jackkuo commited on
Commit
1a419ed
·
verified ·
1 Parent(s): a08e2af

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -9FIT4oBgHgl3EQf9SvZ/content/tmp_files/2301.11406v1.pdf.txt +944 -0
  2. -9FIT4oBgHgl3EQf9SvZ/content/tmp_files/load_file.txt +447 -0
  3. .gitattributes +52 -0
  4. 09FQT4oBgHgl3EQf0jbn/vector_store/index.faiss +3 -0
  5. 09FQT4oBgHgl3EQf0jbn/vector_store/index.pkl +3 -0
  6. 1tE1T4oBgHgl3EQfRwOf/content/2301.03057v1.pdf +3 -0
  7. 1tE1T4oBgHgl3EQfRwOf/vector_store/index.pkl +3 -0
  8. 2NFQT4oBgHgl3EQf2DZm/content/tmp_files/2301.13422v1.pdf.txt +984 -0
  9. 2NFQT4oBgHgl3EQf2DZm/content/tmp_files/load_file.txt +0 -0
  10. 2dA0T4oBgHgl3EQfM_90/content/2301.02140v1.pdf +3 -0
  11. 2dA0T4oBgHgl3EQfM_90/vector_store/index.pkl +3 -0
  12. 2tE1T4oBgHgl3EQfAALp/content/2301.02835v1.pdf +3 -0
  13. 2tE1T4oBgHgl3EQfAALp/vector_store/index.faiss +3 -0
  14. 2tE1T4oBgHgl3EQfAALp/vector_store/index.pkl +3 -0
  15. 3dFKT4oBgHgl3EQfQy0a/content/2301.11768v1.pdf +3 -0
  16. 3dFKT4oBgHgl3EQfQy0a/vector_store/index.faiss +3 -0
  17. 3tAyT4oBgHgl3EQfo_h3/content/tmp_files/2301.00517v1.pdf.txt +2053 -0
  18. 3tAyT4oBgHgl3EQfo_h3/content/tmp_files/load_file.txt +0 -0
  19. 3tFLT4oBgHgl3EQfsC9L/content/tmp_files/2301.12146v1.pdf.txt +1007 -0
  20. 3tFLT4oBgHgl3EQfsC9L/content/tmp_files/load_file.txt +488 -0
  21. 4NE1T4oBgHgl3EQf6AXQ/content/2301.03519v1.pdf +3 -0
  22. 4NE1T4oBgHgl3EQf6AXQ/vector_store/index.faiss +3 -0
  23. 4tAzT4oBgHgl3EQffvxD/vector_store/index.faiss +3 -0
  24. 5dE5T4oBgHgl3EQfPA60/content/tmp_files/2301.05502v1.pdf.txt +2695 -0
  25. 5dE5T4oBgHgl3EQfPA60/content/tmp_files/load_file.txt +0 -0
  26. 5tA0T4oBgHgl3EQfN_8L/content/tmp_files/2301.02153v1.pdf.txt +1324 -0
  27. 5tA0T4oBgHgl3EQfN_8L/content/tmp_files/load_file.txt +0 -0
  28. 5tE4T4oBgHgl3EQfbwzK/content/tmp_files/2301.05078v1.pdf.txt +0 -0
  29. 5tE4T4oBgHgl3EQfbwzK/content/tmp_files/load_file.txt +0 -0
  30. 8NE3T4oBgHgl3EQfRwmH/content/tmp_files/2301.04425v1.pdf.txt +0 -0
  31. 8NE3T4oBgHgl3EQfRwmH/content/tmp_files/load_file.txt +0 -0
  32. 8dFLT4oBgHgl3EQfBS4r/vector_store/index.faiss +3 -0
  33. A9AzT4oBgHgl3EQf__9t/vector_store/index.faiss +3 -0
  34. ANE0T4oBgHgl3EQfxgKB/content/tmp_files/2301.02647v1.pdf.txt +2056 -0
  35. ANE0T4oBgHgl3EQfxgKB/content/tmp_files/load_file.txt +0 -0
  36. D9FQT4oBgHgl3EQfQDZ4/content/tmp_files/2301.13281v1.pdf.txt +0 -0
  37. D9FQT4oBgHgl3EQfQDZ4/content/tmp_files/load_file.txt +0 -0
  38. DdFJT4oBgHgl3EQfBSxP/vector_store/index.faiss +3 -0
  39. DdFKT4oBgHgl3EQfZC4_/content/tmp_files/2301.11801v1.pdf.txt +1090 -0
  40. DdFKT4oBgHgl3EQfZC4_/content/tmp_files/load_file.txt +0 -0
  41. DtAzT4oBgHgl3EQfif1c/content/tmp_files/2301.01500v1.pdf.txt +611 -0
  42. DtAzT4oBgHgl3EQfif1c/content/tmp_files/load_file.txt +348 -0
  43. INFLT4oBgHgl3EQfIy9R/vector_store/index.faiss +3 -0
  44. ItE4T4oBgHgl3EQfhQ0t/content/tmp_files/2301.05123v1.pdf.txt +659 -0
  45. ItE4T4oBgHgl3EQfhQ0t/content/tmp_files/load_file.txt +333 -0
  46. JtFIT4oBgHgl3EQfZit-/content/2301.11253v1.pdf +3 -0
  47. JtFIT4oBgHgl3EQfZit-/vector_store/index.pkl +3 -0
  48. K9E1T4oBgHgl3EQfGgPl/content/2301.02916v1.pdf +3 -0
  49. KtE5T4oBgHgl3EQfYA_J/vector_store/index.faiss +3 -0
  50. L9E0T4oBgHgl3EQfjAEs/content/2301.02452v1.pdf +3 -0
-9FIT4oBgHgl3EQf9SvZ/content/tmp_files/2301.11406v1.pdf.txt ADDED
@@ -0,0 +1,944 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Preprint to appear in the Proceedings of the 7th Arabic Natural Language Processing Workshop (WANLP), 2022.
2
+ EMNLP, Abu Dhabi, United Arab Emirates, December 7–11, 2022.
3
+ Beyond Arabic: Software for Perso-Arabic Script Manipulation
4
+ Alexander Gutkin† Cibu Johny† Raiomond Doctor‡∗ Brian Roark◦ Richard Sproat⊛
5
+ Google Research
6
+ †United Kingdom
7
+ ‡India
8
+ ◦United States
9
+ ⊛Japan
10
+ {agutkin,cibu,raiomond,roark,rws}@google.com
11
+ Abstract
12
+ This paper presents an open-source software
13
+ library that provides a set of finite-state trans-
14
+ ducer (FST) components and corresponding
15
+ utilities for manipulating the writing sys-
16
+ tems of languages that use the Perso-Arabic
17
+ script.
18
+ The operations include various lev-
19
+ els of script normalization, including visual
20
+ invariance-preserving operations that subsume
21
+ and go beyond the standard Unicode normal-
22
+ ization forms, as well as transformations that
23
+ modify the visual appearance of characters in
24
+ accordance with the regional orthographies for
25
+ eleven contemporary languages from diverse
26
+ language families. The library also provides
27
+ simple FST-based romanization and transliter-
28
+ ation. We additionally attempt to formalize the
29
+ typology of Perso-Arabic characters by provid-
30
+ ing one-to-many mappings from Unicode code
31
+ points to the languages that use them. While
32
+ our work focuses on the Arabic script diaspora
33
+ rather than Arabic itself, this approach could
34
+ be adopted for any language that uses the Ara-
35
+ bic script, thus providing a unified framework
36
+ for treating a script family used by close to a
37
+ billion people.
38
+ 1
39
+ Introduction
40
+ While originally developed for recording Arabic,
41
+ the Perso-Arabic script has gradually become one
42
+ of the most widely used modern scripts. Through-
43
+ out history the script was adapted to record many
44
+ languages from diverse language families, with
45
+ scores of adaptations still active today. This flexi-
46
+ bility is partly due to the core features of the script
47
+ itself which over the time evolved from a purely
48
+ consonantal script to include a productive system
49
+ of diacritics for representing long vowels and op-
50
+ tional marking of short vowels and phonologi-
51
+ cal processes such as gemination (Bauer, 1996;
52
+ Kurzon, 2013).
53
+ Consequently, many languages
54
+ productively evolved their own adaptation of the
55
+ ∗ On contract from Optimum Solutions, Inc.
56
+ Perso-Arabic script to better suit their phonology
57
+ by not only augmenting the set of diacritics but
58
+ also introducing new consonant shapes.
59
+ This paper presents an open-source software li-
60
+ brary designed to deal with the ambiguities and
61
+ inconsistencies that result from representing var-
62
+ ious regional Perso-Arabic adaptations in digital
63
+ media. Some of these issues are due to the Uni-
64
+ code standard itself, where a Perso-Arabic char-
65
+ acter can often be represented in more than one
66
+ way (Unicode Consortium, 2021). Others are due
67
+ to the lack or inadequacies of input methods and
68
+ the instability of modern orthographies for the lan-
69
+ guages in question (Aazim et al., 2009; Liljegren,
70
+ 2018).
71
+ Such issues percolate through the data
72
+ available online, such as Wikipedia and Common
73
+ Crawl (Patel, 2020), negatively impacting the qual-
74
+ ity of NLP models built with such data. The script
75
+ normalization software described below goes be-
76
+ yond the standard language-agnostic Unicode ap-
77
+ proach for Perso-Arabic to help alleviate some of
78
+ these issues.
79
+ The library design is inspired by and consis-
80
+ tent with prior work by Johny et al. (2021), in-
81
+ troduced in §2, who provided a suite of finite-
82
+ state grammars for various normalization and (re-
83
+ versible) romanization operations for the Brah-
84
+ mic family of scripts.1
85
+ While the Perso-Arabic
86
+ script and the respective set of regional orthogra-
87
+ phies we support – Balochi, Kashmiri, Kurdish
88
+ (Sorani), Malay (Jawi), Pashto, Persian, Punjabi
89
+ (Shahmukhi), Sindhi, South Azerbaijani, Urdu
90
+ and Uyghur – is significantly different from those
91
+ Brahmic scripts, we pursue a similar finite-state in-
92
+ terpretation,2 as described in §3. Implementation
93
+ details and simple validation are provided in §4.
94
+ 1https://github.com/google-research/nisaba
95
+ 2https://github.com/google-research/nisaba/
96
+ tree/main/nisaba/scripts/abjad alphabet
97
+
98
+ 2
99
+ Related Work
100
+ The approach we take in this paper follows in
101
+ spirit the work of Johny et al. (2021) and Gutkin
102
+ et al. (2022), who developed a finite-state script
103
+ normalization framework for Brahmic scripts. We
104
+ adopt their taxonomy and terminology of low-
105
+ level script normalization operations, which con-
106
+ sist of three types: Unicode-endorsed schemes,
107
+ such as NFC; further visually-invariant transfor-
108
+ mations (visual normalization); and transforma-
109
+ tions that modify a character’s shape but preserve
110
+ pronunciation and the overall word identity (read-
111
+ ing normalization).
112
+ The literature on Perso-Arabic script normal-
113
+ ization for languages we cover in this paper is
114
+ scarce. The most relevant work was carried out
115
+ by Ahmadi (2020) for Kurdish, who provides
116
+ a detailed analysis of orthographic issues pecu-
117
+ liar to Sorani Kurdish along with corresponding
118
+ open-source script normalization software used
119
+ in downstream NLP applications, such as neu-
120
+ ral machine translation (Ahmadi and Masoud,
121
+ 2020). In the context of machine transliteration
122
+ and spell checking, Lehal and Saini (2014) in-
123
+ cluded language-agnostic minimal script normal-
124
+ ization as a preprocessing step in their open-source
125
+ n-gram-based transliterator from Perso-Arabic to
126
+ Brahmic scripts. Bhatti et al. (2014) introduced
127
+ a taxonomy of spelling errors for Sindhi, includ-
128
+ ing an analysis of mistakes due to visually confus-
129
+ able characters. Razak et al. (2018) provide a good
130
+ overview of confusable characters for Malay Jawi
131
+ orthography.
132
+ For other languages the regional
133
+ writing system ambiguities are sometimes men-
134
+ tioned in passing, but do not constitute the main
135
+ focus of work, as is the case with Punjabi Shah-
136
+ mukhi (Lehal and Saini, 2012) and Urdu (Humay-
137
+ oun et al., 2022). The specific Perso-Arabic script
138
+ ambiguities that abound in the online data are of-
139
+ ten not exhaustively documented, particularly in
140
+ work focused on multilingual modeling (N. C.,
141
+ 2022; Bapna et al., 2022). As one moves towards
142
+ lesser-resourced languages, such as Kashmiri and
143
+ Uyghur, the NLP literature provides no treatment
144
+ of script normalization issues and the only reli-
145
+ able sources of information are the proposal and
146
+ discussion documents from the Unicode Techni-
147
+ cal Committee (e.g., Bashir et al., 2006; Aazim
148
+ et al., 2009; Pournader, 2014). A forthcoming pa-
149
+ per by Doctor et al. (2022) covers the writing sys-
150
+ tem differences between these languages in more
151
+ Op. Type
152
+ FST
153
+ Language-dep.
154
+ Includes
155
+ NFC
156
+ N
157
+ no
158
+
159
+ Common Visual
160
+ Vc
161
+ no
162
+ N
163
+ Visual
164
+ V
165
+ yes
166
+ Vc
167
+ Reading
168
+ R
169
+ yes
170
+
171
+ Romanization
172
+ M
173
+ no
174
+ Vc
175
+ Transliteration
176
+ T
177
+ no
178
+
179
+ Table 1: Summary of script transformation operations.
180
+ detail than we can include in this short paper.
181
+ One area particularly relevant to this study is
182
+ the work by the Internet Corporation for Assigned
183
+ Names and Numbers (ICANN) towards develop-
184
+ ing a robust set of standards for representing vari-
185
+ ous Internet entities in Perso-Arabic script, such as
186
+ domain names in URLs. Their particular focus is
187
+ on variants, which are characters that are visually
188
+ confusable due to identical appearance but differ-
189
+ ent encoding, due to similarity in shape or due to
190
+ common alternate spellings (ICANN, 2011). In
191
+ addition, they developed the first proposal to sys-
192
+ tematize the available Perso-Arabic Unicode code
193
+ points along the regional lines (ICANN, 2015).
194
+ These studies are particularly important for cyber-
195
+ security (Hussain et al., 2016; Ginsberg and Yu,
196
+ 2018; Ahmad and Erdodi, 2021), but also inform
197
+ this work.
198
+ This software library is, to the best our knowl-
199
+ edge, the first attempt to provide a principled ap-
200
+ proach to Perso-Arabic script normalization for
201
+ multiple languages, for downstream NLP applica-
202
+ tions and beyond.
203
+ 3
204
+ Design Methodology
205
+ The core components are implemented as individ-
206
+ ual FSTs that can be efficiently combined together
207
+ in a single pipeline (Mohri, 2009).
208
+ These are
209
+ shown in Table 1 and described below.3
210
+ Unicode Normalization
211
+ For the Perso-Arabic
212
+ string encodings which yield visually identical
213
+ text, the Unicode standard provides procedures
214
+ that normalize text to a conventionalized normal
215
+ form, such as the well-known Normalization Form
216
+ C (NFC), so that visually identical words are
217
+ mapped to a conventionalized representative of
218
+ their equivalence class (Whistler, 2021). We im-
219
+ plemented the NFC standard as an FST, denoted
220
+ N in Table 1, that handles three broad types of
221
+ transformations: compositions, re-orderings and
222
+ 3When referring to names of Unicode characters we low-
223
+ ercase them and omit the common prefix arabic (letter).
224
+
225
+ FST
226
+ Letter
227
+ Variant (source)
228
+ Canonical
229
+ V∗
230
+ l
231
+ ⟨ڑ⟩
232
+ reh + small high tah
233
+ rreh
234
+ Vn
235
+ l
236
+ ⟨ک⟩
237
+ kaf
238
+ keheh
239
+ Vf
240
+ l
241
+ ⟨ی⟩
242
+ alef maksura
243
+ farsi yeh
244
+ Vi
245
+ l
246
+ ⟨ہ⟩
247
+ heh
248
+ heh goal
249
+ Table 2: Example FST components of Vl for Urdu.
250
+ combinations thereof.
251
+ As an example of a first type, consider the alef
252
+ with madda above letter ⟨آ⟩ that can be composed
253
+ in two ways: as a single character (U+0622) or
254
+ by adjoining maddah above to alef ({ U+0627,
255
+ U+0653 }). The FST N rewrites the adjoined form
256
+ into its equivalent composed form. The second
257
+ type of transformation involves the canonical re-
258
+ ordering of the Arabic combining marks, for exam-
259
+ ple, the sequence of shadda (U+0651) followed by
260
+ kasra (U+0650) is reversed by N. More complex
261
+ transformations that combine both compositions
262
+ and re-orderings are possible. For example, the se-
263
+ quence { alef (U+0627), superscript alef (U+0670),
264
+ maddah above (U+0653) } normalizes to its equiv-
265
+ alent form { alef with madda above (U+0622), su-
266
+ perscript alef (U+0670) }.
267
+ Crucially, N is language-agnostic because the
268
+ NFC standard it implements does not define any
269
+ transformations that violate the writing system
270
+ rules of respective languages.
271
+ Visual Normalization
272
+ As mentioned in §2,
273
+ Johny et al. (2021) introduced the term visual nor-
274
+ malization in the context of Brahmic scripts to
275
+ denote visually-invariant transformations that fall
276
+ outside the scope of NFC. We adopt their defini-
277
+ tion for Perso-Arabic, implementing it as a sin-
278
+ gle language-dependent FST V, shown in Table 1,
279
+ which is constructed by FST composition: V =
280
+ N ◦ Vc ◦ Vl, where ◦ denotes the composition op-
281
+ eration (Mohri, 2009).4
282
+ The first FST after NFC, denoted Vc,
283
+ is
284
+ language-agnostic, constructed from a small set of
285
+ normalizations for visually ambiguous sequences
286
+ found online that apply to all languages in our li-
287
+ brary.
288
+ For example, we map the two-character
289
+ sequence waw (U+0648) followed by damma
290
+ (U+064F) or small damma (U+0619) to u (U+06C7).
291
+ The second set of visually-invariant transforma-
292
+ tions, denoted Vl, is language-specific and addi-
293
+ tionally depends on the position within the word.
294
+ Four special cases are distinguished that are rep-
295
+ 4See Johny et al. (2021) for details on FST composition
296
+ and other operations used in this kind of script normalization.
297
+ Op. Type
298
+ FST
299
+ # states
300
+ # arcs
301
+ # Kb
302
+ NFC
303
+ N
304
+ 156
305
+ 1557
306
+ 28.10
307
+ Roman.
308
+ M
309
+ 32 546
310
+ 52 257
311
+ 1487.10
312
+ Translit.
313
+ T
314
+ 340
315
+ 518
316
+ 15.15
317
+ Table 3: Language-agnostic FSTs over UTF-8 strings.
318
+ resented as FSTs: position-independent rewrites
319
+ (V∗
320
+ l ), isolated-letter rewrites (Vi
321
+ l), rewrites in the
322
+ word-final position (Vf
323
+ l), and finally, rewrites in
324
+ “non-final” word positions, which include visually-
325
+ identical word-initial and word-medial rewrites
326
+ (Vn
327
+ l ). The FST Vl is composed as Vi
328
+ l ◦Vf
329
+ l ◦Vn
330
+ l ◦V∗
331
+ l .
332
+ Some examples of these transformations for Urdu
333
+ orthography are shown in Table 2, where the vari-
334
+ ants shown in the third column are rewritten to
335
+ their canonical Urdu form in the fourth column.
336
+ Reading Normalization
337
+ This type of normaliza-
338
+ tion was introduced for Brahmic scripts by Gutkin
339
+ et al. (2022), who noted that regional orthographic
340
+ conventions or lack thereof, which oftentimes con-
341
+ flict with each other, benefit from normalization
342
+ to some accepted form. Whenever such normal-
343
+ ization preserves visual invariance, it falls under
344
+ the rubric of visual normalization, but other cases
345
+ belong to reading normalization, denoted R in Ta-
346
+ ble 1. Similar to visual normalization, R is com-
347
+ piled from language-specific context-dependent
348
+ rewrite rules. One example of such a rewrite is
349
+ a mapping from yeh ⟨ي⟩(U+064A) to farsi yeh ⟨ی⟩
350
+ (U+06CC) in Kashmiri, Persian, Punjabi, Sorani
351
+ Kurdish and Urdu. For Malay, Sindhi and Uyghur,
352
+ the inverse transformation is implemented as man-
353
+ dated by the respective orthographies.
354
+ For efficiency reasons R is stored independently
355
+ of visual normalization V. At run-time, the read-
356
+ ing normalization is applied to an input string s
357
+ as s′ = (s ◦ V) ◦ R, which is more efficient than
358
+ s′ = s ◦ R′, where R′ = V ◦ R.
359
+ Romanization and Transliteration
360
+ We also
361
+ provide language-agnostic romanization (M) and
362
+ transliteration (T ) FSTs. The FST M converts
363
+ Perso-Arabic strings to their respective Latin rep-
364
+ resentation in Unicode and is defined as M =
365
+ N ◦ Vc ◦ Mc, where N and Vc were described
366
+ above, and Mc implements a one-to-one mapping
367
+ from 198 Perso-Arabic characters to their respec-
368
+ tive romanizations using our custom romanization
369
+ scheme derived from language-specific Library of
370
+ Congress rules (LC, 2022) and various ISO stan-
371
+ dards (ISO, 1984, 1993, 1999). For example, in
372
+
373
+ Language Information
374
+ Visual Normalization (V)
375
+ Reading Normalization (R)
376
+ Code
377
+ Name
378
+ # states
379
+ # arcs
380
+ # Mb
381
+ # states
382
+ # arcs
383
+ # Mb
384
+ azb
385
+ South Azerbaijani
386
+ 315 933
387
+ 635 647
388
+ 16.49
389
+ 21
390
+ 735
391
+ 0.012
392
+ bal
393
+ Balochi
394
+ 620 226
395
+ 1 244 472
396
+ 32.31
397
+ 24
398
+ 738
399
+ 0.013
400
+ ckb
401
+ Kurdish (Sorani)
402
+ 1 097 937
403
+ 2 199 732
404
+ 57.15
405
+ 39
406
+ 753
407
+ 0.013
408
+ fa
409
+ Persian
410
+ 940 436
411
+ 1 884 347
412
+ 48.96
413
+ 36
414
+ 750
415
+ 0.013
416
+ ks
417
+ Kashmiri
418
+ 1 772 494
419
+ 3 547 448
420
+ 92.21
421
+ 44
422
+ 794
423
+ 0.014
424
+ ms
425
+ Malay
426
+ 199 777
427
+ 403 373
428
+ 10.45
429
+ 21
430
+ 735
431
+ 0.012
432
+ pa
433
+ Punjabi
434
+ 2 050 154
435
+ 4 105 465
436
+ 106.69
437
+ 24
438
+ 738
439
+ 0.013
440
+ ps
441
+ Pashto
442
+ 291 564
443
+ 587 552
444
+ 15.23
445
+ 24
446
+ 738
447
+ 0.013
448
+ sd
449
+ Sindhi
450
+ 1 703 726
451
+ 3 403 283
452
+ 88.53
453
+ 34
454
+ 748
455
+ 0.013
456
+ ug
457
+ Uyghur
458
+ 1 255 054
459
+ 2 513 231
460
+ 65.31
461
+ 24
462
+ 738
463
+ 0.013
464
+ ur
465
+ Urdu
466
+ 2 071 139
467
+ 4 138 950
468
+ 107.65
469
+ 31
470
+ 745
471
+ 0.013
472
+ Table 4: Summary of FSTs over UTF-8 strings for visual and reading normalization.
473
+ our scheme the Uyghur yu ⟨ۈ⟩(U+06C8) maps
474
+ to ⟨¨u⟩.
475
+ The transliteration FST T converts the
476
+ strings from Unicode Latin into Perso-Arabic. It
477
+ is smaller than M and is defined as T = M−1
478
+ c .
479
+ Character-Language Mapping
480
+ The geography
481
+ and scope of Perso-Arabic script adaptations is
482
+ vast. To document the typology of the characters
483
+ we developed an easy-to-parse mapping between
484
+ the characters and the respective languages and/or
485
+ macroareas that relate to a group of languages
486
+ building on prior work by ICANN (2015). For ex-
487
+ ample, using this mapping it is easy to find that
488
+ the letter beh with small v below ⟨ࢠ⟩(U+08A0) is
489
+ part of the orthography of Wolof, a language of
490
+ Senegal (Ngom, 2010), while gaf with ring ⟨ڰ⟩
491
+ (U+06B0) belongs to Saraiki language spoken in
492
+ Pakistan (Bashir and Conners, 2019). This map-
493
+ ping can be used to auto-generate the orthographic
494
+ inventories for lesser-resourced languages.
495
+ 4
496
+ Software Details and Validation
497
+ Our software library is implemented using Pynini,
498
+ a Python library for constructing finite-state gram-
499
+ mars and for performing operations on FSTs (Gor-
500
+ man, 2016; Gorman and Sproat, 2021).
501
+ Each
502
+ FST is compiled from the collections of individ-
503
+ ual context-dependent letter rewrite rules (Mohri
504
+ and Sproat, 1996) and is available in two versions:
505
+ over an alphabet of UTF-8 encoded bytes and
506
+ over the integer Unicode code points. The FSTs
507
+ are stored uncompressed in binary FST archives
508
+ (FARs) in OpenFst format (Allauzen et al., 2007).
509
+ The
510
+ summaries
511
+ of
512
+ language-agnostic
513
+ and
514
+ language-dependent FSTs over UTF-8 strings are
515
+ shown in Table 3 and Table 4, respectively. As
516
+ can be seen from the tables, the language-agnostic
517
+ and reading normalization FSTs are relatively un-
518
+ complicated and small in terms of number of
519
+ Lang.
520
+ s′ = s ◦ V
521
+ s′ = (s ◦ V) ◦ R
522
+ % tokens
523
+ % types
524
+ % tokens
525
+ % types
526
+ ckb
527
+ 18.27
528
+ 25.84
529
+ 30.07
530
+ 41.26
531
+ sd
532
+ 17.32
533
+ 14.83
534
+ 21.74
535
+ 17.31
536
+ ur
537
+ 0.09
538
+ 1.16
539
+ 0.10
540
+ 1.23
541
+ Table 5: Percentage of tokens and types changed.
542
+ states, arcs and the overall (uncompressed) size on
543
+ disk. The visual normalization FSTs are signifi-
544
+ cantly larger, which is explained by the number
545
+ of composition operations used in their construc-
546
+ tion (see §3). The reading normalization FSTs for
547
+ South Azerbaijani and Malay shown in Table 4 im-
548
+ plement the identity mapping. This is because we
549
+ could not find enough examples requiring reading-
550
+ style normalization in online data (see the Limita-
551
+ tions section for more details).
552
+ As an informal sanity check we validate the
553
+ prevalence of normalization on word-frequency
554
+ lists for Sorani Kurdish (ckb), Sindhi (sd) and
555
+ Uyghur (ug) from project Cr´ubad´an (Scannell,
556
+ 2007). Table 5 shows the percentages of tokens
557
+ and types changed (s′ ̸= s) by visual normaliza-
558
+ tion on one hand and the combined visual and
559
+ reading normalization on the other. Urdu has the
560
+ fewest number of modifications compared to So-
561
+ rani Kurdish and Sindhi, most likely due to a more
562
+ regular orthography and stable input methods man-
563
+ ifest in the crawled data. Significantly more ex-
564
+ tensive analysis and experiments in statistical lan-
565
+ guage modeling and neural machine translation for
566
+ the languages covered in this paper are presented
567
+ in a forthcoming study (Doctor et al., 2022).
568
+ Example
569
+ The use of the library is demonstrated
570
+ by the following Python example that implements
571
+ a simple command-line utility for performing read-
572
+ ing normalization on a single string using Pynini
573
+ APIs. The program requires two FAR files that
574
+
575
+ Lang.
576
+ Input
577
+ Output
578
+ Correct Output
579
+ balٽﯿﺋدﺖﯿﺋد
580
+ teh
581
+ ckbﺮڪﺷەﻟﺮﮑﺷەﻟ
582
+ keheh
583
+ faﻪﺴﺳﺆﻣﻪﺴﺳﻮﻣ
584
+ waw
585
+ ksﮏﺗۍﮬﮏﺘؠﮬ
586
+ kashmiri yeh
587
+ paﻲﺌﮐﯽﺌﮐ
588
+ farsi yeh
589
+ sdﻪﻫﻮﮘﮧﮨﻮﮘ
590
+ heh goal
591
+ ugیﺎﺳيﺎﺳ
592
+ yeh
593
+ urةرﻮﺻۃرﻮﺻ
594
+ teh marbuta goal
595
+ Table 6: Some examples of reading normalization.
596
+ store compiled visual and reading normalization
597
+ grammars, the upper-case BCP-47 language code
598
+ for retrieving the FST for a given language, and an
599
+ input string:5
600
+ example.py
601
+ from absl import app
602
+ from absl import flags
603
+ from collections.abc import Iterable, Sequence
604
+ import pynini as pyn
605
+ flags.DEFINE_string("input", None, "Input string.")
606
+ flags.DEFINE_string("lang", None, "Language code.")
607
+ flags.DEFINE_string("reading_grm", None, "Reading FAR.")
608
+ flags.DEFINE_string("visual_grm", None, "Visual FAR.")
609
+ FLAGS = flags.FLAGS
610
+ def load_fst(grammar_path: str, lang: str) -> pyn.Fst:
611
+ """Loads FST for specified grammar and language."""
612
+ return pyn.Far(grammar_path)[lang]
613
+ def apply(text: str, fsts: Iterable[pyn.Fst]) -> str:
614
+ """Applies sequence of FSTs on an input string."""
615
+ try:
616
+ composed = pyn.escape(text)
617
+ for fst in fsts:
618
+ composed = (composed @ fst).optimize()
619
+ return pyn.shortestpath(composed).string()
620
+ except pyn.FstOpError as error:
621
+ raise ValueError(f"Error for string `{text}`")
622
+ def main(argv: Sequence[str]) -> None:
623
+ # ... initializing FLAGS
624
+ visual_fst = load_fst(FLAGS.visual_grm, FLAGS.lang)
625
+ reading_fst = load_fst(FLAGS.reading_grm, FLAGS.lang)
626
+ out = apply(FLAGS.input, [visual_fst, reading_fst])
627
+ print(f"=> {out}")
628
+ if __name__ == "__main__":
629
+ app.run(main)
630
+ The visual and reading FSTs for a given language
631
+ are retrieved from the relevant FAR files using
632
+ load_fst function. The input string is first con-
633
+ verted to a linear FST. The visual and reading nor-
634
+ malization FSTs are then sequentially composed
635
+ with the input FST and a shortest path algorithm is
636
+ applied on the result, which is then converted from
637
+ a linear FST back to a Python string in apply func-
638
+ tion to yield the final normalized output.
639
+ Some examples of reading normalization pro-
640
+ 5The infrastructure for compiling the Pynini grammars is
641
+ described in Johny et al. (2021).
642
+ duced using the example.py utility above for
643
+ some of the supported languages are shown in Ta-
644
+ ble 6. For each language, the input string in the
645
+ second column of the table is normalized to a
646
+ string shown in the third column. The final col-
647
+ umn shows the name of a particular letter in the
648
+ output string that replaced the original letter from
649
+ the input string, e.g., for Sorani Kurdish (ckb)
650
+ the following rewrite occurs: swash kaf (U+06AA)
651
+ → keheh (U+06A9), while for Punjabi (pa), yeh
652
+ (U+064A) → farsi yeh (U+06CC).
653
+ 5
654
+ Conclusion and Future Work
655
+ We have presented a flexible FST-based software
656
+ package for low-level processing of orthographies
657
+ based on Perso-Arabic script. We described the
658
+ main components of the architecture consisting
659
+ of various script normalization operations, roman-
660
+ ization/transliteration, and character-language in-
661
+ dex.
662
+ We expect to increase the current lan-
663
+ guage coverage of eleven languages to further rel-
664
+ atively well-documented orthographies, but also
665
+ provide treatment for resource-scarce orthogra-
666
+ phies, such as the Ajami orthographies of Sub-
667
+ Saharan Africa (Mumin, 2014).
668
+ Limitations
669
+ When developing the visual and reading normal-
670
+ ization rules for the eleven languages described in
671
+ this paper we made use of publicly available on-
672
+ line data consisting of the respective Wikipedias,
673
+ Wikipron (Lee et al., 2020), Cr´ubad´an (Scannell,
674
+ 2007) and parts of Common Crawl (Patel, 2020).
675
+ The latter corpus is particularly noisy and requires
676
+ non-trivial filtering (Kreutzer et al., 2022). Fur-
677
+ thermore, many Wikipedia and Common Crawl
678
+ documents contain code-switched text in several
679
+ languages that are recorded in Perso-Arabic. Ro-
680
+ bust language identification (LID) is required to
681
+ distinguish between tokens in such sentences (for
682
+ example, Kashmiri vs. Pashto or Balochi) in or-
683
+ der not to confuse between the respective orthogra-
684
+ phies. Since we did not have access to robust LID
685
+ models for the languages under study, for lesser-
686
+ resourced languages such as Kashmiri, Malay in
687
+ Jawi orthography, South Azerbaijani and Uyghur,
688
+ it is likely that some of the words we used as exam-
689
+ ples requiring normalization may have been mis-
690
+ classified resulting in normalizations that should
691
+ not be there.
692
+
693
+ References
694
+ Muzaffar Aazim, Kamal Mansour, and Roozbeh Pour-
695
+ nader. 2009. Proposal to add two Kashmiri charac-
696
+ ters and one annotation to the Arabic block. Techni-
697
+ cal Report L2/09-176, Unicode Consortium.
698
+ Humza Ahmad and Laszlo Erdodi. 2021. Overview of
699
+ phishing landscape and homographs in Arabic do-
700
+ main names. Security and Privacy, 4(4):1–14.
701
+ Sina Ahmadi. 2020. KLPT – Kurdish language pro-
702
+ cessing toolkit. In Proceedings of Second Workshop
703
+ for NLP Open Source Software (NLP-OSS), pages
704
+ 72–84, Online. Association for Computational Lin-
705
+ guistics.
706
+ Sina Ahmadi and Maraim Masoud. 2020.
707
+ Towards
708
+ machine translation for the Kurdish language.
709
+ In
710
+ Proceedings of the 3rd Workshop on Technologies
711
+ for MT of Low Resource Languages, pages 87–98,
712
+ Suzhou, China. Association for Computational Lin-
713
+ guistics.
714
+ Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj-
715
+ ciech Skut, and Mehryar Mohri. 2007. OpenFst: A
716
+ general and efficient weighted finite-state transducer
717
+ library. In International Conference on Implemen-
718
+ tation and Application of Automata, pages 11–23.
719
+ Springer.
720
+ Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi-
721
+ rat, Daan van Esch, Aditya Siddhant, Mengmeng
722
+ Niu, Pallavi Baljekar, Xavier Garcia, Wolfgang
723
+ Macherey, Theresa Breiner, Vera Axelrod, Jason
724
+ Riesa, Yuan Cao, Mia Xu Chen, Klaus Macherey,
725
+ Maxim Krikun, Pidong Wang, Alexander Gutkin,
726
+ Apurva Shah,
727
+ Yanping Huang,
728
+ Zhifeng Chen,
729
+ Yonghui Wu, and Macduff Hughes. 2022. Building
730
+ machine translation systems for the next thousand
731
+ languages. arXiv preprint arXiv:2205.03983.
732
+ Elena Bashir and Thomas J. Conners. 2019. Phonol-
733
+ ogy and orthography. In A Descriptive Grammar of
734
+ Hindko, Panjabi, and Saraiki, volume 4 of Mouton-
735
+ CASL Grammar Series [MCASL]. De Gruyter Mou-
736
+ ton.
737
+ Elena Bashir, Sarmad Hussain, and Deborah Anderson.
738
+ 2006. Proposal for characters for Khowar, Torwali,
739
+ and Burushaski. Technical Report L2-06/149, Uni-
740
+ code Consortium.
741
+ Thomas Bauer. 1996. Arabic writing. In Peter Daniels
742
+ and William Bright, editors, The World’s Writing
743
+ Systems, chapter 50, pages 559–563. Oxford Univer-
744
+ sity Press, Oxford.
745
+ Zeeshan Bhatti, Imdad Ali Ismaili, Asad Ali Shaikh,
746
+ and Waseem Javaid. 2014. Spelling error trends and
747
+ patterns in Sindhi. arXiv preprint arXiv:1403.4759.
748
+ Raiomond Doctor, Alexander Gutkin, Cibu Johny,
749
+ Brian Roark, and Richard Sproat. 2022. Graphemic
750
+ normalization of the Perso-Arabic script.
751
+ In Pro-
752
+ ceedings of Grapholinguistics in the 21st Century
753
+ (G21C), Paris, France. In press.
754
+ Avi Ginsberg and Cui Yu. 2018.
755
+ Rapid homoglyph
756
+ prediction and detection. In Proceedings of the 1st
757
+ International Conference on Data Intelligence and
758
+ Security (ICDIS), pages 17–23, South Padre Island,
759
+ TX, USA. IEEE.
760
+ Kyle Gorman. 2016.
761
+ Pynini: A Python library for
762
+ weighted finite-state grammar compilation. In Pro-
763
+ ceedings of the SIGFSM Workshop on Statistical
764
+ NLP and Weighted Automata, pages 75–80, Berlin,
765
+ Germany. Association for Computational Linguis-
766
+ tics.
767
+ Kyle Gorman and Richard Sproat. 2021. Finite-State
768
+ Text Processing, volume 14 of Synthesis Lectures on
769
+ Human Language Technologies.
770
+ Morgan & Clay-
771
+ pool Publishers.
772
+ Alexander Gutkin, Cibu Johny, Raiomond Doctor,
773
+ Lawrence Wolf-Sonkin, and Brian Roark. 2022. Ex-
774
+ tensions to Brahmic script processing within the Nis-
775
+ aba library: new scripts, languages and utilities. In
776
+ Proceedings of the Thirteenth Language Resources
777
+ and Evaluation Conference, pages 6450–6460, Mar-
778
+ seille, France. European Language Resources Asso-
779
+ ciation.
780
+ Muhammad Humayoun, Harald Hammarstr¨om, and
781
+ Aarne Ranta. 2022.
782
+ Urdu morphology, orthog-
783
+ raphy and lexicon extraction.
784
+ arXiv preprint
785
+ arXiv:2204.03071.
786
+ Sarmad Hussain, Ahmed Bakhat, Nabil Benamar,
787
+ Meikal Mumin, and Inam Ullah. 2016.
788
+ Enabling
789
+ multilingual domain names: addressing the chal-
790
+ lenges of the Arabic script top-level domains. Jour-
791
+ nal of Cyber Policy, 1(1):107–129.
792
+ ICANN. 2011. Arabic case study team: Arabic case
793
+ study team issues report. Internationalized Domain
794
+ Names (IDN) Variant Issues project, Internet Corpo-
795
+ ration for Assigned Names and Numbers (ICANN).
796
+ ICANN. 2015. Task force on Arabic script IDN (TF-
797
+ AIDN): Proposal for Arabic script Root Zone LGR.
798
+ ICANN Internationalized Domain Names (IDN)
799
+ program: Proposal documentation, Internet Corpo-
800
+ ration for Assigned Names and Numbers (ICANN).
801
+ Version 2.7.
802
+ ISO. 1984. ISO 233:1984: Transliteration of Arabic
803
+ characters into Latin characters. https://www.iso.
804
+ org/standard/4117.html. International Organiza-
805
+ tion for Standardization.
806
+ ISO. 1993. ISO iso 233-2:1993: Transliteration of Ara-
807
+ bic characters into Latin characters — Part 2: Arabic
808
+ language — Simplified transliteration.
809
+ https://
810
+ www.iso.org/standard/4118.html. International
811
+ Organization for Standardization.
812
+ ISO. 1999.
813
+ ISO iso 233-3:1999:
814
+ Transliteration
815
+ of Arabic characters into Latin characters — Part
816
+ 3: Persian language — Simplified transliteration.
817
+ https://www.iso.org/standard/4118.html. In-
818
+ ternational Organization for Standardization.
819
+
820
+ Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin,
821
+ and Brian Roark. 2021. Finite-state script normal-
822
+ ization and processing utilities: The Nisaba Brahmic
823
+ library. In Proceedings of the 16th Conference of
824
+ the European Chapter of the Association for Compu-
825
+ tational Linguistics: System Demonstrations, pages
826
+ 14–23, Online. Association for Computational Lin-
827
+ guistics.
828
+ Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wa-
829
+ hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al-
830
+ lahsera Tapo, Nishant Subramani, Artem Sokolov,
831
+ Claytone Sikasote, Monang Setyawan, Supheak-
832
+ mungkol Sarin, Sokhar Samb, Benoˆıt Sagot, Clara
833
+ Rivera, Annette Rios, Isabel Papadimitriou, Sa-
834
+ lomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi
835
+ Ogueji,
836
+ Andre Niyongabo Rubungo,
837
+ Toan Q.
838
+ Nguyen, Mathias M¨uller, Andr´e M¨uller, Sham-
839
+ suddeen Hassan Muhammad, Nanda Muhammad,
840
+ Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapi-
841
+ wanashe Matangira, Colin Leong, Nze Lawson,
842
+ Sneha Kudugunta, Yacine Jernite, Mathias Jenny,
843
+ Orhan Firat, Bonaventure F. P. Dossou, Sakhile
844
+ Dlamini, Nisansa de Silva, Sakine C¸ abuk Ballı,
845
+ Stella Biderman, Alessia Battisti, Ahmed Baruwa,
846
+ Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime,
847
+ Ayodele Awokoya, Duygu Ataman, Orevaoghene
848
+ Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofe-
849
+ toluwa Adeyemi. 2022. Quality at a glance: An au-
850
+ dit of web-crawled multilingual datasets. Transac-
851
+ tions of the Association for Computational Linguis-
852
+ tics, 10:50–72.
853
+ Dennis Kurzon. 2013. Diacritics and the Perso-Arabic
854
+ script. Writing Systems Research, 5(2):234–243.
855
+ LC. 2022.
856
+ ALA-LC romanization tables.
857
+ http:
858
+ //loc.gov/catdir/cpso/roman.
859
+ The Library of
860
+ Congress. Updated: 08/24/2022.
861
+ Jackson L. Lee, Lucas F.E. Ashby, M. Elizabeth Garza,
862
+ Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.
863
+ McCarthy, and Kyle Gorman. 2020.
864
+ Massively
865
+ multilingual pronunciation modeling with WikiPron.
866
+ In Proceedings of the Twelfth Language Resources
867
+ and Evaluation Conference, pages 4223–4228, Mar-
868
+ seille, France. European Language Resources Asso-
869
+ ciation.
870
+ Gurpreet Singh Lehal and Tejinder Singh Saini. 2012.
871
+ Conversion between scripts of Punjabi: Beyond sim-
872
+ ple transliteration. In Proceedings of COLING 2012:
873
+ Posters, pages 633–642, Mumbai, India. The COL-
874
+ ING 2012 Organizing Committee.
875
+ Gurpreet Singh Lehal and Tejinder Singh Saini. 2014.
876
+ Sangam: A perso-Arabic to indic script machine
877
+ transliteration model.
878
+ In Proceedings of the 11th
879
+ International Conference on Natural Language Pro-
880
+ cessing, pages 232–239, Goa, India. NLP Associa-
881
+ tion of India.
882
+ Henrik Liljegren. 2018.
883
+ Supporting and sustaining
884
+ language vitality in Northern Pakistan. In Leanne
885
+ Hinton, Leena Huss, and Gerald Roche, editors,
886
+ The Routledge Handbook of Language Revitaliza-
887
+ tion, pages 427–437. Routledge.
888
+ Mehryar Mohri. 2009. Weighted automata algorithms.
889
+ In Manfred Droste, Werner Kuich, and Heiko Vogler,
890
+ editors, Handbook of Weighted Automata, Mono-
891
+ graphs in Theoretical Computer Science, pages 213–
892
+ 254. Springer.
893
+ Mehryar Mohri and Richard Sproat. 1996. An efficient
894
+ compiler for weighted rewrite rules.
895
+ In 34th An-
896
+ nual Meeting of the Association for Computational
897
+ Linguistics, pages 231–238, Santa Cruz, California,
898
+ USA. Association for Computational Linguistics.
899
+ Meikal Mumin. 2014.
900
+ The Arabic script in Africa:
901
+ Understudied literacy. In Meikal Mumin and Kees
902
+ Versteegh, editors, The Arabic Script in Africa, vol-
903
+ ume 71 of Studies in Semitic Languages and Linguis-
904
+ tics, pages 41–76. Brill, Leiden, The Netherlands.
905
+ Gokul N. C. 2022. Unified NMT models for the In-
906
+ dian subcontinent, transcending script-barriers. In
907
+ Proceedings of the Third Workshop on Deep Learn-
908
+ ing for Low-Resource Natural Language Processing,
909
+ pages 227–236, Hybrid. Association for Computa-
910
+ tional Linguistics.
911
+ Fallou Ngom. 2010. Ajami scripts in the Senegalese
912
+ speech community. Journal of Arabic and Islamic
913
+ Studies, 10:1–23.
914
+ Jay M. Patel. 2020. Introduction to Common Crawl
915
+ datasets. In Getting Structured Data from the Inter-
916
+ net, pages 277–324. Springer.
917
+ Roozbeh Pournader. 2014. The right HEHs for Arabic
918
+ script orthographies of Sorani Kurdish and Uighur.
919
+ Technical Report L2/14-136, Unicode Consortium.
920
+ Sitti Munirah Abdul Razak, Muhamad Sadry Abu Se-
921
+ man, Wan Ali Wan Yusoff Wan Mamat, and Noor
922
+ Hasrul Nizan Mohammad Noor. 2018.
923
+ Translit-
924
+ eration engine for union catalogue of Malay
925
+ manuscripts in Malaysia: E-Jawi Version 3.
926
+ In
927
+ 2018 International Conference on Information and
928
+ Communication Technology for the Muslim World
929
+ (ICT4M), pages 58–63. IEEE.
930
+ Kevin P. Scannell. 2007. The Cr´ubad´an Project: Cor-
931
+ pus building for under-resourced languages.
932
+ In
933
+ Building and Exploring Web Corpora (WAC3-2007):
934
+ Proceedings of the 3rd Web as Corpus Workshop,
935
+ volume 4, pages 5–15. Presses universitaires de Lou-
936
+ vain. http://crubadan.org/.
937
+ Unicode Consortium. 2021. Arabic. In The Unicode
938
+ Standard (Version 14.0.0), chapter 9.2, pages 373–
939
+ 398. Unicode Consortium, Mountain View, CA.
940
+ Ken Whistler. 2021.
941
+ Unicode normalization forms.
942
+ Technical Report TR15-51, Unicode Consortium.
943
+ Version 14.0.0.
944
+
-9FIT4oBgHgl3EQf9SvZ/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf,len=446
2
+ page_content='Preprint to appear in the Proceedings of the 7th Arabic Natural Language Processing Workshop (WANLP), 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
3
+ page_content=' EMNLP, Abu Dhabi, United Arab Emirates, December 7–11, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
4
+ page_content=' Beyond Arabic: Software for Perso-Arabic Script Manipulation Alexander Gutkin† Cibu Johny† Raiomond Doctor‡∗ Brian Roark◦ Richard Sproat⊛ Google Research †United Kingdom ‡India United States ⊛Japan {agutkin,cibu,raiomond,roark,rws}@google.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
5
+ page_content='com Abstract This paper presents an open-source software library that provides a set of finite-state trans- ducer (FST) components and corresponding utilities for manipulating the writing sys- tems of languages that use the Perso-Arabic script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
6
+ page_content=' The operations include various lev- els of script normalization, including visual invariance-preserving operations that subsume and go beyond the standard Unicode normal- ization forms, as well as transformations that modify the visual appearance of characters in accordance with the regional orthographies for eleven contemporary languages from diverse language families.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
7
+ page_content=' The library also provides simple FST-based romanization and transliter- ation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
8
+ page_content=' We additionally attempt to formalize the typology of Perso-Arabic characters by provid- ing one-to-many mappings from Unicode code points to the languages that use them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
9
+ page_content=' While our work focuses on the Arabic script diaspora rather than Arabic itself, this approach could be adopted for any language that uses the Ara- bic script, thus providing a unified framework for treating a script family used by close to a billion people.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
10
+ page_content=' 1 Introduction While originally developed for recording Arabic, the Perso-Arabic script has gradually become one of the most widely used modern scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
11
+ page_content=' Through- out history the script was adapted to record many languages from diverse language families, with scores of adaptations still active today.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
12
+ page_content=' This flexi- bility is partly due to the core features of the script itself which over the time evolved from a purely consonantal script to include a productive system of diacritics for representing long vowels and op- tional marking of short vowels and phonologi- cal processes such as gemination (Bauer, 1996;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
13
+ page_content=' Kurzon, 2013).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
14
+ page_content=' Consequently, many languages productively evolved their own adaptation of the ∗ On contract from Optimum Solutions, Inc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
15
+ page_content=' Perso-Arabic script to better suit their phonology by not only augmenting the set of diacritics but also introducing new consonant shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
16
+ page_content=' This paper presents an open-source software li- brary designed to deal with the ambiguities and inconsistencies that result from representing var- ious regional Perso-Arabic adaptations in digital media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
17
+ page_content=' Some of these issues are due to the Uni- code standard itself, where a Perso-Arabic char- acter can often be represented in more than one way (Unicode Consortium, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
18
+ page_content=' Others are due to the lack or inadequacies of input methods and the instability of modern orthographies for the lan- guages in question (Aazim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
19
+ page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
20
+ page_content=' Liljegren, 2018).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
21
+ page_content=' Such issues percolate through the data available online, such as Wikipedia and Common Crawl (Patel, 2020), negatively impacting the qual- ity of NLP models built with such data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
22
+ page_content=' The script normalization software described below goes be- yond the standard language-agnostic Unicode ap- proach for Perso-Arabic to help alleviate some of these issues.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
23
+ page_content=' The library design is inspired by and consis- tent with prior work by Johny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
24
+ page_content=' (2021), in- troduced in §2, who provided a suite of finite- state grammars for various normalization and (re- versible) romanization operations for the Brah- mic family of scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
25
+ page_content='1 While the Perso-Arabic script and the respective set of regional orthogra- phies we support – Balochi, Kashmiri, Kurdish (Sorani), Malay (Jawi), Pashto, Persian, Punjabi (Shahmukhi), Sindhi, South Azerbaijani, Urdu and Uyghur – is significantly different from those Brahmic scripts, we pursue a similar finite-state in- terpretation,2 as described in §3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
26
+ page_content=' Implementation details and simple validation are provided in §4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
27
+ page_content=' 1https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
28
+ page_content='com/google-research/nisaba 2https://github.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
29
+ page_content='com/google-research/nisaba/ tree/main/nisaba/scripts/abjad alphabet 2 Related Work The approach we take in this paper follows in spirit the work of Johny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
30
+ page_content=' (2021) and Gutkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
31
+ page_content=' (2022), who developed a finite-state script normalization framework for Brahmic scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
32
+ page_content=' We adopt their taxonomy and terminology of low- level script normalization operations, which con- sist of three types: Unicode-endorsed schemes, such as NFC;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
33
+ page_content=' further visually-invariant transfor- mations (visual normalization);' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
34
+ page_content=' and transforma- tions that modify a character’s shape but preserve pronunciation and the overall word identity (read- ing normalization).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
35
+ page_content=' The literature on Perso-Arabic script normal- ization for languages we cover in this paper is scarce.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
36
+ page_content=' The most relevant work was carried out by Ahmadi (2020) for Kurdish, who provides a detailed analysis of orthographic issues pecu- liar to Sorani Kurdish along with corresponding open-source script normalization software used in downstream NLP applications, such as neu- ral machine translation (Ahmadi and Masoud, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
37
+ page_content=' In the context of machine transliteration and spell checking, Lehal and Saini (2014) in- cluded language-agnostic minimal script normal- ization as a preprocessing step in their open-source n-gram-based transliterator from Perso-Arabic to Brahmic scripts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
38
+ page_content=' Bhatti et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
39
+ page_content=' (2014) introduced a taxonomy of spelling errors for Sindhi, includ- ing an analysis of mistakes due to visually confus- able characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
40
+ page_content=' Razak et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
41
+ page_content=' (2018) provide a good overview of confusable characters for Malay Jawi orthography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
42
+ page_content=' For other languages the regional writing system ambiguities are sometimes men- tioned in passing, but do not constitute the main focus of work, as is the case with Punjabi Shah- mukhi (Lehal and Saini, 2012) and Urdu (Humay- oun et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
43
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
44
+ page_content=' The specific Perso-Arabic script ambiguities that abound in the online data are of- ten not exhaustively documented, particularly in work focused on multilingual modeling (N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
45
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
46
+ page_content=', 2022;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
47
+ page_content=' Bapna et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
48
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
49
+ page_content=' As one moves towards lesser-resourced languages, such as Kashmiri and Uyghur, the NLP literature provides no treatment of script normalization issues and the only reli- able sources of information are the proposal and discussion documents from the Unicode Techni- cal Committee (e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
50
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
51
+ page_content=', Bashir et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
52
+ page_content=', 2006;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
53
+ page_content=' Aazim et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
54
+ page_content=', 2009;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
55
+ page_content=' Pournader, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
56
+ page_content=' A forthcoming pa- per by Doctor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
57
+ page_content=' (2022) covers the writing sys- tem differences between these languages in more Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
58
+ page_content=' Type FST Language-dep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
59
+ page_content=' Includes NFC N no − Common Visual Vc no N Visual V yes Vc Reading R yes − Romanization M no Vc Transliteration T no − Table 1: Summary of script transformation operations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
60
+ page_content=' detail than we can include in this short paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
61
+ page_content=' One area particularly relevant to this study is the work by the Internet Corporation for Assigned Names and Numbers (ICANN) towards develop- ing a robust set of standards for representing vari- ous Internet entities in Perso-Arabic script, such as domain names in URLs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
62
+ page_content=' Their particular focus is on variants, which are characters that are visually confusable due to identical appearance but differ- ent encoding, due to similarity in shape or due to common alternate spellings (ICANN, 2011).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
63
+ page_content=' In addition, they developed the first proposal to sys- tematize the available Perso-Arabic Unicode code points along the regional lines (ICANN, 2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
64
+ page_content=' These studies are particularly important for cyber- security (Hussain et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
65
+ page_content=', 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
66
+ page_content=' Ginsberg and Yu, 2018;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
67
+ page_content=' Ahmad and Erdodi, 2021), but also inform this work.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
68
+ page_content=' This software library is, to the best our knowl- edge, the first attempt to provide a principled ap- proach to Perso-Arabic script normalization for multiple languages, for downstream NLP applica- tions and beyond.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
69
+ page_content=' 3 Design Methodology The core components are implemented as individ- ual FSTs that can be efficiently combined together in a single pipeline (Mohri, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
70
+ page_content=' These are shown in Table 1 and described below.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
71
+ page_content='3 Unicode Normalization For the Perso-Arabic string encodings which yield visually identical text, the Unicode standard provides procedures that normalize text to a conventionalized normal form, such as the well-known Normalization Form C (NFC), so that visually identical words are mapped to a conventionalized representative of their equivalence class (Whistler, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
72
+ page_content=' We im- plemented the NFC standard as an FST, denoted N in Table 1, that handles three broad types of transformations: compositions, re-orderings and 3When referring to names of Unicode characters we low- ercase them and omit the common prefix arabic (letter).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
73
+ page_content=' FST Letter Variant (source) Canonical V∗ l ⟨ڑ⟩ reh + small high tah rreh Vn l ⟨ک⟩ kaf keheh Vf l ⟨ی⟩ alef maksura farsi yeh Vi l ⟨ہ⟩ heh heh goal Table 2: Example FST components of Vl for Urdu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
74
+ page_content=' combinations thereof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
75
+ page_content=' As an example of a first type, consider the alef with madda above letter ⟨آ⟩ that can be composed in two ways: as a single character (U+0622) or by adjoining maddah above to alef ({ U+0627, U+0653 }).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
76
+ page_content=' The FST N rewrites the adjoined form into its equivalent composed form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
77
+ page_content=' The second type of transformation involves the canonical re- ordering of the Arabic combining marks, for exam- ple, the sequence of shadda (U+0651) followed by kasra (U+0650) is reversed by N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
78
+ page_content=' More complex transformations that combine both compositions and re-orderings are possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
79
+ page_content=' For example, the se- quence { alef (U+0627), superscript alef (U+0670), maddah above (U+0653) } normalizes to its equiv- alent form { alef with madda above (U+0622), su- perscript alef (U+0670) }.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
80
+ page_content=' Crucially, N is language-agnostic because the NFC standard it implements does not define any transformations that violate the writing system rules of respective languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
81
+ page_content=' Visual Normalization As mentioned in §2, Johny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
82
+ page_content=' (2021) introduced the term visual nor- malization in the context of Brahmic scripts to denote visually-invariant transformations that fall outside the scope of NFC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
83
+ page_content=' We adopt their defini- tion for Perso-Arabic, implementing it as a sin- gle language-dependent FST V, shown in Table 1, which is constructed by FST composition: V = N ◦ Vc ◦ Vl, where ◦ denotes the composition op- eration (Mohri, 2009).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
84
+ page_content='4 The first FST after NFC, denoted Vc, is language-agnostic, constructed from a small set of normalizations for visually ambiguous sequences found online that apply to all languages in our li- brary.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
85
+ page_content=' For example, we map the two-character sequence waw (U+0648) followed by damma (U+064F) or small damma (U+0619) to u (U+06C7).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
86
+ page_content=' The second set of visually-invariant transforma- tions, denoted Vl, is language-specific and addi- tionally depends on the position within the word.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
87
+ page_content=' Four special cases are distinguished that are rep- 4See Johny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
88
+ page_content=' (2021) for details on FST composition and other operations used in this kind of script normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
89
+ page_content=' Op.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
90
+ page_content=' Type FST # states # arcs # Kb NFC N 156 1557 28.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
91
+ page_content='10 Roman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
92
+ page_content=' M 32 546 52 257 1487.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
93
+ page_content='10 Translit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
94
+ page_content=' T 340 518 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
95
+ page_content='15 Table 3: Language-agnostic FSTs over UTF-8 strings.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
96
+ page_content=' resented as FSTs: position-independent rewrites (V∗ l ), isolated-letter rewrites (Vi l), rewrites in the word-final position (Vf l), and finally, rewrites in “non-final” word positions, which include visually- identical word-initial and word-medial rewrites (Vn l ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
97
+ page_content=' The FST Vl is composed as Vi l ◦Vf l ◦Vn l ◦V∗ l .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
98
+ page_content=' Some examples of these transformations for Urdu orthography are shown in Table 2, where the vari- ants shown in the third column are rewritten to their canonical Urdu form in the fourth column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
99
+ page_content=' Reading Normalization This type of normaliza- tion was introduced for Brahmic scripts by Gutkin et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
100
+ page_content=' (2022), who noted that regional orthographic conventions or lack thereof, which oftentimes con- flict with each other, benefit from normalization to some accepted form.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
101
+ page_content=' Whenever such normal- ization preserves visual invariance, it falls under the rubric of visual normalization, but other cases belong to reading normalization, denoted R in Ta- ble 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
102
+ page_content=' Similar to visual normalization, R is com- piled from language-specific context-dependent rewrite rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
103
+ page_content=' One example of such a rewrite is a mapping from yeh ⟨ي⟩(U+064A) to farsi yeh ⟨ی⟩ (U+06CC) in Kashmiri, Persian, Punjabi, Sorani Kurdish and Urdu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
104
+ page_content=' For Malay, Sindhi and Uyghur, the inverse transformation is implemented as man- dated by the respective orthographies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
105
+ page_content=' For efficiency reasons R is stored independently of visual normalization V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
106
+ page_content=' At run-time, the read- ing normalization is applied to an input string s as s′ = (s ◦ V) ◦ R, which is more efficient than s′ = s ◦ R′, where R′ = V ◦ R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
107
+ page_content=' Romanization and Transliteration We also provide language-agnostic romanization (M) and transliteration (T ) FSTs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
108
+ page_content=' The FST M converts Perso-Arabic strings to their respective Latin rep- resentation in Unicode and is defined as M = N ◦ Vc ◦ Mc, where N and Vc were described above, and Mc implements a one-to-one mapping from 198 Perso-Arabic characters to their respec- tive romanizations using our custom romanization scheme derived from language-specific Library of Congress rules (LC, 2022) and various ISO stan- dards (ISO, 1984, 1993, 1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
109
+ page_content=' For example, in Language Information Visual Normalization (V) Reading Normalization (R) Code Name # states # arcs # Mb # states # arcs # Mb azb South Azerbaijani 315 933 635 647 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
110
+ page_content='49 21 735 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
111
+ page_content='012 bal Balochi 620 226 1 244 472 32.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
112
+ page_content='31 24 738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
113
+ page_content='013 ckb Kurdish (Sorani) 1 097 937 2 199 732 57.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
114
+ page_content='15 39 753 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
115
+ page_content='013 fa Persian 940 436 1 884 347 48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
116
+ page_content='96 36 750 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
117
+ page_content='013 ks Kashmiri 1 772 494 3 547 448 92.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
118
+ page_content='21 44 794 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
119
+ page_content='014 ms Malay 199 777 403 373 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
120
+ page_content='45 21 735 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
121
+ page_content='012 pa Punjabi 2 050 154 4 105 465 106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
122
+ page_content='69 24 738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
123
+ page_content='013 ps Pashto 291 564 587 552 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
124
+ page_content='23 24 738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
125
+ page_content='013 sd Sindhi 1 703 726 3 403 283 88.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
126
+ page_content='53 34 748 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
127
+ page_content='013 ug Uyghur 1 255 054 2 513 231 65.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
128
+ page_content='31 24 738 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
129
+ page_content='013 ur Urdu 2 071 139 4 138 950 107.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
130
+ page_content='65 31 745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
131
+ page_content='013 Table 4: Summary of FSTs over UTF-8 strings for visual and reading normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
132
+ page_content=' our scheme the Uyghur yu ⟨ۈ⟩(U+06C8) maps to ⟨¨u⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
133
+ page_content=' The transliteration FST T converts the strings from Unicode Latin into Perso-Arabic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
134
+ page_content=' It is smaller than M and is defined as T = M−1 c .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
135
+ page_content=' Character-Language Mapping The geography and scope of Perso-Arabic script adaptations is vast.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
136
+ page_content=' To document the typology of the characters we developed an easy-to-parse mapping between the characters and the respective languages and/or macroareas that relate to a group of languages building on prior work by ICANN (2015).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
137
+ page_content=' For ex- ample, using this mapping it is easy to find that the letter beh with small v below ⟨ࢠ⟩(U+08A0) is part of the orthography of Wolof, a language of Senegal (Ngom, 2010), while gaf with ring ⟨ڰ⟩ (U+06B0) belongs to Saraiki language spoken in Pakistan (Bashir and Conners, 2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
138
+ page_content=' This map- ping can be used to auto-generate the orthographic inventories for lesser-resourced languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
139
+ page_content=' 4 Software Details and Validation Our software library is implemented using Pynini, a Python library for constructing finite-state gram- mars and for performing operations on FSTs (Gor- man, 2016;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
140
+ page_content=' Gorman and Sproat, 2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
141
+ page_content=' Each FST is compiled from the collections of individ- ual context-dependent letter rewrite rules (Mohri and Sproat, 1996) and is available in two versions: over an alphabet of UTF-8 encoded bytes and over the integer Unicode code points.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
142
+ page_content=' The FSTs are stored uncompressed in binary FST archives (FARs) in OpenFst format (Allauzen et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
143
+ page_content=', 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
144
+ page_content=' The summaries of language-agnostic and language-dependent FSTs over UTF-8 strings are shown in Table 3 and Table 4, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
145
+ page_content=' As can be seen from the tables, the language-agnostic and reading normalization FSTs are relatively un- complicated and small in terms of number of Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
146
+ page_content=' s′ = s ◦ V s′ = (s ◦ V) ◦ R % tokens % types % tokens % types ckb 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
147
+ page_content='27 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
148
+ page_content='84 30.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
149
+ page_content='07 41.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
150
+ page_content='26 sd 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
151
+ page_content='32 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
152
+ page_content='83 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
153
+ page_content='74 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
154
+ page_content='31 ur 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
155
+ page_content='09 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
156
+ page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
157
+ page_content='10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
158
+ page_content='23 Table 5: Percentage of tokens and types changed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
159
+ page_content=' states, arcs and the overall (uncompressed) size on disk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
160
+ page_content=' The visual normalization FSTs are signifi- cantly larger, which is explained by the number of composition operations used in their construc- tion (see §3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
161
+ page_content=' The reading normalization FSTs for South Azerbaijani and Malay shown in Table 4 im- plement the identity mapping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
162
+ page_content=' This is because we could not find enough examples requiring reading- style normalization in online data (see the Limita- tions section for more details).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
163
+ page_content=' As an informal sanity check we validate the prevalence of normalization on word-frequency lists for Sorani Kurdish (ckb), Sindhi (sd) and Uyghur (ug) from project Cr´ubad´an (Scannell, 2007).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
164
+ page_content=' Table 5 shows the percentages of tokens and types changed (s′ ̸= s) by visual normaliza- tion on one hand and the combined visual and reading normalization on the other.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
165
+ page_content=' Urdu has the fewest number of modifications compared to So- rani Kurdish and Sindhi, most likely due to a more regular orthography and stable input methods man- ifest in the crawled data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
166
+ page_content=' Significantly more ex- tensive analysis and experiments in statistical lan- guage modeling and neural machine translation for the languages covered in this paper are presented in a forthcoming study (Doctor et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
167
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
168
+ page_content=' Example The use of the library is demonstrated by the following Python example that implements a simple command-line utility for performing read- ing normalization on a single string using Pynini APIs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
169
+ page_content=' The program requires two FAR files that Lang.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
170
+ page_content=' Input Output Correct Output balٽﯿﺋدﺖﯿﺋد teh ckbﺮڪﺷەﻟﺮﮑﺷەﻟ keheh faﻪﺴﺳﺆﻣﻪﺴﺳﻮﻣ waw ksﮏﺗۍﮬﮏﺘؠﮬ kashmiri yeh paﻲﺌﮐﯽﺌﮐ farsi yeh sdﻪﻫﻮﮘﮧﮨﻮﮘ heh goal ugیﺎﺳيﺎﺳ yeh urةرﻮﺻۃرﻮﺻ teh marbuta goal Table 6: Some examples of reading normalization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
171
+ page_content=' store compiled visual and reading normalization grammars, the upper-case BCP-47 language code for retrieving the FST for a given language, and an input string:5 example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
172
+ page_content='py from absl import app from absl import flags from collections.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
173
+ page_content='abc import Iterable, Sequence import pynini as pyn flags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
174
+ page_content='DEFINE_string("input", None, "Input string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
175
+ page_content='") flags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
176
+ page_content='DEFINE_string("lang", None, "Language code.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
177
+ page_content='") flags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
178
+ page_content='DEFINE_string("reading_grm", None, "Reading FAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
179
+ page_content='") flags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
180
+ page_content='DEFINE_string("visual_grm", None, "Visual FAR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
181
+ page_content='") FLAGS = flags.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
182
+ page_content='FLAGS def load_fst(grammar_path: str, lang: str) -> pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
183
+ page_content='Fst: """Loads FST for specified grammar and language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
184
+ page_content='""" return pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
185
+ page_content='Far(grammar_path)[lang] def apply(text: str, fsts: Iterable[pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
186
+ page_content='Fst]) -> str: """Applies sequence of FSTs on an input string.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
187
+ page_content='""" try: composed = pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
188
+ page_content='escape(text) for fst in fsts: composed = (composed @ fst).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
189
+ page_content='optimize() return pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
190
+ page_content='shortestpath(composed).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
191
+ page_content='string() except pyn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
192
+ page_content='FstOpError as error: raise ValueError(f"Error for string `{text}`") def main(argv: Sequence[str]) -> None: # .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
193
+ page_content='..' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
194
+ page_content=' initializing FLAGS visual_fst = load_fst(FLAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
195
+ page_content='visual_grm, FLAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
196
+ page_content='lang) reading_fst = load_fst(FLAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
197
+ page_content='reading_grm, FLAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
198
+ page_content='lang) out = apply(FLAGS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
199
+ page_content='input, [visual_fst, reading_fst]) print(f"=> {out}") if __name__ == "__main__": app.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
200
+ page_content='run(main) The visual and reading FSTs for a given language are retrieved from the relevant FAR files using load_fst function.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
201
+ page_content=' The input string is first con- verted to a linear FST.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
202
+ page_content=' The visual and reading nor- malization FSTs are then sequentially composed with the input FST and a shortest path algorithm is applied on the result, which is then converted from a linear FST back to a Python string in apply func- tion to yield the final normalized output.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
203
+ page_content=' Some examples of reading normalization pro- 5The infrastructure for compiling the Pynini grammars is described in Johny et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
204
+ page_content=' (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
205
+ page_content=' duced using the example.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
206
+ page_content='py utility above for some of the supported languages are shown in Ta- ble 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
207
+ page_content=' For each language, the input string in the second column of the table is normalized to a string shown in the third column.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
208
+ page_content=' The final col- umn shows the name of a particular letter in the output string that replaced the original letter from the input string, e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
209
+ page_content='g.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
210
+ page_content=', for Sorani Kurdish (ckb) the following rewrite occurs: swash kaf (U+06AA) → keheh (U+06A9), while for Punjabi (pa), yeh (U+064A) → farsi yeh (U+06CC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
211
+ page_content=' 5 Conclusion and Future Work We have presented a flexible FST-based software package for low-level processing of orthographies based on Perso-Arabic script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
212
+ page_content=' We described the main components of the architecture consisting of various script normalization operations, roman- ization/transliteration, and character-language in- dex.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
213
