of mean-field approximation, consider the definition of KL divergence
218
+ in Equation (3). The objective function penalizes more larger density in q(θ | λ) in areas
219
+ where p(θ | y) has low density than the opposite direction (recall that the expectation is
220
+ taken with respect to the variational density).
221
+ Recommendation for Undergradudate Instruction
222
+ It is worth noting that the development of new variational families which improves on the
223
+ trade-off between complexity and expressiveness of variational approximations has been
224
+ a fruitful and active area of research. To keep the scope of the undergraduate one-week
225
+ variational inference module manageable to both the students and the instructors, we
226
+ recommend solely focusing on the mean-field approximation. For interested students who
227
+ want to explore further, we encourage the instructors to refer them to the recent work
228
+ of Ambrogioni et al. (2021) that provides a detailed discussion on many state-of-the-art
229
+ variational families and their associated implementation challenges.
230
+ 2.3
231
+ ELBO Optimization with Pedagogical Recommendations
232
+ Besides the choice of variational family, another key implementation detail to address is
233
+ the way in which we find the member of the variational family that maximizes the ELBO.
234
+ Since this is a fairly general optimization problem, one can in principle use any optimization
235
+ procedure. In the variational inference literature, the coordinate ascent and the gradient
236
+ ascent procedures are the most prominent and widely used (Blei et al. (2017)).
237
+ 7
238
+
239
+ 3
240
+ 2
241
+ 1
242
+ 0
243
+ 1
244
+ 2
245
+ 3
246
+ 1
247
+ 3
248
+ 2
249
+ 1
250
+ 0
251
+ 1
252
+ 2
253
+ 3
254
+ 2
255
+ 2
256
+ 0
257
+ 2
258
+ 1
259
+ 0.0
260
+ 0.2
261
+ 0.4
262
+ 0.6
263
+ Density
264
+ 2
265
+ 0
266
+ 2
267
+ 2
268
+ Target density
269
+ M-F approximation
270
+ Figure 2: Mean-field variational approximation of a two-dimensional normal target density.
271
+ The figure illustrates the common pitfall of the mean-field approximation in situations with
272
+ correlated model parameters.
273
+ 8
274
+
275
+ Corrdinate Ascent
276
+ The coordinate ascent approach is based on the simple idea that one can maximize ELBO,
277
+ which is a multivariate function, by cyclically maximizing it along one direction at a time.
278
+ Starting with initial values (denoted by superscript 0) of the m variational parameters λ0
279
+ λ0 = (λ0
280
+ 1, . . . , λ0
281
+ m),
282
+ one obtains the (k + 1)th updated value of variational parameters by iteratively solving
283
+ λk+1
284
+ i
285
+ = arg max
286
+ x
287
+ L(λk+1
288
+ 1
289
+ , . . . , λk+1
290
+ i−1 , x, λk
291
+ i+1, . . . , λk
292
+ m),
293
+ which can be accomplished without using gradients (Blei et al. 2017).
294
+ Gradient Ascent
295
+ Variational inference via gradient ascent uses the standard iterative optimization algorithm
296
+ based on the idea that the ELBO grows fastest in the direction of its gradient (Hoffman
297
+ et al. 2013). In particular, the update of variational parameters λ at the (k +1)th iteration
298
+ is given by
299
+ λk+1 ← λk + η × ∇λL(λk),
300
+ where ∇λL(λ) is the ELBO gradient, and η is the step size which is also called the learning
301
+ rate. The step size controls the rate at which one updates the variational parameters.
302
+ For both coordinate and gradient ascent, we typically declare convergence of variational
303
+ parameters once the change in ELBO falls below some small threshold (Blei et al. 2017).
304
+ Recommendation for Undergradudate Instruction
305
+ Our recommendation for an undergraduate variational inference module is to take the
306
+ route of gradient ascent. This pedagogical choice is guided by our combined experience of
307
+ teaching statistical modeling, Bayesian statistics, and data science at various undergradu-
308
+ ate levels to students with diverse statistical backgrounds. Our recommendation has also
309
+ taken into account the pedagogical advantages and disadvantages of gradient ascent and
310
+ coordinate ascent for undergraduates: Variational inference via coordinate ascent, while
311
+ conceptually straightforward, requires non-trivial and model-specific derivations which can
312
+ 9
313
+
314
+ easily obscure the overall goal of this one-week module to expand students’ exposure to
315
+ the state-of-the-art approximate inference for probabilistic models; gradient-based varia-
316
+ tional inference, in contrast, leads to a black-box optimization that does not require any
317
+ model-specific derivations due to an extensive autodifferentiation capabilities of modern
318
+ statistical software such as RStan (Stan Development Team 2022) and Python packages
319
+ PyTorch (Paszke et al. 2019) and TensorFlow (Abadi et al. 2015), to name a few.
320
+ We believe that from an undergraduate-level pedagogical perspective, gradient descent
321
+ reflects better the current data science pipeline and allows the instruction to be focused
322
+ on conceptual understanding of variational inference rather than technical details.
323
+ Of
324
+ course, using gradient-based optimization requires the students to be familiar with partial
325
+ derivatives. Such a pre-requisite potentially restricts the audience for our module to a course
326
+ with a multivariable calculus prerequisite. Nevertheless, we believe that an instructor with
327
+ sufficient preparation can explain the basics behind gradient ascent to an audience with a
328
+ minimal calculus background.
329
+ 3
330
+ Class Activity:
331
+ A Probabilistic Model for Count
332
+ Data with Variational Inference
333
+ In this section, we provide a fully developed hands-on class activity with variational in-
334
+ ference for count data. Starting with a motivating example in Section 3.1, we give an
335
+ overview of the Gamma-Poisson model in Section 3.2, and discuss details of the variational
336
+ inference of this model in Section 3.3, illustrated with an R Shiny app we have developed
337
+ for instruction purpose. Instructors can adopt and adapt this class activity based on these
338
+ materials tailored to their needs.
339
+ 3.1
340
+ A Motivating Example
341
+ To illustrate how ELBO optimization leads to a good approximation of target posterior
342
+ distribution, we consider Poisson sampling with a Gamma prior, which is a popular one-
343
+ parameter model for count data (Gelman et al. 2013, Albert & Hu (2019), Johnson et al.
344
+ (2022)). To get started, we provide the following motivating example:
345
+ 10
346
+
347
+ Our task is to estimate the average number of active users of a popular mas-
348
+ sively multiplier online role-playing game (mmorpg) playing between the peak
349
+ evening hours 7 pm and 10 pm. This information can help game developers
350
+ in allocating server resources and optimizing user experience. To estimate the
351
+ average number of active users, we will consider the counts (in thousands) of
352
+ active players collected during the peak evening hours over a two-week period in
353
+ the past month.
354
+ We have chosen the Gamma-Poisson model as the probabilistic model in this class ac-
355
+ tivity for two reasons. First, the Gamma-Poisson model is relatively easy to understand for
356
+ students with an elementary knowledge of probability distributions. Second, the Gamma
357
+ is a conjugate prior for Poisson sampling which means that one can derive the exact poste-
358
+ rior distribution (another Gamma) and check the fidelity of variational approximation by
359
+ comparing to the analytical Gamma solution. The learning objective of this class activity
360
+ is to get students familiarized with various aspects of variational inference presented in Sec-
361
+ tion 2, such as ELBO and variational family, with a simple example. Afterwards, students
362
+ are better prepared to move on to more realistic scenarios, such as document clustering,
363
+ described in Section 4.
364
+ 3.2
365
+ Overview of the Gamma-Poisson Model
366
+ We now provide an overview of the Gamma-Poisson model which can be readily turned
367
+ into a class lecture. Suppose that y = (y1, . . . , yn) represent the observed counts in n time
368
+ intervals where the counts are independent, and each yi follows a Poisson distribution with
369
+ the same rate parameter θ > 0. The joint probability mass function of y = (y1, . . . , yn) is
370
+ p(y | θ) =
371
+ n
372
+
373
+ i=1
374
+ p(yi | θ) ∝ θ
375
+ �n
376
+ i=1 yie−nθ.
377
+ (6)
378
+ The posterior distribution for the rate parameter θ is our inference target as θ represents
379
+ the expected number of counts that occur during the given time intervals. Note that the
380
+ Poisson sampling relies on several assumptions about the sampling process.
381
+ First, one
382
+ assumes that the time interval is fixed. Second, the counts occurring during different time
383
+ 11
384
+
385
+ intervals are independent. Lastly, the rate θ at which the counts occur is constant over
386
+ time.
387
+ The Gamma-Poisson conjugacy states that if θ follows a Gamma prior distribution with
388
+ shape and rate parameters α and β, it can be shown that the posterior distribution p(θ | y)
389
+ will also have a Gamma density. Namely, if
390
+ θ ∼ Gamma(α, β),
391
+ (7)
392
+ then
393
+ θ | y ∼ Gamma(α +
394
+ n
395
+
396
+ i=1
397
+ yi, β + n).
398
+ (8)
399
+ In other words, given α, β, and y, one can derive the analytical solution to the posterior
400
+ of p(θ | y) and can subsequently sample from Gamma(α + �n
401
+ i=1 yi, β + n) to get posterior
402
+ samples of θ. While no approximation is needed, it serves as a good example of illustrating
403
+ how variational inference works in such a setting and allows evaluations of the performance
404
+ of variational inference.
405
+ 3.3
406
+ Variational Inference of the Gamma-Poisson Model
407
+ Recall from Section 2 that variational inference approximates the (unknown) posterior
408
+ distribution of a parameter by a simple family of distributions. In this case, we will ap-
409
+ proximate the posterior distribution p(θ | y) by a log-normal distribution with mean µ and
410
+ standard deviation σ:
411
+ q(θ | µ, σ) =
412
+ 1
413
+ θσ
414
+
415
+ 2πe− (ln θ−µ)2
416
+ 2σ2
417
+ .
418
+ (9)
419
+ The log-normal distribution is a continuous probability distribution of a random variable
420
+ whose logarithm is normally distributed. It is a popular variational family for non-negative
421
+ parameters because it can be expressed as a (continuously) transformed normal distribu-
422
+ tion, and therefore it is amenable to automatic differentiation. Automatic differentiation is
423
+ a computation method for derivatives in computer programs that relies on the application
424
+ of chain rule in differential calculus. It provides accurate and fast numerical derivative
425
+ evaluations that leads to machine learning algorithms (such as variational inference) that
426
+ do not require users to manually work out and code derivatives (Kucukelbir et al. 2017,
427
+ Baydin et al. (2018)).
428
+ 12
429
+
430
+ 0.0
431
+ 0.1
432
+ 0.2
433
+ 0.3
434
+ 40
435
+ 50
436
+ 60
437
+ θ
438
+ Density
439
+ Prior
440
+ True posterior
441
+ log−normal(3.7, 0.05)
442
+ ELBO maximization: log−normal(3.9, 0.04)
443
+ Figure 3: Variational approximation based on the motivating scenario of mmorpg’s player
444
+ activity. The true Gamma(792, 100) posterior and the prior Gamma(100,2) distributions
445
+ are included.
446
+ In the supplementary materials, we provide an accompanying in-class handout and an R
447
+ Shiny app based on the motivating scenario of mmorpg described in Section 3.1. The first
448
+ two parts of the handout present the motivating example and the overview of the Gamma-
449
+ Poisson model. In the third part of the handout, students carry out exact posterior inference
450
+ for the unknown rate parameter θ using a small dataset of observed counts of mmorpg’s
451
+ active players. In the fourth and final part, students find variational approximation of
452
+ p(θ | y) and check how well their approximation matches the true posterior distribution.
453
+ Figure 3 shows the final variational approximation compared to the true Gamma(792, 100)
454
+ posterior distribution from the handout example. We can see, on the one hand, the resulting
455
+ log-normal(3.9, 0.04) distribution (the black dash line) that maximizes the ELBO visually
456
+ overlaps with the true posterior (ELBO = −42.52, KL divergence < 0.001). On the other
457
+ hand, another member of the variational family, the log-normal(3.7, 0.05) distribution (the
458
+ blue dot-dash line; with ELBO = −57.55 and KL divergence = 15.085), clearly differs from
459
+ the target. This example illustrates the good performance of variational inference through
460
+ optimization for the Gamma-Poisson count model.
461
+ 13
462
+
463
+ The design of this class activity is guided by the active-learning principles listed in
464
+ Section 1 and the goal is to give students their first hands-on experience with variational
465
+ inference without the need of coding. Specifically, we include open-ended questions that
466
+ focus on problem-solving and create opportunities for students to collaborate with peers.
467
+ Moreover, the accompanying R Shiny app provides appropriate and sufficient scaffolding so
468
+ that students can concentrate on conceptual understanding instead of the technical details,
469
+ which follows our pedagogical recommendations in Section 2.
470
+ We now turn to a guided R lab to illustrate the use of variational inference for a more
471
+ realistic use case of document clustering, applied to a sample of Associated Press newspaper
472
+ articles.
473
+ 4
474
+ Lab: Document Clustering
475
+ Among the many models approximated by variational inference techniques, Latent Dirichlet
476
+ Allocation (LDA) might be one of the most popular (Blei et al. 2003). LDA is a mixed-
477
+ membership clustering model, commonly used for document clustering. Specifically, LDA
478
+ models each document to have a mixture of topics, where each word in the document is
479
+ drawn from a topic based on the mixing proportions (Stan Development Team 2022). While
480
+ the LDA model is relatively easy and straightforward to follow, using conventional MCMC
481
+ estimation techniques has proven to be too computationally demanding due to the large
482
+ number of parameters involved. Therefore, researchers and practitioners turn to variational
483
+ inference techniques when using LDA for document clustering (Blei et al. 2003).
484
+ In Section 4.1, we briefly introduce the LDA model following the presentation in Stan
485
+ Development Team (2022). In Section 4.2, we present an LDA application to a collection
486
+ of Associate Press newspaper articles where variational inference is implemented by the
487
+ cmdstanr R package. For brevity, we focus on the interpretation of results and discuss
488
+ pedagogical considerations and leave a Stan script for the LDA model and the details of
489
+ the guided lab assignment with R code in the supplementary materials.
490
+ 14
491
+
492
+ 4.1
493
+ Overview of the LDA model
494
+ The LDA model considers K topics for M documents made up of words drawn from a
495
+ vocabulary of V distinct words. For a document m, a topic distribution θm over K topics
496
+ is drawn from a Dirichlet distribution,
497
+ θm ∼ Dirichlet(α),
498
+ (10)
499
+ where �K
500
+ k=1 θm,k = 1 (0 ≤ θm,k ≤ 1) and α is a vector of length K with positive values.
501
+ Each of the Nm words {wm,1, . . . , wm,Nm} in document m is then generated indepen-
502
+ dently conditional on θm. To do so, first, the topic zm,n for word wm,n in document m is
503
+ drawn from
504
+ zm,n ∼ categorical(θm),
505
+ (11)
506
+ where θm is the document-specific topic-distribution defined in Equation (14).
507
+ Next, the word wm,n in document m is drawn from
508
+ wm,n ∼ categorical(φz[m,n]),
509
+ (12)
510
+ which is the word distribution for topic zm,n. Note that z[m, n] in Equation (16) refers to
511
+ zm,n.
512
+ Lastly, a Dirichlet prior is given to distributions φk over words for topic k as
513
+ φk ∼ Dirichlet(β),
514
+ (13)
515
+ where β is the prior a vector of length V (i.e., the total number of words) with positive
516
+ values. Figure 10 shows a graphical model representation of LDA.
517
+ 4.2
518
+ Clustering of Associated Press Newspaper Articles
519
+ As a realistic application of variational inference, we consider a collection of 2246 Asso-
520
+ ciated Press newspaper articles to be clustered using the LDA model.
521
+ The dataset is
522
+ (conveniently) part of the topicmodels R package. We believe this dataset is well suited
523
+ to demonstrate the capabilities of variational inference in the classroom as it is too large
524
+ for the MCMC approximation to be feasible but small enough for the variational inference
525
+ to take just a few minutes to converge. For brevity, we highlight the results based on a
526
+ 15
527
+
528
+ Figure 4: Graphical model representation of LDA. The largest box represents the docu-
529
+ ments. On the left, the inner box represents the topics and words within each document.
530
+ On the right, the box represents the topics.
531
+ two-topic LDA model (i.e., K = 2) and leave the details to the guided lab in the sup-
532
+ plementary materials. The number of topics is set to 2 for demonstration purposes and
533
+ simplicity of interpretations. Comparing LDA with a different number of topics is often
534
+ done with metrics such as semantic coherence or held-out data likelihood (Mimno et al.
535
+ 2011). While such a comparison is beyond the scope of this lab, interested students are
536
+ encouraged to explore mentored by the instructors.
537
+ Figure 5 shows the evolution of ELBO for the two-topic LDA model which converged
538
+ after a little bit over 100 iterations of the gradient ascent algorithm described in Section
539
+ 2.3. On a standard laptop computer, this typically takes between 5-10 minutes depending
540
+ on the CPU speed. We recommend running the algorithm repeatedly (i.e., 2-3 times) with
541
+ a different random seed in the classroom and discussing the dependency of variational
542
+ inference on initial values of variational parameters which can occur in practice.
543
+ Figures 6 and 7 are examples of graphical displays of the topics that were extracted
544
+ from the collection of articles based with the LDA. In particular, Figure 6 shows the 10
545
+ most common words for each topic; that is, the parts of distribution φk, for k ∈ {1, 2},
546
+ with the largest mass. Figure 7 displays similar information for the 20 most common words
547
+ for each topic in the form of a word cloud. The most common words in topic 1 include
548
+ people, government, president, police, and state, suggesting that this topic may represent
549
+ political news. In contrast, the most common words in topic 2 include percent, billion,
550
+ 16
551
+
552
+ N
553
+ α
554
+ m
555
+ β
556
+ K
557
+ M−1120000
558
+ −1100000
559
+ −1080000
560
+ −1060000
561
+ −1040000
562
+ 0
563
+ 30
564
+ 60
565
+ 90
566
+ Iteration
567
+ ELBO
568
+ Figure 5: The evolution of ELBO for the two-topic LDA model based on 2246 Associated
569
+ Press newspaper articles.
570
+ million, market, American, and states, hinting that this topic may represent news about
571
+ the US economy.
572
+ 5
573
+ Concluding Remarks
574
+ In this paper, we present a newly-developed one-week course module that exposes un-
575
+ dergraduate students to approximation via variational inference. The proposed module
576
+ is self-contained in the sense that it encourages and empowers potential instructors to
577
+ adopt and adapt the module as we provide an overview of variational inference, an active-
578
+ learning-based class activity with an R Shiny app, and a guided lab based on a realis-
579
+ tic application with R code (see the supplementary materials or https://github.com/
580
+ kejzlarv/variational_inference_module). Its design is rooted in the best practices of
581
+ active learning that have been demonstrated to improve student learning and engagement.
582
+ The module can be integrated into any intermediate- or upper-level undergraduate
583
+ course where students learn probabilistic models (including logistic regression, Bayesian
584
+ classifiers, neural networks, or models for natural language processing), such as Bayesian
585
+ statistics, multivariate data analysis, and data science courses. The applications discussed
586
+ 17
587
+
588
+ Topic 1
589
+ Topic 2
590
+ 0.000
591
+ 0.005
592
+ 0.010
593
+ 0.015
594
+ 0.020
595
+ 0.025
596
+ 0.000
597
+ 0.005
598
+ 0.010
599
+ 0.015
600
+ 0.020
601
+ 0.025
602
+ american
603
+ billion
604
+ first
605
+ states
606
+ united
607
+ last
608
+ million
609
+ year
610
+ new
611
+ percent
612
+ told
613
+ officials
614
+ soviet
615
+ state
616
+ government
617
+ police
618
+ two
619
+ president
620
+ people
621
+ i
622
+ Word distributions ( ϕ )
623
+ Word
624
+ Figure 6: Word distributions based on the two-topic LDA model. The 10 most common
625
+ words are displayed.
626
+ Figure 7: World clouds consisting of the 20 most common words for each of the two topics
627
+ extracted by the LDA.
628
+ 18
629
+
630
+ market company
631
+ south house
632
+ first
633
+ t united
634
+ partygovernment
635
+ billion
636
+ daylastyear
637
+ I federal
638
+ told
639
+ people
640
+ rs
641
+ york
642
+ eal
643
+ percentreport
644
+ twO I police city
645
+ @national
646
+ bush
647
+ new
648
+ news
649
+ president
650
+ states
651
+ court
652
+ soviet
653
+ military
654
+ million
655
+ S
656
+ week
657
+ officials say
658
+ american
659
+ time
660
+ thursdayin these courses are typically limited to scenarios with relatively small datasets, since
661
+ the required use of MCMC does not scale well to large datasets. Given the popularity
662
+ and scalability of variational inference, we hope that undergraduate instructors adopting
663
+ and adapting this module will be able to integrate more realistic and fun use cases in
664
+ their classrooms. Moreover, the references and further readings provided in this paper are
665
+ readily available resources for a deeper dive of variational inference by interested students
666
+ with appropriate mentoring by their undergraduate instructors.