+ page_content=' We expect to increase the current lan- guage coverage of eleven languages to further rel- atively well-documented orthographies, but also provide treatment for resource-scarce orthogra- phies, such as the Ajami orthographies of Sub- Saharan Africa (Mumin, 2014).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
214
+ page_content=' Limitations When developing the visual and reading normal- ization rules for the eleven languages described in this paper we made use of publicly available on- line data consisting of the respective Wikipedias, Wikipron (Lee et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
215
+ page_content=', 2020), Cr´ubad´an (Scannell, 2007) and parts of Common Crawl (Patel, 2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
216
+ page_content=' The latter corpus is particularly noisy and requires non-trivial filtering (Kreutzer et al.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
217
+ page_content=', 2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
218
+ page_content=' Fur- thermore, many Wikipedia and Common Crawl documents contain code-switched text in several languages that are recorded in Perso-Arabic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
219
+ page_content=' Ro- bust language identification (LID) is required to distinguish between tokens in such sentences (for example, Kashmiri vs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
220
+ page_content=' Pashto or Balochi) in or- der not to confuse between the respective orthogra- phies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
221
+ page_content=' Since we did not have access to robust LID models for the languages under study, for lesser- resourced languages such as Kashmiri, Malay in Jawi orthography, South Azerbaijani and Uyghur, it is likely that some of the words we used as exam- ples requiring normalization may have been mis- classified resulting in normalizations that should not be there.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
222
+ page_content=' References Muzaffar Aazim, Kamal Mansour, and Roozbeh Pour- nader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
223
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
224
+ page_content=' Proposal to add two Kashmiri charac- ters and one annotation to the Arabic block.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
225
+ page_content=' Techni- cal Report L2/09-176, Unicode Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
226
+ page_content=' Humza Ahmad and Laszlo Erdodi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
227
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
228
+ page_content=' Overview of phishing landscape and homographs in Arabic do- main names.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
229
+ page_content=' Security and Privacy, 4(4):1–14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
230
+ page_content=' Sina Ahmadi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
231
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
232
+ page_content=' KLPT – Kurdish language pro- cessing toolkit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
233
+ page_content=' In Proceedings of Second Workshop for NLP Open Source Software (NLP-OSS), pages 72–84, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
234
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
235
+ page_content=' Sina Ahmadi and Maraim Masoud.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
236
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
237
+ page_content=' Towards machine translation for the Kurdish language.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
238
+ page_content=' In Proceedings of the 3rd Workshop on Technologies for MT of Low Resource Languages, pages 87–98, Suzhou, China.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
239
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
240
+ page_content=' Cyril Allauzen, Michael Riley, Johan Schalkwyk, Woj- ciech Skut, and Mehryar Mohri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
241
+ page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
242
+ page_content=' OpenFst: A general and efficient weighted finite-state transducer library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
243
+ page_content=' In International Conference on Implemen- tation and Application of Automata, pages 11–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
244
+ page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
245
+ page_content=' Ankur Bapna, Isaac Caswell, Julia Kreutzer, Orhan Fi- rat, Daan van Esch, Aditya Siddhant, Mengmeng Niu, Pallavi Baljekar, Xavier Garcia, Wolfgang Macherey, Theresa Breiner, Vera Axelrod, Jason Riesa, Yuan Cao, Mia Xu Chen, Klaus Macherey, Maxim Krikun, Pidong Wang, Alexander Gutkin, Apurva Shah, Yanping Huang, Zhifeng Chen, Yonghui Wu, and Macduff Hughes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
246
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
247
+ page_content=' Building machine translation systems for the next thousand languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
248
+ page_content=' arXiv preprint arXiv:2205.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
249
+ page_content='03983.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
250
+ page_content=' Elena Bashir and Thomas J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
251
+ page_content=' Conners.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
252
+ page_content=' 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
253
+ page_content=' Phonol- ogy and orthography.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
254
+ page_content=' In A Descriptive Grammar of Hindko, Panjabi, and Saraiki, volume 4 of Mouton- CASL Grammar Series [MCASL].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
255
+ page_content=' De Gruyter Mou- ton.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
256
+ page_content=' Elena Bashir, Sarmad Hussain, and Deborah Anderson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
257
+ page_content=' 2006.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
258
+ page_content=' Proposal for characters for Khowar, Torwali, and Burushaski.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
259
+ page_content=' Technical Report L2-06/149, Uni- code Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
260
+ page_content=' Thomas Bauer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
261
+ page_content=' 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
262
+ page_content=' Arabic writing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
263
+ page_content=' In Peter Daniels and William Bright, editors, The World’s Writing Systems, chapter 50, pages 559–563.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
264
+ page_content=' Oxford Univer- sity Press, Oxford.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
265
+ page_content=' Zeeshan Bhatti, Imdad Ali Ismaili, Asad Ali Shaikh, and Waseem Javaid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
266
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
267
+ page_content=' Spelling error trends and patterns in Sindhi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
268
+ page_content=' arXiv preprint arXiv:1403.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
269
+ page_content='4759.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
270
+ page_content=' Raiomond Doctor, Alexander Gutkin, Cibu Johny, Brian Roark, and Richard Sproat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
271
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
272
+ page_content=' Graphemic normalization of the Perso-Arabic script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
273
+ page_content=' In Pro- ceedings of Grapholinguistics in the 21st Century (G21C), Paris, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
274
+ page_content=' In press.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
275
+ page_content=' Avi Ginsberg and Cui Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
276
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
277
+ page_content=' Rapid homoglyph prediction and detection.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
278
+ page_content=' In Proceedings of the 1st International Conference on Data Intelligence and Security (ICDIS), pages 17–23, South Padre Island, TX, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
279
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
280
+ page_content=' Kyle Gorman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
281
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
282
+ page_content=' Pynini: A Python library for weighted finite-state grammar compilation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
283
+ page_content=' In Pro- ceedings of the SIGFSM Workshop on Statistical NLP and Weighted Automata, pages 75–80, Berlin, Germany.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
284
+ page_content=' Association for Computational Linguis- tics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
285
+ page_content=' Kyle Gorman and Richard Sproat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
286
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
287
+ page_content=' Finite-State Text Processing, volume 14 of Synthesis Lectures on Human Language Technologies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
288
+ page_content=' Morgan & Clay- pool Publishers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
289
+ page_content=' Alexander Gutkin, Cibu Johny, Raiomond Doctor, Lawrence Wolf-Sonkin, and Brian Roark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
290
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
291
+ page_content=' Ex- tensions to Brahmic script processing within the Nis- aba library: new scripts, languages and utilities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
292
+ page_content=' In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 6450–6460, Mar- seille, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
293
+ page_content=' European Language Resources Asso- ciation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
294
+ page_content=' Muhammad Humayoun, Harald Hammarstr¨om, and Aarne Ranta.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
295
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
296
+ page_content=' Urdu morphology, orthog- raphy and lexicon extraction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
297
+ page_content=' arXiv preprint arXiv:2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
298
+ page_content='03071.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
299
+ page_content=' Sarmad Hussain, Ahmed Bakhat, Nabil Benamar, Meikal Mumin, and Inam Ullah.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
300
+ page_content=' 2016.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
301
+ page_content=' Enabling multilingual domain names: addressing the chal- lenges of the Arabic script top-level domains.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
302
+ page_content=' Jour- nal of Cyber Policy, 1(1):107–129.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
303
+ page_content=' ICANN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
304
+ page_content=' 2011.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
305
+ page_content=' Arabic case study team: Arabic case study team issues report.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
306
+ page_content=' Internationalized Domain Names (IDN) Variant Issues project, Internet Corpo- ration for Assigned Names and Numbers (ICANN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
307
+ page_content=' ICANN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
308
+ page_content=' 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
309
+ page_content=' Task force on Arabic script IDN (TF- AIDN): Proposal for Arabic script Root Zone LGR.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
310
+ page_content=' ICANN Internationalized Domain Names (IDN) program: Proposal documentation, Internet Corpo- ration for Assigned Names and Numbers (ICANN).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
311
+ page_content=' Version 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
312
+ page_content='7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
313
+ page_content=' ISO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
314
+ page_content=' 1984.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
315
+ page_content=' ISO 233:1984: Transliteration of Arabic characters into Latin characters.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
316
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
317
+ page_content='iso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
318
+ page_content=' org/standard/4117.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
319
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
320
+ page_content=' International Organiza- tion for Standardization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
321
+ page_content=' ISO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
322
+ page_content=' 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
323
+ page_content=' ISO iso 233-2:1993: Transliteration of Ara- bic characters into Latin characters — Part 2: Arabic language — Simplified transliteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
324
+ page_content=' https:// www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
325
+ page_content='iso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
326
+ page_content='org/standard/4118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
327
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
328
+ page_content=' International Organization for Standardization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
329
+ page_content=' ISO.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
330
+ page_content=' 1999.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
331
+ page_content=' ISO iso 233-3:1999: Transliteration of Arabic characters into Latin characters — Part 3: Persian language — Simplified transliteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
332
+ page_content=' https://www.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
333
+ page_content='iso.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
334
+ page_content='org/standard/4118.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
335
+ page_content='html.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
336
+ page_content=' In- ternational Organization for Standardization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
337
+ page_content=' Cibu Johny, Lawrence Wolf-Sonkin, Alexander Gutkin, and Brian Roark.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
338
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
339
+ page_content=' Finite-state script normal- ization and processing utilities: The Nisaba Brahmic library.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
340
+ page_content=' In Proceedings of the 16th Conference of the European Chapter of the Association for Compu- tational Linguistics: System Demonstrations, pages 14–23, Online.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
341
+ page_content=' Association for Computational Lin- guistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
342
+ page_content=' Julia Kreutzer, Isaac Caswell, Lisa Wang, Ahsan Wa- hab, Daan van Esch, Nasanbayar Ulzii-Orshikh, Al- lahsera Tapo, Nishant Subramani, Artem Sokolov, Claytone Sikasote, Monang Setyawan, Supheak- mungkol Sarin, Sokhar Samb, Benoˆıt Sagot, Clara Rivera, Annette Rios, Isabel Papadimitriou, Sa- lomey Osei, Pedro Ortiz Suarez, Iroro Orife, Kelechi Ogueji, Andre Niyongabo Rubungo, Toan Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
343
+ page_content=' Nguyen, Mathias M¨uller, Andr´e M¨uller, Sham- suddeen Hassan Muhammad, Nanda Muhammad, Ayanda Mnyakeni, Jamshidbek Mirzakhalov, Tapi- wanashe Matangira, Colin Leong, Nze Lawson, Sneha Kudugunta, Yacine Jernite, Mathias Jenny, Orhan Firat, Bonaventure F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
344
+ page_content=' P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
345
+ page_content=' Dossou, Sakhile Dlamini, Nisansa de Silva, Sakine C¸ abuk Ballı, Stella Biderman, Alessia Battisti, Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar, Israel Abebe Azime, Ayodele Awokoya, Duygu Ataman, Orevaoghene Ahia, Oghenefego Ahia, Sweta Agrawal, and Mofe- toluwa Adeyemi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
346
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
347
+ page_content=' Quality at a glance: An au- dit of web-crawled multilingual datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
348
+ page_content=' Transac- tions of the Association for Computational Linguis- tics, 10:50–72.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
349
+ page_content=' Dennis Kurzon.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
350
+ page_content=' 2013.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
351
+ page_content=' Diacritics and the Perso-Arabic script.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
352
+ page_content=' Writing Systems Research, 5(2):234–243.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
353
+ page_content=' LC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
354
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
355
+ page_content=' ALA-LC romanization tables.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
356
+ page_content=' http: //loc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
357
+ page_content='gov/catdir/cpso/roman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
358
+ page_content=' The Library of Congress.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
359
+ page_content=' Updated: 08/24/2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
360
+ page_content=' Jackson L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
361
+ page_content=' Lee, Lucas F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
362
+ page_content='E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
363
+ page_content=' Ashby, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
364
+ page_content=' Elizabeth Garza, Yeonju Lee-Sikka, Sean Miller, Alan Wong, Arya D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
365
+ page_content=' McCarthy, and Kyle Gorman.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
366
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
367
+ page_content=' Massively multilingual pronunciation modeling with WikiPron.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
368
+ page_content=' In Proceedings of the Twelfth Language Resources and Evaluation Conference, pages 4223–4228, Mar- seille, France.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
369
+ page_content=' European Language Resources Asso- ciation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
370
+ page_content=' Gurpreet Singh Lehal and Tejinder Singh Saini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
371
+ page_content=' 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
372
+ page_content=' Conversion between scripts of Punjabi: Beyond sim- ple transliteration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
373
+ page_content=' In Proceedings of COLING 2012: Posters, pages 633–642, Mumbai, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
374
+ page_content=' The COL- ING 2012 Organizing Committee.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
375
+ page_content=' Gurpreet Singh Lehal and Tejinder Singh Saini.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
376
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
377
+ page_content=' Sangam: A perso-Arabic to indic script machine transliteration model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
378
+ page_content=' In Proceedings of the 11th International Conference on Natural Language Pro- cessing, pages 232–239, Goa, India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
379
+ page_content=' NLP Associa- tion of India.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
380
+ page_content=' Henrik Liljegren.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
381
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
382
+ page_content=' Supporting and sustaining language vitality in Northern Pakistan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
383
+ page_content=' In Leanne Hinton, Leena Huss, and Gerald Roche, editors, The Routledge Handbook of Language Revitaliza- tion, pages 427–437.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
384
+ page_content=' Routledge.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
385
+ page_content=' Mehryar Mohri.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
386
+ page_content=' 2009.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
387
+ page_content=' Weighted automata algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
388
+ page_content=' In Manfred Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata, Mono- graphs in Theoretical Computer Science, pages 213– 254.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
389
+ page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
390
+ page_content=' Mehryar Mohri and Richard Sproat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
391
+ page_content=' 1996.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
392
+ page_content=' An efficient compiler for weighted rewrite rules.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
393
+ page_content=' In 34th An- nual Meeting of the Association for Computational Linguistics, pages 231–238, Santa Cruz, California, USA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
394
+ page_content=' Association for Computational Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
395
+ page_content=' Meikal Mumin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
396
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
397
+ page_content=' The Arabic script in Africa: Understudied literacy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
398
+ page_content=' In Meikal Mumin and Kees Versteegh, editors, The Arabic Script in Africa, vol- ume 71 of Studies in Semitic Languages and Linguis- tics, pages 41–76.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
399
+ page_content=' Brill, Leiden, The Netherlands.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
400
+ page_content=' Gokul N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
401
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
402
+ page_content=' 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
403
+ page_content=' Unified NMT models for the In- dian subcontinent, transcending script-barriers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
404
+ page_content=' In Proceedings of the Third Workshop on Deep Learn- ing for Low-Resource Natural Language Processing, pages 227–236, Hybrid.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
405
+ page_content=' Association for Computa- tional Linguistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
406
+ page_content=' Fallou Ngom.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
407
+ page_content=' 2010.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
408
+ page_content=' Ajami scripts in the Senegalese speech community.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
409
+ page_content=' Journal of Arabic and Islamic Studies, 10:1–23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
410
+ page_content=' Jay M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
411
+ page_content=' Patel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
412
+ page_content=' 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
413
+ page_content=' Introduction to Common Crawl datasets.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
414
+ page_content=' In Getting Structured Data from the Inter- net, pages 277–324.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
415
+ page_content=' Springer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
416
+ page_content=' Roozbeh Pournader.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
417
+ page_content=' 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
418
+ page_content=' The right HEHs for Arabic script orthographies of Sorani Kurdish and Uighur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
419
+ page_content=' Technical Report L2/14-136, Unicode Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
420
+ page_content=' Sitti Munirah Abdul Razak, Muhamad Sadry Abu Se- man, Wan Ali Wan Yusoff Wan Mamat, and Noor Hasrul Nizan Mohammad Noor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
421
+ page_content=' 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
422
+ page_content=' Translit- eration engine for union catalogue of Malay manuscripts in Malaysia: E-Jawi Version 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
423
+ page_content=' In 2018 International Conference on Information and Communication Technology for the Muslim World (ICT4M), pages 58–63.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
424
+ page_content=' IEEE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
425
+ page_content=' Kevin P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
426
+ page_content=' Scannell.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
427
+ page_content=' 2007.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
428
+ page_content=' The Cr´ubad´an Project: Cor- pus building for under-resourced languages.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
429
+ page_content=' In Building and Exploring Web Corpora (WAC3-2007): Proceedings of the 3rd Web as Corpus Workshop, volume 4, pages 5–15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
430
+ page_content=' Presses universitaires de Lou- vain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
431
+ page_content=' http://crubadan.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
432
+ page_content='org/.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
433
+ page_content=' Unicode Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
434
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
435
+ page_content=' Arabic.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
436
+ page_content=' In The Unicode Standard (Version 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
437
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
438
+ page_content='0), chapter 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
439
+ page_content='2, pages 373– 398.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
440
+ page_content=' Unicode Consortium, Mountain View, CA.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
441
+ page_content=' Ken Whistler.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
442
+ page_content=' 2021.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
443
+ page_content=' Unicode normalization forms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
444
+ page_content=' Technical Report TR15-51, Unicode Consortium.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
445
+ page_content=' Version 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
446
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
447
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-9FIT4oBgHgl3EQf9SvZ/content/2301.11406v1.pdf'}
.gitattributes CHANGED
@@ -4398,3 +4398,55 @@ INFLT4oBgHgl3EQfIy9R/content/2301.12001v1.pdf filter=lfs diff=lfs merge=lfs -tex
4398
  btAzT4oBgHgl3EQfZvwc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4399
  7tE1T4oBgHgl3EQfTwM_/content/2301.03081v1.pdf filter=lfs diff=lfs merge=lfs -text
4400
  ctE5T4oBgHgl3EQffg_5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4398
  btAzT4oBgHgl3EQfZvwc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4399
  7tE1T4oBgHgl3EQfTwM_/content/2301.03081v1.pdf filter=lfs diff=lfs merge=lfs -text
4400
  ctE5T4oBgHgl3EQffg_5/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4401
+ 8dFLT4oBgHgl3EQfBS4r/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4402
+ btAzT4oBgHgl3EQfZvwc/content/2301.01355v1.pdf filter=lfs diff=lfs merge=lfs -text
4403
+ pNAzT4oBgHgl3EQfb_xD/content/2301.01394v1.pdf filter=lfs diff=lfs merge=lfs -text
4404
+ ptE5T4oBgHgl3EQfkw9w/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4405
+ wNE5T4oBgHgl3EQfMQ59/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4406
+ m9FIT4oBgHgl3EQftysi/content/2301.11340v1.pdf filter=lfs diff=lfs merge=lfs -text
4407
+ e9FJT4oBgHgl3EQfTiwN/content/2301.11504v1.pdf filter=lfs diff=lfs merge=lfs -text
4408
+ pNAzT4oBgHgl3EQfb_xD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4409
+ ttAzT4oBgHgl3EQfc_xn/content/2301.01412v1.pdf filter=lfs diff=lfs merge=lfs -text
4410
+ 4tAzT4oBgHgl3EQffvxD/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4411
+ ptE5T4oBgHgl3EQfkw9w/content/2301.05665v1.pdf filter=lfs diff=lfs merge=lfs -text
4412
+ INFLT4oBgHgl3EQfIy9R/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4413
+ KtE5T4oBgHgl3EQfYA_J/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4414
+ UtE_T4oBgHgl3EQfxRx0/content/2301.08311v1.pdf filter=lfs diff=lfs merge=lfs -text
4415
+ eNE4T4oBgHgl3EQfQgzc/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4416
+ 3dFKT4oBgHgl3EQfQy0a/content/2301.11768v1.pdf filter=lfs diff=lfs merge=lfs -text
4417
+ pdA0T4oBgHgl3EQfKP_y/content/2301.02103v1.pdf filter=lfs diff=lfs merge=lfs -text
4418
+ v9FPT4oBgHgl3EQf-jXG/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4419
+ 4NE1T4oBgHgl3EQf6AXQ/content/2301.03519v1.pdf filter=lfs diff=lfs merge=lfs -text
4420
+ ZtE2T4oBgHgl3EQfEwYx/content/2301.03638v1.pdf filter=lfs diff=lfs merge=lfs -text
4421
+ 2tE1T4oBgHgl3EQfAALp/content/2301.02835v1.pdf filter=lfs diff=lfs merge=lfs -text
4422
+ ONE4T4oBgHgl3EQfjw16/content/2301.05145v1.pdf filter=lfs diff=lfs merge=lfs -text
4423
+ O9E0T4oBgHgl3EQf0wLF/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4424
+ pdA0T4oBgHgl3EQfKP_y/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4425
+ QdFRT4oBgHgl3EQf7Dgl/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4426
+ vtFLT4oBgHgl3EQfkC_b/content/2301.12114v1.pdf filter=lfs diff=lfs merge=lfs -text
4427
+ MdAzT4oBgHgl3EQfy_5S/content/2301.01761v1.pdf filter=lfs diff=lfs merge=lfs -text
4428
+ L9E0T4oBgHgl3EQfjAEs/content/2301.02452v1.pdf filter=lfs diff=lfs merge=lfs -text
4429
+ YtAzT4oBgHgl3EQf2P4F/content/2301.01810v1.pdf filter=lfs diff=lfs merge=lfs -text
4430
+ DdFJT4oBgHgl3EQfBSxP/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4431
+ K9E1T4oBgHgl3EQfGgPl/content/2301.02916v1.pdf filter=lfs diff=lfs merge=lfs -text
4432
+ hdAzT4oBgHgl3EQfo_0Z/content/2301.01604v1.pdf filter=lfs diff=lfs merge=lfs -text
4433
+ dtE4T4oBgHgl3EQfpg2t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4434
+ ptAzT4oBgHgl3EQfb_y2/content/2301.01396v1.pdf filter=lfs diff=lfs merge=lfs -text
4435
+ MdAzT4oBgHgl3EQfy_5S/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4436
+ _tE3T4oBgHgl3EQfTAnt/content/2301.04439v1.pdf filter=lfs diff=lfs merge=lfs -text
4437
+ 1tE1T4oBgHgl3EQfRwOf/content/2301.03057v1.pdf filter=lfs diff=lfs merge=lfs -text
4438
+ odFPT4oBgHgl3EQf6jWE/content/2301.13201v1.pdf filter=lfs diff=lfs merge=lfs -text
4439
+ fNE3T4oBgHgl3EQffQos/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4440
+ YdAyT4oBgHgl3EQf9fps/content/2301.00875v1.pdf filter=lfs diff=lfs merge=lfs -text
4441
+ odFPT4oBgHgl3EQf6jWE/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4442
+ 4NE1T4oBgHgl3EQf6AXQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4443
+ ZtE2T4oBgHgl3EQfEwYx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4444
+ 3dFKT4oBgHgl3EQfQy0a/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4445
+ JtFIT4oBgHgl3EQfZit-/content/2301.11253v1.pdf filter=lfs diff=lfs merge=lfs -text
4446
+ fdFKT4oBgHgl3EQfsi6w/content/2301.11883v1.pdf filter=lfs diff=lfs merge=lfs -text
4447
+ 2tE1T4oBgHgl3EQfAALp/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4448
+ WtE5T4oBgHgl3EQfCA7A/content/2301.05392v1.pdf filter=lfs diff=lfs merge=lfs -text
4449
+ rtE2T4oBgHgl3EQfLAbq/content/2301.03710v1.pdf filter=lfs diff=lfs merge=lfs -text
4450
+ 2dA0T4oBgHgl3EQfM_90/content/2301.02140v1.pdf filter=lfs diff=lfs merge=lfs -text
4451
+ A9AzT4oBgHgl3EQf__9t/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
4452
+ 09FQT4oBgHgl3EQf0jbn/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
09FQT4oBgHgl3EQf0jbn/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:deb895167c86da2dbaf7b83f3a59c487d6045bddba84aac5cc5cca0084bae0f6
3
+ size 1179693
09FQT4oBgHgl3EQf0jbn/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51bf81972f4d26218a207bed6ccf438194f3db87a729b24cef98ed1eddfe7ed4
3
+ size 48829
1tE1T4oBgHgl3EQfRwOf/content/2301.03057v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:736b9b58e11fac72b537491069746c96e7998b0ec1ac8dbe6ac7ce8fc650a6d2
3
+ size 913909
1tE1T4oBgHgl3EQfRwOf/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:583b3ccce81308982978cd8cef9380c11a0b7a325e017d93e69c7d2331e363e9
3
+ size 212094
2NFQT4oBgHgl3EQf2DZm/content/tmp_files/2301.13422v1.pdf.txt ADDED
@@ -0,0 +1,984 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Anomaly Segmentation for High-Resolution Remote Sensing Images
2
+ Based on Pixel Descriptors
3
+ Jingtao Li1, Xinyu Wang2*, Hengwei Zhao1, Shaoyu Wang1, Yanfei Zhong1
4
+ 1 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, P. R. China
5
+ 2 School of Remote Sensing and Information Engineering, Wuhan University, P. R. China
6
+ {JingtaoLi, wangxinyu, whu_zhaohw, wangshaoyu, zhongyanfei}@whu.edu.cn
7
+
8
+
9
+ Abstract
10
+ Anomaly segmentation in high spatial resolution (HSR) re-
11
+ mote sensing imagery is aimed at segmenting anomaly pat-
12
+ terns of the earth deviating from normal patterns, which plays
13
+ an important role in various Earth vision applications. How-
14
+ ever, it is a challenging task due to the complex distribution
15
+ and the irregular shapes of objects, and the lack of abnormal
16
+ samples. To tackle these problems, an anomaly segmentation
17
+ model based on pixel descriptors (ASD) is proposed for
18
+ anomaly segmentation in HSR imagery. Specifically, deep
19
+ one-class classification is introduced for anomaly segmenta-
20
+ tion in the feature space with discriminative pixel descriptors.
21
+ The ASD model incorporates the data argument for generat-
22
+ ing virtual abnormal samples, which can force the pixel de-
23
+ scriptors to be compact for normal data and meanwhile to be
24
+ diverse to avoid the model collapse problems when only pos-
25
+ itive samples participated in the training. In addition, the
26
+ ASD introduced a multi-level and multi-scale feature extrac-
27
+ tion strategy for learning the low-level and semantic infor-
28
+ mation to make the pixel descriptors feature-rich. The pro-
29
+ posed ASD model was validated using four HSR datasets and
30
+ compared with the recent state-of-the-art models, showing its
31
+ potential value in Earth vision applications.
32
+ 1. Introduction
33
+ Anomaly segmentation is aimed at segmenting the anomaly
34
+ patterns which deviate from the normal patterns (Pimentel
35
+ et al. 2014; Pang et al. 2021). Due to the lack of abnormal
36
+ samples, anomaly segmentation is a challenging task, but
37
+ plays an important role in many computer vision applica-
38
+ tions, including medical analysis (Fernando et al. 2021), in-
39
+ dustrial defect detection (Bergmann et al. 2019), video sur-
40
+ veillance (Liu, Li, and Poczos 2018), and environmental
41
+ monitoring (Miau and Hung 2020).
42
+ Anomaly segmentation in high spatial resolution (HSR)
43
+ remote sensing images (e.g., Figure 1) is a powerful tool for
44
+ environmental monitoring (Miau and Hung 2020; Wang et
45
+ al. 2019). Despite this, few related works have focused on
46
+ anomaly segmentation in HSR imagery because of the
47
+
48
+ *Corresponding author
49
+
50
+ unique characteristics when compared to the industrial and
51
+ medical images used in most anomaly segmentation tasks,
52
+ which have a regular structure. The objects in HSR images
53
+ typically have a more complex spatial distribution and large
54
+ radiation differences within the same class. Furthermore,
55
+ since HSR images can be captured in different angles and
56
+ heights, the objects always have multiple scales and show
57
+ rotation invariance. These characteristics make anomaly
58
+ segmentation for HSR images a challenging task.
59
+ The mainstream anomaly segmentation models detect
60
+ anomalies in the image space, where the anomaly score is
61
+ computed based on the image pixel values. Typical exam-
62
+ ples are the autoencoder (AE)-based models (Zavrtanik,
63
+ Kristan, and Skoˇcaj 2021; Gong et al. 2019) and the gener-
64
+ ative adversarial network (GAN)-based models (Ngoetal.
65
+ 2019; Zenatietal. 2018b). AE-based models assume that
66
+ normal samples can be reconstructed more easily than the
67
+ anomalous ones and the reconstruction error indicates the
68
+ anomaly segmentation score (Pang et al. 2021). However,
69
+ the low-level reconstruction error has been shown to focus
70
+ on the pixel-wise error, resulting in abnormal samples also
71
+ being reconstructed, especially when the normal distribution
72
+ is complex. (Fei et al. 2020; Gong et al. 2019; Zong et al.
73
+ Code is available at https://github.com/Jingtao-Li-CVer/ASD.
74
+
75
+
76
+
77
+ Figure 1: Anomaly segmentation example for HSR re-
78
+ mote sensing images using proposed model. In the forest
79
+ scene, the common forest pattern is considered as normal,
80
+ and the abnormal objects such as diseased trees (the first
81
+ row) and the house in the forest (the second row) are iden-
82
+ tified as anomalies.
83
+ Anomaly image
84
+ Normal images
85
+ Anomaly label
86
+ Anomaly map
87
+
88
+
89
+ 2018). GAN-based models detect anomalies from the gen-
90
+ eration performance (Akcay, Atapour-Abarghouei, and
91
+ Breckon 2018; Ngo et al. 2019; Xia et al. 2022), where the
92
+ superior capability in generating image data also empowers
93
+ the detection of abnormal samples (Pang et al. 2021). In
94
+ spite of this, the complex distribution of HSR images can
95
+ make the generator generate data instances that are out of
96
+ the manifold of normal instances (Pang et al. 2021).
97
+ Differing from the AE-based and GAN-based models,
98
+ deep one-class classification (OCC)-based methods detect
99
+ the anomalies in the feature space (Shi, Yang, and Qi 2021;
100
+ Lei et al. 2021; Zhao et al. 2022; Li et al. 2022), where the
101
+ anomaly score is computed based on the extracted image de-
102
+ scriptors. These methods aim to learn discriminative de-
103
+ scriptors in the training stage and compute the anomaly
104
+ score in the feature space using a measurement such as the
105
+ Mahalanobis or Euclidean distance (Reiss et al. 2021; Ruff
106
+ et al. 2018; Shi, Yang, and Qi 2021). Because deep OCC-
107
+ based methods focus on semantic features rather than low-
108
+ level pixel errors, it is more suitable to deal with the anom-
109
+ aly segmentation task in HSR imagery which has complex
110
+ distribution. However, two barriers exist when applying ex-
111
+ isting methods directly. (i) Due to the lack of abnormal sam-
112
+ ples, the model training only uses normal samples and is op-
113
+ timized to be compact (Ruff et al. 2018; Chalapathy, Menon,
114
+ and Chawla 2018), which can easily result in the model col-
115
+ lapse problem (Reiss et al. 2021). (ii) The anomalies in HSR
116
+ imagery have rich low-level (e.g., texture) and high-level
117
+ (e.g., semantic) features, which are both important for the
118
+ anomaly segmentation task and real application. Although
119
+ the current deep OCC models can capture useful semantic
120
+ features, they perform suboptimally than models detecting
121
+ in the image space for samples with regular structures (Li et
122
+ al. 2021), because low-level features are mostly forgotten in
123
+ feature space.
124
+ In this paper, we tackle the two problems for the anomaly
125
+ segmentation task using HSR images. A novel anomaly seg-
126
+ mentation model based on pixel descriptors (ASD) is pro-
127
+ posed. (i) In addition to considering the compact property of
128
+ the obtained descriptors, the ASD model encourages de-
129
+ scriptors to be diverse by increasing the descriptor distance
130
+ between the original image and the transformed image with
131
+ the use of data augmentation techniques. The transformed
132
+ descriptors act as anomalies, to some extent, which en-
133
+ hances the anomaly detection ability and prevents simulta-
134
+ neous model collapse. (ii) To make the descriptor feature-
135
+ rich, a descriptor at different scales is fused for each pixel,
136
+ and an auxiliary reconstruction head is designed to force the
137
+ descriptor to remember the low-level features. Compact, di-
138
+ verse, and feature-rich property optimizes the model to-
139
+ gether from the perspective of the feature distance and fea-
140
+ ture quantity. ASD sets the first baseline for the anomaly
141
+ segmentation task in HSR imagery.
142
+ The ASD model was validated on four HSR datasets: the
143
+ DeepGlobe land-cover segmentation dataset, the Agricul-
144
+ ture-Vision agriculture pattern segmentation dataset, the
145
+ Landslide4Sense landslide detection dataset, and the forest
146
+ anomaly detection dataset (FAS, made by ourselves). The
147
+ ASD model showed an obvious superiority over the recent
148
+ state-of-the-art anomaly segmentation models (with an area
149
+ under the curve (AUC) improvement of 5–10 points in most
150
+ cases). The results obtained on the Landslide4Sense and
151
+ FAS datasets confirmed the great application potential of the
152
+ ASD model in disaster detection and forest monitoring.
153
+ 2. Related Work
154
+ AE-based models are always composed of an encoding and
155
+ decoding network, with the aim being to reconstruct the
156
+ original input data (Pimentel et al. 2014). Hawkins et al.
157
+ (2022) first introduced the AE into the anomaly detection
158
+ field, where the features learned in the latent space can be
159
+ used to distinguish normal and anomalous data. The recon-
160
+ struction error is considered as the anomaly degree and the
161
+ mean square error (MSE) is adopted as the loss function in
162
+ most studies (Pang et al. 2021). To promote the performance,
163
+ Pathak et al. (2016) blanked the input image randomly and
164
+ forced the model to reconstruct the damaged area. Similarly,
165
+ the ARNet model was proposed, which erases some input
166
+ attributes and reformulates the problem as a restoration task
167
+ (Fei et al. 2020). Recently, Zavrtanik et al. (2021) cast the
168
+ reconstruction problem as an inpainting problem and recon-
169
+ structed the image from partial inpaintings. However, the
170
+ extracted low-level features can be shared by both normal
171
+ and anomalous data (Fei et al. 2020) when dealing with
172
+ complex HSR images.
173
+
174
+ GAN-based models aim to generate the image rather than
175
+ reconstruct it. As one of the early GAN-based models, the
176
+ AnoGAN model assumes that the learned latent space can
177
+ represent normal samples well, but not the anomalous sam-
178
+ ples (Schlegl et al. 2017). Given a test image, the difference
179
+ between the regenerated image obtained using the searched
180
+ latent feature and the test image is considered as the anom-
181
+ aly degree. The famous GANomaly model improved the
182
+ generator architecture from a decoder to an encoder-decoder
183
+ encoder design and used high-level features to assist com-
184
+ puting the anomaly score (Akcay, Atapour-Abarghouei, and
185
+ Breckon 2018). GAN-based models have demonstrated su-
186
+ perior capabilities in generating image data, which also em-
187
+ powers the detection of abnormal samples (Pang et al. 2021).
188
+ In spite of this, the complex distribution of HSR images can
189
+ make the generator generate data instances that are out of
190
+ the manifold of normal instances (Pang et al. 2021).
191
+
192
+
193
+ One-class classification models are also used in some
194
+ anomaly segmentation works (Pang et al. 2021). One of their
195
+ greatest advantages over the AE-based and GAN-based
196
+ models is that the OCC models detect anomalies in the fea-
197
+ ture space with high-level semantic information. They first
198
+ divide an image into many patches and then learn the corre-
199
+ sponding representations. The anomaly score is computed in
200
+ the feature space using a measurement such as the Ma-
201
+ halanobis or Euclidean distance (Reiss et al. 2021; Ruff et
202
+ al. 2018; Shi, Yang, and Qi 2021). Most OCC models are
203
+ based on the principle of one-class support vector machine
204
+ (OCSVM) (Sch¨olkopf et al. 1999; Andrews, Morton, and
205
+ Griffin 2016) or support vector data description (SVDD)
206
+ (Tax and Duin 1999; Chalapathy, Menon, and Chawla 2018;
207
+ Ruff et al.2018). However, these models mainly consider
208
+ the compact property of the obtained one class features, re-
209
+ sulting in the model collapse problem (Reiss et al. 2021),
210
+ and they lack consideration of the low-level structural fea-
211
+ tures.
212
+ 3. Methodology
213
+ Overview. This section describes the core principles of the
214
+ proposed ASD model. The overall workflow of the ASD
215
+ model is shown in Section 3.1, which includes two steps:
216
+ descriptor extracting and anomaly score computation. To
217
+ extract the ideal descriptors, descriptor learning is the most
218
+ important part and is described detailed in Section 3.2. The
219
+ computation method of the anomaly score is given in Sec-
220
+ tion 3.3.
221
+ 3.1. Overall Workflow of The ASD Model
222
+ Given an HSR image 𝑿 with size 𝐻 × 𝑊 × 𝐵, where 𝐻, 𝑊,
223
+ and 𝐵 are the height, width and bands of the image, the
224
+ anomaly segmentation task can be viewed as a mapping
225
+ function 𝑓 from the 𝑿 to the anomaly map 𝑨 with size
226
+ 𝐻 × 𝑊. Each pixel in the anomaly map is in the range [0,1].
227
+ Generally speaking, the higher the value in the anomaly map,
228
+ the higher the anomaly degree.
229
+ The ASD model separates the function 𝑓 into two steps
230
+ and the overall workflow is shown in Figure 2. The first step
231
+ 𝑓1 extracts the dense descriptor cube 𝑫 for each image pixel,
232
+ which is the core part and also the training focus in the ASD
233
+ model. The descriptors are expected to contain important
234
+ visual characteristics for the anomaly segmentation task. To
235
+ incorporate the pixel context and obtain fine pixel corre-
236
+ spondence, the patch-based paradigm is chosen to compute
237
+ the descriptor 𝐹 for the center pixel 𝑥. In this step, the
238
+ 𝐻 × 𝑊 patches form the input samples and a descriptor
239
+ cube 𝑫 with size 𝐻 × 𝑊 × 𝐿 is output, where 𝐿 is the de-
240
+ scriptor length.
241
+ The second step 𝑓2 outputs the anomaly map based on the
242
+ trained descriptor encoders in the first step. Specifically, the
243
+ trained descriptors of the training samples are modeled as a
244
+ multivariate Gaussian Distribution (MGD) (Guimaraes et al.
245
+ 2018) by the Gaussian Density Estimate (GDE). For the test
246
+ descriptor, its Mahalanobis distance from the MGD is used
247
+ to measure the anomaly score. The formal mapping of 𝑓, 𝑓1,
248
+ and 𝑓2 is shown in Eqs. (1-3).
249
+
250
+ 𝑓: 𝑿 → 𝑨
251
+ (1)
252
+ 𝑓1 ∶ 𝑿 → 𝑫
253
+ (2)
254
+ 𝑓2 ∶ 𝑫 → 𝑨
255
+ (3)
256
+ 3.2. Ideal Descriptors Learning
257
+ The descriptors obtained in the first step (as mentioned in
258
+ Section 3.1) are expected to contain important visual char-
259
+ acteristics for the anomaly segmentation task. To achieve
260
+ this aim, ideal descriptors are optimized using three condi-
261
+ tions from the characteristics of the anomaly segmentation
262
+ task and HSR images.
263
+ Compact. One of the characteristics of anomaly segmen-
264
+ tation is that only normal samples are used in the training
265
+ stage. In other words, all the training samples are of the same
266
+ class, which naturally results in compact visual descriptors
267
+ in the feature space. This compactness is also a useful su-
268
+ pervised signal for the anomaly segmentation task.
269
+ To keep 𝑫 compact, an enclosing hypersphere around all
270
+ the pixel descriptors is constructed, which is motivated by
271
+ the deep SVDD method (Ruff et al. 2018). We let 𝑅 be the
272
+ hypersphere radius and 𝐶 be the center. The 𝐿1 loss (Eq. (4))
273
+ aims to minimize the hypersphere radius and the distance
274
+ from the obtained pixel descriptors to the center 𝐶, where
275
+ the parameter 𝜆 controls the trade-off between the size of
276
+ the hypersphere and the number of surrounded descriptors.
277
+ The maximum distance between 𝐶 and 𝐹 in 𝑫 is chosen to
278
+
279
+
280
+ Figure 2: The overall workflow of the ASD model, which
281
+ includes two steps. In the first step, the ASD model ex-
282
+ tracts a descriptor for each pixel with the descriptor ex-
283
+ tractor. In the second step, the descriptors for normal
284
+ scenes are modeled as the Gaussian distribution, and the
285
+ Mahalanobis distance between the test descriptor and the
286
+ modeled distribution is considered to measure the anom-
287
+ aly score.
288
+ Normal descriptors
289
+ GDE
290
+ Test image
291
+ Test descriptors
292
+ Gaussian
293
+ distribution
294
+ Anomaly map
295
+ Descriptor
296
+ extractor
297
+ Mahalanobis
298
+ distance
299
+
300
+ compute the radius 𝑅. Compared to using the mean value,
301
+ this setting helps the model focus on special normal samples,
302
+ rather than just considering them as noise.
303
+
304
+ 𝐿1(𝑫) = 𝑅2 + 𝜆 mean{0, max{‖𝐹 − 𝐶‖2 − 𝑅2 | 𝐹 ∈ 𝑫}} (4)
305
+
306
+ Diverse. Compactness is the first basic condition. How-
307
+ ever, the model can easily collapse if only a compactness
308
+ constraint used. In other words, the model would map all the
309
+ input samples into the same point. This “cheating” makes
310
+ the model lose the anomaly detection ability. To deal with
311
+ this problem, the diverse condition is necessary, which
312
+ stresses that a different pixel 𝑥 obtains different values of 𝐹.
313
+ The key consideration to keeping the descriptors diverse
314
+ is to keep the model sensitive to the input sample change.
315
+ Considering the fact that training images are always anom-
316
+ aly free and real negative samples are difficult to obtain, data
317
+ augmentation techniques, such as the channel shuffle oper-
318
+ ation, are used to generate negative samples. Formally, the
319
+ augmentation operation set 𝑆𝑎 = {𝐴1, 𝐴2, … , 𝐴𝑛} contains 𝑛
320
+ kinds of different augmentation operations. For the original
321
+ image 𝑿, the obtained image descriptor cube 𝑫 can be seen
322
+ as a positive one. Then, after applying the operations from
323
+ 𝑆𝑎 on 𝑿 in turn, 𝑿𝑇 can be obtained and the corresponding
324
+ cube 𝑫𝑇 is considered to be a negative sample. Eqs. (5-6)
325
+ formally express the above process.
326
+
327
+ 𝑿𝑇 = 𝐴𝑛(… (𝐴2(𝐴1(𝑿𝑇)))
328
+ (5)
329
+ 𝑫 = 𝑓1(𝑿), 𝑫𝑇= 𝑓1(𝑿𝑇)
330
+ (6)
331
+
332
+
333
+ Both 𝑫 and 𝑫𝑇 have the same shape 𝐻 × 𝑊 × 𝐿. The diver-
334
+ sity loss is defined as the average pixel descriptor difference
335
+ between 𝑫 and 𝑫𝑇, as shown in Eq. (7). With the 𝐿2 loss,
336
+ the model is encouraged to increase the sensitivity to the in-
337
+ put difference.
338
+
339
+ 𝐿2(𝑫, 𝑫𝑇) = 1/{
340
+ 1
341
+ 𝐻 × 𝑊 ∑ ∑‖𝑫𝑖𝑗 − 𝑫𝑖𝑗
342
+ 𝑇 ‖
343
+ 2
344
+ 𝑊
345
+ 𝑗=1
346
+ 𝐻
347
+ 𝑖=1
348
+ }
349
+ (7)
350
+ Some technologies have the potential to deal with the
351
+ model collapse, such as reducing the model bias (Ruff et al.
352
+ 2018) or designing early-stopping strategies (Reiss et al.
353
+ 2021). However, the proposed 𝐿2 loss does not need early-
354
+ stopping or change of the model architecture.
355
+ Feature-rich. The compact and diverse conditions meas-
356
+ ure the descriptors from the perspective of distance. The fea-
357
+ ture-rich condition measures the descriptors from the per-
358
+ spective of the amount of representative information. In the
359
+ ASD model, multi-scale and multi-level features are consid-
360
+ ered in particular.
361
+ The multi-scale characteristic is an import difference for
362
+ HSR images, compared to natural images. For example,
363
+ large-scale information is important for rivers and small-
364
+ scale information is important for urban buildings. Even for
365
+ the same scene, the images are always taken at different
366
+ heights, which poses a challenge for the model ability to
367
+ catch the multi-scale information.
368
+ To enhance the model ability to deal with multi-scale in-
369
+ formation, the ASD model uses a resize operation set 𝑆𝑠 =
370
+ {𝑈1, 𝑈2, … , 𝑈𝑚} for the input patches. Given an image 𝑿, it
371
+ is resized using each operation 𝑈𝑖 in 𝑆𝑠, and obtains 𝑚 dif-
372
+ ferent-scale versions 𝑿1, 𝑿2, … , 𝑿𝑚 of the same image.
373
+ Then, for each center pixel 𝑥, 𝑚 patches are cropped with
374
+ size 𝑃 × 𝑃 from the 𝑚 scaled images. Next, the obtained
375
+ pyramid patches are fed into with 𝑚 individual encoders
376
+ 𝐸1, 𝐸2, … , 𝐸𝑚, and 𝑚 pixel descriptors are obtained, where
377
+
378
+
379
+ Figure 3: The descriptor optimization process of the ASD model. (a) For each normal image, its transformed image is
380
+ generated using data argumentation techniques for generating the artificially negative samples. (b) The ASD model is de-
381
+ signed as a two-head architecture. One head outputs the dense descriptor and the other reconstruction head is designed to
382
+ force the obtained descriptors to contain both high-level and low-level features. Pyramid patches are extracted at different
383
+ scales for the multi-scale features. (c) To obtain the ideal descriptors, as defined in Section 3.2, the optimization tries to
384
+ find a compact hypersphere surrounding all the descriptors of the original image by pulling them to the center, keeping the
385
+ descriptors diverse by increasing the distance between the original descriptors and the transformed descriptors.
386
+ Pyramid
387
+ Patches
388
+ Scale 1
389
+ Scale 2
390
+ Scale 3
391
+ Linked
392
+ descriptor
393
+ Input image
394
+ Transformed image
395
+ Data
396
+ transformation
397
+ (a) Data argument
398
+ (b) Descriptor extractor
399
+ (c) Optimization objective:
400
+ +
401
+ +
402
+ Pixel descriptors
403
+ Reconstructed image
404
+ Pixel descriptors
405
+ Reconstructed image
406
+ Pull
407
+ Push
408
+ Push and pull descriptors
409
+ pact
410
+ Diverse
411
+ =
412
+ Hypersphere radius:
413
+ Hypersphere center:
414
+ Feature-rich (Multi-level)
415
+ =
416
+
417
+ each descriptor has the same length 𝐿. The 𝑚 pixel de-
418
+ scriptors are then concatenated further to form a descriptor
419
+ vector with length 𝑚 × 𝐿. The descriptor cube 𝑫𝑐 with size
420
+ 𝐻 × 𝑊 × (𝑚 × 𝐿) is naturally obtained when all the pixels
421
+ in 𝑿 are processed. Finally, a 1 × 1 convolution operation is
422
+ used to map the concatenated descriptors into size 𝐿. This is
423
+ the process for extracting the final pixel descriptors. Eqs. (8-
424
+ 10) formally express the above process, which is also the
425
+ detailed process of 𝑓1. Figure 3 shows the process when 𝑚
426
+ = 3.
427
+
428
+ 𝑿1, 𝑿2, … , 𝑿𝑚 = 𝑈1(𝑿), 𝑈2(𝑿), … , 𝑈𝑚(𝑿)
429
+ (8)
430
+ 𝑫𝑐 = concat([𝑀(𝑿1, 𝑿2, … , 𝑿𝑚)])
431
+ (9)
432
+ 𝑫 = Conv1×1(𝑫𝑐)
433
+ (10)
434
+
435
+ Multi-level features are necessary when dealing with the
436
+ various objects in the anomaly segmentation task. Although
437
+ the deep architecture extracts high-level semantic infor-
438
+ mation through the descriptors, the low-level information
439
+ such as texture is gradually forgotten as the network goes
440
+ deeper. This is beneficial for objects such as buildings, but
441
+ is not expected for some objects such as water and river be-
442
+ cause the texture feature is useful for them.
443
+ To ensure that both high-level and low-level features are
444
+ contained in the descriptors, the ASD model is designed as
445
+ a two head architecture. Both heads grow from the concate-
446
+ nated descriptor cube 𝑫𝑐. One head uses the 1 × 1 convolu-
447
+ tion operation to obtain the final pixel descriptors. The other
448
+ head also uses the 1 × 1 convolution but aims to reconstruct
449
+ the original pixel. To reconstruct the pixel value, the concat-
450
+ enated descriptors are forced to contain the low-level fea-
451
+ tures. Note that the reconstruction head is only used in the
452
+ training and is abandoned in the test stage. 𝑿′ denotes the
453
+ reconstructed image, and the MSE is used to compute the
454
+ loss (Eqs. (11-12)).
455
+
456
+ 𝑿′ = Conv1×1(𝑫𝑐)
457
+ (11)
458
+ 𝐿3(𝑿, 𝑿′) =
459
+ 1
460
+ 𝐻 × 𝑊 ∑ ∑‖𝑿𝑖𝑗 − 𝑿𝑖𝑗
461
+ ′ ‖
462
+ 2
463
+ 𝑊
464
+ 𝑗=1
465
+ 𝐻
466
+ 𝑖=1
467
+
468
+ (12)
469
+
470
+ In total, the three properties: compact, diverse and fea-
471
+ ture-rich work together to design the model architecture and
472
+ optimize the descriptor learning. The optimization objective
473
+ of the ASD model is the sum of the above losses, as shown
474
+ in Eq. (13). Figure 3 shows the overall descriptor learning
475
+ process.
476
+
477
+ 𝐿𝑜𝑠𝑠 = 𝐿1(𝑫) + 𝐿2(𝑫, 𝑫𝑇) + 𝐿3(𝑿, 𝑿′)
478
+ (13)
479
+
480
+ 3.3. Anomaly Score Computation
481
+ When the descriptor optimization process of step 𝑓1 is fin-
482
+ ished, the second step 𝑓2 outputs the anomaly map based on
483
+ the optimized descriptors. There exist various methods to
484
+ complete step 𝑓2. Although non-parametric statistical meth-
485
+ ods do not rely on any distribution assumption, it requires a
486
+ lot of samples to achieve accurate estimation and can be
487
+ computationally expensive e (Pang et al. 2021). Conversely,
488
+ parametric density estimation needs fewer samples, and the
489
+ Gaussian assumption holds in most cases (Pimentel et al.
490
+ 2014).
491
+ In the ASD model, the Gaussian assumption is adopted to
492
+ model the normal descriptors. Using the normal samples in
493
+ the training stage, the mean 𝜇 and the covariance matrix 𝚺
494
+ can be estimated. Given a test descriptor 𝑥𝑡, its Mahalanobis
495
+ distance from the modeled distribution (as shown in Eq. (14))
496
+ is considered the anomaly degree, which can be converted
497
+ to the anomaly score after the normalization.
498
+
499
+ 𝐴𝑛𝑜𝑚𝑎𝑙𝑦 𝑑𝑒𝑔𝑟𝑒𝑒 = √(𝑥𝑡 − 𝜇 )𝑇𝚺−1(𝑥𝑡 − 𝜇)
500
+ (14)
501
+
502
+ 4. Experiments
503
+ 4.1. Experimental Settings
504
+ Datasets
505
+ The proposed ASD model was evaluated on four HSR im-
506
+ age datasets: DeepGlobe (Demir et al. 2018), Agriculture-
507
+ Vision (Chiu et al. 2020), FAS, and Landslide4Sense (Ghor-
508
+ banzadeh et al. 2022). The DeepGlobe and Agriculture-Vi-
509
+ sion datasets were originally made for the land-cover seg-
510
+ mentation and agriculture pattern segmentation tasks, re-
511
+ spectively. To adapt these datasets for the anomaly segmen-
512
+ tation task, the pixels of the remaining classes were masked
513
+ for a fixed normal class in the training process to keep the
514
+ anomaly-free characteristic.
515
+ To show the application value of the ASD model, the FAS
516
+ and Landslide4Sense datasets were used. The FAS dataset
517
+ was made by ourselves for the forest monitoring application,
518
+ where the common forest pattern (i.e., Figure 1) is treated as
519
+ the normal class, and some abnormal objects, such as house,
520
+ lake, car, and diseased tree, are considered as anomalies.
521
+ The RGB imagery in the FAS dataset was made from UAV-
522
+ borne hyperspectral images in forest scene. The pixel reso-
523
+ lution is 11 cm and the image size is 120×120. In the Land-
524
+ slide4Sense dataset, the anomaly segmentation model was
525
+ used to segment the landslide area by learning from the nor-
526
+ mal mountain pattern.
527
+ Comparative Models and Evaluation Metrics
528
+ The ASD model was compared with four state-of-the-art
529
+ methods covering both image space and feature space types.
530
+
531
+ These methods include GANomaly (Akcay, Atapour-Abar-
532
+ ghouei, and Breckon 2018), ARNet (Fei et al. 2020), RIAD
533
+ (Zavrtanik, Kristan, and Skocaj 2021) and deep SVDD
534
+ (DSVDD) (Ruff et al. 2018). For the GANomaly, RIAD,
535
+ and DSVDD, the model hyper-parameters were kept same
536
+ as the authors’ open source code. ARNet was implemented
537
+ using the same architecture as RIAD. The model perfor-
538
+ mance was evaluated using the area under the curve (AUC)
539
+ metric and the mean Intersection over Union (mIOU). The
540
+ segmentation threshold for the mIOU corresponds to the
541
+ left-upper point of the Receiver operating characteristic
542
+ (ROC) curve.
543
+ Implementation Details
544
+ The fast version (Bailer et al. 2018) of the point descriptor
545
+ extraction network in the work of Simo-Serra et al. (2015)
546
+ acted as the pixel descriptor encoder in the proposed model.
547
+ In all the experiments, the models were trained for 100
548
+ epochs, and the batch size was 1. The Adam optimizer with
549
+ learning rate 0.0001 was used. 𝜆 was set to 10. 𝑆𝑠 was set to
550
+ {0.5,1.0,2.0} and 𝑃 is 15 for all the descriptor encoders. The
551
+ first 10 epochs were trained using only the 𝐿3 loss to com-
552
+ pute the initial 𝐶. 𝑅 was initialized to 3.0. 𝐶 and 𝑅 were up-
553
+ dated after each epoch using all the training descriptors. The
554
+ dimension 𝐿 was set to 5. The data augmentation operations
555
+ used in the ASD and ARNet model were the GaussNoise,
556
+ ChannelShuffle, RandomBrightness, RandomContrast, and
557
+ Solarize operations (implemented with the Albumentations
558
+ tool (Buslaev et al. 2020)). Due to the AUC computation
559
+ burden, 2000 test images in Agriculture-Vision dataset were
560
+ chosen to be evaluated. The CPU was an Intel(R) Xeon(R)
561
+ CPU E5-2690 v4 @ 2.60 GHz with 62.6 GB memory, and
562
+ the GPU was a Tesla P100-PCIE with 16 GB of memory.
563
+ 4.2. Results on the DeepGlobe Dataset
564
+ The quantitative and qualitative results are reported in Table
565
+ 1 and Figure 4, respectively. In Table 1, the ASD model
566
+ achieves the highest AUC values for the four normal classes.
567
+ For the Urban land class, the ASD model surpasses the sec-
568
+ ond-best model by over 6 points, showing its superiority
569
+ when dealing with a complex distribution. In Figure 4, the
570
+ anomaly maps obtained by the ASD model are the closest to
571
+ the ground truth.
572
+ 4.3. Results on the Agriculture-Vison Dataset
573
+ Table 2 and Figure 4 respectively show the quantitative and
574
+ qualitative results for the Agriculture-Vision dataset. In Ta-
575
+ ble 2, the ASD model achieves the best AUC results for all
576
+ six normal classes. ASD surpasses the second-best model by
577
+ 5 points for the Drydown class. Except Weed cluster, the
578
+ mIOU values of ASD are all close to the optimal value. In
579
+ Figure 5, it can be seen that accurate results and fine bound-
580
+ aries are obtained by the ASD model for most classes. For
581
+
582
+
583
+ Figure 4: The anomaly segmentation results obtained on
584
+ the DeepGlobe dataset for each normal class, White pix-
585
+ els cover the anomalous region.
586
+ Urban
587
+ land
588
+ Water
589
+ Range
590
+ land
591
+ Barren
592
+ land
593
+ Agriculture
594
+ Forest
595
+ land
596
+ Image
597
+ GT
598
+ DSVDD
599
+ RIAD
600
+ ARNet
601
+ GANomaly
602
+ ASD
603
+ Normal class
604
+
605
+
606
+ Figure 5: The anomaly segmentation results obtained on
607
+ the Agriculture-Vision dataset for the six normal classes.
608
+ Image (RGB)
609
+ GT
610
+ DSVDD
611
+ RIAD
612
+ ARNet
613
+ GANomaly
614
+ ASD
615
+ Normal class
616
+ Dry down
617
+ Nutrient
618
+ deficiency
619
+ Endrow
620
+ Water
621
+ Double
622
+ plant
623
+ Weed
624
+ cluster
625
+ Image (NIR)
626
+ Method
627
+ Urban
628
+ land
629
+ Agricul-
630
+ ture
631
+ Range
632
+ land
633
+ Forest
634
+ land
635
+ Water
636
+ Barren
637
+ land
638
+ AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU
639
+ DSVDD 57.0 31.5 60.3 41.4 53.6 16.3 58.7 24.0 37.6 2.2 50.6 17.7
640
+ RIAD
641
+ 52.3 12.4 65.9 46.3 47.6 7.0 69.4 33.1 57.7 43.0 53.3 13.9
642
+ ARNet
643
+ 50.2 39.0 60.1 40.9 48.2 6.9 67.6 34.5 54.7 12.5 61.4 33.3
644
+ GANomaly 42.8 44.3 51.7 35.8 55.1 30.6 75.4 41.3 58.8 44.5 36.8 39.7
645
+ ASD
646
+ 63.4 38.5 64.1 42.7 54.3 23.2 79.5 43.1 73.3 39.5 62.5 34.9
647
+
648
+ Table 1: The anomaly segmentation results obtained on
649
+ the DeepGlobe dataset.
650
+ Method
651
+ Drydown Double
652
+ plant
653
+ Endrow
654
+ Weed
655
+ cluster
656
+ ND
657
+ Water
658
+ AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU
659
+ DSVDD 60.9 30.8 53.0 14.7 54.6 10.1 48.0 3.67 59.6 24.4 72.1 26.0
660
+ RIAD
661
+ 62.2 31.0 60.9 25.6 59.3 27.7 55.2 38.2 63.8 25.7 86.1 42.7
662
+ ARNet
663
+ 61.1 30.6 51.5 15.3 57.1 25.5 53.0 15.9 59.9 26.8 45.3 9.6
664
+ GANomaly 59.5 26.3 49.6 4.2 56.5 26.4 51.1 41.9 62.9 33.1 64.2 20.7
665
+ ASD
666
+ 67.4 36.4 61.3 24.8 61.1 25.7 58.0 19.7 65.9 31.7 90.0 40.4
667
+
668
+ Table 2: The comparative quantitative anomaly seg-
669
+ mentation results on the Agriculture-Vision dataset.
670
+ (ND is nutrient deficiency)
671
+
672
+ 0.8
673
+ 0.6
674
+ 0.4
675
+ 0.2 0.8
676
+ 0.6
677
+ 0.4
678
+ 0.2the normal class of water, only the ASD model outputs a
679
+ correct anomaly map, and some models completely reverse
680
+ the anomaly regions.
681
+ 4.4. Results on the FAS and Landslide4Sense Da-
682
+ tasets
683
+ The FAS and Landslide4Sense datasets were used to show
684
+ the application value of the proposed anomaly segmentation
685
+ model in forest monitoring and landslide detection. Table 3,
686
+ Figure 6, and Figure 7 report the related results. In both da-
687
+ tasets, the ASD model achieves the best AUC and mIOU
688
+ scores. Satisfactory anomaly maps are obtained, demon-
689
+ strating great application value.
690
+ 4.5. Sensitivity of the Descriptor Scale
691
+ Table 4 reports the effect of the multi-scale descriptor on the
692
+ anomaly segmentation performance. The multi-scale setting
693
+ with 𝑆𝑠 = 0.5, 1.0, 2.0 obtains the optimal AUC values for
694
+ four classes. In a real application, although the optimal value
695
+ of 𝑆𝑠 may be difficult to establish, Table 4 shows that the
696
+ multi-scale setting would ensure satisfactory results.
697
+ 4.6. Ablation Studies
698
+ The core idea of the ASD model is to find ideal descriptors,
699
+ so three loss constraints corresponding to the conditions de-
700
+ scribed in Section 3.2 were designed. Table 5 illustrates the
701
+ effectiveness of three losses for different types of earth vi-
702
+ sion scenes 𝐿1 (compact loss) can better handle the scene
703
+ with simple spatial distribution, i.e., Agriculture, Forestland,
704
+ and Water; (from the first 3 rows). 𝐿3 (feature-rich loss)
705
+ works on the complex scenes, i.e., Urban land and Barren
706
+ land; (from the 3,5 and 6 rows). 𝐿2 (diversity loss) aims at
707
+ further improving segmentation performance by artificial
708
+ anomaly samples. (Comparing rows 1 and 3 with 4 and 5,
709
+ respectively).
710
+ 5. Conclusion
711
+ In this paper, we have proposed a pixel descriptor based
712
+ model for the anomaly segmentation task in HSR imagery.
713
+ The core innovations are: 1) The three conditions that the
714
+ ideal descriptor should meet are given from the characteris-
715
+ tics of the anomaly segmentation task and HSR images. 2)
716
+ The corresponding constraints and architecture were de-
717
+ signed on this basis. Obvious improvement was achieved on
718
+ four datasets (including real anomalies in forest and moun-
719
+ tain scenes). Overall, proposed model sets the first baseline
720
+ for the anomaly segmentation task of complex HSR imagery.
721
+
722
+
723
+ Figure 6: The anomaly segmentation results obtained on
724
+ the FAS dataset. The common forest pattern (see Figure
725
+ 1) is considered as normal, and four anomalies are con-
726
+ sidered.
727
+ Image
728
+ GT
729
+ DSVDD
730
+ RIAD
731
+ ARNet
732
+ GANomaly
733
+ ASD
734
+ PWD
735
+ House
736
+ Car
737
+ Lake
738
+ Anomalies
739
+
740
+
741
+ Figure 7: The anomaly segmentation results obtained on
742
+ the Landslide4Sense dataset. The common mountain pat-
743
+ tern is considered as normal, and the landslides are the
744
+ anomalies.
745
+ GT
746
+ DSVDD
747
+ RIAD
748
+ ARNet
749
+ GANomaly
750
+ ASD
751
+ Image (DEM)
752
+ Image (Slope)
753
+ Image (RGB)
754
+ Dataset
755
+ DSVDD
756
+ RIAD
757
+ ARNet
758
+ GANomaly
759
+ ASD
760
+ AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU
761
+ FAS
762
+ 74.1 46.2 44.3 36.5 82.7 52.9 50.7 24.9 91.0 69.3
763
+ Lanslide4Sense 61.6 20.7 83.7 41.0 78.8 48.7 82.2 39.1 89.8 49.3
764
+
765
+ Table 3: The anomaly segmentation results obtained on
766
+ the FAS and Landslide4Sense datasets.
767
+
768
+ Constraints
769
+ Urban
770
+ land
771
+ Agricul-
772
+ ture
773
+ Range
774
+ land
775
+ Forest
776
+ land
777
+ Water
778
+ Barren
779
+ land
780
+ AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU
781
+ 𝐿1
782
+ 51.3 38.9 62.5 42.3 52.8 18.1 76.4 42.0 70.2 35.1 56.6 26.9
783
+ 𝐿2
784
+ 40.9 45.3 59.4 37.9 53.7 40.2 76.7 47.6 71.5 36.1 49.0 34.1
785
+ 𝐿3
786
+ 62.5 35.9 60.4 38.6 52.9 19.6 75.6 41.5 68.8 36.0 61.2 32.9
787
+ 𝐿1+𝐿2
788
+ 56.5 32.4 61.0 39.7 54.7 31.8 78.8 48.6 72.5 40.6 54.6 22.8
789
+ 𝐿2+𝐿3
790
+ 64.5 45.1 62.0 42.5 54.6 22.1 77.4 43.1 73.0 41.7 54.3 23.8
791
+ 𝐿1+𝐿3
792
+ 64.1 45.1 62.7 41.9 52.9 20.0 77.3 43.1 74.5 41.5 61.7 31.5
793
+ 𝐿1+𝐿2+𝐿3 63.4 38.5 64.1 42.7 54.3 23.2 79.5 43.1 73.3 39.5 62.5 34.9
794
+
795
+ Table 5: The ASD model ablation analysis for the three
796
+ loss constraints on the anomaly segmentation results ob-
797
+ tained using the DeepGlobe dataset.
798
+
799
+ Scale
800
+ Urban
801
+ land
802
+ Agricul-
803
+ ture
804
+ Range
805
+ land
806
+ Forest
807
+ land
808
+ Water
809
+ Barren
810
+ land
811
+ AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU AUC mIOU
812
+ (0.5,0.5,0.5) 61.7 39.9 63.7 42.7 57.4 31.5 77.8 45.5 68.8 38.3 59.6 30.5
813
+ (1.0,1.0,1.0) 63.2 40.0 60.7 40.0 56.1 27.9 78.5 44.1 72.4 35.7 57.5 22.5
814
+ (2.0,2.0,2.0) 58.4 42.5 62.0 40.5 55.5 25.7 75.6 43.5 78.0 41.1 59.0 35.0
815
+ (0.5,1.0,2.0) 63.4 38.5 64.1 42.7 54.3 23.2 79.5 43.1 73.3 39.5 62.5 34.9
816
+
817
+ Table 4: The ASD model sensitivity analysis for the
818
+ multi-scale property on the anomaly segmentation re-
819
+ sults obtained using the DeepGlobe dataset.
820
+
821
+ 0.8
822
+ 0.6
823
+ 0.4
824
+ 0.2 0.8
825
+ 0.6
826
+ 0.4
827
+ 0.2Acknowledgments
828
+ This work was supported by National Natural Science Foun-
829
+ dation
830
+ of
831
+ China
832
+ under
833
+ Grant
834
+ No.42071350
835
+ and
836
+ No.42101327, in part by the Fundamental Research Funds
837
+ for the Central Universities under Grant 2042021kf0070,
838
+ and LIESMARS Special Research Funding.
839
+ References
840
+ Akcay, S.; Atapour-Abarghouei, A.; and Breckon, T. P.
841
+ 2018. Ganomaly: Semi-supervised anomaly detection via
842
+ adversarial training. In Asian conference on computer vision,
843
+ 622–637. Springer.
844
+ Andrews, J.; Morton, E.; and Griffin, L. 2016. Detecting
845
+ anomalous data using auto-encoders. International Journal
846
+ of Machine Learning and Computing 6:21.
847
+ Bailer, C.; Habtegebrial, T.; Stricker, D.; et al. 2018. Fast-
848
+ feature extraction with cnns with pooling layers. arXiv pre-
849
+ print arXiv:1805.03096.
850
+ Bergmann, P.; Fauser, M.; Sattlegger, D.; and Steger, C.
851
+ 2019. Mvtec ad – a comprehensive real-world dataset for
852
+ unsupervised anomaly detection. In Proceedings of the
853
+ IEEE/CVF Conference on Computer Vision and Pattern-
854
+ Recognition (CVPR).
855
+ Buslaev, A.; Iglovikov, V. I.; Khvedchenya, E.; Parinov, A.;
856
+ Druzhinin, M.; and Kalinin, A. A. 2020. Albumentations:
857
+ Fast and flexible image augmentations. Information 11(2).
858
+ Chalapathy, R.; Menon, A. K.; and Chawla, S. 2018. Anom-
859
+ aly detection using one-class neural networks.
860
+ Chiu, M. T.; Xu, X.; Wei, Y.; Huang, Z.; Schwing, A. G.;
861
+ Brunner, R.; Khachatrian, H.; Karapetyan, H.; Dozier, I.;
862
+ Rose, G.; et al. 2020. Agriculture-vision: A large aerial im-
863
+ age database for agricultural pattern analysis. In Proceed-
864
+ ings of the IEEE/CVF Conference on Computer Vision and
865
+ Pattern Recognition, 2828–2838.
866
+ Demir, I.; Koperski, K.; Lindenbaum, D.; Pang, G.; Huang,
867
+ J.; Basu, S.; Hughes, F.; Tuia, D.; and Raskar, R. 2018.
868
+ Deepglobe 2018: A challenge to parse the earth through sat-
869
+ ellite images. In Proceedings of the IEEE Conference on
870
+ Computer Vision and Pattern Recognition Workshops, 172–
871
+ 181.
872
+ Fei, Y.; Huang, C.; Jinkun, C.; Li, M.; Zhang, Y.; and Lu, C.
873
+ 2020. Attribute restoration framework for anomaly detec-
874
+ tion. IEEE Transactions on Multimedia.
875
+ Fernando, T.; Gammulle, H.; Denman, S.; Sridharan, S.; and
876
+ Fookes, C. 2021. Deep learning for medical anomaly detec-
877
+ tion – a survey. ACM Comput. Surv. 54(7).
878
+ Ghorbanzadeh, O.; Xu, Y.; Ghamis, P.; Kopp, M.; and Kreil,
879
+ D. 2022. Landslide4sense: Reference benchmark data and
880
+ deep learning models for landslide detection. arXiv preprint
881
+ arXiv:2206.00515.
882
+ Gong, D.; Liu, L.; Le, V.; Saha, B.; Mansour, M. R.; Ven-
883
+ katesh, S.; and Hengel, A. v. d. 2019. Memorizing normality
884
+ to detect anomaly: Memory-augmented deep autoencoder
885
+ for unsupervised anomaly detection. In Proceedings of the
886
+ IEEE/CVF International Conference on Computer Vision,
887
+ 1705–1714.
888
+ Guimaraes, R. R.; Passos, L. A.; Holanda Filho, R.; de Al-
889
+ buquerque, V. H. C.; Rodrigues, J. J.; Komarov, M. M.; and
890
+ Papa, J. P. 2018. Intelligent network security monitoring
891
+ based on optimum-path forest clustering. Ieee Network
892
+ 33(2):126–131.
893
+ Hawkins, S.; He, H.; Williams, G.; and Baxter, R. 2002.
894
+ Outlier detection using replicator neural networks. In Inter-
895
+ national Conference on Data Warehousing and Knowledge
896
+ Discovery, 170–180. Springer.
897
+ Lei, L.; Wang, X.; Zhong, Y.; Zhao, H.; Hu, X.; and Luo, C.
898
+ 2021. Docc: Deep one-class crop classification via positive
899
+ and unlabeled learning for multi-modal satellite imagery. In-
900
+ ternational Journal of Applied Earth Observation and
901
+ Geoinformation 105:102598.
902
+ Li, C.-L.; Sohn, K.; Yoon, J.; and Pfister, T. 2021. Cutpaste:
903
+ Self-supervised learning for anomaly detection and locali-
904
+ zation. In Proceedings of the IEEE/CVF Conference on
905
+ Computer Vision and Pattern Recognition, 9664–9674.
906
+ Li, J.; Wang, X.; Zhao, H.; Hu, X.; and Zhong, Y. 2022. De-
907
+ tecting pine wilt disease at the pixel level from high spatial
908
+ and spectral resolution uav-borne imagery in complex forest
909
+ landscapes using deep one-class classification. International
910
+ Journal of Applied Earth Observation and Geoinformation
911
+ 112:102947.
912
+ Liu, Y.; Li, C.-L.; and Poczos, B. 2018. Classifier two sam-
913
+ ple test for video anomaly detections. In BMVC, 71.
914
+ Miau, S., and Hung, W.-H. 2020. River flooding forecasting
915
+ and anomaly detection based on deep learning. IEEE Access
916
+ 8:198384–198402.
917
+ Ngo, P. C.; Winarto, A. A.; Kou, C. K. L.; Park, S.; Akram,
918
+ F.; and Lee, H. K. 2019. Fence gan: Towards better anomaly
919
+ detection. In 2019 IEEE 31St International Conference on
920
+ tools with artificial intelligence (ICTAI), 141–148. IEEE.
921
+ Pang, G.; Shen, C.; Cao, L.; and Hengel, A. V. D. 2021.
922
+ Deep learning for anomaly detection: A review. ACM Com-
923
+ puting Surveys (CSUR) 54(2):1–38.
924
+ Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and
925
+ Efros, A. A. 2016. Context encoders: Feature learning by
926
+ inpainting. In Proceedings of the IEEE conference on com-
927
+ puter vision and pattern recognition, 2536–2544.
928
+ Pimentel, M. A.; Clifton, D. A.; Clifton, L.; and Tarassenko,
929
+ L. 2014. A review of novelty detection. Signal processing
930
+ 99:215–249.
931
+
932
+ Reiss, T.; Cohen, N.; Bergman, L.; and Hoshen, Y. 2021.
933
+ Panda: Adapting pretrained features for anomaly detection
934
+ and segmentation. In Proceedings of the IEEE/CVF Confer-
935
+ ence on Computer Vision and Pattern Recognition, 2806–
936
+ 2814.
937
+ Ruff, L.; Vandermeulen, R.; Goernitz, N.; Deecke, L.; Sid-
938
+ diqui, S. A.; Binder, A.; Muller, E.; and Kloft, M. 2018. ¨
939
+ Deep one-class classification. In International conference
940
+ on machine learning, 4393–4402. PMLR.
941
+ Schlegl, T.; Seeböck, P.; Waldstein, S. M.; Schmidt-Erfurth,
942
+ U.; and Langs, G. 2017. Unsupervised anomaly detection
943
+ with generative adversarial networks to guide marker dis-
944
+ covery. In International conference on information pro-
945
+ cessing in medical imaging, 146–157. Springer.
946
+ Schölkopf, B.; Williamson, R. C.; Smola, A.; Shawe-Taylor,
947
+ J.; and Platt, J. 1999. Support vector method for novelty de-
948
+ tection. Advances in neural information processing systems
949
+ 12.
950
+ Shi, Y.; Yang, J.; and Qi, Z. 2021. Unsupervised anomaly
951
+ segmentation via deep feature reconstruction. Neurocompu-
952
+ ting 424:9–22.
953
+ Simo-Serra, E.; Trulls, E.; Ferraz, L.; Kokkinos, I.; Fua, P.;
954
+ and Moreno-Noguer, F. 2015. Discriminative learning of
955
+ deep convolutional feature point descriptors. In Proceedings
956
+ of the IEEE international conference on computer vision,
957
+ 118–126.
958
+ Tax, D. M., and Duin, R. P. 1999. Support vector domain
959
+ description. Pattern recognition letters 20(11-13):1191–
960
+ 1199.
961
+ Wang, N.; Li, B.; Xu, Q.; and Wang, Y. 2019. Automatic
962
+ ship detection in optical remote sensing images based on
963
+ anomaly detection and spp-pcanet. Remote Sensing 11(1).
964
+ Xia, X.; Pan, X.; Li, N.; He, X.; Ma, L.; Zhang, X.; and Ding,
965
+ N. 2022. Gan-based anomaly detection: A review. Neuro-
966
+ computing 493:497–535.
967
+ Zavrtanik, V.; Kristan, M.; and Skočaj, D. 2021. Recostruc-
968
+ tion by inpainting for visual anomaly detection. Pattern
969
+ Recognition 112:107706.
970
+ Zenati, H.; Romain, M.; Foo, C.-S.; Lecouat, B.; and Chan-
971
+ drasekhar, V. 2018. Adversarially learned anomaly detec-
972
+ tion. In 2018 IEEE International conference on data mining
973
+ (ICDM), 727–736. IEEE.
974
+ Zhao, H.; Zhong, Y.; Wang, X.; Hu, X.; Luo, C.; Boitt, M.;
975
+ Piiroinen, R.; Zhang, L.; Heiskanen, J.; and Pellikka, P.
976
+ 2022. Mapping the distribution of invasive tree species us-
977
+ ing deep one-class classification in the tropical montane
978
+ landscape of kenya. ISPRS Journal of Photogrammetry and
979
+ Remote Sensing 187:328–344.
980
+ Zong, B.; Song, Q.; Min, M. R.; Cheng, W.; Lumezanu, C.;
981
+ Cho, D.; and Chen, H. 2018. Deep autoencoding gaussian-
982
+ mixture model for unsupervised anomaly detection. In In-
983
+ ternational conference on learning representations.
984
+
2NFQT4oBgHgl3EQf2DZm/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
2dA0T4oBgHgl3EQfM_90/content/2301.02140v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:13f90295dd92fee3329f11f1ab5db3e66af7a5ab7b2223a0165ed7f8cae9ae37
3
+ size 502006
2dA0T4oBgHgl3EQfM_90/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bcb70b20dfa954b6e8815e5667d458b385533de27bcb0bdb49a4e758e2d1b7a2
3
+ size 195814
2tE1T4oBgHgl3EQfAALp/content/2301.02835v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1c5323c204b36b2b0b22ed77600256d6e87f0b62a5dc642d1e52513ad5dad0b
3
+ size 755054
2tE1T4oBgHgl3EQfAALp/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:419e948356fa0b1e91c0432722785e337177dcec3abdd56cb13e3ded43e8e636
3
+ size 4653101
2tE1T4oBgHgl3EQfAALp/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5a5bfeb25272f38e41e81c6f9b1d039962509f0ce39f6fe08e7a1241d3c16ad
3
+ size 165161
3dFKT4oBgHgl3EQfQy0a/content/2301.11768v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0478999abef548f5eb0b15733b99d1c90301a6384cd0b7097f3ba5471a4b7340
3
+ size 1666889
3dFKT4oBgHgl3EQfQy0a/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91e5ad2fd433a1af663b2c5f9f2457c3b4596e04e24326c98791123eeb18cd98
3
+ size 10354733
3tAyT4oBgHgl3EQfo_h3/content/tmp_files/2301.00517v1.pdf.txt ADDED
@@ -0,0 +1,2053 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.00517v1 [math.AG] 2 Jan 2023
2
+ Correspondences in log Hodge cohomology
3
+ Charles Godfrey
4
+ Pacific Northwest National Laboratory
5
6
+ January 3, 2023
7
+ Abstract
8
+ We construct correspondences in logarithmic Hodge theory over a perfect field of arbitrary char-
9
+ acteristic. These are represented by classes in the cohomology of sheaves of differential forms with
10
+ log poles and, notably, log zeroes on cartesian products of varieties. From one perspective this gen-
11
+ eralizes work of Chatzistamatiou and Rülling, who developed (non-logarithmic) Hodge correspon-
12
+ dences over perfect fields of arbitrary characteristic;from another we provide partial generalizations
13
+ of more recent work of Binda, Park and Østvær on logarithmic Hodge correspondences by relaxing
14
+ finiteness and strictness conditions on the correspondences considered.
15
+ 1
16
+ Introduction
17
+ Generally speaking, a correspondence between two algebraic varieties푋 and 푌 over a field 푘 is a cycle
18
+ or cohomology class on the product 푋×푌. The study of such objects dates back (at least) to Lefschetz
19
+ [Lef53], and features prominently in famous conjectures on algebraic cycles (see e.g. [Voi14]) and
20
+ Voevodsky’s theory of motives (see e.g. [MVW06]).
21
+ In a number of algebro-geometric research areas it has become commonplace to work with pairs
22
+ (푋, ∆푋) consisting of a variety 푋 together with a divisor ∆푋 on 푋. Such areas include moduli of
23
+ varieties (where pairs generalize the curves with marked points of [DM69]), birational geometry
24
+ (where pairs appear naturally, for example as the output of strong resolution of singularities [KM98])
25
+ and logarithmic geometry (in this case vast generalizations of divisors ∆푋 are allowed [Ogu18]). It is
26
+ natural to wonder about analogues of correspondencesin this category of pairs, and there have been
27
+ efforts in this direction, for example development of categories of logarithmic motives [BPØ20].
28
+ In this paper, we focus on correspondences for logarithmic Hodge cohomology of pairs (푋, ∆푋),
29
+ where 푋 is a smooth (but not necessarily proper) variety over a perfect field 푘 and ∆푋 is a simple
30
+ normal crossing divisor on 푋. These cohomology groups can be described as
31
+ 퐻∗(푋, ∆푋) =
32
+
33
+ 퐻푞(푋, Ω푝
34
+ 푋(log ∆푋)),
35
+ (1.1)
36
+ where Ω푋(log ∆푋) is the sheaf of differential 1-forms on 푋 with log poles along ∆푋 and Ω푝
37
+ 푋(log ∆푋)
38
+ the 푝-th exterior power thereof. In addition we consider a generalization where 푋 comes with a
39
+ family of supports Φ푋, and the ordinary cohomology groups on the right hand side of eq. (1.1) are
40
+ replaced with cohomology with supports in Φ푋, namely 퐻푞
41
+ Φ푋(푋, Ω푝
42
+ 푋(log ∆푋)). Allowing for supports
43
+ greatly expands the applicability of our results: for example, it permits us to construct a correspon-
44
+ dence associated to a cycle 푍 ⊂ 푋 × 푌 in a situation where neither 푋 nor 푌 is proper over 푘, but 푍
45
+ is proper over both 푋 and 푌.1
46
+ There are multiple motivations for investigating correspondencesfor this particular cohomology
47
+ of pairs:
48
+ 1One way that such a cycle 푍 might naturally arise is as the closure of the graph of a birational equivalence 푋 ⤏ 푌 of
49
+ non-proper varieties.
50
+ This work was completed while the author was a PhD student in the University of Washington Department of Mathematics.
51
+ The author was partially supported by the University of Washington Department of Mathematics Graduate Research
52
+ Fellowship, and by the NSF grant DMS-1440140, administered by the Mathematical Sciences Research Institute, while in
53
+ residence at MSRI during the program Birational Geometry and Moduli Spaces.
54
+
55
+ • By analogy with the case of varieties (that is, without auxiliary divisors/log structures), we sus-
56
+ pect that correspondences at the level of Chow cycles are more fundamental, and that (many)
57
+ correspondencesin logarithmic Hodge cohomology are obtained from Chow correspondences
58
+ via a cycle morphism. However, as of this writing there is no full-fledged theory of Chow co-
59
+ homology of pairs or log schemes (though there has been considerable progress, for instance
60
+ in [Bar18; BBG22]). Logarithmic Hodge cohomology is in contrast quite mature, appearing as
61
+ early as [Del71].
62
+ • Correspondences in (non-logarithmic) Hodge cohomology have found remarkable applica-
63
+ tions. For example, [CR11] used them to prove birational invariance of the cohomology groups
64
+ of the structure sheaf 퐻푖(푋, 풪푋) for smooth varieties 푋 over perfect fields of positive character-
65
+ istic. In fact, attempting to implement a similar strategy with logarithmic Hodge cohomology
66
+ to obtain results on invariance of the cohomology groups 퐻푖(푋, 풪푋(−∆푋)) with respect to (a
67
+ restricted class of) birational equivalences was the initial inspiration for this work. Ultimately
68
+ that attempt was unsuccessful, as we describe in Appendix A.
69
+ • There has been recent interest in logarithmic Hodge cohomology as a representable functor
70
+ on a category of motives of log schemes over a perfect field [BPØ20, §9]. While that work does
71
+ also construct some correspondences, they are restricted to those associated with logarithmic
72
+ Hodge cohomology classes of cycles 푍 ⊂ 푋 × 푌 which are finite over 푋 and obey additional
73
+ strictness (in the sense of logarithmic geometry) conditions; we remove these restrictions.
74
+ The correspondences we construct are obtained from certain Hodge classes with both log poles
75
+ and log zeroes. Our main result is:
76
+ Theorem 1.2 (= Theorem 4.1). A class 훾 ∈ 퐻푗
77
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
78
+ 푋×푌(log ∆푋×푌)(−pr∗
79
+ 푋∆푋)) defines
80
+ homomorphisms
81
+ cor(훾) ∶ 퐻푞
82
+ Φ푋(푋, Ω푝
83
+ 푋(log ∆푋)) → 퐻푞+푗−푑푋
84
+ Φ푌
85
+ (푌, Ω푝+푖−푑푋
86
+
87
+ (log ∆푌))
88
+ by the formula cor(훾)(훼) ∶= pr푌∗(pr∗
89
+ 푋(훼) ⌣ 훾). Moreover if (푍, ∆푍, Φ푍) is another snc pair with
90
+ supports and 훿 ∈ 퐻푗′
91
+ 푃(Φ푌,Φ푍)(푌 × 푍, Ω푖′
92
+ 푌×푍(log ∆푌×푍)(−pr∗
93
+ 푌∆푌)), then
94
+ pr푋×푍∗(pr∗
95
+ 푋×푌(훾) ⌣ pr∗
96
+ 푌×푍(훿)) ∈ 퐻푗+푗′−푑푌
97
+ 푃(Φ푋,Φ푍)(푋 × 푍, Ω푖+푖′−푑푌
98
+ 푋×푍
99
+ (log ∆푋×푍)(−pr∗
100
+ 푋∆푋)) and
101
+ cor(pr푋×푍∗(pr∗
102
+ 푋×푌(훾) ⌣ pr∗
103
+ 푌×푍(훿))) = cor(훿)◦ cor(훾)
104
+ as homomorphisms 퐻푞
105
+ Φ푋(푋, Ω푝
106
+ 푋(log ∆푋)) → 퐻푞+푗+푗′−푑푋−푑푌
107
+ Φ푍
108
+ (푍, Ω푝+푖+푖′−푑푋−푑푌
109
+
110
+ (log ∆푍)).
111
+ In the above, ∆푋푌 ∶= pr∗
112
+ 푋∆푋 + pr∗
113
+ 푌∆푌, a simple normal crossing divisor on 푋 × 푌. There is a
114
+ simple heuristic explanation for the appearance of differential forms in Ω푖
115
+ 푋×푌(log ∆푋×푌)(−pr∗
116
+ 푋∆푋):
117
+ working over the complex numbers, in the case where 푋and 푌 are both proper the class cor(훾)(훼) ∶=
118
+ pr푌∗(pr∗
119
+ 푋(훼) ⌣ 훾) can be computed explicitly as an integral of the form
120
+
121
+
122
+ 훼(푥) ∧ 훾(푥, 푦),
123
+ (1.3)
124
+ and this integral will only be finite when the log poles of 훼 along ∆푋 are cancelled by complementary
125
+ zeroes of the form 훾(푥, 푦) along the preimage pr∗
126
+ 푋∆푋.
127
+ Our proof of Theorem 1.2 relies heavily on prior work on both Hodge cohomology with supports
128
+ [CR11, §2] and its logarithmic variant [BPØ20, §9]. Section 2 is a rapid summary of those results.
129
+ The key new technical ingredient is a base change formula on the interaction of pushforward and
130
+ pullback operations in cartesian squares, proved in Section 3. Section 4 includes the proof of our
131
+ main theorem.
132
+ 2
133
+
134
+ 1.1
135
+ Acknowledgements
136
+ Thanks to Daniel Bragg, Yun Hao, Sarah Scherotzke, Nicolò Sibilla and Mattia Talpo for helpful
137
+ conversations, to Lawrence Jack Barrott for illuminating email correspondence regarding logarith-
138
+ mic aspects of Chow and Hodge, and to my advisor Sándor Kovács for many insightful discussions.
139
+ Thanks also to the participants of the Spring 2019 MSRI graduate student seminar, in particular
140
+ Giovanni Inchiostro and organizer Fatemeh Rezaee, for feedback on early work on this paper.
141
+ 2
142
+ Functoriality properties of log Hodge cohomology with sup-
143
+ ports
144
+ 2.1
145
+ Supports
146
+ In order to obtain results that apply to correspondences between varieties 푋 and 푌 where neither 푋
147
+ nor 푌 is proper, it is necessary to work with cohomology with supports, also known as local coho-
148
+ mology. A primary source for the material of this subsection is [R&D, §IV]. Let 푋 be a noetherian
149
+ scheme.
150
+ Definition 2.1 ([R&D, §IV], [CR11, §1.1]). A family of supports Φ on 푋 is a non-empty collection
151
+ Φ of closed subsets of 푋 such that
152
+ • If 퐶 ∈ Φ and 퐷 ⊂ 퐶 is a closed subset, then 퐷 ∈ Φ.
153
+ • If 퐶, 퐷 ∈ Φ then 퐶 ∪ 퐷 ∈ Φ.
154
+ Example 2.2. Φ = { all closed subsets of 푋 } is a family of supports. More generally if 풞 is any col-
155
+ lection of closed subsets 퐶 ⊂ 푋, there is a smallest family of supports Φ(풞) containing 풞 (explicitly,
156
+ Φ(풞) consists of finite unions ⋃
157
+ 푖 푍푖 of closed subsets 푍푖 ⊂ 퐶푖 of elements 퐶푖 ∈ 풞). Taking Φ = Φ({푋})
158
+ recovers the previous example. A more interesting example is the case where for some fixed 푝 ∈ ℕ,
159
+ Φ = {closed sets 푍 ⊆ 푋 | dim 푍 ≤ 푝}.
160
+ There is a close relationship between families of supports on X and certaincollections of specialization-
161
+ closed subsets of points on 푋, and we can also consider sheaves of families of supports — for further
162
+ details we refer to [R&D, §IV.1].
163
+ If 푓 ∶ 푋 → 푌 is a morphism of noetherian schemes and Ψ is a family of supports on 푌, then
164
+ {푓−1(푍) | 푍 ∈ Ψ} is a family of closed subsets of 푋, and is closed under unions, but is not in general
165
+ closed under taking closed subsets.
166
+ Definition 2.3. 푓−1(Ψ) is the smallest family of supports on 푋 containing {푓−1(푍) | 푍 ∈ Ψ}.
167
+ Let Φ be a family of supports on 푋. The notation/terminology 푓|Φ is proper will mean 푓|퐶 is
168
+ proper for every 퐶 ∈ Φ. If 푓|Φ is proper then 푓(퐶) ⊂ 푌 is closed for every 퐶 ∈ Φ and in fact
169
+ 푓(Φ) = {푓(퐶) ⊂ 푌 | 퐶 ∈ Φ}
170
+ (2.4)
171
+ is a family of supports on 푌. The key point here is that if 퐷 ⊂ 푓(퐶) is closed, then 푓−1(퐷) ∩ 퐶 ∈ Φ
172
+ and 퐷 = 푓(푓−1(퐷) ∩ 퐶).
173
+ Definition 2.5. A scheme with supports (푋, Φ푋) is a scheme 푋 together with a family of supports
174
+ Φ푋 on 푋.
175
+ Definition 2.6. A pushing morphism 푓 ∶ (푋, Φ푋) → (푌, Φ푌) of schemes with supports is a
176
+ morphism 푓 ∶ 푋 → 푌 of underlying schemes such that 푓|Φ푋 is proper and 푓(Φ푋) ⊂ Φ푌. A pulling
177
+ morphism 푓 ∶ 푋 → 푌 is a morphism 푓 ∶ 푋 → 푌 such that 푓−1(Φ푌) ⊂ Φ푋.
178
+ These morphisms provide two different categories with underlying set of objects schemes with
179
+ supports (푋, Φ푋), and pushing/pulling morphisms respectively (the verification is elementary; for
180
+ instance a composition of pushing morphisms is again a pushing morphism since compositions
181
+ of proper morphisms are proper). Schemes with supports provide a natural setting for describing
182
+ 3
183
+
184
+ functoriality properties of local cohomology. Let ℱ be a sheaf of abelian groups on a scheme with
185
+ supports (푋, Φ푋).2
186
+ Definition 2.7. The sheaf of sections with supports of ℱ, denoted ΓΦ(ℱ), is obtained by setting
187
+ ΓΦ(ℱ)(푈) = {휎 ∈ ℱ(푈) | supp 휎 ∈ Φ푋|푈 }
188
+ (2.8)
189
+ for each open 푈 ⊂ 푋 (here Φ푋|푈 is short for 휄−1Φ푋 where 휄 ∶ 푈 → 푋 is the inclusion). More
190
+ explicitly: for a local section 휎 ∈ ℱ(푈), 휎 ∈ ΓΦ(ℱ)(푈) means supp 휎 = 퐶 ∩ 푈 for a closed set
191
+ 퐶 ⊂ Φ푋.
192
+ The functor ΓΦ is right adjoint to an exact functor, for instance the inclusion of the subcategory
193
+ 퐀퐛Φ(푋) ⊂ 퐀퐛(푋) of abelian sheaves on 푋 with supports in Φ; so, ΓΦ is left exact and preserves
194
+ injectives. In the case Φ = Φ(푍) for some closed 푍 ⊂ 푋, this is proved in [Stacks, Tag 0A39, Tag 0G6Y,
195
+ Tag 0G7F] — the general case can then be obtained by writing ΓΦ as a filtered colimit:
196
+ ΓΦ = colim푍∈Φ Γ푍.
197
+ The right derived functor of ΓΦ will be denoted 푅ΓΦ. Taking global sections on 푋 gives the sections
198
+ with supports of ℱ: ΓΦ(ℱ) ∶= Γ푋(ΓΦ(ℱ)) This is also left exact, and (the cohomologies of) its
199
+ derived functor give the cohomology with supports in Φ: 퐻푖
200
+ Φ(푋, ℱ) ∶= 푅푖ΓΦ(ℱ).
201
+ Proposition 2.9. Cohomology with supports enjoys the following functoriality properties:
202
+ (푖) If 푓 ∶ (푋, Φ푋) → (푌, Φ푌) is a pulling morphism of schemes with supports, ℱ, 풢 are sheaves of
203
+ abelian groups on 푋, 푌 respectively, and if
204
+ 휑 ∶ 풢 → 푓∗ℱ is a morphism of sheaves,
205
+ (2.10)
206
+ then there is a natural morphism 푅ΓΦ풢 → 푅푓∗푅ΓΦℱ. Similarly if ℱ and 풢 are quasicoherent
207
+ then there are natural morphisms 푅ΓΦ풢 → 푅푓∗푅ΓΦℱ.
208
+ (푖푖) If 푓 ∶ (푋, Φ푋) → (푌, Φ푌) is a pushing morphism, ℱ, 풢 are sheaves of abelian groups on 푋, 푌
209
+ respectively, and
210
+ 휓 ∶ 푅푓∗ℱ → 풢 is a morphism in the derived category of 푋,
211
+ (2.11)
212
+ then there is a natural morphism 푅푓∗푅ΓΦ(ℱ) → 푅ΓΦ풢.
213
+ Both parts of the proposition follow from [Stacks, Tag 0G78]; (i) is discussed in detail in [CR11,
214
+ §2.1] and (ii) can be extracted from [CR11, §2.2] (although it doesn’t appear to be stated explicitly).
215
+ See also [BPØ20, Constructions 9.4.2, 9.5.3]
216
+ 2.2
217
+ Differential forms with log poles
218
+ Let 푘 be a perfect field.
219
+ Definition 2.12. A snc pair with supports (푋, ∆푋, Φ푋) over 푘 is a smooth scheme 푋 separated
220
+ and of finite type over 푘 with a family of supports Φ푋 together with a reduced, effective divisor ∆푋
221
+ on 푋 such that supp ∆푋 has simple normal crossings, in the sense that for any point 푥 ∈ 푋 there are
222
+ regular parameters 푧1, … , 푧푐 ∈ 풪푋,푥 such that supp ∆푋 = 푉(푧1 ⋅ 푧2 ⋯ 푧푟) on a Zariski neighborhood
223
+ of 푥.3 The interior 푈푋 of a snc pair with supports (푋, ∆푋, Φ푋) is
224
+ 푈푋 ∶= 푋 ⧵ supp ∆푋
225
+ (2.13)
226
+ The inclusion of 푈푋 in 푋 is denoted by 휄푋 ∶ 푈푋 → 푋.
227
+ 2Simply put ℱ is a sheaf of abelian groups on 푋.
228
+ 3This is equivalent to the more general definition [BPØ20, Def. 7.2.1] in the case where the base scheme is Spec 푘, which
229
+ is all we need.
230
+ 4
231
+
232
+ Here supp ∆푋 denotes the support of ∆푋 (if ∆푋 = ∑
233
+ 푖 푎푖퐷푖 where the 퐷푖 are prime divisors, then
234
+ supp ∆푋 = ∪푖퐷푖). Similarly let 푗푋 ∶ supp ∆푋 → 푋 denote the evident inclusion.
235
+ Definition 2.14 (compare with [CR11, Def. 1.1.4]). A pulling morphism 푓 ∶ (푋, ∆푋, Φ푋) →
236
+ (푌, ∆푌, Φ푌) of snc pairs with supports is a pulling morphism 푓 ∶ 푋 → 푌 of underlying schemes
237
+ with support such that 푓−1(supp ∆푌) ⊂ supp ∆푋; equivalently, 푓 restricts to a morphism 푓|푈푋 ∶
238
+ 푈푋 → 푈푌. A pushing morphism 푓 ∶ (푋, ∆푋, Φ푋) → (푌, ∆푌, Φ푌) of snc pairs with supports is a
239
+ pushing morphism of underlying schemes with support such that 푓∗∆푌 = ∆푋.
240
+ Note that if 푓 ∶ (푋, ∆푋, Φ푋) → (푌, ∆푌, Φ푌) is a pushing morphism then 푈푋 = 푓−1(푈푌), so for
241
+ example if 푓 ∶ 푋 → 푌 is proper then so is the induced map 푈푋 → 푈푌.
242
+ Convention 2.15 (compare with [CR11, p. 1.1.5]). A morphism of snc pairs with supports 푓 ∶
243
+ (푋, ∆푋, Φ푋) → (푌, ∆푌, Φ푌) is flat, proper, an immersion, etc. if and only if the same is true of the
244
+ underlying morphism of schemes 푓 ∶ 푋 → 푌. A diagram of snc pairs with supports
245
+ (푋′, ∆푋′, Φ푋′)
246
+ (푋, ∆푋, Φ푋)
247
+ (푌′, ∆푌′, Φ푌′)
248
+ (푌, ∆푌, Φ푌)
249
+ 푔′
250
+ 푓′
251
+
252
+
253
+ (2.16)
254
+ is cartesian if and only if the induced diagram of underlying schemes
255
+ 푋′
256
+
257
+ 푌′
258
+
259
+ 푔′
260
+ 푓′
261
+
262
+
263
+
264
+ (2.17)
265
+ is cartesian.4
266
+ The terminology is meant to suggest that pushing (resp. pulling) morphismsinduce pushforward
267
+ (resp. pullback) maps on log Hodge cohomology, as we now describe.
268
+ If (푋, ∆푋) is an snc pair, or more generally a normal separated scheme of finite type 푋 over 푘
269
+ together with a sequence of effective Cartier divisors 퐷1, … , 퐷푁 ⊆ 푋 with sum ∆푋 = ∑
270
+ 푖 퐷푖, then
271
+ it comes with a sheaf of differential forms with log poles Ω푋(log ∆푋). In the case where (푋, ∆푋, Φ푋)
272
+ is snc, this sheaf and its properties are described in [EV92, §2]. For a definition and treatment of
273
+ Ω푋(log ∆푋) in the much greater generality of logarithmic schemes we refer to [Ogu18, §IV].
274
+ In some of the calculations below the following concrete local description will be very useful.
275
+ Let 푧1, 푧2, … , 푧푛 be local coordinates at a point 푥 ∈ 푋 such that supp ∆푋 = 푉(푧1푧2 ⋯ 푧푟) in a neigh-
276
+ borhood of 푥. Recall that as 푋 is smooth the differentials 푑 푧1, 푑 푧2, … , 푑 푧푛 freely generate Ω푋 on a
277
+ neighborhood of 푥.
278
+ Lemma 2.18 (see e.g. [EV92, §2]). Thesections 푑 푧1
279
+ 푧1 , … , 푑 푧푟
280
+ 푧푟 , 푑 푧푟+1, … , 푑 푧푛 freelygenerateΩ푋(log ∆푋)
281
+ on a neighborhood of 푥.
282
+ Given Ω푋(log ∆푋), we can form the exterior powers
283
+ Ω푝
284
+ 푋(log ∆푋) ∶=
285
+
286
+
287
+ Ω푋(log ∆푋),
288
+ (2.19)
289
+ and combining Lemma 2.18 with (2.19) gives concrete local descriptions of the Ω푝
290
+ 푋(log ∆푋); in par-
291
+ ticular, we see that Ωdim 푋
292
+
293
+ (log ∆푋) = 휔푋(∆푋).
294
+ 4If we take the red pill of logarithmic geometry, it starts to seem almost more reasonable to only require flatness, properness,
295
+ cartesianness and so on of the induced maps of interiors 푈푋 → 푈푌. However we do use the stronger restrictions of the given
296
+ definition in some of the proofs below.
297
+ 5
298
+
299
+ Definition 2.20. The log-Hodge cohomology with supports of a log-smooth pair with supports
300
+ (푋, ∆푋, Φ푋) is defined by
301
+ 퐻푑(푋, ∆푋, Φ푋) =
302
+
303
+ 푝+푞=푑
304
+ 퐻푞
305
+ Φ(푋, Ω푝
306
+ 푋(log ∆푋))
307
+ (2.21)
308
+ Here 퐻푞
309
+ Φ denotes local cohomology with respect to the family of supports Φ푋. For connected 푋, we
310
+ define 퐻푑(푋, ∆푋, Φ푋) ∶= 퐻2 dim 푋−푑(푋, ∆푋, Φ푋), and in general we set 퐻푑(푋, ∆푋, Φ푋) = ⨁
311
+ 푖 퐻푑(푋푖, ∆푋푖, Φ푋푖)
312
+ where 푋푖 are the connected components of 푋.
313
+ Let 푓 ∶ (푋, ∆푋, Φ푋) → (푌, ∆푌, Φ푌) be pulling morphism of snc pairs with supports.
314
+ Lemma 2.22 ([Ogu18, Prop. 2.3.1] + (2.19)). The map 푓 induces a morphism of sheaves
315
+ 푓∗Ω푝
316
+ 푌(log ∆푌)
317
+ 푑 푓∨
318
+ ����→ Ω푝
319
+ 푋(log ∆푋) adjoint to a morphism
320
+ 푓∗Ω푝
321
+ 푌(log ∆푌)
322
+ 푑푓∨
323
+ ����→ Ω푝
324
+ 푋(log ∆푋) for all p.
325
+ (2.23)
326
+ The essential content of this lemma is that when we pull back a log differentialform 휎 on (푌, ∆푌),
327
+ it doesn’t develop poles of order ≥ 1 along ∆푋. Combining the previous lemma with proposition 2.9
328
+ gives:
329
+ Proposition 2.24 ([BPØ20, §9.1-2], see also [CR11, §2.1]). Foreverypullingmorphism푓 ∶ (푋, ∆푋, Φ푋) →
330
+ (푌, ∆푌, Φ푌) there are functorial morphisms
331
+ 푅ΓΦΩ푝
332
+ 푌(log ∆푌) → 푅푓∗푅ΓΦΩ푝
333
+ 푌(log ∆푌) for all p
334
+ (2.25)
335
+ In particular, for each 푝, 푞 there are functorial homomorphisms
336
+ 푓∗ ∶ 퐻푞
337
+ Φ(푌, Ω푝
338
+ 푌(log ∆푌)) → 퐻푞
339
+ Φ(푋, Ω푝
340
+ 푋(log ∆푋))
341
+ (2.26)
342
+ and hence (summing over 푝 + 푞 = 푑) functorial homomorphisms
343
+ 푓∗ ∶ 퐻푑(푋, ∆푋, Φ푋) → 퐻푑(푌, ∆푌, Φ푌)
344
+ (2.27)
345
+ The maps 푓∗ ∶ 퐻푑(푋, ∆푋, Φ푋) → 퐻푑(푌, ∆푌, Φ푌) induced by a pushing morphism 푓 ∶ (푋, ∆푋, Φ푋) →
346
+ (푌, ∆푌, Φ푌) can be obtained from a combination of Nagata compactification and Grothendieck du-
347
+ ality.
348
+ Lemma 2.28 ([BPØ20, §9.5], see also [CR11, §2.3]). Let 푓 ∶ (푋, ∆푋, Φ푋) → (푌, ∆푌, Φ푌) be a pushing
349
+ morphism of equidimensional log-smooth pairs with support such that. Then letting 푐 = dim 푌−dim푋,
350
+ for each 푝 there are functorial morphisms of complexes of coherent sheaves
351
+ 푅푓���푅ΓΦ푋(Ω푝
352
+ 푋(log ∆푋)) → 푅ΓΦ푌Ω푝+푐
353
+
354
+ (log ∆푌)[푐]
355
+ (2.29)
356
+ inducing maps on cohomology
357
+ 푓∗ ∶ 퐻푞
358
+ Φ푋(푋, Ω푝
359
+ 푋(log ∆푋)) → 퐻푞+푐
360
+ Φ푌 (푌, Ω푝+푐
361
+
362
+ (log ∆푌))
363
+ (2.30)
364
+ for all 푞.
365
+ Since they enter into the calculations below, we give a description of these pushforward mor-
366
+ phisms. Before beginning, a word on duality in our current setup: since we are working exclu-
367
+ sively over Spec 푘, we can make use of compatible normalized dualizing complexes — namely, if
368
+ 휋 ∶ 푍 → Spec푘 is a separated finite type 푘-scheme then 휋!풪Spec 푘 is a dualizing complex [Stacks,
369
+ Tag 0E2S, Tag 0FVU]. We will make repeated use of the behavior of dualizing with respect to differ-
370
+ entials: as a consequence of Lemma 2.18, wedge product gives a perfect pairing
371
+ Ω푝
372
+ 푋(log ∆푋)(−∆푋) ⊗ Ωdim 푋−푝
373
+
374
+ (log ∆푋) → 휔푋
375
+ (2.31)
376
+ 6
377
+
378
+ (see also [Har77, Cor. III.7.13]) and so Ωdim 푋−푝
379
+
380
+ (log ∆푋) ≃ 푅ℋ표푚푋(Ω푝
381
+ 푋(log ∆푋)(−∆푋), 휔푋). Here
382
+ the derived sheaf Hom 푅ℋ표푚푋 agrees with the regular sheaf Hom as Ω푝
383
+ 푋(log ∆푋)(−∆푋) is locally
384
+ free. On the other hand, the dualizing functor of 푋 is 푅ℋ표푚푋(Ω푝
385
+ 푋(log ∆푋)(−∆푋), 휔푋[dim 푋]) where
386
+ 휔푋 = Ωdim 푋
387
+
388
+ . An upshot is that Grothendieck duality calculations involving the sheaves of differen-
389
+ tial forms become more symmetric and predictable if we work with the shifted versions Ω푝
390
+ 푋(log ∆푋)(−∆푋)[푝];
391
+ for example then we have the identity
392
+ Ωdim 푋−푝
393
+
394
+ (log ∆푋)[dim푋 − 푝] ≃ 푅ℋ표푚푋(Ω푝
395
+ 푋(log ∆푋)(−∆푋)[푝], 휔푋[dim 푋])
396
+ Now, we need to compactify 푓 ∶ 푋 → 푌.
397
+ Theorem 2.32 ([Nag63, §4 Thm. 2], [Con07, Thm. 4.1]). Let 푆 be a quasi-compact quasi-separated
398
+ scheme and let 푋 → 푆 be a separated morphism of finite type. Then there is a dense open immersion of
399
+ 푆-schemes 푋 → 푋 such that 푋 is proper.
400
+ Using Theorem 2.32 we obtain morphisms of schemes
401
+
402
+ ̄푋
403
+
404
+
405
+
406
+ ̄푓
407
+ (2.33)
408
+ where 휄 ∶ 푋 → ̄푋 is a dense open immersion and ̄푓 ∶ ̄푋 → 푌 is proper. Note that ̄푋 need not be
409
+ smooth over 푘, and in the absence of resolutions of singularities5 there is not even a way to make ̄푋
410
+ smooth. This means we cannot hope to upgrade ̄푋to a simple normal crossing pair ( ̄푋, ∆ ̄푋). However,
411
+ we do still have a divisor ∆ ̄푋 ∶= ̄푓∗∆푦 on ̄푋. One way to overcome these difficulties is to equip the
412
+ possibly singular ̄푋 with a logarithmic structure, in some sense associated to ∆ ̄푋, whose restriction
413
+ to 푋 coincides with a logarithmic structure naturally defined by the simple normal crossing divisor
414
+ ∆푋.
415
+ Formally, we use the log structure on ̄푋 pulled back from the log structure on (푌, ∆푌) [Ogu18,
416
+ §III.1.6-7] along the morphism ̄푓 ∶ ̄푋 → 푌. Since (푌, ∆푌 = ∑푁
417
+ 푖=1 퐷푌
418
+ 푖 ) is a simple normal crossing
419
+ pair, its associated log structure is Deligne-Faltings [Ogu18, §III.1.7] and can be encoded in the se-
420
+ quence of inclusions of ideal sheaves 풪푌(−퐷푌
421
+ 푖 ) → 풪푌. The pullback log structure on ̄푋 can then be
422
+ encoded in the sequence of inclusions of ideal sheaves
423
+ ̄푓−1풪푌(−퐷푌
424
+ 푖 ) ⋅ 풪 ̄푋 = 풪 ̄푋(− ̄푓∗퐷푌
425
+ 푖 ) → 풪 ̄푋.
426
+ The pushforward morphisms of Lemma 2.28 are defined using the sheaves of log differential 푝-
427
+ forms on ̄푋 over 푘 as described in [Ogu18, §IV.1, V.2] — these will be denoted6 by Ω푝
428
+ 푋(log ∆푋). The
429
+ essential properties that we need are:
430
+ • Ω푝
431
+ 푋(log ∆푋) is a coherent sheaf on 푋 together with a functorial morphism
432
+ Ω푝
433
+ 푌(log ∆푌) → 푓∗Ω푝
434
+ 푋(log ∆푋).
435
+ Coherence can be obtained as follows: first, the log structure on (푌, ∆푌) is coherent ([Ogu18,
436
+ §III.1.9]), and hence so is its pullback to ̄푋 (see for example [Ogu18, Def. III.1.1.5, Rmk III.1.1.6]).
437
+ Then [Ogu18, Cor. IV.1.2.8] implies Ω1
438
+ 푋(log ∆푋) is a coherent sheaf, and it follows that its 푝-th
439
+ exteriorpowersare coherentsheavesas well. The desiredfunctorial morphismcan be obtained
440
+ from [Ogu18, Prop. IV.1.2.15].
441
+ 5At the time of this writing, this applies to the cases char 푘 = 푝 > 0 and dim 푋 > 3.
442
+ 6This is an abuse of notation since the construction of this sheaf is (as far as we know) not the same as the one for simple
443
+ normal crossing pairs described above Lemma 2.18, however the notation of [Ogu18] seems unsatisfactory for our purposes
444
+ as we wish to stress that these are not the ordinary differential forms Ω푝
445
+ 푋,
446
+ 7
447
+
448
+ • There is a natural isomorphism Ω푝
449
+ 푋(log ∆푋)|푋 ≃ Ω푝
450
+ 푋(∆푋). This can be seen by observing that
451
+ the log structures on (푋, ∆푋) and ̄푋 are obtained as pullbacks of the log structure on (푌, ∆푌)
452
+ with respect to 푓 and ̄푓 respectively (in the case of (푋, ∆푋) this follows from Definition 2.14,
453
+ and in the latter case it is how we defined the log structure on ̄푋). Hence considering eq. (2.33)
454
+ we find that the log structure on ̄푋 restricts to that on (푋, ∆푋).
455
+ Hence in particular Ω푝
456
+ 푋(log ∆푋) is a functorial coherent extension of Ω푝
457
+ 푋(∆푋) to the possibly non-snc
458
+ log scheme ̄푋. Starting with the log differential
459
+ 푑 pr∨
460
+ 푌 ∶ Ω푝
461
+ 푌(log ∆푌)[푝] → 푅푓∗Ω푝
462
+ 푋(log ∆푋)[푝],
463
+ twisting by −∆푌 and using the projection formula gives a morphism (note: this is where we use the
464
+ assumptions that 푓∗∆푌 = ∆푋 and ̄푓∗∆푌 = ∆ ̄푋)
465
+ Ω푝
466
+ 푌(log ∆푌)(−∆푌)[푝] → 푅푓∗Ω푝
467
+ 푋(log ∆푋)(−∆푋)[푝]
468
+ (2.34)
469
+ to which we apply Grothendieck duality:
470
+ Theorem 2.35 (Grothendieck duality, [R&D, Cor. VII.3.4], [Con00, Thm. 3.4.4]). Let 푓 ∶ 푋 → 푌 be a
471
+ proper morphism of finite-dimensional noetherian schemes and assume 푌 admits a dualizing complex
472
+ (for example 푋 and 푌 could be schemes of finite type over 푘). Then for any pair of objects ℱ∙ ∈ 퐷−
473
+ 푞푐(푋)
474
+ and 풢∙ ∈ 퐷+
475
+ 푐 (푌) there is a natural isomorphism
476
+ 푅푓∗푅퐻표푚푋(ℱ∙, 푓!풢∙) ≃ 푅퐻표푚푌(푅푓∗ℱ∙, 풢∙) in 퐷푏
477
+ 푐 (푌)
478
+ Combining Theorem 2.35 with eq. (2.34) gives a morphism
479
+ 푅푓∗푅ℋ표푚푋(Ω푝
480
+ 푋(log ∆푋)(−∆푋)[푝], 휔∙
481
+ 푋) = 푅ℋ표푚푌(푅푓∗Ω푝
482
+ 푋(log ∆푋)(−∆푋)[푝], 휔푌[dim 푌])
483
+ 푅ℋ표푚푌(Ω푝
484
+ 푌(log ∆푌)(−∆푌)[푝], 휔푌[dim 푌])
485
+ (2.36)
486
+ where the equality is Theorem 2.35 and the vertical map is induced by (2.34). Adding supports gives
487
+ a morphism
488
+ 푅푓∗푅ΓΦ푋푅ℋ표푚푋(Ω
489
+
490
+ 푋(log ∆푋)(−∆푋)[푝], 휔푋[dim 푋]) = 푅푓∗푅ΓΦ푋푅ℋ표푚푋(Ω
491
+
492
+ 푋(log ∆푋)(−∆푋)[푝], 휔∙
493
+ 푋)
494
+ 푅ΓΦ푌푅ℋ표푚푌(Ω푝
495
+ 푌(log ∆푌)(−∆푌)[푝], 휔푌[dim 푌])
496
+ (2.37)
497
+ where the equality is obtained from the excision property of local cohomology, compatibility of the
498
+ dualizing functor with restriction and the natural isomorphism Ω푝
499
+ 푋(log ∆푋)|푋 ≃ Ω푝
500
+ 푋(∆푋). Using
501
+ (2.31) we obtain
502
+ Ωdim 푋−푝
503
+
504
+ (log ∆푋) ≃ ℋ표푚푋(Ω푝
505
+ 푋(log ∆푋)(−∆푋), 휔푋) = 푅ℋ표푚푋(Ω푝
506
+ 푋(log ∆푋)(−∆푋), 휔푋)
507
+ where the last equality uses the fact that Ω푝
508
+ 푋(log ∆푋)(−∆푋) is locally free. A similar calculation on
509
+ 푌 transforms (2.37) into:
510
+ 푅푓∗푅ΓΦ푋Ωdim 푋−푝
511
+
512
+ (log ∆푋)[dim푋 − 푝] → 푅ΓΦ푌Ωdim 푌−푝
513
+
514
+ (log ∆푌)[dim푌 − 푝]
515
+ and reindexing like 푝 ↔ dim 푋 − 푝 recovers Lemma 2.28.
516
+ 8
517
+
518
+ 3
519
+ A base change formula
520
+ Lemma 3.1 (compare with [CR11, Prop. 2.3.7]). Let
521
+ (푋′, ∆푋′, Φ푋′)
522
+ (푋, ∆푋, Φ푋)
523
+ (푌′, ∆푌′, Φ푌′)
524
+ (푌, ∆푌, Φ푌)
525
+
526
+ 푔′
527
+ 푓′
528
+
529
+
530
+ (3.2)
531
+ be a cartesian diagram of equidimensional snc pairs with supports, where 푓, 푓′ (resp. 푔, 푔′) are pushing
532
+ (resp. pulling) morphisms and 푔 is either flat or a closed immersion transverse to 푓. Then
533
+ 푔∗푓∗ = 푓′
534
+ ∗푔′∗ ∶ 퐻∗(푋, ∆푋, Φ푋) → 퐻∗(푌′, ∆푌′, Φ푌′).
535
+ We will prove this following Chatzistamatiou and Rülling’s argument [CR11, Prop. 2.3.7] quite
536
+ closely, at various points reducing to statements proved therein. In the proofs we will make use of a
537
+ slight variant of Definition 2.3.
538
+ Definition 3.3. If 푓 ∶ 푋 → 푌 is a morphism of noetherian schemes and let Φ푌 is a family of
539
+ supports on 푌, then
540
+ 푓−1
541
+ ∗ (Φ푌) ∶= {푍 ⊆ 푋 | 푓|푍 is proper and 푓(푍) ∈ Φ푌}
542
+ Lemma 3.4. It suffices to prove Lemma 3.1 in the cases where 푓 is either
543
+ (푖) a projection morphism of the form pr푌 ∶ (푋 × 푌, pr∗
544
+ 푌∆푌, pr−1
545
+ 푌∗(Φ푌)) → (푌, ∆푌, Φ푌), or
546
+ (푖푖) a closed immersion.
547
+ Remark 3.5. This lemma makes essential use of the functoriality part of Lemma 2.28.
548
+ Proof. We can decompose (3.2) as a concatenation of cartisian diagrams
549
+ (푋′, ∆푋′, Φ푋′)
550
+ (푋, ∆푋, Φ푋)
551
+ (푋 × 푌′, pr∗
552
+ 푌′∆푌, pr−1
553
+ 푌′∗(Φ′
554
+ 푌))
555
+ (푋 × 푌, pr∗
556
+ 푌∆푌, pr−1
557
+ 푌∗(Φ푌))
558
+ (푌′, ∆푌′, Φ푌′)
559
+ (푌, ∆푌, Φ푌)
560
+ (2)
561
+ 푔′
562
+ ℎ′
563
+
564
+ (1)
565
+ pr푌′
566
+ id×푔
567
+ pr푌
568
+
569
+ (3.6)
570
+ where ℎ = id × 푓 is the graph morphism of 푓 and ℎ′ = 푔′ × 푓′. If 푔 is flat or a closed immersion
571
+ transverse to 푓 then id × 푔 is flat or a closed immersion transverse to ℎ (by base change).
572
+ Here the only new feature not covered in [CR11, Prop. 2.3.7] is the presence of divisors, and we
573
+ simply note that ∆푋 = 푓∗∆푋 = ℎ∗pr∗
574
+ 푌∆푌 and similarly for ∆푋′, so that both pr푌 and ℎ are pushing
575
+ morphisms in the sense of Definition 2.14, and similarly for the left vertical maps. In other words, the
576
+ supports and divisors in the middle row have been chosen precisely so that the vertical morphisms
577
+ are all “pushing.”
578
+ We proceed to consider case (i), and wish to point out that for this case 푔 can be arbitrary (we will
579
+ need the flatness/transversality restrictions in case (ii)). In what follows we set 푑푋 = dim 푋, 푑푌 =
580
+ dim 푌 and similarly for 푋′, 푌′. Using Theorem 2.32 we obtain a compactification 휄 ∶ 푋 → 푋 over
581
+ 푘 of the smooth, separated and finite type 푘-scheme 푋 in the upper right corner of (3.2) and (3.6).
582
+ 9
583
+
584
+ This results in a compactification of the square (1) in (3.6) which we write as
585
+ (푋 × 푌′, pr∗
586
+ 푌′∆푌, pr−1
587
+ 푌′∗(Φ′
588
+ 푌))
589
+ (푋 × 푌, pr∗
590
+ 푌∆푌, pr−1
591
+ 푌∗(Φ푌))
592
+ (푋 × 푌′, pr
593
+
594
+ 푌′∆푌, pr
595
+ −1
596
+ 푌′∗(Φ′
597
+ 푌))
598
+ (푋 × 푌, pr
599
+
600
+ 푌∆푌, pr
601
+ −1
602
+ 푌∗(Φ푌))
603
+ (푌′, ∆푌′, Φ푌′)
604
+ (푌, ∆푌, Φ푌)
605
+ 휄×id
606
+ id×푔
607
+ 휄×id
608
+ pr푌′
609
+ id×푔
610
+ pr푌
611
+
612
+ (3.7)
613
+ By the description following Lemma 2.28, we know that
614
+ pr푌∗ ∶ 퐻∗(푋 × 푌, pr∗
615
+ 푌∆푌, pr−1
616
+ 푌∗(Φ푌)) → 퐻∗(푌, ∆푌, Φ푌)
617
+ stems from a morphism
618
+ 푅pr푌∗푅ℋ표푚푋×푌(Ω푝
619
+ 푋×푌(log pr∗
620
+ 푌∆푌)(−pr∗
621
+ 푌∆푌)[푝], 휔∙
622
+ 푋×푌) → Ω푑푌−푝
623
+
624
+ (log ∆푌)[푑푌 − 푝]
625
+ (3.8)
626
+ obtained as the Grothendieck dual of a log differential of pr푌 (here and throughout what follows, a
627
+ similar statement holds for pr푌′). By an observation of Chatzistamatiou-Rülling , this map factors
628
+ as
629
+ 푅pr푌∗푅ℋ표푚푋×푌(Ω푝
630
+ 푋×푌(log pr
631
+
632
+ 푌∆푌)(−pr
633
+
634
+ 푌∆푌)[푝], 휔∙
635
+ 푋×푌)
636
+ → 푅pr푌∗푅ℋ표푚푋×푌(퐿pr
637
+
638
+ 푌Ω푝
639
+ 푌(log ∆푌)(−∆푌)[푝], 휔∙
640
+ 푋×푌)
641
+
642
+ ���������→
643
+ adjunction 푅ℋ표푚푌(Ω푝
644
+ 푌(log ∆푌)(−∆푌)[푝], 푅pr푌∗휔∙
645
+ 푋×푌)
646
+ ����→
647
+ trace 푅ℋ표푚푌(Ω푝
648
+ 푌(log ∆푌)(−∆푌)[푝], 휔푌[푑푌])
649
+ ≃�→ Ω푑푌−푝
650
+
651
+ (log ∆푌)[푑푌 − 푝]
652
+ (3.9)
653
+ where the adjunction isomorphism is [R&D, Prop. II.5.10], and the map labeled trace is induced by
654
+ the Grothendieck trace 푅pr푌∗휔∙
655
+ 푋×푌 → 휔푌[푑푌]. If it were the case that 푋 were smooth, then the
656
+ usual “box product” decomposition
657
+ 휔∙
658
+ 푋×푌 ≃ 휔푋[푑푋] ⊠ 휔푌[푑푌] ∶= pr∗
659
+ 푋 휔푋[푑푋] ⊗ pr푌∗휔푌[푑푌]
660
+ together with the perect pairings (2.31) and the local freeness of Ω푝
661
+ 푌(log ∆푌)(−∆푌)[푝] would give an
662
+ identification
663
+ 푅ℋ표푚푋×푌(퐿pr
664
+
665
+ 푌Ω푝
666
+ 푌(log ∆푌)(−∆푌)[푝], 휔∙
667
+ 푋×푌) ≃ pr∗
668
+ 푋 휔푋[푑푋] ⊗ pr
669
+
670
+ 푌Ω푑푌−푝
671
+
672
+ (log ∆푌)[푑푌 − 푝] (3.10)
673
+ In fact a more careful version of this argument, carrying out the above calculation on the smooth
674
+ locus 푋 × 푌 and using excision, shows that 퐻∗(푋 × 푌, pr∗
675
+ 푌∆푌, pr−1
676
+ 푌∗(Φ푌)) → 퐻∗(푌, ∆푌, Φ푌) always
677
+ factors through the summand 퐻∗
678
+ Φ푋(푋 × 푌, pr∗
679
+ 푋 휔푋 ⊗ pr
680
+
681
+ 푌Ω푑푌−푝
682
+
683
+ (log ∆푌)).
684
+ Our next lemma implies that even when 푋 is not known to be smooth, (3.8) still factors through
685
+ something like 푅pr푌∗(pr∗
686
+ 푋 휔푋[푑푋] ⊗ pr
687
+
688
+ 푌Ω푑푌−푝
689
+
690
+ (log ∆푌)[푑푌 − 푝]), provided we replace pr∗
691
+ 푋 휔푋[푑푋]
692
+ with pr
693
+ !
694
+ 푌풪푌.
695
+ Lemma 3.11 (compare with [CR11, Lem. 2.2.16]). For each 푝 there is a natural map
696
+ 훾 ∶ pr
697
+ !
698
+ 푌풪푌 ⊗ pr
699
+
700
+ 푌Ω푑푌−푝
701
+
702
+ (log ∆푌)(−∆푌)[푑푌 − 푝] → 푅ℋ표푚푋×푌(pr
703
+
704
+ 푌Ω푝
705
+ 푌(log ∆푌)(−∆푌)[푝], 휔∙
706
+ 푋×푌)
707
+ 10
708
+
709
+ such that the restriction of 훾 to 푋 × 푌 agrees with the isomorphism
710
+ pr∗
711
+ 푋 휔푋[푑푋] ⊗ pr∗
712
+ 푌 Ω푑푌−푝
713
+
714
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
715
+ ≃�→ 푅ℋ표푚푋×푌(퐿 pr∗
716
+ 푌 Ω푝
717
+ 푌(log ∆푌)(−∆푌)[푝], 휔∙
718
+ 푋×푌)
719
+ and such that the composition
720
+ 푅pr푌∗(pr∗
721
+ 푋 휔푋[푑푋] ⊗ pr∗
722
+ 푌 Ω푑푌−푝
723
+
724
+ (log ∆푌)(−∆푌)[푑푌 − 푝])
725
+ 푅pr푌∗(훾)
726
+ ��������→ 푅pr푌∗푅ℋ표푚푋×푌(pr∗
727
+ 푌 Ω푝
728
+ 푌(log ∆푌)(−∆푌)[푝], 휔∙
729
+ 푋×푌)
730
+
731
+ ���������→
732
+ adjunction 푅ℋ표푚푋×푌(Ω푝
733
+ 푌(log ∆푌)(−∆푌)[푝], 푅pr푌∗휔∙
734
+ 푋×푌)
735
+ trace
736
+ ����→ 푅ℋ표푚푋×푌(Ω푝
737
+ 푌(log ∆푌)(−∆푌)[푝], 휔푌[푑푌]) ≃ Ω푑푌−푝
738
+
739
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
740
+ (3.12)
741
+ coincides with the composition
742
+ 푅pr푌∗(pr
743
+ !
744
+ 푌풪푌 ⊗ pr
745
+
746
+ 푌Ω푑푌−푝
747
+
748
+ (log ∆푌)(−∆푌)[푑푌 − 푝])
749
+ proj.
750
+ ����→
751
+ form. 푅pr푌∗(pr
752
+ !
753
+ 푌풪푌) ⊗ pr
754
+
755
+ 푌Ω푑푌−푝
756
+
757
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
758
+ tr ⊗id
759
+ �����→ Ω푑푌−푝
760
+
761
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
762
+ (3.13)
763
+ By base change for dualizing complexes ([Stacks, Tag 0BZX, Tag 0E2S]) applied to the cartesian
764
+ diagram
765
+ 푋 × 푌
766
+
767
+
768
+ Spec 푘
769
+ (note that this is a very mild situation: 푋 → Spec 푘 is flat and proper and 푌 → Spec 푘 is smooth) we
770
+ see that pr
771
+ !
772
+ 푌풪푌 ≃ pr∗
773
+ 푋 휔∙
774
+ 푋. This makes the map 훾 look even more like (3.10).
775
+ Proof. Following [CR11, Lem. 2.2.16] we begin with the morphism
776
+ 푒 ∶ pr
777
+ !
778
+ 푌풪푌 ⊗퐿 퐿pr
779
+
780
+ 푌휔∙
781
+ 푌 → pr
782
+ !
783
+ 푌휔∙
784
+ 푌 =∶ 휔∙
785
+ 푋×푌
786
+ of [Con00, p. 4.3.12], which as explained therein agrees with
787
+ pr∗
788
+ 푋 휔푋[푑푋] ⊗ pr∗
789
+ 푌 휔푌[푑푌]
790
+ ≃�→ 휔푋×푌[푑푋 + 푑푌]
791
+ on locus 푋 × 푌,7 and has the property that
792
+ 푅푝푟푌∗(pr
793
+ !
794
+ 푌풪푌 ⊗퐿 퐿pr
795
+
796
+ 푌휔∙
797
+ 푌)
798
+ 푅푝푟푌∗휔∙
799
+ 푋×푌
800
+ 푅푝푟푌∗pr
801
+ !
802
+ 푌풪푌 ⊗퐿 휔∙
803
+
804
+ 휔∙
805
+
806
+ 푅푝푟푌∗푒
807
+ proj. form
808
+ tr
809
+ tr ⊗id
810
+ 7See Conrad’s comment “It is easy to check that 푒푓 coincides with (3.3.21) in the smooth case and is compatible with
811
+ composites in f (using (4.3.6).”
812
+ 11
813
+
814
+ commutes [Con00, Thm. 4.4.1]. We then define our version of 훾 as the composition
815
+ pr
816
+ !
817
+ 푌풪푌 ⊗퐿 퐿pr
818
+
819
+ 푌Ω푑푌−푝
820
+
821
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
822
+ id⊗퐿(2.31)
823
+ ���������→ pr
824
+ !
825
+ 푌풪푌 ⊗퐿 퐿pr
826
+
827
+ 푌푅ℋ표푚푌(Ω푝
828
+ 푌(log ∆푌)[푝], 휔∙
829
+ 푌)
830
+ functoriality
831
+ �����������→
832
+ of 퐿pr
833
+
834
+ 푌,⊗퐿
835
+ 푅ℋ표푚푋×푌(퐿pr
836
+
837
+ 푌Ω푝
838
+ 푌(log ∆푌)[푝], pr
839
+ !
840
+ 푌풪푌 ⊗퐿 휔∙
841
+ 푌)
842
+ induced by
843
+ ���������→
844
+
845
+ 푅ℋ표푚푋×푌(퐿pr
846
+
847
+ 푌Ω푝
848
+ 푌(log ∆푌)[푝], 휔∙
849
+ 푋×푌)
850
+ (3.14)
851
+ Note that we may drop the “퐿”s as Ω푑푌−푝
852
+
853
+ (log ∆푌)(−∆푌) and Ω푝
854
+ 푌(log ∆푌) are locally free. Verification
855
+ of the stated compatibilities is as in [CR11, Lem. 2.2.16].
856
+ Remark 3.15. It seems like we could have also used the more general version of [Con00, p. 4.3.12]
857
+ 푒′ ∶ pr
858
+ !
859
+ 푌풪푌 ⊗퐿 퐿pr
860
+
861
+ 푌Ω푑푌−푝
862
+
863
+ (log ∆푌)(−∆푌)[푑푌 − 푝] → pr
864
+ !
865
+ 푌Ω푑푌−푝
866
+
867
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
868
+ together with the description
869
+ pr
870
+ !
871
+ 푌Ω푑푌−푝
872
+
873
+ (log ∆푌)(−∆푌)[푑푌 − 푝] = 퐷푋×푌(퐿pr
874
+
875
+ 푌퐷푌(Ω푑푌−푝
876
+
877
+ (log ∆푌)(−∆푌)[푑푌 − 푝]))
878
+ where 퐷푌(−) = 푅ℋ표푚(−, 휔∙
879
+ 푌) and similarly for 퐷푋×푌.
880
+ Using this modified 훾, we obtain a modified version of the diagram [CR11, p. 732 during Lem.
881
+ 2.3.4], namely (3.16) in Figure 1). To make this diagram legible, we use a few abbreviations: all func-
882
+ tors are derived, we use the dualizing functors of the form 퐷푌(−) = 푅ℋ표푚푌(−, 휔∙
883
+ 푌) and we let
884
+ 푑 = 푑푋 + 푑푌. Lemma 3.11 shows that triangles involving 훾 commute, and (3.9) gives commutativity
885
+ of the rest of the diagram. The usefulness of this diagram is that by definition beginning in the top
886
+ left corner and following the path →↓ we obtain the pushforward on Hodge cohomology
887
+ pr푌∗ Γpr−1
888
+ 푌∗ Φ푌Ω푑−푝
889
+ 푋×푌(log pr∗
890
+ 푌∆푌)[푑 − 푝] → ΓΦ푌Ω푑푌−푝
891
+ ×푌
892
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
893
+ but following ↓→ gives a composition whose behavior with respect to (3.7) is easier to analyze.
894
+ Namely, we have a diagram like (3.16) on 푌′, and in fact a map from (3.16) to 푔∗ of the analogous
895
+ diagram on 푌′, and hence from the preceding discussion it will suffice to prove commutativity of
896
+ (3.17) of Figure 1.
897
+ Applying excision together with Lemma 3.11 we may rewrite the top row of (3.17) as
898
+ 푅 pr푌∗ 푅Γpr−1
899
+ 푌∗ Φ푌Ω푑−푝
900
+ 푋×푌(log pr∗
901
+ 푌∆푌)[푑 − 푝]
902
+ project
903
+ ������→ 푅 pr푌∗ 푅Γpr−1
904
+ 푌∗ Φ푌(pr∗
905
+ 푋 휔푋[푑푋] ⊗ pr∗
906
+ 푌 Ω푑푌−푝
907
+
908
+ (log ∆푌)(−∆푌)[푑푌 − 푝])
909
+ proj.
910
+ �����→
911
+ form. 푅 pr푌∗ 푅Γpr−1
912
+ 푌∗ Φ푌(pr∗
913
+ 푋 휔푋[푑푋]) ⊗ Ω푑푌−푝
914
+
915
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
916
+ tr ⊗id
917
+ �����→ 푅ΓΦ푌Ω푑푌−푝
918
+
919
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
920
+ (3.18)
921
+ where the first map is induced by a projection
922
+ Ω푑−푝
923
+ 푋×푌(log pr∗
924
+ 푌∆푌)[푑 − 푝] → pr∗
925
+ 푋 휔푋[푑푋] ⊗ pr∗
926
+ 푌 Ω푑푌−푝
927
+
928
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
929
+ coming from a Künneth-type decomposition of Ω푑−푝
930
+ 푋×푌(log pr∗
931
+ 푌∆푌), the second is the projection for-
932
+ mula, and the last map is induced by a trace map with supports defined as the composition
933
+ 푅 pr푌∗ 푅Γpr−1
934
+ 푌∗ Φ푌(pr∗
935
+ 푋 휔푋[푑푋])
936
+ excision
937
+ �������→ 푅pr푌∗푅Γpr−1
938
+ 푌∗Φ푌(pr
939
+ !
940
+ 푌풪푌)
941
+ Proposition 2.9
942
+ �������������→ 푅ΓΦ푌푅pr푌∗(pr
943
+ !
944
+ 푌풪푌)
945
+ tr�→ 푅ΓΦ푌풪푌
946
+ (3.19)
947
+ 12
948
+
949
+ pr푌∗ Γpr−1
950
+ 푌∗ Φ푌 Ω푑−푝
951
+ 푋×푌(log pr∗
952
+ 푌∆푌)[푑 − 푝]
953
+ pr푌∗Γpr−1
954
+ 푌∗Φ푌퐷푋×푌(Ω푝
955
+ 푋×푌(log pr∗
956
+ 푌∆푌)(−pr∗
957
+ 푌∆푌)[푝])
958
+ pr푌∗Γpr−1
959
+ ���∗Φ푌퐷푋×푌(pr
960
+
961
+ 푌Ω푝
962
+ ×푌(log ∆푌)(−∆푌)[푝])
963
+ pr푌∗Γpr−1
964
+ 푌∗Φ푌(pr
965
+ !
966
+ 푌풪푌 ⊗ pr
967
+
968
+ 푌Ω푑푌−푝
969
+
970
+ (log ∆푌)(−∆푌)[푑푌 − 푝])
971
+ ΓΦ푌 퐷푌(Ω푝
972
+ 푌(log ∆푌)(−∆푌)[푝]) = ΓΦ푌Ω푑푌−푝
973
+
974
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
975
+ excision
976
+ excision+퐿푒푚푚푎 3.11
977
+ 푑pr∨
978
+
979
+ 푑pr∨
980
+
981
+ (3.13)
982
+ pr푌∗(훾)
983
+ (3.16)
984
+ pr푌∗ Γpr−1
985
+ 푌∗Φ푌Ω푑−푝
986
+ 푋×푌(log pr∗
987
+ 푌∆푌)[푑 − 푝]
988
+ pr푌∗Γpr−1
989
+ 푌∗Φ푌(pr
990
+ !
991
+ 푌풪푌 ⊗ pr
992
+
993
+ 푌Ω푑푌−푝
994
+
995
+ (log ∆푌)(−∆푌)[푑푌 − 푝])
996
+ ΓΦ푌Ω푑푌−푝
997
+
998
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
999
+ 푔∗ pr푌′∗ Γpr−1
1000
+ 푌′∗Φ푌′ Ω푑−푝
1001
+ 푋×푌′(log pr∗
1002
+ 푌′∆푌′)[푑 − 푝]
1003
+ 푔∗pr푌′∗Γpr−1
1004
+ 푌′∗Φ푌′ (pr
1005
+ !
1006
+ 푌′풪푌′ ⊗ pr
1007
+
1008
+ 푌′Ω푑푌−푝
1009
+ 푌′
1010
+ (log ∆푌′)(−∆푌)[푑푌 − 푝])
1011
+ 푔∗ΓΦ푌′ Ω푑푌−푝
1012
+ 푌′
1013
+ (log ∆푌′)(−∆푌′)[푑푌 − 푝]
1014
+ (3.17)
1015
+ Figure 1: Modified versions of diagrams appearing in the proof of [CR11, Lem. 2.3.4] (all functors derived)
1016
+ 13
1017
+
1018
+ Here the second map comes from the functoriality properties of Proposition 2.9, since there is an
1019
+ inclusion pr−1
1020
+ 푌∗ Φ푌 ⊆ pr−1
1021
+ 푌 Φ푌. The decomposition (3.18) maps to a similar decomposition of the bot-
1022
+ tom row of (3.17), and the only commutativity not guaranteed by standard functoriality properties
1023
+ (e.g. functoriality of the projection formula appearing in the second map of (3.18)) is that of
1024
+ 푅 pr푌∗ 푅Γpr−1
1025
+ 푌∗ Φ푌(pr∗
1026
+ 푋 휔푋[푑푋]) ⊗ Ω
1027
+ 푑푌−푝
1028
+
1029
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
1030
+ 푅ΓΦ푌Ω
1031
+ 푑푌−푝
1032
+
1033
+ (log ∆푌)(−∆푌)[푑푌 − 푝]
1034
+ 푅푔∗(푅 pr푌′∗ 푅Γpr−1
1035
+ 푌′∗ Φ푌′ (pr∗
1036
+ 푋 휔푋[푑푋]) ⊗ Ω푑푌−푝
1037
+ 푌′
1038
+ (log ∆푌′)(−∆푌′)[푑푌 − 푝])
1039
+ 푅푔∗(푅ΓΦ푌′ Ω푑푌−푝
1040
+ 푌′
1041
+ (log ∆푌′)(−∆푌′)[푑푌 − 푝])
1042
+ tr ⊗id
1043
+ tr′ ⊗id
1044
+ (3.20)
1045
+ But applying one more projection formula to the bottom row of (3.20), we see (3.20) is obtained by
1046
+ tensoring the differential
1047
+ Ω푑푌−푝
1048
+
1049
+ (log ∆푌)(−∆푌)[푑푌 − 푝] → 푅푔∗Ω푑푌−푝
1050
+ 푌′
1051
+ (log ∆푌′)(−∆푌′)[푑푌 − 푝]
1052
+ with
1053
+ 푅 pr푌∗ 푅Γpr−1
1054
+ 푌∗ Φ푌(pr∗
1055
+ 푋 휔푋[푑푋])
1056
+ 푅ΓΦ푌풪푌
1057
+ 푅푔∗(푅 pr푌′∗ 푅Γpr−1
1058
+ 푌′∗ Φ푌′ (pr∗
1059
+ 푋 휔푋[푑푋]))
1060
+ 푅푔∗(푅ΓΦ푌′ 풪푌′)
1061
+ tr ⊗id
1062
+ tr′ ⊗id
1063
+ (3.21)
1064
+ and the commutativity of (3.21) is proved in [CR11, Lem. 2.3.4]. So far we have proved:
1065
+ Lemma 3.22. Lemma 3.1 holds in case (i) of Lemma 3.4.
1066
+ It remains to deal with case (ii) of Lemma 3.4, and for this we use the following lemma.
1067
+ Lemma 3.23 (compare with [CR11, Cor. 2.2.22]). Consider a diagram of pure-dimensional snc pairs
1068
+ (푋′, ∆푋′)
1069
+ (푋, ∆푋)
1070
+ (푌′, ∆푌′)
1071
+ (푌, ∆푌)
1072
+ 푔′
1073
+ 횤′
1074
+
1075
+
1076
+ (3.24)
1077
+ where 횤, 횤′ are pushing closed immersions and dim푌 − dim 푋 = dim 푌′ − dim 푋′ =∶ 푐. Then, for all
1078
+ 푞 the diagram
1079
+ 횤∗Ω푞
1080
+ 푋(log ∆푋)[푞]
1081
+ 푅푔∗횤′
1082
+ ∗Ω푞
1083
+ 푋′(log ∆푋′)
1084
+ Ω푞+푐
1085
+
1086
+ (log ∆푌)[푞 + 푐]
1087
+ 푅푔∗Ω푞+푐
1088
+ 푌′ (log ∆푌′)[푞 + 푐]
1089
+ 푑푔′∨
1090
+ 푑푔∨
1091
+ (3.25)
1092
+ commutes, where the horizontal maps are induced by log differentials and the left vertical map is the
1093
+ composition
1094
+ 횤∗Ω푞
1095
+ 푋(log ∆푋)[푞]
1096
+ ≃�→ 횤∗푅ℋ표푚(Ω푑푋−푞
1097
+
1098
+ (log ∆푋)(−∆푋)[푑푋 − 푞], 휔∙
1099
+ 푋)
1100
+ duality
1101
+ ������→ 푅ℋ표푚(횤∗Ω푑푋−푞
1102
+
1103
+ (log ∆푋)(−∆푋)[푑푋 − 푞], 휔∙
1104
+ 푌)
1105
+ 푑횤∨
1106
+ ���→ 푅ℋ표푚(Ω푑푋−푞
1107
+
1108
+ (log ∆푌)(−∆푌)[푑푋 − 푞], 휔∙
1109
+ 푌)
1110
+ ≃�→ Ω푞+푐
1111
+
1112
+ (log ∆푌)[푞 + 푐]
1113
+ (3.26)
1114
+ and the right vertical arrow is 푅푔∗ of a similar composition on 푌′.
1115
+ 14
1116
+
1117
+ Note that the codimension hypotheses hold if 푔 is flat or a closed immersion transverse to 횤.