667
+ References
668
+ Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis,
669
+ A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M.,
670
+ Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Man´e, D., Monga, R.,
671
+ Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
672
+ Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Vi´egas, F., Vinyals, O., Warden,
673
+ P., Wattenberg, M., Wicke, M., Yu, Y. & Zheng, X. (2015), ‘TensorFlow: Large-scale
674
+ machine learning on heterogeneous systems’. Software available from tensorflow.org.
675
+ URL: https://www.tensorflow.org/
676
+ Albert, J. & Hu, J. (2019), Probability and Bayesian Modeling, 1 edn, Chapman and
677
+ Hall/CRC.
678
+ Albert, J. & Hu, J. (2020), ‘Bayesian computing in the undergraduate statistics curriculum’,
679
+ Journal of Statistics Education 28, 236–247.
680
+ Ambrogioni, L., Lin, K., Fertig, E., Vikram, S., Hinne, M., Moore, D. & van Gerven,
681
+ M. (2021), Automatic structured variational inference, in A. Banerjee & K. Fukumizu,
682
+ eds, ‘Proceedings of The 24th International Conference on Artificial Intelligence and
683
+ Statistics’, Vol. 130 of Proceedings of Machine Learning Research, PMLR, pp. 676–684.
684
+ URL: https://proceedings.mlr.press/v130/ambrogioni21a.html
685
+ Bardenet, R., Doucet, A. & Holmes, C. (2017), ‘On markov chain monte carlo methods for
686
+ tall data’, J. Mach. Learn. Res. 18(1), 1515–1557.
687
+ 19
688
+
689
+ Baydin, A. G., Pearlmutter, B. A., Radul, A. A. & Siskind, J. M. (2018), ‘Automatic
690
+ differentiation in machine learning: a survey’, Journal of Machine Learning Research
691
+ 18(153), 1–43.
692
+ URL: http://jmlr.org/papers/v18/17-468.html
693
+ Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. (2017), ‘Variational inference: A review for
694
+ statisticians’, Journal of the American Statistical Association 112(518), 859–877.
695
+ URL: https://doi.org/10.1080/01621459.2017.1285773
696
+ Blei, D. M., Ng, A. Y. & Jordan, M. I. (2003), ‘Latent dirichlet allocation’, Journal of
697
+ Machine Learning Research 3, 993–1022.
698
+ Deslauriers, L., McCarty, L. S., Miller, K., Callaghan, K. & Kestin, G. (2019), ‘Measuring
699
+ actual learning versus feeling of learning in response to being actively engaged in the
700
+ classroom’, Proceedings of the National Academy of Sciences 116(39), 19251–19257.
701
+ URL: https://www.pnas.org/doi/abs/10.1073/pnas.1821936116
702
+ Dogucu, M. & Hu, J. (2022), ‘The current state of undergraduate bayesian education and
703
+ recommendations for the future’, The American Statistician 76(4), 405–413.
704
+ URL: https://doi.org/10.1080/00031305.2022.2089232
705
+ Freeman, S., Eddy, S. L., McDonough, M., Smith, M. K., Okoroafor, N., Jordt, H. & Wen-
706
+ deroth, M. P. (2014), ‘Active learning increases student performance in science, engineer-
707
+ ing, and mathematics’, Proceedings of the National Academy of Sciences 111(23), 8410–
708
+ 8415.
709
+ URL: https://www.pnas.org/doi/abs/10.1073/pnas.1319030111
710
+ Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A. & Rubin, D. (2013), Bayesian
711
+ Data Analysis, third edn, CRC Pres.
712
+ URL: https://books.google.com/books?id=ZXL6AQAAQBAJ
713
+ Hoffman, M. D., Blei, D. M., Wang, C. & Paisley, J. (2013), ‘Stochastic variational infer-
714
+ ence’, Journal of Machine Learning Research 14, 1303–1347.
715
+ URL: http://jmlr.org/papers/v14/hoffman13a.html
716
+ 20
717
+
718
+ Johnson, A. A., Ott, M. & Dogucu, M. (2022), Bayes Rules! An Introduction to Applied
719
+ Bayesian Modeling, 1 edn, Chapman and Hall/CRC.
720
+ Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. (1999), ‘An introduction to
721
+ variational methods for graphical models’, Machine Learning 37, 183–233.
722
+ Kucukelbir, A., Tran, D., Ranganath, R., Gelman, A. & Blei, D. M. (2017), ‘Automatic
723
+ differentiation variational inference’, Journal of Machine Learning Research 18(14), 1–
724
+ 45.
725
+ URL: http://jmlr.org/papers/v18/16-107.html
726
+ Kullback, S. & Leibler, R. A. (1951), ‘On Information and Sufficiency’, The Annals of
727
+ Mathematical Statistics 22(1), 79 – 86.
728
+ URL: https://doi.org/10.1214/aoms/1177729694
729
+ Michael, J. (2006), ‘Where’s the evidence that active learning works?’, Advances in Physi-
730
+ ology Education 30(4), 159–167. PMID: 17108243.
731
+ URL: https://doi.org/10.1152/advan.00053.2006
732
+ Mimno, D., Wallach, H. M., Talley, E., Leenders, M. & McCallum, A. (2011), Optimizing
733
+ semantic coherence in topic models, in ‘Proceedings of the Conference on Empirical
734
+ Methods in Natural Language Processing’, EMNLP ’11, Association for Computational
735
+ Linguistics, USA, p. 262–272.
736
+ Minka, T. P. (2001), Expectation propagation for approximate bayesian inference, in ‘Pro-
737
+ ceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence’, UAI’01,
738
+ Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, p. 362–369.
739
+ Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin,
740
+ Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
741
+ M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J. & Chintala, S. (2019),
742
+ Pytorch: An imperative style, high-performance deep learning library, in ‘Advances in
743
+ Neural Information Processing Systems 32’, Curran Associates, Inc., pp. 8024–8035.
744
+ URL:
745
+ http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-
746
+ performance-deep-learning-library.pdf
747
+ 21
748
+
749
+ Peterson, C. & Anderson, J. R. (1987), ‘A mean field theory learning algorithm for neural
750
+ networks’, Complex Systems 1, 995–1019.
751
+ Rudoy, D. & Wolfe, P. J. (2006), Monte carlo methods for multi-modal distributions, in
752
+ ‘2006 Fortieth Asilomar Conference on Signals, Systems and Computers’, pp. 2019–2023.
753
+ Schwab-McCoy, A., Baker, C. M. & Gasper, R. E. (2021), ‘Data science in 2020: Com-
754
+ puting, curricula, and challenges for the next 10 years’, Journal of Statistics and Data
755
+ Science Education 29(sup1), S40–S50.
756
+ URL: https://doi.org/10.1080/10691898.2020.1851159
757
+ Stan Development Team (2022), Stan Modeling Language User’s Guide and Reference Man-
758
+ ual, Version 2.31.
759
+ URL: http://mc-stan.org/
760
+ 22
761
+
762
+ Supplementary Materials for Introducing Variational Inference In
763
+ Undergraduate Statistics and Data Science Curriculum
764
+ The supplementary materials include: 1) Details of the class activity on probabilistic
765
+ model for count data with variational inference, introduced in Section 3 in the main text;
766
+ 2) The manual of the R shiny app we have developed for the module, mentioned in Section
767
+ 3 in the main text; and 3) Details of the guided R lab of the LDA application to a sample
768
+ of the Associated Press newspaper articles with variational inference, presented in Section
769
+ 4 in the main text.
770
+ 6
771
+ Class Activity: Probabilistic Model for Count Data
772
+ with Variational Inference
773
+ The goal of this activity is to illustrate variational inference on a simple example of Gamma-
774
+ Poisson conjugate model, which is a popular model for count data.
775
+ 6.1
776
+ A Motivating Example
777
+ Our task is to estimate the average number of active users of a popular massively multiplier
778
+ online role-playing game (mmorpg) playing between the peak evening hours 7 pm and 10
779
+ pm.
780
+ This information can help the game developers in allocating server resources and
781
+ optimizing user experience. To make this estimate, we will consider the following counts
782
+ (in thousands) of active players collected during the peak evening hours over a two-week
783
+ period past month.
784
+ Sun
785
+ Mon
786
+ Tue
787
+ Wed
788
+ Thu
789
+ Fri
790
+ Sat
791
+ Week 1
792
+ 50
793
+ 47
794
+ 46
795
+ 52
796
+ 49
797
+ 55
798
+ 53
799
+ Week 2
800
+ 48
801
+ 45
802
+ 51
803
+ 50
804
+ 53
805
+ 46
806
+ 47
807
+ 6.2
808
+ Overview of the Gamma-Poisson Model
809
+ Sampling density:
810
+ 23
811
+
812
+ Suppose that y = (y1, . . . , yn) represent the observed counts in n time intervals where
813
+ the counts are independent, then each yi follows a Poisson distribution with rate θ > 0.
814
+ Namely,
815
+ yi | θ ∼ Poisson(θ)
816
+ • E(yi | θ) = θ
817
+ • Var(yi | θ) = θ
818
+ Prior distribution:
819
+ θ ∼ Gamma(α, β)
820
+ • α > 0 is the shape parameter
821
+ • β > 0 is the rate parameter
822
+ • E(θ) = α
823
+ β
824
+ • Var(θ) =
825
+ α
826
+ β2
827
+ Posterior distribution:
828
+ θ | y1, . . . , yn ∼ Gamma(α +
829
+ n
830
+
831
+ i=1
832
+ yi, β + n)
833
+ 6.3
834
+ Exact Inference with the Gamma-Poisson Model
835
+ We will start by selecting a prior distribution for the unknown average number of active
836
+ users. Suppose that we elicit an expert’s advice on the matter, and they tell us that a
837
+ similar mmorpg has typically about 50,000 users during peak hours. However, they are
838
+ not too sure about that, so the interval between 45,000 and 55,000 users should have a
839
+ reasonably high probability. Suppose that we elicit an expert’s advice on the matter, and
840
+ they tell us that a similar mmorpg has typically about 50,000 users during peak hours.
841
+ However, they are not too sure about that, so the interval between 45,000 and 55,000 users
842
+ should have a reasonably high probability. This reasoning leads to a Gamma(100, 2) as a
843
+ reasonable prior for the average number of active users.
844
+ 24
845
+
846
+ Task 1: Explain the reasoning behind using Gamma(100, 2) as the prior distri-
847
+ bution.
848
+ Task 2: Use the information above to find the exact posterior distribution for
849
+ the average number of active users.
850
+ Task 3: What are the mean and standard deviation of the posterior distribu-
851
+ tion that you just obtained? What is your recommendation about the typical
852
+ number of active users playing the mmorpg between the peak evening hours
853
+ 7pm and 10pm?
854
+ 6.4
855
+ Variational Inference with the Gamma-Poisson Model
856
+ Variational inference approximates the (unknown) posterior distribution of a parameter
857
+ by a simple family of distributions. In this case, we will try to approximate the posterior
858
+ distribution of the mmorpg’s average number of active users between the peak hours θ by
859
+ a log-normal distribution with mean µ and standard deviation σ. Log-normal distribution
860
+ is a continuous probability distribution of a random variable whose logarithm is normally
861
+ distributed. It also happens to be a popular variational family for non-negative parameters
862
+ as it is amenable to autodifferentiation. Since we know exactly how the posterior distri-
863
+ bution for Gamma-Poisson model looks like, we will be able to check the fidelity of the
864
+ variational approximation. Use the accompanying applet titled Variational Inference with
865
+ Gamma-Poisson Model for count data to complete the following task.
866
+ 25
867
+
868
+ Task 4: Use the sliders in the applet to manually find the member of a log-
869
+ normal variational family that well approximates the posterior distribution of
870
+ θ. What is your strategy?
871
+ Task 5: Compare your approximation with a neighbor. Whose approximation
872
+ is closer to the exact posterior distribution of θ? How are you deciding?
873
+ Task 6: Check the Fit a variational approximation box in the applet to find
874
+ the variational approximation using the gradient ascent algorithm. How close
875
+ was the variational approximation that you found manually to the one found
876
+ here?
877
+ 7
878
+ Manual of the R shiny app
879
+ This document describes the elements of R Shiny applet that accompanies the “Proba-
880
+ bilistic Model for Count Data with Variational Inference” class activity. Note that the
881
+ numbering in Section 7.1 and Section 7.2 corresponds to the numbered boxes in Figure 8
882
+ and Figure 9.
883
+ 7.1
884
+ Manual search for variational approximation
885
+ 1. Sliders to control the mean µ and the standard deviation σ of log-normal variational
886
+ family.
887
+ 2. The ELBO and KL divergence values for variational approximation based on the
888
+ mean and standard deviations selected in box 1.
889
+ 3. A plot that displays the true Gamma(792, 100) posterior distribution, the Gamma(100, 2)
890
+ prior distribution, and the variational approximation based on the selection in box 1.
891
+ 4. A checkbox to display the results of ELBO maximization via gradient ascent algo-
892
+ rithm. The resulting variational approximation is plotted in box 3.
893
+ 26
894
+
895
+ Figure 8: The applet is based on the class activity presented in Section 1 of the supplemen-
896
+ tary materials. The applet visual before checking the “Fit a variational approximation“
897
+ checkbox is displayed.
898
+ 7.2
899
+ Variational approximation based on ELBO maximization
900
+ 5. The resulting mean µ, standard deviation σ, and ELBO values of variational approx-
901
+ imation based on ELBO maximization.
902
+ 6. A plot depicting ELBO values for each iteration of the gradient ascent algorithm.
903
+ 8
904
+ Lab: Document Clustering
905
+ The goal of this lab is to gain a practical experience with variational inference on a real-
906
+ istic use case based on Latent Dirichlet Allocation (LDA) and implement the model in R
907
+ applied to a dataset of documents. To do so, we consider a collection of 2246 Associated
908
+ Press newspaper articles to be clustered using the LDA model. The dataset is part of the
909
+ topicmodels R package. You can load the dataset AssociatedPress with the following R
910
+ command.
911
+ data("AssociatedPress", package = "topicmodels")
912
+ 27
913
+
914
+ Variational Inference with Gamma-Poisson Model for count data
915
+ Variational approximation using log-normal variational family:
916
+ Prior
917
+ True posterior-. VI- Manual
918
+ 3
919
+ μ
920
+ 1
921
+ 0.3-
922
+ 3.5
923
+ 3.7
924
+ 4.2
925
+ 3.82
926
+ 3.9
927
+ 4.14 4.2
928
+ 0.2
929
+ 6
930
+ PDF
931
+ 0.01
932
+ 0.05
933
+ 0.1
934
+ 0.1
935
+ ELBO value:
936
+ 2
937
+ -57.496
938
+ 0.0
939
+ 40
940
+ 50
941
+ KL Divergence value:
942
+ 60
943
+ 0
944
+ 15.031
945
+ OFit a variational approximation
946
+ 4Figure 9: The applet visual after checking the “Fit a variational approximation“ checkbox
947
+ is displayed.
948
+ 28
949
+
950
+ Variational Inference with Gamma-Poisson Model for count data
951
+ Variational approximation using log-normal variational family:
952
+ :Prior
953
+ True posterior -: VI-Manual - VI -ELBO maximization
954
+ μ
955
+ 0.3-
956
+ 3.5
957
+ 3.7
958
+ 4.2
959
+ 3.5
960
+ 3.58 3.66 3.74 3.82 3.9 3.984.064.14 4.2
961
+ 0.2
962
+ PDF
963
+ 0.01
964
+ 0.05
965
+ 0.1
966
+ 0.1
967
+ 0.010.020.030.040.050.060.070.080.090.1
968
+ ELBO value:
969
+ -57.496
970
+ 0.0-
971
+ 40
972
+ 50
973
+ 60
974
+ KL Divergence value:
975
+ 15.031
976
+ Fit a variational approximation
977
+ 0
978
+ D
979
+ Results of ELBo maximization via gradient ascent:
980
+ 5
981
+ μ
982
+ -50
983
+ 3.901
984
+ 0
985
+ .BO
986
+ -100
987
+ 0.035
988
+ E
989
+ ELBO value:
990
+ -150
991
+ -42.52
992
+ -200
993
+ 0
994
+ 50
995
+ 100
996
+ 150
997
+ 200
998
+ Iteration8.1
999
+ Overview of the LDA model and Stan script
1000
+ The LDA is a mixed-membership clustering model, commonly used for document clustering.
1001
+ LDA models each document to have a mixture of topics, where each word in the document is
1002
+ drawn from a topic based on the mixing proportions. Specifically, the LDA model assumes
1003
+ K topics for M documents made up of words drawn from V distinct words. For document
1004
+ m, a topic distribution θm is drawn over K topics from a Dirichlet distribution,
1005
+ θm ∼ Dirichlet(α),
1006
+ (14)
1007
+ where �K
1008
+ k=1 θm,k = 1 (0 ≤ θm,k ≤ 1) and α is the prior a vector of length K with positive
1009
+ values.
1010
+ Each of the Nm words {wm,1, . . . , wm,Nm} in document m is then generated indepen-
1011
+ dently conditional on θm. To do so, first, the topic zm,n for word wm,n in document m is
1012
+ drawn from
1013
+ zm,n ∼ categorical(θm),
1014
+ (15)
1015
+ where θm is the document-specific topic-distribution defined in Equation (14).
1016
+ Next, the word wm,n in document m is drawn from
1017
+ wm,n ∼ categorical(φz[m,n]),
1018
+ (16)
1019
+ which is the word distribution for topic zm,n. Note that z[m, n] in Equation (16) refers to
1020
+ zm,n.
1021
+ Lastly, a Dirichlet prior is given to distributions φk over words for topic k as
1022
+ φk ∼ Dirichlet(β),
1023
+ (17)
1024
+ where β is the prior a vector of length V (i.e., the total number of words) with positive
1025
+ values. Figure 10 shows a graphical model representation of LDA.
1026
+ Below, we include the Stan script for the LDA model provided by Stan Development
1027
+ Team (2022). Note that Stan supports the calculation of marginal distributions over the
1028
+ continuous parameters by summing out the discrete parameters in mixture models (Stan
1029
+ Development Team 2022). This process corresponds to the gamma parameter in the Stan
1030
+ script below. We refer interested readers to Stan Development Team (2022) for further
1031
+ details.
1032
+ 29
1033
+
1034
+ Figure 10: Graphical model representation of LDA. The outer box represents the docu-
1035
+ ments. On the left, the inner box represents the topics and words within each document.
1036
+ On the right, the box represents the topics.
1037
+ data {
1038
+ int<lower=2> K;
1039
+ // number of topics
1040
+ int<lower=2> V;
1041
+ // number of words
1042
+ int<lower=1> M;
1043
+ // number of docs
1044
+ int<lower=1> N;
1045
+ // total word instances
1046
+ int<lower=1, upper=V> w[N];
1047
+ // word n
1048
+ int<lower=1, upper=M> doc[N];
1049
+ // doc ID for word n
1050
+ vector<lower=0>[K] alpha;
1051
+ // topic prior vector of length K
1052
+ vector<lower=0>[V] beta;
1053
+ // word prior vector of length V
1054
+ }
1055
+ parameters {
1056
+ simplex[K] theta[M];
1057
+ // topic distribution for doc m
1058
+ simplex[V] phi[K];
1059
+ // word distribution for topic k
1060
+ }
1061
+ model {
1062
+ for (m in 1:M)
1063
+ theta[m] ~ dirichlet(alpha);
1064
+ 30
1065
+
1066
+ N
1067
+ α
1068
+ m
1069
+ β
1070
+ K
1071
+ Mfor (k in 1:K)
1072
+ phi[k] ~ dirichlet(beta);
1073
+ for (n in 1:N) {
1074
+ real gamma[K];
1075
+ for (k in 1:K)
1076
+ gamma[k] = log(theta[doc[n], k]) + log(phi[k, w[n]]);
1077
+ target += log sum exp(gamma);
1078
+ // likelihood;
1079
+ }
1080
+ }
1081
+ 8.2
1082
+ Variational inference with the LDA model
1083
+ For demonstration purposes, we shall start with a two-topic LDA model (i.e., K = 2).
1084
+ Before that, we recommend removing the words from AssociatedPress datasets that are
1085
+ rare using the function removeSparseTerms() from the tm package. These words have a
1086
+ minimal effect on the LDA parameter estimation. Nevertheless, they increase the compu-
1087
+ tational cost of variational inference and therefore should be removed using the following
1088
+ R command.
1089
+ dtm <- removeSparseTerms(AssociatedPress, 0.95)
1090
+ We are now ready to fit the LDA model using variational inference capabilities of the
1091
+ cmdstanr package. The following code achieves the goal:
1092
+ LDA model cmd <- cmdstan model(stan file = "LDA.stan")
1093
+ N TOPICS <- 2
1094
+ data <- list(K = N TOPICS,
1095
+ V = dim(dtm)[2],
1096
+ M = dim(dtm)[1],
1097
+ N = sum(dtm$v),
1098
+ w = rep(dtm$j,dtm$v),
1099
+ 31
1100
+
1101
+ doc = rep(dtm$i,dtm$v),
1102
+ #according to Griffiths and Steyvers(2004)
1103
+ alpha = rep(50/N TOPICS,N TOPICS),
1104
+ beta = rep(1,dim(dtm)[2])
1105
+ )
1106
+ vi fit <- LDA model cmd$variational(data = data,
1107
+ seed = 1,
1108
+ output samples = 1000,
1109
+ eval elbo = 1,
1110
+ grad samples = 10,
1111
+ elbo samples = 10,
1112
+ algorithm = "meanfield",
1113
+ output dir = NULL,
1114
+ iter = 1000,
1115
+ adapt iter = 20,
1116
+ save latent dynamics=TRUE,
1117
+ tol rel obj = 10^-4)
1118
+ The “LDA.stan” file contains the Stan script for the LDA model provided in Section
1119
+ 8.1. We recommend the usage of the R help to get familiar with the variational() method
1120
+ of the cmdstan model() function. The variable vi fit contains the results of variational
1121
+ approximation of the LDA parameters. For example, one can obtain the word distributions
1122
+ for the each of the topics with vi fit$summary("phi").
1123
+ Finally, to access the ELBO values, use the following:
1124
+ vi diag <- utils::read.csv(vi fit$latent dynamics files()[1],
1125
+ comment.char = "#")
1126
+ ELBO <- data.frame(Iteration = vi diag[,1], ELBO = vi diag[,3])
1127
+ 32
1128
+
1129
+ Task 1: Use a graphical display to show the 10 most common words for each
1130
+ of the two-topics and their probabilities.
1131
+ Task 2: Use the function wordcloud() from the wordcloud package and display
1132
+ the most common words for each of the topics as a world clowd. What kinds
1133
+ of articles do these topics represent?
1134
+ Task 3: Fit a three-topic LDA model, display the most common words for each
1135
+ of the topics. How do the results differ from the two-topic LDA?
1136
+ Task 4 (Advanced): Use the three-topic LDA model and diplay the topic preva-
1137
+ lence among the 2246 Associated Press articles. That is, show what proportions
1138
+ of articles fall under each topic.
1139
+ All necessary R code for fitting the LDA model to the Associated Press sample, including
1140
+ the graphical displays shown in the main text, is included in a separate R script file called
1141
+ LDA LAB.R available as a part of the supplementary materials. We also include a printout
1142
+ of the R script below for interested readers.
1143
+ library(cmdstanr)
1144
+ # Checking integrity of installation of cmdstanr
1145
+ check cmdstan toolchain()
1146
+ install cmdstan(cores = 2)
1147
+ cmdstan path()
1148
+ cmdstan version()
1149
+ # Auxiliary packages
1150
+ library(tm)
1151
+ library(tidyverse)
1152
+ library(tidytext)
1153
+ library(topicmodels)
1154
+ 33
1155
+
1156
+ ## Get data
1157
+ data("AssociatedPress", package = "topicmodels")
1158
+ ## Removing rare words from the vocabulary
1159
+ dtm <- removeSparseTerms(AssociatedPress, 0.95)
1160
+ dim(dtm)
1161
+ ## Input for stan model
1162
+ N TOPICS <- 2
1163
+ data <- list(K = N TOPICS,
1164
+ V = dim(dtm)[2],
1165
+ M = dim(dtm)[1],
1166
+ N = sum(dtm$v),
1167
+ w = rep(dtm$j,dtm$v),
1168
+ doc = rep(dtm$i,dtm$v),
1169
+ #according to Griffiths and Steyvers(2004)
1170
+ alpha = rep(50/N TOPICS,N TOPICS),
1171
+ beta = rep(1,dim(dtm)[2])
1172
+ )
1173
+ ### VB fit
1174
+ LDA model cmd <- cmdstan model(stan file = "LDA.stan")
1175
+ LDA model cmd$print()
1176
+ vb fit <- LDA model cmd$variational(data = data,
1177
+ seed = 1,
1178
+ output samples = 1000,
1179
+ eval elbo = 1,
1180
+ grad samples = 10,
1181
+ 34
1182
+
1183
+ elbo samples = 10,
1184
+ algorithm = "meanfield",
1185
+ output dir = NULL,
1186
+ iter = 1000,
1187
+ adapt iter = 20,
1188
+ save latent dynamics=TRUE,
1189
+ tol rel obj = 10^-4)
1190
+ # Plotting ELBO
1191
+ vb diag <- utils::read.csv(vb fit$latent dynamics files()[1],
1192
+ comment.char = "#")
1193
+ ELBO <- data.frame(Iteration = vb diag[,1],
1194
+ ELBO = vb diag[,3])
1195
+ ggplot(data = ELBO, aes(x = Iteration, y = ELBO)) + geom line(lwd=1.5) +
1196
+ theme(text = element text(size = 20),
1197
+ panel.background = element rect(fill = "transparent",
1198
+ color = "lightgrey"),
1199
+ panel.grid.major = element line(colour = "lightgrey")) +
1200
+ xlim(0,110)
1201
+ ## Accessing parameters
1202
+ vb fit$summary("theta") # dim: M-by-K
1203
+ vb fit$summary("phi") # dim: K-by-V
1204
+ ## Word distribution per topic
1205
+ V <- dim(dtm)[2]
1206
+ odd rows <- rep(c(1,0), times = V)
1207
+ Topic1 <- vb fit$summary("phi")[odd rows == 1,]
1208
+ Topic2 <- vb fit$summary("phi")[odd rows == 0,]
1209
+ 35
1210
+
1211
+ word probs <- data.frame(Topic = c(rep("Topic 1", V),
1212
+ rep("Topic 2", V)),
1213
+ Word = rep(dtm$dimnames$Terms,N TOPICS),
1214
+ Probability = c(Topic1$mean, Topic2$mean))
1215
+ # Selecting top 10 words per topic
1216
+ top words <- word probs %>% group by(Topic) %>% top n(10) %>%
1217
+ ungroup() %>% arrange(Topic, -Probability)
1218
+ top words %>%
1219
+ mutate(Word = reorder within(Word, Probability, Topic)) %>%
1220
+ ggplot(aes(Probability, Word, fill = factor(Topic))) +
1221
+ geom col(show.legend = FALSE) +
1222
+ facet wrap(~ Topic, scales = "free") +
1223
+ scale y reordered() + theme(text = element text(size = 15)) + xlim(0,0.025) +
1224
+ xlab("Word distributions ( \u03d5 )")
1225
+ # Word Cloud display
1226
+ #install.packages("wordcloud")
1227
+ library(wordcloud)
1228
+ top words <- word probs %>% group by(Topic) %>% top n(20) %>%
1229
+ ungroup() %>% arrange(Topic, -Probability)
1230
+ mycolors <- brewer.pal(8, "Dark2")
1231
+ wordcloud(top words %>% filter(Topic == "Topic 1") %>% .$Word ,
1232
+ top words %>% filter(Topic == "Topic 1") %>% .$Probability,
1233
+ random.order = FALSE,
1234
+ color = mycolors)
1235
+ 36
1236
+
1237
+ mycolors <- brewer.pal(8, "Dark2")
1238
+ wordcloud(top words %>% filter(Topic == "Topic 2") %>% .$Word ,
1239
+ top words %>% filter(Topic == "Topic 2") %>% .$Probability,
1240
+ random.order = FALSE,
1241
+ color = mycolors)
1242
+ 37
1243
+
BtAzT4oBgHgl3EQfTfyw/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CdE3T4oBgHgl3EQfUQrt/content/tmp_files/2301.04450v1.pdf.txt ADDED
@@ -0,0 +1,720 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Letter
2
+ Optica
3
+ 1
4
+ Subnanometer confinement and bundling of atoms in a
5
+ Rydberg empowered optical lattice
6
+ MOHAMMADSADEGH KHAZALI
7
+ Institute for Research in Fundamental Sciences (IPM), Tehran 19538-33511, Iran
8
+ Department of Physics, University of Tehran, North Kargar Ave., Tehran P.O. Box 14395-547, Iran
9
+ Compiled January 12, 2023
10
+ Optical lattices are the basic blocks of atomic quan-
11
+ tum technology.
12
+ The scale and resolution of these
13
+ lattices are diffraction-limited to the light wavelength.
14
+ Tight confinement of single sites in conventional lat-
15
+ tices requires excessive laser intensity which in turn
16
+ suppresses the coherence due to enhanced scattering.
17
+ This article proposes a new scheme for atomic opti-
18
+ cal lattice with sub-wavelength spatial structure. The
19
+ potential is formed by the nonlinear optical response
20
+ of the three-level Rydberg dressed atoms, which is
21
+ not constrained by the diffraction limit of the driv-
22
+ ing fields. The lattice consists of a 3D array of ultra-
23
+ narrow Lorentzian wells with sub-nanometer widths.
24
+ The scheme allows moving adjacent sites to close dis-
25
+ tances with sub-nanometer resolution. These extreme
26
+ scales are now optically accessible by a hybrid scheme
27
+ deploying the dipolar interaction and optical twist of
28
+ atomic eigenstates. The interaction-induced two-body
29
+ resonance that forms the trapping potential, only oc-
30
+ curs at a peculiar laser intensity, localizing the trap
31
+ sites to ultra-narrow regions over the standing-wave
32
+ driving field. The Lorentzian trapping potentials with
33
+ 2Å width and 30MHz depth are realizable with scatter-
34
+ ing rates as low as 1Hz. The mentioned improvements
35
+ allow quantum logic operations with Rydberg-Fermi
36
+ interaction. These techniques are particularly demand-
37
+ ing for the realization of atomtronics, quantum walks,
38
+ Hubbard models, and neutral-atom quantum simula-
39
+ tion.
40
+ © 2023 Optical Society of America
41
+ http://dx.doi.org/10.1364/ao.XX.XXXXXX
42
+ 1. INTRODUCTION
43
+ The primary enabling technology in atomic quantum proces-
44
+ sors is the coherent control of the position and motion of atoms
45
+ by lasers. The underlying mechanism in conventional optical
46
+ lattices is the ac-Stark shift of atomic levels formed by far-off-
47
+ resonant laser fields. The diffraction limit, which is about the
48
+ wavelength of the light, is what determines the scale and spatial
49
+ resolution of such optical potential landscapes. This fundamen-
50
+ tally limits the optical manipulation of atoms, affecting some of
51
+
52
+ |𝟓𝒔𝟐, 𝟏𝑺𝟎
53
+
54
+ |𝟓𝒔𝟓𝒑, 𝟑𝑷𝟏
55
+
56
+ |𝟓𝒔𝒏𝒔, 𝟑𝑺𝟏
57
+
58
+ |𝒈
59
+
60
+ |𝒑
61
+
62
+ |𝒆
63
+ V
64
+ −∆
65
+ 𝛀𝟏
66
+ 𝛀𝟐(x)
67
+ (a)
68
+ 𝜃
69
+ (b)
70
+ 0
71
+ 0.05
72
+ 0.1
73
+ 0.15
74
+ 0.2
75
+ 0.25
76
+ 0.
77
+ -1.2
78
+ -1
79
+ -0.8
80
+ -0.6
81
+ -0.4
82
+ -0.2
83
+ 0
84
+ 0.2
85
+ Fig. 1. Ultra-tight confinement of atoms in an interaction-
86
+ induced atomic lattice. (a) Rydberg dressing of ground state
87
+ Sr atoms with standing-wave laser field (blue line) results
88
+ in an interaction-induced periodic trapping potential that
89
+ features sharp resonance at a narrow range of laser intensity.
90
+ This would form ultra-narrow trapping wells (green line) that
91
+ results in sub-nanometer atomic confinement. (b) The level
92
+ scheme presents in-resonance two-photon Rydberg excitation.
93
+ the quantum technology applications. For instance, in the re-
94
+ cently proposed Rydberg-Fermi quantum simulator [2, 3], ultra-
95
+ tight confinement of atoms within the single lobe of the Rydberg
96
+ wave-function is required for high-fidelity scalable quantum
97
+ processing. Tight confinement is also demanding for applica-
98
+ tions that are based on distance selective interaction [4, 5] and
99
+ controlled Rydberg anti-blockade operations [6]. Finally, tight
100
+ confinement is demanded for improving the fidelity of neutral
101
+ atom processors [7–10].
102
+ This article presents the first scheme for ultra-tight sub-
103
+ nanometer confinement of atoms in an optical lattice with dy-
104
+ namic features to move pair of lattice sites close to each other
105
+ at extreme scales of about 4Å which is the realm of solid-state
106
+ crystals. The dynamic control of the lattice separation allows a
107
+ new type of quantum gate operations powered by the remote
108
+ Rydberg-Fermi spin-flip. The Rydberg-Fermi spin-flip has been
109
+ observed in Bose Einstein Condensate (BEC) at inter-atomic
110
+ distances of about 30nm [11]. However, the real application
111
+ of this phenomenon in an atomic lattice quantum processor
112
+ was elusive. The real application requires dynamic maneuver
113
+ of the interatomic distance from micrometer scale during the
114
+ laser-addressing of individual sites [12, 13] to 30nm over the
115
+ interaction stage [11]. Furthermore, since the Rydberg-Fermi
116
+ interaction is proportional to the Rydberg wave-function proba-
117
+ bility amplitude, the interatomic distance must be fixed within
118
+ nanometer-scale precision. The tight confinement and ultra-high
119
+ precision of interatomic distances in the current lattice proposal
120
+ arXiv:2301.04450v1 [quant-ph] 11 Jan 2023
121
+
122
+ Letter
123
+ Optica
124
+ 2
125
+ opens new opportunities to develop nano-scale quantum tech-
126
+ nologies of this type.
127
+ Tight confinement of atoms in conventional optical lattices
128
+ requires an extensive power i.e. the spatial width is inversely
129
+ proportional to the quadruple root of the laser intensity. The
130
+ drawback is the loss of coherence due to the enhanced scattering.
131
+ In an alternative approach, this article deploys the nonlinear
132
+ response of Rydberg-dressed atoms to the intensity of standing-
133
+ wave driving field, as a means to form a lattice of ultra-narrow
134
+ trapping potentials. The sub-wavelength resolution arises when
135
+ the composition of eigenstates on two-atom basis twists rapidly
136
+ at a specific light intensity to form interaction-induced reso-
137
+ nance over a short length scale of the standing-wave. Unlike the
138
+ conventional ac-Stark shift potentials, this interaction-induced
139
+ potential is a quantum effect, with magnitude proportional to
140
+ ¯h. This effect forms 3D lattices with potential widths as small as
141
+ the neutral atom radius. The proposed lattice features dynamic
142
+ terms that bundle pairs of atoms and draw them near to sub-
143
+ nanometer distances; the realm that used to be exclusive to solid
144
+ state crystals.
145
+ The recent advances in optical control of Rydberg atoms have
146
+ opened a wide range of applications in quantum technology [14–
147
+ 21]. The required dipolar interaction in this proposal is formed
148
+ by the in-resonance dressing of ground-state atoms with the
149
+ highly excited Rydberg state [22, 23]. Rydberg dressing of a
150
+ BEC with homogeneous laser lights could form triangular and
151
+ quasi-ordered droplet crystals [23, 24]. However, this periodic
152
+ structure would not be fixed in space. The spatial pattern of the
153
+ driving field and intensity dependence of the potential would
154
+ spatially pin the lattice sites to the nodes of standing wave.
155
+ Therefore, the lattice structure would be fixed in the space. This
156
+ feature is required for addressing individual sites in atomic
157
+ processors.
158
+ The atomic lattice scheme is based on dressing 88Sr atoms
159
+ with the highly excited Rydberg level, see Fig. 1. In the two-
160
+ photon in-resonance dressing scheme [22, 23], the single atom
161
+ Hamiltonian is given by
162
+ Hi/¯h = Ω1
163
+ 2 (σi
164
+ gp + σi
165
+ pg) + Ω2(x)
166
+ 2
167
+ (σi
168
+ ep + σi
169
+ pe) − ∆σpp,
170
+ (1)
171
+ where σα,β = |α⟩⟨β| is the transition operator. The two Rabi
172
+ frequencies Ω1,2 are applied by 689nm and 318nm lasers that are
173
+ detuned from the intermediate state |p⟩ by ∆. With negligible
174
+ Rydberg decay rates, the system would follow the dark eigen-
175
+ state |d⟩ ∝ Ω2|g⟩ − Ω1|e⟩ with zero light-shift. In the limit of
176
+ Ω1 ≪ Ω2, ground state atoms will be partially dressed by Ryd-
177
+ berg states with the population of Pe = (Ω1/Ω2)2. The van-der
178
+ Waals interaction between Rydberg atoms Vij = ¯hC6/r6
179
+ ijσieeσj
180
+ ee
181
+ is a function of interatomic distance rij.
182
+ The interaction of
183
+ |5sns 3S1⟩ Rydberg atoms is repulsive. This strong interaction
184
+ could exceed atom-light coupling over several micrometers of
185
+ interatomic separations.
186
+ The dynamic of the system under Rydberg interaction is gov-
187
+ erned by the master equation of two-body density matrices. The
188
+ two-body density matrices ρij = Tr¯i,¯jρ are obtained by tracing
189
+ over all but i and j particles. The corresponding master equation
190
+ would be given by
191
+ ∂tρij = − i
192
+ ¯h [Hi + Hj + Vij, ρij] + Li(ρij) + Lj(ρij)
193
+ (2)
194
+ The internal state dynamics are governed by single-particle dissi-
195
+ pation described by Li operator acting on ith atom. The Liouvil-
196
+ lian term Li(ρ) = ∑β D(cβ)ρi with D(c)ρi = cρic† − 1/2(c†cρi +
197
+ 0
198
+ 0.5
199
+ 1
200
+ 1.5
201
+ x/Rc
202
+ -1
203
+ -0.5
204
+ 0
205
+ U/|U0|
206
+ 2/2
207
+ (a)
208
+ -5
209
+ -1 0 1
210
+ 5
211
+ -1
212
+ -0.5
213
+ 0
214
+ Num
215
+ Ana
216
+ (b)
217
+ -5
218
+ -1 0 1
219
+ 5
220
+ -1
221
+ -0.5
222
+ 0
223
+ Num
224
+ Ana
225
+ (c)
226
+ Fig. 2. Interaction-induced atomic lattice. (a) The red line
227
+ shows the spatial profile of the Rabi frequency Ω2(x) =
228
+ Ω2c + Ω2sw| sin(kx sin(θ/2))|, where k = 2π/λ . The blue
229
+ line shows the interaction of two atoms as a function of in-
230
+ teratomic distance. When two atoms are within the soft-core
231
+ radius and are both located at the nodes of the standing wave
232
+ they experience a strong trapping potential. With a single
233
+ atom per lattice site, the effective trapping interaction would
234
+ be the sum of two-body interactions of all the sites within the
235
+ ±Rc distance. (b) The interaction induced resonance occurs at
236
+ Ω2 = 2|∆|, with maximum depth of U0 = 3¯hΩ4
237
+ 1
238
+ 8∆γ2 and a HWHM
239
+ of Ω2 − 2|∆| = ±γp. The analytical form of Eq. 5 and numerical
240
+ calculation of the interaction potential (Eq. 3) presents a per-
241
+ fect match. (c) Spatial form of the interaction-induced trap at
242
+ the position of the ith standing wave node. The Lorentzian po-
243
+ tential of Eq. 6 with the width w (Eq. 7) shows a perfect match
244
+ with the numeric calculation of Eq. 3. Chosen parameters in (a)
245
+ are Ω2c = 2∆ = 2π × 10MHz, Ω2sw = ∆/2 loss limited to 1Hz,
246
+ n = 100, θ = π.
247
+ ρic†c) in the Lindblad form governs the dissipative time evolu-
248
+ tion. Lindblad terms encounter spontaneous emission from Ry-
249
+ dberg cpe = √γe|p⟩⟨e| and intermediate level cgp = √γp|g⟩⟨p|.
250
+ The spontaneous emission rates are γp/2π = 7.6kHz and γe can
251
+ be found in [25].
252
+ Considering the steady state ¯ρij of Eq. 2, the effective interac-
253
+ tion would be given by
254
+ U(rij) = Tr[ ¯ρij(Hi + Hj + Vij)].
255
+ (3)
256
+ For homogeneous lasers, a plateau-type interaction profile
257
+ would be formed with constant interaction within the soft-core
258
+ as depicted by the dotted line in Fig. 2a. In Rydberg-dressing
259
+ the interaction region is defined by Rc; the interatomic distance
260
+ within which interaction-induced laser detuning equals the ef-
261
+ fective laser bandwidth PrV(Rc) = Ω1Ω2/2∆ [23]. The soft-
262
+ core interaction features a sharp peak at Ω2 = 2|∆|, due to an
263
+ interaction-induced resonance, see Fig. 2b.