1118
+ Proof. While it seems a proof following [CR11, Cor. 2.2.22] step-by-step is possible, we instead reduce
1119
+ to the case proved there as follows: first, observe that there is an evident map from the cartesian
1120
+ diagram
1121
+ 푈푋′
1122
+ 푈푋
1123
+ 푈푌′
1124
+ 푈푌
1125
+ (3.27)
1126
+ of interiors to (3.24). Noting that (3.25) will map to a similar diagram obtained from (3.27), that the
1127
+ compositions (3.26) are at least compatible with Zariski localization, and that the situation of (3.27)
1128
+ is covered by [CR11, Cor. 2.2.22], it will suffice to show that the natural map
1129
+ ℎ0푅ℋ표푚푌(횤∗Ω푞
1130
+ 푋(log ∆푋)[푞], 푅푔∗Ω푞+푐
1131
+ 푌′ (log ∆푌′)[푞 + 푐]) → ℎ0푅ℋ표푚푈푌(횤∗Ω푞
1132
+ 푈푋[푞], 푅푔∗Ω푞+푐
1133
+ 푈푌′ [푞 + 푐])
1134
+ (3.28)
1135
+ is injective. This can be checked Zariski-locally at a point 푥 ∈ 푋 ⊆ 푌, so we may assume 푋 ⊆ 푌
1136
+ is a global complete intersection, say of 푡1, … , 푡푐 ∈ 풪푌. In that case the 푡푖 define a Koszul resolu-
1137
+ tion 풦∙(푡푖) → 풪푋, and because 푋′ = 푌′ ×푌 푋 = 푉(푡1◦푔, ⋯ 푡푐◦푔) is smooth of codimension 푐 by
1138
+ hypotheses, it must be that the 푡푖◦푔 are also a regular sequence, hence
1139
+ 퐿푖푔∗풪푋 = ℎ−푖푔∗풦∙(푡푖) = {풪푋′,
1140
+ 푖 = 0
1141
+ 0
1142
+ otherwise
1143
+ in other words 퐿푔∗풪푋 = 풪푋′. Now using the fact that Ω푞
1144
+ 푋(log ∆푋) is locally free on 푋′ we conclude
1145
+ 퐿푔∗횤∗Ω푞
1146
+ 푋(log ∆푋)[푞] = 푔∗횤∗Ω푞
1147
+ 푋(log ∆푋)[푞] = 횤′
1148
+ ∗푔′∗Ω푞
1149
+ 푋(log ∆푋)[푞]
1150
+ Next, applying derived adjunction to both sides of (3.28) gives a commutative diagram
1151
+ 푅ℋ표푚푌(횤∗Ω
1152
+
1153
+ 푋(log ∆푋)[푞], 푅푔∗Ω
1154
+ 푞+푐
1155
+ 푌′ (log ∆푌′)[푞 + 푐])
1156
+ 푅ℋ표푚푈푌(횤∗Ω
1157
+
1158
+ 푈푋[푞], 푅푔∗Ω
1159
+ 푞+푐
1160
+ 푈푌′ [푞 + 푐])
1161
+ 푅푔∗푅ℋ표푚푌′(퐿푔∗횤∗Ω
1162
+
1163
+ 푋(log ∆푋)[푞], Ω
1164
+ 푞+푐
1165
+ 푌′ (log ∆푌′)[푞 + 푐])
1166
+ 푅푔∗푅ℋ표푚푈푌′ (퐿푔∗횤∗Ω
1167
+
1168
+ 푈푋[푞], Ω
1169
+ 푞+푐
1170
+ 푈푌′ [푞 + 푐])
1171
+ 푅푔∗푅ℋ표푚푌′(횤′
1172
+ ∗푔′∗Ω푞
1173
+ 푋(log ∆푋)[푞], Ω푞+푐
1174
+ 푌′ (log ∆푌′)[푞 + 푐])
1175
+ 푅푔∗푅ℋ표푚푈푌′ (횤′
1176
+ ∗푔′∗Ω푞
1177
+ 푈푋[푞], Ω푞+푐
1178
+ 푈푌′ [푞 + 푐])
1179
+ (3.29)
1180
+ Getting even more Zariski-local we may assume Ω푞
1181
+ 푋(log ∆푋) is free, say generated by 푑푥1, … , 푑푥푛
1182
+ and in that case
1183
+ 푅ℋ표푚푌′(횤′
1184
+ ∗푔′∗Ω푞
1185
+ 푋(log ∆푋)[푞], Ω푞+푐
1186
+ 푌′ (log ∆푌′)[푞 + 푐])
1187
+ = (
1188
+
1189
+
1190
+ 푅ℋ표푚푌′(풪푋′푑푥푖[푞], 풪푌′[푞 + 푐])) ⊗ Ω푞+푐
1191
+ 푌′ (log ∆푌′)
1192
+ (3.30)
1193
+ and by Grothendieck’s fundamental local isomorphism [Con00, §2.5]
1194
+ 푅ℋ표푚푌′(풪푋′[푞], 풪푌′[푞 + 푐])) ≃ ℰ푥푡푐
1195
+ 푌′(풪푋′, 풪푌′) ≃ det(ℐ푋′∕ℐ푋′)∨
1196
+ (3.31)
1197
+ (the last 2 as sheaves supported in degree 0). In particular, this is an invertible sheaf on 푋′, and it
1198
+ follows that the left hand side of (3.30) is a locally free sheaf (supported in degree 0) on 푋′. Recalling
1199
+ 푋′ is smooth and so in particular reduced, and since 푈푌′ ∩ 푋′ is a dense open (this is part of the
1200
+ 15
1201
+
1202
+ hypothesis that 푋′ → 푌′ is a pulling map) the natural map
1203
+ ℎ0푅ℋ표푚푌′(횤′
1204
+ ∗푔′∗Ω푞
1205
+ 푋(log ∆푋)[푞], Ω푞+푐
1206
+ 푌′ (log ∆푌′)[푞 + 푐])
1207
+ → ℎ0푅ℋ표푚푌′(횤′
1208
+ ∗푔′∗Ω푞
1209
+ 푋(log ∆푋)[푞], Ω푞+푐
1210
+ 푌′ (log ∆푌′)[푞 + 푐])|푈푌′
1211
+ ≃ ℎ0푅ℋ표푚푈푌′ (횤′
1212
+ ∗푔′∗Ω푞
1213
+ 푋(log ∆푋)|푈푌′ [푞], Ω푞+푐
1214
+ 푌′ (log ∆푌′)|푈푌′ [푞 + 푐])
1215
+ (3.32)
1216
+ is injective, where on the third line we have applied localization for ℰ푥푡. Now left-exactness of 푔∗
1217
+ gives an injection
1218
+ ℎ0푅푔∗푅ℋ표푚푌′(횤′
1219
+ ∗푔′∗Ω푞
1220
+ 푋(log ∆푋)[푞], Ω푞+푐
1221
+ 푌′ (log ∆푌′)[푞 + 푐])
1222
+ → ℎ0푅푔∗푅ℋ표푚푈푌′ (횤′
1223
+ ∗푔′∗Ω푞
1224
+ 푋(log ∆푋)|푈푌′ [푞], Ω푞+푐
1225
+ 푌′ (log ∆푌′)|푈푌′ [푞 + 푐])
1226
+ (3.33)
1227
+ To complete the proof, we use (3.29) to identify the map (3.33) with (3.28).
1228
+ Corollary 3.34. Lemma 3.1 holds in case (ii) of Lemma 3.4.
1229
+ Proof. This follows by applying cohomology with supports to (3.25).
1230
+ This completes our proof of Lemma 3.1.
1231
+ Corollary 3.35 (projection formula, compare with [CR11, Prop. 1.1.16]). Let 푓 ∶ 푋 → 푌 be a map
1232
+ of smooth schemes admitting two different enhancements to maps of smooth schemes with supports,
1233
+ (푋, ∆푋, Φ푋) → (푌, ∆푌, 푓(Φ푋)) pushing and (푋, 푓∗(∆′
1234
+ 푌), 푓−1(Φ푌)) → (푌, ∆′
1235
+ 푌, Φ푌) pulling
1236
+ Assume in addition that ∆푋 + 푓∗(∆′
1237
+ 푌) and ∆푌 + ∆′
1238
+ 푌 are (reduced) snc divisors. Then
1239
+ (푋, ∆푋 + 푓∗(∆′
1240
+ 푌), Φ푋 ∩ 푓−1(Φ푌)) → (푌, ∆푌 + ∆′
1241
+ 푌, 푓(Φ푋) ∩ Φ푌)
1242
+ is also a pushing map, and
1243
+ 푓∗(훽 ⌣ 푓∗훼) = 푓∗훽 ⌣ 훼 ∈ 퐻∗(푌, ∆푌 + ∆′
1244
+ 푌, 푓(Φ푋) ∩ Φ푌)
1245
+ for any 훼 ∈ 퐻∗(푌, ∆′
1246
+ 푌, Φ푌) and 훽 ∈ (푋, ∆푋, Φ푋), where ⌣ is the cup product on log Hodge cohomology
1247
+ defined along the lines of [CR11, §1.1.4, 2.4]
1248
+ Proof. This is a formal consequence of Lemma 3.1 and can be derived following the proof of [CR11,
1249
+ Prop. 1.1.16]. Again we use a factorization through the graph like
1250
+ (푋, ∆푋 + 푓∗(∆′
1251
+ 푌), Φ푋 ∩ 푓−1(Φ푌))
1252
+ (푌, ∆푌 + ∆′
1253
+ 푌, 푓(Φ푋) ∩ Φ푌)
1254
+ (푋 × 푋, pr∗
1255
+ 1 ∆푋 + pr∗
1256
+ 2 푓∗(∆′
1257
+ 푌), Φ푋 × 푓−1(Φ푌))
1258
+ (푋 × 푌, pr∗
1259
+ 1 ∆푋 + pr∗
1260
+ 2 ∆′
1261
+ 푌, Φ푋 × Φ푌)
1262
+ (푌 × 푌, pr∗
1263
+ 1 ∆푌 + pr∗
1264
+ 2 ∆′
1265
+ 푌, 푓(Φ푋) × Φ푌)
1266
+ id푋×id푋
1267
+
1268
+ id푌×id푌
1269
+ id푋×푓
1270
+ 푓×id푌
1271
+ (3.36)
1272
+ Here 푓 × id푌 on the bottom is a pushing morphism (since 푓|Φ푋 is proper and 푓∗∆푌 = ∆푋) and the
1273
+ right vertical map id푌 × id푌 is a closed immersion transverse to 푓 × id푌 since the outer rectangle
1274
+ is cartesian and 푋 is smooth of the correct codimension. This means we are in a situation to apply
1275
+ Lemma 3.1, and that lemma plus the definition of cup products in terms of pullbacks along diagonals
1276
+ gives the desired identity.
1277
+ 16
1278
+
1279
+ 4
1280
+ Correspondences
1281
+ Given snc pairs with familes of supports (푋, ∆푋, Φ푋) and (푌, ∆푌, Φ푌) with dimensions 푑푋 and 푑푌,
1282
+ as in [CR11, §1.3] we may define a family of supports 푃(Φ푋, Φ푌) on 푋 × 푌 by
1283
+ 푃(Φ푋, Φ푌) ∶= {closed subsets 푍 ⊆ 푋 × 푌 | pr푌|푍 is proper and for all 푊 ∈ Φ푋,
1284
+ pr푌(pr−1
1285
+ 푋 (푊) ∩ 푍) ∈ Φ푌}
1286
+ (the conditions of Definition 2.1 are straightforward to verify). For convenience we will let ∆푋×푌 ∶=
1287
+ pr∗
1288
+ 푋∆푋 + pr∗
1289
+ 푌∆푌.
1290
+ Theorem 4.1. A class 훾 ∈ 퐻푗
1291
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1292
+ 푋×푌(log ∆푋×푌)(−pr∗
1293
+ 푋∆푋)) defines homomorphisms
1294
+ cor(훾) ∶ 퐻푞
1295
+ Φ푋(푋, Ω푝
1296
+ 푋(log ∆푋)) → 퐻푞+푗−푑푋
1297
+ Φ푌
1298
+ (푌, Ω푝+푖−푑푋
1299
+
1300
+ (log ∆푌))
1301
+ by the formula cor(훾)(훼) ∶= pr푌∗(pr∗
1302
+ 푋(훼) ⌣ 훾). Moreover if (푍, ∆푍, Φ푍) is another snc pair with
1303
+ supports and 훿 ∈ 퐻푗′
1304
+ 푃(Φ푌,Φ푍)(푌 × 푍, Ω푖′
1305
+ 푌×푍(log ∆푌×푍)(−pr∗
1306
+ 푌∆푌)), then
1307
+ pr푋×푍∗(pr∗
1308
+ 푋×푌(훾) ⌣ pr∗
1309
+ 푌×푍(훿)) ∈ 퐻푗+푗′−푑푌
1310
+ 푃(Φ푋,Φ푍)(푋 × 푍, Ω푖+푖′−푑푌
1311
+ 푋×푍
1312
+ (log ∆푋×푍)(−pr∗
1313
+ 푋∆푋)) and
1314
+ cor(pr푋×푍∗(pr∗
1315
+ 푋×푌(훾) ⌣ pr∗
1316
+ 푌×푍(훿))) = cor(훿)◦ cor(훾)
1317
+ as homomorphisms 퐻푞
1318
+ Φ푋(푋, Ω푝
1319
+ 푋(log ∆푋)) → 퐻푞+푗+푗′−푑푋−푑푌
1320
+ Φ푍
1321
+ (푍, Ω푝+푖+푖′−푑푋−푑푌
1322
+
1323
+ (log ∆푍)).
1324
+ Remark 4.2. The sheavesΩ푖
1325
+ 푋×푌(log ∆푋×푌)(−pr∗
1326
+ 푋∆푋) are particular instancesof the sheavesΩ푖
1327
+ 푋(퐴, 퐵)
1328
+ appearing in [DI87, §4.2].
1329
+ Such correspondences involving both log poles and “log zeroes” appear to have been considered
1330
+ before at least in crystalline cohomology, for example in work of Mieda [Mie09a; Mie09b]. However,
1331
+ I was unable to find any published proof of Theorem 4.1 in the literature.
1332
+ Proof. We make two observations: first, using Lemma 2.18 there are natural wedge product pairings
1333
+ Ω푝
1334
+ 푋×푌(log ∆푋×푌) ⊗ Ω푖
1335
+ 푋×푌(log ∆푋×푌)(−pr∗
1336
+ 푋∆푋)
1337
+ ∧�→ Ω푝+푖
1338
+ 푋×푌(log ∆푌)
1339
+ Second, essentially by the definition of 푃(Φ푋, Φ푌) the Künneth morphism on cohomology for the
1340
+ tensor product Ω푝
1341
+ 푋×푌(log ∆푋×푌) ⊗ Ω푖
1342
+ 푋×푌(log ∆푋×푌)(−pr∗
1343
+ 푋∆푋) can be enhanced with supports as
1344
+ 퐻푞
1345
+ pr−1
1346
+ 푋 (Φ푋)(푋 × 푌, Ω푝
1347
+ 푋×푌(log ∆푋×푌)) ⊗ 퐻푗
1348
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1349
+ 푋×푌(log ∆푋×푌)(−pr∗
1350
+ 푋∆푋))
1351
+ → 퐻푝+푗
1352
+ Ψ
1353
+ (푋 × 푌, Ω푝
1354
+ 푋×푌(log ∆푋×푌) ⊗ Ω푖
1355
+ 푋×푌(log ∆푋×푌)(−pr∗
1356
+ 푋∆푋))
1357
+ where Ψ ∶= pr−1
1358
+ 푌∗(Φ푍) (see [CR11, §1.3.7, Prop. 1.3.10]). Combining these 2 observations gives a
1359
+ pairing
1360
+ 퐻푞
1361
+ pr−1
1362
+ 푋 (Φ푋)(푋 × 푌, Ω푝
1363
+ 푋×푌(log ∆푋×푌)) ⊗ 퐻푗
1364
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1365
+ 푋×푌(log ∆푋×푌)(−pr∗
1366
+ 푋∆푋))
1367
+
1368
+ ��→ 퐻푝+푗
1369
+ Ψ
1370
+ (푋 × 푌, Ω푝+푖
1371
+ 푋×푌(log ∆푌))
1372
+ Now note that pr푋 ∶ (푋×푌, ∆푋×푌, pr−1
1373
+ 푋 (Φ푋)) → (푋, ∆푋, Φ푋) is a pulling morphism, so by Proposition 2.24
1374
+ there is an induced map pr∗
1375
+ 푋 ∶ 퐻푞
1376
+ Φ푋(푋, Ω푝
1377
+ 푋(log ∆푋)) → 퐻푞
1378
+ pr−1
1379
+ 푋 (Φ푋)(푋 × 푌, Ω푝
1380
+ 푋×푌(log ∆푋×푌)). On the
1381
+ other hand since pr푌 ∶ (푋 × 푌, ∆푌, Ψ) → (푌, ∆푌, Φ푌) is a pushing morphism, Lemma 2.28 provides
1382
+ 17
1383
+
1384
+ a morphism pr푌∗ ∶ 퐻푝+푗
1385
+ Ψ
1386
+ (푋 × 푌, Ω푝+푖
1387
+ 푋×푌(log ∆푌)) → 퐻푞+푗−푑푋
1388
+ Φ푌
1389
+ (푌, Ω푝+푖−푑푋
1390
+
1391
+ (log ∆푌)). Composing, we
1392
+ obtain the desired homomorphism
1393
+ 퐻푞
1394
+ Φ푋(푋, Ω푝
1395
+ 푋(log ∆푋))
1396
+ pr∗
1397
+
1398
+ ���→ 퐻푞
1399
+ pr−1
1400
+ 푋 (Φ푋)(푋 × 푌, Ω푝
1401
+ 푋×푌(log ∆푋×푌))
1402
+ ⌣훾
1403
+ ���→ 퐻푝+푗
1404
+ Ψ
1405
+ (푋 × 푌, Ω푝+푖
1406
+ 푋×푌(log ∆푌))
1407
+ pr푌∗
1408
+ ����→ 퐻푞+푗−푑푋
1409
+ Φ푌
1410
+ (푌, Ω푝+푖−푑푋
1411
+
1412
+ (log ∆푌))
1413
+ For the “moreover” half of the lemma, we again begin with a certain wedge product pairing, this
1414
+ time on 푋 × 푌 × 푍:
1415
+ Ω푖
1416
+ 푋×푌×푍(log pr∗
1417
+ 푋×푌∆푋×푌)(−pr∗
1418
+ 푋∆푋) ⊗ Ω푖′
1419
+ 푋×푌×푍(log pr∗
1420
+ 푌×푍∆푌×푍)(−pr∗
1421
+ 푌∆푌)
1422
+ ∧�→ Ω푖+푖′
1423
+ 푋×푌×푍(log pr∗
1424
+ 푋×푍∆푋×푍)(−pr∗
1425
+ 푋∆푋)
1426
+ (4.3)
1427
+ If 푉 ∈ 푃(Φ푋, Φ푌), 푊 ∈ 푃(Φ푌, Φ푍) then unravelling definitions (again we refer to [CR11, §1.3.7,
1428
+ Prop. 1.3.10] for a similar claim) we find:
1429
+ • pr푋×푍|pr−1
1430
+ 푋×푌(푉)∩pr−1
1431
+ 푌×푍(푊) is proper and
1432
+ • pr푋×푍(pr−1
1433
+ 푋×푌(푉) ∩ pr−1
1434
+ 푌×푍(푊)) ∈ 푃(Φ푋, Φ푍)
1435
+ so that the Künneth morphism on cohomology associated to the left hand side of (4.3) can be en-
1436
+ hanced with supports like
1437
+ 퐻푗
1438
+ pr−1
1439
+ 푋×푌(푃(Φ푋,Φ푌))(푋 × 푌 × 푍, Ω푖
1440
+ 푋×푌×푍(log pr∗
1441
+ 푋×푌∆푋×푌)(−pr∗
1442
+ 푋∆푋))
1443
+ ⊗ 퐻푗′
1444
+ pr−1
1445
+ 푌×푍(푃(Φ푌,Φ푍))(푋 × 푌 × 푍, Ω푖′
1446
+ 푋×푌×푍(log pr∗
1447
+ 푌×푍∆푌×푍)(−pr∗
1448
+ 푌∆푌))
1449
+ → 퐻푗+푗′
1450
+ Σ
1451
+ (푋 × 푌 × 푍, Ω푖
1452
+ 푋×푌×푍(log pr∗
1453
+ 푋×푌∆푋×푌)(−pr∗
1454
+ 푋∆푋) ⊗ Ω푖′
1455
+ 푋×푌×푍(log pr∗
1456
+ 푌×푍∆푌×푍)(−pr∗
1457
+ 푌∆푌))
1458
+ where Σ ∶= pr−1
1459
+ 푋×푍∗(푃(Φ푋, Φ푍)).
1460
+ Since pr푋×푌 ∶ (푋 × 푌 × 푍, pr∗
1461
+ 푋×푌∆푋×푌, pr−1
1462
+ 푋×푌(푃(Φ푋, Φ푌))) → (푋 × 푌, ∆푋×푌, 푃(Φ푋, Φ푌)) is a
1463
+ pulling morphism, Proposition 2.24 gives an induced morphism
1464
+ Ω푖
1465
+ 푋×푌(log ∆푋×푌) → 푅푓∗Ω푖
1466
+ 푋×푌×푍(log pr∗
1467
+ 푋×푌∆푋×푌);
1468
+ twisting by −∆푋×푌 and applying the projection formula gives a morphism
1469
+ Ω푖
1470
+ 푋×푌(log ∆푋×푌)(−∆푋×푌) → 푅푓∗
1471
+ (Ω푖
1472
+ 푋×푌×푍(log pr∗
1473
+ 푋×푌∆푋×푌)(−pr∗
1474
+ 푋×푌∆푋×푌))
1475
+ and then taking cohomology with supports along 푃(Φ푋, Φ푌) and using Proposition 2.9 gives a mod-
1476
+ ified pullback map
1477
+ 퐻푗
1478
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1479
+ 푋×푌(log ∆푋×푌)(−∆푋×푌))
1480
+ → 퐻푗
1481
+ pr−1
1482
+ 푋×푌(푃(Φ푋,Φ푌))(푋 × 푌 × 푍, Ω푖
1483
+ 푋×푌×푍(log pr∗
1484
+ 푋×푌∆푋×푌)(−pr∗
1485
+ 푋∆푋))
1486
+ (4.4)
1487
+ and a similar argument gives a modified pullback
1488
+ 퐻푗′
1489
+ 푃(Φ푌,Φ푍)(푌 × 푍, Ω푖′
1490
+ 푌×푍(log ∆푌×푍)(−∆푌×푍))
1491
+ → 퐻푗′
1492
+ pr−1
1493
+ 푌×푍(푃(Φ푌,Φ푍))(푋 × 푌 × 푍, Ω푖′
1494
+ 푋×푌×푍(log pr∗
1495
+ 푌×푍∆푌×푍)(−pr∗
1496
+ 푋∆푌))
1497
+ (4.5)
1498
+ On the other hand, pr푋×푍 ∶ (푋 × 푌 × 푍, pr∗
1499
+ 푋×푍∆푋×푌, Σ) → (푋 × 푍, ∆푋×푍, 푃(Φ푋, Φ푍)) is a pushing
1500
+ morphism and hence by Lemma 2.28 induces morphisms
1501
+ 푅pr푋×푍∗푅ΓΣ(Ωdim푋×푌×푍−푘
1502
+ 푋×푌×푍
1503
+ (log pr∗
1504
+ 푋×푍∆푋×푌)) → 푅Γ푃(Φ푋,Φ푍)Ωdim 푋×푍−푘
1505
+ 푋×푍
1506
+ (log ∆푋×푍)[− dim푍]
1507
+ 18
1508
+
1509
+ for all 푘; twisting by −pr∗
1510
+ 푋∆푋 and applying the projection formula this becomes
1511
+ 푅pr푋×푍∗푅ΓΣ(Ωdim 푋×푌×푍−푘
1512
+ 푋×푌×푍
1513
+ (log pr∗
1514
+ 푋×푍∆푋×푌)(−pr∗
1515
+ 푋∆푋))
1516
+ → 푅Γ푃(Φ푋,Φ푍)Ωdim 푋×푍−푘
1517
+ 푋×푍
1518
+ (log ∆푋×푍)(−pr∗
1519
+ 푋∆푋)[− dim푍]
1520
+ (4.6)
1521
+ Now letting 푘 = dim 푋 × 푌 × 푍 − 푖 − 푖′, the induced morphisms of cohomology with supports are
1522
+ 퐻푗+푗′
1523
+ Σ
1524
+ (푋 × 푌 × 푍, Ω푖+푖′
1525
+ 푋×푌×푍(log pr∗
1526
+ 푋×푍∆푋×푌)(−pr∗
1527
+ 푋∆푋))
1528
+ → 퐻푗+푗′−dim푍
1529
+ 푃(Φ푋,Φ푍)
1530
+ (푋 × 푍, Ω푖+푖′−dim 푍
1531
+ 푋×푍
1532
+ (log ∆푋×푍)(−pr∗
1533
+ 푋∆푋))
1534
+ (4.7)
1535
+ Combining the above ingredients, we obtain a bilinear pairing
1536
+ 퐻푗
1537
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1538
+ 푋×푌(log ∆푋×푌)(−∆푋×푌)) ⊗ 퐻푗′
1539
+ 푃(Φ푌,Φ푍)(푌 × 푍, Ω푖′
1540
+ 푌×푍(log ∆푌×푍)(−∆푌×푍))
1541
+ → 퐻푗+푗′−dim 푍
1542
+ 푃(Φ푋,Φ푍)
1543
+ (푋 × 푍, Ω푖+푖′−dim푍
1544
+ 푋×푍
1545
+ (log ∆푋×푍)(−pr∗
1546
+ 푋∆푋))
1547
+ sending 훾 ⊗ 훿 ↦→ pr푋×푍∗(pr∗
1548
+ 푋×푌(훾) ⌣ pr∗
1549
+ 푌×푍(훿)). It remains to be seen that
1550
+ cor(pr푋×푍∗(pr∗
1551
+ 푋×푌(훾) ⌣ pr∗
1552
+ 푌×푍(훿))) = cor(훿)◦ cor(훾)
1553
+ and for this we will make repeated use of Lemma 3.1. Consider the diagram of smooth schemes
1554
+ 푋 × 푌 × 푍
1555
+ 푋 × 푌
1556
+ 푌 × 푍
1557
+
1558
+
1559
+
1560
+
1561
+ where all morphisms are projections. There are various ways to enhance this to include supports;
1562
+ here we add the family of supports Ψ on 푋 × 푌 defined above. Then in the cartesian diagram (∗),
1563
+ pr푌 ∶ (푋 × 푌, Ψ) → (푌, Φ푌) and pr푌×푍 ∶ (푋 × 푌 × 푍, pr−1
1564
+ 푋×푌Ψ) → (푌 × 푍, pr−1
1565
+ 푌 Φ푌) are pushing
1566
+ morphisms, whereas pr푋×푌 and pr푌 are pulling morphisms. At the same time, we have a pulling
1567
+ morphism pr푋×푍 ∶ (푋 × 푌 × 푍, pr−1
1568
+ 푋×푍(푃(Φ푌, Φ푍))) → (푌 × 푍, 푃(Φ푌, Φ푍)). To be precise in what
1569
+ follows, whenever ambiguity is possible we will use notation like pr푋×푌
1570
+
1571
+ to denote the projection
1572
+ 푋 × 푌 → 푋, pr푋×푌×푍
1573
+
1574
+ to denote the projection 푋 × 푌 × 푍 → 푋 and so on.
1575
+ Applying Corollary 3.35 first to pr푋×푍 we see that
1576
+ pr푌×푍∗(pr∗
1577
+ 푋×푌(pr푋×푌∗
1578
+
1579
+ 훼 ⌣ 훾) ⌣ pr∗
1580
+ 푌×푍훿) = pr푌×푍∗(pr∗
1581
+ 푋×푌(pr푋×푌∗
1582
+
1583
+ 훼 ⌣ 훾)) ⌣ 훿
1584
+ and then applying Lemma 3.1 to (∗) shows
1585
+ pr푌×푍∗(pr∗
1586
+ 푋×푌(pr푋×푌∗
1587
+
1588
+ 훼 ⌣ 훾)) = pr푌×푍∗
1589
+
1590
+ (pr푋×푌
1591
+ 푌∗ (pr푋×푌∗
1592
+
1593
+ 훼 ⌣ 훾)) = pr푌×푍∗
1594
+
1595
+ cor(훾)(훼)
1596
+ so that
1597
+ pr푌×푍∗(pr∗
1598
+ 푋×푌(pr푋×푌∗
1599
+
1600
+ 훼 ⌣ 훾) ⌣ pr∗
1601
+ 푌×푍훿) = pr푌×푍∗
1602
+
1603
+ cor(훾)(훼) ⌣ 훿
1604
+ Applying pr푌×푍
1605
+ 푍∗
1606
+ we conclude that
1607
+ cor 훿(cor 훾)(훼)) = pr푋×푌×푍
1608
+ 푍∗
1609
+ (pr푋×푌×푍∗
1610
+
1611
+ 훼 ⌣ pr∗
1612
+ 푋×푌훾 ⌣ pr∗
1613
+ 푌×푍훿)
1614
+ (4.8)
1615
+ Finally, we rewrite the right hand side as
1616
+ pr푋×푍
1617
+ 푍∗ pr푋×푍∗(pr∗
1618
+ 푋×푍pr푋×푍∗
1619
+
1620
+ 훼 ⌣ pr∗
1621
+ 푋×푌훾 ⌣ pr∗
1622
+ 푌×푍훿)
1623
+ 19
1624
+
1625
+ and apply Corollary 3.35 to pr푋×푍 (with the pushing morphism (푋 ×푌 ×푍, Σ) → (푋 ×푍, 푃(Φ푋, Φ푍))
1626
+ and pulling morphism (푋 × 푌 × 푍, pr푋×푌×푍−1
1627
+
1628
+ (Φ푋)) → (푋 × 푍, pr푋×푍−1
1629
+
1630
+ (Φ푋))) to arrive at
1631
+ pr푋×푍∗(pr∗
1632
+ 푋×푍pr푋×푍∗
1633
+
1634
+ 훼 ⌣ pr∗
1635
+ 푋×푌훾 ⌣ pr∗
1636
+ 푌×푍훿) = pr푋×푍∗
1637
+
1638
+ 훼 ⌣ pr푋×푍∗(pr∗
1639
+ 푋×푌훾 ⌣ pr∗
1640
+ 푌×푍훿)
1641
+ Applying pr푋×푍
1642
+ 푍∗
1643
+ on both sides shows that the right hand side of (4.8) is cor(pr푋×푍∗(pr∗
1644
+ 푋×푌훾 ⌣
1645
+ pr∗
1646
+ 푌×푍훿)(훼), as desired.
1647
+ Remark 4.9. There is a Grothendieck-Serre dual approach to such correspondences, where classes
1648
+ 훾 ∈ 퐻푗
1649
+ 푃(Φ푋,Φ푌)(푋 × 푌, Ω푖
1650
+ 푋×푌(log ∆푋×푌)(−pr∗
1651
+ 푌∆푌)) define homomorphisms
1652
+ 퐻푞(푋, Ω푝
1653
+ 푋(log ∆푋)(−∆푋)) → 퐻푞+푗−푑푋(푌, Ω푝+푖−푑푋
1654
+
1655
+ (log ∆푌)(−∆푌)).
1656
+ The construction is formally similar.
1657
+ References
1658
+ [Bar18]
1659
+ Lawrence Jack Barrott.“Logarithmic Chow theory”.In: arXiv preprint arXiv:1810.03746
1660
+ (2018).
1661
+ [BBG22]
1662
+ Christian Böhning, Hans-Christian Graf von Bothmer, and Michel van Garrel.
1663
+ “Prelog Chow rings and degenerations”. In: Rendiconti del Circolo Matematico
1664
+ di Palermo Series 2 (2022), pp. 1–34.
1665
+ [BPØ20]
1666
+ Federico Binda, Doosung Park, and Paul Arne Østvær.“Triangulated Categories
1667
+ of Logarithmic Motives over a Field”. In: arXiv:2004.12298 [math] (Apr. 2020).
1668
+ arXiv: 2004.12298 [math].
1669
+ [Con00]
1670
+ Brian Conrad. Grothendieck duality and base change. Vol. 1750. Lecture Notes
1671
+ in Mathematics. Springer-Verlag, Berlin, 2000, pp. vi+296. isbn: 3-540-41134-8.
1672
+ doi: 10.1007/b75857. url: https://doi.org/10.1007/b75857.
1673
+ [Con07]
1674
+ Brian Conrad. “Deligne’s notes on Nagata compactifications”. In: J. Ramanu-
1675
+ jan Math. Soc. 22.3 (2007), pp. 205–257. issn: 0970-1249.
1676
+ [CR11]
1677
+ Andre Chatzistamatiou and Kay Rülling. “Higher direct images of the structure
1678
+ sheaf in positive characteristic”.In: Algebra Number Theory 5.6 (2011), pp. 693–
1679
+ 775.issn: 1937-0652.doi: 10.2140/ant.2011.5.693.url: https://doi.org/10.2140/ant.2011.5.693.
1680
+ [CR15]
1681
+ Andre Chatzistamatiou and Kay Rülling. “Vanishing of the higher direct im-
1682
+ ages of the structure sheaf”. In: Compos. Math. 151.11 (2015), pp. 2131–2144.
1683
+ issn: 0010-437X.doi: 10.1112/S0010437X15007435.url: https://doi.org/10.1112/S0010437X15007435.
1684
+ [Del71]
1685
+ Pierre Deligne. “Théorie de Hodge. II”. In: Inst. Hautes Études Sci. Publ. Math.
1686
+ 40 (1971), pp.5–57.issn: 0073-8301. url: http://www.numdam.org/item?id=PMIHES_1971__40__5_0.
1687
+ [DI87]
1688
+ Pierre Deligne and Luc Illusie. “Relèvements modulo 푝2 et décomposition du
1689
+ complexe de de Rham”. In: Invent. Math. 89.2 (1987), pp. 247–270. issn: 0020-
1690
+ 9910.doi: 10.1007/BF01389078.url: https://doi.org/10.1007/BF01389078.
1691
+ [DM69]
1692
+ P. Deligne and D. Mumford. “The Irreducibility of the Space of Curves of given
1693
+ Genus”. In: Inst. Hautes Études Sci. Publ. Math. 36 (1969), pp. 75–109. issn:
1694
+ 0073-8301.url: http://www.numdam.org/item?id=PMIHES_1969__36__75_0.
1695
+ [EV92]
1696
+ Hélène Esnault and Eckart Viehweg. Lectures on vanishing theorems. Vol. 20.
1697
+ DMV Seminar. Birkhäuser Verlag, Basel, 1992, pp. vi+164. isbn: 3-7643-2822-3.
1698
+ doi: 10.1007/978-3-0348-8600-0.url: https://doi.org/10.1007/978-3-0348-8600-0.
1699
+ 20
1700
+
1701
+ [God22]
1702
+ Charles Godfrey.Higher direct images ofsnc ideal sheaves.2022.doi: 10.48550/ARXIV.2207.01142.
1703
+ url: https://arxiv.org/abs/2207.01142.
1704
+ [Har77]
1705
+ Robin Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, No. 52.
1706
+ Springer-Verlag, New York-Heidelberg, 1977, pp. xvi+496. isbn: 0-387-90244-
1707
+ 9.
1708
+ [Hir64]
1709
+ Heisuke Hironaka. “Resolution of singularities of an algebraic variety over a
1710
+ field of characteristic zero. I, II”. In: Ann. of Math. (2) 79 (1964), 109–203; ibid.
1711
+ (2) 79 (1964), pp.205–326.issn: 0003-486X. doi: 10.2307/1970547.url: https://doi.org/10.2307/1970547.
1712
+ [KM98]
1713
+ János Kollár and Shigefumi Mori.Birational geometry ofalgebraic varieties.Vol. 134.
1714
+ Cambridge Tracts in Mathematics. With the collaboration of C. H. Clemens
1715
+ and A. Corti, Translated from the 1998 Japanese original. Cambridge Univer-
1716
+ sity Press, Cambridge, 1998, pp.viii+254. isbn: 0-521-63277-3. doi: 10.1017/CBO9780511662560.
1717
+ url: https://doi.org/10.1017/CBO9780511662560.
1718
+ [Kol13]
1719
+ János Kollár. Singularities of the minimal model program. Vol. 200. Cambridge
1720
+ Tracts in Mathematics. With a collaborationof Sándor Kovács. Cambridge Uni-
1721
+ versity Press, Cambridge, 2013, pp.x+370.isbn: 978-1-107-03534-8.doi: 10.1017/CBO9781139547895.
1722
+ url: https://doi.org/10.1017/CBO9781139547895.
1723
+ [Kov20]
1724
+ Sándor J. Kovács. “Rational Singularities”. In: arXiv:1703.02269 [math] (July
1725
+ 2020). arXiv: 1703.02269 [math].
1726
+ [KX16]
1727
+ János Kollár and Chenyang Xu. “The dual complex of Calabi-Yau pairs”. In: In-
1728
+ vent. Math. 205.3 (2016), pp.527–557. issn: 0020-9910. doi: 10.1007/s00222-015-0640-6.
1729
+ url: https://doi.org/10.1007/s00222-015-0640-6.
1730
+ [Lef53]
1731
+ Solomon Lefschetz. Algebraic Geometry. Princeton University Press, Princeton,
1732
+ NJ, 1953, pp. ix+233.
1733
+ [Mie09a]
1734
+ Yoichi Mieda. “Cycle classes, Lefschetz trace formula and integrality for p-adic
1735
+ cohomology”. en. In: Algebraic Number Theory and Related Topics 2007, RIMS
1736
+ Kôkyûroku Bessatsu B12 (2009). url: https://www.kurims.kyoto-u.ac.jp/~kenkyubu/bessatsu/open/B12/pdf/B12_005.pdf.
1737
+ [Mie09b]
1738
+ Yoichi Mieda. “Integral Log Crystalline Cohomology and Algebraic Correspon-
1739
+ dences”. en. In: Proceedings of Kinosaki Algebraic Geometry Symposium (2009).
1740
+ url: https://www.ms.u-tokyo.ac.jp/~mieda/pdf/kinosaki2009.pdf.
1741
+ [MVW06]
1742
+ Carlo Mazza, Vladimir Voevodsky, and Charles Weibel. Lecture Notes on Mo-
1743
+ tivic Cohomology. Vol. 2. Clay Mathematics Monographs. American Mathemat-
1744
+ ical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA, 2006,
1745
+ pp. xiv+216. isbn: 978-0-8218-3847-1 0-8218-3847-4.
1746
+ [Nag63]
1747
+ Masayoshi Nagata. “A generalization of the imbedding problem of an abstract
1748
+ variety in a complete variety”. In: J. Math. Kyoto Univ. 3 (1963), pp. 89–102. issn:
1749
+ 0023-608X.doi: 10.1215/kjm/1250524859.url: https://doi.org/10.1215/kjm/1250524859.
1750
+ [Ogu18]
1751
+ Arthur Ogus. Lectures on logarithmic algebraic geometry. Vol. 178. Cambridge
1752
+ Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
1753
+ 2018, pp. xviii+539. isbn: 978-1-107-18773-3. doi: 10.1017/9781316941614.
1754
+ url: https://doi.org/10.1017/9781316941614.
1755
+ 21
1756
+
1757
+ [R&D]
1758
+ RobinHartshorne.Residues and duality.Lecture notes of a seminar on the work
1759
+ of A. Grothendieck, given at Harvard 1963/64. With an appendix by P. Deligne.
1760
+ Lecture Notes in Mathematics, No. 20. Springer-Verlag, Berlin-New York, 1966,
1761
+ pp. vii+423.
1762
+ [Stacks]
1763
+ The Stacks project authors.TheStacks project.2021.url: https://stacks.math.columbia.edu.
1764
+ [Voi14]
1765
+ Claire Voisin. Chow Rings, Decomposition of the Diagonal, and the Topology of
1766
+ Families.PrincetonUniversity Press, 2014. isbn: 9780691160511. url: http://www.jstor.org/stable/j.ctt5hhp7w
1767
+ (visited on 12/29/2022).
1768
+ A
1769
+ Attempts to construct a fundamental class of a thrifty bira-
1770
+ tional equivalence
1771
+ As mentioned in Section 1 inspiration for this work was the following remarkable theoremof Chatzistamatiou-
1772
+ Rülling:
1773
+ Theorem A.1 ([CR11, Thm. 3.2.8] (see also [CR15, Thm. 1.1], [Kov20, Thm. 1.6])). Let 푘 be a perfect
1774
+ field and let 푆 be a scheme. Suppose 푋 and 푌 are two separated, finite type 푘-schemes which are
1775
+ (푖) smooth over 푘 and
1776
+ (푖푖) properly birational over 푆 in the sense that there is a commutative diagram
1777
+
1778
+
1779
+
1780
+
1781
+
1782
+
1783
+
1784
+
1785
+
1786
+ (A.2)
1787
+ with 푟 and 푠 proper birational morphisms.
1788
+ Let 푛 = dim 푋 = dim 푌 = dim 푍. Then, there are isomorphisms of sheaves
1789
+ 푅푖푓∗풪푋
1790
+ ∼�→ 푅푖푔∗풪푌 and 푅푖푓∗휔푋
1791
+ ∼�→ 푅푖푔∗휔푌 for all 푖,
1792
+ (A.3)
1793
+ This result implies, for example, that if 푆 is a variety over a perfect field 푘 with a rational res-
1794
+ olution, that is, a resolution of singularities 푓 ∶ 푋 → 푆 such that 푅푓∗풪푋 = 풪푆, then every other
1795
+ resolution 푔 ∶ 푌 → 푆 satisfies 푅푔∗풪푌 = 풪푆 and is hence also rational. In characteristic 0 this was
1796
+ a corollary of Hironaka’s resolution of singularities [Hir64]; in positive characteristic it remained
1797
+ open until 2011.
1798
+ The original proof in [CR11, Thm. 3.2.8] makes use of a cycle morphism cl ∶ 퐶퐻∗(푋) → 퐻∗(푋, Ω∗
1799
+ 푋)
1800
+ from Chow cohomology to Hodge cohomology, which is ultimately applied to a cycle 푍 ⊂ 푋 × 푌 ob-
1801
+ tained from a properbirational equivalence. That cycle morphismsatisfies 2 essential properties:the
1802
+ first is that it is compatible with correspondences: here Chow correspondences are homomorphisms
1803
+ 퐶퐻∗(푋) → 퐶퐻∗(푌) of the form 훼 ↦→ pr푌∗(pr∗
1804
+ 푋훼 ⌣ 훾) for some 훾 ∈ 퐶퐻∗(푋 × 푌)
1805
+ where ⌣ is the cup product induced by intersecting cycles; Hodge correspondences are defined in
1806
+ a similar way. The second key property is a compatibility with the filtrations
1807
+ 퐶퐻푛(푋 × 푌) = 퐹0퐶퐻푛(푋 × 푌) ⊇ 퐹1퐶퐻푛(푋 × 푌) ⊇ ⋯ ⊇ 퐹dim푌퐶퐻푛(푋 × 푌) ⊇ 0
1808
+ where 퐹푐퐶퐻푛(푋×푌) is the subgroup generated by cycles 푍 ⊆ 푋×푌 such that codim(pr푌푍 ⊆ 푌) ≥ 푐,
1809
+ and
1810
+ 퐻푛(푋 × 푌, Ω푚
1811
+ 푋×푌) = 퐹0퐻푛(푋 × 푌, Ω푚
1812
+ 푋×푌) ⊇ 퐹1퐶퐻∗(푋 × 푌) ⊇ ⋯ ⊇ 퐹dim푌퐻푛(푋 × 푌, Ω푚
1813
+ 푋×푌) ⊇ 0
1814
+ 22
1815
+
1816
+ where 퐹푐퐻푛(푋 ×푌, Ω푚
1817
+ 푋×푌) is the image of the map 퐻푛(푋 ×푌, ⊕푚
1818
+ 푗=푐Ω푚−푗
1819
+
1820
+ ⊠Ω푗
1821
+ 푌) → 퐻푛(푋 ×푌, Ω푚
1822
+ 푋×푌)
1823
+ coming from the Künneth decomposition.
1824
+ It is natural to ask if a similar method can be applied to prove an analogue of Theorem A.1 for
1825
+ pairs, which might read something like Conjecture A.7 below. In order to state this analogue, we
1826
+ require a few additional definitions. For the remainder of this appendix we work over a fixed perfect
1827
+ field 푘.
1828
+ Definition A.4 (slightly simplified version of [Kol13, Def. 1.5]). A pair (푋, ∆푋) over 푘 will mean
1829
+ • a reduced, equidimensional and 푆2 scheme 푋 of finite type over 푘 admitting a dualizing com-
1830
+ plex , together with
1831
+ • a ℚ-Weil divisor ∆푋 = ∑
1832
+ 푖 푎푖퐷푖 on 푋 such that no irreducible component 퐷푖 of ∆푋 is contained
1833
+ in Sing(푋).
1834
+ Definition A.5. A stratum of a simple normal crossing pair (푋, ∆푋 = ∑
1835
+ 푖 퐷푖) is a connected (equiv-
1836
+ alently, irreducible) component of an intersection 퐷퐽 = ∩푗∈퐽퐷푗.
1837
+ Given any pair (푋, ∆푋), there is a largest open set 푈 ⊆ 푋 such that (푈, ∆푋|푈) is a simple nor-
1838
+ mal crossing pair, and we will refer to the resulting simple normal crossing pair as snc(푋, ∆푋) ∶=
1839
+ (푈, ∆푋|푈).
1840
+ Definition A.6 ( compare with [Kol13, Def. 2.79-2.80], [KX16, §1, discussion before Def. 10] ). Let
1841
+ (푆, ∆푆 = ∑
1842
+ 푖 퐷푖) be a pair, and assume ∆푆 is reduced and effective. A separated, finite type birational
1843
+ morphism 푓 ∶ 푋 → 푆 is thrifty with respect to ∆푆 if and only if
1844
+ (푖) 푓 is an isomorphism over the generic point of every stratum of snc(푆, ∆푆) and
1845
+ (푖푖) letting ̃퐷푖 = 푓−1
1846
+ ∗ 퐷푖 for 푖 = 1, … , 푁 be the strict transforms of the divisors 퐷푖, and setting
1847
+ ∆푋 ∶= ∑
1848
+ 푖 ̃퐷푖, the map 푓 is an isomorphism at the generic point of every stratum of snc(푋, ∆푋).
1849
+ Conjecture A.7. Let 푘 be a perfect field, let 푆 be a scheme and let (푋, ∆푋) and (푌, ∆푌) be simple
1850
+ normal crossing pairs over 푘. Suppose (푋, ∆푋) and (푌, ∆푌) are properly birational over 푆 in the sense
1851
+ that there is a commutative diagram
1852
+ (푍, ∆푍)
1853
+ (푋, ∆푋)
1854
+ (푌, ∆푌)
1855
+
1856
+
1857
+
1858
+
1859
+
1860
+
1861
+ (A.8)
1862
+ where 푟, 푠 are proper and birational morphisms, and assume ∆푍 = 푟−1
1863
+ ∗ ∆푋 = 푠−1
1864
+ ∗ ∆푌. If 푟 and 푠 are
1865
+ thrifty, then there are quasi-isomorphisms
1866
+ 푅푓∗풪푋(−∆푋) ≃ 푅푔∗풪푌(−∆푌) and 푅푓∗휔푋(∆푋) ≃ 푅푔∗휔푌(∆푌).
1867
+ (A.9)
1868
+ Following [CR11] closely, one might begin by replacing the ordinary sheaves of differentials Ω푋
1869
+ appearing in Hodge cohomology with sheaves of differentials with log poles Ω푋(log ∆푋) and attempt
1870
+ to implement a similar strategy, i.e. starting a cycle 푍 ⊂ 푋×푌 representinga thrifty proper birational
1871
+ equivalince, producing a correspondence in logarithmic Hodge cohomology and analyzing its prop-
1872
+ erties.
1873
+ Ultimately even the correspondences of Section 4 seem to be insufficient to deal with thrifty
1874
+ proper birational equivalences, as we illustrate in Appendix A.1 below. The problem we encounter
1875
+ is elementary: looking at the recipe for the Hodge class cl(푍) of a subvariety 푍 ⊆ 푋, where 푍 and 푋
1876
+ are smooth an projective (outlined in [Har77, Ex. III.7.4]), we see that cl(푍) ultimately comes from
1877
+ the trace linear functional tr ∶ 퐻dim 푍(푍, 휔푍) → 푘, or Serre-dually the element 1 ∈ 퐻0(푍, 풪푍). Due
1878
+ to the introduction of log poles and zeroes in Section 4, trying to follow that recipe we pass through
1879
+ 23
1880
+
1881
+ cohomology groups of the form 퐻dim 푍(푍, 휔푍(퐷)), or dually 퐻0(푍, 풪푍(−퐷)) where 퐷 is an (often
1882
+ non-0 in cases of interest) effective Cartier divisor on 푍, and so there simply is no “1” to be had.
1883
+ Beyond the difficulties described in the previous paragraph, when attempting to formulate a
1884
+ logarithmic variant of Chatzistamatiou-Rülling’s cycle morphism argument one is hampered by the
1885
+ fact that we are still in the early days of logarithmic Chow theory . It is not clear to the author which
1886
+ logarithmic variant of Fulton’s 퐶퐻∗, if any, could be used to construct a logarithmic cycle morphism
1887
+ with all of the desired properties. Further investigation of this question could be an interesting topic
1888
+ of future research.
1889
+ Despite the aforementioned challenges, it is possible to prove a result almost identical to Conjecture A.7
1890
+ by entirely different methods [God22].8
1891
+ A.1
1892
+ Obstructions to obtaining log Hodge correspondences from thrifty bi-
1893
+ rational equivalences
1894
+ Let (푋, ∆푋), (푌, ∆푌) be simple normal crossing pairs, and assume in additionthat 푋, 푌 are connected
1895
+ and proper. Let 푍 ⊆ 푋 × 푌 be a smooth closed subvariety with codimension 푐. In this situation the
1896
+ fundamental class of cl(푍) ∈ 퐻푐(푋 × 푌, Ω푐
1897
+ 푋×푌) (no log poles yet) can be described using only Serre
1898
+ duality, as follows (we refer to [Har77, Ex. III.7.4]). the composition
1899
+ 퐻dim푍(푋 × 푌, Ωdim푍
1900
+ 푋×푌 ) → 퐻dim 푍(푍, Ωdim 푍
1901
+
1902
+ )
1903
+ tr�→ 푘
1904
+ (A.10)
1905
+ (where tr is the trace map of Serre duality) is an element of
1906
+ 퐻dim푍(푋 × 푌, Ωdim푍
1907
+ 푋×푌 )∨ ≃ 퐻푐(푋 × 푌, Ω푐
1908
+ 푋×푌)
1909
+ (A.11)
1910
+ which we may define to be cl(푍).9 In light of Theorem 4.1 we might hope to modify eqs. (A.10)
1911
+ and (A.11) to obtain a class in 퐻푐(푋 ×푌, Ω푐
1912
+ 푋×푌(log ∆푋×푌)(−pr∗
1913
+ 푋∆푋)). Let us focus on the case where
1914
+ • pr푋|푍 ∶ 푍 → 푋, pr푌|푍 ∶ 푍 → 푌 are both thrifty and birational, so in particular 푐 = dim 푋 =
1915
+ dim 푌 =∶ 푑 and
1916
+ • (pr푋|푍)−1
1917
+ ∗ ∆푋 = (pr푌|푍)−1
1918
+ ∗ ∆푌 =∶ ∆푍
1919
+ To keep the notation under control, set 휋푋 ∶= pr푋|푍 and 휋푌 ∶= pr푌|푍.
1920
+ In this situation letting 휄 ∶ 푍 → 푋 × 푌 be the inclusion there is a natural map
1921
+ 푑휄∨ ∶ Ω푑
1922
+ 푋×푌(log ∆푋×푌) → 휄∗Ω푑
1923
+ 푍(log ∆푋×푌|푍) and twisting by −pr∗
1924
+ 푌∆푌 gives a map
1925
+ Ω푑
1926
+ 푋×푌(log ∆푋×푌)(−pr∗
1927
+ 푌∆푌) → 휄∗Ω푑
1928
+ 푍(log ∆푋×푌|푍)(−pr∗
1929
+ 푌∆푌|푍) = 휄∗Ω푑
1930
+ 푍(log ∆푋×푌|푍)(−휋∗
1931
+ 푌∆푌)
1932
+ To identify Ω푑
1933
+ 푍(log ∆푋×푌|푍)(−pr∗
1934
+ 푋∆푋|푍), write
1935
+ (휋푋)∗∆푋 = (휋푋)−1
1936
+ ∗ ∆푋 + 퐸푋 = ∆푍 + 퐸푋 and
1937
+ (휋푌)∗∆푌 = (휋푌)−1
1938
+ ∗ ∆푌 + 퐸푌 = ∆푍 + 퐸푌
1939
+ so that ∆푋×푌|푍 = (휋푋)∗∆푋 + (휋푌)∗∆푌 = 2∆푍 + 퐸푋 + 퐸푌. While the hypotheses guarantee ∆푍 is
1940
+ reduced it may be that 퐸푋, 퐸푌 are non-reduced — however something can be said about their multi-
1941
+ plicities. If 퐸푋 = ∑
1942
+ 푖 푎푖
1943
+ 푋퐸푖
1944
+ 푋, 퐸푌 = ∑
1945
+ 푖 푎푖
1946
+ 푌퐸푖
1947
+ 푌 where the 퐸푖
1948
+ 푋, 퐸푖
1949
+ 푌 are irreducible, then by a generalization
1950
+ of [Har77, Prop. 3.6] (see also [Kol13, §2.10]),
1951
+ 푎푖
1952
+ 푋 = mlt(휋푋(퐸푖
1953
+ 푋) ⊆ ∆푋)
1954
+ and since ∆푋 is a reduced effective simple normal crossing divisor, if in addition we write ∆푋 =
1955
+
1956
+ 푖 퐷푖
1957
+ 푋, then mlt(휋푋(퐸푖
1958
+ 푋) ⊆ ∆푋) = |{푖 | 휋푋(퐸푖
1959
+ 푋) ⊆ 퐷푖
1960
+ 푋}|. The thriftiness hypothesis that 휋푋(퐸푖
1961
+ 푋) is not
1962
+ 8The reason the result is only “almost identical” is that in [God22] we require ostensibly stronger hypotheses on the
1963
+ base scheme 푆 (namely that it is excellent and noetherian), but it is possible that even in the situation of Theorem A.1
1964
+ and Conjecture A.7 one can reduce to this case, for example using noetherian approximation.
1965
+ 9It may then be non-trivial to verify this agrees with other definitions, especially if we worry about signs, but we will not
1966
+ need that level of detail for what follows.
1967
+ 24
1968
+
1969
+ a stratum then implies 푎푖
1970
+ 푋 = mlt(휋푋(퐸푖
1971
+ 푋) ⊆ ∆푋) < codim(휋푋(퐸푖
1972
+ 푋) ⊂ 푋). Since differentials with log
1973
+ poles are insensitive to multiplicities, we have
1974
+ Ω푑
1975
+ 푍(log ∆푋×푌|푍) = 휔푍(∆푍 + 퐸red
1976
+
1977
+ + 퐸red
1978
+ 푌 )
1979
+ where −red denotes the associated reduced effective divisor. Then
1980
+ Ω푑
1981
+ 푍(log ∆푋×푌|푍)(−휋∗
1982
+ 푌∆푌) = 휔푍(∆푍 + 퐸red
1983
+
1984
+ + 퐸red
1985
+
1986
+ − ∆푍 − 퐸푌)
1987
+ 휔푍(퐸red
1988
+
1989
+ + (퐸red
1990
+
1991
+ − 퐸푌)) = 휔푍(
1992
+
1993
+
1994
+ 퐸푖
1995
+ 푋 +
1996
+
1997
+
1998
+ (1 − 푎푖
1999
+ 푌)퐸푖
2000
+ 푌)
2001
+ The upshot is that we have an induced map
2002
+ 퐻푑(푋 × 푌, Ω푑
2003
+ 푋×푌(log ∆푋×푌)(−pr∗
2004
+ 푌∆푌)) → 퐻푑(푍, 휔푍(퐸red
2005
+
2006
+ + (퐸red
2007
+
2008
+ − 퐸푌)))
2009
+ (A.12)
2010
+ Here the left hand side is Serre dual to 퐻푑(푋 × 푌, Ω푑
2011
+ 푋×푌(log ∆푋×푌)(−pr∗
2012
+ 푋∆푋)), so the 푘-linear dual
2013
+ of (A.12) is a morphism
2014
+ 퐻푑(푍, 휔푍(퐸red
2015
+
2016
+ + (퐸red
2017
+
2018
+ − 퐸푌)))∨ → 퐻푑(푋 × 푌, Ω푑
2019
+ 푋×푌(log ∆푋×푌)(−pr∗
2020
+ 푋∆푋))
2021
+ Unfortunately10 퐻푑(푍, 휔푍(퐸red
2022
+ 푋 + (퐸red
2023
+ 푌 − 퐸푌))) is often 0. If 퐸푋 and 퐸푌 are both reduced (an explicit
2024
+ example where this holds will be given below), then 퐻푑(푍, 휔푍(퐸red
2025
+ 푋 +(퐸red
2026
+ 푌 −퐸푌))) = 퐻푑(푍, 휔푍(퐸푋)).
2027
+ If in addition 퐸푋 ≠ 0, we obtain 퐻푑(푍, 휔푍(퐸푋)) = 0 by an extremely weak (but characteristic inde-
2028
+ pendent) sort of Kodaira vanishing:
2029
+ Lemma A.13. Let 푍 be a proper variety over a field 푘 with dimension 푑, and assume 푍 is normal and
2030
+ Cohen-Macaulay. If 퐷 ⊂ 푍 is a non-0 effective Cartier divisor on 푍 then 퐻푑(푍, 휔푍(퐷)) = 0.
2031
+ Proof. By Serre duality 퐻푑(푍, 휔푍(퐷)) = 퐻0(푍, 풪푍(−퐷)), which vanishes by the classic fact that “a
2032
+ nontrivial line bundle and its inverse can’t both have non-0 global sections.” Since I am not aware
2033
+ of a specific reference, here is a proof:
2034
+ Suppose towards contraditction that there is a non-0 global section 휎 ∈ 퐻0(푍, 풪푍(−퐷)) — then
2035
+ the composition
2036
+ 풪푍
2037
+ 풪푍(−퐷)
2038
+ 풪푍
2039
+
2040
+
2041
+ is non-0. By [Stacks, Tag 0358] 퐻0(푍, 풪푍) is a (normal) domain, and since it’s also a finite dimen-
2042
+ sional 푘-vector space it must be an extension field of 푘. But then 휏 ∈ 퐻0(푍, 풪푍) is invertible hence
2043
+ surjective, so 풪푍(−퐷) ��→ 풪푍 is surjective, which is a contradiction since by hypothesis the cokernel
2044
+ 풪퐷 ≠ 0.
2045
+ Example A.14. Let 푋 = ℙ2 and let ∆푋 ⊂ 푋 be a line. Let 푝 ∈ 퐿 be a 푘-point, let 푌 = Bl푝 푋 and
2046
+ let ∆푌 = ̃퐿 = the strict transform of 퐿. Finally let 푓 ∶ 푌 → 푋 be the blowup map and let 푍 =
2047
+ (푓 ×id)(푌) ⊂ 푋 ×푌. In this case (with all notation as above) 휋푋◦(푓 ×id) = 푓 and 휋푌◦(푓 ×id) = id푌,
2048
+ so under the isomorphism 푓 × id ∶ 푌 ≃ 푍, 퐸푋 is the exceptional divisor of 푓 (with multiplicity 1).
2049
+ On the other hand 퐸푌 = 0. In particular 퐸푋 and 퐸푌 are reduced and 퐸푋 ≠ 0 so from the above
2050
+ discussion 퐻2(푍, 휔푍(퐸푋)) = 0.
2051
+ 10at least for the purposes of constructing log Hodge cohomology classes of subvarieties ...
2052
+ 25
2053
+
3tAyT4oBgHgl3EQfo_h3/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
3tFLT4oBgHgl3EQfsC9L/content/tmp_files/2301.12146v1.pdf.txt ADDED
@@ -0,0 +1,1007 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.12146v1 [math.NT] 28 Jan 2023
2
+ On Tribonacci Sequences
3
+ Luke Pebody
4
+ Saturday 28, January 2023
5
+ Abstract
6
+ Let a tribonacci sequence be a sequence of integers satisfying ak =
7
+ ak−1 + ak−2 + ak−3 for all k ≥ 4.
8
+ For any positive integers k and n,
9
+ denote by fk(n) the number of tribonacci sequences with a1, a2, a3 > 0
10
+ and with ak = n.
11
+ For all n, there is a maximum k such that fk(n) is non-zero. Answering
12
+ a question of Spiro [1], we show that there is a finite upper bound (we
13
+ specifically prove 561001) on fk(n) for any positive integer n ≥ 3 and this
14
+ maximum k.
15
+ We do this by showing that fk(n) has transitions in n around constant
16
+ multiples of φ3k/2 (where φ is the real root of φ3 = φ2 + φ + 1): there
17
+ exists a constant C such that fk(n) > 0 whenever n > Cφ3k/2 and for any
18
+ constant T , the values of fk(n) with n < T φ3k/2 have an upper bound
19
+ independent of k.
20
+ 1
21
+ Introduction
22
+ A tribonacci sequence of length k is a sequence of integers ⟨ai⟩k
23
+ i=1 such that
24
+ ai = ai−1 + ai−2 + ai−3 for all 4 ≤ i ≤ k.
25
+ We say that such a sequence
26
+ terminates at ak and that it is positive if a1, a2, a3 > 0 - note that this easily
27
+ implies that ai > 0 for all i. Denote by fk(n) the number of tribonacci sequences
28
+ of length k terminating at n.
29
+ Clearly f1(n) = 1 for all n > 0, the only tribonacci sequence of length 1
30
+ terminating at n being ⟨n⟩. Further, f2(n) = f3(n) = ∞ as we can choose any
31
+ values for the proceeding terms.
32
+ For n ≥ 3, there exists a tribonacci sequence of length longer than 3 termi-
33
+ nating at n, for example ⟨n − 2, 1, 1, n⟩. However for any tribonacci sequence
34
+ ⟨ai⟩k
35
+ i=1 of length k, and for any 4 ≤ i ≤ k, ai = ai−1 + ai−2 + ai−3 ≥ ai−1 + 2,
36
+ so by induction ai ≥ 2i− 5 for all 3 ≤ i ≤ k, and hence if n < 2k − 5, fk(n) = 0.
37
+ Let t(n) be the largest number such that ft(n)(n) > 0.
38
+ Let p(n) denote the number of positive tribonacci sequences of length t(n)
39
+ terminating at n, so p(n) = ft(n)(n).
40
+ Clearly, since t(1) = t(2) = 3 it follows that p(1) = p(2) = ∞. Spiro [1] asks
41
+ Question 1. Does there exist some absolute constant c such that for all n ≥ 3,
42
+ p(n) ≤ c for all n?
43
+ 1
44
+
45
+ The purpose of this paper is to give a positive answer to this question. Indeed
46
+ we will show
47
+ Theorem 2. For any integer n ≥ 3, there are at most 561001 positive tribonacci
48
+ sequences of length t(n) terminating at n.
49
+ It turns out the key question for our proof is the minimum size of the vector
50
+
51
+
52
+ a1
53
+ a2
54
+ a3
55
+
56
+  where ⟨ai⟩n
57
+ i=1 is a non-zero tribonacci sequence terminating at an = 0.
58
+ In Section 2 we will show a lower bound on such a sequence of the order of φn/2,
59
+ which will allow us to prove
60
+ Theorem 3. For any positive integers n, k with k ≥ 4, the number of positive
61
+ sequences of length k terminating at n is at most
62
+ ⌈1500
63
+ n
64
+ φ3k/2 ⌉2.
65
+ In Section 3 we turn to trying to put an upper bound on numbers that don’t
66
+ have any positive tribonacci sequences of length k terminating at them. This
67
+ is an instance of the Coin Problem, also known as calculating the Frobenius
68
+ Number. We construct two specific tribonacci sequences terminating at an = 0
69
+ with
70
+
71
+
72
+ a1
73
+ a2
74
+ a3
75
+
76
+  being of the order of φn/2 and with the integers a1, a2, a3 having
77
+ specified signs, allowing us to prove
78
+ Theorem 4. For any integer n above 0.2φ3k/2, there exists a positive tribonacci
79
+ sequence of length k terminating at n.
80
+ This will be all that is required.
81
+ Proof of Theorem 2. There is no sequence of length t(n) + 1 terminating at n.
82
+ Hence by Theorem 4, it follows that n < 0.2φ3(t(n)+1)/2 = 0.2φ3/2φ3t(n)/2.
83
+ Thus from Theorem 3, it follows that there are at most
84
+ ⌈1500
85
+ n
86
+ φ3t(n)/2 ⌉2 ≤ ⌈15000.2φ3/2φ3t(n)/2
87
+ φ3t(n)/2
88
+ ⌉2
89
+ ≤ ⌈300φ3/2⌉2 = 7492 = 561001
90
+ positive tribonacci sequences of length t(n) terminating at n.
91
+ In Section 4, we will investigate which recurrence relations of the form xn =
92
+ axn−1+bxn−2+cxn−3 for non-negative a and b and for positive c the arguments
93
+ in this paper can be carried across to. We will extend the result in the earlier
94
+ sections to the following case.
95
+ 2
96
+
97
+ Theorem 5. Suppose a, b, c are non-negative integers with a + b > 0, c = 1
98
+ and such that x3 − ax2 − bx − c = 0 has exactly one real root.
99
+ Then there
100
+ is an absolute bound T such that if positive integers k ≥ 4 and n are such
101
+ that there are no positive sequences ⟨ai⟩k+1
102
+ i=1 satisfying the recurrence relation
103
+ ai = aai−1 + bai−2 + cai−3 of length k + 1 terminating at n, then there are at
104
+ most T such sequences of length k terminating at n.
105
+ We will leave open the question of which linear recurrences satisfy this prop-
106
+ erty, but will at least demonstrate an example of a recurrence that does not.
107
+ In particular we will show the existence of positive integers k and n such
108
+ that there is no positive sequence ⟨ai⟩k+1
109
+ i=1 satisfying the recurrence relation
110
+ ai = ai−1 + ai−2 + 2ai−3 of length k + 1 terminating at n, but for which the
111
+ number of such sequences of length k terminating at n is unbounded.
112
+ 2
113
+ Lower Bound
114
+ Let us say a sequence ⟨ai⟩∞
115
+ i=1 is a reverse-tribonacci sequence if for all i ≥ 0,
116
+ ai = ai+1+ai+2+ai+3. Let us write out the expression for the reverse-tribonacci
117
+ sequence starting ⟨0, k, l⟩. Recall that φ is the real solution to φ3 = φ2 + φ + 1.
118
+ We write the complex roots as φ1 and φ2 = φ1.
119
+ Lemma 6. For all integers k, l, if ⟨ai⟩∞
120
+ i=1 is a reverse-tribonacci sequence with
121
+ a1 = 0, a2 = k and a3 = l, then for all i, ai can be expressed as
122
+ ai = αφ−i + (kψ1 + lζ1)φ−i
123
+ 1 + (kψ2 + lζ2)φ−i
124
+ 2
125
+ = (αφ−3i/2 + β cos(γ − δi))φi/2,
126
+ where
127
+ ψ1 =
128
+ φ3
129
+ 1 + φ2
130
+ 1
131
+ φ2
132
+ 1 + 2φ1 + 3
133
+ ψ2 = ψ1
134
+ ζ1 =
135
+ φ3
136
+ 1
137
+ φ2
138
+ 1 + 2φ1 + 3
139
+ ζ2 = ζ1
140
+ α = kφ2 + (k + l)φ3
141
+ φ2 + 2φ + 3
142
+ βeγi = 2(kψ1 + lζ1) and
143
+ eδi = φ1
144
+
145
+ φ.
146
+ Proof. Any two-way infinite tribonacci sequence ⟨ai⟩∞
147
+ −∞ can be written as ai =
148
+ pφi + qφi
149
+ 1 + rφi
150
+ 2 for some p, q and r.
151
+ Thus any reverse-tribonacci sequence ⟨ai⟩∞
152
+ −∞ can be written as ai = pφ−i +
153
+ qφ−i
154
+ 1 + rφ−i
155
+ 2
156
+ for some p, q, r. Solving for the p, q, r that give a1 = 0, a2 = k and
157
+ a3 = l leads to the above expression.
158
+ 3
159
+
160
+ Note that in the above expressions, ψ1, ψ2, ζ1, ζ2 and δ are constants that
161
+ do not depend on k and l.
162
+ Lemma 7. For any integers k and l, if α and β are defined as in Lemma 6,
163
+ then |α| ≤ |k| + |l| and β ≥ |k|+|l|
164
+ 31
165
+ .
166
+ Proof. α is roughly 0.9546k+0.6184l, which is clearly bounded above by |k|+|l|.
167
+ ψ1 is roughly 0.02267 − 0.217i and ζ1 is roughly 0.1908 − 0.0187i. As such, if
168
+ k and l are non-negative then the real part of 2(kψ1 + lζ1) (and hence β) is at
169
+ least 0.04(k + l) > |k|+|l|
170
+ 31
171
+ .
172
+ For k positive and l negative, the minimum value of
173
+ β
174
+ k−l is approximately
175
+ 0.03221 >
176
+ 1
177
+ 31, and is achieved around k = −0.3653l.
178
+ Finally we need a simple trigonometric property
179
+ Lemma 8. For any real numbers p and q with π
180
+ 2 < q < π, the larger of | cos(p)|
181
+ and | cos(p + q)| is at least cos(q/2).
182
+ Proof. Note that cos(q) < 0. Thus
183
+ 2(cos(p)2 + cos(p + q)2) = 2 cos(p)2 + 2 cos(p + q)2
184
+ = cos(2p) + cos(2p + 2q) + 2
185
+ = 2 cos(2p + q) cos(q) + 2
186
+ ≥ 2 + 2 cos(q)
187
+ = 4 cos(q/2)2.
188
+ Thus either cos(p)2 ≥ cos(q/2)2 or cos(p + q)2 ≥ cos(q/2)2.
189
+ This allows us to put a lower bound on the size of at least one of each
190
+ consecutive pair of a reverse-tribonacci sequence.
191
+ Corollary 9. Given a non-zero integer reverse-tribonacci sequence ⟨ai⟩∞
192
+ i=1 with
193
+ a1 = 0, for every integer n ≥ 2, either |an| > 0.01φn/2 or |an+1| > 0.01φ(n+1)/2
194
+ (or both).
195
+ Proof. For n ≥ 2 if an and an+1 are both 0, then a1 is the same sign as an−1.
196
+ Since a1 = 0, it follows that the entire series must be 0. Since the sequence is
197
+ non-zero, it follows that either |an| ≥ 1 or |an+1 ≥ 1. Since 1 > 0.01φn/2 for
198
+ n ≤ 15, we have proved the statement for n ≤ 14. Thus we may assume n ≥ 15.
199
+ By Lemma 6,
200
+ ai
201
+ φi/2 can be written as αφ−3i/2 + β cos(γ − δi).
202
+ Now by Lemma 8, at least one of | cos(γ − δn)| and | cos(γ − δ(n − 1))| is
203
+ at least cos(δ/2) (δ = 2.176 is between π
204
+ 2 and π). Let t be the choice from
205
+ {n − 1, n} that maximises | cos(γ − δt)|.
206
+ By Lemma 7, if we write α′ =
207
+ α
208
+ |k|+|l| and β′ =
209
+ β
210
+ |k|+|l| then |α′| ≤ 1 and
211
+ β′ >
212
+ 1
213
+ 31.