264
+ To form the optical lattice with the mentioned interaction-
265
+ induced resonance, a space-dependent variation of the upper
266
+ laser is deployed. Using different intensities for the counter-
267
+ propagating 318nm lasers, results in the desired spatial pattern
268
+
269
+ Letter
270
+ Optica
271
+ 3
272
+ |𝛽"〉
273
+ 𝛽$
274
+ |𝛽$〉
275
+ |𝑔𝑔〉
276
+ |𝜆"〉
277
+ (b)
278
+ -∆
279
+ −2∆
280
+ 2Ω1
281
+
282
+ |𝑒𝑒
283
+ 2Ω1
284
+ 2Ω1
285
+ 𝑉
286
+ 2Ω2
287
+ 2Ω2
288
+ -∆
289
+
290
+ |𝑔𝑒$
291
+
292
+ |𝑔𝑝$
293
+
294
+ |𝑔𝑔
295
+
296
+ |𝑝𝑝
297
+
298
+ |𝑝𝑒$
299
+ (a)
300
+ |𝜆$〉
301
+ |𝜆0〉
302
+ 𝛽"
303
+ Ω2
304
+ Fig. 3. The origin of the trapping potential is the interaction-
305
+ induced resonance at Ω2 = 2|∆|. (a) With Ω1 ≪ Ω2 the two-
306
+ atom Hilbert space would be organized in three subspaces
307
+ of ground state, single-excitation (green box) and double-
308
+ excitations (yellow box) that are coupled by weak Ω1 laser.
309
+ (b) The effects of strong coupling Ω2 and interaction V could
310
+ be observed by diagonalizing the green and yellow subspaces
311
+ with eigen-states of |β±⟩ and |λ0,±⟩ respectively. At the nodes
312
+ of the standing wave Ω2(x) = −2∆, the interaction-induced
313
+ level shift, makes the |λ−⟩ in-resonance with the ground state,
314
+ significantly enhancing the interaction and forming the trap-
315
+ ping potential.
316
+ of the Rabi frequency
317
+ Ω2(x) = Ω2c + Ω2sw| sin(kx sin(θ/2))|,
318
+ (4)
319
+ where k = 2π/λ is the laser wave-vector and θ is the angle
320
+ between counter propagating lights, see Fig. 1a.
321
+ Adjusting
322
+ Ω2c = −2∆ in Eq. 4 forms periodic trapping potentials at the
323
+ nodes of standing wave upon the presence of at least two atoms
324
+ within the core radius Rc, see Fig. 2a,c. In a 1D lattice with single
325
+ atom ocupation per site, the effective potential experienced by
326
+ each site is the sum of two-body interactions of neighboring
327
+ lattice sites within the interacting range of ±Rc. Considering the
328
+ isotropic Rydberg interaction of the S orbital, extension to the
329
+ 3D lattice is trivial.
330
+ Here we analytically formulate the interaction-induced reso-
331
+ nance peak around Ω2(x) = 2|∆|. Considering the level scheme
332
+ of Fig. 3a in two-atom basis, the doubly excited Rydberg state
333
+ asymptotically decouples within the interaction region Rc as
334
+ V → ∞. Taking into account the remaining states, in the limit of
335
+ Ω1 ≪ Ω2c the steady state density could be obtained by adding
336
+ three orders of perturbative corrections to the initial ground
337
+ state. In the limit of γp ≪ ∆ the dressing interaction of the
338
+ steady state simplifies to
339
+ U(x) =
340
+ ¯hΩ4
341
+ 1
342
+ Ω2(x)2
343
+ 4∆[2∆2 + Ω2(x)2]
344
+ [4∆2 − Ω2(x)2]2 + 16γ2p∆2 .
345
+ (5)
346
+ The maximum interaction occurs at Ω2 = 2|∆| with the value
347
+ of U0 = 3¯hΩ4
348
+ 1
349
+ 8∆γ2 . Note that the attractive or repulsive nature of
350
+ the potential peak is determined by the sign of detuning ∆.
351
+ The half-width at half-maximum of interaction peak occurs at
352
+ Ω2(x) − |2∆| = ±γp. The presented analytic model of Eq. 5
353
+ perfectly resemble the numerical results, see Fig. 2. Considering
354
+ the spatial variation of the Ω2 in Eq. 4 over the narrow area of
355
+ the potential peak k.(x − xi) ≪ 1 with Ω2c = −2∆, the spatial
356
+ profile of the ith trapping site has a Lorentzian form
357
+ Ui(x) =
358
+ U0
359
+ 1 + (x − xi)2/w2
360
+ (6)
361
+ where the half-width at half-maximum and the depth of the
362
+ spatial trap well are given by
363
+ w =
364
+ γp
365
+ k sin(θ/2)Ω2sw
366
+ ;
367
+ U0 = 3¯hΩ4
368
+ 1
369
+ 8∆γ2 .
370
+ (7)
371
+ Figure 2c compares this analytical form of Eq. 6 with the numer-
372
+ ical results. The scale of the trap width as a function of Ω2sw is
373
+ plotted in Fig. 4c. Remarkably, with Ω2sw/2π = 1.7MHz the
374
+ trap width would be as tight as the radius of 88Sr atoms.
375
+ 0
376
+ 5
377
+ 10
378
+ 2c/2 (MHz)
379
+ 0
380
+ 0.5
381
+ 1
382
+ 1.5
383
+ 2
384
+ U0 (kHz)
385
+ (a)
386
+ 0
387
+ 2
388
+ 4
389
+ 6
390
+ 8
391
+ 10
392
+ 2c/2 (MHz)
393
+ 0
394
+ 0.01
395
+ 0.02
396
+ 0.03
397
+ 1/
398
+ 2c
399
+ (b)
400
+ 102
401
+ 104
402
+ 2sw/2 (kHz)
403
+ 100
404
+ 101
405
+ trap width w (nm)
406
+ (c)
407
+ Fig. 4. (a) The scale of trap depth U0 for two atoms located
408
+ within the core distance of Rc is plotted as a function of Ω2c
409
+ for the constant scattering rate of 1Hz. Having N lattice sites
410
+ within the interaction distance Rc, the trapping potential ex-
411
+ perienced by an atom would add up to NU0. (b) The decoher-
412
+ ence rate is adjusted to 1Hz by controlling the ratio of Ω1/Ω2c.
413
+ (c) The width of Lorentzian traps w (Eq. 7) is plotted as a func-
414
+ tion of Ω2sw for θ = π.
415
+ The origin of the enhanced interaction at Ω2 = 2|∆| can be
416
+ traced to two-atom resonance that occurs in the presence of
417
+ strong interaction [22]. Considering the laser coupling on the
418
+ two-atom basis, for Ω1 ≪ Ω2 the two-atom Hilbert space would
419
+ be organized in three subspaces that are coupled by weak Ω1
420
+ laser, see Fig. 3. These subspaces are the ground state |gg⟩, one
421
+ atom excitation {|gp⟩+, |ge⟩+}, and two atom excitation states
422
+ {|pp⟩, |pe⟩+, |ee⟩}, with |αβ⟩+ = (|α⟩ + |β⟩)/
423
+
424
+ 2 represents sym-
425
+ metric two-particle states. The strong coupling Ω2, mixes the
426
+ states in each subspace. Pre-diagonalizing the subsystems quan-
427
+ tifies the light-shifts experienced by the eigen-states, see Fig. 3b.
428
+ For the second subspace with single excitation, the coupling
429
+ Hamiltonian in the {|gp⟩+, |ge⟩+} basis is given by
430
+ S2/¯h =
431
+
432
+ � −∆
433
+ Ω2/2
434
+ Ω2/2
435
+ 0
436
+
437
+ � .
438
+ (8)
439
+ The eigen-energies in this subspace β±/¯h
440
+ =
441
+ −∆/2 ±
442
+ 1/2
443
+
444
+ ∆2 + Ω2
445
+ 2 does not get resonant with the ground state. In
446
+ the third subspace with double excitations, the coupling Hamil-
447
+
448
+ Letter
449
+ Optica
450
+ 4
451
+ tonian in the {|pp⟩, |pe⟩+, |ee⟩} basis is given by
452
+ S3/¯h =
453
+
454
+
455
+
456
+
457
+
458
+ −2∆
459
+ Ω2/
460
+
461
+ 2
462
+ 0
463
+ Ω2/
464
+
465
+ 2
466
+ −∆
467
+ Ω2/
468
+
469
+ 2
470
+ 0
471
+ Ω2/
472
+
473
+ 2
474
+ V
475
+
476
+
477
+
478
+
479
+ � .
480
+ (9)
481
+ For large interaction inside the softcore V → ∞, the eigen-
482
+ energies are λ0 = V and λ± = − 3¯h
483
+ 2 ∆ ± ¯h/2
484
+
485
+ ∆2 + 2Ω2
486
+ 2. The
487
+ doubly excited Rydberg state |λ0⟩ ≈ |ee⟩ decouples asymp-
488
+ totically. At Ω2 = 2|∆| one of |λ±⟩ eigen-states couples res-
489
+ onantly with the ground state, generating an enhanced light-
490
+ shift. As discussed above, small deviation of laser intensity
491
+ Ω2 − 2|∆| = ±γp makes the λ− eigen-state out of resonance.
492
+ Hence, the interaction-induced resonant peaks would be local-
493
+ ized at very narrow areas of the Ω2(x) standing-wave.
494
+ The main source of decoherence in this system is the spon-
495
+ taneous emission from the intermediate state. Rydberg inter-
496
+ action disturbs individual atom’s dark state, populating the
497
+ intermediate state |p⟩, and hence increases the loss rate per atom
498
+ Γ = Tr[ρi(γpσpp + γeσee)] at the trapping potential teeth. The
499
+ loss rate spatial profile is approximately given by γpU(x)/∆.
500
+ The maximum loss for a given Ω2(x) profile could be controlled
501
+ by adjusting the intensity of Ω1 laser. The scale of trap depth
502
+ for two atoms located within the soft-core is plotted in Fig. 4a
503
+ as a function of Ω2c for the constant scattering rate of 1Hz. The
504
+ interaction-to-loss ratio enhances by applying stronger laser
505
+ driving of Ω2c. Having N single-atom-occupied trapping sites
506
+ within the ±Rc interaction distance, the trapping potential expe-
507
+ rienced by an atom would add up to NU0. In a case study, con-
508
+ sidering the lattice constant of λ/2, dressing ground state atoms
509
+ to |5s100s 3S1⟩ with Ω2c/2π = 10MHz and limiting the loss rate
510
+ to 1Hz, the collective trapping potential experienced by a single
511
+ atom in 1D (3D) lattice interacting by neighboring cites within
512
+ the soft-core would be N1DU0 = 77kHz, (N3DU0=37MHz).
513
+ An important feature of the proposed Rydberg-empowered
514
+ optical lattice is the possibility to move the pair lattice sites close
515
+ to each other by manipulating the laser intensity. The inter-
516
+ atomic distance could approach the extreme scales that used
517
+ to be limited to solid-state crystals. As mentioned above, the
518
+ resonance trapping potential occurs at the points of standing
519
+ waves that fulfill the Ω2c + Ω2sw| sin(kx sin(θ/2))| = 2|∆|. Ac-
520
+ cordingly, by adjusting the Ω2c and Ω2sw the resonance could
521
+ occur at positions other than the nodes of the standing-wave
522
+ driving-field, making a lattice of dimers as shown in Fig. 5b.
523
+ To find the precision in adjusting the minimum interatomic
524
+ distance, consider the case that the pair sites are very close
525
+ to the position of the nodes |x − xn| ≪ (k sin(θ/2))−1 where
526
+ xn is the position of a random node. At this regime, the sep-
527
+ aration of two lattice sites from a node would be given by
528
+ x − xn = ±(2|∆| − Ω2c)/(Ω2swk sin(θ/2)). Therefore, having
529
+ larger Ω2sw would enhance the adjustment precision of intra-
530
+ dimer lattice spacing. A sample laser parameters for trapping
531
+ two lattice sites at 4Å distance are Ω2sw/2π = 10MHz and
532
+ 2|∆| − Ω2c = 2π × 25kHz and θ = π which are experimentally
533
+ realizable.
534
+ Outlook- The sub-nanoscale resolution in trapping and
535
+ bundling of pair sites demonstrated here extends the toolbox of
536
+ neutral atom quantum technology. Ultra-narrow wells in this
537
+ proposal allow significant suppression of the lattice constant
538
+ with a time-sharing approach [26]. In this approach, the applied
539
+ standing wave is stroboscopically shifted in space by λ/2N and
540
+ 0.02
541
+ 0.04
542
+ 0.06
543
+ 0.08
544
+ 0.1
545
+ 0.12
546
+ 0.14
547
+ 0.16
548
+ -1
549
+ -0.8
550
+ -0.6
551
+ -0.4
552
+ -0.2
553
+ 0
554
+ 0.2
555
+ (a)
556
+ 0.02
557
+ 0.04
558
+ 0.06
559
+ 0.08
560
+ 0.1
561
+ 0.12
562
+ 0.14
563
+ 0.16
564
+ -1
565
+ -0.5
566
+ 0
567
+ 0.5
568
+ (b)
569
+ Fig. 5. Moving lattice sites by adjusting the relative intensity
570
+ of counter-propagating lasers. The lattice constant is originally
571
+ Λ/4 in (a). By changing the laser intensity, the resonance con-
572
+ dition Ω2(x) = 2|∆| fulfills at positions other than the nodes of
573
+ standing-wave, forming a lattice of dimers. The distance of the
574
+ atomic pairs could be made as small as 4Å.
575
+ hence the effective lattice constant would be smaller by a factor
576
+ of N−1. This compaction of the atomic lattice is quite demanding
577
+ for scaling the lattice sites with the current limited laser powers.
578
+ Furthermore, in quantum simulation with optical lattices, the en-
579
+ ergy scale of Hubbard models for both hopping and interaction
580
+ of atoms is set by the minimum lattice constant which used to be
581
+ limited to λ/2, leading to challenging temperature requirements
582
+ to observe quantum phases of interest [1].
583
+ A distinct research avenue looks at the applications of the
584
+ presented scheme with ultra-narrow repulsive peaks. Equation
585
+ 5 shows that changing the detuning sign would preserve the
586
+ interaction profile but only flip the potential sign from attrac-
587
+ tive to repulsive. These ultra-narrow barriers are ideal for the
588
+ realization of the Kronig-Penney (KP) lattice model [27]. Fur-
589
+ thermore, the three dimensional repulsive δ-function peaks form
590
+ nearly perfect box-traps [28]. These repulsive narrow peaks also
591
+ realize thin tunnel junctions for atomtronic devices [29, 30]. The
592
+ potential is easily generalizable to other geometries in three
593
+ dimensions using the holographically designed laser intensity
594
+ [31].
595
+ REFERENCES
596
+ 1.
597
+ C. Gross and I. Bloch, Science 357, 995 (2017).
598
+ 2.
599
+ M Khazali, W Lechner, Electron cloud design for Rydberg multi-qubit
600
+ gates, arXiv:2111.01581 (2021).
601
+ 3.
602
+ Khazali, Mohammadsadegh, Universal terminal for mobile edge-
603
+ quantum computing, arXiv:2204.08522 (2022).
604
+ 4.
605
+ M. Khazali, ?Discrete-Time Quantum-Walk & Floquet Topological In-
606
+ sulators via Distance-Selective Rydberg-Interaction?, Quantum 6, 664
607
+ (2022).
608
+ 5.
609
+ Hollerith, S., Srakaew, K., Wei, D., Rubio-Abadal, A., Adler, D.,
610
+ Weckesser, P., Kruckenhauser, A., Walther, V., van Bijnen, R., Rui, J.
611
+ and Gross, C., Realizing distance-selective interactions in a Rydberg-
612
+ dressed atom array. Phys. Rev. Lett., 128, 113602 (2022).
613
+ 6.
614
+ C. Ates, T. Pohl, T. Pattard, and J. M. Rost, "Antiblockade in Rydberg
615
+ excitation of an ultracold lattice gas." Phys. Rev. Lett. 98, 023002
616
+ (2007).
617
+ 7.
618
+ Graham, T.M., Kwon, M., Grinkemeyer, B., Marra, Z., Jiang, X., Licht-
619
+ man, M.T., Sun, Y., Ebert, M. and Saffman, M., Rydberg-mediated
620
+ entanglement in a two-dimensional neutral atom qubit array. Phys. Rev.
621
+ lett., 123, 230501 (2019).
622
+ 8.
623
+ A. Pagano, S. Weber, D. Jaschke, T. Pfau, F. Meinert, S. Montangero,
624
+ and H. P. Büchler, Error budgeting for a controlled-phase gate with
625
+ strontium-88 Rydberg atoms, Phys. Rev. Research 4, 033019 (2022).
626
+ 9.
627
+ Cetina, M., Egan, L.N., Noel, C., Goldman, M.L., Biswas, D., Risinger,
628
+ A.R., Zhu, D. and Monroe, C., Control of transverse motion for quan-
629
+
630
+ Letter
631
+ Optica
632
+ 5
633
+ tum gates on individually addressed atomic qubits. PRX Quantum, 3,
634
+ 010334 (2022).
635
+ 10.
636
+ Brennen, G.K., Caves, C.M., Jessen, P.S. and Deutsch, I.H., Quantum
637
+ logic gates in optical lattices. Phys. Rev. Lett. 82, 1060 (1999).
638
+ 11.
639
+ Niederprüm, T., Thomas, O., Eichert, T., and Ott, H. Rydberg molecule-
640
+ induced remote spin flips. Phys. Rev. Lett. 117, 123002 (2016).
641
+ 12.
642
+ C. Weitenberg, M. Endres, J. F. Sherson, M. Cheneau, P. Schauß, T.
643
+ Fukuhara, I. Bloch & S. Kuhr, "Single-spin addressing in an atomic
644
+ Mott insulator." Nature 471 319 (2011).
645
+ 13.
646
+ M. Saffman, "Quantum computing with atomic qubits and Rydberg
647
+ interactions: progress and challenges." J. Phys. B 49, 202001 (2016).
648
+ 14.
649
+ M. Saffman, T. G. Walker, and K. Mølmer. "Quantum information with
650
+ Rydberg atoms." Rev. Pod. Phys. 82, 2313 (2010).
651
+ 15.
652
+ M. Khazali and K. Mølmer. Fast multiqubit gates by adiabatic evolution
653
+ in interacting excited-state manifolds of rydberg atoms and supercon-
654
+ ducting circuits. Phys. Rev. X, 10, 021054, (2020).
655
+ 16.
656
+ M. Khazali, C. R Murray, and T. Pohl. Polariton exchange interactions
657
+ in multichannel optical networks. Physical Review Letters, 123 113605,
658
+ 2019.
659
+ 17.
660
+ M. Khazali, K. Heshami, and C. Simon. Photon-photon gate via the in-
661
+ teraction between two collective Rydberg excitations. Physical Review
662
+ A, 91 030301, (2015).
663
+ 18.
664
+ M. Khazali, All optical quantum information processing via a single-step
665
+ Rydberg blockade gate, arXiv:2211.06998 (2022)
666
+ 19.
667
+ M. Khazali, K. Heshami, and C. Simon. Single-photon source based on
668
+ Rydberg exciton blockade. J. Phys. B: At. Mol. Opt. Phys., 50, 215301,
669
+ (2017).
670
+ 20.
671
+ M. Khazali, H. W. Lau, A. Humeniuk, and C. Simon. Large energy
672
+ superpositions via Rydberg dressing. Phys. Rev. A, 94, 023408, (2016);
673
+ M. Khazali. Progress towards macroscopic spin and mechanical su-
674
+ perposition via Rydberg interaction. Phys. Rev. A, 98, 043836, (2018).
675
+ 21.
676
+ M. Khazali, "Quantum information and computation with Rydberg
677
+ atoms." Iranian Journal of Applied Physics 10 19 (2021); M. Khaz-
678
+ ali, Applications of Atomic Ensembles for Photonic Quantum Informa-
679
+ tion Processing and Fundamental Tests of Quantum Physics. Diss.
680
+ University of Calgary (Canada), (2016).
681
+ 22.
682
+ C. Gaul, B. J. DeSalvo, J. A. Aman, F. B. Dunning, T. C. Killian, and T.
683
+ Pohl, Resonant Rydberg Dressing of Alkaline-Earth Atoms via Elec-
684
+ tromagnetically Induced Transparency, Phys. Rev. Lett. 116, 243001
685
+ (2016).
686
+ 23.
687
+ M. Khazali, Rydberg noisy dressing and applications in making soliton
688
+ molecules and droplet quasicrystals, Phys. Rev. Research 3, L032033
689
+ (2021)
690
+ 24.
691
+ Henkel, N., Cinti, F., Jain, P., Pupillo, G. and Pohl, T., Supersolid vor-
692
+ tex crystals in Rydberg-dressed Bose-Einstein condensates. Physical
693
+ Review Letters 108,265301 (2012).
694
+ 25.
695
+ S. Kunze, R. Hohmann, H. J. Kluge, J. Lantzsch, L. Monz, J. Stenner,
696
+ K. Stratmann, K. Wendt, and K. Zimmer, Lifetime measurements of
697
+ highly excited Rydberg states of strontium I, Z. Phys. D 27, 111 (1993).
698
+ 26.
699
+ S. Nascimbene, N. Goldman, N. R. Cooper, and J. Dalibard, Dynamic
700
+ optical lattices of sub-wavelength spacing for ultracold atoms, Phys.
701
+ Rev. Lett. 115, 140401 (2015).
702
+ 27.
703
+ R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. A 130, 499 (1931).
704
+ 28.
705
+ A. L. Gaunt, T. F. Schmidutz, I. Gotlibovych, R. P. Smith, and Z. Hadz-
706
+ ibabic, Bose-Einstein condensation of atoms in a uniform potential,
707
+ Phys. Rev. Lett. 110, 200406 (2013).
708
+ 29.
709
+ BT. Seaman, M. Krämer, DZ. Anderson, MJ. Holland, "Atomtronics:
710
+ Ultracold-atom analogs of electronic devices." Physical Review A 75.2
711
+ (2007): 023615.
712
+ 30.
713
+ S. Eckel, J. G. Lee, F. Jendrzejewski, N. Murray, C. W. Clark, C. J.
714
+ Lobb, W. D. Phillips, M. Edwards, and G. K. Campbell, Hysteresis in a
715
+ quantized superfluid atomtronic circuit, Nature 506, 200 (2014).
716
+ 31.
717
+ Barredo, D., Lienhard, V., De Leseleuc, S., Lahaye, T. and Browaeys,
718
+ A., Synthetic three-dimensional atomic structures assembled atom by
719
+ atom. Nature 561, 79 (2018).
720
+
CdE3T4oBgHgl3EQfUQrt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE5T4oBgHgl3EQfUA_Z/content/2301.05541v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:508c4c6eb329b6870843b8718af0c02903e74af0c04201589b4b70b7c1417eb0
3
+ size 3985787
DNE5T4oBgHgl3EQfUA_Z/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bea867519c4af923aba0437d83baf7c023c97f5375041022e6b16a4d836d1fd0
3
+ size 3342381
DtE5T4oBgHgl3EQfUQ_q/content/tmp_files/2301.05543v1.pdf.txt ADDED
@@ -0,0 +1,570 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Classification of Cross-cultural News Events
2
+ Abdul Sittar
3
+
4
5
+ Jožef Stefan Institute and Jožef Stefan International
6
+ Postgraduate School
7
+ Jamova cesta 39
8
+ Ljubljana, Slovenia
9
+ ABSTRACT
10
+ We present a methodology to support the analysis of culture
11
+ from text such as news events and demonstrate its usefulness
12
+ on categorising news events from different categories (society,
13
+ business, health, recreation, science, shopping, sports, arts, com-
14
+ puters, games and home) across different geographical locations
15
+ (different places in 117 countries). We group countries based on
16
+ the culture that they follow and then filter the news events based
17
+ on their content category. The news events are automatically
18
+ labelled with the help of Hofstede’s cultural dimensions. We
19
+ present combinations of events across different categories and
20
+ check the performances of different classification methods. We
21
+ also presents experimental comparison of different number of
22
+ features in order to find a suitable set to represent the culture.
23
+ KEYWORDS
24
+ cultural barrier, news events, text classification
25
+
26
+ 1 INTRODUCTION
27
+ Culture is defined as a collective programming of the mind which
28
+ distinguishes the members of one group or category of people
29
+ from another [9]. It has a huge impact on the lives of people and
30
+ in result it influences events that involve cross-cultural stake-
31
+ holders. News spreading is one of the most effective mechanisms
32
+ for spreading information across the borders. The news to be
33
+ spread wider cross multiple barriers such as linguistic, economic,
34
+ geographical, political, time zone, and cultural barriers. Due to
35
+ rapidly growing number of events with significant international
36
+ impact, cross-cultural analytics gain increased importance for
37
+ professionals and researchers in many disciplines, including digi-
38
+ tal humanities, media studies, and journalism. The most recent
39
+ examples of such events include COVID-19 and Brexit [1]. There
40
+ are few determinants that have significant influence on the pro-
41
+ cess of information selection, analysis and propagation. These
42
+ include cultural values and differences, economic conditions and
43
+ association between countries. For instance, if two countries are
44
+ culturally more similar, there are more chances that there will
45
+ be a heavier news flow between them [10], [3]. In this paper,
46
+ we focus on classification of news events across different cul-
47
+ tures. We select some of the most read daily newspapers and
48
+ collect information using Event Registry about the news they
49
+ have published. Event Registry is a system which analyzes news
50
+ articles, identifies groups of articles that describe the same event
51
+ and represent them as a single event [7]. The description of the
52
+
53
+ Permission to make digital or hard copies of part or all of this work for personal
54
+ or classroom use is granted without fee provided that copies are not made or
55
+ distributed for profit or commercial advantage and that copies bear this notice and
56
+ the full citation on the first page. Copyrights for third-party components of this
57
+ work must be honored. For all other uses, contact the owner/author(s).
58
+ Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia
59
+ © 2021 Copyright held by the owner/author(s).
60
+ Dunja Mladenić
61
62
+ Jožef Stefan Institute and Jožef Stefan International
63
+ Postgraduate School
64
+ Jamova cesta 39
65
+ Ljubljana, Slovenia
66
+ meta data of an event is shown in the Table 1. The main scientific
67
+ contributions of this paper are the following:
68
+ (1) A novel perspective of aligning news events across dif-
69
+ ferent cultures through categorising countries and news
70
+ events.
71
+ (2) A cross-cultural automatically annotated dataset in several
72
+ different domains (Business, Science, Sports, Health etc.).
73
+ (3) Experimental comparison of several classification mod-
74
+ els adopting different set of features (character ngrams,
75
+ GLOVE embeddings and word ngrams).
76
+ Table 1: The description of the meta data of an event.
77
+ Attributes Description
78
+
79
+ title
80
+ title of the event
81
+ summary
82
+ summary of the event
83
+ source
84
+ event reported by a news source
85
+ categories
86
+ list of DMOZ categories
87
+ location
88
+ location of the event
89
+
90
+
91
+
92
+ 2 RELATED WORK
93
+ In this section, we review the related literature about the influ-
94
+ ence of culture, its representation and classification in different
95
+ fields.
96
+ Countries that share a common culture are expected to have
97
+ heavier news flows between them when reporting on similar
98
+ events [10]. There are many quantitative studies that found de-
99
+ mographic, psychological, socio-cultural, source, system, and
100
+ content-related aspects [2].
101
+ Cross-cultural research and understanding the cultural influences
102
+ in different fields have competitive advantages. The goal of re-
103
+ searching the impact of culture might be to draw conclusions
104
+ in which way the cultural factors influence a specific corporate
105
+ action. There are many type of cultures such as societal, organi-
106
+ zational, and business culture etc [8].
107
+ The hidden nature of cultural behavior causes some difficulties
108
+ in measurement and defining these. To cope with difficulties,
109
+ researchers have developed measurements that measure culture
110
+ on a general scale to compare differences among cultures and
111
+ management styles. These results can be used to find similarities
112
+ within a region and differences to other regions. There are many
113
+ models that have tried to explain cultural differences between
114
+ societies. Hofstede’s national culture dimensions (HNCD) have
115
+ been widely used and cited in different disciplines [6, 5]. Hofst-
116
+ ede’s dimensions are the result of a factor analysis at the level
117
+ of country means of comprehensive survey instrument, aimed
118
+ at identifying systematic differences in national cultural. Their
119
+ purpose is to measure culture in countries, societies, sub-groups,
120
+ and organizations; they are not meant to be regarded as psycho-
121
+ logical traits.
122
+ There is a plethora of research studies that were conducted to un-
123
+ derstand the cultural influences such as cross-culture privacy and
124
+
125
+ Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia
126
+ Abdul and Dunja, et al.
127
+
128
+
129
+ attitude prediction, and cultural influences on today’s business.
130
+ [4] explores how culture affects the technological, organizational,
131
+ and environmental determinants of machine learning adoption
132
+ by conducting a comparative case study between Germany and
133
+ US. Rather than looking at the influence of cultural differences
134
+ within one domain, we intend to understand association between
135
+ news events belonging to different domains (society, business,
136
+ health, recreation, science, shopping, sports, arts, computers,
137
+ games and home) and different cultures (117 countries from all
138
+ the continents). We conduct this research to find an appropriate
139
+ representation and classification of culture across different do-
140
+ mains.
141
+
142
+ 3 DATA DESCRIPTION
143
+ 3.1 Dataset Statistics
144
+ We choose the top 10 daily read newspapers in the world in 2020 1
145
+ and collect the events reported by these newspapers using Event
146
+ Registry [7] over the time period of 2016-2020. Approximately
147
+ 8000 events belongs to each newspaper with exception of “Za-
148
+ man” that has only 900 events. Figure 1 shows the number of
149
+ events reported by the selected newspapers on a yearly basis.
150
+ This dataset can be found on the Zenodo repository (version
151
+ 1.0.0) 2
152
+
153
+
154
+
155
+ Figure 1: Each color in a bar represents the total number
156
+ of events per year by a daily newspaper and a complete
157
+ bar shows the total number of events per year by all the
158
+ newspapers.
159
+
160
+ The attributes of an event with description are displayed in
161
+ Table 1. Few attributes are self-explanatory such as title, summary,
162
+ date, and source. DMOZ-categories are used to represent topics
163
+ of the content. The DMOZ project is a hierarchical collection of
164
+ web page links organized by subject matters 3. Event Registry use
165
+ top 3 levels of DMoz taxonomy which amount to about 50,000
166
+ categories 4.
167
+ 4 MATERIAL AND METHODS
168
+ 4.1 Problem Definition
169
+ There are two main parts of the problem that we are addressing.
170
+ The first part is to label the examples by assigning a culture C to a
171
+ news event E using its location L. The second part is a multi-class
172
+ classification task where we predict the culture C of a news event
173
+ E using its summary description S and its content category G as
174
+
175
+ 1 https://www.trendrr.net/
176
+ 2 https://zenodo.org/record/5225053
177
+ 3 https://dmoz-odp.org/
178
+ 4 https://eventregistry.org/documentation?tab=terminology
179
+
180
+ provided by the Event Registry. This task can be formulated as:
181
+ 𝐶 = 𝑓 (𝑆, 𝐺)
182
+ C donates the culture of the news event, f is the learning function,
183
+ S donates summary of a news event and G donates category of a
184
+ news event (see Table 1).
185
+ 4.2 Methodology
186
+
187
+
188
+
189
+
190
+
191
+ Figure 2: Classification of cross-cultural news events.
192
+
193
+ 4.2.1
194
+ Data labeling. Each news event has information about the
195
+ type of categories to which it belongs and the location where it
196
+ happened (see Table 1). Each event has many categories and each
197
+ category has a weight reflecting its relevance for the event. We
198
+ only keep the most relevant categories and group the news events
199
+ based on their categories. For each group of events, we estimate
200
+ the cultural characteristic of each event through the country of
201
+ the place where the event occurred. We cluster the countries
202
+ based on their culture. We utilize the Hofstede’s national culture
203
+ dimensions (HNCD) to represent the culture of a country. We take
204
+ average of cultural dimensions and call it average cultural score.
205
+ Based on this score, we find optimal number of clusters using
206
+ popular clustering algorithm k-means (see Figure 4). Finally, we
207
+ label each news event with one of the six cultural clusters.
208
+
209
+
210
+
211
+ Figure 3: The pie chart depicts the percentage of the news
212
+ events that occurred in six different clusters (each cluster
213
+ consists of a list of countries with similar culture).
214
+
215
+ 4.2.2
216
+ Data representation. Each news event in Event Registry
217
+ has associated categories with it along with a weight (see Table
218
+ 1), we take the top categories based on their weight. In case of
219
+ multiple categories with equal weight, we sort them alphabeti-
220
+ cally and keep the first one. We represent each news event by a
221
+ short summary S and a set of content categories G.
222
+ Clusters of Countries
223
+ Char Ngrams
224
+ News Events
225
+ Dataset Annotation
226
+ Glove Embeddings
227
+ Classification
228
+ Category of Events
229
+ Word Ngrams
230
+
231
+ Newspaper
232
+ 14k
233
+ asahi.com
234
+ chinadally.com.cn
235
+ dawn.com
236
+ 12k
237
+ nytimes.com
238
+ smh.com.au
239
+ 10k
240
+ theguardian.com
241
+ timesofindia.indiatimes.com
242
+ 8k
243
+ washingtonpost.com
244
+ wsj.com
245
+ 6k
246
+ zaman.com.tr
247
+ 4k
248
+ 2k
249
+ 0
250
+ 2016
251
+ 2017
252
+ 2018
253
+ 2019
254
+ 2020
255
+ 2021ranhnza
256
+ ZambiaThaland,Jord
257
+ Bangladesh, Lithuaria, Indones
258
+ Dominican Republic
259
+ Estonia,IndiaChina,Buga
260
+ MoccoAigria,
261
+ Romania, Serbia, Azerbajan,
262
+ Croatia,
263
+ Portugat,Boivia, Liby
264
+ Chile, Sovenia,Philippin
265
+ Amenia, Belarus,SouthKorea,
266
+ Malaysia, Uruguay,
267
+ 24-
268
+ Taiwan,Abania,Urae,Mod
269
+ Georgia, Argentina, lraq
270
+ 25%
271
+ Montenegro, Czesh Republic
272
+ Spain,
273
+ Kazakhstan, Bosnia and Herzegovina
274
+ Turkey, Brazi, Grece
275
+ C3
276
+ C1
277
+ Russia, Slovakia, Japan
278
+ Saudi Arabia, Poland
279
+ Trindad and Tobago, Mczambique
280
+ Colonbia
281
+ Ghana,AngolaPueoRi
282
+ heral,emkceia
283
+ C5
284
+ C2
285
+ Noay,SwnLat
286
+ C6
287
+ 8.0496
288
+ Niger, Salvador, Venezuela
289
+ Finland, ireland,New
290
+ Zealand,Nethertands,
291
+ 21:4%
292
+ C4
293
+ Cota ca,cuadrunisia,Egy
294
+ Canada, SouthAfrica,
295
+ Kuwait,Panaa,Guaa
296
+ Australia.
297
+ UnitdAbes,Ca
298
+ United States,Aistia
299
+ 8.93%
300
+ Suriname
301
+ Kingdom,Gemany,taly
302
+ Luovembourg,Unitd
303
+ 12.5%
304
+ Malaw,Jamaica,Nepal,SierraLeon
305
+ Swtt
306
+ Fij,HonurasKya,Bhuta
307
+ Hungary, Belgium
308
+ Nambia Sianka,Senegal,Burki
309
+ FasoSvnaLebanonClassification of Cross-cultural News Events
310
+ Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia
311
+
312
+
313
+
314
+
315
+
316
+ Figure 4: In word cloud, the color of each word shows cluster to whom it belongs (see Figure 3). Radial dendrograms
317
+ illustrate the shared categories of news events between the pair of six clusters.
318
+
319
+ 4.2.3
320
+ Data Modeling. For multi-class classification task, we use
321
+ simple classification models (SVM, Decision Tree, KNN, Naive
322
+ Bayes, Logistic Regression) as well as neural network. For sim-
323
+ ple classification models, we input character and word ngrams
324
+ varying the number of ngrams and compare the results. We also
325
+ use pre-trained Glove embeddings.
326
+ 5 EXPERIMENTAL EVALUATION
327
+ 5.1 Evaluation Metric
328
+ For multi-class classification task, we use following most com-
329
+ monly used evaluation measures: accuracy, precision, recall, and
330
+ F1 score.
331
+ 6 RESULTS AND ANALYSIS
332
+ 6.1 Annotation Results
333
+ The results of annotation are six clusters where almost 50% news
334
+ events belong to the two clusters (shown with red and blue colors)
335
+ and remaining 50% belong to the other four clusters 3. Looking
336
+ in each group, we find that clusters do not lies in a specific
337
+ geographic area or a continent. Rather all the countries in a
338
+ cluster belong to the different continents. Similarly, these clusters
339
+ do not have all the countries that are economically rich or poor.
340
+ There are more categories in green and red colors in the word
341
+ cloud (see Figure 4) which represent to the cluster with that colors.
342
+ Radial dendrograms in Figure 4 present the shared categories
343
+ between the clusters. In the figure, root of the tree is data and
344
+ then there are ten pair of clusters that share the same categories.
345
+ The objective of this whole process was to keep news events
346
+ according to the category to whom they belongs. Moreover, we
347
+ can only observe the cultural differences when we have same
348
+ type of news events from different places.
349
+ 6.2 Classification Results
350
+ Fro the experimental results we can see that the best performance
351
+ is achieved by Logistic Regression, kNN and Decision Tree. The
352
+ performance of SVM varies depending on the number of selected
353
+ features: the highest F1-score is achieved with the top 10K or 20K
354
+ word ngrams using 1 to 3 word ngrams (see Figure 5). Looking at
355
+ the character ngrams, the highest F1-score is achieved when we
356
+ select the top 15K characters for all the tested algorithms except
357
+ Naive Bayes which declines in performance with the growing
358
+ set of features. Based on these settings, we achieve the highest
359
+ accuracy (0.85) using Logistic Regression. Using Glove embed-
360
+ dings, we experiment with and without using the category of
361
+ event. The highest F1-score with and without the category is 0.80
362
+ and 0.79 respectively.
363
+
364
+
365
+
366
+ 7 CONCLUSIONS AND FUTURE WORK
367
+ For researchers and professionals, it is very important to anal-
368
+ yse the cross-cultural differences in different disciplines. As the
369
+ international impact is increasing and international events are
370
+ becoming popular, the need to develop some automatic methods
371
+ is significantly increasing and leaving a blank space. We con-
372
+ ducted experiments on news events related to different fields
373
+ to have a broader look on data and machine learning methods.
374
+ Further research would be helpful in examining the impact of
375
+ specific socio-cultural factors on news events. In this research
376
+ work, we estimate the culture of a specific place by its country,
377
+ use basic features and simple classification models. To continue
378
+ this work further, we would like to improve feature set such as
379
+ by including part of speech tagging (POS) as well as other state
380
+ of the art embeddings.
381
+
382
+
383
+
384
+ ACKNOWLEDGMENTS
385
+ The research described in this paper was supported by the Slove-
386
+ nian research agency under the project J2-1736 Causalify and
387
+ by the European Union’s Horizon 2020 research and innovation
388
+ programme under the Marie Skłodowska-Curie grant agreement
389
+ No 812997.
390
+
391
+ Shopping.Clothing
392
+ echnolog
393
+ condt
394
+ oistic:
395
+ SOrtS
396
+ Softwar
397
+ Recreation Collecting
398
+ ortsBow
399
+ Shopping
400
+ sports
401
+ Societylssues
402
+ science
403
+ Environment
404
+ Business Financial
405
+ Services
406
+ ArtsMoviess
407
+ portsGolfArts_Music
408
+ soclety_M
409
+ SocietyIssue
410
+ Sports
411
+ Socce
412
+ Society
413
+ Eguestrian
414
+ Society
415
+ Manai
416
+ Society GayELesbian andBisexua
417
+ creation
418
+ Business Food and Related Products
419
+ orts-Mart
420
+ Soorts
421
+ ycilno
422
+ Home
423
+ am
424
+ Collectibles
425
+ soorts
426
+ BasketbalColads
427
+ Envr
428
+ "20
429
+ Sports
430
+ sety
431
+ Equestrian
432
+ Strength.Sports.
433
+ Team Spinit-
434
+ Sports
435
+ -Cycling
436
+ Rope Skipping
437
+ Soccer-
438
+ C3C4
439
+ Sports+
440
+ MartialAts
441
+ Society*
442
+ -Religion and Spintualty
443
+ Hockey
444
+ +Sports
445
+ C2C
446
+ Science-
447
+ Astronomy
448
+ Equestrian
449
+ Cycing
450
+ Soci
451
+ ntsInformation Society 2021, 4–8 October 2021, Ljubljana, Slovenia
452
+ Abdul and Dunja, et al.
453
+
454
+
455
+
456
+
457
+ Figure 5: First two line charts illustrate the variations in
458
+ F1 score by simple classification models after varying the
459
+ number of features. The first line chart depicts the results
460
+ of word ngrams whereas the second one shows the results
461
+ for character ngrams. The last line graph presents com-
462
+ parison between Glove embeddings (with and without cat-
463
+ egory feature).
464
+
465
+ REFERENCES
466
+ [1]
467
+ Sara Abdollahi, Simon Gottschalk, and Elena Demidova.
468
+ 2020. Eventkg+ click: a dataset of language-specific event-
469
+ centric user interaction traces. arXiv preprint arXiv:2010.12370.
470
+ [2]
471
+ Hosam Al-Samarraie, Atef Eldenfria, and Husameddin
472
+ Dawoud. 2017. The impact of personality traits on users’
473
+ information-seeking behavior. Information Processing &
474
+ Management, 53, 1, 237–247.
475
+ [3]
476
+ Tsan-Kuo Chang and Jae-Won Lee. 1992. Factors affecting
477
+ gatekeepers’ selection of foreign news: a national survey
478
+ of newspaper editors. Journalism Quarterly, 69, 3, 554–561.
479
+ [4]
480
+ Verena Eitle and Peter Buxmann. 2020. Cultural differences
481
+ in machine learning adoption: an international compari-
482
+ son between germany and the united states.