214
+ 4
215
+
216
+ Therefore
217
+ | at
218
+ φt/2 | = |αφ−3t/2 + β cos(γ − δt)|
219
+ ≥ |α′φ−3t/2 + β′ cos(γ − δt)|
220
+ ≥ |β′ cos(γ − δt)| − |α′φ−3t/2|
221
+ ≥ 1
222
+ 31 cos(δ/2) − φ−3t/2 ≥ cos(δ/2)
223
+ 31
224
+ − φ−22.5 > 0.01.
225
+ Then we have a bound on the size of tribonacci sequences terminating at 0.
226
+ Corollary 10. For n ≥ 3, if ⟨ai⟩n
227
+ i=1 is a non-zero integer tribonacci sequence
228
+ terminating at 0 then either |a1| > 0.01φn/2 or |a2| > 0.01φ(n−1)/2 (or both).
229
+ Proof. Let k = an−1 and l = an−2. Then if ⟨bi⟩∞
230
+ i=1 is the reverse-tribonacci
231
+ sequence with b1 = 0, b2 = k and b3 = l, then ai = bn+1−i for all 1 ≤ i ≤ n.
232
+ Then this is just a restatement of Corollary 9.
233
+ This is all we need to prove Theorem 3.
234
+ Proof of Theorem 3. Partition the tribonacci sequences of length k ≥ 4 termi-
235
+ nating at n ⟨ai⟩k
236
+ i=1 by the pair (⌊
237
+ a1
238
+ 0.01φk/2 ⌋, ⌊
239
+ a2
240
+ 0.01φk−1/2 ⌋).
241
+ If two sequences ⟨ai⟩k
242
+ i=1 and ⟨bi⟩k
243
+ i=1 have the same pair, then |a1 − b1| <
244
+ 0.01φk/2 and |a2 − b2| < 0.01φ(k−1)/2 and hence, by Corollary 10, either ⟨ai −
245
+ bi⟩k
246
+ i=1 is zero everywhere or does not terminate at 0.
247
+ Thus each distinct tribonacci sequence of length k terminating at n has a
248
+ distinct pair.
249
+ Define tribonacci sequence by x1 = 1, x2 = 0, x3 = 0. Then if a1, a2, . . . , ak
250
+ is a positive tribonacci sequence, ai ≥ xia4 for i = 2, 3 and 4 and therefore
251
+ ak ≥ xka4. Now xk < φk/11 for all k ≥ 4 and hence a1 + a2 + a3 ≤ 11n
252
+ φk for all
253
+ tribonacci sequences of length k terminating at n.
254
+ Thus ⌊
255
+ a1
256
+ 0.01φk/2 ⌋ is at most 1100n
257
+ φ3k/2 and ⌊
258
+ a2
259
+ 0.01φ(k−1)/2 ⌋ is at most
260
+ 1100n
261
+ φ3k−1/2 < 1500n
262
+ φ3k/2 .
263
+ It follows that the number of Tribonacci sequences of length k ≥ 4 termi-
264
+ nating at n is at most ��� 1500n
265
+ φ3k/2 ⌉2.
266
+ Note we have not worked hard here to get the best bound. In a previous
267
+ draft we had a much more complicated proof of an upper bound which showed,
268
+ in place of Corollary 10, that if ⟨ai⟩n
269
+ i=1 terminated at 0 then
270
+
271
+ a2
272
+ 1 + a2
273
+ 2 + a2
274
+ 3 >
275
+ 0.28φn/2, which led to an upper bound for the main theorem of 42875.
276
+ 3
277
+ Upper Bound
278
+ In this section, we turn to numbers which are not the terminus for any tribonacci
279
+ sequence of length k, working towards a proof of Theorem 4.
280
+ 5
281
+
282
+ To that end, define three infinite tribonacci sequences ⟨pi⟩∞
283
+ i=1, ⟨qi⟩∞
284
+ i=1 and
285
+ ⟨ri⟩∞
286
+ i=1 by (p1, p2, p3) = (1, 0, 0), (q1, q2, q3) = (0, 1, 0) and (r1, r2, r3) = (0, 0, 1).
287
+ It is clear that for any tribonacci sequence ⟨ai⟩n
288
+ i=1, an = a1pn + b1qn + c1rn.
289
+ Thus we are simply looking to get an upper bound on the largest number which
290
+ cannot be written as a positive integral linear combination of pn, qn and rn.
291
+ This is called the Frobenius Number of pn, qn and rn.
292
+ First let us see that a finite bound does exist.
293
+ Lemma 11. For all k ≥ 1, pk, qk and rk have no non-trivial common divisor.
294
+ Proof. If pk, qk and rk had a non-trivial common divisor t > 1 then t would be
295
+ a common divisor of the terminus of every tribonacci sequence of length k, from
296
+ which it would follow that t would in fact be a common divisor of pk+l for all
297
+ l ≥ 0 (since ⟨pi+l⟩k
298
+ 1 is a tribonacci sequence of length k).
299
+ Then, since pi = pi+3 − (pi+1 + pi+2), it would follow that t would be a
300
+ common divisor of pk−1, pk−2 and all the way back to p0 = 1 by induction,
301
+ causing a contradiction.
302
+ We will use the following bound, which might be originally due to Killing-
303
+ bergtro.
304
+ Theorem 12. Suppose p, q and r are integers with no non-trivial common di-
305
+ visor and let us suppose ap = bq + cr and dq = ep + fr where a, c, d, f > 0 and
306
+ b, e ≥ 0. Then for every integer N ≥ ap + dq + r, N can be written in the form
307
+ xp + yq + zr for some positive integers p, q, r.
308
+ Proof. Let x, y, z be positive integers such that px + qy + rz is equivalent to
309
+ N (mod r), but for which px + qy + rz is minimal (such a triple x, y, z exist
310
+ because, as is well known, if p, q and r have no non-trivial common divisor then
311
+ all sufficiently large integers can be written in the form px + qy + rz, and many
312
+ of these sufficiently large integers are equivalent to N (mod r).)
313
+ Since px+qy+rz is minimal, px+qy+rz−r cannot be written as a positive
314
+ linear combination of x, y and z.
315
+ Thus in each of the equations
316
+ px + qy + rz − r = px
317
+ + qy
318
+ + r(z − 1)
319
+ px + qy + rz − r = p(x − a)
320
+ + q(y + b)
321
+ + r(z + c − 1)
322
+ px + qy + rz − r = p(x + e)
323
+ + q(y − d)
324
+ + r(z + f − 1),
325
+ it must follow that one of the coefficients must not be positive. Two of the
326
+ coefficients in each equation are clearly positive, so it follows that x ≤ a, y ≤ d
327
+ and z ≤ 1, so px + qy + rz ≤ pa + qd + r ≤ N. Since N and px + qy + rz
328
+ are equivalent modulo r, there exists a non-negative integer t such that N =
329
+ px + qy + rz + rt. Then N = px + qy + r(z + t).
330
+ Therefore, to show that all sufficiently large integers can be written as the
331
+ terminus of a tribonacci sequence of length k, we just need to find linear com-
332
+ binations of pn, qn and rn combining to 0, with particular signs of the combi-
333
+ nations. This is equivalent to finding tribonacci sequences ending at 0, which
334
+ 6
335
+
336
+ Table 1: Table for Lemma 13
337
+ t0
338
+ t1
339
+ k
340
+ l
341
+ α
342
+ β
343
+ γ
344
+ x0
345
+ x1
346
+ x2
347
+ 0
348
+ 0.06
349
+ 0
350
+ 1
351
+ 0.6184
352
+ 0.3834
353
+ -0.0977
354
+ 0.3410
355
+ -0.0500
356
+ -0.1694
357
+ 0.06
358
+ 0.16
359
+ -1
360
+ 2
361
+ 0.2822
362
+ 0.8027
363
+ 0.4640
364
+ 0.6879
365
+ -0.0515
366
+ -0.2163
367
+ 0.16
368
+ 0.22
369
+ -1
370
+ 1
371
+ -0.3362
372
+ 0.5200
373
+ 0.8677
374
+ 0.4526
375
+ -0.0471
376
+ -0.2482
377
+ 0.22
378
+ 0.35
379
+ -1
380
+ 0
381
+ -0.9546
382
+ 0.4364
383
+ 1.6749
384
+ 0.3778
385
+ -0.0354
386
+ -0.0294
387
+ 0.35
388
+ 0.45
389
+ -1
390
+ -1
391
+ -1.5731
392
+ 0.6360
393
+ 2.3067
394
+ 0.5517
395
+ -0.0538
396
+ -0.1588
397
+ 0.45
398
+ 0.56
399
+ 0
400
+ -1
401
+ -0.6184
402
+ 0.3834
403
+ 3.0439
404
+ 0.3410
405
+ -0.0500
406
+ -0.0548
407
+ 0.56
408
+ 0.66
409
+ 1
410
+ -2
411
+ -0.2822
412
+ 0.8027
413
+ -2.6776
414
+ 0.6879
415
+ -0.0515
416
+ -0.2163
417
+ 0.66
418
+ 0.72
419
+ 1
420
+ -1
421
+ 0.3362
422
+ 0.5200
423
+ -2.2739
424
+ 0.4526
425
+ -0.0471
426
+ -0.2482
427
+ 0.72
428
+ 0.85
429
+ 1
430
+ 0
431
+ 0.9546
432
+ 0.4364
433
+ -1.4667
434
+ 0.3778
435
+ -0.0354
436
+ -0.0294
437
+ 0.85
438
+ 0.95
439
+ 1
440
+ 1
441
+ 1.5731
442
+ 0.6360
443
+ -0.8349
444
+ 0.5517
445
+ -0.0538
446
+ -0.1588
447
+ 0.95
448
+ 1
449
+ 0
450
+ 1
451
+ 0.6184
452
+ 0.3834
453
+ -0.0977
454
+ 0.3745
455
+ -0.1864
456
+ -0.0548
457
+ is equivalent to finding reverse-tribonacci sequences starting at 0, and hence we
458
+ can again use the expression from Lemma 6, which states that if ⟨ai⟩∞
459
+ i=1 is a
460
+ reverse-tribonacci sequence with a1 = 0, a2 = k and a3 = l then for all n
461
+ an = (αφ−3n/2 + β cos(γ − δn))φn/2.
462
+ Note that for all but an extremely small collection of n, the term β cos(γ+δn)
463
+ dwarves αφ−3n/2. As such, for a fixed k and l, the sign of an depends only
464
+ (except for a few very rare counterexamples) on the fractional part of
465
+ δ
466
+ 2πn.
467
+ Lemma 13. For each integer n ≥ 4, there exists a tribonacci sequence ⟨ai⟩n
468
+ i=1
469
+ terminating at an = 0, with a1 > 0, 0 ≥ a2, 0 > a3 and with a1 < 0.81φn/2.
470
+ Similarly for all such n, there exists a tribonacci sequence ⟨bi⟩n
471
+ i=1 terminating
472
+ at bn = 0, with b2 > 0, 0 ≥ b1, 0 > b3 and with b2 < 0.64φn/2.
473
+ Proof. We will split into cases based on the fractional part of δn
474
+ 2π = 0.3464n. See
475
+ Table 1. For each row, if t0 ≤ δn
476
+ 2π − ⌊ δn
477
+ 2π⌋ ≤ t1, then for the given values of k and
478
+ l, if β and γ are as defined in Lemma 6, one can confirm that β cos(γ − δn) ≥
479
+ x0 > 0.34, while β cos(γ − δ(n − 1)) ≤ x1 < −0.035 and β cos(γ − δ(n − 2)) ≤
480
+ x2 < −0.029.
481
+ Furthermore, for all such k, l, |α| < 1.58, so if n ≥ 7, |αφ−3(n−2)/2| ≤ 0.017,
482
+ from which it follows that an > 0 > an−1, an−2. Further,
483
+ an
484
+ φn/2 < β + 0.017 <
485
+ 0.81.
486
+ For 4 ≤ n < 7, we can verify the sequences (1, 0, −1, 0), (2, 0, −1, 1, 0) and
487
+ (2, 0, −1, 1, 0, 0) satisfy the conditions for (a1, a2, . . . , an).
488
+ For the sequence (b1, b2, . . . , bn), see Table 2. Here, for each row, if t0 ≤
489
+ δn
490
+ 2π − ⌊ δn
491
+ 2π⌋ ≤ t1, then for the given values of k and l, if β and γ are as defined in
492
+ Lemma 6, one can confirm that β cos(γ − δn) ≤ x0 < −0.071, while β cos(γ −
493
+ δ(n − 1)) ≥ x1 > 0.33 and β cos(γ − δ(n − 2)) ≤ x2 < −0.041.
494
+ Furthermore, for all such k, l, |α| < 1.58, so if n ≥ 7, |αφ−3(n−2)/2| ≤ 0.017,
495
+ from which it follows that an−1 > 0 > an, an−2.
496
+ For 4 ≤ n < 7, we can verify the sequences (0, 1, −1, 0), (0, 1, −1, 0, 0) and
497
+ (−1, 2, −1, 0, 1, 0) satisfy the conditions for (b1, b2, . . . , bn).
498
+ This then completes our proof.
499
+ 7
500
+
501
+ Table 2: Other table for Lemma 13
502
+ t0
503
+ t1
504
+ k
505
+ l
506
+ α
507
+ β
508
+ γ
509
+ x0
510
+ x1
511
+ x2
512
+ 0
513
+ 0.06
514
+ 1
515
+ -1
516
+ 0.3362
517
+ 0.5200
518
+ 2.2739
519
+ -0.3362
520
+ 0.4625
521
+ -0.0678
522
+ 0.06
523
+ 0.19
524
+ 1
525
+ 0
526
+ 0.9546
527
+ 0.4364
528
+ 1.4667
529
+ -0.1176
530
+ 0.3862
531
+ -0.0528
532
+ 0.19
533
+ 0.29
534
+ 1
535
+ 1
536
+ 1.5731
537
+ 0.6360
538
+ 0.8349
539
+ -0.2812
540
+ 0.5639
541
+ -0.0791
542
+ 0.29
543
+ 0.41
544
+ 0
545
+ 1
546
+ 0.6184
547
+ 0.3834
548
+ 0.0977
549
+ -0.1311
550
+ 0.3369
551
+ -0.0413
552
+ 0.41
553
+ 0.56
554
+ -1
555
+ 1
556
+ -0.3362
557
+ 0.5200
558
+ -0.8677
559
+ -0.0714
560
+ 0.4625
561
+ -0.0678
562
+ 0.56
563
+ 0.69
564
+ -1
565
+ 0
566
+ -0.9546
567
+ 0.4364
568
+ -1.6749
569
+ -0.1176
570
+ 0.3862
571
+ -0.0528
572
+ 0.69
573
+ 0.79
574
+ -1
575
+ -1
576
+ -1.5731
577
+ 0.6360
578
+ -2.3067
579
+ -0.2812
580
+ 0.5639
581
+ -0.0791
582
+ 0.79
583
+ 0.91
584
+ 0
585
+ -1
586
+ -0.6184
587
+ 0.3834
588
+ -3.0439
589
+ -0.1311
590
+ 0.3369
591
+ -0.0413
592
+ 0.91
593
+ 1
594
+ 1
595
+ -1
596
+ 0.3362
597
+ 0.5200
598
+ 2.2739
599
+ -0.0714
600
+ 0.4641
601
+ -0.2528
602
+ Proof of Theorem 4. Lemma 13 gives us tribonacci sequences ⟨ai⟩n
603
+ i=1 and ⟨bi⟩n
604
+ i=1
605
+ terminating at an = bn = 0. It follows that a1pn + a2qn + a3rn = 0 = b1qn +
606
+ b2qn + b3rn.
607
+ Since a1, b2 > 0 > a3, b3 and 0 ≥ a2, b1, it follows that we can write
608
+ a1pn = (−a2)qn + (−a3)rn and
609
+ b2qn = (−b1)p1 + (−b3)rn
610
+ satisfying the sign requirements of Theorem 12, so it follows that every integer
611
+ N ≥ a1pn + b2qn + rn can be written in the form xpn + yqn + zrn for some
612
+ positive integers x, y and z, and hence there exists a positive tribonacci sequence
613
+ of length k ending at N.
614
+ By the bounds on a1 and b2 given in Lemma 13, we have such a tribonacci
615
+ sequence for all N ≥ 0.81φk/2uk+0.64φk/2vk+wk. Since uk ≤ vk ≤ wk < 0.11φk
616
+ and 0.81φk/2+0.64φk/2+1 < 1.74φk/2, it follows that such a tribonacci sequence
617
+ exists for all N ≥ 0.2φ3k/2 as was required.
618
+ 4
619
+ Other cubic recurrences
620
+ For non-negative a, b, c we can ask a similar question for recurrences of the form
621
+ xn = axn−1 + bxn−2 + cxn−3. Formally, let us define ka,b,c(n) to be the largest
622
+ k such there is a positive k-element solution ⟨xi⟩k
623
+ i=1 to the recurrence relation
624
+ xi = axi−1 + bxi−2 + cxi−3, and define ta,b,c(n) to be the number of positive
625
+ ka,b,c(n)-element solutions that exist.
626
+ If c = 0, this is a quadratic recurrence, and the problem is already solved. If
627
+ a = 0, b = 0 and c = 1, the recurrence is xn = xn−3, and ka,b,c(n) is not defined
628
+ for any n.
629
+ For all a, b, c ≥ 0 with c ≥ 1 and a + b + c ≥ 2, say that the recurrence
630
+ xn = axn−1 + bxn−2 + cxn−3 is congenial if there exists a finite bound B such
631
+ that for all n, ta,b,c(n) = ∞ or ta,b,c(n) ≤ B.
632
+ Firstly let us note that not all recurrences are congenial.
633
+ Lemma 14. The recurrence xn = xn−1 + xn−2 + 2xn−3 is not congenial.
634
+ Proof. Let ⟨pn⟩∞
635
+ n=1, ⟨qn⟩∞
636
+ n=1 and ⟨rn⟩∞
637
+ n=1 be the solutions to the recurrence
638
+ 8
639
+
640
+ starting with ⟨1, 0, 0⟩, ⟨0, 1, 0⟩ and ⟨0, 0, 1⟩ respectively.
641
+ Then xn = x1pn +
642
+ x2qn + x3rn.
643
+ Solutions to the recurrence can be split as the sum of two parts - a sequence of
644
+ the form ⟨x(1)
645
+ n
646
+ = 2n−1k⟩ and a sequence of the form ⟨x(2)
647
+ n ⟩ which is periodic with
648
+ period 3 with x(2)
649
+ 1
650
+ +x(2)
651
+ 2 +x(2)
652
+ 3
653
+ = 0. It is then easy to solve for k: x1 +x2 +x3 =
654
+ x(1)
655
+ 1
656
+ + x(1)
657
+ 2
658
+ + x(1)
659
+ 3
660
+ = 7k, so k = x1+x2+x3
661
+ 7
662
+ .
663
+ In particular, if you let tn = 2n−1
664
+ 7
665
+ , pn−tn is periodic with period ⟨ 6
666
+ 7, − 2
667
+ 7, − 4
668
+ 7⟩,
669
+ qn − tn with period ⟨− 1
670
+ 7, 5
671
+ 7, − 4
672
+ 7⟩ and rn − tn with period ⟨− 1
673
+ 7, − 2
674
+ 7, 3
675
+ 7⟩.
676
+ For n = 3t, xn = c(x1 + x2) + (c + 1)xn−3 and xn+1 = 2(c + 1)x1 + (2c +
677
+ 1)(x2 + x3) where c = 23t−1−1
678
+ 7
679
+ . Then xn+1 cannot be equal to (2c + 1)(2c + 3)
680
+ for positive x1, x2, x3 (x1 would have to be a multiple of 2c + 1 that is positive
681
+ but less than 2c + 1), but for all 1 ≤ i ≤ 4c + 4, if x1 = i, x2 = 4c + 5 − i and
682
+ x3 = 3, then xn = c(4c + 5) + (c + 1)3 = 4c2 + 8c + 3 = (2c + 1)(2c + 3).
683
+ The proofs in this paper can be adapted to show that many other recurrences
684
+ are congenial. Let us say a polynomial x3 − ax2 − bx − c is affable if c = 1 and
685
+ it has exactly one real root, which is more than 1. We will show that affability
686
+ leads to congeniality.
687
+ For the rest of this section, fix an affable polynomial x3 − ax2 − bx − c with
688
+ real root η1 and complex roots η2 and η3 = η2. Note that |η2| = η−1/2
689
+ 1
690
+ .
691
+ We will make use of the following equivalent to Lemma 6.
692
+ Lemma 15. Given a sequence ⟨xi⟩n
693
+ i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi
694
+ with xn = 0, xn−1 = k and xn−2 = l, xi can be expressed as
695
+ xi =
696
+ 3
697
+
698
+ j=1
699
+ (kψj + lζj)ηn−i
700
+ j
701
+ for constants ψj, ζj depending only on x3 − ax2 − bx − c, which can be rewritten
702
+ as
703
+ xi
704
+ η(n−i)/2
705
+ 1
706
+ = αη−3(n−i)/2
707
+ 1
708
+ + β cos(γ − δ(n − i))
709
+ where
710
+ α = kψ1 + lζ1,
711
+ βeγi = 2(kψ2 + lζ2) and
712
+ eδi = η2
713
+ √η1.
714
+ We will follow the steps of the proof of Theorem 2 for all recurrence relations
715
+ corresponding to affable polynomials. We will not attempt to give an actual
716
+ bound.
717
+ We note the following, which will be used in the equivalents of both Theo-
718
+ rems 3 and 4
719
+ 9
720
+
721
+ Lemma 16. If real numbers k and l satisfy kψ2 + lζ2 = 0, then k = l = 0.
722
+ Proof. As ψ3 = ψ2 and ζ3 = ζ2, kψ3 + lζ3 = 0 and therefore the sequence with
723
+ xn = 0, xn−1 = k and xn−2 = l can simply be expressed as xi = (kψ1+lζ1)ηn−i
724
+ 1
725
+ .
726
+ As 0 = xn = kψ1 + lζ1, it follows that xi = 0 for all i and therefore k = l =
727
+ 0.
728
+ We start by following the proof of Theorem 3.
729
+ Lemma 17. There exists an absolute bound M such that for n ≥ 4 and all
730
+ non-zero integer sequences ⟨xi⟩n
731
+ i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi and
732
+ xn = 0 either |x1| ≥ Mηn/2
733
+ 1
734
+ or |x2| ≥ Mηn/2
735
+ 1
736
+ (or both).
737
+ Proof. The set of complex numbers kψ2 + lζ2 for k, l real with |k| + |l| = 1 is
738
+ a closed subset of the complex plane (in fact a hollow parallelogram) which, by
739
+ Lemma 16 does not contain 0. As such, there exists a constant V > 0 such
740
+ that for all such k, l, |kψ2 + lζ2| > V .
741
+ Then for all real k, l it follows that
742
+ β = |kψ2 + lζ2| > V (|k| + |l|).
743
+ Clearly if U = max(|ψ1|, |ζ1|), α ≤ U(|k| + |l|).
744
+ Pick integer N such that V cos(δ/2) − Uη−3(N−1)/2
745
+ 1
746
+ is positive. Note we
747
+ can do this because π
748
+ 2 < δ < π. Then let M > 0 be such that V cos(δ/2) −
749
+ Uη−3(N−2)/2
750
+ 1
751
+ > Mη1 and η−N/2
752
+ 1
753
+ > M.
754
+ Now if n ≤ N, then Mηn/2
755
+ 1
756
+ < 1 (note that η1 > 1 since 13 < a×12+b×1+c)
757
+ and x1, x2 cannot both be 0 (as then xn would have to be the same sign as x3
758
+ and non-zero).
759
+ For n > N, we know from Lemma 8 that there exists t ∈ {1, 2} such that
760
+ | cos(γ − δ(n − t))| > cos(δ/2) > 0.
761
+ For such t, n − t ≥ N − 1 and so it follows that
762
+ |xt|
763
+ η(n−t)/2
764
+ 1
765
+ = |αη−3n/2
766
+ 1
767
+ + β cos(γ − δn)|
768
+ ≥ |β cos(γ − δn)| − |α|η−3n/2
769
+ 1
770
+ ≥ V cos(δ/2) − Uη−3n/2
771
+ 1
772
+ ≥ Mη1
773
+ and hence |xt| ≥ Mη(n+2−t)/2
774
+ 1
775
+ ≥ Mηn/2
776
+ 1
777
+ .
778
+ This is enough for the equivalent of Theorem 3
779
+ Theorem 18. There exists a fixed bound T such that for any positive integers
780
+ n, k with k ≥ 4, the number of positive sequences ⟨xi⟩k
781
+ i=1 satisfying xi+3 =
782
+ axi+2 + bxi+1 + cxi and terminating at xk = n is at most
783
+ ⌈T
784
+ n
785
+ η3k/2
786
+ 1
787
+ ⌉2.
788
+ 10
789
+
790
+ Proof. There is a fixed P such that for any positive sequence ⟨ai⟩k
791
+ i=1 satisfying
792
+ the recurrence relation with k ≥ 4, Pηk
793
+ 1(a1 + a2 + a3) ≤ ak.
794
+ Thus for any such sequence terminating at n, a1 and a2 are bounded above
795
+ by
796
+ n
797
+ P ηk
798
+ 1 and for any two such sequences, by Lemma 17, either the first terms or
799
+ the second terms differ by at least Mηk/2
800
+ 1
801
+ .
802
+ Thus the number of such sequences is at most ⌈
803
+ n
804
+ P Mη3k
805
+ 1 /2⌉2.
806
+ Now we proceed to follow the proof of Theorem 4. We will need the following
807
+ Corollary to Lemma 16
808
+ Corollary 19. Given any interval 0 ≤ x < y ≤ 2π within (0, 2π), we can pick
809
+ non-zero integers k, l for which x < γ < y.
810
+ Proof. Lemma 16 says that the set {kψ2 + lζ2 : k, l ∈ R}, when viewed geomet-
811
+ rically as a subset of the complex plane, is not of dimension 1. Thus it must
812
+ be the entire complex plane. Pick x < z < y, then there exist real k, l with
813
+ kψ2 + lζ2 = eiz.
814
+ Now let kn = ⌊nk⌋ and ln = ⌊nl⌋.
815
+ The limit as n tends to infinity of
816
+ knψ2+lnζ2
817
+ n
818
+ is eiz and therefore for all sufficiently large n, γ (which is the argument
819
+ of knψ2+lnζ2
820
+ n
821
+ ) must be contained in the open interval (x, y).
822
+ We shelve this for the moment and focus on a simple piece of trigonometry.
823
+ Lemma 20. For all numbers π
824
+ 2 < δ < π, there exists t such that cos(t) > 0 >
825
+ cos(t + δ), cos(t + 2δ)
826
+ Proof. Pick t such that π
827
+ 2 − δ < t < 3π
828
+ 2 − 2δ. There exists such a t because
829
+ δ < π.
830
+ Since δ < π, − pi
831
+ 2 < π
832
+ 2 − δ < t. Similarly since π
833
+ 2 < δ, t < 3π
834
+ 2 − 2δ < pi
835
+ 2 . So
836
+ − pi
837
+ 2 < t < pi
838
+ 2 and hence cos(t) > 0.
839
+ Further π
840
+ 2 < t+δ < t+2δ < 3π
841
+ 2 , so cos(t+δ) and cos(t+2δ) are negative.
842
+ This leads to the following somewhat technical-seeming lemma.
843
+ Lemma 21. For all numbers π
844
+ 2 < �� < π, there exists an ǫ > 0 and finitely many
845
+ intervals ⟨(xi, yi)⟩n
846
+ i=1 such that for all t there exists an interval (xi, yi) such that
847
+ for all x ∈ (xi, yi), cos(t + x) > ǫ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).
848
+ Proof. Pick a t according to Lemma 20, and let ǫ > 0 be a real number such
849
+ that cos(t) > ǫ and −ǫ > cos(t + δ), cos(t + 2δ).
850
+ Then since cos is a continuous function, there is an open region (l, u) around
851
+ t such that for all x ∈ (l, u), cos(x) > ǫ and −ǫ > cos(x + δ), cos(x + 2δ).
852
+ Let n be an integer such that
853
+
854
+ n
855
+ < u − l and then define (xi, yi) to be
856
+ (i 2π
857
+ n , (i + 1) 2π
858
+ n ) for 1 ≤ i ≤ n.
859
+ For all t there is a maximum integer K such that t + K 2π
860
+ n
861
+ ≤ l.
862
+ Then
863
+ l < t + (K + 1) 2π
864
+ n by maximality, but t + (K + 2) 2π
865
+ n ≤ l + 4π
866
+ n < u.
867
+ Thus if (K + 1) 2π
868
+ n < x < (K + 2) 2π
869
+ n , l < t + x < u and hence cos(t + x) > ǫ
870
+ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).
871
+ 11
872
+
873
+ Since cos is periodic with period 2π, if 1 ≤ i ≤ n and i is equivalent to K +1
874
+ modulo n, then for all xi < x < yi, cos(t+x) > ǫ and −ǫ > cos(t+x+δ), cos(t+
875
+ x + 2δ).
876
+ This leads to the equivalent of Lemma 13.
877
+ Lemma 22. There exists a constant C such that for all n ≥ 4, there exist
878
+ sequence ⟨ai⟩n
879
+ i=1 satisfying the recurrence relation and terminating at 0 for which
880
+ Cηn/2
881
+ 1
882
+ > a1 > 0 > a2, a3
883
+ Proof. Since π
884
+ 2 < δ < π, we can apply Lemma 21 and get ǫ > 0 and finitely
885
+ many intervals (xi, yi) such that for all t there exists an interval (xi, yi) such
886
+ that for all x ∈ (xi, yi), cos(t + x) > ǫ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).
887
+ By Corollary 19, for each such interval (xi, yi), we can choose non-zero in-
888
+ tegers ki, li for which xi < γ(ki, li) < yi. Let A be some real number such
889
+ that |α(ki, li)| < A for all such pairs, B > 0 be some real number such that
890
+ |β(ki, li)| > B and let N be such that Aη−3N/2
891
+ 1
892
+ < Bǫ.
893
+ Then for any j ≥ N + 3, by the statement of Lemma 21, there exists an
894
+ interval (xi, yi) such that for all x ∈ (xi, yi), cos(x − (j − 1)δ) > ǫ and −ǫ >
895
+ cos(x − (j − 2)δ), cos(x − (j − 3)δ). Since γ(ki, li) ∈ (xi, yi), it follows that
896
+ a1
897
+ η(j−1)/2
898
+ 1
899
+ = α(ki, li)η−3(j−1)/2
900
+ 1
901
+ + β(ki, li) cos(γ(ki, li) − (j − 1)δ)
902
+ is the sum of a number of absolute value at most Aη−3N/2
903
+ 1
904
+ and a number that is
905
+ at least Bǫ and so is positive. Similarly a2 and a3 are negative.
906
+ |a1|
907
+ ηj/2
908
+ 1
909
+ is bounded
910
+ above by 2Bǫ.
911
+ For each value 4 ≤ j ≤ N +2, we can just choose any sequence satisfying the
912
+ bounds. For instance, if aj = pa1 + qa2 + ra3, we set a1 = q + r, a2 = a3 = −p.
913
+ Choose C such that C > 2Bǫ and such that for all 4 ≤ j ≤ N +2, the sequences
914
+ we have chosen satisfy a1 < Cηj/2
915
+ 1
916
+ .
917
+ Similarly we can get the following.
918
+ Lemma 23. There exists a constant C such that for all n ≥ 4, there exist
919
+ sequence ⟨bi⟩n
920
+ i=1 satisfying the recurrence relation and terminating at 0 for which
921
+ Cηn/2
922
+ 1
923
+ > b2 > 0 > b1, b3
924
+ Proof. Proof entirely analagous to Lemma 22.
925
+ For Lemma 20, we need a u such that cos(u + δ) > 0 > cos(u), cos(u − 2δ).
926
+ Pick u such that π
927
+ 2 − 2δ < u < −π
928
+ 2 . There exists such a u because δ > π
929
+ 2 .
930
+ Since δ < π, −3π
931
+ 2
932
+ < u < −π
933
+ 2 and hence cos(u) < 0. Similarly π
934
+ 2 < u+2δ < 3π
935
+ 2
936
+ and hence cos(u + 2δ) < 0. Finally π
937
+ 2 − δ < u + δ < δ − π
938
+ 2 , so − π
939
+ 2 < u + δ < π
940
+ 2 ,
941
+ so cos(u + δ) > 0.
942
+ Then by a method equivalent to Lemma 21 there exists an ǫ′ > 0 and finitely
943
+ many intervals ⟨(x′
944
+ i, y′
945
+ i)⟩m
946
+ i=1 such that for all t there exists an interval (x′
947
+ i, y′
948
+ i) such
949
+ that for all x ∈ (x′
950
+ i, y′
951
+ i), cos(t + x + δ) > ǫ′ and ǫ′ > cos(t + x), cos(t + x + 2δ).
952
+ We then apply the same method as the proof of Lemma 22
953
+ 12
954
+
955
+ This allows us to prove the equivalent of Theorem 4.
956
+ Theorem 24. There exists a real number U such that for any positive integers
957
+ n, k with k ≥ 4 and n ≥ Uη3k/2
958
+ 1
959
+ , there is a positive sequence ⟨xi⟩k
960
+ i=1 satisfying
961
+ xi+3 = axi+2 + bxi+1 + cxi and terminating at xk = n.
962
+ Proof. Denote by pk, qk and rk the integers such that xk = pkx1 + qkx2 + rkx3
963
+ for all such sequences ⟨xi⟩k
964
+ i=1.
965
+ Then since there can be an integer sequence ending at xk = 1, there is no
966
+ non-trivial common divisor of pk, qk and rk.
967
+ Further, by Lemma 22 and Lemma 23 there exist integers Cηk/2
968
+ 1
969
+ > a1 >
970
+ 0 > a2, a3 and Cηk/2
971
+ 1
972
+ > b2 > 0 > b1, b3 for which a1pk + a2qk + a3rk =
973
+ b1pk +b2qk +b3rk = 0. Hence by Theorem 12, for all n ≥ a1pk +b2qk +rk, there
974
+ is such a sequence terminating at n.
975
+ Since (2C +1)ζk/2
976
+ 1
977
+ > a1 +b2 +1 and pk, qk, rk > T ζn
978
+ 1 for some fixed constant
979
+ T , it follows that for all n ≥ (2C+1)T ζ3k/2
980
+ 1
981
+ , there is such a sequence terminating
982
+ at n.
983
+ Finally we are able to show that all affable polynomials are congenial.
984
+ Proof of Theorem 5. For our polynomial x3 − ax2 − bx − c with c = 1 and
985
+ a + b > 1 and at most one real root, Theorem 24 has stated the existence of a
986
+ real number U uch that for any positive integers n, k with k ≥ 4 and n ≥ Uη3k/2
987
+ 1
988
+ there is a positive sequence of length k terminating at n.
989
+ Thus if there is no positive sequence of length k + 1 terminating at n, it
990
+ follows that n < Uη3(k+1)/2
991
+ 1
992
+ .
993
+ Then by Theorem 18 it follows that the number of sequences of length k
994
+ terminating at n is at most ⌈T
995
+ n
996
+ η3k/2
997
+ 1
998
+ ⌉2 < ⌈T Uη3/2
999
+ 1
1000
+ ⌉2.
1001
+ For now we leave open the following question.
1002
+ Question 25. For which positive integers a, b, c with c > 0 and a + b > 0 is the
1003
+ recurrence relation xn = axn−1 + bxn−2 + cxn−3 congenial?
1004
+ References
1005
+ [1] S. Spiro, “Problems that i would like somebody to solve,” 2020.
1006
+ 13
1007
+
3tFLT4oBgHgl3EQfsC9L/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,488 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf,len=487
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
3
+ page_content='12146v1 [math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
4
+ page_content='NT] 28 Jan 2023 On Tribonacci Sequences Luke Pebody Saturday 28, January 2023 Abstract Let a tribonacci sequence be a sequence of integers satisfying ak = ak−1 + ak−2 + ak−3 for all k ≥ 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
5
+ page_content=' For any positive integers k and n, denote by fk(n) the number of tribonacci sequences with a1, a2, a3 > 0 and with ak = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
6
+ page_content=' For all n, there is a maximum k such that fk(n) is non-zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
7
+ page_content=' Answering a question of Spiro [1], we show that there is a finite upper bound (we specifically prove 561001) on fk(n) for any positive integer n ≥ 3 and this maximum k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
8
+ page_content=' We do this by showing that fk(n) has transitions in n around constant multiples of φ3k/2 (where φ is the real root of φ3 = φ2 + φ + 1): there exists a constant C such that fk(n) > 0 whenever n > Cφ3k/2 and for any constant T , the values of fk(n) with n < T φ3k/2 have an upper bound independent of k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
9
+ page_content=' 1 Introduction A tribonacci sequence of length k is a sequence of integers ⟨ai⟩k i=1 such that ai = ai−1 + ai−2 + ai−3 for all 4 ≤ i ≤ k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
10
+ page_content=' We say that such a sequence terminates at ak and that it is positive if a1, a2, a3 > 0 - note that this easily implies that ai > 0 for all i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
11
+ page_content=' Denote by fk(n) the number of tribonacci sequences of length k terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
12
+ page_content=' Clearly f1(n) = 1 for all n > 0, the only tribonacci sequence of length 1 terminating at n being ⟨n⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
13
+ page_content=' Further, f2(n) = f3(n) = ∞ as we can choose any values for the proceeding terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
14
+ page_content=' For n ≥ 3, there exists a tribonacci sequence of length longer than 3 termi- nating at n, for example ⟨n − 2, 1, 1, n⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
15
+ page_content=' However for any tribonacci sequence ⟨ai⟩k i=1 of length k, and for any 4 ≤ i ≤ k, ai = ai−1 + ai−2 + ai−3 ≥ ai−1 + 2, so by induction ai ≥ 2i− 5 for all 3 ≤ i ≤ k, and hence if n < 2k − 5, fk(n) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
16
+ page_content=' Let t(n) be the largest number such that ft(n)(n) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
17
+ page_content=' Let p(n) denote the number of positive tribonacci sequences of length t(n) terminating at n, so p(n) = ft(n)(n).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
18
+ page_content=' Clearly, since t(1) = t(2) = 3 it follows that p(1) = p(2) = ∞.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
19
+ page_content=' Spiro [1] asks Question 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
20
+ page_content=' Does there exist some absolute constant c such that for all n ≥ 3, p(n) ≤ c for all n?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
21
+ page_content=' 1 The purpose of this paper is to give a positive answer to this question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
22
+ page_content=' Indeed we will show Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
23
+ page_content=' For any integer n ≥ 3, there are at most 561001 positive tribonacci sequences of length t(n) terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
24
+ page_content=' It turns out the key question for our proof is the minimum size of the vector \uf8eb \uf8ed a1 a2 a3 \uf8f6 \uf8f8 where ⟨ai⟩n i=1 is a non-zero tribonacci sequence terminating at an = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
25
+ page_content=' In Section 2 we will show a lower bound on such a sequence of the order of φn/2, which will allow us to prove Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
26
+ page_content=' For any positive integers n, k with k ≥ 4, the number of positive sequences of length k terminating at n is at most ⌈1500 n φ3k/2 ⌉2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
27
+ page_content=' In Section 3 we turn to trying to put an upper bound on numbers that don’t have any positive tribonacci sequences of length k terminating at them.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
28
+ page_content=' This is an instance of the Coin Problem, also known as calculating the Frobenius Number.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
29
+ page_content=' We construct two specific tribonacci sequences terminating at an = 0 with \uf8eb \uf8ed a1 a2 a3 \uf8f6 \uf8f8 being of the order of φn/2 and with the integers a1, a2, a3 having specified signs, allowing us to prove Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
30
+ page_content=' For any integer n above 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
31
+ page_content='2φ3k/2, there exists a positive tribonacci sequence of length k terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
32
+ page_content=' This will be all that is required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
33
+ page_content=' Proof of Theorem 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
34
+ page_content=' There is no sequence of length t(n) + 1 terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
35
+ page_content=' Hence by Theorem 4, it follows that n < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
36
+ page_content='2φ3(t(n)+1)/2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
37
+ page_content='2φ3/2φ3t(n)/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
38
+ page_content=' Thus from Theorem 3, it follows that there are at most ⌈1500 n φ3t(n)/2 ⌉2 ≤ ⌈15000.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
39
+ page_content='2φ3/2φ3t(n)/2 φ3t(n)/2 ⌉2 ≤ ⌈300φ3/2⌉2 = 7492 = 561001 positive tribonacci sequences of length t(n) terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
40
+ page_content=' In Section 4, we will investigate which recurrence relations of the form xn = axn−1+bxn−2+cxn−3 for non-negative a and b and for positive c the arguments in this paper can be carried across to.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
41
+ page_content=' We will extend the result in the earlier sections to the following case.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
42
+ page_content=' 2 Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
43
+ page_content=' Suppose a, b, c are non-negative integers with a + b > 0, c = 1 and such that x3 − ax2 − bx − c = 0 has exactly one real root.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
44
+ page_content=' Then there is an absolute bound T such that if positive integers k ≥ 4 and n are such that there are no positive sequences ⟨ai⟩k+1 i=1 satisfying the recurrence relation ai = aai−1 + bai−2 + cai−3 of length k + 1 terminating at n, then there are at most T such sequences of length k terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
45
+ page_content=' We will leave open the question of which linear recurrences satisfy this prop- erty, but will at least demonstrate an example of a recurrence that does not.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
46
+ page_content=' In particular we will show the existence of positive integers k and n such that there is no positive sequence ⟨ai⟩k+1 i=1 satisfying the recurrence relation ai = ai−1 + ai−2 + 2ai−3 of length k + 1 terminating at n, but for which the number of such sequences of length k terminating at n is unbounded.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
47
+ page_content=' 2 Lower Bound Let us say a sequence ⟨ai⟩∞ i=1 is a reverse-tribonacci sequence if for all i ≥ 0, ai = ai+1+ai+2+ai+3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
48
+ page_content=' Let us write out the expression for the reverse-tribonacci sequence starting ⟨0, k, l⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
49
+ page_content=' Recall that φ is the real solution to φ3 = φ2 + φ + 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
50
+ page_content=' We write the complex roots as φ1 and φ2 = φ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
51
+ page_content=' Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
52
+ page_content=' For all integers k, l, if ⟨ai⟩∞ i=1 is a reverse-tribonacci sequence with a1 = 0, a2 = k and a3 = l, then for all i, ai can be expressed as ai = αφ−i + (kψ1 + lζ1)φ−i 1 + (kψ2 + lζ2)φ−i 2 = (αφ−3i/2 + β cos(γ − δi))φi/2, where ψ1 = φ3 1 + φ2 1 φ2 1 + 2φ1 + 3 ψ2 = ψ1 ζ1 = φ3 1 φ2 1 + 2φ1 + 3 ζ2 = ζ1 α = kφ2 + (k + l)φ3 φ2 + 2φ + 3 βeγi = 2(kψ1 + lζ1) and eδi = φ1 � φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
53
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
54
+ page_content=' Any two-way infinite tribonacci sequence ⟨ai⟩∞ −∞ can be written as ai = pφi + qφi 1 + rφi 2 for some p, q and r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
55
+ page_content=' Thus any reverse-tribonacci sequence ⟨ai⟩∞ −∞ can be written as ai = pφ−i + qφ−i 1 + rφ−i 2 for some p, q, r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
56
+ page_content=' Solving for the p, q, r that give a1 = 0, a2 = k and a3 = l leads to the above expression.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
57
+ page_content=' 3 Note that in the above expressions, ψ1, ψ2, ζ1, ζ2 and δ are constants that do not depend on k and l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
58
+ page_content=' Lemma 7.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
59
+ page_content=' For any integers k and l, if α and β are defined as in Lemma 6, then |α| ≤ |k| + |l| and β ≥ |k|+|l| 31 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
60
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
61
+ page_content=' α is roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
62
+ page_content='9546k+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
63
+ page_content='6184l, which is clearly bounded above by |k|+|l|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
64
+ page_content=' ψ1 is roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
65
+ page_content='02267 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
66
+ page_content='217i and ζ1 is roughly 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
67
+ page_content='1908 − 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
68
+ page_content='0187i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
69
+ page_content=' As such, if k and l are non-negative then the real part of 2(kψ1 + lζ1) (and hence β) is at least 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
70
+ page_content='04(k + l) > |k|+|l| 31 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
71
+ page_content=' For k positive and l negative, the minimum value of β k−l is approximately 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
72
+ page_content='03221 > 1 31, and is achieved around k = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
73
+ page_content='3653l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
74
+ page_content=' Finally we need a simple trigonometric property Lemma 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
75
+ page_content=' For any real numbers p and q with π 2 < q < π, the larger of | cos(p)| and | cos(p + q)| is at least cos(q/2).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
76
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
77
+ page_content=' Note that cos(q) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
78
+ page_content=' Thus 2(cos(p)2 + cos(p + q)2) = 2 cos(p)2 + 2 cos(p + q)2 = cos(2p) + cos(2p + 2q) + 2 = 2 cos(2p + q) cos(q) + 2 ≥ 2 + 2 cos(q) = 4 cos(q/2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
79
+ page_content=' Thus either cos(p)2 ≥ cos(q/2)2 or cos(p + q)2 ≥ cos(q/2)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
80
+ page_content=' This allows us to put a lower bound on the size of at least one of each consecutive pair of a reverse-tribonacci sequence.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
81
+ page_content=' Corollary 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
82
+ page_content=' Given a non-zero integer reverse-tribonacci sequence ⟨ai⟩∞ i=1 with a1 = 0, for every integer n ≥ 2, either |an| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
83
+ page_content='01φn/2 or |an+1| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
84
+ page_content='01φ(n+1)/2 (or both).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
85
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
86
+ page_content=' For n ≥ 2 if an and an+1 are both 0, then a1 is the same sign as an−1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
87
+ page_content=' Since a1 = 0, it follows that the entire series must be 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
88
+ page_content=' Since the sequence is non-zero, it follows that either |an| ≥ 1 or |an+1 ≥ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
89
+ page_content=' Since 1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
90
+ page_content='01φn/2 for n ≤ 15, we have proved the statement for n ≤ 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
91
+ page_content=' Thus we may assume n ≥ 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
92
+ page_content=' By Lemma 6, ai φi/2 can be written as αφ−3i/2 + β cos(γ − δi).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
93
+ page_content=' Now by Lemma 8, at least one of | cos(γ − δn)| and | cos(γ − δ(n − 1))| is at least cos(δ/2) (δ = 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
94
+ page_content='176 is between π 2 and π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
95
+ page_content=' Let t be the choice from {n − 1, n} that maximises | cos(γ − δt)|.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
96
+ page_content=' By Lemma 7, if we write α′ = α |k|+|l| and β′ = β |k|+|l| then |α′| ≤ 1 and β′ > 1 31.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
97
+ page_content=' 4 Therefore | at φt/2 | = |αφ−3t/2 + β cos(γ − δt)| ≥ |α′φ−3t/2 + β′ cos(γ − δt)| ≥ |β′ cos(γ − δt)| − |α′φ−3t/2| ≥ 1 31 cos(δ/2) − φ−3t/2 ≥ cos(δ/2) 31 − φ−22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
98
+ page_content='5 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
99
+ page_content='01.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
100
+ page_content=' Then we have a bound on the size of tribonacci sequences terminating at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
101
+ page_content=' Corollary 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
102
+ page_content=' For n ≥ 3, if ⟨ai⟩n i=1 is a non-zero integer tribonacci sequence terminating at 0 then either |a1| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
103
+ page_content='01φn/2 or |a2| > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
104
+ page_content='01φ(n−1)/2 (or both).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
105
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
106
+ page_content=' Let k = an−1 and l = an−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
107
+ page_content=' Then if ⟨bi⟩∞ i=1 is the reverse-tribonacci sequence with b1 = 0, b2 = k and b3 = l, then ai = bn+1−i for all 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
108
+ page_content=' Then this is just a restatement of Corollary 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
109
+ page_content=' This is all we need to prove Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
110
+ page_content=' Proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
111
+ page_content=' Partition the tribonacci sequences of length k ≥ 4 termi- nating at n ⟨ai⟩k i=1 by the pair (⌊ a1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
112
+ page_content='01φk/2 ⌋, ⌊ a2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
113
+ page_content='01φk−1/2 ⌋).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
114
+ page_content=' If two sequences ⟨ai⟩k i=1 and ⟨bi⟩k i=1 have the same pair, then |a1 − b1| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
115
+ page_content='01φk/2 and |a2 − b2| < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
116
+ page_content='01φ(k−1)/2 and hence, by Corollary 10, either ⟨ai − bi⟩k i=1 is zero everywhere or does not terminate at 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
117
+ page_content=' Thus each distinct tribonacci sequence of length k terminating at n has a distinct pair.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
118
+ page_content=' Define tribonacci sequence by x1 = 1, x2 = 0, x3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
119
+ page_content=' Then if a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
120
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
121
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
122
+ page_content=' , ak is a positive tribonacci sequence, ai ≥ xia4 for i = 2, 3 and 4 and therefore ak ≥ xka4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
123
+ page_content=' Now xk < φk/11 for all k ≥ 4 and hence a1 + a2 + a3 ≤ 11n φk for all tribonacci sequences of length k terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
124
+ page_content=' Thus ⌊ a1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
125
+ page_content='01φk/2 ⌋ is at most 1100n φ3k/2 and ⌊ a2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
126
+ page_content='01φ(k−1)/2 ⌋ is at most 1100n φ3k−1/2 < 1500n φ3k/2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
127
+ page_content=' It follows that the number of Tribonacci sequences of length k ≥ 4 termi- nating at n is at most ⌈ 1500n φ3k/2 ⌉2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
128
+ page_content=' Note we have not worked hard here to get the best bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
129
+ page_content=' In a previous draft we had a much more complicated proof of an upper bound which showed, in place of Corollary 10, that if ⟨ai⟩n i=1 terminated at 0 then � a2 1 + a2 2 + a2 3 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
130
+ page_content='28φn/2, which led to an upper bound for the main theorem of 42875.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
131
+ page_content=' 3 Upper Bound In this section, we turn to numbers which are not the terminus for any tribonacci sequence of length k, working towards a proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
132
+ page_content=' 5 To that end, define three infinite tribonacci sequences ⟨pi⟩∞ i=1, ⟨qi⟩∞ i=1 and ⟨ri⟩∞ i=1 by (p1, p2, p3) = (1, 0, 0), (q1, q2, q3) = (0, 1, 0) and (r1, r2, r3) = (0, 0, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
133
+ page_content=' It is clear that for any tribonacci sequence ⟨ai⟩n i=1, an = a1pn + b1qn + c1rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
134
+ page_content=' Thus we are simply looking to get an upper bound on the largest number which cannot be written as a positive integral linear combination of pn, qn and rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
135
+ page_content=' This is called the Frobenius Number of pn, qn and rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
136
+ page_content=' First let us see that a finite bound does exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
137
+ page_content=' Lemma 11.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
138
+ page_content=' For all k ≥ 1, pk, qk and rk have no non-trivial common divisor.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
139
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
140
+ page_content=' If pk, qk and rk had a non-trivial common divisor t > 1 then t would be a common divisor of the terminus of every tribonacci sequence of length k, from which it would follow that t would in fact be a common divisor of pk+l for all l ≥ 0 (since ⟨pi+l⟩k 1 is a tribonacci sequence of length k).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
141
+ page_content=' Then, since pi = pi+3 − (pi+1 + pi+2), it would follow that t would be a common divisor of pk−1, pk−2 and all the way back to p0 = 1 by induction, causing a contradiction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
142
+ page_content=' We will use the following bound, which might be originally due to Killing- bergtro.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
143
+ page_content=' Theorem 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
144
+ page_content=' Suppose p, q and r are integers with no non-trivial common di- visor and let us suppose ap = bq + cr and dq = ep + fr where a, c, d, f > 0 and b, e ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
145
+ page_content=' Then for every integer N ≥ ap + dq + r, N can be written in the form xp + yq + zr for some positive integers p, q, r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
146
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
147
+ page_content=' Let x, y, z be positive integers such that px + qy + rz is equivalent to N (mod r), but for which px + qy + rz is minimal (such a triple x, y, z exist because, as is well known, if p, q and r have no non-trivial common divisor then all sufficiently large integers can be written in the form px + qy + rz, and many of these sufficiently large integers are equivalent to N (mod r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
148
+ page_content=') Since px+qy+rz is minimal, px+qy+rz−r cannot be written as a positive linear combination of x, y and z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
149
+ page_content=' Thus in each of the equations px + qy + rz − r = px + qy + r(z − 1) px + qy + rz − r = p(x − a) + q(y + b) + r(z + c − 1) px + qy + rz − r = p(x + e) + q(y − d) + r(z + f − 1), it must follow that one of the coefficients must not be positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
150
+ page_content=' Two of the coefficients in each equation are clearly positive, so it follows that x ≤ a, y ≤ d and z ≤ 1, so px + qy + rz ≤ pa + qd + r ≤ N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
151
+ page_content=' Since N and px + qy + rz are equivalent modulo r, there exists a non-negative integer t such that N = px + qy + rz + rt.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
152
+ page_content=' Then N = px + qy + r(z + t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
153
+ page_content=' Therefore, to show that all sufficiently large integers can be written as the terminus of a tribonacci sequence of length k, we just need to find linear com- binations of pn, qn and rn combining to 0, with particular signs of the combi- nations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
154
+ page_content=' This is equivalent to finding tribonacci sequences ending at 0, which 6 Table 1: Table for Lemma 13 t0 t1 k l α β γ x0 x1 x2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
155
+ page_content='06 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
156
+ page_content='6184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
157
+ page_content='3834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
158
+ page_content='0977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
159
+ page_content='3410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
160
+ page_content='0500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
161
+ page_content='1694 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
162
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
163
+ page_content='16 1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
164
+ page_content='2822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
165
+ page_content='8027 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
166
+ page_content='4640 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
167
+ page_content='6879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
168
+ page_content='0515 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
169
+ page_content='2163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
170
+ page_content='16 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
171
+ page_content='22 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
172
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
173
+ page_content='5200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
174
+ page_content='8677 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
175
+ page_content='4526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
176
+ page_content='0471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
177
+ page_content='2482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
178
+ page_content='22 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
179
+ page_content='35 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
180
+ page_content='9546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
181
+ page_content='4364 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
182
+ page_content='6749 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
183
+ page_content='3778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
184
+ page_content='0354 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
185
+ page_content='0294 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
186
+ page_content='35 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
187
+ page_content='45 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
188
+ page_content='5731 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
189
+ page_content='6360 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
190
+ page_content='3067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
191
+ page_content='5517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
192
+ page_content='0538 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
193
+ page_content='1588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
194
+ page_content='45 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
195
+ page_content='56 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
196
+ page_content='6184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
197
+ page_content='3834 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
198
+ page_content='0439 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
199
+ page_content='3410 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
200
+ page_content='0500 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
201
+ page_content='0548 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
202
+ page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
203
+ page_content='66 1 2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
204
+ page_content='2822 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
205
+ page_content='8027 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
206
+ page_content='6776 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
207
+ page_content='6879 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
208
+ page_content='0515 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
209
+ page_content='2163 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
210
+ page_content='66 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
211
+ page_content='72 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
212
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
213
+ page_content='5200 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
214
+ page_content='2739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
215
+ page_content='4526 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
216
+ page_content='0471 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
217
+ page_content='2482 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
218
+ page_content='72 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
219
+ page_content='85 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
220
+ page_content='9546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
221
+ page_content='4364 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
222
+ page_content='4667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
223
+ page_content='3778 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
224
+ page_content='0354 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
225
+ page_content='0294 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
226
+ page_content='85 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
227
+ page_content='95 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
228
+ page_content='5731 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
229
+ page_content='6360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
230
+ page_content='8349 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
231
+ page_content='5517 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
232
+ page_content='0538 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
233
+ page_content='1588 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
234
+ page_content='95 1 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
235
+ page_content='6184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
236
+ page_content='3834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
237
+ page_content='0977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
238
+ page_content='3745 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
239
+ page_content='1864 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
240
+ page_content='0548 is equivalent to finding reverse-tribonacci sequences starting at 0, and hence we can again use the expression from Lemma 6, which states that if ⟨ai⟩∞ i=1 is a reverse-tribonacci sequence with a1 = 0, a2 = k and a3 = l then for all n an = (αφ−3n/2 + β cos(γ − δn))φn/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
241
+ page_content=' Note that for all but an extremely small collection of n, the term β cos(γ+δn) dwarves αφ−3n/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
242
+ page_content=' As such, for a fixed k and l, the sign of an depends only (except for a few very rare counterexamples) on the fractional part of δ 2πn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
243
+ page_content=' Lemma 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
244
+ page_content=' For each integer n ≥ 4, there exists a tribonacci sequence ⟨ai⟩n i=1 terminating at an = 0, with a1 > 0, 0 ≥ a2, 0 > a3 and with a1 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
245
+ page_content='81φn/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
246
+ page_content=' Similarly for all such n, there exists a tribonacci sequence ⟨bi⟩n i=1 terminating at bn = 0, with b2 > 0, 0 ≥ b1, 0 > b3 and with b2 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
247
+ page_content='64φn/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
248
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
249
+ page_content=' We will split into cases based on the fractional part of δn 2π = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
250
+ page_content='3464n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
251
+ page_content=' See Table 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
252
+ page_content=' For each row, if t0 ≤ δn 2π − ⌊ δn 2π⌋ ≤ t1, then for the given values of k and l, if β and γ are as defined in Lemma 6, one can confirm that β cos(γ − δn) ≥ x0 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
253
+ page_content='34, while β cos(γ − δ(n − 1)) ≤ x1 < −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
254
+ page_content='035 and β cos(γ − δ(n − 2)) ≤ x2 < −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
255
+ page_content='029.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
256
+ page_content=' Furthermore, for all such k, l, |α| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
257
+ page_content='58, so if n ≥ 7, |αφ−3(n−2)/2| ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
258
+ page_content='017, from which it follows that an > 0 > an−1, an−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
259
+ page_content=' Further, an φn/2 < β + 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
260
+ page_content='017 < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
261
+ page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
262
+ page_content=' For 4 ≤ n < 7, we can verify the sequences (1, 0, −1, 0), (2, 0, −1, 1, 0) and (2, 0, −1, 1, 0, 0) satisfy the conditions for (a1, a2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
263
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
264
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
265
+ page_content=' , an).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
266
+ page_content=' For the sequence (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
267
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
268
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
269
+ page_content=' , bn), see Table 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
270
+ page_content=' Here, for each row, if t0 ≤ δn 2π − ⌊ δn 2π⌋ ≤ t1, then for the given values of k and l, if β and γ are as defined in Lemma 6, one can confirm that β cos(γ − δn) ≤ x0 < −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
271
+ page_content='071, while β cos(γ − δ(n − 1)) ≥ x1 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
272
+ page_content='33 and β cos(γ − δ(n − 2)) ≤ x2 < −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
273
+ page_content='041.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
274
+ page_content=' Furthermore, for all such k, l, |α| < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
275
+ page_content='58, so if n ≥ 7, |αφ−3(n−2)/2| ≤ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
276
+ page_content='017, from which it follows that an−1 > 0 > an, an−2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
277
+ page_content=' For 4 ≤ n < 7, we can verify the sequences (0, 1, −1, 0), (0, 1, −1, 0, 0) and (−1, 2, −1, 0, 1, 0) satisfy the conditions for (b1, b2, .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
278
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
279
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
280
+ page_content=' , bn).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
281
+ page_content=' This then completes our proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
282
+ page_content=' 7 Table 2: Other table for Lemma 13 t0 t1 k l α β γ x0 x1 x2 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
283
+ page_content='06 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
284
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
285
+ page_content='5200 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
286
+ page_content='2739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
287
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
288
+ page_content='4625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
289
+ page_content='0678 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
290
+ page_content='06 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
291
+ page_content='19 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
292
+ page_content='9546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
293
+ page_content='4364 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
294
+ page_content='4667 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
295
+ page_content='1176 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
296
+ page_content='3862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
297
+ page_content='0528 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
298
+ page_content='19 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
299
+ page_content='29 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
300
+ page_content='5731 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
301
+ page_content='6360 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
302
+ page_content='8349 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
303
+ page_content='2812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
304
+ page_content='5639 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
305
+ page_content='0791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
306
+ page_content='29 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
307
+ page_content='41 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
308
+ page_content='6184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
309
+ page_content='3834 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
310
+ page_content='0977 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
311
+ page_content='1311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
312
+ page_content='3369 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
313
+ page_content='0413 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
314
+ page_content='41 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
315
+ page_content='56 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
316
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
317
+ page_content='5200 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
318
+ page_content='8677 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
319
+ page_content='0714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
320
+ page_content='4625 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
321
+ page_content='0678 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
322
+ page_content='56 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
323
+ page_content='69 1 0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
324
+ page_content='9546 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
325
+ page_content='4364 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
326
+ page_content='6749 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
327
+ page_content='1176 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
328
+ page_content='3862 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
329
+ page_content='0528 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
330
+ page_content='69 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
331
+ page_content='79 1 1 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
332
+ page_content='5731 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
333
+ page_content='6360 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
334
+ page_content='3067 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
335
+ page_content='2812 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
336
+ page_content='5639 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
337
+ page_content='0791 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
338
+ page_content='79 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
339
+ page_content='91 0 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
340
+ page_content='6184 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
341
+ page_content='3834 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
342
+ page_content='0439 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
343
+ page_content='1311 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
344
+ page_content='3369 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
345
+ page_content='0413 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
346
+ page_content='91 1 1 1 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
347
+ page_content='3362 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
348
+ page_content='5200 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
349
+ page_content='2739 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
350
+ page_content='0714 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
351
+ page_content='4641 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
352
+ page_content='2528 Proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
353
+ page_content=' Lemma 13 gives us tribonacci sequences ⟨ai⟩n i=1 and ⟨bi⟩n i=1 terminating at an = bn = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
354
+ page_content=' It follows that a1pn + a2qn + a3rn = 0 = b1qn + b2qn + b3rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
355
+ page_content=' Since a1, b2 > 0 > a3, b3 and 0 ≥ a2, b1, it follows that we can write a1pn = (−a2)qn + (−a3)rn and b2qn = (−b1)p1 + (−b3)rn satisfying the sign requirements of Theorem 12, so it follows that every integer N ≥ a1pn + b2qn + rn can be written in the form xpn + yqn + zrn for some positive integers x, y and z, and hence there exists a positive tribonacci sequence of length k ending at N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
356
+ page_content=' By the bounds on a1 and b2 given in Lemma 13, we have such a tribonacci sequence for all N ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
357
+ page_content='81φk/2uk+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
358
+ page_content='64φk/2vk+wk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
359
+ page_content=' Since uk ≤ vk ≤ wk < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
360
+ page_content='11φk and 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
361
+ page_content='81φk/2+0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
362
+ page_content='64φk/2+1 < 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
363
+ page_content='74φk/2, it follows that such a tribonacci sequence exists for all N ≥ 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
364
+ page_content='2φ3k/2 as was required.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
365
+ page_content=' 4 Other cubic recurrences For non-negative a, b, c we can ask a similar question for recurrences of the form xn = axn−1 + bxn−2 + cxn−3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
366
+ page_content=' Formally, let us define ka,b,c(n) to be the largest k such there is a positive k-element solution ⟨xi⟩k i=1 to the recurrence relation xi = axi−1 + bxi−2 + cxi−3, and define ta,b,c(n) to be the number of positive ka,b,c(n)-element solutions that exist.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
367
+ page_content=' If c = 0, this is a quadratic recurrence, and the problem is already solved.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
368
+ page_content=' If a = 0, b = 0 and c = 1, the recurrence is xn = xn−3, and ka,b,c(n) is not defined for any n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
369
+ page_content=' For all a, b, c ≥ 0 with c ≥ 1 and a + b + c ≥ 2, say that the recurrence xn = axn−1 + bxn−2 + cxn−3 is congenial if there exists a finite bound B such that for all n, ta,b,c(n) = ∞ or ta,b,c(n) ≤ B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
370
+ page_content=' Firstly let us note that not all recurrences are congenial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
371
+ page_content=' Lemma 14.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
372
+ page_content=' The recurrence xn = xn−1 + xn−2 + 2xn−3 is not congenial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
373
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
374
+ page_content=' Let ⟨pn⟩∞ n=1, ⟨qn⟩∞ n=1 and ⟨rn⟩∞ n=1 be the solutions to the recurrence 8 starting with ⟨1, 0, 0⟩, ⟨0, 1, 0⟩ and ⟨0, 0, 1⟩ respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
375
+ page_content=' Then xn = x1pn + x2qn + x3rn.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
376
+ page_content=' Solutions to the recurrence can be split as the sum of two parts - a sequence of the form ⟨x(1) n = 2n−1k⟩ and a sequence of the form ⟨x(2) n ⟩ which is periodic with period 3 with x(2) 1 +x(2) 2 +x(2) 3 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
377
+ page_content=' It is then easy to solve for k: x1 +x2 +x3 = x(1) 1 + x(1) 2 + x(1) 3 = 7k, so k = x1+x2+x3 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
378
+ page_content=' In particular, if you let tn = 2n−1 7 , pn−tn is periodic with period ⟨ 6 7, − 2 7, − 4 7⟩, qn − tn with period ⟨− 1 7, 5 7, − 4 7⟩ and rn − tn with period ⟨− 1 7, − 2 7, 3 7⟩.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
379
+ page_content=' For n = 3t, xn = c(x1 + x2) + (c + 1)xn−3 and xn+1 = 2(c + 1)x1 + (2c + 1)(x2 + x3) where c = 23t−1−1 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
380
+ page_content=' Then xn+1 cannot be equal to (2c + 1)(2c + 3) for positive x1, x2, x3 (x1 would have to be a multiple of 2c + 1 that is positive but less than 2c + 1), but for all 1 ≤ i ≤ 4c + 4, if x1 = i, x2 = 4c + 5 − i and x3 = 3, then xn = c(4c + 5) + (c + 1)3 = 4c2 + 8c + 3 = (2c + 1)(2c + 3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
381
+ page_content=' The proofs in this paper can be adapted to show that many other recurrences are congenial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
382
+ page_content=' Let us say a polynomial x3 − ax2 − bx − c is affable if c = 1 and it has exactly one real root, which is more than 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
383
+ page_content=' We will show that affability leads to congeniality.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
384
+ page_content=' For the rest of this section, fix an affable polynomial x3 − ax2 − bx − c with real root η1 and complex roots η2 and η3 = η2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
385
+ page_content=' Note that |η2| = η−1/2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
386
+ page_content=' We will make use of the following equivalent to Lemma 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
387
+ page_content=' Lemma 15.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
388
+ page_content=' Given a sequence ⟨xi⟩n i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi with xn = 0, xn−1 = k and xn−2 = l, xi can be expressed as xi = 3 � j=1 (kψj + lζj)ηn−i j for constants ψj, ζj depending only on x3 − ax2 − bx − c, which can be rewritten as xi η(n−i)/2 1 = αη−3(n−i)/2 1 + β cos(γ − δ(n − i)) where α = kψ1 + lζ1, βeγi = 2(kψ2 + lζ2) and eδi = η2 √η1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
389
+ page_content=' We will follow the steps of the proof of Theorem 2 for all recurrence relations corresponding to affable polynomials.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
390
+ page_content=' We will not attempt to give an actual bound.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
391
+ page_content=' We note the following, which will be used in the equivalents of both Theo- rems 3 and 4 9 Lemma 16.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
392
+ page_content=' If real numbers k and l satisfy kψ2 + lζ2 = 0, then k = l = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
393
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
394
+ page_content=' As ψ3 = ψ2 and ζ3 = ζ2, kψ3 + lζ3 = 0 and therefore the sequence with xn = 0, xn−1 = k and xn−2 = l can simply be expressed as xi = (kψ1+lζ1)ηn−i 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
395
+ page_content=' As 0 = xn = kψ1 + lζ1, it follows that xi = 0 for all i and therefore k = l = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
396
+ page_content=' We start by following the proof of Theorem 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
397
+ page_content=' Lemma 17.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
398
+ page_content=' There exists an absolute bound M such that for n ≥ 4 and all non-zero integer sequences ⟨xi⟩n i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi and xn = 0 either |x1| ≥ Mηn/2 1 or |x2| ≥ Mηn/2 1 (or both).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
399
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
400
+ page_content=' The set of complex numbers kψ2 + lζ2 for k, l real with |k| + |l| = 1 is a closed subset of the complex plane (in fact a hollow parallelogram) which, by Lemma 16 does not contain 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
401
+ page_content=' As such, there exists a constant V > 0 such that for all such k, l, |kψ2 + lζ2| > V .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
402
+ page_content=' Then for all real k, l it follows that β = |kψ2 + lζ2| > V (|k| + |l|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
403
+ page_content=' Clearly if U = max(|ψ1|, |ζ1|), α ≤ U(|k| + |l|).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
404
+ page_content=' Pick integer N such that V cos(δ/2) − Uη−3(N−1)/2 1 is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
405
+ page_content=' Note we can do this because π 2 < δ < π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
406
+ page_content=' Then let M > 0 be such that V cos(δ/2) − Uη−3(N−2)/2 1 > Mη1 and η−N/2 1 > M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
407
+ page_content=' Now if n ≤ N, then Mηn/2 1 < 1 (note that η1 > 1 since 13 < a×12+b×1+c) and x1, x2 cannot both be 0 (as then xn would have to be the same sign as x3 and non-zero).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
408
+ page_content=' For n > N, we know from Lemma 8 that there exists t ∈ {1, 2} such that | cos(γ − δ(n − t))| > cos(δ/2) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
409
+ page_content=' For such t, n − t ≥ N − 1 and so it follows that |xt| η(n−t)/2 1 = |αη−3n/2 1 + β cos(γ − δn)| ≥ |β cos(γ − δn)| − |α|η−3n/2 1 ≥ V cos(δ/2) − Uη−3n/2 1 ≥ Mη1 and hence |xt| ≥ Mη(n+2−t)/2 1 ≥ Mηn/2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
410
+ page_content=' This is enough for the equivalent of Theorem 3 Theorem 18.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
411
+ page_content=' There exists a fixed bound T such that for any positive integers n, k with k ≥ 4, the number of positive sequences ⟨xi⟩k i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi and terminating at xk = n is at most ⌈T n η3k/2 1 ⌉2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
412
+ page_content=' 10 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
413
+ page_content=' There is a fixed P such that for any positive sequence ⟨ai⟩k i=1 satisfying the recurrence relation with k ≥ 4, Pηk 1(a1 + a2 + a3) ≤ ak.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
414
+ page_content=' Thus for any such sequence terminating at n, a1 and a2 are bounded above by n P ηk 1 and for any two such sequences, by Lemma 17, either the first terms or the second terms differ by at least Mηk/2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
415
+ page_content=' Thus the number of such sequences is at most ⌈ n P Mη3k 1 /2⌉2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
416
+ page_content=' Now we proceed to follow the proof of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
417
+ page_content=' We will need the following Corollary to Lemma 16 Corollary 19.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
418
+ page_content=' Given any interval 0 ≤ x < y ≤ 2π within (0, 2π), we can pick non-zero integers k, l for which x < γ < y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
419
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
420
+ page_content=' Lemma 16 says that the set {kψ2 + lζ2 : k, l ∈ R}, when viewed geomet- rically as a subset of the complex plane, is not of dimension 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
421
+ page_content=' Thus it must be the entire complex plane.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
422
+ page_content=' Pick x < z < y, then there exist real k, l with kψ2 + lζ2 = eiz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
423
+ page_content=' Now let kn = ⌊nk⌋ and ln = ⌊nl⌋.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
424
+ page_content=' The limit as n tends to infinity of knψ2+lnζ2 n is eiz and therefore for all sufficiently large n, γ (which is the argument of knψ2+lnζ2 n ) must be contained in the open interval (x, y).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
425
+ page_content=' We shelve this for the moment and focus on a simple piece of trigonometry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
426
+ page_content=' Lemma 20.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
427
+ page_content=' For all numbers π 2 < δ < π, there exists t such that cos(t) > 0 > cos(t + δ), cos(t + 2δ) Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
428
+ page_content=' Pick t such that π 2 − δ < t < 3π 2 − 2δ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
429
+ page_content=' There exists such a t because δ < π.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
430
+ page_content=' Since δ < π, − pi 2 < π 2 − δ < t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
431
+ page_content=' Similarly since π 2 < δ, t < 3π 2 − 2δ < pi 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
432
+ page_content=' So − pi 2 < t < pi 2 and hence cos(t) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
433
+ page_content=' Further π 2 < t+δ < t+2δ < 3π 2 , so cos(t+δ) and cos(t+2δ) are negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
434
+ page_content=' This leads to the following somewhat technical-seeming lemma.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
435
+ page_content=' Lemma 21.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
436
+ page_content=' For all numbers π 2 < δ < π, there exists an ǫ > 0 and finitely many intervals ⟨(xi, yi)⟩n i=1 such that for all t there exists an interval (xi, yi) such that for all x ∈ (xi, yi), cos(t + x) > ǫ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
437
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
438
+ page_content=' Pick a t according to Lemma 20, and let ǫ > 0 be a real number such that cos(t) > ǫ and −ǫ > cos(t + δ), cos(t + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
439
+ page_content=' Then since cos is a continuous function, there is an open region (l, u) around t such that for all x ∈ (l, u), cos(x) > ǫ and −ǫ > cos(x + δ), cos(x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
440
+ page_content=' Let n be an integer such that 4π n < u − l and then define (xi, yi) to be (i 2π n , (i + 1) 2π n ) for 1 ≤ i ≤ n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
441
+ page_content=' For all t there is a maximum integer K such that t + K 2π n ≤ l.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
442
+ page_content=' Then l < t + (K + 1) 2π n by maximality, but t + (K + 2) 2π n ≤ l + 4π n < u.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
443
+ page_content=' Thus if (K + 1) 2π n < x < (K + 2) 2π n , l < t + x < u and hence cos(t + x) > ǫ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
444
+ page_content=' 11 Since cos is periodic with period 2π, if 1 ≤ i ≤ n and i is equivalent to K +1 modulo n, then for all xi < x < yi, cos(t+x) > ǫ and −ǫ > cos(t+x+δ), cos(t+ x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
445
+ page_content=' This leads to the equivalent of Lemma 13.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
446
+ page_content=' Lemma 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
447
+ page_content=' There exists a constant C such that for all n ≥ 4, there exist sequence ⟨ai⟩n i=1 satisfying the recurrence relation and terminating at 0 for which Cηn/2 1 > a1 > 0 > a2, a3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
448
+ page_content=' Since π 2 < δ < π, we can apply Lemma 21 and get ǫ > 0 and finitely many intervals (xi, yi) such that for all t there exists an interval (xi, yi) such that for all x ∈ (xi, yi), cos(t + x) > ǫ and −ǫ > cos(t + x + δ), cos(t + x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
449
+ page_content=' By Corollary 19, for each such interval (xi, yi), we can choose non-zero in- tegers ki, li for which xi < γ(ki, li) < yi.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
450
+ page_content=' Let A be some real number such that |α(ki, li)| < A for all such pairs, B > 0 be some real number such that |β(ki, li)| > B and let N be such that Aη−3N/2 1 < Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
451
+ page_content=' Then for any j ≥ N + 3, by the statement of Lemma 21, there exists an interval (xi, yi) such that for all x ∈ (xi, yi), cos(x − (j − 1)δ) > ǫ and −ǫ > cos(x − (j − 2)δ), cos(x − (j − 3)δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
452
+ page_content=' Since γ(ki, li) ∈ (xi, yi), it follows that a1 η(j−1)/2 1 = α(ki, li)η−3(j−1)/2 1 + β(ki, li) cos(γ(ki, li) − (j − 1)δ) is the sum of a number of absolute value at most Aη−3N/2 1 and a number that is at least Bǫ and so is positive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
453
+ page_content=' Similarly a2 and a3 are negative.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
454
+ page_content=' |a1| ηj/2 1 is bounded above by 2Bǫ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
455
+ page_content=' For each value 4 ≤ j ≤ N +2, we can just choose any sequence satisfying the bounds.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
456
+ page_content=' For instance, if aj = pa1 + qa2 + ra3, we set a1 = q + r, a2 = a3 = −p.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
457
+ page_content=' Choose C such that C > 2Bǫ and such that for all 4 ≤ j ≤ N +2, the sequences we have chosen satisfy a1 < Cηj/2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
458
+ page_content=' Similarly we can get the following.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
459
+ page_content=' Lemma 23.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
460
+ page_content=' There exists a constant C such that for all n ≥ 4, there exist sequence ⟨bi⟩n i=1 satisfying the recurrence relation and terminating at 0 for which Cηn/2 1 > b2 > 0 > b1, b3 Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
461
+ page_content=' Proof entirely analagous to Lemma 22.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
462
+ page_content=' For Lemma 20, we need a u such that cos(u + δ) > 0 > cos(u), cos(u − 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
463
+ page_content=' Pick u such that π 2 − 2δ < u < −π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
464
+ page_content=' There exists such a u because δ > π 2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
465
+ page_content=' Since δ < π, −3π 2 < u < −π 2 and hence cos(u) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
466
+ page_content=' Similarly π 2 < u+2δ < 3π 2 and hence cos(u + 2δ) < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
467
+ page_content=' Finally π 2 − δ < u + δ < δ − π 2 , so − π 2 < u + δ < π 2 , so cos(u + δ) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
468
+ page_content=' Then by a method equivalent to Lemma 21 there exists an ǫ′ > 0 and finitely many intervals ⟨(x′ i, y′ i)⟩m i=1 such that for all t there exists an interval (x′ i, y′ i) such that for all x ∈ (x′ i, y′ i), cos(t + x + δ) > ǫ′ and ǫ′ > cos(t + x), cos(t + x + 2δ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
469
+ page_content=' We then apply the same method as the proof of Lemma 22 12 This allows us to prove the equivalent of Theorem 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
470
+ page_content=' Theorem 24.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
471
+ page_content=' There exists a real number U such that for any positive integers n, k with k ≥ 4 and n ≥ Uη3k/2 1 , there is a positive sequence ⟨xi⟩k i=1 satisfying xi+3 = axi+2 + bxi+1 + cxi and terminating at xk = n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
472
+ page_content=' Proof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
473
+ page_content=' Denote by pk, qk and rk the integers such that xk = pkx1 + qkx2 + rkx3 for all such sequences ⟨xi⟩k i=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
474
+ page_content=' Then since there can be an integer sequence ending at xk = 1, there is no non-trivial common divisor of pk, qk and rk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
475
+ page_content=' Further, by Lemma 22 and Lemma 23 there exist integers Cηk/2 1 > a1 > 0 > a2, a3 and Cηk/2 1 > b2 > 0 > b1, b3 for which a1pk + a2qk + a3rk = b1pk +b2qk +b3rk = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
476
+ page_content=' Hence by Theorem 12, for all n ≥ a1pk +b2qk +rk, there is such a sequence terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
477
+ page_content=' Since (2C +1)ζk/2 1 > a1 +b2 +1 and pk, qk, rk > T ζn 1 for some fixed constant T , it follows that for all n ≥ (2C+1)T ζ3k/2 1 , there is such a sequence terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
478
+ page_content=' Finally we are able to show that all affable polynomials are congenial.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
479
+ page_content=' Proof of Theorem 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
480
+ page_content=' For our polynomial x3 − ax2 − bx − c with c = 1 and a + b > 1 and at most one real root, Theorem 24 has stated the existence of a real number U uch that for any positive integers n, k with k ≥ 4 and n ≥ Uη3k/2 1 there is a positive sequence of length k terminating at n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
481
+ page_content=' Thus if there is no positive sequence of length k + 1 terminating at n, it follows that n < Uη3(k+1)/2 1 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
482
+ page_content=' Then by Theorem 18 it follows that the number of sequences of length k terminating at n is at most ⌈T n η3k/2 1 ⌉2 < ⌈T Uη3/2 1 ⌉2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
483
+ page_content=' For now we leave open the following question.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
484
+ page_content=' Question 25.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
485
+ page_content=' For which positive integers a, b, c with c > 0 and a + b > 0 is the recurrence relation xn = axn−1 + bxn−2 + cxn−3 congenial?' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
486
+ page_content=' References [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
487
+ page_content=' Spiro, “Problems that i would like somebody to solve,” 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
488
+ page_content=' 13' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/3tFLT4oBgHgl3EQfsC9L/content/2301.12146v1.pdf'}
4NE1T4oBgHgl3EQf6AXQ/content/2301.03519v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b191c7bc03c241d9165033e151d5cf1bed3882253c40e73fa94a0526d5f27836
3
+ size 3446310
4NE1T4oBgHgl3EQf6AXQ/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c4f41fd4f3477d61dc089fbf8d4f0618f82c56cce3735e015609c6c51ba72597
3
+ size 4980781
4tAzT4oBgHgl3EQffvxD/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a17f9df678219c42d99fef4b746d0b4ce76d7d6beb554952ede679c6f7e58579
3
+ size 3670061
5dE5T4oBgHgl3EQfPA60/content/tmp_files/2301.05502v1.pdf.txt ADDED
@@ -0,0 +1,2695 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.05502v1 [math.AG] 13 Jan 2023
2
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS
3
+ CLOSE TO RANK-ONE?
4
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
5
+ Abstract. We address the general problem of estimating the probability that a real symmetric
6
+ tensor is close to rank–one tensors. Using Weyl’s tube formula, we turn this question into a differential
7
+ geometric one involving the study of metric invariants of the real Veronese variety. More precisely,
8
+ we give an explicit formula for its reach and curvature coefficients with respect to the Bombieri–Weyl
9
+ metric. These results are obtained using techniques from Random Matrix theory and an explicit
10
+ description of the second fundamental form of the Veronese variety in terms of GOE matrices. Our
11
+ findings give a complete solution to the original problem, and in the case of rational normal curves
12
+ lead to some novel asymptotic results.
13
+ 1. Introduction
14
+ 1.1. What is the probability that a random symmetric tensor is close to rank-one? Over
15
+ the last decades, symmetric tensors have been proven to be a very flexible and valuable tool in many
16
+ different contexts. In particular, rank–one approximation and tensor decomposition found applications
17
+ in machine learning ([AGH+14]), signal processing and image analysis ([SDLF+17], [Sak16, Ch.3, 4]),
18
+ chemistry ([SBG04]), statistics ([McC87]), psychology and medical diagnostics ([Kro08, ALLF07]) and
19
+ phylogenetics ([Sak16, Ch.5], [Lan12]), to name a few. Motivated by this, in this paper we address the
20
+ following question:
21
+ “What is the probability for a real symmetric tensor to be “close” to rank–one?”
22
+ To make sense of this question, we must endow the space of tensors with a notion of distance and
23
+ with a probability distribution. We address this problem in a natural way as follows.
24
+ Observe first that the real vector space of symmetric tensors of order d on Rn+1 can be naturally
25
+ identified with the space R[x0, . . . , xn](d) of homogeneous polynomials of degree d. Under this identifi-
26
+ cation, we endow the space of real polynomials with the scalar product given by the restriction of the
27
+ real part of the Bombieri–Weyl hermitian product, defined on the space of complex polynomials by
28
+ (1)
29
+ ⟨p1, p2⟩BW :=
30
+ 1
31
+ πn+1
32
+
33
+ Cn+1 p1(z)p2(z)e−∥z∥2dz,
34
+ where dz := (i/2)n+1dz0dz0 . . . dzndzn is the Lebesgue measure.
35
+ This defines the unique, up to
36
+ multiples, hermitian product on the space of complex polynomials which is invariant under the action
37
+ of the unitary group by change of variables. The restriction of the real part of this hermitian product to
38
+ the space of real polynomials will be still called the Bombieri–Weyl scalar product; the above unitary
39
+ invariance implies its invariance under the action of the orthogonal group by change of variables. In the
40
+ case when d = 2, the above identification is the familiar isomorphism between the space of symmetric
41
+ matrices and the space of quadratic forms, and the Bombieri–Weyl scalar product coincides with the
42
+ Frobenius inner product.
43
+ Next, we use this scalar product to turn R[x0, . . . , xn](d) into a probability space. For a Borel set
44
+ U ⊆ R[x0, . . . , xn](d) we define
45
+ P(U) :=
46
+
47
+ U
48
+ e−
49
+ ∥p∥2
50
+ BW
51
+ 2
52
+
53
+
54
+ R[x0,...,xn](d)
55
+ e−
56
+ ∥p∥2
57
+ BW
58
+ 2
59
+
60
+ ,
61
+ Date: September 2022.
62
+ 1
63
+
64
+ 2
65
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
66
+ where “dµ” denotes the integration with respect to the Lebesgue measure on the space of coefficients.
67
+ We call the resulting probability distribution Bombieri–Weyl, and sometimes the nomenclature Kostlan
68
+ is also used interchangeably. When d = 2, the Bombieri–Weyl distribution turns the space of symmetric
69
+ matrices into a gaussian space, called the Gaussian Orthogonal Ensemble, as we will describe in more
70
+ detail in Section 2.1.
71
+ Finally, we identify the set of rank–one tensors with the Veronese variety Vn,d ⊂ R[x0, . . . , xn](d) of
72
+ signed d–th powers of linear forms. At this point we are in the position of giving a precise formulation
73
+ to our question above, which therefore requires computing, for δ > 0 small enough, the quantity:
74
+ P
75
+
76
+ p ∈ R[x0, . . . , xn](d)
77
+ ���� distBW(p, Vn,d) ≤ δ∥p∥BW
78
+
79
+ .
80
+ Notice that we have turned this into a conic problem that takes into account also the norm of the
81
+ tensor, as it is common procedure in numerical algebraic geometry [BC13]. In this way, we can regard
82
+ the above probability as the normalized volume of a tubular neighbourhood of the intersection of the
83
+ set of rank–one tensors with the unit sphere in the Bombieri–Weyl norm. Thus, our question becomes:
84
+ “What is the volume of a neighbourhood of the spherical Veronese variety?”
85
+ In this paper, exploiting Weyl’s Tube Formula, we derive an exact expression for the above volume, for
86
+ small enough neighbourhoods. Moreover, as a byproduct of our computations, we give a lower bound
87
+ on the size of the neighbourhood of the set of rank–one tensors that admit a unique best rank–one
88
+ approximation.
89
+ Remark 1. The properties of the Bombieri–Weyl distribution on the space of real (and complex) poly-
90
+ nomials have been intensively studied, starting from the influential works of A. Edelman, E. Kostlan,
91
+ M. Shub and S. Smale [EK95, SS93b, SS93a, SS93c]. The point of view of random tensors has been
92
+ adopted first by E. Horobet and J. Draisma in [DH16] and by P. Breiding in [Bre19] for the study of
93
+ the expected number of eigenvalues of a random symmetric tensor, with respect to the Bombieri–Weyl
94
+ distribution. Under the identification between symmetric tensors and homogeneous polynomials, eigen-
95
+ values correspond to critical values of the restriction of the polynomial to the unit sphere. Eigenvectors
96
+ correspond to critical points of the polynomial: under the Veronese embedding these critical points
97
+ give rank–one tensors that are critical points of the distance function on the Veronese variety from
98
+ the given tensor. Among these critical points (which are rank–one tensors) the closest to the original
99
+ tensor are its best rank–one approximations. In [Bre19] the average number of such critical points is
100
+ computed. In this paper we will instead give the size and estimate the probability of the set of tensors
101
+ which admit a unique best rank–one approximation.
102
+ The use of Weyl’s Tube Formula is fairly standard for results of this type [BC13, BL22]: it allows to
103
+ deduce an exact expression, for ε > 0 small enough, of the volume of an ε–neighbourhood of a smooth
104
+ submanifold W of the sphere, or the euclidean space, as a function of some differential–geometric
105
+ quantities of W, called its curvature coefficients. Our main contribution is the nontrivial computation
106
+ of the curvature coefficients of the spherical Veronese variety and the explicit quantification of the
107
+ above expression “for ε > 0 small enough” for this variety, through the computation of its reach.
108
+ One could generalize this question to higher ranks by looking at secant varieties to the Veronese,
109
+ whose geometry has been intensively studied, see [CGO14] for a survey. We propose to investigate this
110
+ in future works.
111
+ We now describe the main ingredients and state the main results of our work in more detail.
112
+ 1.2. The spherical Veronese. The main object we consider in this work is the real spherical Veronese
113
+ variety Vn,d, which is the intersection of the Veronese variety in R[x0, . . . , xn](d) ≃ RN+1 with the unit
114
+ sphere for the Bombieri–Weyl norm:
115
+ Vn,d := Vn,d ∩ SN.
116
+ We regard this set as the image of the spherical Veronese embedding associated to the Bombieri–
117
+ Weyl basis, or its double copy, depending on the parity of d. This embedding is the smooth map
118
+
119
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
120
+ 3
121
+ �νn,d : Sn → SN given by
122
+ x
123
+ �νn,d
124
+ �−−−→
125
+ ��d
126
+ α
127
+ � 1
128
+ 2
129
+
130
+
131
+ α
132
+ ,
133
+ where α ∈ Zn+1
134
+ ≥0
135
+ satisfy α0 + · · · + αn = d,
136
+ �d
137
+ α
138
+
139
+ is the multinomial coefficient, and Sn is the euclidean
140
+ sphere in Rn+1. Denoting �νn,d(Sn) by Σn,d, we see that
141
+ Vn,d = Σn,d ∪ −Σn,d,
142
+ where Σn,d = −Σn,d if d is odd and Σn,d ∩ (−Σn,d) = ∅ if d is even. For this reason, we will call Σn,d
143
+ the spherical Veronese surface, to distinguish it from the spherical Veronese variety Vn,d, in the case d
144
+ is even. In the projective picture, the difference between the two ceases to exist:
145
+ PVn,d := P(Σn,d) = P(Vn,d) ⊂ RPN.
146
+ Recall that Σn,d parametrizes the d–th powers of norm–1 linear forms on Rn+1 and, therefore, rank–
147
+ one and norm–one tensors up to signs. Hence, the spherical Veronese surface Σn,d corresponds to an
148
+ orbit for the action of O(n + 1) on homogenous polynomials by change of variables. Even more is
149
+ true: when turning Σn,d into a Riemannian manifold with the metric induced by the Bombieri–Weyl
150
+ scalar product, the transitive action of O(n + 1) on Σn,d is through isometries induced by isometries
151
+ of SN, given the invariance property of the Bombieri–Weyl structure. The immediate, yet crucial,
152
+ consequence is that the extrinsic geometry of the isometric embedding Σn,d ֒→ SN is exactly the same
153
+ at every point. The same conclusion clearly holds for Vn,d ֒→ SN.
154
+ 1.3. Weyl’s tube formula and the reach of an embedding. Let (M, g) be a Riemannian manifold
155
+ and M ֒→ M be an isometric embedding of a compact smooth submanifold. We can consider the set
156
+ of points in M at distance less than a given ε > 0 from M and call such a set a tubular neighbourhood
157
+ of M in M of radius ε, denoted as U(M, ε).
158
+ It is well known that for smooth compact embeddings M ֒→ M and small enough radii, the exponen-
159
+ tial map on the normal bundle provides a smooth parametrization of the tubular neighbourhood. This
160
+ description is what really underlies the celebrated “Weyl’s tube formula” ([Wey39]), which constitutes
161
+ one of the main tools to compute the volume of tubular neighbourhoods in a euclidean or spherical
162
+ ambient space. This formula expresses the volume as the linear combination
163
+ Vol(U(M, ε)) =
164
+
165
+ 0≤e≤n, e even
166
+ Ks+e(M)JN,s+e(ε),
167
+ where N is the dimension of the ambient space, n is the dimension of M and s := N − n is the
168
+ codimension of the embedding. The functions J’s do not depend on the specific submanifold M and
169
+ are explicitly known in both the euclidean and spherical cases. The most remarkable aspect of the
170
+ formula is that the coefficients K’s are isometric invariants of the embedding and can be expressed
171
+ in terms of curvature, from which they are named curvature coefficients of the embedding. Remark
172
+ that nowadays Weyl’s tube formula has been re-interpreted in the more general framework of “integral
173
+ geometry”, which deals with integrals over a submanifold of polynomials in the entries of the second
174
+ fundamental form. R. Howard in [How93] showed how the above formula fits in this context and gave
175
+ a full characterization of the polynomials appearing in Weyl’s work.
176
+ In the case of the Veronese variety Vn,d ֒→ SN, the tubular neighbourhood U(Vn,d, ε) gives a
177
+ description of the norm–1 symmetric tensors that are ε–close to a rank–1 tensor in the Bombieri–Weyl
178
+ metric, in the ambient sphere. As already pointed out, it follows that asking for the probability for
179
+ a symmetric norm–1 tensor to be close to rank–1 boils down to computing the normalized volume of
180
+ this tubular neighbourhood.
181
+ For practical reasons, in the paper we will work with Σn,d instead of its “double” Vn,d. There are,
182
+ however, two technical issues to consider here. The first one is that there will be a factor of 2 to
183
+ be taken into account when switching from the Veronese surface Σn,d to the rank–one variety Vn,d,
184
+ depending on the parity of d. The second one is that the intersection of a δ–neighbourood of the set
185
+ of rank–one tensors with the unit sphere becomes an ε–neighbourhood of Vn,d in the unit sphere, with
186
+ ε = arcsin(δ).
187
+
188
+ 4
189
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
190
+ This is why we will use the parameter “ε” to formulate the results on the sphere and the parameter
191
+ “δ” for the results in the vector space of tensors.
192
+ 1.4. The reach of the Veronese variety. Our aim is to exploit Weyl’s tube formula to compute
193
+ the volume of U(Vn,d, ε). This requires first of all the knowledge of the radii for which the above
194
+ expression holds. Since the formula is based on the parametrization through the normal exponential
195
+ map, the supremum of the radii for which this is a good parametrization, or at least a lower bound
196
+ on that, is what we need to understand to meaningfully use Weyl’s result. This quantity is usually
197
+ called the reach of the embedding M ֒→ M and in general computing it is a very difficult task, often
198
+ unfeasible since it requires to study not only how normal geodesics originating from every point of the
199
+ submanifold behave, but also how and when geodesics starting from different points cross each other,
200
+ in order to avoid overlappings in the image.
201
+ In our case, recalling the invariance property of Vn,d ֒→ SN under the action of the orthogonal group
202
+ O(n + 1), we do not need to study normal geodesics originating from any point, but it is enough to
203
+ choose a specific one and perform computations involving only geodesics originating from this chosen
204
+ one. This drastically reduces the complexity of the computation, allowing us to obtain the following
205
+ result, stated in a more detailed form in Theorem 19.
206
+ Theorem A (The reach of the spherical Veronese). The reach of the spherical Veronese variety
207
+ Vn,d ֒→ SN is given by
208
+ ρ(Vn,d) =
209
+ 1
210
+
211
+ 3
212
+ +
213
+ 1
214
+ 3d
215
+
216
+ 3
217
+ + O
218
+ � 1
219
+ d2
220
+
221
+ .
222
+ The same result holds for the reach of the Veronese surface Σn,d ֒→ SN.
223
+ Given the interpretation of the neighbourhood of the Veronese variety in terms of symmetric tensors
224
+ already discussed, this theorem has an important consequence. From its proof, it follows that every
225
+ real symmetric tensor which is sufficiently close to rank–one tensors admits a unique best rank–one
226
+ approximation (see Corollary 21). In fact the reach ρ(Vn,d) equals the minimum between two quantities,
227
+ one of which estimates the size of the neighborhood of Vn,d on which the normal exponential map is
228
+ injective; we prove that this quantity equals π
229
+ 4 , and this allows to deduce the following.
230
+ Corollary B (Best rank–one approximation). Every symmetric tensor p at distance less than
231
+
232
+ 2
233
+ 2 ∥p∥BW
234
+ from rank–one admits a unique best rank–one approximation.
235
+ The normalized volume of a neighbourhood of the Veronese variety of radius π
236
+ 4 would therefore
237
+ provide a lower bound for the probability that such tensors have a unique best rank–one approximation.
238
+ Unfortunately, we are not able to compute such a volume, given that the value of the reach ρ(Vn,d) < π
239
+ 4
240
+ does not allow to use Weyl’s tube formula up to such a radius. Nevertheless, given the uniformity of
241
+ the lower bound for the reach ρ(Vn,d) ≥
242
+ 1
243
+
244
+ 3 for every n, d (see Remark 20), we still get that the volume
245
+ of the neighbourhood of radius
246
+ 1
247
+
248
+ 3 provides a lower bound for that probability, even if not sharp. This
249
+ bound can be explicitly computed by plugging in ε =
250
+ 1
251
+
252
+ 3 in Theorem 24. Moreover, in the case of
253
+ tensors in two variables, which correspond to the case of rational normal curves, using the asymptotic
254
+ in Theorem 26 we get an asymptotic expression for this bound.
255
+ 1.5. The curvature coefficients of the Veronese variety. The other ingredient needed in Weyl’s
256
+ formula are the curvature properties of the embedding, in particular the Weingarten operator along
257
+ normal directions, which encodes the second fundamental form. Again by the invariance of the extrinsic
258
+ geometry of Vn,d ֒→ SN, it is enough to compute this at a specific point, which we choose to be xd
259
+ 0 for
260
+ simplicity of computations.
261
+ Before stating our result, recall that we have denoted by GOE(n) the Gaussian Orthogonal Ensemble,
262
+ i.e. the set Sym(n, R) endowed with the gaussian probability distribution coming from the Frobenius
263
+ scalar product, see Section 2.1 for more details.
264
+ Our main result on the extrinsic geometry of the embedding Vn,d ֒→ SN is the following, and we
265
+ refer to Theorem 22 for a more comprehensive statement.
266
+
267
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
268
+ 5
269
+ Theorem C (The normal bundle splitting). Let p ∈ Vn,d and denote by Lη the Weingarten operator of
270
+ Vn,d ֒→ SN along a normal direction η ∈ NpVn,d. There exists an orthogonal decomposition NpVn,d =
271
+ W ⊕ P such that the following statements hold:
272
+ (1) Lη = 0 for every η ∈ P;
273
+ (2) W with its induced Bombieri–Weyl metric is isometric to Sym(n) with the Frobenius one.
274
+ Moreover, if we pick η ∈ W Gaussian, then Lη ∼
275
+
276
+ 2
277
+
278
+ d−1
279
+ d
280
+ � 1
281
+ 2
282
+ GOE(n).
283
+ This theorem could find applications going beyond the scope of this paper. It gives a full description
284
+ of the second fundamental form in terms of GOE(n) matrices. Using this description in Weyl’s tube
285
+ formula to compute the curvature coefficients of the spherical Veronese, the consequence is that the
286
+ computation of some integrals on the normal bundle depending on the Weingarten operator boils
287
+ down to computing the expectation of a determinant involving GOE(n) matrices. This is reduced to
288
+ an easy, purely combinatorial computation (see Appendix C) and thus we obtain the following explicit
289
+ expressions for the curvature coefficients.
290
+ Theorem D (The curvature coefficients of the spherical Veronese). The curvature coefficients of the
291
+ Veronese variety Vn,d ֒→ SN are as follows:
292
+ KN−n+j(Vn,d) = (−1)
293
+ j
294
+ 2 d
295
+ n
296
+ 2
297
+ �d − 1
298
+ d
299
+ � j
300
+ 2
301
+ 2n+2−jπ
302
+ N
303
+ 2 Γ
304
+ � n
305
+ 2 + 1
306
+
307
+ Γ
308
+ � j
309
+ 2 + 1
310
+
311
+ Γ(n + 1 − j)Γ
312
+
313
+ N+j−n
314
+ 2
315
+
316
+ for 0 ≤ j ≤ n and j even, and KN−n+j(Vn,d) = 0 otherwise.
317
+ We remark that similar results hold true for the projective Veronese variety, using the double covering
318
+ SN −→ RPN, and for the spherical Veronese surface.
319
+ Plugging these coefficients back in Weyl’s tube formula we also obtain the explicit expression of the
320
+ volume of the tubular neighbourhood for radii smaller than the reach (see Theorem 24), in particular
321
+ giving an answer to question stated at the beginning of the paper.
322
+ Theorem E (The probability of being close to rank–one). Let p be a random Bombieri–Weyl symmet-
323
+ ric tensor of order d on Rn+1 and Vn,d ⊂ R[x0, . . . , xn](d) ≃ RN+1 be the Veronese variety of rank–one
324
+ tensors. For every δ such that 0 ≤ arcsin(δ) <
325
+ 1
326
+
327
+ 3 +
328
+ 1
329
+ 3d
330
+
331
+ 3 + O
332
+ � 1
333
+ d2
334
+
335
+ we have
336
+ P
337
+
338
+ distBW(p, Vn,d) ≤ δ∥p∥BW
339
+
340
+ =
341
+
342
+ 0≤j≤n
343
+ j even
344
+ (−1)
345
+ j
346
+ 2 d
347
+ n
348
+ 2
349
+ �d − 1
350
+ d
351
+ � j
352
+ 2
353
+ 2n−j+1π− 1
354
+ 2
355
+ ·
356
+ Γ
357
+ � n
358
+ 2 + 1
359
+
360
+ Γ
361
+ � N+1
362
+ 2
363
+
364
+ Γ
365
+ � j
366
+ 2 + 1
367
+
368
+ Γ(n + 1 − j)Γ
369
+
370
+ N+j−n
371
+ 2
372
+
373
+
374
+ δ
375
+
376
+ 1−δ2
377
+ 0
378
+ tN−n+j−1
379
+ (1 + t2)
380
+ N+1
381
+ 2
382
+ dt.
383
+ We remark that the above expression, even if unpleasant, gives an exact formula for our probability.
384
+ In the last section, we present an asymptotic expression, based on Laplace’s method, for such a
385
+ probability in the case of rational normal curves, corresponding to the case of tensors in two variables,
386
+ when the degree goes to infinity (see Theorem 26). We stress that it is possible to obtain a meaningful
387
+ asymptotic since the reach is uniformly bounded below. We also remark that the decay is exponential
388
+ in d, as one might expect looking at the codimension of V1,d ֒→ Sd, which is d − 1. More generally, the
389
+ probability has an exponential decay in the codimension of Vn,d ֒→ SN for any n, d.
390
+ 2. Preliminaries
391
+ 2.1. The Gaussian Orthogonal Ensemble and the Bombieri–Weyl distribution. In this sec-
392
+ tion, we point out the correspondence between the Gaussian Orthogonal Ensemble on the space of
393
+ symmetric matrices and the Bombieri–Weyl distribution on the space of homogeneous polynomials.
394
+
395
+ 6
396
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
397
+ Let Sym(n, R) be the space of symmetric n × n matrices with real entries and denote by Eij the
398
+ elementary matrix having all entries 0 except for the ij-th one being 1. Consider a random matrix
399
+ Q =
400
+ n
401
+
402
+ i=1
403
+ ηiiEii +
404
+ n
405
+
406
+ i<j=1
407
+ ηij
408
+ Eij + Eji
409
+
410
+ 2
411
+ ,
412
+ where ηij ∼ N(0, 1) are i.i.d. standard Gaussian variables. Then Q has random Gaussian entries
413
+ distributed as N(0, 1) on the diagonal and N(0, 1
414
+ 2) off-diagonal, independent except for the obvious
415
+ symmetry condition. The probability distribution on Sym(n, R) induced by such matrices is called
416
+ the Gaussian Orthogonal Ensemble and it is denoted by GOE(n).
417
+ This is the standard Gaussian
418
+ probability distribution associated to the Frobenius scalar product given by ⟨A, B⟩ = tr(AB) and
419
+ therefore for every open set U ⊂ Sym(n, R)
420
+ P{Q ∈ U} =
421
+ 1
422
+ (2π)
423
+ n(n+1)
424
+ 4
425
+
426
+ U
427
+ e− 1
428
+ 2 tr(A2)dA.
429
+ (2)
430
+ Recall that the orthogonal group O(n) acts on Sym(n, R) by congruence. We denote this action by
431
+ ψ : O(n) −→ GL(Sym(n, R)): for every R ∈ O(n) and A ∈ Sym(n, R), ψ(R)(A) = RT AR, where RT
432
+ denotes the transpose of R.
433
+ Let C[x1, . . . , xn](d) be the space of complex homogeneous polynomials of degree d in n variables.
434
+ Denote by ρ : U(n) −→ GL(C[x1, . . . , xn](d)) the action of the unitary group by change of variables, i.e.
435
+ for every R ∈ U(n) and p ∈ C[x1, . . . , xn](d) set ρ(R)(p) := p ◦ R−1. It is known that ρ is irreducible
436
+ (see [IN66]) and therefore by Schur’s lemma and the compactness of U(n) it follows that there exists
437
+ a unique (up to multiples) hermitian structure on C[x1, . . . , xn](d) which is ρ-invariant, and which is
438
+ given by (1). Up to scaling, this is the hermitian structure having the set
439
+ ��d
440
+ α
441
+ � 1
442
+ 2
443
+
444
+
445
+ α=(α1,...,αn)∈Zn
446
+ ≥0, α1+···+αn=d
447
+ (3)
448
+ as an orthonormal basis, where
449
+ �d
450
+ α
451
+
452
+ =
453
+ d!
454
+ α1!...αn! and xα = xα1
455
+ 1 . . . xαn
456
+ n . We call this the Bombieri–Weyl
457
+ or Kostlan hermitian structure on C[x1, . . . , xn](d).
458
+ Restricting to real homogeneous polynomials R[x1, . . . , xn](d), we define an inner product, which
459
+ we call again Bombieri–Weyl. Notice that (3) is also a real orthonormal basis since the polynomials in
460
+ (3) have real coefficients. We also restrict the action ρ to an action of the orthogonal group O(n) on
461
+ R[x1, . . . , xn](d) and the inner product we introduced is invariant for this restricted action. Remark
462
+ that this restricted action is not irreducible anymore (it is a computation to show that the subspace of
463
+ harmonic polynomials in R[x1, . . . , xn](d) is a non-trivial invariant subspace) and the Bombieri–Weyl
464
+ inner product is not the unique invariant one. The standard Gaussian probability distribution on
465
+ R[x1, . . . , xn](d) associated to the Bombieri–Weyl inner product is the one induced by the random
466
+ polynomial
467
+ P(x) =
468
+
469
+ α∈Zn
470
+ ≥0
471
+ α1+···+αn=d
472
+ ξα
473
+ �d
474
+ α
475
+ � 1
476
+ 2
477
+ xα,
478
+ where ξα are i.i.d. standard Gaussians N(0, 1). We call it again the Bombieri–Weyl distribution.
479
+ The map
480
+ p : Sym(n, R) −→ R[x1, . . . , xn](2)
481
+ (4)
482
+ Q �−→ pQ = xtQx
483
+ defines an isomorphism of Sym(n, R) with R[x1, . . . , xn](2) and one can check that the orthonormal
484
+ basis for the Frobenius product given by {Eii, Eij+Eji
485
+ 2
486
+ }i<j=1,...,n is mapped to the orthonormal basis for
487
+ the Bombieri–Weyl product given by (3). It follows that p defines an isometry of Sym(n, R) endowed
488
+ with the Frobenius inner product with R[x1, . . . , xn](2) endowed with the Bombieri–Weyl one and thus
489
+ we can identify the corresponding standard Gaussian probability distributions. Even more is true: p is
490
+
491
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
492
+ 7
493
+ an isomorphism between the representations (ψ, Sym(n, R)) and (ρ, R[x1, . . . , xn](2)), i.e. the following
494
+ diagram
495
+ Sym(n, R)
496
+ Sym(n, R)
497
+ R[x1, . . . , xn](2)
498
+ R[x1, . . . , xn](2)
499
+ p
500
+ ψ(R)
501
+ p
502
+ ρ(R)
503
+ commutes for every R ∈ O(n), as one can easily check by a straightforward computation.
504
+ 2.2. Tubular neighbourhoods and Weyl’s tube formula. Let M be an isometrically embedded
505
+ n-dimensional submanifold of a Riemannian manifold (M, g), i.e. M is itself a Riemannian manifold
506
+ with the metric induced by (M, g). Denote by TpM, NpM the tangent and normal spaces to M at
507
+ p ∈ M. Denote also by ∇, ∇ the Riemannian connections of M and M respectively. For smooth
508
+ vector fields X, Y on M, consider X,Y their local extensions to smooth vector fields on M. Then we
509
+ have
510
+ ∇XY = ∇XY + B(X, Y ),
511
+ where ∇XY is the tangential component to M and B(X, Y ) is the normal one. By the properties of
512
+ the Riemannian connection, at every p ∈ M we can regard B as a symmetric bilinear map B : TpM ×
513
+ TpM −→ NpM and we call this the second fundamental form of M ֒→ M at p ∈ M. Given a normal
514
+ direction η ∈ NpM we define the second fundamental form along η, denoted by Hη : TpM ×TpM −→ R,
515
+ by projecting B along η, i.e. for every v, w ∈ TpM
516
+ Hη(v, w) = g(B(v, w), η).
517
+ To this bilinear form we can associate a selfadjoint operator, called the Weingarten operator along η
518
+ and denoted by Lη : TpM −→ TpM, such that for every v, w ∈ TpM
519
+ g(Lη(v), w) = Hη(v, w) = g(B(v, w), η).
520
+ This operator will play a key role in Weyl’s tube formula.
521
+ Remark 2. Given p ∈ M, consider a basis {e1, . . . , en} of TpM. Set Hη,ij = Hη(ei, ej) and denote
522
+ by Lη = (Lη,ij) the matrix representing the Weingarten operator with respect to the given basis and
523
+ g. It is clear from the definitions that
524
+ Hη,ij = Hη(ei, ej) = g(Lη(ei), ej) = Lη,ij.
525
+ Therefore, computing the matrix representing the Weingarten operator with respect to a given basis
526
+ is equivalent to the computation of the second fundamental form on the elements of that basis.
527
+ Remark 3. Let N be a n-dimensional submanifold of a euclidean space with the induced metric and
528
+ ϕ : Rn −→ N be a parametrization of N around p ∈ N with coordinates a1, . . . , an. A basis for TpN
529
+ is given by the vectors
530
+ ∂ϕ
531
+ ∂ai
532
+ := dϕ−1(p)ϕ
533
+ � ∂
534
+ ∂ai
535
+
536
+ .
537
+ Since the Christoffel symbols of the Riemannian connection of the euclidean space are all null, it follows
538
+ that to compute the second fundamental form of N at p along a normal direction η it is enough to
539
+ compute the second derivatives of the parametrization
540
+
541
+ � ∂ϕ
542
+ ∂ai
543
+ , ∂ϕ
544
+ ∂aj
545
+
546
+ = ⟨∇ ∂ϕ
547
+ ∂ai
548
+ ∂ϕ
549
+ ∂aj
550
+ , η⟩ = ⟨ ∂2ϕ
551
+ ∂ai∂aj
552
+ , η⟩,
553
+ where ⟨ , ⟩ is the euclidean inner product. Let now N be an isometrically embedded submanifold of
554
+ the sphere Sl, where Sl is given the round metric inherited by Rl, and let η be a normal vector to
555
+ N at p ∈ N. Remark that we can also consider N as an isometrically embedded submanifold of Rl.
556
+ Then the second fundamental form of N along η is the same whether we consider N as a submanifold
557
+ of Sl or of Rl. This means that above formula holds also for submanifolds of round spheres.
558
+
559
+ 8
560
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
561
+ Given M, M as above, we can define the ε-small normal bundle N εM as the subset of the normal
562
+ bundle NM consisting of vectors with norm less than ε > 0. We also call normal exponential map the
563
+ restriction of the exponential map of M to NM.
564
+ Definition 4. If there exists an ε > 0 such that
565
+ exp |N εM : N εM −→ M
566
+ is a diffeomorphism on its image, where exp denotes the exponential map of M, we call N εM a tubular
567
+ neighbourhood of M in M.
568
+ Recall the definition of distance of a point x ∈ M from the submanifold M, given by dg(x, M) :=
569
+ inf{dg(x, y) | y ∈ M} where dg(x, y) is the Riemannian distance between x, y.
570
+ We introduce the
571
+ following set
572
+ (5)
573
+ U(M, ε) := {x ∈ M | dg(x, M) < ε},
574
+ consisting of points at distance less than ε > 0 from M. The description of this set for submanifolds of
575
+ R3 is quite easy: the distance of a point from a surface or a curve will always be given by the length of
576
+ a segment starting from the point and meeting the submanifold orthogonally, given that segments are
577
+ geodesics. This situation can be generalized, as the following theorem shows. Even though this result
578
+ is well known, we were not able to find a full explicit reference for this general setting. We, therefore,
579
+ provide a full proof in Appendix A, filling in the details of the outline given in [CdS01, Theorem 6.6].
580
+ Theorem 5 (Tubular neighbourhood theorem). Let M be a compact isometrically embedded
581
+ submanifold of a Riemannian manifold (M, g). Then there exists an ε > 0 small enough such that
582
+ exp |N εM : N εM −→ M is a diffeomorphism on its image and exp(N εM) = U(M, ε).
583
+ Theorem 5 can be seen as an existence result for tubular neighbourhoods of compact submanifolds and
584
+ as a characterization of the set U(M, ε) for ε small enough. For this reason, in the following, we will
585
+ refer also to U(M, ε) as a tubular neighbourhood.
586
+ Remark 6. The compactness assumption in theorem (5) is crucial. If we remove compactness, we
587
+ can only prove the existence of a smooth function ε(·) : M −→ R>0 such that the restriction of the
588
+ exponential map to N ε(·)M is an embedding, where N ε(·)M = {v ∈ NxM | x ∈ M, ∥v∥ < ε(x)}, i.e.
589
+ the ε is not uniform anymore but it depends on the point.
590
+ Definition 7. Let M be an isometrically embedded submanifold of a Riemannian manifold (M, g).
591
+ We define the reach of M ֒→ M as
592
+ ρ(M) = sup{ε ≥ 0 | N εM is a tubular neighbourhood of M}.
593
+ We can restate theorem (5) by saying that the reach of a compact submanifold is always positive.
594
+ Remark that even if for brevity we write ρ(M), the reach is not an intrinsic property of M but it
595
+ depends on the way M is embedded into M. From the very definition it follows that ρ(M) can be
596
+ expressed as the minimum between ρ1(M) = sup{ε ≥ 0 | exp |N εM is an immersion} and ρ2(M) =
597
+ sup{ε ≥ 0 | exp |N εM is injective}.
598
+ The points where the differential of the normal exponential map is not injective are called focal points.
599
+ Their existence is linked to the presence of particular Jacobi fields, see [dC92, Section 10.4].
600
+ For
601
+ compact submanifolds of round spheres, one obtains the following expression
602
+ (ρ1(M))−1 = sup
603
+ x∈M
604
+ sup{∥
605
+ ..γ(0)∥ s.t. γ : (−δ, δ) −→ M
606
+ (6)
607
+ arclength geodesic in M with γ(0) = x}.
608
+ If ε > 0 is the first value for which we lose injectivity of the restriction of the normal exponential, it
609
+ means that there is a point in M that is reached by two length–ε normal geodesics starting from two
610
+ different points of M. Using the Generalized Gauss Lemma for geodesic variations, see [Gra04, Lemma
611
+ 2.11], and uniqueness of geodesics, one can show that the union of these two normal geodesics is again
612
+
613
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
614
+ 9
615
+ a geodesic meeting M orthogonally at its endpoints. Therefore we have the following expression for
616
+ ρ2(M)
617
+ ρ2(M) = 1
618
+ 2 inf{l(γ) | γ : [a, b] −→ M geodesic s.t. γ(a), γ(b) ∈ M,
619
+ (7)
620
+ ˙γ(a) ∈ Nγ(a)M, ˙γ(b) ∈ Nγ(b)M}.
621
+ We will apply these expressions in chapter 4 to compute the reach of the Veronese variety.
622
+ In [Wey39] Weyl presented a fundamental work, answering a question posed by Harold Hotelling:
623
+ how can we compute the volume of a “tube”, i.e. a tubular neighbourhood, of fixed radius around a
624
+ closed n–dimensional manifold in RN or SN? Hotelling himself answered the case of curves, both in
625
+ the euclidean and in the spherical setting. Weyl extended these results to any dimension n as follows.
626
+ Theorem 8 (Weyl’s tube formula). Let M be a smooth, n–dimensional, compact submanifold
627
+ isometrically embedded in RN (or SN) with their standard metrics. Then, for ε < ρ(M), the following
628
+ formula holds:
629
+ Vol
630
+
631
+ U(M, ε)
632
+
633
+ =
634
+
635
+ 0≤e≤n, e even
636
+ Ks+e(M)JN,s+e(ε),
637
+ (8)
638
+ where s := N − n is the codimension of M and JN,s+e are linearly independent functions of ε only. In
639
+ the euclidean case, the universal functions J have the following form:
640
+ JN,k(ε) := εk,
641
+ (9)
642
+ while in the spherical one, they are given by
643
+ JN,k(ε) :=
644
+ � ε
645
+ 0
646
+ (sin ρ)k−1(cos ρ)N−k dρ =
647
+ � tan ε
648
+ 0
649
+ tk−1
650
+ (1 + t2)
651
+ N+1
652
+ 2
653
+ dt.
654
+ (10)
655
+ Moreover, the coefficients Kj(M) are isometric invariants of M.
656
+ The coefficients Kj(M) are called the curvature coefficients of M. The motivation for this comes
657
+ from the fact that they are integrals of functions on the second fundamental form of M.
658
+ Notice
659
+ that in [Wey39] Weyl uses different normalization constants for (9) and (10). We chose to follow the
660
+ normalization introduced by Nijenhuis in [Nij74], which proves to be handier for applications, see for
661
+ instance [Bue06]. Remark that the ε’s for which the formula holds depend on the reach and therefore on
662
+ the embedding, while isometric embeddings will give the same curvature coefficients. The dependence
663
+ of the validity of the formula on the reach is due to the proof relying on parametrizing the tubular
664
+ neighbourhood through the normal exponential map. In [How93] Howard contextualizes Weyl’s result
665
+ in the framework of “Integral Geometry”, where he considers more general integrals of polynomials on
666
+ the second fundamental forms of submanifolds of homogeneous spaces.
667
+ There are explicit integral versions of formula (8) for both the euclidean and spherical cases. For the
668
+ latter, with the same notations above, this reads as
669
+ Vol
670
+
671
+ U(M, ε)
672
+
673
+ =
674
+
675
+ p∈M
676
+ � tan ε
677
+ t=0
678
+
679
+ S(NpM)
680
+ tm−1 det
681
+
682
+ In − tLη
683
+
684
+ (1 + t2)
685
+ N+1
686
+ 2
687
+ volM dη dt,
688
+ (11)
689
+ where S(NpM) denotes the unit sphere in NpM, In is the n × n identity matrix, Lη is the Weingarten
690
+ operator of M ֒→ M along the unit normal vector η, and dη is a short notation for the volume form
691
+ on S(NpM). If one explicitly develops the determinant, it is easy to get back formula (8).
692
+ 2.3. A lemma on integration on spheres. Consider a sphere Sm for some m ≥ 2 and fix k ∈
693
+ {1, . . ., m − 1}. Denote by ι : Sk ֒→ Rk+1 the inclusion map and consider the map
694
+ Sk ×
695
+
696
+ Dm−k
697
+ ϕ
698
+ −→ Sm ⊂ Rm+1 = Rk+1 × Rm−k
699
+ (12)
700
+ (σ, z)
701
+ �−→
702
+ (
703
+
704
+ 1 − |z|2 ι(σ), z),
705
+ giving a smooth parametrization of Sm \
706
+
707
+ {0} × Sm−k−1�
708
+ ⊂ Rk+1 × Rm−k. For every l ∈ N, consider
709
+ Rl endowed with a non–degenerate scalar product and coordinate functions x1, . . . , xl with respect to
710
+ an orthonormal basis. Then we have the standard volume form volRl = dx1 ∧ · · · ∧ dxl which induces
711
+
712
+ 10
713
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
714
+ a volume form vol ◦
715
+ Dl on the open norm–1 disc
716
+
717
+ Dl and through the pullback of the inclusion also a
718
+ volume form volSl−1 on Sl−1. Notice that with respect to volSm, the part of Sm not parametrized by
719
+ ϕ in (12) has measure 0. We have the following result about integration on spheres, see Appendix B
720
+ for a proof.
721
+ Lemma 9. With the same notations above, the pullback of volSm through ϕ is given by
722
+ ϕ∗(volSm) =
723
+
724
+ 1 − |z|2� k−1
725
+ 2
726
+ volSk ∧ vol ◦
727
+ Dm−k.
728
+ In particular, this implies that
729
+
730
+ Sm f(p) volSm =
731
+
732
+ Sk
733
+
734
+
735
+ Dm−k f
736
+ ��
737
+ 1 − |z|2 ι(σ), z
738
+ ��
739
+ 1 − |z|2� k−1
740
+ 2
741
+ volSk ∧ vol ◦
742
+ Dm−k,
743
+ (13)
744
+ for any measurable function f on Sm.
745
+ 2.4. Laplace’s method. One of the most important asymptotic methods for computing integrals
746
+ depending on one large parameter is the so-called “Laplace’s method”. For a proof of this result and
747
+ more details on asymptotic methods for integrals, we refer to [Won01].
748
+ Theorem 10 (Laplace’s method). Consider the following integral depending on one parameter
749
+ λ > 0:
750
+ I(λ) :=
751
+ � t2
752
+ t1
753
+ e−λa(t)b(t) dt,
754
+ where a, b : [t1, t2] −→ R are functions satisfying the following conditions:
755
+ (1) a is smooth in a neighbourhood of t1, and there exist µ > 0 and a0 ̸= 0 such that, for t −→ t1,
756
+ we have:
757
+ a(t) = a(t1) + a0(t − t1)µ + O
758
+
759
+ |t − t1|µ+1�
760
+ ;
761
+ (2) b is smooth in a neighbourhood of t1, and there exist ν ≥ 1 and b0 ̸= 0 such that, for t −→ t1,
762
+ we have:
763
+ b(t) = b0(t − t1)ν−1 + O
764
+
765
+ |t − t1|ν�
766
+ ;
767
+ (3) t1 is a global minimum for a on [t1, t2], i.e. a(t) > a(t1) for any t ∈]t1, t2[. Moreover for all
768
+ ε > 0 we have:
769
+ inf
770
+ t∈[t1+ε,t2[{a(t) − a(t1)} > 0;
771
+ (4) the integral I(λ) converges absolutely for sufficiently large λ.
772
+ Then, as λ −→ +∞, we have:
773
+ I(λ) = e−λa(t1) ·
774
+ Γ
775
+ � ν
776
+ µ
777
+
778
+ λ
779
+ ν
780
+ µ
781
+ ·
782
+ b0
783
+ µ a
784
+ ν
785
+ µ
786
+ 0
787
+ ·
788
+
789
+ 1 + O
790
+
791
+ λ− 1+ν
792
+ µ
793
+ ��
794
+ .
795
+ Remark that if the minimum of a(t) is attained at the extremum t2, the theorem holds with the roles
796
+ of t1 and t2 reversed. The idea behind the statement is that the major contribution to I(λ) will be
797
+ given by the behaviour of the integrand around the minimum point of a, which can be assumed to
798
+ be one of the endpoints of the integration domain. It can be proven that some of the smoothness
799
+ hypotheses can be relaxed, even if some regularity is still needed. The statement of Theorem 10 is
800
+ the standard form for the Laplace’s method. For statements with weaker regularity assumptions and
801
+ generalizations to larger classes of integrals, we refer to [Olv97] and [Nem20].
802
+
803
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
804
+ 11
805
+ 3. The Veronese variety
806
+ Consider the space of homogeneous polynomials of degree d in n + 1 variables R[x0, . . . , xn](d) ∼=
807
+ RN+1, where N :=
808
+ �n+d
809
+ d
810
+
811
+ − 1, with the basis described in (3).
812
+ Definition 11. For n ≥ 1 and d ≥ 1, the real Bombieri–Weyl Veronese embedding is the map
813
+ νn,d : RPn −→
814
+ RPN
815
+ [a]
816
+ �−→
817
+ ��d
818
+ α
819
+ �1/2
820
+
821
+
822
+ and it is the Veronese projective embedding associated to the Bombieri–Weyl basis. The Bombieri–
823
+ Weyl Veronese variety is the image of this embedding, denoted by PVn,d := im(νn,d).
824
+ The main object we will consider in what follows is the spherical counterpart of PVn,d.
825
+ Definition 12. The spherical (Bombieri–Weyl) Veronese map is the map
826
+ �νn,d : Sn −→ SN
827
+ a
828
+ �−→
829
+ ��d
830
+ α
831
+ �1/2
832
+
833
+
834
+ .
835
+ The spherical (Bombieri–Weyl) Veronese surface is the image of this map, denoted by Σn,d := im(�νn,d).
836
+ It is worth stressing in the definition of �νn,d that Sn is the sphere with respect to the standard
837
+ euclidean product in Rn+1 while SN is the sphere with respect to the Bombieri–Weyl product in
838
+ R[x0, . . . , xn](d) and that �νn,d is well defined, as one can check by an explicit computation.
839
+ The objects we just introduced have a particularly useful description. Recall that to each b =
840
+ (b0, . . . , bn) ∈ Rn+1 we can associate the linear form on Rn+1 given by lb(x0, . . . , xn) = b0x0+· · ·+bnxn.
841
+ It is known that PVn,d parametrizes projective classes of d−th powers of linear forms
842
+ PVn,d =
843
+
844
+ [d–th powers of linear forms on Rn+1]
845
+
846
+ =
847
+
848
+ [aα] ∈ RPN | ∃ b = (b0, . . . , bn) ∈ Rn+1 s.t. aα0,...,αn =
849
+ �d
850
+ α
851
+ �1/2
852
+ bα0
853
+ 0 . . . bαn
854
+ n
855
+
856
+ as one can prove by showing that νn,d([b0, . . . , bn]) = [(b0x0 + · · ·+ bnxn)d]. This also leads to the well-
857
+ known description of the Veronese variety PVn,d as the variety of symmetric decomposable d−tensors
858
+ on Rn+1 and is one of the main reasons Veronese varieties have been so intensively studied. A similar
859
+ description holds for the spherical Veronese surface
860
+ Σn,d = {d–th powers of norm–1 linear forms on Rn+1}
861
+ = { (aα) ∈ SN | ∃ b = (b0, . . . , bn) ∈ Sn s.t. aα0,...,αn =
862
+ �d
863
+ α
864
+ �1/2
865
+ bα0
866
+ 0 . . . bαn
867
+ n }.
868
+ Using these descriptions of PVn,d and Σn,d, it is immediate to prove the following.
869
+ Proposition 13. PVn,d is an orbit for the action of the orthogonal group O(n + 1) on RPN =
870
+ P(R[x0, . . . , xn](d)) by change of variables.
871
+ Similarly Σn,d is an orbit for the same action of the
872
+ orthogonal group O(n + 1) on SN = S(R[x0, . . . , xn](d)).
873
+ Recall the two-fold covering map πN : SN −→ RPN given by the identification of antipodal points.
874
+ Its restriction to the spherical Veronese Vn,d := Vn,d ∩ SN gives a covering map �πn,d : Vn,d −→ PVn,d
875
+ whose degree depends on the parity of d: if d is odd �πn,d is a 2 : 1 covering, while if d is even it is 1 : 1,
876
+ since in this case for b ∈ Sn we have �νn,d(b) = �νn,d(−b).
877
+ We now turn to metric properties of Veronese manifolds. Consider on Rn+1 the standard euclidean
878
+ metric and on RN+1 = R[x0, . . . , xn](d) the Bombieri–Weyl one. The metrics induced on Sn and SN
879
+ respectively are invariant under the antipodal map and therefore induce metrics on the corresponding
880
+ projective spaces RPn and RPN. We denote the metrics on the spheres by gSn and gSN and those on
881
+
882
+ 12
883
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
884
+ the projective spaces by gRPn and gRPN . Since the covering maps πn, πN are Riemannian coverings
885
+ with these metrics, any relation between gSn and gSN will also hold between gRPn and gRPN and
886
+ viceversa. Through a direct computation, one can prove the following result.
887
+ Proposition 14. Pulling back the Bombieri–Weyl metric through the Veronese embedding νn,d :
888
+ RPn −→ RPN, for any n ≥ 1, d ≥ 1 we have
889
+ ν∗
890
+ n,d gRPN =
891
+
892
+ d gRPn.
893
+ (14)
894
+ Corollary 15. For every n, d ∈ N and any smooth n–dimensional submanifold C ֒→ Σn,d we have
895
+ VolBW
896
+ n
897
+ (C) =
898
+
899
+
900
+
901
+
902
+
903
+ 1
904
+ 2d
905
+ n
906
+ 2 Voln
907
+
908
+ �ν−1
909
+ n,d(C)
910
+
911
+ for d even
912
+ d
913
+ n
914
+ 2 Voln
915
+
916
+ �ν−1
917
+ n,d(C)
918
+
919
+ for d odd
920
+ ,
921
+ (15)
922
+ where Voln is the n–dimensional volume with respect to gSn and VolBW
923
+ n
924
+ is the n–dimensional volume
925
+ with respect to the metric induced by gSN on Σn,d. In particular
926
+ VolBW
927
+ n
928
+ (Σn,d) =
929
+
930
+
931
+
932
+
933
+
934
+
935
+
936
+
937
+
938
+ d
939
+ n
940
+ 2
941
+ π
942
+ n+1
943
+ 2
944
+ Γ( n+1
945
+ 2
946
+ )
947
+ for d even
948
+ 2d
949
+ n
950
+ 2
951
+ π
952
+ n+1
953
+ 2
954
+ Γ( n+1
955
+ 2
956
+ )
957
+ for d odd
958
+ .
959
+ (16)
960
+ In section 5.2 we will need the explicit expression of VolBW
961
+ n
962
+ (Vn,d). This easily follows from formula
963
+ (16), since Vn,d = Σn,d ∪ −Σn,d where Σn,d = −Σn,d for d odd and Σn,d ∩ (−Σn,d) = ∅ for d even.
964
+ Therefore
965
+ VolBW
966
+ n
967
+ (Vn,d) = 2d
968
+ n
969
+ 2
970
+ π
971
+ n+1
972
+ 2
973
+ Γ( n+1
974
+ 2 ) = d
975
+ n
976
+ 2 Vol(Sn).
977
+ (17)
978
+ Remark 16. For every orthogonal matrix R ∈ O(n + 1) we have the following commutative diagram
979
+ (RPn, gRPn)
980
+ (RPn, gRPn)
981
+ PVn,d
982
+ PVn,d
983
+ νn,d
984
+ R
985
+ νn,d
986
+ ρ(R)|PVn,d
987
+ ,
988
+ (18)
989
+ since PVn,d is an orbit for the action ρ and is therefore preserved under ρ(R).
990
+ Moreover, by the
991
+ invariance of the Bombieri–Weyl scalar product, ρ(R) is an isometry of (RPN, gRPN ), and its restriction
992
+ to PVn,d defines an isometry of PVn,d. Therefore PVn,d is an orbit for an isometric action of O(n+1) over
993
+ R[x0, . . . , xn](d) and these isometries of PVn,d are induced by isometries of the ambient space. The same
994
+ property also holds for Σn,d considering the action on the sphere SN. This simple observation, which
995
+ is essentially due to PVn,d and Σn,d being orbits, will allow us to drastically simplify the computations
996
+ we will carry out in Chapter 4 and Section 5.1.
997
+ 4. The reach of the spherical Veronese variety
998
+ In this chapter we provide an explicit computation for the reach of Σn,d ֒→ SN. The interest in this
999
+ quantity relies on the fact it provides a lower bound for the ε’s of validity for Weyl’s tube formula, as
1000
+ theorem 8 shows. Remark that, since Σn,d is compact, by theorem 5 we have ρ(Σn,d) > 0.
1001
+ Recall that ρ(Σn,d) = min{ρ1(Σn,d), ρ2(Σn,d)} and the expressions (6) and (7). Using remark 16
1002
+ we can prove the following.
1003
+
1004
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
1005
+ 13
1006
+ Lemma 17. The formula in (6) simplifies to
1007
+
1008
+ ρ1(Σn,d)
1009
+ �−1 = sup{ ∥
1010
+ ..γ(0)∥ | γ : (−δ, δ) −→ Σn,d arclength geodesic in Σn,d, γ(0) = xd
1011
+ 0 },
1012
+ (19)
1013
+ that is to say the inner supremum in (6) does not depend on x ∈ Σn,d. Moreover (19) does not depend
1014
+ on the direction of
1015
+ .γ(0). Similarly, the formula in (7) simplifies to
1016
+ ρ2(Σn,d) = 1
1017
+ 2 inf{l(γ)
1018
+ �� γ : [a, b] −→ SN geodesic s.t. γ(a) = xd
1019
+ 0, γ(b) ∈ Σn,d,
1020
+ (20)
1021
+ ˙γ(a) ∈ Nxd
1022
+ 0Σn,d, ˙γ(b) ∈ Nγ(b)Σn,d}.
1023
+ Proof. Consider an arclength geodesic γ : (−δ, δ) −→ Σn,d with γ(0) = p1 and pick another point
1024
+ p2 ∈ Σn,d. By remark 16 there exists R ∈ O(n + 1) such that ρ(R)p1 = p2. Recall that the image of
1025
+ a geodesic through an isometry is still a geodesic, hence ˜γ := ρ(R)(γ) is an arclength geodesic with
1026
+ ˜γ(0) = ρ(R)(γ(0)) = ρ(R)p1 = p2. Since ρ(R) is also an isometry of the ambient space SN, we have
1027
+
1028
+ ..γ(0)∥ = ∥
1029
+ ..
1030
+ ˜γ(0)∥. We just proved that given any two points in Σn,d, using the isometries ρ(R) for
1031
+ R ∈ O(n + 1) we can transport any arclength geodesic passing through the first point into another
1032
+ arclength geodesic passing through the second point, preserving the norm of second derivatives. It
1033
+ follows that the expression in (6) is independent of the specific point x ∈ Σn,d. Now observe that given
1034
+ any arclength geodesic γ with γ(0) = xd
1035
+ 0 and
1036
+ .γ(0) = v, we can change the direction of
1037
+ .γ(0) through
1038
+ ρ(R) for some R ∈ O(n + 1) with xd
1039
+ 0 a fixed point (it is sufficient to choose a rotation R such that
1040
+ (1, 0, . . . , 0) ∈ Sn is in the axis of rotation), obtaining any other possible direction in Txd
1041
+ 0Σn,d without
1042
+ changing ∥
1043
+ ··γ(0)∥, for the same reason as above. It follows that (19) does not depend on the specific
1044
+ direction of
1045
+ .γ(0). Since isometries preserve orthogonality and lengths, the second part of the lemma
1046
+ also follows in a similar way.
1047
+
1048
+ The choice of xd
1049
+ 0 in formulae (19) and (20) is motivated by convenience for computations only and we
1050
+ could have chosen any other point.
1051
+ The first step to compute (19) and (20) for Σn,d ֒→ SN is to understand tangent and normal spaces.
1052
+ Lemma 18. For p ∈ Σn,d with p = ld, where l is a norm-1 linear form, we have
1053
+ TpΣn,d =
1054
+
1055
+ {ld−1λ | λ is a linear form orthogonal to l}
1056
+
1057
+ .
1058
+ Proof. Write l(x) = a0x0 +· · ·+anxn and set a = (a0, . . . , an) ∈ Sn. Recalling that Σn,d = im(�νn,d), a
1059
+ curve on Σn,d can be expressed as the image of a curve on Sn through �νn,d. Consider b = (b0, . . . , bn) ∈
1060
+ Sn such that ⟨a, b⟩ = 0. Then γ(t) = (cos t(a0x0 + · · · + anxn) + sin t(b0x0 + · · · + bnxn))d is a curve in
1061
+ Σn,d with γ(0) = p. Remark that the orthogonality condition is needed to ensure we are taking d–th
1062
+ power of a norm–1 form. We have
1063
+ d
1064
+ dtγ(t)
1065
+ ��
1066
+ t=0 = d ld−1(b0x0 + · · · + bnxn),
1067
+ therefore
1068
+
1069
+ {ld−1λ | λ is a linear form orthogonal to l}
1070
+
1071
+ ⊂ TpΣn,d. By dimension count, equality follows.
1072
+
1073
+ Now we have the ingredients we need to perform the computation of ρ(Σn,d).
1074
+ Theorem 19. For the reach of Σn,d ֒→ SN we have
1075
+ ρ1(Σn,d) =
1076
+ 1
1077
+
1078
+ 3 +
1079
+ 1
1080
+ 3d
1081
+
1082
+ 3 + O
1083
+ � 1
1084
+ d2
1085
+
1086
+ and
1087
+ ρ2(Σn,d) = π
1088
+ 4 .
1089
+ Therefore, for d ≥ 2, the reach of Σn,d is given by
1090
+ ρ(Σn,d) = min{ρ1(Σn,d), ρ2(Σn,d)} =
1091
+ 1
1092
+
1093
+ 3 +
1094
+ 1
1095
+ 3d
1096
+
1097
+ 3 + O
1098
+ � 1
1099
+ d2
1100
+
1101
+ .
1102
+ (21)
1103
+
1104
+ 14
1105
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
1106
+ Proof. We begin with the computation of ρ1(Σn,d).
1107
+ By Proposition 14 geodesics in Σn,d can be
1108
+ realized as images through �νn,d of geodesics in Sn.
1109
+ Moreover, thanks to Lemma 17, it is enough
1110
+ to consider geodesics passing through xd
1111
+ 0 = (1, 0, . . . , 0) = �νn,d((1, 0, . . . , 0)) at time 0 and their
1112
+ direction plays no role, hence it is enough to consider the image of the geodesic in Sn given by
1113
+ α(t) = x0 cos(td− 1
1114
+ 2 ) + x1 sin(td− 1
1115
+ 2 ) with x0 being the point of coordinates (1, 0, . . . , 0) and x1 that
1116
+ of coordinates (0, 1, 0, . . ., 0). Explicitly we have α(t) = (cos(td− 1
1117
+ 2 ), sin(td− 1
1118
+ 2 ), 0, . . . , 0) and the corre-
1119
+ sponding geodesic in Σn,d is given by
1120
+ γ(t) := (�νn,d ◦ α)(t) =
1121
+
1122
+ cosd(td− 1
1123
+ 2 ),
1124
+
1125
+ d cosd−1(td− 1
1126
+ 2 ) sin(td− 1
1127
+ 2 ), . . . , sind(td− 1
1128
+ 2 )
1129
+
1130
+ ,
1131
+ with γ(0) = xd
1132
+ 0 = (1, 0, . . . , 0) and ∥ ˙γ(0)∥ = 1. Notice that the only components of γ(t) which are
1133
+ not constantly zero are those corresponding to multi–indices (β0, β1, 0, . . . , 0) with β0 + β1 = d. To
1134
+ compute ∥
1135
+ ..γ(0)∥, we need the second derivatives of the non–constantly zero components of γ(t). These
1136
+ have the following expression for k = 0, . . . , d:
1137
+ �d
1138
+ k
1139
+ � 1
1140
+ 2
1141
+ cosk(td− 1
1142
+ 2 ) sind−k(td− 1
1143
+ 2 ).
1144
+ Computing second derivatives and evaluating at t = 0 we find
1145
+ ..γ(0) = (−1, 0,
1146
+
1147
+ 2
1148
+
1149
+ d(d − 1)
1150
+ d
1151
+ , 0, . . . , 0).
1152
+ Using the Taylor-MacLaurin expansion for √1 + x we obtain
1153
+
1154
+ ..γ(0)∥ =
1155
+
1156
+ 1 + 2(d − 1)
1157
+ d
1158
+ =
1159
+
1160
+ 3
1161
+
1162
+ 1 − 2
1163
+ 3d =
1164
+
1165
+ 3 −
1166
+ 1
1167
+
1168
+ 3d + O
1169
+ � 1
1170
+ d2
1171
+
1172
+ .
1173
+ Applying again a Taylor-MacLaurin expansion for
1174
+ 1
1175
+ 1−x, we get the final expression for ρ1(Σn,d):
1176
+ ρ1(Σn,d) =
1177
+ 1
1178
+
1179
+ ..γ(0)∥ =
1180
+ 1
1181
+
1182
+ 3 +
1183
+ 1
1184
+ 3
1185
+
1186
+ 3d + O
1187
+ � 1
1188
+ d2
1189
+
1190
+ .
1191
+ Remark 20. Notice that, since ρ1(Σn,d) =
1192
+ �√
1193
+ 3
1194
+
1195
+ 1 − 2
1196
+ 3d
1197
+ �−1
1198
+ , then ρ1(Σn,d) >
1199
+ 1
1200
+
1201
+ 3 for all n, d.
1202
+ For ρ2(Σn,d), by Lemma 17 it is enough to consider geodesics γ(θ) in SN starting at xd
1203
+ 0 at time θ = 0.
1204
+ By Lemma 18 and recalling that the normal space at a point p ∈ Σn,d is the orthogonal complement of
1205
+ TpΣn,d inside TpSN, we have Nxd
1206
+ 0Σn,d =
1207
+ ���d
1208
+ α
1209
+ � 1
1210
+ 2 xα0
1211
+ 0 . . . xαn
1212
+ n
1213
+ | α0 < d − 1
1214
+ ��
1215
+ . Pick a vector w ∈ Nxd
1216
+ 0Σn,d
1217
+ and let γw(θ) be the geodesic in SN with γw(0) = xd
1218
+ 0 and ˙γw(0) = w, i.e.
1219
+ γw(θ) = xd
1220
+ 0 cos
1221
+
1222
+ θ∥w∥
1223
+
1224
+ +
1225
+ w
1226
+ ∥w∥ sin
1227
+
1228
+ θ∥w∥
1229
+
1230
+ .
1231
+ The goal now is to understand when γw meets again Σn,d orthogonally. The first step is to find for
1232
+ which b = (b0, . . . , bn) ∈ Sn and θ we at least have a solution to the equation
1233
+ (b0x0 + · · · + bnxn)d = xd
1234
+ 0 cos
1235
+
1236
+ θ∥w∥
1237
+
1238
+ +
1239
+ w
1240
+ ∥w∥ sin
1241
+
1242
+ θ∥w∥
1243
+
1244
+ .