483
+ [5]
484
+ Meihan He and Jongsu Lee. 2020. Social culture and in-
485
+ novation diffusion: a theoretically founded agent-based
486
+ model. Journal of Evolutionary Economics, 1–41.
487
+ [6]
488
+ Mahmood Khosrowjerdi, Anneli Sundqvist, and Katriina
489
+ Byström. 2020. Cultural patterns of information source use:
490
+ a global study of 47 countries. Journal of the Association
491
+ for Information Science and Technology, 71, 6, 711–724.
492
+ [7]
493
+ Gregor Leban, Blaz Fortuna, Janez Brank, and Marko Gro-
494
+ belnik. 2014. Event registry: learning about world events
495
+ from news. In Proceedings of the 23rd International Confer-
496
+ ence on World Wide Web, 107–110.
497
+ [8]
498
+ Björn Preuss. 2017. Text mining and machine learning to
499
+ capture cultural data. Technical report. working paper, 2.
500
+ doi: 10.13140/RG. 2.2. 30937.42080.
501
+ [9]
502
+ Giselle Rampersad and Turki Althiyabi. 2020. Fake news:
503
+ acceptance by demographics and culture on social media.
504
+ Journal of Information Technology & Politics, 17, 1, 1–11.
505
+ [10]
506
+ H Denis Wu. 2007. A brave new world for international
507
+ news? exploring the determinants of the coverage of for-
508
+ eign news on us websites. International Communication
509
+ Gazette, 69, 6, 539–551.
510
+
511
+ Top K features versus Accuracy (Word Ngrams, 1-3)
512
+ 1.0
513
+ SVM
514
+ Decision
515
+ 0.8
516
+ Tree
517
+ KNN
518
+ Naive
519
+ 0.6
520
+ Bayes
521
+ Logistic
522
+ 0.4
523
+ Regres..
524
+ 0.2
525
+ 0.0
526
+ 5,000
527
+ 10,000
528
+ 15,000
529
+ 20,000
530
+ Top K
531
+ Top K features versus F1 (Char Ngrams, 2-6)
532
+ 1.0
533
+ SVM
534
+ Decision
535
+ 0.8
536
+ Tree
537
+ KNN
538
+ Naive
539
+ 0.6
540
+ Bayes
541
+ Logistic
542
+ 0.4
543
+ Regres..
544
+ 0.2
545
+ 0.0
546
+ 2,500
547
+ 5,000
548
+ 7,500
549
+ 10,000
550
+ 12,500
551
+ 15,000
552
+ Top K
553
+ Categories vs. Without Categories
554
+ 0.85
555
+ Glove
556
+ (with
557
+ category)
558
+ 0.80
559
+ Glove
560
+ (without
561
+ category)
562
+ 0.75
563
+ 0.70
564
+ 0.65
565
+ 2
566
+ 4
567
+ 6
568
+ 8
569
+ 10
570
+ Epochs
DtE5T4oBgHgl3EQfUQ_q/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,262 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf,len=261
2
+ page_content='Classification of Cross-cultural News Events Abdul Sittar ∗ abdul.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
3
+ page_content='sittar@ijs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
4
+ page_content='si Jožef Stefan Institute and Jožef Stefan International Postgraduate School Jamova cesta 39 Ljubljana, Slovenia ABSTRACT We present a methodology to support the analysis of culture from text such as news events and demonstrate its usefulness on categorising news events from different categories (society, business, health, recreation, science, shopping, sports, arts, com- puters, games and home) across different geographical locations (different places in 117 countries).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
5
+ page_content=' We group countries based on the culture that they follow and then filter the news events based on their content category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
6
+ page_content=' The news events are automatically labelled with the help of Hofstede’s cultural dimensions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
7
+ page_content=' We present combinations of events across different categories and check the performances of different classification methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
8
+ page_content=' We also presents experimental comparison of different number of features in order to find a suitable set to represent the culture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
9
+ page_content=' KEYWORDS cultural barrier, news events, text classification 1 INTRODUCTION Culture is defined as a collective programming of the mind which distinguishes the members of one group or category of people from another [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
10
+ page_content=' It has a huge impact on the lives of people and in result it influences events that involve cross-cultural stake- holders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
11
+ page_content=' News spreading is one of the most effective mechanisms for spreading information across the borders.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
12
+ page_content=' The news to be spread wider cross multiple barriers such as linguistic, economic, geographical, political, time zone, and cultural barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
13
+ page_content=' Due to rapidly growing number of events with significant international impact, cross-cultural analytics gain increased importance for professionals and researchers in many disciplines, including digi- tal humanities, media studies, and journalism.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
14
+ page_content=' The most recent examples of such events include COVID-19 and Brexit [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
15
+ page_content=' There are few determinants that have significant influence on the pro- cess of information selection, analysis and propagation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
16
+ page_content=' These include cultural values and differences, economic conditions and association between countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
17
+ page_content=' For instance, if two countries are culturally more similar, there are more chances that there will be a heavier news flow between them [10], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
18
+ page_content=' In this paper, we focus on classification of news events across different cul- tures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
19
+ page_content=' We select some of the most read daily newspapers and collect information using Event Registry about the news they have published.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
20
+ page_content=' Event Registry is a system which analyzes news articles, identifies groups of articles that describe the same event and represent them as a single event [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
21
+ page_content=' The description of the Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
22
+ page_content=' Copyrights for third-party components of this work must be honored.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
23
+ page_content=' For all other uses, contact the owner/author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
24
+ page_content=' Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia © 2021 Copyright held by the owner/author(s).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
25
+ page_content=' Dunja Mladenić dunja.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
26
+ page_content='mladenic@ijs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
27
+ page_content='si Jožef Stefan Institute and Jožef Stefan International Postgraduate School Jamova cesta 39 Ljubljana, Slovenia meta data of an event is shown in the Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
28
+ page_content=' The main scientific contributions of this paper are the following: (1) A novel perspective of aligning news events across dif- ferent cultures through categorising countries and news events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
29
+ page_content=' (2) A cross-cultural automatically annotated dataset in several different domains (Business, Science, Sports, Health etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
30
+ page_content=' ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
31
+ page_content=' (3) Experimental comparison of several classification mod- els adopting different set of features (character ngrams, GLOVE embeddings and word ngrams).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
32
+ page_content=' Table 1: The description of the meta data of an event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
33
+ page_content=' Attributes Description title title of the event summary summary of the event source event reported by a news source categories list of DMOZ categories location location of the event 2 RELATED WORK In this section, we review the related literature about the influ- ence of culture, its representation and classification in different fields.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
34
+ page_content=' Countries that share a common culture are expected to have heavier news flows between them when reporting on similar events [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
35
+ page_content=' There are many quantitative studies that found de- mographic, psychological, socio-cultural, source, system, and content-related aspects [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
36
+ page_content=' Cross-cultural research and understanding the cultural influences in different fields have competitive advantages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
37
+ page_content=' The goal of re- searching the impact of culture might be to draw conclusions in which way the cultural factors influence a specific corporate action.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
38
+ page_content=' There are many type of cultures such as societal, organi- zational, and business culture etc [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
39
+ page_content=' The hidden nature of cultural behavior causes some difficulties in measurement and defining these.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
40
+ page_content=' To cope with difficulties, researchers have developed measurements that measure culture on a general scale to compare differences among cultures and management styles.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
41
+ page_content=' These results can be used to find similarities within a region and differences to other regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
42
+ page_content=' There are many models that have tried to explain cultural differences between societies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
43
+ page_content=' Hofstede’s national culture dimensions (HNCD) have been widely used and cited in different disciplines [6, 5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
44
+ page_content=' Hofst- ede’s dimensions are the result of a factor analysis at the level of country means of comprehensive survey instrument, aimed at identifying systematic differences in national cultural.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
45
+ page_content=' Their purpose is to measure culture in countries, societies, sub-groups, and organizations;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
46
+ page_content=' they are not meant to be regarded as psycho- logical traits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
47
+ page_content=' There is a plethora of research studies that were conducted to un- derstand the cultural influences such as cross-culture privacy and Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia Abdul and Dunja, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
48
+ page_content=' attitude prediction, and cultural influences on today’s business.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
49
+ page_content=' [4] explores how culture affects the technological, organizational, and environmental determinants of machine learning adoption by conducting a comparative case study between Germany and US.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
50
+ page_content=' Rather than looking at the influence of cultural differences within one domain, we intend to understand association between news events belonging to different domains (society, business, health, recreation, science, shopping, sports, arts, computers, games and home) and different cultures (117 countries from all the continents).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
51
+ page_content=' We conduct this research to find an appropriate representation and classification of culture across different do- mains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
52
+ page_content=' 3 DATA DESCRIPTION 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
53
+ page_content='1 Dataset Statistics We choose the top 10 daily read newspapers in the world in 2020 1 and collect the events reported by these newspapers using Event Registry [7] over the time period of 2016-2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
54
+ page_content=' Approximately 8000 events belongs to each newspaper with exception of “Za- man” that has only 900 events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
55
+ page_content=' Figure 1 shows the number of events reported by the selected newspapers on a yearly basis.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
56
+ page_content=' This dataset can be found on the Zenodo repository (version 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
57
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
58
+ page_content='0) 2 Figure 1: Each color in a bar represents the total number of events per year by a daily newspaper and a complete bar shows the total number of events per year by all the newspapers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
59
+ page_content=' The attributes of an event with description are displayed in Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
60
+ page_content=' Few attributes are self-explanatory such as title, summary, date, and source.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
61
+ page_content=' DMOZ-categories are used to represent topics of the content.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
62
+ page_content=' The DMOZ project is a hierarchical collection of web page links organized by subject matters 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
63
+ page_content=' Event Registry use top 3 levels of DMoz taxonomy which amount to about 50,000 categories 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
64
+ page_content=' 4 MATERIAL AND METHODS 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
65
+ page_content='1 Problem Definition There are two main parts of the problem that we are addressing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
66
+ page_content=' The first part is to label the examples by assigning a culture C to a news event E using its location L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
67
+ page_content=' The second part is a multi-class classification task where we predict the culture C of a news event E using its summary description S and its content category G as 1 https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
68
+ page_content='trendrr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
69
+ page_content='net/ 2 https://zenodo.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
70
+ page_content='org/record/5225053 3 https://dmoz-odp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
71
+ page_content='org/ 4 https://eventregistry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
72
+ page_content='org/documentation?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
73
+ page_content='tab=terminology provided by the Event Registry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
74
+ page_content=' This task can be formulated as: 𝐶 = 𝑓 (𝑆, 𝐺) C donates the culture of the news event, f is the learning function, S donates summary of a news event and G donates category of a news event (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
75
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
76
+ page_content='2 Methodology Figure 2: Classification of cross-cultural news events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
77
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
78
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
79
+ page_content='1 Data labeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
80
+ page_content=' Each news event has information about the type of categories to which it belongs and the location where it happened (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
81
+ page_content=' Each event has many categories and each category has a weight reflecting its relevance for the event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
82
+ page_content=' We only keep the most relevant categories and group the news events based on their categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
83
+ page_content=' For each group of events, we estimate the cultural characteristic of each event through the country of the place where the event occurred.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
84
+ page_content=' We cluster the countries based on their culture.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
85
+ page_content=' We utilize the Hofstede’s national culture dimensions (HNCD) to represent the culture of a country.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
86
+ page_content=' We take average of cultural dimensions and call it average cultural score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
87
+ page_content=' Based on this score, we find optimal number of clusters using popular clustering algorithm k-means (see Figure 4).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
88
+ page_content=' Finally, we label each news event with one of the six cultural clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
89
+ page_content=' Figure 3: The pie chart depicts the percentage of the news events that occurred in six different clusters (each cluster consists of a list of countries with similar culture).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
90
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
91
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
92
+ page_content='2 Data representation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
93
+ page_content=' Each news event in Event Registry has associated categories with it along with a weight (see Table 1), we take the top categories based on their weight.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
94
+ page_content=' In case of multiple categories with equal weight, we sort them alphabeti- cally and keep the first one.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
95
+ page_content=' We represent each news event by a short summary S and a set of content categories G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
96
+ page_content=' Clusters of Countries Char Ngrams News Events Dataset Annotation Glove Embeddings Classification Category of Events Word Ngrams Newspaper 14k asahi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
97
+ page_content='com chinadally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
98
+ page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
99
+ page_content='cn dawn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
100
+ page_content='com 12k nytimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
101
+ page_content='com smh.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
102
+ page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
103
+ page_content='au 10k theguardian.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
104
+ page_content='com timesofindia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
105
+ page_content='indiatimes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
106
+ page_content='com 8k washingtonpost.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
107
+ page_content='com wsj.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
108
+ page_content='com 6k zaman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
109
+ page_content='com.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
110
+ page_content='tr 4k 2k 0 2016 2017 2018 2019 2020 2021ranhnza ZambiaThaland,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
111
+ page_content='Jord Bangladesh,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
112
+ page_content=' Lithuaria,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
113
+ page_content=' Indones Dominican Republic Estonia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
114
+ page_content='IndiaChina,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
115
+ page_content='Buga MoccoAigria,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
116
+ page_content=' Romania,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
117
+ page_content=' Serbia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
118
+ page_content=' Azerbajan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
119
+ page_content=' Croatia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
120
+ page_content=' Portugat,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
121
+ page_content='Boivia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
122
+ page_content=' Liby Chile,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
123
+ page_content=' Sovenia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
124
+ page_content='Philippin Amenia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
125
+ page_content=' Belarus,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
126
+ page_content='SouthKorea,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
127
+ page_content=' Malaysia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
128
+ page_content=' Uruguay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
129
+ page_content=' 24- Taiwan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
130
+ page_content='Abania,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
131
+ page_content='Urae,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
132
+ page_content='Mod Georgia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
133
+ page_content=' Argentina,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
134
+ page_content=' lraq 25% Montenegro,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
135
+ page_content=' Czesh Republic Spain,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
136
+ page_content=' Kazakhstan,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
137
+ page_content=' Bosnia and Herzegovina Turkey,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
138
+ page_content=' Brazi,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
139
+ page_content=' Grece C3 C1 Russia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
140
+ page_content=' Slovakia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
141
+ page_content=' Japan Saudi Arabia,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
142
+ page_content=' Poland Trindad and Tobago,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
143
+ page_content=' Mczambique Colonbia Ghana,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
144
+ page_content='AngolaPueoRi heral,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
145
+ page_content='emkceia C5 C2 Noay,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
146
+ page_content='SwnLat C6 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
147
+ page_content='0496 Niger, Salvador, Venezuela Finland, ireland,New Zealand,Nethertands, 21:4% C4 Cota ca,cuadrunisia,Egy Canada, SouthAfrica, Kuwait,Panaa,Guaa Australia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
148
+ page_content=' UnitdAbes,Ca United States,Aistia 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
149
+ page_content='93% Suriname Kingdom,Gemany,taly Luovembourg,Unitd 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
150
+ page_content='5% Malaw,Jamaica,Nepal,SierraLeon Swtt Fij,HonurasKya,Bhuta Hungary, Belgium Nambia Sianka,Senegal,Burki FasoSvnaLebanonClassification of Cross-cultural News Events Information Society 2021, 4–8 October 2021, Ljubljana, Slovenia Figure 4: In word cloud, the color of each word shows cluster to whom it belongs (see Figure 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
151
+ page_content=' Radial dendrograms illustrate the shared categories of news events between the pair of six clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
152
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
153
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
154
+ page_content='3 Data Modeling.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
155
+ page_content=' For multi-class classification task, we use simple classification models (SVM, Decision Tree, KNN, Naive Bayes, Logistic Regression) as well as neural network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
156
+ page_content=' For sim- ple classification models, we input character and word ngrams varying the number of ngrams and compare the results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
157
+ page_content=' We also use pre-trained Glove embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
158
+ page_content=' 5 EXPERIMENTAL EVALUATION 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
159
+ page_content='1 Evaluation Metric For multi-class classification task, we use following most com- monly used evaluation measures: accuracy, precision, recall, and F1 score.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
160
+ page_content=' 6 RESULTS AND ANALYSIS 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
161
+ page_content='1 Annotation Results The results of annotation are six clusters where almost 50% news events belong to the two clusters (shown with red and blue colors) and remaining 50% belong to the other four clusters 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
162
+ page_content=' Looking in each group, we find that clusters do not lies in a specific geographic area or a continent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
163
+ page_content=' Rather all the countries in a cluster belong to the different continents.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
164
+ page_content=' Similarly, these clusters do not have all the countries that are economically rich or poor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
165
+ page_content=' There are more categories in green and red colors in the word cloud (see Figure 4) which represent to the cluster with that colors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
166
+ page_content=' Radial dendrograms in Figure 4 present the shared categories between the clusters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
167
+ page_content=' In the figure, root of the tree is data and then there are ten pair of clusters that share the same categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
168
+ page_content=' The objective of this whole process was to keep news events according to the category to whom they belongs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
169
+ page_content=' Moreover, we can only observe the cultural differences when we have same type of news events from different places.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
170
+ page_content=' 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
171
+ page_content='2 Classification Results Fro the experimental results we can see that the best performance is achieved by Logistic Regression, kNN and Decision Tree.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
172
+ page_content=' The performance of SVM varies depending on the number of selected features: the highest F1-score is achieved with the top 10K or 20K word ngrams using 1 to 3 word ngrams (see Figure 5).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
173
+ page_content=' Looking at the character ngrams, the highest F1-score is achieved when we select the top 15K characters for all the tested algorithms except Naive Bayes which declines in performance with the growing set of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
174
+ page_content=' Based on these settings, we achieve the highest accuracy (0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
175
+ page_content='85) using Logistic Regression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
176
+ page_content=' Using Glove embed- dings, we experiment with and without using the category of event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
177
+ page_content=' The highest F1-score with and without the category is 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
178
+ page_content='80 and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
179
+ page_content='79 respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
180
+ page_content=' 7 CONCLUSIONS AND FUTURE WORK For researchers and professionals, it is very important to anal- yse the cross-cultural differences in different disciplines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
181
+ page_content=' As the international impact is increasing and international events are becoming popular, the need to develop some automatic methods is significantly increasing and leaving a blank space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
182
+ page_content=' We con- ducted experiments on news events related to different fields to have a broader look on data and machine learning methods.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
183
+ page_content=' Further research would be helpful in examining the impact of specific socio-cultural factors on news events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
184
+ page_content=' In this research work, we estimate the culture of a specific place by its country, use basic features and simple classification models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
185
+ page_content=' To continue this work further, we would like to improve feature set such as by including part of speech tagging (POS) as well as other state of the art embeddings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
186
+ page_content=' ACKNOWLEDGMENTS The research described in this paper was supported by the Slove- nian research agency under the project J2-1736 Causalify and by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 812997.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
187
+ page_content=' Shopping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
188
+ page_content='Clothing echnolog condt oistic: SOrtS Softwar Recreation Collecting ortsBow Shopping sports Societylssues science Environment Business Financial Services ArtsMoviess portsGolfArts_Music soclety_M SocietyIssue Sports Socce Society Eguestrian Society Manai Society GayELesbian andBisexua creation Business Food and Related Products orts-Mart Soorts ycilno Home am Collectibles soorts BasketbalColads Envr "20 Sports sety Equestrian Strength.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
189
+ page_content='Sports.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
190
+ page_content=' Team Spinit- Sports Cycling Rope Skipping Soccer- C3C4 Sports+ MartialAts Society* Religion and Spintualty Hockey +Sports C2C Science- Astronomy Equestrian Cycing Soci ntsInformation Society 2021, 4–8 October 2021, Ljubljana, Slovenia Abdul and Dunja, et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
191
+ page_content=' Figure 5: First two line charts illustrate the variations in F1 score by simple classification models after varying the number of features.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
192
+ page_content=' The first line chart depicts the results of word ngrams whereas the second one shows the results for character ngrams.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
193
+ page_content=' The last line graph presents com- parison between Glove embeddings (with and without cat- egory feature).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
194
+ page_content=' REFERENCES [1] Sara Abdollahi, Simon Gottschalk, and Elena Demidova.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
195
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
196
+ page_content=' Eventkg+ click: a dataset of language-specific event- centric user interaction traces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
197
+ page_content=' arXiv preprint arXiv:2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
198
+ page_content='12370.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
199
+ page_content=' [2] Hosam Al-Samarraie, Atef Eldenfria, and Husameddin Dawoud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
200
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
201
+ page_content=' The impact of personality traits on users’ information-seeking behavior.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
202
+ page_content=' Information Processing & Management, 53, 1, 237–247.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
203
+ page_content=' [3] Tsan-Kuo Chang and Jae-Won Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
204
+ page_content=' 1992.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
205
+ page_content=' Factors affecting gatekeepers’ selection of foreign news: a national survey of newspaper editors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
206
+ page_content=' Journalism Quarterly, 69, 3, 554–561.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
207
+ page_content=' [4] Verena Eitle and Peter Buxmann.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
208
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
209
+ page_content=' Cultural differences in machine learning adoption: an international compari- son between germany and the united states.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
210
+ page_content=' [5] Meihan He and Jongsu Lee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
211
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
212
+ page_content=' Social culture and in- novation diffusion: a theoretically founded agent-based model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
213
+ page_content=' Journal of Evolutionary Economics, 1–41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
214
+ page_content=' [6] Mahmood Khosrowjerdi, Anneli Sundqvist, and Katriina Byström.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
215
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
216
+ page_content=' Cultural patterns of information source use: a global study of 47 countries.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
217
+ page_content=' Journal of the Association for Information Science and Technology, 71, 6, 711–724.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
218
+ page_content=' [7] Gregor Leban, Blaz Fortuna, Janez Brank, and Marko Gro- belnik.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
219
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
220
+ page_content=' Event registry: learning about world events from news.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
221
+ page_content=' In Proceedings of the 23rd International Confer- ence on World Wide Web, 107–110.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
222
+ page_content=' [8] Björn Preuss.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
223
+ page_content=' 2017.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
224
+ page_content=' Text mining and machine learning to capture cultural data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
225
+ page_content=' Technical report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
226
+ page_content=' working paper, 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
227
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
228
+ page_content='13140/RG.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
229
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
230
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
231
+ page_content=' 30937.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
232
+ page_content='42080.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
233
+ page_content=' [9] Giselle Rampersad and Turki Althiyabi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
234
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
235
+ page_content=' Fake news: acceptance by demographics and culture on social media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
236
+ page_content=' Journal of Information Technology & Politics, 17, 1, 1–11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
237
+ page_content=' [10] H Denis Wu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
238
+ page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
239
+ page_content=' A brave new world for international news?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
240
+ page_content=' exploring the determinants of the coverage of for- eign news on us websites.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
241
+ page_content=' International Communication Gazette, 69, 6, 539–551.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
242
+ page_content=' Top K features versus Accuracy (Word Ngrams, 1-3) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
243
+ page_content='0 SVM Decision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
244
+ page_content='8 Tree KNN Naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
245
+ page_content='6 Bayes Logistic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
246
+ page_content='4 Regres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
247
+ page_content='. 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
248
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
249
+ page_content='0 5,000 10,000 15,000 20,000 Top K Top K features versus F1 (Char Ngrams, 2-6) 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
250
+ page_content='0 SVM Decision 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
251
+ page_content='8 Tree KNN Naive 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
252
+ page_content='6 Bayes Logistic 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
253
+ page_content='4 Regres.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
254
+ page_content='. 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
255
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
256
+ page_content='0 2,500 5,000 7,500 10,000 12,500 15,000 Top K Categories vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
257
+ page_content=' Without Categories 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
258
+ page_content='85 Glove (with category) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
259
+ page_content='80 Glove (without category) 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
260
+ page_content='75 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
261
+ page_content='70 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
262
+ page_content='65 2 4 6 8 10 Epochs' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtE5T4oBgHgl3EQfUQ_q/content/2301.05543v1.pdf'}
EtAzT4oBgHgl3EQfG_tj/content/tmp_files/2301.01037v1.pdf.txt ADDED
@@ -0,0 +1,377 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Uptrendz: API-Centric Real-time
2
+ Recommendations in Multi-Domain Settings
3
+ Emanuel Lacic1, Tomislav Duricic1,2, Leon Fadljevic1,
4
+ Dieter Theiler1, and Dominik Kowald(�)1,2
5
+ 1 Know-Center GmbH, Graz, Austria
6
+ {elacic,tduricic,lfadljevic,dtheiler,dkowald}@know-center.at
7
+ 2 Graz University of Technology, Graz, Austria
8
+ Abstract. In this work, we tackle the problem of adapting a real-time
9
+ recommender system to multiple application domains, and their underly-
10
+ ing data models and customization requirements. To do that, we present
11
+ Uptrendz, a multi-domain recommendation platform that can be cus-
12
+ tomized to provide real-time recommendations in an API-centric way.