1245
+ On the right hand side, we expand w as w = �
1246
+ α0<d−1 wα
1247
+ �d
1248
+ α
1249
+ � 1
1250
+ 2 xα, while we expand the left hand
1251
+ side as �
1252
+ α
1253
+ �d
1254
+ α
1255
+
1256
+ bαxα with multi–indices α = (α0, . . . , αn) ∈ Zn+1
1257
+ ≥0
1258
+ such that α0 + · · · + αn = d. Hence,
1259
+ expanding it further in the Bombieri–Weyl basis, we get the equation
1260
+ bd
1261
+ 0xd
1262
+ 0 +
1263
+
1264
+ d xd−1
1265
+ 0
1266
+ � n
1267
+
1268
+ i=1
1269
+
1270
+ d bd−1
1271
+ 0
1272
+ bixi
1273
+
1274
+ +
1275
+
1276
+ α0<d−1
1277
+ �d
1278
+ α
1279
+
1280
+ bαxα =
1281
+ (22)
1282
+ xd
1283
+ 0 cos
1284
+
1285
+ θ∥w∥
1286
+
1287
+ + sin
1288
+
1289
+ θ∥w∥
1290
+
1291
+
1292
+ α0<d−1
1293
+ �d
1294
+ α
1295
+ � 1
1296
+ 2 wα
1297
+ ∥w∥xα.
1298
+
1299
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
1300
+ 15
1301
+ Equating corresponding coefficients we get
1302
+
1303
+ bd
1304
+ 0 = cos
1305
+
1306
+ θ∥w∥
1307
+
1308
+ bd−1
1309
+ 0
1310
+ bi = 0
1311
+ ∀ i = 1, . . . , n .
1312
+ Now two cases can occur:
1313
+ • if b0 ̸= 0, the second equation above implies that bi = 0 for i = 1, . . . , n, hence b = (b0, 0, . . . , 0).
1314
+ Since b ∈ Sn it follows that b0 = ±1. If b0 = 1, then the meeting point is again xd
1315
+ 0 and γw
1316
+ comes back to it for θ =
1317
+
1318
+ ∥w∥, and the same happens if b0 = −1 and d is even. If b0 = −1 and
1319
+ d is odd, then the meeting point corresponds to −xd
1320
+ 0, and the meeting time is θ =
1321
+ π
1322
+ ∥w∥.
1323
+ • if b0 = 0 we get cos(θ∥w∥) = 0 and γw may meet Σn,d at (b0x0 + · · · + bnxn)d for θ =
1324
+ π
1325
+ 2∥w∥ or
1326
+ θ =
1327
+
1328
+ 2∥w∥.
1329
+ Now that we know when the curve intersects again Σn,d, we need to understand when it does that
1330
+ orthogonally. Notice that up to now we have used only some of the equations arising from (22): we
1331
+ now use the others to impose the orthogonality condition.
1332
+ We look at the case b0 = 0 and θ =
1333
+ π
1334
+ 2∥w∥.
1335
+ If we could find some b = (0, b1, . . . , bn) ∈ Sn and
1336
+ w ∈ Nxd
1337
+ 0Σn,d such that γw meets Σn,d orthogonally at (b0x0 + · · · + bnxn)d for θ =
1338
+ π
1339
+ 2∥w∥, then by the
1340
+ previous computation no other curve satisfying the conditions in (20) could have length less than this
1341
+ one. Fix the following notations ˜b := (b1, . . . , bn), ˜x := (x1, . . . , xn) and ˜α := (α1, . . . , αn). We have
1342
+ ∥˜b∥ = 1 and for θ =
1343
+ π
1344
+ 2∥w∥ equation (22) becomes
1345
+
1346
+ α1+···+αn=d
1347
+ �d
1348
+ ˜α
1349
+
1350
+ ˜b˜α˜x˜α =
1351
+
1352
+ α0<d−1
1353
+ �d
1354
+ α
1355
+ � 1
1356
+ 2 wα
1357
+ ∥w∥xα,
1358
+ (23)
1359
+ Equating corresponding coefficients, we get wα = 0 for each α = (α0, . . . , αn) such that α0 ̸= 0, while
1360
+ for the other multi–indices we get
1361
+ �d
1362
+ ˜α
1363
+ � 1
1364
+ 2˜b˜α =
1365
+
1366
+ α
1367
+ ∥w∥. These equations admit a solution and therefore a
1368
+ curve γw with the properties described above exists.
1369
+ Since we are assuming that γw
1370
+
1371
+ π
1372
+ 2∥w∥
1373
+
1374
+ = (b1x1 + · · · + bnxn)d, by Lemma 18 we have Tγw
1375
+
1376
+ π
1377
+ 2∥w∥
1378
+ �Σn,d =
1379
+ �˜bd−1λ | λ is a linear form orthogonal to ˜b
1380
+
1381
+ . The tangent vector to the curve γw at the meeting point
1382
+ is given by
1383
+ ˙γw
1384
+
1385
+ π
1386
+ 2∥w∥
1387
+
1388
+ = −xd
1389
+ 0∥w∥.
1390
+ Hence, since the monomials of the Bombieri–Weyl basis are mutually orthogonal and xd
1391
+ 0 is not among
1392
+ those spanning the tangent space at the meeting point, γw comes back to Σn,d orthogonally for any
1393
+ choice of w ∈ Nxd
1394
+ 0Σn,d and b ∈ Sn satisfying the conditions given by (23). Moreover, the length of
1395
+ such a curve is independent of w and always equal to π
1396
+ 2 . Hence we get that ρ2(Σn,d) = π
1397
+ 4 .
1398
+ Noticing that
1399
+ 1
1400
+
1401
+ 3 +
1402
+ 1
1403
+ 3d
1404
+
1405
+ 3 < π
1406
+ 4 as soon as d ≥ 2, we conclude that
1407
+ ρ(Σn,d) = ρ1(Σn,d) =
1408
+ 1
1409
+
1410
+ 3 +
1411
+ 1
1412
+ 3d
1413
+
1414
+ 3 + O
1415
+ � 1
1416
+ d2
1417
+
1418
+ .
1419
+
1420
+ Remark that the same results hold true for Vn,d ֒→ SN. Before moving on, let us comment on the
1421
+ meaning of the quantity ρ2(Vn,d) in our context. Recall once again our interpretation of Vn,d ֒→ SN
1422
+ as the set of symmetric rank–one tensors among norm–1 ones. Since Vn,d is compact and in particular
1423
+ closed, for every point in SN there will be a point in Vn,d minimizing the distance between the chosen
1424
+ point and Vn,d. The point realizing the minimum need not be unique and indeed in general it is not.
1425
+ From the tensor point of view, fixed p every distance minimizing point in Vn,d provides a best rank–
1426
+ one approximation of the tensor represented by p. Since SN is compact, it is geodesically complete,
1427
+ and therefore there exists distance minimizing geodesics joining p with each of the points minimizing
1428
+ the distance and each of the geodesics meet Vn,d orthogonally. From this observation we obtain that
1429
+
1430
+ 16
1431
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
1432
+ a symmetric norm–1 tensor admits more than one best rank–one approximation if and only if the
1433
+ corresponding point in SN admits more than one distance minimizing geodesic orthogonal to Vn,d.
1434
+ It follows that the injectivity of the normal exponential map on N εVn,d ensures that every tensor
1435
+ represented by a point in the image admits a unique best rank–one approximation, since it will be
1436
+ joined to Vn,d by a unique distance minimizing orthogonal geodesic. Given this, we can restate the
1437
+ result of Theorem 19 about ρ2(Vn,d) in the following way.
1438
+ Corollary 21. Every symmetric tensor p at distance less than
1439
+
1440
+ 2
1441
+ 2 ∥p∥BW from rank–one admits a
1442
+ unique best rank–one approximation.
1443
+ A consequence of this result is that the probability that a symmetric tensor admits a unique best
1444
+ rank–one approximation is bounded below by the normalized volume of the tubular neighbourhood of
1445
+ radius π
1446
+ 4 on the sphere, that is to say,
1447
+ P
1448
+
1449
+ symmetric norm–1 tensor s.t. ∃! best rank–one approximation
1450
+
1451
+ ≥ Vol
1452
+
1453
+ U(Vn,d, π
1454
+ 4 )
1455
+
1456
+ Vol(SN)
1457
+ .
1458
+ (24)
1459
+ However, Theorem 19 tells us that we cannot use Weyl’s tube formula to compute the volume of such
1460
+ a neighbourhood, since π
1461
+ 4 is greater than the reach ρ(Σn,d) = ρ(Vn,d). Nevertheless, for every n, d
1462
+ we can still use the exact formula we will prove in the next chapter with radius
1463
+ 1
1464
+
1465
+ 3 (see Remark 20),
1466
+ giving an explicit lower bound for the probability in (24), even if this will not be sharp.
1467
+ In Section 5.2 we will apply (11) to compute an exact formula for the volume of a tubular ε–
1468
+ neighbourhood Vol(U(Σn,d, ε)). We stress again that the reach computed in Theorem 19 gives a lower
1469
+ bound to the ε’s of validity of the formula we will find: we are guaranteed that it gives the correct
1470
+ result for any ε < ρ(Σn,d).
1471
+ 5. The volume of the tubular neighbourhood
1472
+ 5.1. The second fundamental form of the spherical Veronese surface. By Remark 16, since
1473
+ we have an isometric transitive action of O(n + 1) on Σn,d by restrictions of isometries of SN, the
1474
+ extrinsic geometry of Σn,d ֒→ SN is invariant under this action. Therefore, if we compute the second
1475
+ fundamental form at a specific point of Σn,d we automatically know it at every point. We will now
1476
+ carry out the computation using the point xd
1477
+ 0 ∈ Σn,d for simplicity.
1478
+ By Remark 3 to compute the second fundamental form of Σn,d at xd
1479
+ 0 along a normal direction η it
1480
+ is enough to choose a local parametrization around xd
1481
+ 0, compute its second derivatives and take their
1482
+ (Bombieri–Weyl) scalar product in RN+1 with η. This way we will obtain the matrix representing the
1483
+ Weingarten operator at xd
1484
+ 0 with respect to the basis of Txd
1485
+ 0Σn,d given by the derivatives of the chosen
1486
+ parametrization.
1487
+ Consider the projection on Sn from the tangent plane at (1, 0 . . . , 0), giving a parametrization of the
1488
+ upper hemisphere. Composing it with the Veronese map �νn,d we obtain a parametrization ϕn,d of the
1489
+ part of Σn,d contained in the upper hemisphere of SN, explicitly given by
1490
+ ϕn.d : Rn −→ U ⊂ Σn,d
1491
+ a = (a1, . . . , an) �−→
1492
+ �x0 + a1x1 + · · · + anxn
1493
+ (1 + ∥a∥2)
1494
+ 1
1495
+ 2
1496
+ �d
1497
+ .
1498
+ Since ϕ−1
1499
+ n,d(xd
1500
+ 0) = (0, . . . , 0), we have to compute the first and second derivatives of ϕn,d at the origin.
1501
+ We obtain the following expressions
1502
+ ∂ϕn,d
1503
+ ∂ai
1504
+ (a)
1505
+ ����
1506
+ a=0
1507
+ = dxd−1
1508
+ 0
1509
+ xi,
1510
+ (25)
1511
+ ∂2ϕn,d
1512
+ ∂ai∂aj
1513
+ (a)
1514
+ ����
1515
+ a=0
1516
+ = −δij(dxd
1517
+ 0) + d(d − 1)xd−2
1518
+ 0
1519
+ xixj.
1520
+ (26)
1521
+
1522
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
1523
+ 17
1524
+ For i = 1, . . . , n denote by ei =
1525
+
1526
+ dxd−1
1527
+ 0
1528
+ xi the orthonormal vectors in the Bombieri–Weyl basis with
1529
+ power d − 1 on x0. By (25) the basis of Txd
1530
+ 0Σn,d given by the first derivatives of the parametrization is
1531
+ {
1532
+
1533
+ dei | i = 1, . . . , n}. Instead of using this basis, we compute the matrix representing the Weingarten
1534
+ operator with respect to the orthonormal basis {ei}i=1,...,n along a normal direction η ∈ Nxd
1535
+ 0Σn,d.
1536
+ Denoting by Lη = (Lη,ij)i,j=1,...,n this matrix, by Remark 2 we have
1537
+ Lη,ij = Hη(ei, ej) = 1
1538
+ d Hη
1539
+ �√
1540
+ dei,
1541
+
1542
+ dej
1543
+
1544
+ = 1
1545
+ d Hη
1546
+ �∂ϕn,d
1547
+ ∂ai
1548
+ (a)
1549
+ ����
1550
+ a=0
1551
+ , ∂ϕn,d
1552
+ ∂aj
1553
+ (a)
1554
+ ����
1555
+ a=0
1556
+
1557
+ =
1558
+ (27)
1559
+ = 1
1560
+ d
1561
+ � ∂2ϕn,d
1562
+ ∂ai∂aj
1563
+ (a)
1564
+ ����
1565
+ a=0
1566
+ , η
1567
+
1568
+ RN+1 = 1
1569
+ d
1570
+
1571
+ − δij(dxd
1572
+ 0) + d(d − 1)xd−2
1573
+ 0
1574
+ xixj, η
1575
+
1576
+ RN+1.
1577
+ By Lemma 18 we have Nxd
1578
+ 0Σn,d =
1579
+ ���d
1580
+ α
1581
+ � 1
1582
+ 2 xα0
1583
+ 0 . . . xαn
1584
+ n
1585
+ | α0 < d − 1
1586
+ ��
1587
+ and we can expand η =
1588
+
1589
+ α0≤d−2 ηα
1590
+ �d
1591
+ α
1592
+ � 1
1593
+ 2 xα. Then from (27), recalling that everything is expressed in terms of an orthonormal
1594
+ basis, we obtain
1595
+ Lη,ii =
1596
+
1597
+ 2
1598
+ �d − 1
1599
+ d
1600
+
1601
+ ηd−2,0,,...,2,...,0,
1602
+ (28)
1603
+ Lη,ij =
1604
+
1605
+ d − 1
1606
+ d
1607
+ ηd−2,...,1,...,1,...,0 for i ̸= j.
1608
+ (29)
1609
+ Consider the following orthogonal direct sum decomposition of Nxd
1610
+ 0Σn,d
1611
+ Nxd
1612
+ 0Σn,d =
1613
+ ���d
1614
+ α
1615
+ � 1
1616
+ 2
1617
+ xd−2
1618
+ 0
1619
+ xixj | i, j = 1, . . . , n
1620
+ ��
1621
+
1622
+ ���d
1623
+ α
1624
+ � 1
1625
+ 2
1626
+ xα | α0 < d − 2
1627
+ ��
1628
+ =: W ⊕ P.
1629
+ (30)
1630
+ We define a map from W to R[x1, . . . , xn](2) by setting
1631
+ �d
1632
+ α
1633
+ � 1
1634
+ 2
1635
+ xd−2
1636
+ 0
1637
+ xixj �−→
1638
+
1639
+ 2
1640
+ (αi, αj)
1641
+ � 1
1642
+ 2
1643
+ xixj
1644
+ and extending by linearity.
1645
+ Since we are mapping an orthonormal basis for W with the induced
1646
+ Bombieri–Weyl product to an orthonormal basis of R[x1, . . . , xn](2) with its own Bombieri–Weyl prod-
1647
+ uct, this defines a linear isometry. Composing it with the inverse of the isomorphism we described in (4)
1648
+ we get a linear isometry of W with Sym(n, R) and therefore a correspondence between the associated
1649
+ Gaussian probability distributions. A direct consequence of this linear isometry, of the discussion in
1650
+ section 2.1 about GOE(n) matrices and formulae (28) and (29), is the following theorem.
1651
+ Theorem 22. Consider the decomposition Nxd
1652
+ 0Σn,d = W ⊕ P given in (30).
1653
+ Then the following
1654
+ statements hold:
1655
+ (1) Lη = 0 for every η ∈ P;
1656
+ (2) if we pick η ∈ W Gaussian w.r.t the Bombieri–Weyl metric, then the distribution of the
1657
+ Weingarten operator at xd
1658
+ 0 along η is Lη ∼
1659
+
1660
+ 2
1661
+
1662
+ d−1
1663
+ d
1664
+ � 1
1665
+ 2
1666
+ GOE(n).
1667
+ Remark 23. Notice that Theorem C from the Introduction follows immediately from Theorem 22
1668
+ using the fact that for every p ∈ Vn,d there is a linear isometry τ : SN → SN such that τ(Vn,d) = Vn,d
1669
+ and τ(p) = xd
1670
+ 0.
1671
+ Theorem 22 gives a full description of the extrinsic geometry of Σn,d ֒→ SN in terms of random ma-
1672
+ trices. From the computational point of view, it allows reducing integrals on the normal bundle of Σn,d
1673
+ of quantities related to the second fundamental form to expected values of quantities related to GOE(n)
1674
+ matrices. In the next section, we will use this description to explicitly compute the integrals appear-
1675
+ ing in Weyl’s tube formula (11), thus obtaining the curvature coefficients of the embedding Vn,d ֒→ SN.
1676
+
1677
+ 18
1678
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
1679
+ 5.2. The curvature coefficients. All this section will be dedicated to proving the following.
1680
+ Theorem 24. Let Vn,d ֒→ SN be the spherical Veronese variety and
1681
+ U(Vn,d, ε) be defined as in (5).
1682
+ If ε < ρ(Vn,d), the following formula holds:
1683
+ Vol(U(Vn,d, ε)) =
1684
+
1685
+ 0≤j≤n, j even
1686
+ (−1)
1687
+ j
1688
+ 2 d
1689
+ n
1690
+ 2
1691
+ �d − 1
1692
+ d
1693
+ � j
1694
+ 2
1695
+ 2n+2−jπ
1696
+ N
1697
+ 2 Γ
1698
+ � n
1699
+ 2 + 1
1700
+
1701
+ Γ
1702
+ � j
1703
+ 2 + 1
1704
+
1705
+ Γ(n + 1 − j)Γ
1706
+
1707
+ N+j−n
1708
+ 2
1709
+ �,
1710
+ (31)
1711
+ where for 0 ≤ j ≤ n, j even, the functions JN,N−n+j are given by (10).
1712
+ Comparing (31) to Weyl’s tube formula (8), we obtain the following corollary.
1713
+ Corollary 25. The curvature coefficients of the spherical Veronese variety Vn,d ֒→ SN are as follows:
1714
+ KN−n+j(Vn,d) = (−1)
1715
+ j
1716
+ 2 d
1717
+ n
1718
+ 2
1719
+ �d − 1
1720
+ d
1721
+ � j
1722
+ 2
1723
+ 2n+2−jπ
1724
+ N
1725
+ 2 Γ
1726
+ � n
1727
+ 2 + 1
1728
+
1729
+ Γ
1730
+ � j
1731
+ 2 + 1
1732
+
1733
+ Γ(n + 1 − j)Γ
1734
+
1735
+ N+j−n
1736
+ 2
1737
+ �,
1738
+ for 0 ≤ j ≤ n, j even, and KN−n+j(Vn,d) = 0 otherwise.
1739
+ In order to prove 24 we start from Weyl’s tube formula (11) applied to Σn,d ֒→ SN. As we already
1740
+ noticed, Remark 16 implies that the Weingarten operator looks the same at every point. It follows
1741
+ that in this case the integrand in (11) does not depend on p ∈ Σn,d and we obtain
1742
+ Vol
1743
+
1744
+ U(Σn,d, ε)
1745
+
1746
+ = Vol(Σn,d)
1747
+ � tan ε
1748
+ t=0
1749
+
1750
+ η∈S(Nxd
1751
+ 0 Σn,d)
1752
+ tN−n−1 det(In − tLη)
1753
+ (1 + t2)
1754
+ N+1
1755
+ 2
1756
+ dη dt,
1757
+ (32)
1758
+ where we remark that N − n is the codimension of Σn,d ֒→ SN and Vol(Σn,d) is given by (16).
1759
+ Given the decomposition in (30), we have S(Nxd
1760
+ 0Σn,d) = S(W ⊕ P), where dim(S(Nxd
1761
+ 0Σn,d)) =
1762
+ N − n − 1 and dim(W) = dim(Sym(n, R)) = n(n+1)
1763
+ 2
1764
+ . Notice that if d = 2 we have Nxd
1765
+ 0Σn,d = W. If
1766
+ d > 2 we parametrize S(W ⊕P) as in (12), where here we use m = N −n−1 and k = n(n+1)
1767
+ 2
1768
+ −1. With
1769
+ the same notation of section 2.3, for σ ∈ S(W) and z ∈
1770
+
1771
+ D(P), if ϕ(σ, z) = η ∈ S(W ⊕ P), we have
1772
+ that
1773
+
1774
+ 1 − |z|2ι(σ) will be the component of η along W, while z itself will be the component along P.
1775
+ We also apply the linear isometry discussed in the previous section to change variable from σ ∈ S(W)
1776
+ to Q ∈ S(Sym(n, R)) = S
1777
+ n(n+1)
1778
+ 2
1779
+ −1.
1780
+ It is clear by its definition that the Weingarten operator is linear in the normal vector argument:
1781
+ given an isometric embedding M ֒→ M, for every p ∈ M, η, ξ ∈ NpM and a, b ∈ R, we have
1782
+ Laη+bξ = aLη + bLξ. Therefore for η = ϕ(Q, z) ∈ S(W ⊕ P) we have
1783
+ Lη = L√
1784
+ 1−|z|2Q+z =
1785
+
1786
+ 1 − |z|2LQ + Lz =
1787
+
1788
+ 1 − |z|2LQ.
1789
+ (33)
1790
+ Applying Lemma 9 to (32) and using (33) the integral becomes
1791
+ Vol
1792
+
1793
+ U(Σn,d, ε)
1794
+
1795
+ =Vol(Σn,d)
1796
+ � tan ε
1797
+ t=0
1798
+
1799
+ S
1800
+ n(n+1)
1801
+ 2
1802
+ −1
1803
+
1804
+ DN−n− n(n+1)
1805
+ 2
1806
+
1807
+ tN−n−1
1808
+ (1 + t2)
1809
+ N+1
1810
+ 2
1811
+ ×
1812
+ (34)
1813
+ × det(In − t
1814
+
1815
+ 1 − |z|2LQ)(1 − |z|2)
1816
+ n(n+1)
1817
+ 4
1818
+ −1
1819
+
1820
+ dz dS(Q) dt,
1821
+ where dz is a short notation for vol
1822
+ DN−n− n(n+1)
1823
+ 2
1824
+ and dS(Q) is a short notation for vol
1825
+ S
1826
+ n(n+1)
1827
+ 2
1828
+ −1, with
1829
+ the convention that for d = 2 the integral over D0 is set to 1. The only non-explicit term in (34) is
1830
+ the one involving the determinant. Recall that by Theorem 22, if Q ∈ Sym(n, R) is a random GOE(n)
1831
+ matrix, then LQ is a random matrix distributed as
1832
+
1833
+ 2
1834
+ � d−1
1835
+ d
1836
+ � 1
1837
+ 2 GOE(n). Set τ := t
1838
+
1839
+ 2
1840
+ � d−1
1841
+ d
1842
+ � 1
1843
+ 2 . We have
1844
+ the expansion
1845
+ det
1846
+
1847
+ In − τ
1848
+
1849
+ 1 − |z|2Q
1850
+
1851
+ =
1852
+ n
1853
+
1854
+ j=0
1855
+ (−1)jτ j(1 − |z|2)
1856
+ j
1857
+ 2 gj(Q),
1858
+ (35)
1859
+
1860
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
1861
+ 19
1862
+ where gj(Q) are homogeneous polynomials of degree j in the coefficients of Q for j = 1, . . . , n and
1863
+ g0(Q) = 1. Substituting (35) into (34) in the integral splits as
1864
+ Vol(U(Σn,d, ε)) = Vol(Σn,d)
1865
+ n
1866
+
1867
+ j=0
1868
+ (−1)j2
1869
+ j
1870
+ 2
1871
+ �d − 1
1872
+ d
1873
+ � j
1874
+ 2 �� tan ε
1875
+ 0
1876
+ tN−n−1+j
1877
+ (1 + t2)
1878
+ N+1
1879
+ 2
1880
+ dt
1881
+
1882
+ ×
1883
+ (36)
1884
+ ×
1885
+ ��
1886
+ DN−n− n(n+1)
1887
+ 2
1888
+ (1 − |z|2)
1889
+ n(n+1)
1890
+ 4
1891
+ −1+ j
1892
+ 2 dz
1893
+
1894
+ ×
1895
+ ×
1896
+ ��
1897
+ S
1898
+ n(n+1)
1899
+ 2
1900
+ −1 gj(Q) dS(Q)
1901
+
1902
+ ,
1903
+ where the first term is the integral of a rational function in t, while the second one is a “polynomial”
1904
+ in |z|.
1905
+ Remark that since gj are homogeneous polynomials, we have gj(Q) = ∥Q∥jgj( Q
1906
+ ∥Q∥). Recalling expres-
1907
+ sion (2) we have
1908
+ E
1909
+ Q∈GOE(n)gj(Q) =
1910
+ 1
1911
+ (2π)
1912
+ n(n+1)
1913
+ 4
1914
+
1915
+ Sym(n,R)
1916
+ ∥Q∥jgj
1917
+ � Q
1918
+ ∥Q∥
1919
+
1920
+ e− ∥Q∥2
1921
+ 2
1922
+ dQ =
1923
+ (37)
1924
+ =
1925
+ 1
1926
+ (2π)
1927
+ n(n+1)
1928
+ 4
1929
+ �� +∞
1930
+ 0
1931
+ ρ
1932
+ n(n+1)
1933
+ 2
1934
+ −1+je− ρ2
1935
+ 2 dρ
1936
+ ���
1937
+ S
1938
+ n(n+1)
1939
+ 2
1940
+ −1 gj( ˜Q) dS
1941
+ � ˜Q
1942
+ ��
1943
+ .
1944
+ From (37) we obtain
1945
+
1946
+ S
1947
+ n(n+1)
1948
+ 2
1949
+ −1 gj(Q) dS(Q) =
1950
+ E
1951
+ Q∈GOE(n)[gj(Q)] (2π)
1952
+ n(n+1)
1953
+ 4
1954
+ � +∞
1955
+ 0
1956
+ ρ
1957
+ n(n+1)
1958
+ 2
1959
+ −1+je− ρ2
1960
+ 2 dρ
1961
+ .
1962
+ (38)
1963
+ By linearity of expectation and the expansion det(In − λQ) = �n
1964
+ j=0(−1)jλjgj(Q), to compute the
1965
+ expectation of gj(Q) it is enough to compute that of det(In − λQ) for Q ∈ GOE(n) and look at the
1966
+ homogeneous part of degree j in λ. This procedure gives us the explicit expression for (38)
1967
+
1968
+ S
1969
+ n(n+1)
1970
+ 2
1971
+ −1 gj(Q) dS(Q) =
1972
+ (−1)
1973
+ j
1974
+ 2 (2π)
1975
+ n(n+1)
1976
+ 4
1977
+ j!
1978
+ ( j
1979
+ 2 )!
1980
+ �n
1981
+ j
1982
+
1983
+ 2j � +∞
1984
+ 0
1985
+ ρ
1986
+ n(n+1)
1987
+ 2
1988
+ −1+je− ρ2
1989
+ 2 dρ
1990
+ if 0 ≤ j ≤ n, j even
1991
+ (39)
1992
+ and 0 otherwise, see Appendix C for a proof of this result. By standard computations involving Gamma
1993
+ and Beta functions, one can show that the following identities hold
1994
+ � +∞
1995
+ 0
1996
+ ρ
1997
+ n(n+1)
1998
+ 2
1999
+ +j−1e− ρ2
2000
+ 2 dρ = 2
2001
+ n(n+1)
2002
+ 4
2003
+ + j
2004
+ 2 −1 Γ
2005
+ �1
2006
+ 4(n2 + n + 2j)
2007
+
2008
+ ,
2009
+ (40)
2010
+
2011
+ DN−n− n(n+1)
2012
+ 2
2013
+
2014
+ 1 − |z|2� n(n+1)
2015
+ 4
2016
+ −1+ j
2017
+ 2 dz = π
2018
+ 2N−n2−3n
2019
+ 4
2020
+ Γ
2021
+ � 1
2022
+ 4(n2 + n + 2j)
2023
+
2024
+ Γ
2025
+ � 1
2026
+ 2(N − n + j)
2027
+ � ,
2028
+ (41)
2029
+ where we notice that for d = 2 (41) gives 1, agreeing with our convention. Substituting (39), (40)
2030
+ and (41) into (36) and using the duplication formula for the gamma function, we obtain the explicit
2031
+ expression of Vol
2032
+
2033
+ U(Σn,d, ε)
2034
+
2035
+ . Finally, recalling that Vn,d = Σn,d ∪ −Σn,d and using formula (16) to
2036
+ express Vol(Σn,d), the proof of Theorem 24 is complete.
2037
+ 5.3. Asymptotics for rational normal curves. Recall the interpretation of the Veronese variety
2038
+ Vn,d as the set of rank–1, norm–1 symmetric tensors of order d on Rn+1, while the sphere SN can be
2039
+ thought of as the space of all norm–1 such tensors. Then the quantity
2040
+ Vol
2041
+
2042
+ U(Vn,d, arcsinδ)
2043
+
2044
+ Vol(SN)
2045
+ (42)
2046
+ expresses the probability for a symmetric tensor p to be (δ∥p∥BW)–close to rank–1 one with respect
2047
+ to the Bombieri–Weyl distribution. We will focus on the case n = 1, d −→ +∞, which corresponds to
2048
+ the so called “spherical” rational normal curves V1,d. Notice that in this case N = d. Our asymptotic
2049
+ analysis will be based on Laplace’s method, as described in Theorem 10.
2050
+
2051
+ 20
2052
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
2053
+ Theorem 26. For spherical rational normal curves V1,d, the following asymptotic expansion of (42)
2054
+ holds:
2055
+ Vol
2056
+
2057
+ U(V1,d, arcsinδ)
2058
+
2059
+ Vol(Sd)
2060
+ =
2061
+
2062
+ d δd−1�
2063
+ 1 + O
2064
+
2065
+ d−1��
2066
+ (43)
2067
+ as d −→ +∞, for arcsinδ ≤
2068
+ 1
2069
+
2070
+ 3.
2071
+ From this theorem and the bound (24), we immediately obtain the following.
2072
+ Corollary 27. Denote by Ad the set of symmetric tensors of order d on R2 that admit a unique best
2073
+ rank–one approximation. Then, as d −→ +∞, we have
2074
+ P
2075
+
2076
+ Ad
2077
+
2078
+ >
2079
+
2080
+ d
2081
+
2082
+ sin 1
2083
+
2084
+ 3
2085
+ �d−1�
2086
+ 1 + O
2087
+
2088
+ d−1��
2089
+
2090
+
2091
+ d (0.546)d−1�
2092
+ 1 + O
2093
+
2094
+ d−1��
2095
+ .
2096
+ Proof of Theorem 26. Set ε := arcsinδ. We start by noticing that, since we are looking at d −→ +∞,
2097
+ by Theorem 19 the asymptotic analysis makes sense only for ε ≤
2098
+ 1
2099
+
2100
+ 3. Instead of using the implicit
2101
+ form of Theorem 24, to express Vol(U
2102
+
2103
+ Σn,d, ε)
2104
+
2105
+ we will use (36), substituting (39) in it. This gives the
2106
+ following expression
2107
+ Vol
2108
+
2109
+ U(Σ1,d, ε)
2110
+
2111
+ Vol(Sd)
2112
+ = Vol(Σ1,d)
2113
+ V ol(Sd) ·
2114
+ (2π)
2115
+ 1
2116
+ 2
2117
+ � +∞
2118
+ 0
2119
+ e− ρ2
2120
+ 2 dρ
2121
+ ·
2122
+ �� tan ε
2123
+ 0
2124
+ td−2
2125
+ (1 + t2)
2126
+ d+1
2127
+ 2
2128
+ dt
2129
+
2130
+ ·
2131
+ ��
2132
+ Dd−2
2133
+
2134
+ 1 − |z|2�− 1
2135
+ 2 dz
2136
+
2137
+ .
2138
+ (44)
2139
+ For n = 1 (16) reads as
2140
+ Vol
2141
+
2142
+ Σ1,d
2143
+
2144
+ =
2145
+
2146
+ 2
2147
+
2148
+ d π
2149
+ for d odd
2150
+
2151
+ d π
2152
+ for d even ,
2153
+ while it is known that Vol(Sd) = 2π
2154
+ d+1
2155
+ 2
2156
+ Γ( d+1
2157
+ 2
2158
+ ) and
2159
+ � +∞
2160
+ 0
2161
+ e− ρ2
2162
+ 2 dρ = � π
2163
+ 2 . With easy algebraic manipulations,
2164
+ we can rewrite the integral in t as
2165
+ � tan ε
2166
+ 0
2167
+ td−2
2168
+ (1 + t2)
2169
+ d+1
2170
+ 2
2171
+ dt =
2172
+ � tan ε
2173
+ 0
2174
+ 1
2175
+ t2(1 + t2)
2176
+ 1
2177
+ 2 exp
2178
+
2179
+ − d
2180
+
2181
+ − log
2182
+
2183
+ t
2184
+ (1 + t2)
2185
+ 1
2186
+ 2
2187
+ ���
2188
+ dt =
2189
+ =
2190
+ � tan ε
2191
+ 0
2192
+ e−d a(t)b(t) dt,
2193
+ where we have set
2194
+ a(t) = − log
2195
+
2196
+ t
2197
+ (1 + t2)
2198
+ 1
2199
+ 2
2200
+
2201
+ ,
2202
+ b(t) =
2203
+ 1
2204
+ t2(1 + t2)
2205
+ 1
2206
+ 2 .
2207
+ One can show that the hypotheses of Laplace’s theorem are satisfied and that the minimum of a(t) in
2208
+ (0, tan ε] is attained at tan(ε). Taking Taylor expansions of a(t) and b(t) around tan(ε) and applying
2209
+ Theorem 10 we obtain
2210
+ � tan ε
2211
+ 0
2212
+ td−2
2213
+ (1 + t2)
2214
+ d+1
2215
+ 2
2216
+ dt = 1
2217
+ d
2218
+
2219
+ sin ε)d−1
2220
+
2221
+ 1 + O
2222
+
2223
+ d−2��
2224
+ .
2225
+ For the last integral in (44), we pass to spherical coordinates and reduce it to a Beta function (and
2226
+ therefore to Gamma functions), obtaining
2227
+
2228
+ Dd−2
2229
+
2230
+ 1 − |z|2�− 1
2231
+ 2 dz =
2232
+ π
2233
+ d−1
2234
+ 2
2235
+ Γ
2236
+ � d−1
2237
+ 2
2238
+ �.
2239
+ Plugging all the expressions we found in (44), and recalling that Vn,d = Σn,d ∪ −Σn,d, we obtain the
2240
+ desired asymptotic.
2241
+
2242
+
2243
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
2244
+ 21
2245
+ Appendix A.
2246
+ Proof of the Tubular Neighbourhood Theorem. We will use the same notation of Section 2.2.
2247
+ Throughout the proof, we will identify M with the zero section in NM. We start by computing the
2248
+ differential d(x,0)(exp|NM) : T(x,0)(NM) −→ TxM of exp|NM at (x, 0) ∈ NM for any x ∈ M. Notice
2249
+ that dim(T(x,0)(NM)) = dim(TxM), hence surjectivity is enough to have a linear isomorphism. Denote
2250
+ by γ(p,v) the unique geodesic on M such that γ(p,v)(0) = p and ˙γ(p,v)(0) = v. Let y ∈ TxM. Since
2251
+ TxM = TxM ⊕ NxM, we can decompose y as y = y1 + y2 with y1 ∈ TxM and y2 ∈ NxM. Then there
2252
+ exists σ1 : (−δ, δ) −→ M such that σ1(0) = x and ˙σ1(0) = y1. Define a curve σ : (−δ, δ) −→ NM by
2253
+ σ(t) = (σ1(t), 0) ∈ NM. We have σ(0) = (x, 0) and ˙σ(0) = (y1, 0) ∈ T(x,0)(NM) and it follows that
2254
+ d(x,0)(exp|NM)(y1, 0) = d
2255
+ dtexp
2256
+
2257
+ σ(t)
2258
+ �����
2259
+ t=0
2260
+ = y1,
2261
+ proving that TxM is contained in the image of d(x,0)(exp|NM). Now take y2 ∈ NxM and define a curve
2262
+ α : (−δ, δ) −→ NM by α(t) = (x, ty2). Then α(0) = (x, 0) and ˙α(0) = (0, y2) and it follows that
2263
+ d(x,0)(exp|NM)(0, y2)) = d
2264
+ dtexp
2265
+
2266
+ α(t)
2267
+ �����
2268
+ t=0
2269
+ = y2,
2270
+ proving that also NxM is contained in the image of d(x,0)(exp|NM). By linearity of the differential, we
2271
+ obtain surjectivity and therefore d(x,0)(exp|NM) is an isomorphism.
2272
+ As a consequence for every x ∈ M there exists an open neighbourhood Wx of (x, 0) in NM such
2273
+ that the rank of the differential d(q,v)(exp|NM) is maximal for every (q, v) ∈ Wx. Up to shrinking the
2274
+ neighbourhood, we can assume that Wx =
2275
+
2276
+ Ux × B(0, εx)
2277
+
2278
+ ∩ NM where Ux is an open neighbourhood
2279
+ of x ∈ M, B(0, εx) denotes the ball of radius εx centered at the origin in TxM and exp|Wx is an
2280
+ embedding. By compactness we have a finite covering of M {Ux1, . . . , Uxr} for some x1, . . . , xr ∈ M.
2281
+ Choosing ε := min{εx1, . . . , εxr} we get that
2282
+ exp|N εM : N εM −→ M
2283
+ is an immersion and a local embedding. Notice that for every ˜ε ≤ ε also exp|N ˜
2284
+ εM is an immersion and a
2285
+ local embedding. We claim that there exists an ˜ε < ε such that this restriction is also globally injective.
2286
+ If this is the case, then the restriction to the closure of the
2287
+ ˜ε
2288
+ 2–small normal bundle is an embedding,
2289
+ since injective immersions with compact domain are embeddings. It follows that any number less than
2290
+ ˜ε
2291
+ 2 satisfies the statement of the theorem.
2292
+ To prove the claim we argue by contradiction: suppose that for every n ∈ N there exist (xn, vn),
2293
+ (yn, wn) ∈ N
2294
+ 1
2295
+ n M such that exp(xn, vn) = exp(yn, wn).
2296
+ Since M is compact, up to restricting to
2297
+ subsequences we can assume that xn converges to x ∈ M and yn converges to y ∈ M, while vn and
2298
+ wn both converge to 0 since vn, wn ∈ B(0, 1
2299
+ n) for every n ∈ N. By compactness of M there exists
2300
+ δ > 0 such that for every p ∈ M the map expp : B(0, δ) ⊂ TpM −→ M is a diffeomorphism on its
2301
+ image, where expp(z) = exp(p, z). It follows that since vn −→ 0, for n large enough γ(xn,vn) will be the
2302
+ unique geodesic joining xn with expxn(vn) = exp(xn, vn) = γ(xn,vn)(1) and dg(xn, exp(xn, vn)) = ∥vn∥.
2303
+ Analogously, for n large enough we will also have dg(yn, exp(yn, wn)) = ∥wn∥, where we stress that
2304
+ the uniformity of δ is crucial. Since by hypothesis exp(xn, vn) = exp(yn, wn), we have that
2305
+ dg(xn, yn) ≤ dg(xn, exp(xn, vn)) + dg(yn, exp(yn, wn)) = ∥vn∥ + ∥wn∥ −→ 0,
2306
+ and this forces x = y. Then for n sufficiently large, we have that (xn, vn), (yn, wn) ∈ Wp for some
2307
+ p ∈ M, but on every Wp we have a local embedding, leading to a contradiction. The proof is concluded.
2308
+ Appendix B.
2309
+ Proof of lemma (9). We will use the same notations as in section 2.3. We want to prove that
2310
+ ϕ∗(volSm) =
2311
+
2312
+ 1 − |z|2� k−1
2313
+ 2
2314
+ volSk ∧ vol ◦
2315
+ Dm−k,
2316
+
2317
+ 22
2318
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
2319
+ where ϕ is given by (12).
2320
+ By the usual formula for the pullback of a differential form through a
2321
+ diffeomorphism, we have
2322
+ ϕ∗(volSm) = |det(JϕT · Jϕ))|
2323
+ 1
2324
+ 2 vol ◦
2325
+ Dk ∧ vol ◦
2326
+ Dm−k,
2327
+ where Jϕ denotes the (m + 1) × m Jacobian matrix of ϕ and JϕT is its transpose. Denote by Jι the
2328
+ Jacobian matrix of the inclusion ι : Sk ֒→ Rk+1. Then Jϕ is the following block matrix
2329
+ Jϕ(σ, z) =
2330
+
2331
+
2332
+
2333
+ 1 − |z|2Jι(σ)
2334
+
2335
+ −zj
2336
+
2337
+ 1−|z|2 ι(σ)
2338
+
2339
+ 0
2340
+ Im−k
2341
+
2342
+  ,
2343
+ where Im−k denotes the (m − k) × (m − k) identity matrix. Since JιT (σ) · ι(σ) = ι(σ) · Jι(σ) = 0 and
2344
+ ι(σ)T · ι(σ) = 1, we obtain
2345
+ (JϕT · Jϕ)(σ, z) =
2346
+
2347
+ (1 − |z|2)(JιT · Jι)(σ)
2348
+ 0
2349
+ 0
2350
+
2351
+ Im−k +
2352
+ z·zT
2353
+ 1−|z|2
2354
+
2355
+
2356
+ .
2357
+ For every z ∈ Rm−k consider R ∈ O(m − k) such that z = Re1|z|, where e1 = (1, 0, . . . , 0). Then we
2358
+ can compute the determinant of the lower right block as
2359
+ det
2360
+
2361
+ Im−k + z · zT
2362
+ 1 − |z|2
2363
+
2364
+ = det R
2365
+
2366
+ Im−k +
2367
+ |z|2
2368
+ 1 − |z|2 E11
2369
+
2370
+ RT =
2371
+ 1
2372
+ 1 − |z|2 ,
2373
+ where E11 = e1eT
2374
+ 1 has all zero entries except for the (1, 1)–th one which is 1.
2375
+ Recalling that the
2376
+ determinant of a diagonal block matrix is given by the product of the determinants of its blocks, we
2377
+ find the following expression
2378
+ |det(JϕT · Jϕ)| =
2379
+
2380
+ 1 − |z|2�k |det(JιT · Jι)|
2381
+ 1
2382
+ 1 − |z|2 =
2383
+
2384
+ 1 − |z|2�k−1 |det(JιT · Jι)|.
2385
+ Finally, applying again the formula for the pullback of a differential form, we can conclude that
2386
+ ϕ∗(volSm) =
2387
+
2388
+ 1 − |z|2� k−1
2389
+ 2
2390
+ |det(JιT · Jι)|
2391
+ 1
2392
+ 2 vol ◦
2393
+ Dk ∧ vol ◦
2394
+ Dm−k =
2395
+
2396
+ 1 − |z|2� k−1
2397
+ 2
2398
+ volSk ∧ vol ◦
2399
+ Dm−k.
2400
+ Appendix C.
2401
+ Proof of formula (39). We will use the same notations as Section 5.2. By linearity of the expectation,
2402
+ in order to prove formula (39) all we have to do is computing
2403
+ E
2404
+ Q∈GOE(n)[det(In − λQ)] =
2405
+ n
2406
+
2407
+ j=0
2408
+ (−1)jλj
2409
+ E
2410
+ Q∈GOE(n)[gj(Q)],
2411
+ since the expectation of gj(Q) can then be deduced by looking at the degree j coefficient in above
2412
+ polynomial expression in λ. First, we write the determinant according to its very definition
2413
+ det(In − λQ) =
2414
+
2415
+ σ∈Sn
2416
+ sgn(σ)
2417
+ n
2418
+
2419
+ i=1
2420
+
2421
+ δiσ(i) − λQiσ(i)
2422
+
2423
+ ,
2424
+ where Sn is the group of permutations on {1, . . ., n} and sgn(σ) is the signature of the permutation
2425
+ σ ∈ Sn. Recall that for Q ∈ GOE(n) we have Qii ∼ N(0, 1) and Qij ∼ N(0, 1
2426
+ 2) for i ̸= j and, apart
2427
+ from the obvious symmetry conditions, the entries are independent. By linearity
2428
+ E
2429
+ Q∈GOE(n)[det(In − λQ)] =
2430
+
2431
+ σ∈Sn
2432
+ sgn(σ)
2433
+ E
2434
+ Q∈GOE(n)
2435
+
2436
+ n
2437
+
2438
+ i=1
2439
+
2440
+ δiσ(i) − λQiσ(i)
2441
+ ��
2442
+ .
2443
+ (45)
2444
+ Given σ ∈ Sn, suppose that it contains a cycle of length at least 3, i.e. there exists i ∈ {1, . . . , n} such
2445
+ that σ(i) ̸= i and σ2(i) ̸= i. Then, by independence of the entries, in the term of (45) corresponding
2446
+ to σ, we can split the expectation into a product of expectations, separating the term corresponding
2447
+ to such i. Since δiσ(i) = 0 and Qiσ(i) is centered, this expectation is 0 and σ gives no contribution
2448
+ to (45). It follows that the only permutations contributing to (45) are those formed by transpositions
2449
+
2450
+ WHAT IS THE PROBABILITY THAT A RANDOM SYMMETRIC TENSOR IS CLOSE TO RANK-ONE?
2451
+ 23
2452
+ and fixed points only.
2453
+ For such a σ ∈ Sn, denote by fix(σ) = {i ∈ {1, . . . , n} | σ(i) = i} the set of fixed points of σ and by
2454
+ s(σ) the number of disjoint transpositions in σ. Then we have
2455
+ E
2456
+ Q∈GOE(n)
2457
+ � n
2458
+
2459
+ i=1
2460
+
2461
+ δiσ(i) − λQiσ(i)
2462
+ ��
2463
+ = E
2464
+ � �
2465
+ i∈fix(σ)
2466
+
2467
+ 1 − λξi
2468
+ ��
2469
+ · E
2470
+ �s(σ)
2471
+
2472
+ k=1
2473
+ 1
2474
+ 2λ2γ2
2475
+ k
2476
+
2477
+ =
2478
+ =
2479
+
2480
+
2481
+ i∈fix(σ)
2482
+ E
2483
+ ��
2484
+ 1 − λξi
2485
+ ���
2486
+ ·
2487
+ �s(σ)
2488
+
2489
+ k=1
2490
+ E
2491
+ �1
2492
+ 2λ2γ2
2493
+ k
2494
+ ��
2495
+ ,
2496
+ where ξi ∼ N(0, 1) and γk ∼ N(0, 1). For these terms we have
2497
+ E
2498
+ ��
2499
+ 1 − λξi
2500
+ ��
2501
+ = 1,
2502
+ E
2503
+ �1
2504
+ 2λ2γ2
2505
+ k
2506
+
2507
+ = 1
2508
+ 2λ2E
2509
+
2510
+ γ2
2511
+ k
2512
+
2513
+ = 1
2514
+ 2λ2.
2515
+ The contribution of such σ ∈ Sn in (45) is
2516
+ sgn(σ)
2517
+ E
2518
+ Q∈GOE(n)
2519
+ � n
2520
+
2521
+ i=1
2522
+
2523
+ δiσ(i) − λQiσ(i)
2524
+ ��
2525
+ = sgn(σ)
2526
+ �1
2527
+ 2λ2
2528
+ �s(σ)
2529
+ ,
2530
+ (46)
2531
+ and notice it depends only on s(σ). To conclude the computation we, therefore, have to count how
2532
+ many permutations in Sn are given by exactly k disjoint transpositions for every k = 0, . . . , ⌊ n
2533
+ 2 ⌋. Denote
2534
+ this number by N(k). To construct a permutation with exactly k disjoint transpositions we proceed
2535
+ as follows: choose two elements in {1, . . . , n} forming the first transposition, then choose another 2
2536
+ among the remaining ones to form the second transposition and so on until the k–th one is formed.
2537
+ Moreover, since the supports of the transpositions are disjoint, the order in which they are picked is
2538
+ not relevant. It follows that
2539
+ N(k) =
2540
+ �n
2541
+ 2
2542
+ ��n−2
2543
+ 2
2544
+
2545
+ . . .
2546
+ �n−2k+2
2547
+ 2
2548
+
2549
+ k!
2550
+ =
2551
+ n!
2552
+ 2k(n − 2k)! k!
2553
+ and using this and (46) in (45) gives
2554
+ E
2555
+ Q∈GOE(n)[det(In − τQ)] =
2556
+ ⌊ n
2557
+ 2 ⌋
2558
+
2559
+ k=0
2560
+ (−1)kN(k)
2561
+ �1
2562
+ 2λ2
2563
+ �k
2564
+ =
2565
+ ⌊ n
2566
+ 2 ⌋
2567
+
2568
+ k=0
2569
+ (−1)kλ2k (2k)!
2570
+ 22kk!
2571
+ � n
2572
+ 2k
2573
+
2574
+ .
2575
+ (47)
2576
+ Since the expectation of gj(Q) is given by the degree j term in (47) multiplied by (−1)j, we obtain
2577
+ E
2578
+ Q∈GOE(n)
2579
+
2580
+ gj(Q)
2581
+
2582
+ =
2583
+
2584
+
2585
+
2586
+
2587
+
2588
+
2589
+
2590
+ 0
2591
+ if j odd
2592
+ (−1)
2593
+ j
2594
+ 2
2595
+ 2j
2596
+ j!
2597
+ ( j
2598
+ 2 )!
2599
+ �n
2600
+ j
2601
+
2602
+ if 0 ≤ j ≤ n, j even
2603
+ .
2604
+ (48)
2605
+ Plugging (48) into (38), we finally get (39).
2606
+ References
2607
+ [AGH+14]
2608
+ Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M. Kakade, and Matus Telgarsky. Tensor decompo-
2609
+ sitions for learning latent variable models. J. Mach. Learn. Res., 15:2773–2832, 2014.
2610
+ [ALLF07]
2611
+ Andrew Alexander, Jee Lee, Mariana Lazar, and Aaron Field. Diffusion tensor imaging of the brain. Neu-
2612
+ rotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics, 4:316–29, 08
2613
+ 2007.
2614
+ [BC13]
2615
+ Peter B¨urgisser and Felipe Cucker. Condition, volume 349 of Grundlehren der Mathematischen Wis-
2616
+ senschaften [Fundamental Principles of Mathematical Sciences]. Springer, Heidelberg, 2013. The geometry
2617
+ of numerical algorithms.
2618
+ [BL22]
2619
+ Saugata Basu and Antonio Lerario. Hausdorff approximations and volume of tubes of singular algebraic sets.
2620
+ Mathematische Annalen, August 2022.
2621
+ [Bre19]
2622
+ Paul Breiding. How many eigenvalues of a random symmetric tensor are real? Trans. Amer. Math. Soc.,
2623
+ 372(11):7857–7887, 2019.
2624
+ [Bue06]
2625
+ Peter Buergisser. Average volume, curvatures, and euler characteristic of random real algebraic varieties,
2626
+ 2006.
2627
+
2628
+ 24
2629
+ ALBERTO CAZZANIGA, ANTONIO LERARIO, ANDREA ROSANA
2630
+ [CdS01]
2631
+ Ana Cannas da Silva. Lectures on symplectic geometry, volume 1764 of Lecture Notes in Mathematics.
2632
+ Springer-Verlag, Berlin, 2001.
2633
+ [CGO14]
2634
+ Enrico Carlini, Nathan Grieve, and Luke Oeding. Four lectures on secant varieties. In Connections between
2635
+ algebra, combinatorics, and geometry, volume 76 of Springer Proc. Math. Stat., pages 101–146. Springer,
2636
+ New York, 2014.
2637
+ [dC92]
2638
+ Manfredo Perdig˜ao do Carmo. Riemannian geometry. Mathematics: Theory & Applications. Birkh¨auser
2639
+ Boston, Inc., Boston, MA, 1992. Translated from the second Portuguese edition by Francis Flaherty.
2640
+ [DH16]
2641
+ Jan Draisma and Emil Horobet¸. The average number of critical rank-one approximations to a tensor. Linear
2642
+ Multilinear Algebra, 64(12):2498–2518, 2016.
2643
+ [EK95]
2644
+ Alan Edelman and Eric Kostlan. How many zeros of a random polynomial are real? Bull. Amer. Math. Soc.
2645
+ (N.S.), 32(1):1–37, 1995.
2646
+ [Gra04]
2647
+ Alfred Gray. Tubes, volume 221 of Progress in Mathematics. Birkh¨auser Verlag, Basel, second edition, 2004.
2648
+ With a preface by Vicente Miquel.
2649
+ [How93]
2650
+ Ralph Howard. The kinematic formula in Riemannian homogeneous spaces. Mem. Amer. Math. Soc.,
2651
+ 106(509):vi+69, 1993.
2652
+ [IN66]
2653
+ C. Itzykson and M. Nauenberg. Unitary groups: Representations and decompositions. Rev. Modern Phys.,
2654
+ 38:95–120, 1966.
2655
+ [Kro08]
2656
+ Pieter M. Kroonenberg. Applied multiway data analysis. Wiley Series in Probability and Statistics. Wiley-
2657
+ Interscience [John Wiley & Sons], Hoboken, NJ, 2008. With a foreword by Willem J. Heiser and Jarqueline
2658
+ Meulman.
2659
+ [Lan12]
2660
+ J. M. Landsberg. Tensors: geometry and applications, volume 128 of Graduate Studies in Mathematics.
2661
+ American Mathematical Society, Providence, RI, 2012.
2662
+ [McC87]
2663
+ Peter McCullagh. Tensor methods in statistics. Monographs on Statistics and Applied Probability. Chapman
2664
+ & Hall, London, 1987.
2665
+ [Nem20]
2666
+ Gerg˝o Nemes. An extension of Laplace’s method. Constr. Approx., 51(2):247–272, 2020.
2667
+ [Nij74]
2668
+ Albert Nijenhuis. On Chern’s kinematic formula in integral geometry. J. Differential Geometry, 9:475–482,
2669
+ 1974.
2670
+ [Olv97]
2671
+ Frank W. J. Olver. Asymptotics and special functions. AKP Classics. A K Peters, Ltd., Wellesley, MA, 1997.
2672
+ Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)].
2673
+ [Sak16]
2674
+ Toshio Sakata. Applied Matrix and Tensor Variate Data Analysis. 01 2016.
2675
+ [SBG04]
2676
+ A. Smilde, Rasmus Bro, and P. Geladi. Multi way analysis — applications in chemical sciences. 01 2004.
2677
+ [SDLF+17] Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Papalexakis, and
2678
+ Christos Faloutsos. Tensor decomposition for signal processing and machine learning. IEEE Trans. Signal
2679
+ Process., 65(13):3551–3582, 2017.
2680
+ [SS93a]
2681
+ M. Shub and S. Smale. Complexity of Bezout’s theorem. II. Volumes and probabilities. In Computational
2682
+ algebraic geometry (Nice, 1992), volume 109 of Progr. Math., pages 267–285. Birkh¨auser Boston, Boston,
2683
+ MA, 1993.
2684
+ [SS93b]
2685
+ Michael Shub and Steve Smale. Complexity of B´ezout’s theorem. I. Geometric aspects. J. Amer. Math. Soc.,
2686
+ 6(2):459–501, 1993.
2687
+ [SS93c]
2688
+ Michael Shub and Steve Smale. Complexity of Bezout’s theorem. III. Condition number and packing. vol-
2689
+ ume 9, pages 4–14. 1993. Festschrift for Joseph F. Traub, Part I.
2690
+ [Wey39]
2691
+ Hermann Weyl. On the Volume of Tubes. Amer. J. Math., 61(2):461–472, 1939.
2692
+ [Won01]
2693
+ R. Wong. Asymptotic approximations of integrals, volume 34 of Classics in Applied Mathematics. Society for
2694
+ Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. Corrected reprint of the 1989 original.
2695
+
5dE5T4oBgHgl3EQfPA60/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tA0T4oBgHgl3EQfN_8L/content/tmp_files/2301.02153v1.pdf.txt ADDED
@@ -0,0 +1,1324 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ On the Melting Thresholds of Semiconductors under Nanosecond Pulse Laser Irradiation
2
+
3
+ J. Beráneka,b, A. V. Bulgakova, N. M. Bulgakovaa,*
4
+
5
+ a HiLASE Centre, Institute of Physics of the Czech Academy of Sciences, Za Radnicí 828,
6
+ 25241 Dolní Břežany, Czech Republic
7
+ b Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,
8
+ Trojanova 13, Prague, 120 01, Czech Republic
9
+ * Corresponding author: [email protected]
10
+ Abstract
11
+
12
+ In this work, a unified numerical model is used to determine the melting thresholds and to
13
+ investigate early stages of melting of several crystalline semiconductors (Si, Ge, GaAs, CdTe
14
+ and InP) irradiated by nanosecond laser pulses. A molten fraction approach is used for
15
+ continuous transition over the melting point. The results are compared with previously
16
+ published theoretical and experimental data. A survey on the thermophysical and optical
17
+ properties of the selected materials has been carried out to gather the most relevant data on
18
+ temperature dependent properties for the solid and liquid states of these semiconductors where
19
+ such data are available. A generalization of the obtained results is established which enables
20
+ evaluation of the melting thresholds for different semiconductors based on their properties and
21
+ irradiation conditions (laser wavelength, pulse duration).
22
+ Keywords
23
+ pulsed laser, nanosecond, laser processing, semiconductors, melting, thermal model, finite
24
+ difference method, material properties
25
+ 1. Introduction
26
+ Material processing of semiconductors using short and ultrashort laser pulses is one of
27
+ the key technologies in various fields, including microelectronics, photonics, photovoltaics,
28
+ sensor devices. It has been employed for enhancing dopant diffusion [1], crystallization [2] and
29
+ selective modification of multilayer structures [3] and in studies of kinetics of structural
30
+ changes in materials [4]. Its main advantages are the high level of controllability and variety of
31
+ wavelengths that can be selected to fit a particular material and an application. One of the basic
32
+ parameters for laser material processing that involves surface patterning, modification,
33
+ crystallization, and ablation is the melting threshold. This key parameter is usually determined
34
+ in the experimental studies of laser material processing as a reference point for controlling the
35
+ laser modification process and for testing theoretical models developed with the aim of better
36
+ understanding the fundamental processes at laser-matter interaction [5-18]. For detection of the
37
+ phase change, several approaches are used such as time-resolved reflectivity (TRR)
38
+ [9,11,19,20] and electrical conductivity [21] measurements, or combined techniques as in [13]
39
+ where time-of-flight velocity distributions together with the evaporation rate and reflectivity
40
+ were measured and analyzed.
41
+
42
+ In some cases, the experiments identify a transient state where only a minor or instable
43
+ change of the studied parameter is observed and thus the obtained melting threshold, i.e.,
44
+ minimal laser energy density (laser fluence) needed to reach this state, corresponds to the
45
+ melting onset. In other cases, a stable change of the measured value is detected, corresponding
46
+ to the established molten phase on the irradiated surface at higher fluences. In experiments, the
47
+ fluence interval with a transient melting is dependent on the material purity and surface quality
48
+ such as roughness, which can lead to a locally changed absorption, as well as on the presence
49
+ of hotspots in the laser beam profile. In modeling, it is typically assumed that the melting
50
+ threshold corresponds to the energy density needed for the temperature of the surface of the
51
+ material to reach the melting point Tm [5,6].
52
+
53
+ In the presented work, we compare results obtained in our modeling with some
54
+ theoretical predictions on the melting thresholds and early stages of melting and with
55
+ experimental measurements available in the literature. The numerical simulations have been
56
+ performed for a variety of semiconductors (Si, Ge, GaAs, CdTe, InP) irradiated at wavelengths
57
+ from 248 to 694 nm in the range of pulse durations from 7 to 70 ns to test the predictive
58
+ capabilities of the model presented in this work and to investigate the melting dynamics of
59
+ material under study. Furthermore, the results obtained for different semiconductors have been
60
+ generalized in order to predict their melting threshold based on a unified parameter combining
61
+ irradiation conditions and material optical and thermophysical properties.
62
+ 2. Model description
63
+ The thermal model is applicable for nanosecond laser pulse durations and longer pulses
64
+ as the electron-lattice interaction phenomena, critical for shorter pulses, are not accounted for
65
+ and coupling of laser energy to material lattice is treated as an instantaneous local process [22].
66
+ It is justified by the fact that electron-lattice thermalization time is in order of ~10-12 s for silicon
67
+ and germanium [7] and similar time scales for other materials under study. Also, as we consider
68
+ relatively low surface temperatures, below and near the melting point, we disregard evaporation
69
+ phenomena, which, however, may slightly affect the melting process for compound
70
+ semiconductors [23,24]. For correct simulations of laser-matter interaction processes, material
71
+ thermophysical and optical properties (and their temperature dependences) are of fundamental
72
+ importance. The material parameters used in the presented calculations are summarized in
73
+ Appendix, Tables A1–A19.
74
+ The sample is assumed to be flat and the laser beam couples perpendicularly to the
75
+ surface in the direction of z axis. The simulations are considered as a one dimensional (1D)
76
+ problem that is a valid approximation as long as the irradiation spot size (typically above 100
77
+ µm for the considered experiments) is much larger than the absorption depth that is our case.
78
+ Indeed, for a ruby laser with the longest wavelength in this study, the absorption depth of the
79
+ studied semiconductors is less than 0.4 µm (see Appendix). For shorter wavelengths, also
80
+ investigated here, the absorption depths are even smaller. Then the time-dependent temperature
81
+ distribution in the irradiated target is governed by the heat-flow equation in its 1D form [25,26]:
82
+ (𝑐p(𝑇)𝜌 + 𝐿m𝛿(𝑇 − 𝑇m))
83
+ 𝜕𝑇
84
+ 𝜕𝑡 =
85
+ 𝜕
86
+ 𝜕𝑧 (𝜅(𝑇) 𝑑𝑇
87
+ 𝑑𝑧) + 𝑆(𝑧, 𝑡). (1)
88
+ Here t is time, T is the temperature, cp, ρ, Lm, Tm and κ are respectively the heat capacity, the
89
+ density, the latent heat of fusion, the melting temperature, and the thermal conductivity of the
90
+ sample material. Energy supplied by the laser is represented by the source term S(z, t) as
91
+
92
+ 𝑆(𝑧, 𝑡) = (1 − 𝑅)𝐼(𝑡) 𝛼 exp(−𝛼𝑧), (2)
93
+ where R and α are the surface reflectivity and the material absorption coefficient. The pulse
94
+ intensity I(t) has a Gaussian temporal profile:
95
+ 𝐼(𝑡) =
96
+ 2𝐹0
97
+ 𝜏L√ln 2
98
+ 𝜋
99
+ exp (−4 ln 2 (
100
+ 𝑡
101
+ 𝜏L)
102
+ 2
103
+ ), (3)
104
+ with F0 and τL being the peak fluence and the pulse duration.
105
+ Equation (1) is solved numerically using the finite difference method and the implicit
106
+ scheme that ensures a high numerical stability. For temperatures below the melting point, the
107
+ finite difference form of Eq. (1) is written on the numerical grid as
108
+ −𝜅l𝑇i−1
109
+
110
+ + (
111
+ ∆𝑧2
112
+ ∆𝑡 𝜌𝑐p + 𝜅l + 𝜅r) 𝑇i
113
+ ∗ − 𝜅r𝑇i+1
114
+
115
+ =
116
+ ∆𝑧2
117
+ ∆𝑡 𝜌𝑐p𝑇i + 𝑆(𝑧, 𝑡), (4)
118
+ where
119
+ 𝜅l =
120
+ 𝜅i−1+𝜅i
121
+ 2
122
+ , 𝜅r =
123
+ 𝜅i+1+𝜅i
124
+ 2
125
+ (5)
126
+ and index i refers to the numerical grid points. The temperature values T* are unknown at the
127
+ time moment tf and T (without asterisk) corresponds to the known temperature at the time
128
+ moment tf-1= tf – Δt.
129
+ One of the advantages of the implicit numerical scheme is that using large spatial and/or
130
+ temporal steps (Δz and Δt respectively) does not affect its stability, however, too large Δt values
131
+ can introduce truncation errors to the calculation results [27]. Similarly, the choice of Δz should
132
+ enable a good approximation of the laser intensity attenuation toward the material depth and
133
+ the temperature gradient within the heat affected zone. A very good approximation was
134
+ achieved with Δt values of 5-10 ps and Δz = 1 nm. The sample is considered to be semi-infinite.
135
+ The system of the linear equations (1) with discretization to the form (4) represents a tridiagonal
136
+ matrix, which is solved by the Thomas algorithm [28].
137
+ Material heating to the melting point followed by the melting process leads to an
138
+ accumulation of the internal energy at constant T = Tm and its ratio to the enthalpy of melting
139
+ can be interpreted as a molten fraction in a computational element. In the presented calculations,
140
+ we apply the method of through calculation without explicit selection of the phase interface
141
+ [25,26]. According to this method, the melting process is smoothed over a symmetric interval
142
+ of a width of a few Kelvins around the melting point. Melting starts at a slightly lower
143
+ temperature than Tm, reaches the melting point at the fraction of molten material of 0.5, and
144
+ ends at a slightly higher temperature than Tm. In the interval of melting, a δ-function is added
145
+ to the heat capacity term to account for absorption/release of the fusion heat at the
146
+ melting/solidification front
147
+ 𝛿(𝑇) =
148
+ 𝐿m
149
+ 𝐴√𝜋 𝑒−(𝑇−𝑇m
150
+ 𝐴
151
+ )
152
+ 2
153
+ , (6)
154
+ where A is the width of the delta function in Kelvin. As the internal energy rises upon laser light
155
+ absorption, the physical parameters are gradually changing from solid to liquid phase
156
+ proportionally to the fraction of molten material [29]
157
+
158
+ 𝛾 = 𝛾s(𝑇)(1 − 𝜂) + 𝜂𝛾l(𝑇), (7)
159
+ where γs, γl represent a property of material in solid and liquid state respectively and η is the
160
+ fraction of molten material. For the sake of simplicity, the change in density upon melting is
161
+ not taken into account so that the value of the solid state density is kept also for the liquid state.
162
+ In the presented model, we interpret the fluence needed for the fraction of molten
163
+ material to reach the interval from 0–3 % as the melting threshold fluence Fth. According to the
164
+ δ-function approach (Eqs. (1) and (6)), this occurs at ~1-2 K bellow the tabulated melting point
165
+ and thus the edge of beginning of melting is blurred. However, from analyzing our simulation
166
+ data, it follows that the position of Fth within the interval of melting has a minor effect on its
167
+ resulting value. Furthermore, taking into account the ambiguity of Fth reported in the literature,
168
+ this aspect plays only a small role.
169
+ 3. Results and discussion
170
+ Here we present an analysis of the available literature data used for our model
171
+ development and discuss the simulations results and general trends in the damage threshold
172
+ determination. The results of the present simulations are summarized in the Table 1 in
173
+ comparison with the literature data. In addition, for irradiation conditions with a ruby laser
174
+ (wavelength 694 nm) where the most systematic data are available, we have performed
175
+ calculations for various laser pulse duration of 15, 30 and 70 ns, beyond the ranges reported in
176
+ the literature, in order to investigate the effect of pulse duration for specific materials (the
177
+ obtained results are also presented in Table 1). Note that, in the literature, the Fth values can be
178
+ determined differently from the method used in this study. For example, in Ref. [30], the
179
+ calculated melting threshold for CdTe was set by 8% higher than the laser fluence needed for
180
+ reaching Tm. Time resolved reflectometry (TRR) measurements performed by the authors did
181
+ not show an increase in reflectivity at the intensity corresponding to reaching the melting point
182
+ in calculations. Thus, as the melting threshold, the authors consider the intensity, at which the
183
+ sample surface layer is molten to the depth of laser radiation absorption. Experimentally
184
+ measured values of the melting threshold fluence typically include a transition interval where
185
+ localized melting occurs giving rise to an increase in the reflectivity above the values of solid
186
+ state surface reflectivity [13,22]. In numerical simulations, the determination of the damage
187
+ threshold strongly depends on the used material properties [31]. Below we have surveyed the
188
+ literature for the optical and thermophysical parameters of the studied semiconductors. The
189
+ most relevant parameters are given in Appendix.
190
+ Table 1. The simulation results for the damage threshold fluence Fth of the studied
191
+ semiconductors in comparison with theoretical and experimental data reported in the literature.
192
+ The experimental data are marked by asterisk.
193
+ Material λ, nm τ,
194
+ ns
195
+ Fth,
196
+ mJ/cm2
197
+ This work
198
+ Fth, mJ/cm2
199
+ Literature
200
+ data
201
+ Si
202
+ 532
203
+ 18
204
+ 355
205
+ 395 [6],
206
+ ~320* [32]
207
+
208
+
209
+ 30
210
+ 423
211
+ 474 [6]
212
+ 350 [33]
213
+
214
+ 694
215
+ 15
216
+ 672
217
+ 725 [6]
218
+
219
+
220
+
221
+ 30
222
+ 752
223
+ 805 [6]
224
+
225
+
226
+ 70
227
+ 900
228
+
229
+ Ge
230
+ 694
231
+ 15
232
+ 191
233
+
234
+
235
+
236
+ 30
237
+ 255
238
+
239
+
240
+
241
+ 70
242
+ 370
243
+ 400* [10]
244
+ GaAs
245
+ 308
246
+ 30
247
+ 213
248
+ 200, 200*
249
+ [8]
250
+
251
+ 532
252
+ 15
253
+ 184
254
+
255
+
256
+ 694
257
+ 15
258
+ 265
259
+ 300 [12]
260
+
261
+
262
+ 20
263
+ 282
264
+ 250* [13]
265
+
266
+
267
+ 30
268
+ 316
269
+
270
+
271
+
272
+ 70
273
+ 415
274
+
275
+ CdTe
276
+ 248
277
+ 20
278
+ 46
279
+ 50, 50* [30]
280
+
281
+ 694
282
+ 15
283
+ 68
284
+
285
+
286
+
287
+ 30
288
+ 80
289
+
290
+
291
+
292
+ 70
293
+ 103
294
+
295
+ InP
296
+ 532
297
+ 7
298
+ 106
299
+ 97 [23]
300
+
301
+ 694
302
+ 15
303
+ 165
304
+
305
+
306
+
307
+ 30
308
+ 211
309
+
310
+
311
+
312
+ 70
313
+ 296
314
+
315
+
316
+ 3.1. Silicon
317
+ Some ambiguity exists in the reported melting point of crystalline Si ranging from 1683 to
318
+ 1690 K [7,22]. For the temperature dependence of cp, we took the data from Ref. [34] with a
319
+ stronger variation over the range of solid state temperatures than the dependence used for c-Si
320
+ in Ref. [5]. The c-Si thermal conductivity was approximated by the expression from the
321
+ measured data reported in [35]. For the liquid state, we use cp = 910 J/(kg·K) and κ = 50.8 +
322
+ 0.029(T – Tm) W/(m·K) [5]. The reflectivity and the absorption coefficient for c-Si are
323
+ temperature dependent and given by the relations presented in [36]. The optical properties of
324
+ molten silicon are described according to the calculated data for 694 nm [37] and measured data
325
+ for 352 nm [38]. The data on the properties for solid and liquid silicon used in the present
326
+ modeling are summarized in Tables A1-A4 of Appendix.