13
+ We demonstrate (i) how to set up a real-time movie recommender us-
14
+ ing the popular MovieLens-100k dataset, and (ii) how to simultaneously
15
+ support multiple application domains based on the use-case of recom-
16
+ mendations in entrepreneurial start-up founding. For that, we differenti-
17
+ ate between domains on the item- and system-level. We believe that our
18
+ demonstration shows a convenient way to adapt, deploy and evaluate a
19
+ recommender system in an API-centric way. The source-code and doc-
20
+ umentation that demonstrates how to utilize the configured Uptrendz
21
+ API is available on GitHub.
22
+ Keywords: Uptrendz, API-centric recommendations, multi-domain rec-
23
+ ommendations, real-time recommendations
24
+ 1
25
+ Introduction
26
+ Utilizing recommender systems is nowadays recognized as a necessary feature to
27
+ help users discover relevant content [15,14]. Most industry practitioners [3], when
28
+ they build a recommender system, adapt existing algorithms to the underlying
29
+ data and customization requirements of the respective application domain (e.g.,
30
+ movies, music, news, etc.). However, the focus of the research community has
31
+ recently shifted towards building recommendation systems that simultaneously
32
+ support multiple application domains [4,7,16] in an API-centric way.
33
+ In this work, we demonstrate Uptrendz3, an API-centric recommendation
34
+ platform, which can be configured to simultaneously provide real-time recom-
35
+ mendations in an API-centric way to multiple domains. Uptrendz supports pop-
36
+ ular recommendation algorithms, e.g., Collaborative Filtering (CF), Content-
37
+ based Filtering (CBF, or Most Popular (MP), that are applied across different
38
+ 3 https://uptrendz.ai/
39
+ arXiv:2301.01037v1 [cs.IR] 3 Jan 2023
40
+
41
+ 2
42
+ E. Lacic, T. Duricic, L. Fadljevic, D. Theiler, and D. Kowald
43
+ RECOMMENDER
44
+ CUSTOMIZATION
45
+ SERVICE
46
+ ISOLATION
47
+ DATA
48
+ HETEROGENEITY
49
+ FAULT
50
+ TOLERANCE
51
+ MULTI-DOMAIN RECOMMENDER SYSTEM
52
+ Fig. 1. Aspects that need to be addressed when building a recommender system for a
53
+ multi-domain environment [10].
54
+ application domains. The focus of this demonstration is to show how domain-
55
+ specific data-upload APIs can be created to support the customization of the
56
+ respective recommendation algorithms. Using the MovieLens-100k dataset [6]
57
+ and a real-world use-case of entrepreneurial start-up founding4, we show how
58
+ such an approach allows for a highly customized recommendation system that
59
+ can be used in an API-centric way. The source-code and documentation for this
60
+ demonstration is available via GitHub5.
61
+ 2
62
+ The Uptrendz Platform
63
+ The Uptrendz platform is built on top of the ScaR recommendation framework
64
+ [11]. As shown in [10] and Figure 1, the microservice-based system architecture
65
+ addresses four distinctive requirements of a multi-domain recommender system,
66
+ i.e., (i) service isolation, (ii) data heterogeneity, (iii) recommender customization,
67
+ and (iv) fault tolerance. Uptrendz provides a layer on top of the framework to
68
+ dynamically configure an application domain and to instantly provide an API
69
+ to (i) upload item, user and interaction data, and (ii) request recommendations.
70
+ Domain-specific data model. As discussed by [1], different domains may em-
71
+ ploy the same recommender algorithm but can differ with respect to what kind
72
+ of data is utilized to build the model (e.g., interaction types, context, etc.). Given
73
+ an API-centric approach, we show that in order to support the customization of
74
+ recommender algorithms with domain-specific parameters, the underlying plat-
75
+ form needs to unambiguously know which source of information should be used
76
+ to calculate the recommendations. To do that, the Uptrendz platform first allows
77
+ generating customized data upload APIs for multiple item and user entities (see
78
+ Table 1). Second, with respect to interaction data, both user-item and user-user
79
+ interactions can be configured. The interaction API is further customized in ac-
80
+ cordance to what kind of interactions the respective application domain actually
81
+ supports, i.e., (i) registered users, anonymous sessions or both, (ii) interaction
82
+ timestamp tracking, and (iii) type of interaction (explicit or implicit).
83
+ 4 https://cogsteps.com/
84
+ 5 https://github.com/lacic/ECIR2023Demo
85
+
86
+ API-Centric Real-time Recommendations in Multi-Domain Settings
87
+ 3
88
+ Table 1. Supported attributes to configure the data upload API for items and users.
89
+ Type
90
+ Sub-Type
91
+ Description
92
+ Categorical
93
+ Text
94
+ Single
95
+ Value
96
+ String value, which usually represents a category. Used
97
+ for post-filtering recommendation results.
98
+ Multiple
99
+ Values
100
+ List of string values, which usually represent an array
101
+ of categories. Used for post-filtering recommendation
102
+ results.
103
+ Free Text
104
+ English
105
+ English
106
+ text, which is processed and utilized for
107
+ content-based recommendations.
108
+ German
109
+ German text, which is processed and utilized for
110
+ content-based recommendations.
111
+ Numeric
112
+ Integer
113
+ Used for post-filtering recommendations (e.g., user
114
+ age).
115
+ Real
116
+ Used for post-filtering recommendations (e.g., price).
117
+ Date
118
+ -
119
+ Date information for the respective entity (e.g., creation
120
+ date)
121
+ Recommender customization. The Uptrendz platform fosters the notion of
122
+ defining personalization scenarios (i.e., use-cases) when creating recommenda-
123
+ tion APIs. The available selection of real-time recommendation models [11] for
124
+ a given scenario depends on (i) what should be recommended (e.g., item or user
125
+ entities), (ii) for whom the recommendations are targeted (e.g., registered or
126
+ anonymous users) and, (iii) what kind of context is given [2] (e.g., item ID to
127
+ recommend relevant content for). As we adopt a non-restricted configuration
128
+ with respect to the number of freely defined user interaction types, algorithms
129
+ that use this kind of data (e.g., Collaborative Filtering) can be customized to
130
+ utilize any subset of the list of available interactions as well as to define how
131
+ much weight a particular interaction type should have. With respect to post-
132
+ filtering recommendation results, each model can use categorical (e.g., tags [12]
133
+ or other semantic representations [8]) or numerical data attributes to ensure that
134
+ the resulting recommendations either contain or exclude a particular value (see
135
+ Table 1 for complete list of attributes).
136
+ 3
137
+ Multi-Domain Support
138
+ In order to provide a multi-domain recommender platform, we support the no-
139
+ tions of a system-level and item-level domain in accordance with [5]. For the
140
+ former, items and users belong to distinct systems (e.g., Netflix and Amazon).
141
+ For the latter, individual domains have different types of items and users which
142
+ may share some common attributes (e.g., movies and books).
143
+ Demo Walkthrough: System-level domain. When a domain is created on
144
+ a system level, the underlying data is physically stored in a different location
145
+ than the data of other domains. Hence, domains do not share any data between
146
+ themselves and the underlying services are isolated so that the performance of
147
+
148
+ 4
149
+ E. Lacic, T. Duricic, L. Fadljevic, D. Theiler, and D. Kowald
150
+ Fig. 2. Example of supporting multiple domains on the item-level (up) and configuring
151
+ a hybrid recommendation algorithm (below) with previously created APIs.
152
+ one domain does not impact the performance of another domain (e.g., during
153
+ request load peaks). We demonstrate how to create a movie recommender on a
154
+ system level. To utilize the MovieLens-100k dataset [6], we first need to configure
155
+ the respective data services to upload (i) movie, (ii) user, and (iii) interaction
156
+ data. Each entity needs to be separately created in the Uptrendz platform in
157
+ order to generate an API that can be used to upload the MovieLens-specific
158
+ data attributes. This allows creating recommendation scenarios for (i) similar
159
+ movies (CBF), (ii) popular horror movies (MP with post-filtering), (iii) movies
160
+ based on ratings (CF), (iv) their weighted hybrid combination (e.g., for cold-start
161
+ settings [13], and (v) a user recommender for a given movie.
162
+ Demo Walkthrough: Item-level domain. To showcase how to configure Up-
163
+ trendz to support multiple-domains on an item-level, we present the use-case of
164
+ entrepreneurial start-up founding. Here, we recommend experts that can provide
165
+
166
+ Available attributes for entity:
167
+ news
168
+ Field Name
169
+ Field Type
170
+ Field Subtype
171
+ id
172
+
173
+ Categorical Text
174
+ [ Single Value
175
+ content
176
+
177
+ Free Text
178
+
179
+ English
180
+ name
181
+ Free Text
182
+
183
+ English
184
+ active
185
+ Categorical Text
186
+
187
+ Single Value
188
+ categories
189
+
190
+ Categorical Text
191
+
192
+ Multiple Values
193
+ Available attributes for entity:
194
+ innovation
195
+ Field Name
196
+ Field Type
197
+ Field Subtype
198
+ id
199
+
200
+ Categorical Text
201
+ Single Value
202
+ author
203
+
204
+ Categorical Text
205
+
206
+ Single Value
207
+ description
208
+
209
+ Free Text
210
+
211
+ [English
212
+ name
213
+ Free Text
214
+ English
215
+ headline
216
+ Free Text
217
+
218
+ English
219
+ location
220
+
221
+ Categorical Text
222
+ Single Value
223
+ development_phase
224
+
225
+ Categorical Text
226
+
227
+ Single Value
228
+ patent_description
229
+ Free Text
230
+
231
+ English
232
+ help_time
233
+
234
+ Numeric
235
+
236
+ Integer
237
+ active
238
+
239
+ Categorical Text
240
+
241
+ Single Value
242
+ categories
243
+ Categorical Text
244
+ Multiple Values
245
+ Mutiple Values
246
+ fields_of_interest
247
+
248
+ Categorical Text
249
+ →General Settings
250
+ Scenario name
251
+ discover innovations
252
+ Scenario ID: discover-innovations
253
+ What will be recommended?
254
+ Recommendation Model
255
+ innovation
256
+ >
257
+ HybridRoundRobinWeightedSum
258
+ V
259
+ Items
260
+ innovation
261
+ ItemContext
262
+ institution
263
+ Choose Context
264
+ education
265
+ news
266
+ Model Specific Settings
267
+ Users
268
+ user
269
+ Select all desired scenarios which you would like to include into this hybrid scenario.
270
+ In order to prioritize between reference scenarios, for each selected scenario you must assign a proper weight with an integer value
271
+ Available profiles
272
+ Connect People Innovation Content
273
+ Invite People Brainstorm Content
274
+ Discover Innovations Personalized
275
+ 10
276
+ Discover Innovations Popular
277
+ 1
278
+ Discover Innovations Content History
279
+ 5API-Centric Real-time Recommendations in Multi-Domain Settings
280
+ 5
281
+ Fig. 3. Uptrendz requires the specification of (i) the item types that should be recom-
282
+ mended (e.g., products or users, depending on the domain - left figure), and (ii) the
283
+ user types for which recommendations should be generated (e.g., registered users or
284
+ session users - right figure).
285
+ feedback to an innovation idea, support co-founder matching, help incubators,
286
+ innovation hubs and accelerators to discover innovations but also provide rel-
287
+ evant educational materials until the innovation idea matures enough to form
288
+ a start-up. In this case, each recommendable entity has a separate data model
289
+ and can be viewed as part of a standalone application domain. Figure 2 depicts
290
+ how adding multiple item entities in the data catalog allows customizing data
291
+ attributes for the respective domain. While configuring a recommendation al-
292
+ gorithm, the respective item-level domain can be selected to be recommended.
293
+ Here, via the example of a hybrid algorithm, only pre-configured algorithms can
294
+ be utilized that belong to the same domain (i.e., innovation recommendations).
295
+ Finally, in Figure 3, we show how Uptrendz allows the specification of (i)
296
+ different item types that can be recommended, and (ii) different user types for
297
+ which recommendations should be generated. Our demo application includes
298
+ different specification examples.
299
+ 4
300
+ Conclusion
301
+ In this paper, we present Uptrendz, an API-centric recommendation platform
302
+ that can be customized to provide real-time recommendations for multiple do-
303
+ mains. To do that, we support the notions of a system-level and item-level do-
304
+ main. We demonstrate Uptrendz using the popular MovieLens-100k dataset and
305
+ the use-case of entrepreneurial start-up founding.
306
+ In future work, we plan to support even more use cases from other domains,
307
+ e.g., music recommendations [9]. Here, we also want to integrate fairness-aware
308
+ recommendation algorithms for mitigating e.g., popularity bias effects.
309
+ Acknowledgements. This research was funded by CogSteps and the “DDAI”
310
+ COMET Module within the COMET – Competence Centers for Excellent Tech-
311
+ nologies Programme, funded by the Austrian Federal Ministry for Transport,
312
+ Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital
313
+ and Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG),
314
+ the province of Styria (SFG) and partners from industry and academia.
315
+
316
+ What would you like to
317
+
318
+ recommend?
319
+ product, article, job...
320
+ Add Item Entity
321
+ 网What kind of users do
322
+ you have?
323
+ user
324
+ Add User Entity
325
+ T6
326
+ E. Lacic, T. Duricic, L. Fadljevic, D. Theiler, and D. Kowald
327
+ References
328
+ 1. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Proceed-
329
+ ings of the 2008 ACM Conference on Recommender Systems. pp. 335–336. Rec-
330
+ Sys ’08, ACM (2008). https://doi.org/10.1145/1454008.1454068, http://doi.acm.
331
+ org/10.1145/1454008.1454068
332
+ 2. Adomavicius, G., Tuzhilin, A.: Context-aware recommender systems. In: Recom-
333
+ mender systems handbook, pp. 217–253. Springer (2011)
334
+ 3. Amatriain, X., Basilico, J.: Past, present, and future of recommender systems: An
335
+ industry perspective. In: Proceedings of the 10th ACM conference on recommender
336
+ systems. pp. 211–214 (2016)
337
+ 4. Bonab, H., Aliannejadi, M., Vardasbi, A., Kanoulas, E., Allan, J.: Cross-market
338
+ product recommendation. In: Proceedings of the 30th ACM International Confer-
339
+ ence on Information & Knowledge Management. pp. 110–119 (2021)
340
+ 5. Cantador, I., Fern´andez-Tob´ıas, I., Berkovsky, S., Cremonesi, P.: Cross-domain
341
+ recommender systems. In: Recommender Systems Handbook. Springer (2015)
342
+ 6. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. Acm
343
+ transactions on interactive intelligent systems (tiis) 5(4), 1–19 (2015)
344
+ 7. Im, I., Hars, A.: Does a one-size recommendation system fit all? the effectiveness
345
+ of collaborative filtering based recommendation systems across different domains
346
+ and search modes. ACM Transactions on Information Systems (TOIS) 26(1), 4–es
347
+ (2007)
348
+ 8. Kowald, D., Dennerlein, S.M., Theiler, D., Walk, S., Trattner, C.: The social se-
349
+ mantic server a framework to provide services on social semantic network data. In:
350
+ Proceedings of I-SEMANTICS 2013). pp. 50–54 (2013)
351
+ 9. Kowald, D., Muellner, P., Zangerle, E., Bauer, C., Schedl, M., Lex, E.: Support
352
+ the underground: characteristics of beyond-mainstream music listeners. EPJ Data
353
+ Science 10(1), 1–26 (2021)
354
+ 10. Lacic, E., Kowald, D., Lex, E.: Tailoring recommendations for a multi-domain en-
355
+ vironment. Workshop on Intelligent Recommender Systems by Knowledge Transfer
356
+ & Learning (RecSysKTL’2017) co-located with the 11th ACM Conference on Rec-
357
+ ommender Systems (RecSys’2017) (2017)
358
+ 11. Lacic, E., Kowald, D., Parra, D., Kahr, M., Trattner, C.: Towards a scalable social
359
+ recommender engine for online marketplaces: The case of apache solr. In: Workshop
360
+ Proceedings of WWW’2014. pp. 817–822 (2014)
361
+ 12. Lacic, E., Kowald, D., Seitlinger, P., Trattner, C., Parra, D.: Recommending items
362
+ in social tagging systems using tag and time information. Proceedings of the 1st
363
+ International Workshop on Social Personalisation (SP’2014) co-located with Hy-
364
+ pertext’2014 (2014)
365
+ 13. Lacic, E., Kowald, D., Traub, M., Luzhnica, G., Simon, J.P., Lex, E.: Tackling cold-
366
+ start users in recommender systems with indoor positioning systems. In: Poster
367
+ Proceedings of the 9th {ACM} Conference on Recommender Systems. Association
368
+ of Computing Machinery (2015)
369
+ 14. McNee, S.M., Riedl, J., Konstan, J.A.: Being accurate is not enough: how accuracy
370
+ metrics have hurt recommender systems. In: CHI’06 extended abstracts on Human
371
+ factors in computing systems. pp. 1097–1101. ACM (2006)
372
+ 15. Resnick, P., Varian, H.R.: Recommender systems. Communications of the ACM
373
+ 40(3), 56–58 (1997)
374
+ 16. Roitero, K., Carterette, B., Mehrotra, R., Lalmas, M.: Leveraging behavioral het-
375
+ erogeneity across markets for cross-market training of recommender systems. In:
376
+ Companion Proceedings of the Web Conference 2020. pp. 694–702 (2020)
377
+
EtAzT4oBgHgl3EQfG_tj/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,366 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf,len=365
2
+ page_content='Uptrendz: API-Centric Real-time Recommendations in Multi-Domain Settings Emanuel Lacic1, Tomislav Duricic1,2, Leon Fadljevic1, Dieter Theiler1, and Dominik Kowald(�)1,2 1 Know-Center GmbH, Graz, Austria {elacic,tduricic,lfadljevic,dtheiler,dkowald}@know-center.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
3
+ page_content='at 2 Graz University of Technology, Graz, Austria Abstract.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
4
+ page_content=' In this work, we tackle the problem of adapting a real-time recommender system to multiple application domains, and their underly- ing data models and customization requirements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
5
+ page_content=' To do that, we present Uptrendz, a multi-domain recommendation platform that can be cus- tomized to provide real-time recommendations in an API-centric way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
6
+ page_content=' We demonstrate (i) how to set up a real-time movie recommender us- ing the popular MovieLens-100k dataset, and (ii) how to simultaneously support multiple application domains based on the use-case of recom- mendations in entrepreneurial start-up founding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
7
+ page_content=' For that, we differenti- ate between domains on the item- and system-level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
8
+ page_content=' We believe that our demonstration shows a convenient way to adapt, deploy and evaluate a recommender system in an API-centric way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
9
+ page_content=' The source-code and doc- umentation that demonstrates how to utilize the configured Uptrendz API is available on GitHub.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
10
+ page_content=' Keywords: Uptrendz, API-centric recommendations, multi-domain rec- ommendations, real-time recommendations 1 Introduction Utilizing recommender systems is nowadays recognized as a necessary feature to help users discover relevant content [15,14].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
11
+ page_content=' Most industry practitioners [3], when they build a recommender system, adapt existing algorithms to the underlying data and customization requirements of the respective application domain (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
12
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
13
+ page_content=', movies, music, news, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
14
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
15
+ page_content=' However, the focus of the research community has recently shifted towards building recommendation systems that simultaneously support multiple application domains [4,7,16] in an API-centric way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
16
+ page_content=' In this work, we demonstrate Uptrendz3, an API-centric recommendation platform, which can be configured to simultaneously provide real-time recom- mendations in an API-centric way to multiple domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
17
+ page_content=' Uptrendz supports pop- ular recommendation algorithms, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
18
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
19
+ page_content=', Collaborative Filtering (CF), Content- based Filtering (CBF, or Most Popular (MP), that are applied across different 3 https://uptrendz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
20
+ page_content='ai/ arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
21
+ page_content='01037v1 [cs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
22
+ page_content='IR] 3 Jan 2023 2 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
23
+ page_content=' Lacic, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
24
+ page_content=' Duricic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
25
+ page_content=' Fadljevic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
26
+ page_content=' Theiler, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
27
+ page_content=' Kowald RECOMMENDER CUSTOMIZATION SERVICE ISOLATION DATA HETEROGENEITY FAULT TOLERANCE MULTI-DOMAIN RECOMMENDER SYSTEM Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
28
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
29
+ page_content=' Aspects that need to be addressed when building a recommender system for a multi-domain environment [10].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
30
+ page_content=' application domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
31
+ page_content=' The focus of this demonstration is to show how domain- specific data-upload APIs can be created to support the customization of the respective recommendation algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
32
+ page_content=' Using the MovieLens-100k dataset [6] and a real-world use-case of entrepreneurial start-up founding4, we show how such an approach allows for a highly customized recommendation system that can be used in an API-centric way.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
33
+ page_content=' The source-code and documentation for this demonstration is available via GitHub5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
34
+ page_content=' 2 The Uptrendz Platform The Uptrendz platform is built on top of the ScaR recommendation framework [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
35
+ page_content=' As shown in [10] and Figure 1, the microservice-based system architecture addresses four distinctive requirements of a multi-domain recommender system, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
36
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
37
+ page_content=', (i) service isolation, (ii) data heterogeneity, (iii) recommender customization, and (iv) fault tolerance.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
38
+ page_content=' Uptrendz provides a layer on top of the framework to dynamically configure an application domain and to instantly provide an API to (i) upload item, user and interaction data, and (ii) request recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
39
+ page_content=' Domain-specific data model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
40
+ page_content=' As discussed by [1], different domains may em- ploy the same recommender algorithm but can differ with respect to what kind of data is utilized to build the model (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
41
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
42
+ page_content=', interaction types, context, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
43
+ page_content=').' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
44
+ page_content=' Given an API-centric approach, we show that in order to support the customization of recommender algorithms with domain-specific parameters, the underlying plat- form needs to unambiguously know which source of information should be used to calculate the recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
45
+ page_content=' To do that, the Uptrendz platform first allows generating customized data upload APIs for multiple item and user entities (see Table 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
46
+ page_content=' Second, with respect to interaction data, both user-item and user-user interactions can be configured.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
47
+ page_content=' The interaction API is further customized in ac- cordance to what kind of interactions the respective application domain actually supports, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
48
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
49
+ page_content=', (i) registered users, anonymous sessions or both, (ii) interaction timestamp tracking, and (iii) type of interaction (explicit or implicit).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
50
+ page_content=' 4 https://cogsteps.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
51
+ page_content='com/ 5 https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
52
+ page_content='com/lacic/ECIR2023Demo API-Centric Real-time Recommendations in Multi-Domain Settings 3 Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
53
+ page_content=' Supported attributes to configure the data upload API for items and users.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
54
+ page_content=' Type Sub-Type Description Categorical Text Single Value String value, which usually represents a category.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
55
+ page_content=' Used for post-filtering recommendation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
56
+ page_content=' Multiple Values List of string values, which usually represent an array of categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
57
+ page_content=' Used for post-filtering recommendation results.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
58
+ page_content=' Free Text English English text, which is processed and utilized for content-based recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
59
+ page_content=' German German text, which is processed and utilized for content-based recommendations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
60
+ page_content=' Numeric Integer Used for post-filtering recommendations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
61
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
62
+ page_content=', user age).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
63
+ page_content=' Real Used for post-filtering recommendations (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
64
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
65
+ page_content=', price).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
66
+ page_content=' Date Date information for the respective entity (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
67
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
68
+ page_content=', creation date) Recommender customization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
69
+ page_content=' The Uptrendz platform fosters the notion of defining personalization scenarios (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
70
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
71
+ page_content=', use-cases) when creating recommenda- tion APIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
72
+ page_content=' The available selection of real-time recommendation models [11] for a given scenario depends on (i) what should be recommended (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
73
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
74
+ page_content=', item or user entities), (ii) for whom the recommendations are targeted (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
75
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
76
+ page_content=', registered or anonymous users) and, (iii) what kind of context is given [2] (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
77
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
78
+ page_content=', item ID to recommend relevant content for).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
79
+ page_content=' As we adopt a non-restricted configuration with respect to the number of freely defined user interaction types, algorithms that use this kind of data (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
80
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
81
+ page_content=', Collaborative Filtering) can be customized to utilize any subset of the list of available interactions as well as to define how much weight a particular interaction type should have.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
82
+ page_content=' With respect to post- filtering recommendation results, each model can use categorical (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
83
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
84
+ page_content=', tags [12] or other semantic representations [8]) or numerical data attributes to ensure that the resulting recommendations either contain or exclude a particular value (see Table 1 for complete list of attributes).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
85
+ page_content=' 3 Multi-Domain Support In order to provide a multi-domain recommender platform, we support the no- tions of a system-level and item-level domain in accordance with [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
86
+ page_content=' For the former, items and users belong to distinct systems (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
87
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
88
+ page_content=', Netflix and Amazon).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
89
+ page_content=' For the latter, individual domains have different types of items and users which may share some common attributes (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
90
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
91
+ page_content=', movies and books).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
92
+ page_content=' Demo Walkthrough: System-level domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
93
+ page_content=' When a domain is created on a system level, the underlying data is physically stored in a different location than the data of other domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
94
+ page_content=' Hence, domains do not share any data between themselves and the underlying services are isolated so that the performance of 4 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
95
+ page_content=' Lacic, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
96
+ page_content=' Duricic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
97
+ page_content=' Fadljevic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
98
+ page_content=' Theiler, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
99
+ page_content=' Kowald Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
100
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
101
+ page_content=' Example of supporting multiple domains on the item-level (up) and configuring a hybrid recommendation algorithm (below) with previously created APIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
102
+ page_content=' one domain does not impact the performance of another domain (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
103
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
104
+ page_content=', during request load peaks).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
105
+ page_content=' We demonstrate how to create a movie recommender on a system level.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
106
+ page_content=' To utilize the MovieLens-100k dataset [6], we first need to configure the respective data services to upload (i) movie, (ii) user, and (iii) interaction data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
107
+ page_content=' Each entity needs to be separately created in the Uptrendz platform in order to generate an API that can be used to upload the MovieLens-specific data attributes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
108
+ page_content=' This allows creating recommendation scenarios for (i) similar movies (CBF), (ii) popular horror movies (MP with post-filtering), (iii) movies based on ratings (CF), (iv) their weighted hybrid combination (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
109
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
110
+ page_content=', for cold-start settings [13], and (v) a user recommender for a given movie.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
111
+ page_content=' Demo Walkthrough: Item-level domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
112
+ page_content=' To showcase how to configure Up- trendz to support multiple-domains on an item-level, we present the use-case of entrepreneurial start-up founding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
113
+ page_content=' Here,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
114
+ page_content=' we recommend experts that can provide ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
115
+ page_content='Available attributes for entity: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
116
+ page_content='news ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
117
+ page_content='Field Name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
118
+ page_content='Field Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
119
+ page_content='Field Subtype ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
120
+ page_content='id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
121
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
122
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
123
+ page_content='[ Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
124
+ page_content='content ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
125
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
126
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
127
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
128
+ page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
129
+ page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
130
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
131
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
132
+ page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
133
+ page_content='active ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
134
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
135
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
136
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
137
+ page_content='categories ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
138
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
139
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
140
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
141
+ page_content='Multiple Values ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
142
+ page_content='Available attributes for entity: ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
143
+ page_content='innovation ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
144
+ page_content='Field Name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
145
+ page_content='Field Type ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
146
+ page_content='Field Subtype ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
147
+ page_content='id ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
148
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
149
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
150
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
151
+ page_content='author ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
152
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
153
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
154
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
155
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
156
+ page_content='description ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
157
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
158
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
159
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
160
+ page_content='[English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
161
+ page_content='name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
162
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
163
+ page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
164
+ page_content='headline ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
165
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
166
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
167
+ page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
168
+ page_content='location ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
169
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
170
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
171
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
172
+ page_content='development_phase ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
173
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
174
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
175
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
176
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
177
+ page_content='patent_description ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
178
+ page_content='Free Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
179
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
180
+ page_content='English ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
181
+ page_content='help_time ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
182
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
183
+ page_content='Numeric ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
184
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
185
+ page_content='Integer ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
186
+ page_content='active ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
187
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
188
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
189
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
190
+ page_content='Single Value ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
191
+ page_content='categories ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
192
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
193
+ page_content='Multiple Values ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
194
+ page_content='Mutiple Values ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
195
+ page_content='fields_of_interest ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
196
+ page_content='→ ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
197
+ page_content='Categorical Text ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
198
+ page_content='→General Settings ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
199
+ page_content='Scenario name ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
200
+ page_content='discover innovations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
201
+ page_content='Scenario ID: discover-innovations ' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
202
+ page_content='What will be recommended?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
203
+ page_content=' Recommendation Model innovation > HybridRoundRobinWeightedSum V Items innovation ItemContext institution Choose Context education news Model Specific Settings Users user Select all desired scenarios which you would like to include into this hybrid scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
204
+ page_content=' In order to prioritize between reference scenarios, for each selected scenario you must assign a proper weight with an integer value Available profiles Connect People Innovation Content Invite People Brainstorm Content Discover Innovations Personalized 10 Discover Innovations Popular 1 Discover Innovations Content History 5API-Centric Real-time Recommendations in Multi-Domain Settings 5 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
205
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
206
+ page_content=' Uptrendz requires the specification of (i) the item types that should be recom- mended (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
207
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
208
+ page_content=', products or users, depending on the domain - left figure), and (ii) the user types for which recommendations should be generated (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
209
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
210
+ page_content=', registered users or session users - right figure).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
211
+ page_content=' feedback to an innovation idea, support co-founder matching, help incubators, innovation hubs and accelerators to discover innovations but also provide rel- evant educational materials until the innovation idea matures enough to form a start-up.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
212
+ page_content=' In this case, each recommendable entity has a separate data model and can be viewed as part of a standalone application domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
213
+ page_content=' Figure 2 depicts how adding multiple item entities in the data catalog allows customizing data attributes for the respective domain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
214
+ page_content=' While configuring a recommendation al- gorithm, the respective item-level domain can be selected to be recommended.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
215
+ page_content=' Here, via the example of a hybrid algorithm, only pre-configured algorithms can be utilized that belong to the same domain (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
216
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
217
+ page_content=', innovation recommendations).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
218
+ page_content=' Finally, in Figure 3, we show how Uptrendz allows the specification of (i) different item types that can be recommended, and (ii) different user types for which recommendations should be generated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
219
+ page_content=' Our demo application includes different specification examples.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
220
+ page_content=' 4 Conclusion In this paper, we present Uptrendz, an API-centric recommendation platform that can be customized to provide real-time recommendations for multiple do- mains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
221
+ page_content=' To do that, we support the notions of a system-level and item-level do- main.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
222
+ page_content=' We demonstrate Uptrendz using the popular MovieLens-100k dataset and the use-case of entrepreneurial start-up founding.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
223
+ page_content=' In future work, we plan to support even more use cases from other domains, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
224
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
225
+ page_content=', music recommendations [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
226
+ page_content=' Here, we also want to integrate fairness-aware recommendation algorithms for mitigating e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
227
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
228
+ page_content=', popularity bias effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
229
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
230
+ page_content=' This research was funded by CogSteps and the “DDAI” COMET Module within the COMET – Competence Centers for Excellent Tech- nologies Programme, funded by the Austrian Federal Ministry for Transport, Innovation and Technology (bmvit), the Austrian Federal Ministry for Digital and Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the province of Styria (SFG) and partners from industry and academia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
231
+ page_content=' What would you like to 围 recommend?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
232
+ page_content=' product, article, job.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
233
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
234
+ page_content=' Add Item Entity 网What kind of users do you have?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
235
+ page_content=' user Add User Entity T6 E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
236
+ page_content=' Lacic, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
237
+ page_content=' Duricic, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
238
+ page_content=' Fadljevic, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
239
+ page_content=' Theiler, and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
240
+ page_content=' Kowald References 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
241
+ page_content=' Adomavicius, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
242
+ page_content=', Tuzhilin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
243
+ page_content=': Context-aware recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
244
+ page_content=' In: Proceed- ings of the 2008 ACM Conference on Recommender Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
245
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
246
+ page_content=' 335–336.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
247
+ page_content=' Rec- Sys ’08, ACM (2008).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
248
+ page_content=' https://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
249
+ page_content='org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
250
+ page_content='1145/1454008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
251
+ page_content='1454068, http://doi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
252
+ page_content='acm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
253
+ page_content=' org/10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
254
+ page_content='1145/1454008.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
255
+ page_content='1454068 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
256
+ page_content=' Adomavicius, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
257
+ page_content=', Tuzhilin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
258
+ page_content=': Context-aware recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
259
+ page_content=' In: Recom- mender systems handbook, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
260
+ page_content=' 217–253.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
261
+ page_content=' Springer (2011) 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
262
+ page_content=' Amatriain, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
263
+ page_content=', Basilico, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
264
+ page_content=': Past, present, and future of recommender systems: An industry perspective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
265
+ page_content=' In: Proceedings of the 10th ACM conference on recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
266
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
267
+ page_content=' 211–214 (2016) 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
268
+ page_content=' Bonab, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
269
+ page_content=', Aliannejadi, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
270
+ page_content=', Vardasbi, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
271
+ page_content=', Kanoulas, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
272
+ page_content=', Allan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
273
+ page_content=': Cross-market product recommendation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
274
+ page_content=' In: Proceedings of the 30th ACM International Confer- ence on Information & Knowledge Management.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
275
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
276
+ page_content=' 110–119 (2021) 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
277
+ page_content=' Cantador, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
278
+ page_content=', Fern´andez-Tob´ıas, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
279
+ page_content=', Berkovsky, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
280
+ page_content=', Cremonesi, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
281
+ page_content=': Cross-domain recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
282
+ page_content=' In: Recommender Systems Handbook.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
283
+ page_content=' Springer (2015) 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
284
+ page_content=' Harper, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
285
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
286
+ page_content=', Konstan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
287
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
288
+ page_content=' : The movielens datasets: History and context.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
289
+ page_content=' Acm transactions on interactive intelligent systems (tiis) 5(4), 1–19 (2015) 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
290
+ page_content=' Im, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
291
+ page_content=', Hars, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
292
+ page_content=': Does a one-size recommendation system fit all?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
293
+ page_content=' the effectiveness of collaborative filtering based recommendation systems across different domains and search modes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
294
+ page_content=' ACM Transactions on Information Systems (TOIS) 26(1), 4–es (2007) 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
295
+ page_content=' Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
296
+ page_content=', Dennerlein, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
297
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
298
+ page_content=', Theiler, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
299
+ page_content=', Walk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
300
+ page_content=', Trattner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
301
+ page_content=': The social se- mantic server a framework to provide services on social semantic network data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
302
+ page_content=' In: Proceedings of I-SEMANTICS 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
303
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
304
+ page_content=' 50–54 (2013) 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
305
+ page_content=' Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
306
+ page_content=', Muellner, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
307
+ page_content=', Zangerle, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
308
+ page_content=', Bauer, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
309
+ page_content=', Schedl, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
310
+ page_content=', Lex, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
311
+ page_content=': Support the underground: characteristics of beyond-mainstream music listeners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
312
+ page_content=' EPJ Data Science 10(1), 1–26 (2021) 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
313
+ page_content=' Lacic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
314
+ page_content=', Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
315
+ page_content=', Lex, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
316
+ page_content=': Tailoring recommendations for a multi-domain en- vironment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
317
+ page_content=' Workshop on Intelligent Recommender Systems by Knowledge Transfer & Learning (RecSysKTL’2017) co-located with the 11th ACM Conference on Rec- ommender Systems (RecSys’2017) (2017) 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
318
+ page_content=' Lacic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
319
+ page_content=', Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
320
+ page_content=', Parra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
321
+ page_content=', Kahr, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
322
+ page_content=', Trattner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
323
+ page_content=': Towards a scalable social recommender engine for online marketplaces: The case of apache solr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
324
+ page_content=' In: Workshop Proceedings of WWW’2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
325
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
326
+ page_content=' 817–822 (2014) 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
327
+ page_content=' Lacic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
328
+ page_content=', Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
329
+ page_content=', Seitlinger, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
330
+ page_content=', Trattner, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
331
+ page_content=', Parra, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
332
+ page_content=': Recommending items in social tagging systems using tag and time information.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
333
+ page_content=' Proceedings of the 1st International Workshop on Social Personalisation (SP’2014) co-located with Hy- pertext’2014 (2014) 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
334
+ page_content=' Lacic, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
335
+ page_content=', Kowald, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
336
+ page_content=', Traub, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
337
+ page_content=', Luzhnica, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
338
+ page_content=', Simon, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
339
+ page_content='P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
340
+ page_content=', Lex, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
341
+ page_content=': Tackling cold- start users in recommender systems with indoor positioning systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
342
+ page_content=' In: Poster Proceedings of the 9th {ACM} Conference on Recommender Systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
343
+ page_content=' Association of Computing Machinery (2015) 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
344
+ page_content=' McNee, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
345
+ page_content='M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
346
+ page_content=', Riedl, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
347
+ page_content=', Konstan, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
348
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
349
+ page_content=' : Being accurate is not enough: how accuracy metrics have hurt recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
350
+ page_content=' In: CHI’06 extended abstracts on Human factors in computing systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
351
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
352
+ page_content=' 1097–1101.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
353
+ page_content=' ACM (2006) 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
354
+ page_content=' Resnick, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
355
+ page_content=', Varian, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
356
+ page_content='R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
357
+ page_content=' : Recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
358
+ page_content=' Communications of the ACM 40(3), 56–58 (1997) 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
359
+ page_content=' Roitero, K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
360
+ page_content=', Carterette, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
361
+ page_content=', Mehrotra, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
362
+ page_content=', Lalmas, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
363
+ page_content=': Leveraging behavioral het- erogeneity across markets for cross-market training of recommender systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
364
+ page_content=' In: Companion Proceedings of the Web Conference 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
365
+ page_content=' pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
366
+ page_content=' 694–702 (2020)' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/EtAzT4oBgHgl3EQfG_tj/content/2301.01037v1.pdf'}
EtFLT4oBgHgl3EQfFS_K/content/2301.11987v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3569e785672fc482c15bfd1ff8fed001c9fcaf29c6fe5a958a13fe6e3156451d
3
+ size 709796
EtFLT4oBgHgl3EQfFS_K/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6d7a1310490ddff96369ceec5293466bf1c3f13df350b36ac5da46cf3225e29
3
+ size 144407