327
+ Interestingly, our simulation data for Si (Table 1) somewhat overestimate the melting
328
+ threshold fluence measured in [32,33] while they are systematically lower than the simulated
329
+ Fth values presented in [6]. The experimental investigations reported in [32] for 532 nm ns laser
330
+ irradiation give an interval of increasing reflectivity between 330 and 380 mJ/cm2. The value
331
+ of 380 mJ/cm2 was identified as a threshold for reaching a high reflectivity (~70%), probably
332
+ indicating melting to a depth of approximately one optical skin layer (~10 nm), and the
333
+ maximum reflectivity of 73% was observed at 450 mJ/cm2. A similar value of around 400
334
+ mJ/cm2 was determined as a threshold for melting based on time-resolved reflectivity
335
+ measurements [33]. The theoretical calculations [6] give higher values for the melting
336
+ thresholds than calculated in this work and measured in [32,33]. The main reason can be seen
337
+ in the difference in the absorption coefficient change with temperature. For instance, the
338
+ absorption coefficient of c-Si at 694 nm wavelength at temperatures close to the melting point
339
+ is approximately five times larger in our case (taken from [36]) than in calculations presented
340
+ in [6]. As a whole, our modeling data for Si are in a reasonable agreement with the published
341
+
342
+ data thus demonstrating that our model approach can be used for other semiconducting
343
+ materials. The calculations with various pulse durations τL show that the melting threshold
344
+ increases with τL proportionally to app τL0.2 (Table 1), i.e., the dependence is considerably
345
+ weaker than the  τL0.5 dependence predicted for the evaporation threshold for fairly long
346
+ (nanosecond and longer) laser pulses [39].
347
+ 3.2. Germanium
348
+ The next set of simulations has been carried out for germanium for the conditions of the
349
+ experiments reported in [10], wavelength 694 nm and pulse duration 70 ns. Time-resolved
350
+ reflectivity measurements using a probe 1.06 μm laser wavelength identified the energy density
351
+ of 400 mJ/cm2 as a value, at which the rise of reflectivity was detected corresponding to the
352
+ observable melting. Numerical simulations using the finite difference method were also carried
353
+ out in Ref. [10] and the obtained melting threshold was claimed to be “practically identical” to
354
+ the measured one (although the method for threshold determination in the simulation was not
355
+ specified). The authors used experimentally measured values of reflectivity and absorption from
356
+ Refs. [9] and [40], which are in a good agreement with the optical constants we derived from
357
+ measurements reported in [41] and also confirmed in [42]. Our calculations give Fth = 370
358
+ mJ/cm2 (Fig. 1a, Table 1) that is in good agreement with the data [10], particularly taking into
359
+ account that the detected in [10] increase in the reflectivity assumes a significant fraction of
360
+ molten germanium and thus a slightly higher fluence than that needed to reach the melting
361
+ temperature at the surface. Near the melting threshold, the calculated melt fraction reaches a
362
+ maximum after a delay of about 20 ns relative to the moment of laser peak intensity (Fig. 1a)
363
+ that is also in agreement with the measurements [10]. With the known properties of liquid Ge
364
+ (Tables A7 and A8), we have performed simulations for F > Fth which are again in good
365
+ agreement with the measured durations of a high reflectivity stage corresponding to molten
366
+ germanium [10] (Fig. 1b). It should be mentioned that different values are reported for the
367
+ thermal conductivity of liquid Ge. In modeling, we use the value of 29.7 W/(m·K) [43] while
368
+ in Ref. [44], κ = 43 W/(m·K) was measured. The calculations performed for various pulse
369
+ durations demonstrate now a stronger τL dependence than that for silicon, close to the  τL0.5
370
+ dependence (Table 1).
371
+ 3.3. Gallium Arsenide
372
+ For simulations of laser heating of GaAs, we used the same values of the thermophysical
373
+ properties as in Ref. [8]. For the temperature dependence of cp, the data from [45] were used,
374
+ which are also in a good agreement with the data reported in [46]. Optical properties were taken
375
+ from measurements [47], which are also in a good agreement with [48]. The absorption and
376
+ reflection coefficients were calculated from the refractive index and the extinction coefficient
377
+ and taken as temperature independent. The material properties used in the simulations are
378
+ presented in Tables A9–A12 of Appendix.
379
+ Several regimes of laser irradiation of GaAs corresponding to available experimental
380
+ and theoretical data were investigated in our modelling with the laser wavelength ranging from
381
+ 308 to 694 nm and pulse duration ranging from 15 to 70 ns. For all the conditions, the melting
382
+ thresholds calculated here with our unified model are in good agreement with the values
383
+ reported in the literature (Table 1). Below we discuss each irradiation regime in more details.
384
+
385
+ λ = 308 nm, τ = 30 ns. Our model implements the same optical and temperature-
386
+ dependent material properties as in the model presented by Kim et al. [8]. For the solid state
387
+ reflectivity and the optical absorption, the data used for simulations in [8] are in agreement with
388
+ the measured data for solid GaAs [46]. As the parameters of the model [8] and ours are very
389
+ similar, we take this comparison as a validation for our model that gives a deviation of only
390
+ ~6% (see Table 1).
391
+ λ = 694 nm, τ = 15 ns. García et al. [12] carried out simulations for a ruby laser with a
392
+ 15 ns pulse duration using an explicit numerical scheme. The melting threshold was identified
393
+ at a laser fluence of 300 mJ/cm2 that corresponded to the situation when a ~65-nm-thick surface
394
+ layer was molten [12]. In our simulations, this fluence of 300 mJ/cm2 results in the melting
395
+ depth of 13 nm while the melting threshold corresponding to reaching the melting point on the
396
+ sample surface is 265 mJ/cm2 (see Fig. 2 for comparison). The difference in the melting depth
397
+ can be attributed to two factors. First, the authors [12] extrapolated the temperature-dependent
398
+ absorption coefficient for the solid state GaAs from the room temperature till the melting point
399
+ that appears to be questionable. In our simulations, we use constant but reliable data on optical
400
+ absorption and reflectivity of molten GaAs at the wavelength of the ruby laser [41]. The
401
+ reflectivity coefficient of liquid GaAs in both Ref. [12] and this work was adopted from [13],
402
+ R = 0.67. The second factor may be related to the using an explicit numerical scheme whose
403
+ approximation to the initial equations often represent a challenge.
404
+ λ = 694 nm, τ = 20 ns. Pospieszczyk et al. [13] presented two sets of measurements.
405
+ Using a HeNe probe laser, the temperature-dependent reflectivity was investigated. The second
406
+ set of the data gives time-of-flight measurements of particles evaporated from the GaAs surface
407
+ (Fig. 3a). Comparison of their experimental data and our simulations is given in Table 1, which
408
+ are in a reasonable agreement. The simulated damage threshold associated with achieving the
409
+ melting temperature (Fig. 3b) is somewhat higher than in the experiments [13] but is still in the
410
+ range of fluences where a transient uneven melting is observed (Fig. 3). This discrepancy,
411
+ although relatively small, can be related to the effect of decreasing the melting temperature due
412
+ to depletion of the target surface by a more volatile component [23,24,49] that is not taken into
413
+ account in our model.
414
+ 3.4. Cadmium Telluride
415
+ We have applied our model to CdTe irradiated by a KrF excimer laser (248 nm) for the
416
+ conditions of Gnatyuk et al. [30] where TRR measurements and numerical simulations of
417
+ pulsed laser heating of CdTe were performed. For this material, reliable physical and optical
418
+ properties are extensively reported in the literature. In our simulations, the value of thermal
419
+ conductivity was taken from Ref. [50] and [51] for solid and liquid state, respectively. The
420
+ specific heat for both solid and liquid state was taken from Ref. [52]. The same thermophysical
421
+ properties were also used in simulations [24,30]. Measurements of optical properties of CdTe
422
+ using spectroscopic ellipsometry and modeling were performed in [53] for a wide range of
423
+ wavelengths. Reflectivity and absorption are the same for solid and liquid state and independent
424
+ of temperature.
425
+ The authors [30] identified a laser fluence of 50 mJ/cm2 as the melting threshold. In
426
+ their simulations, this value corresponds to the molten layer with a thickness of the laser
427
+ absorption depth. Their TRR measurements detected an abrupt although small rise of the
428
+ reflectivity at a laser fluence of 48-50 mJ/cm2. These results are in excellent agreement with
429
+
430
+ our simulations (Table 1). Indeed, for F = 50 mJ/cm2, our model gives the depth of the molten
431
+ layer of 7 nm, very close to the absorption depth of CdTe at 248 nm (~9nm). According to our
432
+ definition of the melting threshold, achieving the melting temperature at the very surface of the
433
+ irradiated sample, the calculated threshold is slightly lower, 46 mJ/cm2 (Table 1).
434
+ We would also note that in Refs. [25,49], an effect of enhanced evaporation of Cd atoms
435
+ with enriching the surface by tellurium upon laser heating was studies. It was shown that this
436
+ effect can have an impact on the melting and ablation processes. This effect was not taken into
437
+ account in this work, nor in [30].
438
+ 3.5. Indium Phosphide
439
+ We have applied our model for the conditions of experiments [23] where InP was
440
+ irradiated by a nanosecond laser at λ = 532 nm. In this paper, a laser fluence of 97 mJ/cm2 was
441
+ identified as the damage threshold. In our simulations, we have obtained a threshold value of
442
+ 106 mJ/cm2 which can be considered as a good agreement taking into account that there is no
443
+ any fitting parameters in our model. It should be mentioned that, although laser processing of
444
+ InP is a common technique in its industrial applications, the thermophysical parameters at
445
+ enhanced temperatures are still not well studied. Thus, several sets of data are available for the
446
+ heat capacity of solid InP, see e.g. [54]. The major problem is that measurements of the
447
+ thermophysical properties at enhanced temperatures are affected by a high vapor pressure of
448
+ phosphorous due to its high volatility. The thermal conductivity and the specific heat of molten
449
+ InP are given in [46]. The reflectivity and absorption are calculated form data provided in [41].
450
+ Optical properties are taken as temperature independent and considered the same for both solid
451
+ and liquid state. In reference article [23], ablation of compound semiconductors is studied and
452
+ a model that takes into account evaporation of their components gives the melting threshold.
453
+ Our result, that disregards this effect, gives Fth that is about 10% higher.
454
+ 3.6. Generalization of the damage threshold data into a predictive dependence
455
+ A wide set of data on the damage thresholds of five semiconductors under various ns-laser
456
+ irradiation conditions are obtained in our calculations in the frames of a unified thermal model
457
+ and all the thresholds are in good agreement with available literature data, both experimental
458
+ and theoretical ones. The obtained threshold values vary in a wide range depending on material,
459
+ from ~ 50 mJ/cm2 for CdTe to almost 1 J/cm2 for Si (Table 1). The irradiation conditions also
460
+ affect the threshold values which are generally smaller for shorter laser wavelengths and pulse
461
+ durations. It is very attractive to generalize the obtained results in terms of a unified parameter
462
+ combining the basic material properties (thermophysical and optical) in order to be able to
463
+ predict the ns-laser-induced melting thresholds, at least approximately, without performing
464
+ detailed simulations.
465
+
466
+ D. Bäuerle [22] considered “optimal” melting conditions during ns-laser-induced
467
+ thermal surface melting, when minimal laser energy is required for a certain melt depth.
468
+ Assuming that such conditions are fulfilled when the melt depth is equal to the heat-diffusion
469
+ length, he estimated the optimal laser fluence as
470
+ 𝑃B =
471
+ 2𝜌∆𝐻
472
+ 1−𝑅 (
473
+ 𝐷
474
+ 𝜏L)
475
+ 1
476
+ 2 𝜏L (8)
477
+
478
+ where D = κ/cp is the thermal diffusivity and H = Lm + cp(Tm-300) is the total energy needed
479
+ to heat the sample to the complete melting state from room temperature, A similar parameter
480
+ was introduced in [39] as an evaporation threshold under ns-laser ablation (assuming naturally
481
+ by H in Eq. (8) the specific heat for evaporation instead of that for melting and omitting the
482
+ 2/(1-R) factor).
483
+ Figure 4 shows the calculated melting threshold values plotted as a function of the PB
484
+ parameter, Eq. (8), evaluated for all the studied materials using their room-temperature
485
+ properties. All the data are nicely groupped around a streight line in the logarithmic plot. This
486
+ clear correlation is rather surprising for such a simplified generalization approach when the
487
+ material absorption coefficient and temperature dependencies of thermophysical properties are
488
+ not taken into account. The least square fitting line in Fig. 4 is described by a power law Fth ≈
489
+ 0.05PB1.16 whcih can be used for rough estimation of the melting threshold of semiconductors
490
+ based on their basic room-temperatureproperties.
491
+ The parameter PB predicts a growth of the melting threshold with the laser pulse duration
492
+ as τL0.5. However, as was noticed above, this is not always the case according to our simulations.
493
+ Some semiconductors (Ge, CdTe, InP) follow closely the τL0.5 dependence while others (Si,
494
+ GaAs) demonstrate weaker dependencies (Table 1 and Fig. 4). This is probably mainly due to
495
+ a difference in the thermal diffusivity D of the materials. Thus, at room temperature, D ≈ 0.8
496
+ cm2/s for Si and it is around 0.35 cm2/s for Ge, InP and CdTe. A higher thermal diffusivity
497
+ results in a higher heat diffusion length and smaller in-depth temperature gradients and thus in
498
+ a lower heat flow from the surface at an increased pulse duration. The temperature dependencies
499
+ of materials parameters (included to our model simulations) can additionally affect the pulse
500
+ duration dependence of the melting threshold.
501
+ 4. Conclusions
502
+ In this work, based on the classical thermal model, we have developed a numerical approach
503
+ to investigate the continuous solid-liquid phase change in solid targets heated by nanosecond
504
+ laser pulses. The model is applied to a number of semiconductors and various irradiation
505
+ conditions and the obtained results on the melting thresholds, melt duration and melt depth are
506
+ compared with experimental and theoretical data available in the literature. The comparison is
507
+ not always straightforward as the value presented as melting threshold fluence is not always
508
+ describing the same state of the studied material. However, in most cases, good agreement with
509
+ the literature data is obtained. The simulations predict also the dependence of the melting
510
+ thresholds on the laser pulse duration which is found to be material dependent and weaker than
511
+ that expected from simple heat-flow considerations. A good correlation of all the calculated
512
+ melting threshold values with a parameter combining material thermophysical properties and
513
+ surface reflectivity is obtained. The correlation can be used as a simple method for estimation
514
+ of the melting thresholds of ns-laser irradiated semiconductors based on their room-temperature
515
+ properties.
516
+ Acknowledgements
517
+ This work was supported by the European Regional Development Fund and the state budget of
518
+ the Czech Republic (project BIATRI: No. CZ.02.1.01/0.0/0.0/15_003/0000445). J. B.
519
+ acknowledges funding of the Grant Agency of the Czech Technical University in Prague No.
520
+ SGS22/182/OHK4/3T/14.
521
+
522
+ Declarations
523
+ Conflict of interest. The authors declare no conflict of interests.
524
+ Appendix
525
+ Here we provide all the parameters for semiconductors, which were selected after a thorough
526
+ literature analysis and used in our modeling. Some reliable data, which are widely cited in
527
+ literature and web-sites, are given without references.
528
+ Silicon
529
+ Table A1. c-Si – thermophysical properties
530
+ Property
531
+ Value
532
+ Ref.
533
+ ρ,g/cm3
534
+ 2.328
535
+
536
+ Tm, K
537
+ 1688
538
+
539
+ Lm, J/kg
540
+ 1.826 × 106
541
+ [55]
542
+ cp, J/kg K
543
+ 847.05 + 118.1 × 10-3 T – 155.6 × 105 T -2
544
+ [35]
545
+ κ, W/mK
546
+ 97269 T -1.165 (300<T<1000)
547
+ 3.36 × 10-5 T 2– 9.59 × 10-2T + 92.25 (1000<T<Tm)
548
+ [35]
549
+
550
+ Table A2. c-Si – optical properties
551
+ 532 nm
552
+ Value
553
+ Ref.
554
+ n
555
+ 4.152
556
+ [41]
557
+ k
558
+ 0.051787
559
+ [41]
560
+ R
561
+ 0.374
562
+ [36]
563
+ α, 1/m
564
+ 5.02 × 105 exp(T/430)
565
+ [36]
566
+ 694 nm
567
+
568
+
569
+ n
570
+ 3.79
571
+ [41]
572
+ k
573
+ 0.013
574
+ [41]
575
+ R
576
+ 0.34 + 5 × 10-5 (T – 300)
577
+ [36]
578
+ α, 1/m
579
+ 1.34 × 105 exp(T/427)
580
+ [36]
581
+
582
+ Table A3. Liquid-Si – thermophysical properties
583
+ Property
584
+ Value
585
+ Ref.
586
+ ρ, g/cm3
587
+ 2.52
588
+
589
+ cp, J/kg K
590
+ 910
591
+ [5]
592
+ κ, W/mK
593
+ 50.28 + 0.029 (T–Tm)
594
+ [5]
595
+
596
+ Table A4. Liquid -Si – optical properties
597
+ 532 nm
598
+ Value
599
+ Ref.
600
+ n
601
+ 3.212
602
+ [38]
603
+ k
604
+ 4.936
605
+ [38]
606
+ R
607
+ 0.693
608
+ Calculated
609
+ α, 1/m
610
+ 1.1659 × 108
611
+ Calculated
612
+ 694 nm
613
+
614
+
615
+
616
+ n
617
+ 3.952
618
+ [37]
619
+ k
620
+ 5.417
621
+ [37]
622
+ R
623
+ 0.707
624
+ Calculated
625
+ α, 1/m
626
+ 9.804 × 107
627
+ Calculated
628
+ Germanium
629
+ Table A5. c-Ge – thermophysical properties
630
+ Property
631
+ Value
632
+ Ref.
633
+ ρ, g/cm3
634
+ 5.3267
635
+
636
+ Tm, K
637
+ 1211.4
638
+
639
+ Lm, J/kg
640
+ 5.1 × 105
641
+ [43]
642
+ cp, J/(kg K)
643
+ 1.17 × 10-1T + 293
644
+ [43]
645
+ κ, W/(m K)
646
+ 18000/T
647
+ [43]
648
+
649
+ Table A6. c-Ge – optical properties
650
+ 694 nm
651
+ Value
652
+ Ref.
653
+ n
654
+ 5.04
655
+ [41]
656
+ k
657
+ 0.49
658
+ [41]
659
+ R
660
+ 0.45
661
+ Calculated
662
+ α, 1/m
663
+ 8.81 × 106
664
+ Calculated
665
+
666
+ Table A7. Liquid -Ge – thermophysical properties
667
+ Property
668
+ Value
669
+ Ref.
670
+ ρ, g/cm3
671
+ 5.6
672
+
673
+ Tm, K
674
+ 3106
675
+
676
+ cp, J/kg K
677
+ 450
678
+ [43]
679
+ κ, W/mK
680
+ 29.7
681
+ [43]
682
+
683
+ Table A8. Liquid -Ge – optical properties
684
+ 694 nm
685
+ Value
686
+ Ref.
687
+ n
688
+ 2.62
689
+ [37]
690
+ k
691
+ 5.238
692
+ [37]
693
+ R
694
+ 0.74
695
+ Calculated
696
+ α, 1/m
697
+ 9.485 × 107
698
+ Calculated
699
+
700
+ Gallium Arsenide
701
+ Table A9. c-GaAs – thermophysical properties
702
+ Property
703
+ Value
704
+ Ref.
705
+ ρ, g/cm3
706
+ 5.32
707
+
708
+ Tm, K
709
+ 1511
710
+
711
+ Lm, J/kg
712
+ 7.11 × 105
713
+
714
+ cp, J/kg K
715
+ 8.76 × 10-2 T + 308.16
716
+ [8]
717
+ κ, W/mK
718
+ 30890 T-1.141
719
+ [8]
720
+
721
+
722
+ Table A10. c-GaAs – optical properties
723
+ 308 nm
724
+ Value
725
+ Ref.
726
+ n
727
+ 3.7
728
+ [41]
729
+ k
730
+ 1.9
731
+ [41]
732
+ R
733
+ 0.42
734
+ Calculated
735
+ α, 1/m
736
+ 7.7 × 107
737
+ Calculated
738
+ 532 nm
739
+
740
+
741
+ n
742
+ 4.13
743
+ [41]
744
+ k
745
+ 0.336
746
+ [41]
747
+ R
748
+ 0.37
749
+ Calculated
750
+ α, 1/m
751
+ 8.04 × 106
752
+ Calculated
753
+ 694 nm
754
+
755
+
756
+ n
757
+ 3.78
758
+ [41]
759
+ k
760
+ 0.15
761
+ [41]
762
+ R
763
+ 0.338
764
+ Calculated
765
+ α, 1/m
766
+ 2.687 × 106
767
+ Calculated
768
+
769
+ Table A11. Liquid GaAs – thermophysical properties
770
+ Property
771
+ Value
772
+ Ref.
773
+ ρ, g/cm3
774
+
775
+
776
+ cp, J/kg K
777
+ 439.85
778
+ [8]
779
+ κ, W/mK
780
+ 30890 T -1.141
781
+ [8]
782
+
783
+ Table A12. Liquid GaAs – optical properties
784
+ 308 nm
785
+ Value
786
+ Ref.
787
+ R
788
+ 0.46
789
+ [8]
790
+ α, 1/m
791
+ 0.83 × 108
792
+ [56]
793
+ 694 nm
794
+
795
+
796
+ R
797
+ 0.67
798
+ [13]
799
+ α, 1/m
800
+ 2.687 × 106
801
+ Taken the same
802
+ as for solid state
803
+
804
+ Cadmium Telluride
805
+ Table A13. c-CdTe – thermophysical properties
806
+ Property
807
+ Value
808
+ Ref.
809
+ ρ, g/cm3
810
+ 5.85
811
+
812
+ Tm, K
813
+ 1365
814
+
815
+ Lm, J/kg
816
+ 2.09 × 105
817
+ [52]
818
+ cp, J/kg K
819
+ 3.6 × 10-2 T + 205
820
+ [52]
821
+ κ, W/mK
822
+ 1507/T
823
+ [50]
824
+
825
+ Table A14. c-CdTe – optical properties
826
+
827
+ 248 nm
828
+ Value
829
+ Ref.
830
+ n
831
+ 2.63
832
+ [53]
833
+ k
834
+ 2.13
835
+ [53]
836
+ R
837
+ 0.406
838
+ calculated
839
+ α, 1/m
840
+ 1.1 × 108
841
+ calculated
842
+ 694 nm
843
+
844
+
845
+ n
846
+ 3.037
847
+ [53]
848
+ k
849
+ 0.286
850
+ [53]
851
+ R
852
+ 0.258
853
+ calculated
854
+ α, 1/m
855
+ 5.179 × 106
856
+ calculated
857
+
858
+ Table A15. Liquid CdTe – thermophysical properties
859
+ Property
860
+ Value
861
+ Ref.
862
+ ρ, g/cm3
863
+ 6.4
864
+
865
+ cp, J/kg K
866
+ 255
867
+ [52]
868
+ κ, W/mK
869
+ 1.1
870
+ [30]
871
+
872
+ Table A16. Liquid CdTe – optical properties
873
+ 248 nm
874
+ Value
875
+ Ref.
876
+ R
877
+ 0.45
878
+ [30]
879
+ α, 1/m
880
+ 1.1 × 108
881
+ [30]
882
+
883
+ Indium Phosphide
884
+
885
+ Table A17. c-InP – thermophysical properties
886
+ Property
887
+ Value
888
+ Ref.
889
+ ρ, g/cm3
890
+ 4.81
891
+
892
+ Tm, K
893
+ 1335
894
+
895
+ Lm, J/kg
896
+ 3.4 × 105
897
+ [57]
898
+ cp, J/kg K
899
+ 2.33 × 10-2T + 347
900
+ [54]
901
+ κ, W/mK
902
+ 1.215 × 105T -1.324
903
+ [54]
904
+
905
+ Table A18. c-InP – optical properties
906
+ 532 nm
907
+ Value
908
+ Ref.
909
+ n
910
+ 3.702
911
+ [41]
912
+ k
913
+ 0.429
914
+ [41]
915
+ R
916
+ 0.335
917
+ Calculated
918
+ α, 1/m
919
+ 1.013 × 106
920
+ Calculated
921
+ 694 nm
922
+
923
+
924
+ n
925
+ 3.49
926
+ [41]
927
+ k
928
+ 0.27
929
+ [41]
930
+ R
931
+ 0.31
932
+ Calculated
933
+ ��, 1/m
934
+ 4.82 × 106
935
+ Calculated
936
+
937
+
938
+ Table A19. Liquid -InP – thermophysical properties
939
+ Property
940
+ Value
941
+ Ref.
942
+ cp, J/kg K
943
+ 424
944
+ [46]
945
+ κ, W/mK
946
+ 22.8
947
+ [46]
948
+
949
+ References
950
+
951
+ 1. R. T. Young, R. F. Wood, J. Narayan, C. W. White, W. H. Christie, Pulsed laser
952
+ techniques for solar cell processing, IEEE Trans. Electron Devices 27, 807–815 (1980).
953
+ 2. M. O. Thompson, G. J. Galvin, J. W. Mayer, P. S. Peercy, J. M. Poate, D. C. Jacobson,
954
+ A. G. Cullis, N. G. Chew, Melting temperature and explosive crystallization of
955
+ amorphous silicon during pulsed laser irradiation, Phys. Rev. Let. 52, 2360–2363 (1984).
956
+ 3. V. A. Volodin, G. K. Krivyakin, A. V. Bulgakov, Y. Levy, J. Beránek, S. Nagisetty, Z.
957
+ Bryknar, N. M. Bulgakova, P. V. Geydt, A. A. Popov, Picosecond infrared laser
958
+ crystallization of Ge layers in Ge/Si multi-nanolayers for optoelectronic applications,
959
+ Proc. SPIE 12157, 1215702 (2022).
960
+ 4. F. Vega, R. Serna, C. N. Afonso, D. Bermejo, G. Tejeda, Relaxation and crystallization
961
+ kinetics of amorphous germanium films by nanosecond laser pulses, J. Appl. Phys. 75,
962
+ 7287–7291 (1994).
963
+ 5. S. De Unamuno, E. Fogarassy, A thermal description of the melting of c- and a-silicon
964
+ under pulsed excimer lasers, Appl. Surf. Sci. 36, 1–11 (1989).
965
+ 6. C. K. Ong, H. S. Tan, E. H. Sin, Calculations of melting threshold energies of crystalline
966
+ and amorphous materials due to pulsed-laser irradiation, Mat. Sci. Eng. 79, 79–85 (1986).
967
+ 7. P. Baeri, S. U. Campisano, G. Foti, E. Rimini, A melting model for pulsing-laser
968
+ annealing of implanted semiconductors, J. Appl. Phys. 50, 788–797 (1979).
969
+ 8. T. Kim, M. R. Pillai, M. J. Aziz, M. A. Scarpulla, O. D. Dubon, K. M. Yu, J. W. Beeman,
970
+ M. C. Ridgway, Heat flow model for pulsed laser melting and rapid solidification of ion
971
+ implanted GaAs, J. Appl. Phys. 108, 013508 (2010).
972
+ 9. G. E. Jellison, D. H. Lowndes, D. N. Mashburn, R. F. Wood, Time-resolved reflectivity
973
+ measurements on silicon and germanium using a pulsed excimer KrF laser heating beam,
974
+ Phys. Rev. B 34, 2407–2415 (1986).
975
+ 10. G. D. Ivlev, V. L. Malevich, Heating and melting of single-crystal germanium by
976
+ nanosecond laser pulses, Soviet J. Quant. Electron. 18, 1626–1627 (1988).
977
+ 11. J. Solis, C. N. Afonso, Early stages of melting in Si under nanosecond laser pulse
978
+ irradiation: A time-resolved study, J. Appl. Phys. 69, 2105–2111 (1991).
979
+ 12. B. J. Garcia, J. Martinez, J. Piqueras, Laser melting of GaAs covered with thin metal
980
+ layers, Appl. Phys. A 51, 437–445 (1990).
981
+ 13. A. Pospieszczyk, M. A. Harith, B. Stritzker, Pulsed laser annealing of GaAs and Si:
982
+ Combined reflectivity and time-of-flight measurements, J. Appl. Phys. 54, 3176–3182
983
+ (1983).
984
+ 14. Xueming Lv, Yunxiang Pan, Zhichao Jia, Zewen Li, Hongchao Zhang, Xiaowu Ni, Laser-
985
+ induced damage threshold of silicon under combined millisecond and nanosecond laser
986
+ irradiation, J. Appl. Phys. 121, 113102 (2017).
987
+
988
+ 15. A. Medvids, J. Kaupuzs, P. Onufrijevs, A.L. Grase, A. Zukuls, Colossal laser ablation
989
+ threshold of Ge crystal due to formation of GeO2 nanolayer: "Lid Effect" - Subsurface
990
+ boiling mechanism, Opt. Laser Technol. 119, 105630 (2019).
991
+ 16. F.F. Komarov, N. S. Nechaev, G. D. Ivlev, L. A. Vlasukova, I.N. Parkhomenko, E.
992
+ Wendler, I. A. Romanov, Y. Berencéne, V. V. Pilko, D. V. Zhigulin, A. F. Komarov,
993
+ Structural and optical properties of Si hyperdoped with Te by ion implantation and pulsed
994
+ laser annealing, Vacuum, 178, 109434 (2020).
995
+ 17. H. Kiyota, K. Hara, M. Jankowski, M.M. Fejer, Numerical simulation and validation of
996
+ subsurface modification and crack formation induced by nanosecond-pulsed laser
997
+ processing in monocrystalline silicon, J. Appl. Phys. 127, 085106 (2020).
998
+ 18. N. Casquero, C. Ruiz de Galarreta, Y. Fuentes-Edfuf, J. Solis, C. David Wright, J. Siegel,
999
+ Propagation dynamics of the solid–liquid interface in Ge upon ns and fs laser irradiation,
1000
+ J. Phys. D: Appl. Phys. 55, 365104 (2022).
1001
+ 19. J. Boneberg, J. Bischof, P. Leiderer, Nanosecond time-resolved reflectivity determination
1002
+ of the melting of metals upon pulsed laser annealing, Opt. Comm. 174, 145–149 (2000).
1003
+ 20. M. Toulemonde, S. Unamuno, R. Heddache, M. O. Lampert, M. Hage-Ali, P. Siffert,
1004
+ Time-resolved reflectivity and melting depth measurements using pulsed ruby laser on
1005
+ silicon, Appl. Phys. A 36, 31–36 (1985).
1006
+ 21. G. J. Galvin, M. O. Thompson, J. W. Mayer, P. S. Peercy, R. B. Hammond, N. Paulter,
1007
+ Time-resolved conductance and reflectance measurements of silicon during pulsed-laser
1008
+ annealing, Phys. Rev. B 27, 1079–1087 (1983).
1009
+ 22. D. Bäuerle, Laser Processing and chemistry, 4th Edition (Springer, 2011).
1010
+ 23. A. V. Bulgakov, A. B. Evtushenko, Y. G. Shukhov, I. Ozerov, W. Marine, Pulsed laser
1011
+ ablation of binary semiconductors: Mechanisms of vaporisation and cluster formation,
1012
+ Quantum Electron. 40, 1021–1033 (2010).
1013
+ 24. S. P. Zhvavyi, G. L. Zykov, Simulation of dynamics of phase transitions in CdTe by
1014
+ pulsed laser irradiation, Appl. Surf. Sci. 253, 586–591 (2006).
1015
+ 25. S. P. Zhvavyi, G. D. Ivlev, Influence of the initial temperature of silicon on
1016
+ crystallization of a layer melted by nanosecond laser heating, J. Eng. Phys. Thermophys.
1017
+ 69, 608–611 (1996).
1018
+ 26. N. M. Bulgakova, A. V. Bulgakov, L. P. Babich, Energy balance of pulsed laser ablation:
1019
+ thermal model revised, Appl. Phys. A 79, 1323–1326 (2004).
1020
+ 27. S. Mazumder, Numerical methods for partial differential equations: Finite difference and
1021
+ finite volume methods (Academic Press, 2016).
1022
+ 28. S. K. Godunov, V. S. Ryabenkii, E. M. Gelbard, Difference schemes: An introduction to
1023
+ the underlying theory (Elsevier, 1987).
1024
+ 29. T. J.-Y. Derrien, N. M. Bulgakova, Modeling of silicon in femtosecond laser-induced
1025
+ modification regimes: Accounting for Ambipolar Diffusion, Proc. SPIE 10228, 102280E
1026
+ (2017).
1027
+ 30. V. A. Gnatyuk, T. Aoki, O. S. Gorodnychenko, Y. Hatanaka, Solid-liquid phase
1028
+ transitions in CdTe crystals under pulsed laser irradiation, Appl. Phys. Lett. 83, 3704–
1029
+ 3706 (2003).
1030
+ 31. S. A. Lizunov, A. V. Bulgakov, E. E. Campbell, N. M. Bulgakova, Melting of gold by
1031
+ ultrashort laser pulses: Advanced two-temperature modeling and comparison with surface
1032
+ damage experiments, Appl. Phys. A 128, 602 (2022).
1033
+
1034
+ 32. D. H. Lowndes, R. F. Wood, R. D. Westbrook, Pulsed neodymium: yttrium aluminum
1035
+ garnet laser (532 nm) melting of crystalline silicon: Experiment and theory, Appl. Phys.
1036
+ Lett. 43, 258–260 (1983).
1037
+ 33. D. H. Auston, J. A. Golovchenko, A. L. Simons, R. E. Slusher, P. R. Smith, C. M. Surko,
1038
+ T. N. C. Venkatesan, Dynamics of laser annealing, AIP Conf. Proc. 50, 11-26 (1979).
1039
+ 34. L. V. Gurvich, I. V. Veyts, C. B. Alcock, Thermodynamic properties of individual
1040
+ substances. Vol. 2, Elements C, Si, Ge, Sn, Pb, and their compounds, 1st Edition (CRC
1041
+ Press, 1990).
1042
+ 35. Y. B. Magomedov, G. G. Gadjiev, High-temperature thermal conductivity of silicon in
1043
+ the solid and liquid states, High Temp. 46, 422–424 (2008).
1044
+ 36. G. E. Jellison, F. A. Modine, Optical absorption of silicon between 1.6 and 4.7 EV at
1045
+ elevated temperatures, Appl. Phys. Lett. 41, 180–182 (1982).
1046
+ 37. M. S. Fuchs, Optical properties of liquid silicon: The Integral Equation Approach, J.
1047
+ Phys.: Condens. Matter 12, 4341–4351 (2000).
1048
+ 38. G. E. Jellison, D. H. Lowndes, Measurements of the optical properties of liquid silicon
1049
+ and germanium using nanosecond time‐resolved ellipsometry, Appl. Phys. Lett. 51, 352–
1050
+ 354 (1987).
1051
+ 39. B. N. Chichkov, C. Momma, S. Nolte, F. von Alvensleben, A. Tünnermann,
1052
+ Femtosecond, picosecond and nanosecond laser ablation of solids, Appl. Phys. A 63, 109-
1053
+ 115 (1996).
1054
+ 40. S. M. Sze, Physics of semiconductor devices, 2nd Edition (John Wiley and Sons, 1981).
1055
+ 41. D. E. Aspnes, A. A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP,
1056
+ GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV, Phys. Rev. B 27, 985–1009 (1983).
1057
+ 42. T. N. Nunley, N. S. Fernando, N. Samarasingha, J. M. Moya, C. M. Nelson, A. A.
1058
+ Medina, S. Zollner, Optical constants of germanium and thermally grown germanium
1059
+ dioxide from 0.5 to 6.6 eV via a multisample ellipsometry investigation, J. Vac. Sci.
1060
+ Technol. B 34, 061205 (2016).
1061
+ 43. W. Szyszko, F. Vega, C. N. Afonso, Shifting of the thermal properties of amorphous
1062
+ germanium films upon relaxation and crystallization, Appl. Phys. A Mat. Sci. Process.
1063
+ 61, 141–147 (1995).
1064
+ 44. E. Yamasue, M. Susa, H. Fukuyama, K. Nagata, Thermal conductivities of silicon and
1065
+ germanium in solid and liquid states measured by non-stationary hot wire method with
1066
+ silica coated probe, J. Cryst. Growth 234, 121–131 (2002).
1067
+ 45. J. S. Blakemore, Semiconducting and other major properties of gallium arsenide, J. Appl.
1068
+ Phys. 53, 123-181 (1982).
1069
+ 46. A. S. Jordan, Estimated thermal diffusivity, Prandtl number and Grashof number of
1070
+ molten GaAs, InP, and GaSb, J. Cryst. Growth 71, 551–558 (1985).
1071
+ 47. D. E. Aspnes, S. M. Kelso, R. A. Logan, R. Bhat, Optical properties of AlxGa(1−x)As, J.
1072
+ Appl. Phys. 60, 754–767 (1986).
1073
+ 48. K. Papatryfonos, T. Angelova, A. Brimont, B. Reid, S. Guldin, P. R. Smith, et al.,
1074
+ Refractive indices of MBE-grown AlxGa(1−x)As ternary alloys in the transparent
1075
+ wavelength region, AIP Adv. 11, 025327 (2021).
1076
+ 49. O. A. Bulgakova, N. M. Bulgakova,V. P. Zhukov, A model of nanosecond laser ablation
1077
+ of compound semiconductors accounting for non-congruent vaporization, Appl. Phys.
1078
+ A 101, 53–59 (2010).
1079
+ 50. R. O. Bell, M. Toulemonde, P. Siffert, Calculated temperature distribution during laser
1080
+ annealing in silicon and cadmium telluride, Appl. Phys. 19, 313–319 (1979).
1081
+
1082
+ 51. A. A. Kovalev, S. P. Zhvavyi, G. L. Zykov, Dynamics of laser-induced phase transitions
1083
+ in cadmium telluride, Semiconductors 39, 1299-1303 (2005).
1084
+ 52. K. Zanio, Cadmium Telluride. In: Willardson R.K. and Beer A.C. (eds.) Semiconductors
1085
+ and Semimetals, vol. 13 (Academic Press, 1978).
1086
+ 53. S. Adachi, T. Kimura, N. Suzuki, Optical properties of CdTe: Experiment and modeling,
1087
+ J. Appl. Phys. 74, 3435–3441 (1993).
1088
+ 54. A. S. Jordan, Some thermal and mechanical properties of InP essential to crystal growth
1089
+ modeling, J. Cryst. Growth 71, 559-565 (1985).
1090
+ 55. M. Homa, N. Sobczak, Measurements of temperature and heat of phase transformation of
1091
+ pure silicon by using differential scanning calorimetry. J Therm. Anal. Calorim. 138,
1092
+ 4215-4221 (2019).
1093
+ 56. M. A. Scarpulla, III-Mn-V ferromagnetic semiconductors synthesized by ion implantation
1094
+ and pulsed-laser melting. (University of California, Berkeley, 2006).
1095
+ 57. D. Richman, E. F. Hockings, The Heats of Fusion of InSb, InAs, GaAs, and InP, J.
1096
+ Electrochem. Soc. 112, 461–462 (1965).
1097
+
1098
+
1099
+
1100
+
1101
+
1102
+
1103
+ Fig. 1. (a) Surface temperature (solid lines) and molten fraction (dot-dashed lines) of
1104
+ germanium obtained in the modelling for different laser fluences (694-nm, 70-ns pulse). The
1105
+ laser temporal profile is shown by the dashed line. (b) Duration of increased reflectivity in the
1106
+ experiments [10] and the melt duration obtained in our simulations.
1107
+
1108
+
1109
+
1110
+ 1400
1111
+ (a)
1112
+ 370 mJ/cm2
1113
+ (b)
1114
+ 400mJ/cm2
1115
+ Y 1200
1116
+ 480mJ/cm2
1117
+ TEMPERATURE,
1118
+ 0.8
1119
+ laserpulse
1120
+ DURATION, μS
1121
+ 1000
1122
+ 0.6
1123
+ 800
1124
+ FRACTION
1125
+ 600
1126
+ 0.4
1127
+ SURFACE
1128
+ MELT
1129
+ 400
1130
+ 0.2
1131
+ 200
1132
+ 0.5
1133
+ MOLTEN
1134
+ [10]
1135
+ Thiswork
1136
+ 0
1137
+ 0
1138
+ 0
1139
+ 0
1140
+ 50
1141
+ 100
1142
+ 150
1143
+ 200
1144
+ 250
1145
+ 300
1146
+ 0
1147
+ 0.5
1148
+ 1
1149
+ 1.5
1150
+ 2
1151
+ 2.5
1152
+ 3
1153
+ TIME, ns
1154
+ LASER FLUENCE, J/cm2
1155
+ Fig. 2. Comparison of the results obtained by modelling in Ref. [12] and in this work for GaAs
1156
+ irradiated by 694-nm, 15-ns laser pulses. (a) The depth of molten material as a function of time
1157
+ for several laser fluences (reprinted with permission from Garcia [12]). (b) The results of the
1158
+ present modeling for laser fluences of 263 mJ/cm2 (corresponding to the defined melting
1159
+ threshold) and 300 mJ/cm2. The temporal evolution of the melt depth at 300 mJ/cm2 is also
1160
+ given to compare with Ref. [12]. The laser pulse is shown by the dashed line.
1161
+
1162
+
1163
+
1164
+
1165
+
1166
+ 3500
1167
+ 1600
1168
+ a
1169
+ K
1170
+ (b)
1171
+ 1500
1172
+ 3000
1173
+ TEMPERATURE,
1174
+ 1400
1175
+ x(8)
1176
+ 2500
1177
+ E=0.6J/cm²
1178
+ 1300
1179
+ DEPTH
1180
+ 2000
1181
+ 0.5
1182
+ 1200
1183
+ 300mJ/cm2
1184
+ wu
1185
+ 1500
1186
+ 0.4
1187
+ 1100
1188
+ DEPTH,
1189
+ MELTED
1190
+ 263mJ/cm2
1191
+ 20
1192
+ SURFACE
1193
+ 1000
1194
+ 0.35
1195
+ 1000
1196
+ 0.3
1197
+ 900
1198
+ 10
1199
+ 500
1200
+ MELT
1201
+ 800
1202
+ 700
1203
+ 0
1204
+ 0
1205
+ 50
1206
+ 100
1207
+ 150
1208
+ 200
1209
+ 250
1210
+ 0
1211
+ 20
1212
+ 40
1213
+ 60
1214
+ 80
1215
+ 100
1216
+ TIME t(ns)
1217
+ TIME, ns
1218
+
1219
+ Fig. 3. (a) The number of Ga and As atoms emitted from the GaAs surface irradiated by 694-
1220
+ nm, 20-ns laser pulses as a function of laser fluence as derived from mass spectrometric
1221
+ measurements (adapted from [13]). Transient uneven and developed manifestations of
1222
+ increased reflectivity indicating the appearance of the liquid phase are marked by shaded region
1223
+ and solid line, respectively. Our simulated melting threshold is shown by vertical dashed line.
1224
+ (b) The simulated dynamics of the surface temperature with the identified melting threshold of
1225
+ 282 mJ/cm2. The laser pulse profile is shown by the dashed line.
1226
+
1227
+
1228
+
1229
+ 105
1230
+ 1600
1231
+ PARTICLES, arb.un.
1232
+ (a)
1233
+ K
1234
+ (b)
1235
+ TEMPERATURE,
1236
+ 1500
1237
+ 104
1238
+ 1400
1239
+ O
1240
+ 1300
1241
+ 103
1242
+ 300mJ/cm²
1243
+ 1200
1244
+ 00
1245
+ 282 mJ/cm²
1246
+ 1100
1247
+ 260mJ/cm2
1248
+ NUMBEROFF
1249
+ 102
1250
+ GaAs
1251
+ Ga
1252
+ SURFACE
1253
+ 1000
1254
+ As
1255
+ 101
1256
+ 900
1257
+ -
1258
+ 800
1259
+ 100
1260
+ 700
1261
+ 0
1262
+ 0.1
1263
+ 0.2
1264
+ 0.3
1265
+ 0.4
1266
+ 0.5
1267
+ 0.6
1268
+ 0
1269
+ 20
1270
+ 40
1271
+ 60
1272
+ 80
1273
+ 100
1274
+ LASERFLUENCE,J/cm?
1275
+ TIME, ns
1276
+
1277
+ Fig. 4. Calculated melting thresholds of the studied semiconductors for different laser
1278
+ wavelengths as a function of the Bäuerle parameter PB, Eq. (8). The numbers above the points
1279
+ correspond to the laser pulse duration in nanoseconds. The line represents a power-law least-
1280
+ squares fit of the data.
1281
+
1282
+
1283
+ 1000
1284
+ N
1285
+ CALCULATEDMELTINGTHRESHOLD,mJ/cm
1286
+ 30
1287
+ 70.
1288
+ Si
1289
+ 15
1290
+ Ge
1291
+ InP
1292
+ 30
1293
+ 400
1294
+ CdTe
1295
+ 02
1296
+ 30
1297
+ GaAs
1298
+ 20
1299
+ 70
1300
+ 18
1301
+ 15
1302
+ 30
1303
+ 30
1304
+ 30
1305
+ 15
1306
+ 15
1307
+ 15
1308
+ 7
1309
+ 70
1310
+ 100-
1311
+ 694 nm
1312
+ 30
1313
+ 15
1314
+ 532 nm
1315
+ 308 nm
1316
+ 20
1317
+ 248 nm
1318
+ 40
1319
+ 400
1320
+ 1000
1321
+ 2000
1322
+ 5000
1323
+ BAUERLEPARAMETERP
1324
+ mJ/cm2
5tA0T4oBgHgl3EQfN_8L/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tE4T4oBgHgl3EQfbwzK/content/tmp_files/2301.05078v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
5tE4T4oBgHgl3EQfbwzK/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE3T4oBgHgl3EQfRwmH/content/tmp_files/2301.04425v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
8NE3T4oBgHgl3EQfRwmH/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
8dFLT4oBgHgl3EQfBS4r/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c77afd40c9fc02ff40b1eaec37a85cf2f989d2bb5398352f3cc08141b19b6968
3
+ size 2097197
A9AzT4oBgHgl3EQf__9t/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b6a4b9cd936edc21b43ddd4098ea8c7fbd2adee9b8840a958fe27fa231563ba6
3
+ size 6553645
ANE0T4oBgHgl3EQfxgKB/content/tmp_files/2301.02647v1.pdf.txt ADDED
@@ -0,0 +1,2056 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Universal adaptive optics for microscopy through
2
+ embedded neural network control
3
+ Qi Hu1, Martin Hailstone2, Jingyu Wang1, Matthew Wincott1, Danail Stoychev2, Huriye
4
+ Atilgan3, Dalia Gala2, Tai Chaiamarit2, Richard M. Parton2, Jacopo Antonello1, Adam M.
5
+ Packer3, Ilan Davis2, and Martin J. Booth1,*
6
+ 1Department of Engineering Science, University of Oxford
7
+ 2Department of Biochemistry, University of Oxford
8
+ 3Department of Physiology, Anatomy, and Genetics, University of Oxford
9
10
+ ABSTRACT
11
+ The resolution and contrast of microscope imaging is often affected by aberrations introduced by imperfect optical systems
12
+ and inhomogeneous refractive structures in specimens. Adaptive optics (AO) compensates these aberrations and restores
13
+ diffraction limited performance. A wide range of AO solutions have been introduced, often tailored to a specific microscope type
14
+ or application. Until now, a universal AO solution – one that can be readily transferred between microscope modalities – has
15
+ not been deployed. We propose versatile and fast aberration correction using a physics-based machine learning (ML) assisted
16
+ wavefront-sensorless AO control method. Unlike previous ML methods, we used a bespoke neural network (NN) architecture,
17
+ designed using physical understanding of image formation, that was embedded in the control loop of the microscope. The
18
+ approach means that not only is the resulting NN orders of magnitude simpler than previous NN methods, but the concept is
19
+ translatable across microscope modalities. We demonstrated the method on a two-photon, a three-photon and a widefield
20
+ three-dimensional (3D) structured illumination microscope. Results showed that the method outperformed commonly-used
21
+ modal-based sensorless AO methods. We also showed that our ML-based method was robust in a range of challenging
22
+ imaging conditions, such as extended 3D sample structures, specimen motion, low signal to noise ratio and activity-induced
23
+ fluorescence fluctuations. Moreover, as the bespoke architecture encapsulated physical understanding of the imaging process,
24
+ the internal NN configuration was no-longer a “black box”, but provided physical insights on internal workings, which could
25
+ influence future designs.
26
+ Introduction
27
+ The imaging quality of high-resolution optical microscopes is often detrimentally affected by aberrations which result in
28
+ compromised scientific information in the images. These aberrations can arise from imperfections in the optical design of the
29
+ microscope, but are most commonly due to inhomogeneous refractive index structures within the specimen. Adaptive optics
30
+ (AO) has been built into many microscopes, restoring image quality through aberration correction by reconfigurable elements,
31
+ such as deformable mirrors (DMs) or liquid crystal spatial light modulators (LC-SLMs).1–6 Applications of AO-enabled
32
+ microscopes have ranged from deep tissue imaging in multiphoton microscopy through to the ultra-high resolution required for
33
+ optical nanoscopy. This range of applications has led to a wide variety of AO solutions that have invariably been tailored to a
34
+ specific microscope modality or application.
35
+ There are two main classes AO operation: in one case, a wavefront sensor measures aberrations; in the other case,
36
+ aberrations are inferred from images – so called “wavefront sensorless AO”, or “sensorless AO” for short. For operations
37
+ with a wavefront sensor, phase aberrations are measured directly by wavefront sensors such as a Shack-Hartmann sensor7,8 or
38
+ an interferometer9–11. Such operations are direct and fast but also have intrinsic disadvantages such as requiring a complex
39
+ optical design and suffering from non-common path errors. Furthermore, such wavefront sensors often have limitations and
40
+ are less versatile. For example, an interferometer requires a coherent source and all such methods suffer from problems due
41
+ to out-of-focus light. On the other hand, sensorless AO methods normally function with a simpler optical design and thus
42
+ are more easily adaptable for a wide range of imaging applications. However, sensorless AO methods are based on iterative
43
+ deductions of phase aberrations and thus tend to be more time consuming; this is coupled with repeated and prolonged sample
44
+ exposures, which inevitably lead to photo-damage or motion related errors.
45
+ There have been many developments in AO technology, and in particular sensorless AO methods. Conventionally, sensorless
46
+ AO operates based on the principle that the optimal image quality corresponds to the best aberration correction12,13. A suitably
47
+ defined metric, such as the total signal intensity14–27 or a spatial frequency based sharpness metric28–33, is used to quantify the
48
+ arXiv:2301.02647v1 [eess.IV] 6 Jan 2023
49
+
50
+ image quality. Phase is modulated by the AO while this quality metric reading is measured and optimised. There have been
51
+ discussions on how the phase should be modulated12,24,34,35 and how the optimisation algorithm should be designed21,36–38.
52
+ However, as mentioned before, such “conventional” sensorless AO methods depend on iterative optimisation of a scalar metric,
53
+ where all image information is condensed into a single number, and the optimisation process is usually through mode by mode
54
+ adjustment. Such methods were thus not the most efficient approach to solving this multi-dimensional optimisation problem and
55
+ the effective range of correction was limited. While a higher dimensional metric was considered to extract more information
56
+ from images39, the optimisation of such a vector metric was not straightforward.
57
+ While the utility of each of these conventional sensorless AO methods has been demonstrated separately, each method had
58
+ been defined for a particular microscope type and application. Until now, no such AO solution has been introduced that can be
59
+ universally transferred between microscope modalities and applications.
60
+ We propose in this article a new approach to sensorless AO that addresses the limitations of previous methods and provides
61
+ a route to a universal AO solution that is applicable to any form of microscopy. This solution is constructed around a physics-
62
+ based machine learning (ML) framework that incorporates novel neural network (NN) architectures with carefully crafted
63
+ training procedures, in addition to data pre-processing that is informed by knowledge of the image formation process of the
64
+ microscope. The resulting NN is embedded into the control of the microscope, improving the efficiency and range of sensorless
65
+ AO estimation beyond that possible with conventional methods. This approach delivers versatile aberration measurement and
66
+ correction that can be adapted to the application, such as the correction of different types of aberration, over an increased range
67
+ of aberration size, across different microscope modalities and specimens.
68
+ In recent years, machine learning (ML) has been trialled in AO for its great computational capability to extract and
69
+ process information. However, many of these approaches required access to point spread functions (PSFs) or experimentally
70
+ acquired bead images40–46 ; these requirements limited the translatability of these methods to a wider range of applications.
71
+ Reinforcement learning was applied to correct for phase aberrations when imaging non point-like objects47; however, the
72
+ method still involved iterative corrections and was not advantageous in terms of its correction efficiency, accuracy and correction
73
+ working range compared to conventional sensorless AO algorithms. Untrained neural networks (NN) were used to determine
74
+ wavefront phase and were demonstrated on non point-like objects48,49; however, such methods were reported to normally
75
+ require a few minutes of network convergence, which limits their potential in live imaging applications.
76
+ Our new approach differs considerably from previous ML assisted aberration estimation, as previous methods mostly
77
+ employed standard deep NN architectures that used raw images as the input data. Our method builds upon physical knowledge
78
+ of the imaging process and is designed around the abilities of the AO to introduce aberration biases, which improve the
79
+ information content of the NN input data. This approach means that the resulting NN is orders of magnitude simpler, in terms
80
+ of trainable parameters, than previous NN methods (See Table S1 in supplemental document). Furthermore, our method is
81
+ readily translatable across microscope modalities. As NN training is carried out on a synthetic data set, adaptation for a different
82
+ modality simply requires regeneration of the image data using a new imaging model. The NN architecture and training process
83
+ are otherwise similar.
84
+ To illustrate the versatility of this concept, we have demonstrated the method on three different types of fluorescence
85
+ microscopes with different forms of AO corrector: a two-photon (2-P) microscope using a SLM, a three-photon (3-P) intravital
86
+ microscope using a DM, and a widefield three dimensional (3-D) SIM microscope using a DM. In all cases, we showed that the
87
+ new method outperformed commonly used conventional sensorless AO methods. The results further showed that the ML-based
88
+ method was robust in a range of challenging imaging conditions, such as specimen motion, low signal to noise ratio, and
89
+ fluorescence fluctuations. Moreover, as the bespoke architecture encapsulated into its design physical understanding of the
90
+ imaging process, there was a link between the weights in the trained NN and physical properties of the imaging process. This
91
+ means that the internal NN configuration needs no-longer to be considered as a “black box”, but can be used to provide physical
92
+ insights on internal workings and how information about aberrations is encoded into images.
93
+ Concept and implementation
94
+ The overall MLAO concept is illustrated in Figure 1. The experimental application follows closely the concept of modal
95
+ sensorless AO, whereby a sequence of images are taken, each with a different bias aberration applied using the adaptive element.
96
+ The set of images are then used as the input to the ML-enabled estimator, which replaces the previous conventional method
97
+ of optimisation of an image quality metric. The estimated correction aberration is then applied to the adaptive element. If
98
+ necessary, the process can be iterated for refined correction. The significant advantage of the new method is the way in which
99
+ the estimator can more efficiently use image information to determine the aberration correction.
100
+ The concept has been designed in order to achieve particular capabilities that extend beyond those of conventional sensorless
101
+ AO. The new method should ideally achieve more efficient aberration estimation from fewer images, to reduce time and
102
+ exposure of measurement. It should operate over a larger range of aberration amplitudes, compared to previous methods. A
103
+ particular estimator should be robust to variations between similar microscopes and the concept should be translatable across
104
+ 2/16
105
+
106
+ (a)
107
+ Microscope
108
+ Adaptive
109
+ element
110
+ Initial
111
+ Corrected
112
+ Image2
113
+ Image1
114
+ Efficient MLAO estimation
115
+ Corrected image
116
+ Aberrated image
117
+ Iterative correction
118
+ (b)
119
+ Versatile
120
+ Network
121
+ training
122
+ (c)
123
+ F
124
+ =
125
+ F
126
+ Image2
127
+ Image1
128
+ Aberration
129
+ correction
130
+ Maximum
131
+ pixel
132
+ reading
133
+ Small
134
+ scale
135
+ feature
136
+ Large
137
+ scale
138
+ feature
139
+ Shape
140
+ bespoke CNN
141
+ FCL
142
+ F -1
143
+ Image pre-processing
144
+ Convolution
145
+ +
146
+ local
147
+ maxpooling
148
+ Global
149
+ maxpooling
150
+ Fully
151
+ connected
152
+ Pseudo-PSF
153
+ Image variations
154
+ Synthesised images
155
+ Image = Object ∗ PSF + Noise
156
+ microscope imaging model
157
+ PSF2-P, PSF3-P, PSFWF
158
+ Fluorescence
159
+ fluctuations
160
+ Spatial
161
+ sampling
162
+ size
163
+ Sample
164
+ motion
165
+ Sample
166
+ structure/
167
+ sparsity
168
+ Aberration
169
+ and
170
+ brightness
171
+ Detector,
172
+ photon and
173
+ structured
174
+ noise
175
+ 3-D
176
+ structures/
177
+ background
178
+ Figure 1. The MLAO concept. (a) Overview of the AO correction process. A minimum of two bias aberrations were
179
+ introduced by the adaptive element; corresponding images of the same field were captured. The images were passed to the
180
+ MLAO estimator, which determined the Zernike coefficients for correction. The correction speed was limited only by the speed
181
+ of image acquisition, not by computation. (b) Training data generation. A range of image variations were included in the
182
+ synthetic data set for NN training to cope with variations in real experimental scenarios. The data was a combination of
183
+ artificial and real microscope images, chosen to model a wide range of realistic specimen structures. Images were created
184
+ through convolution of specimen structures with an appropriate PSF, generated for the specific microscope modality,
185
+ incorporating aberrations. (c) Image pre-processing and NN architecture. Images were pre-processed to compute pseudo-PSFs,
186
+ which were predominantly independent of specimen structure. F and F −1 represent the forward and inverse Fourier
187
+ transform, respectively. A central cropped region of the pseudo-PSF images was used as the inputs to a CNN. The CNN was
188
+ designed and trained specifically for aberration determination. The output from the overall network was the correction
189
+ coefficients for the Zernike modes. The NN architecture was such that the convolutional layer outputs could be correlated with
190
+ spatial scales of the aberration effects on the pseudo-PSFs and hence the imaging process. Hence, the distribution of weights in
191
+ the network had physical relevance.
192
+ 3/16
193
+
194
+ 3
195
+ 2
196
+ 1
197
+ 0
198
+ -1
199
+ -2
200
+ -3different microscope types and applications. From a practical perspective, it is also important that training can be performed on
201
+ synthetic data, as it would be impractical to obtain the vast data set necessary for training from experimentally obtained images.
202
+ An essential step towards efficient use of image data is the image pre-processing before they are presented to the NN. Rather
203
+ than taking raw image data as the inputs, the NN receives pre-processed data calculated from pairs of biased images, which we
204
+ term a “pseudo-PSF”, as shown in Fig. 1 and explained in the methods section. This pseudo-PSF contains information about
205
+ the input aberration and is mostly independent of the unknown specimen structure. By removing the specimen information at
206
+ this stage, we can reduce the demands on the subsequent NN, hence vastly simplifying the architecture required to retrieve the
207
+ aberration information.
208
+ As most of the useful information related to aberrations was contained within the central pixels of the pseudo-PSF, a region
209
+ of 32×32 pixels was extracted as the input to the NN. The first section of the NN was a bespoke convolutional layer that was
210
+ designed to extract information from the inputs at different spatial scales. The outputs from the convolutional layer were then
211
+ provided to a fully connected layer, which was connected to the output layer. Full details of the NN design are provided in the
212
+ methods and the supplementary information. This architecture – rather unusually – provided a link between the physical effects
213
+ of aberrations on the imaging process and the mechanisms within the NN, specifically through the weights at the output of the
214
+ first fully connected layer.
215
+ NN training was performed using a diverse set of synthesised training data. These images were calculated using an
216
+ appropriate model of the microscope imaging process in the presence of aberrations. Images were synthesised by convolutions
217
+ of specimen structures with a PSF, incorporating various likely experimental uncertainties and noise sources. The specimens
218
+ consisted of a range of artificial and realistic objects. Full details are provided in the methods.
219
+ This versatile concept could accommodate different aberration biasing strategies. Conventional modal sensorless AO
220
+ methods typically required a minimum of 2N +1 biased images to estimate N aberration modes21. However, the MLAO method
221
+ has the ability to extract more information out of the images, such that aberrations could be estimated with as few as two
222
+ images, although more biased images could provide better-conditioned information. In general, we defined methods that used
223
+ M differently biased images to estimate N Zernike modes for aberration correction. The input layer of the NN was adjusted
224
+ to accommodate the M image inputs for each method. Out of the many possibilities, we chose to illustrate the performance
225
+ using two biasing schemes: one using a single bias mode (astigmatism, Noll index50 i = 5) and one using all N modes that
226
+ were being corrected. In the first case, we used either two or four images (M = 2 or 4) each with different astigmatism bias
227
+ amplitude. We refer to these methods as ast2 MLAO or ast4 MLAO. Astigmatism was chosen as the most effective bias mode
228
+ (see supplementary document, section 6). In the second case, biased images were obtained for all modes being estimated
229
+ (M = 2N or 4N); this type is referred to in this paper as 2N MLAO or 4N MLAO. For a complete list of the settings for each
230
+ demonstration, please refer to Table S2 in the supplemental document.
231
+ Results
232
+ In order to show its broad application, the MLAO method was demonstrated in three different forms of microscopy: 2-P and 3-P
233
+ scanning microscopy and widefield 3-D structured illumination microscopy (SIM). This enabled testing in different applications
234
+ to examine its performance coping with different realistic imaging scenarios.
235
+ The MLAO methods were compared to two widely used conventional modal based sensorless AO methods (labelled as
236
+ 2N+1 conv and 3N conv). The 2N+1 conv method used two biased images per modulation mode and an additional zero
237
+ biased image to determine phase correction consisting N modes simultaneously. The 3N conv method used three images per
238
+ modulation mode (two biased and one unbiased images) and determined the coefficients of the modes sequentially. For both
239
+ methods, the bias size was chosen to be ±1 rad for each mode. A suitable metric was selected to quantify the image quality.
240
+ For each mode, the coefficients were optimised by maximising the quality metric of the corresponding images using a parabolic
241
+ fitting algorithm. When used in 2-P and 3-P demonstrations, the total fluorescence intensity metric was optimised. For the
242
+ widefield 3-D SIM microscope, a Fourier based metric was optimised51. For the details of the two conventional methods, please
243
+ refer to21,36.
244
+ Different functions were defined as optimisation metrics for the conventional AO methods, and also to assist quantifiable
245
+ comparisons of image quality improvement for the MLAO methods. These were defined as an intensity based metric yI, a
246
+ Fourier based metric yF, and a sharpness metric yS. Details are provided in the methods section.
247
+ Two-photon microscopy
248
+ A range of method validations were performed on a 2-P microscope that incorporated a SLM as the adaptive correction
249
+ element, including imaging bead ensembles and extended specimen structures. The experimental set-up of the 2-P system was
250
+ included in Figure S8 (a) in the supplemental document. In order to obtain controlled and quantitative comparisons between
251
+ different AO methods, the SLM was used to both introduce and correct aberrations. This enabled statistical analysis of MLAO
252
+ 4/16
253
+
254
+ performance with known input aberrations. System aberrations were first corrected using a beads sample before carrying out
255
+ further experiments.
256
+ We performed a statistical analysis to assess how MLAO algorithms (ast2 MLAO and 2N MLAO) performed in various
257
+ experimental conditions compared to conventional algorithms (2N+1 conv and 3N conv). Experiments were conducted on
258
+ fixed beads samples (Figure 2 (a, b)), and Bovine Pulmonary Artery Endothelial (BPAE) cells (FluoCellsTM Prepared Slide
259
+ #1) (Figure 2 (c - f)). Dependent on the experiment, either N = 5 or N = 9 Zernike modes were estimated (see Table S2 in
260
+ Supplemental document for details).
261
+ Statistical performance analysis
262
+ Figure 2 (a) and (b) showed statistical comparisons of the different correction methods. Figure 2 (a) displayed the residual
263
+ aberrations gathered from twenty experiments, each consisting of one correction cycle from random initial aberrations including
264
+ five Zernike modes. If the remaining aberration is below the pre-correction value, then the method provides effective aberration
265
+ correction. A wide shaded area indicated inconsistent and less reliable correction. The results show that when correcting small
266
+ aberrations with root mean square (RMS) = 0.63 to 1.19 rad, 2N MLAO performed similarly to 2N+1 conv. Between RMS =
267
+ 1.19 to 1.92 rad, 2N MLAO corrected more accurately (lower mean aberration) and also more reliably (smaller error range). For
268
+ large aberrations above RMS = 2.12 rad, 2N+1 conv completely failed, whereas the MLAO methods still improved aberration
269
+ correction. ast2 MLAO had poor performance at small aberrations (RMS = 0.63 to 0.84 rad) but provided reasonable correction
270
+ for large aberrations (RMS = 1.92 to 2.12 rad). However, it is important to note that ast2 MLAO required only two images for
271
+ each correction cycle, far fewer that the ten and eleven images required respectively for 2N MLAO and 2N+1 conv.
272
+ Figure 2 (b) displayed the mean value of metric yI from ten experiments against the number of images acquired during
273
+ multiple iterations of the different correction methods. The corrected aberrations consisted of nine Zernike modes. It was shown
274
+ that ast2 MLAO corrects the fastest initially when the input aberration is large but converges to a moderate signal level, which
275
+ indicates only partial correction of the aberration. 2N MLAO corrects more quickly and to a higher level than the conventional
276
+ algorithms. The narrower error bars for both MLAO algorithms at the end of the correction process indicate that they are more
277
+ reliable than the two conventional methods.
278
+ Correction on extended specimen structures
279
+ Figure 2 (c)-(f) showed experimental results when imaging microtubules of BPAE cells. Specimen regions were chosen to
280
+ illustrate performance on different structures: (c) contained mainly aligned fine fibrous structures; (d) contained some large
281
+ scale structures (bottom right); (e) contained fine and sparse features. For (f) we intentionally reduced illumination laser power
282
+ and increased detector gain to simulate an imaging scenario with very low signal to noise ratio (SNR). The images showed
283
+ structured noise at the background, which could pose a challenge to estimation performance. A large randomly generated
284
+ aberration (RMS = 2.12 to 2.23 rad) consisting of five (c and f) or nine (d and e) Zernike modes was used as the input aberration.
285
+ In (c), (d) and (e), ast2 MLAO corrected the fastest initially when the aberration was large but converged to a moderate level
286
+ of correction. 2N MLAO corrected faster in general than the conventional methods and converged to a higher level of correction.
287
+ In (f) when SNR was poor and structured noise was present, ast2 MLAO failed to correct while 2N MLAO continued to perform
288
+ consistently.
289
+ Three-photon intravital microscopy
290
+ Three-photon microscopy of neural tissue imaging is a particular challenge for sensorless AO, due to the inherently low
291
+ fluorescence signal levels. While this could be alleviated by averaging over time, problems are created due to specimen motion.
292
+ Further challenges are posed for functional imaging, due to the time dependence of emission from ion or voltage sensitive dyes.
293
+ The demonstrations here show the robustness of the new MLAO methods in experimental scenarios where the conventional
294
+ methods were not effective. Importantly, the MLAO methods were able to perform effective correction based on a small number
295
+ of image frames without averaging.
296
+ The experimental set-up of the 3-P system is shown in Figure S8 (b) in the supplemental document. The microscope used
297
+ an electromagnetic DM for aberration biasing and correction. Two MLAO methods, ast4 MLAO and 4N MLAO, were used
298
+ to correct aberrations by using single frame images as inputs. In each case, more input frames were chosen than in the 2-P
299
+ demonstrations, in order to cope with the lower SNR. The NNs were trained to estimate N = 7 Zernike modes. Two types of
300
+ mice were used to perform live brain imaging of green fluorescent protein (GFP) labelled cells (Figure 3 (a)) and functional
301
+ imaging in GCaMP-expressing neurons (Figure 3 (b)). In Figure 3 (a), results were collected at 660µm depth and power at
302
+ sample was 32 mW. In Figure 3 (b), imaging was at 250µm depth and power at sample was 19 mW. Further 3-P results were
303
+ included in the section 8 of supplemental document. For the details of the sample preparation, please refer to section 9B in
304
+ supplemental document.
305
+ Figure 3 (a) shows plots of the metrics yI and yF as proxies for correction quality when imaging GFP labelled cells. Both
306
+ ast4 MLAO and 4N MLAO networks successfully improved the imaging quality. Similar to the ast2 MLAO results in the 2-P
307
+ 5/16
308
+
309
+ A
310
+ B C
311
+ D
312
+ A
313
+ 5μm
314
+ B
315
+ C
316
+ D
317
+ No. of images
318
+ A
319
+ B
320
+ E
321
+ D
322
+ F
323
+ C
324
+ A
325
+ 5μm
326
+ B
327
+ C
328
+ D
329
+ E
330
+ F
331
+ B
332
+ D
333
+ C
334
+ E
335
+ F
336
+ No. of images
337
+ ast2 MLAO
338
+ 2N MLAO
339
+ A
340
+ 5μm
341
+ B
342
+ C
343
+ D
344
+ E
345
+ F
346
+ A
347
+ B
348
+ C
349
+ E
350
+ F
351
+ D
352
+ A
353
+ 5μm
354
+ B
355
+ C
356
+ D
357
+ E
358
+ F
359
+ (c)
360
+ (d)
361
+ (f)
362
+ No. of images
363
+ No. of images
364
+ A
365
+ 2.1 rad
366
+ 1.6 rad
367
+ 1.9 rad
368
+ 1.2 rad
369
+ 0.8 rad
370
+ 0.6 rad
371
+ (a)
372
+ (b)
373
+ A
374
+ B
375
+ C
376
+ E
377
+ F
378
+ D
379
+ D
380
+ E
381
+ F
382
+ C
383
+ B
384
+ A
385
+ 5μm
386
+ No. of images
387
+ yI
388
+ A
389
+ yI
390
+ yI
391
+ yI
392
+ yI
393
+ (e)
394
+ N = 5
395
+ N = 9
396
+ N = 5
397
+ N = 9
398
+ N = 9
399
+ N = 5
400
+ 0.6 0.8
401
+ 1.2
402
+ 1.6
403
+ 1.9 2.1
404
+ Applied aberration RMS (rad)
405
+ 1
406
+ 2
407
+ 3
408
+ 4
409
+ Remaining aberration RMS (rad)
410
+ Pre correction
411
+ 2N+1 conv
412
+ ast2 MLAO
413
+ 2N MLAO
414
+ 5μm
415
+ 0.0rad
416
+ Fine structure
417
+ Coarse structure
418
+ Sparse structure
419
+ Low SNR with
420
+ strructured noise
421
+ Figure 2. Comparative performance of MLAO methods in a 2-P microscope. (a) Residual aberration after one correction
422
+ cycle for three methods. Points show the mean and the shaded area indicates the standard deviations (SDs) of aberration
423
+ distributions. The images show an example field of view (FOV) when different amounts of a random aberration were
424
+ introduced. (b)-(f) show the intensity metric (yI) as a proxy for correction quality, against the number of images used for
425
+ multiple iterations of correction. Random aberrations consisting of N Zernike modes, as shown in the figure, were introduced
426
+ and corrected. In (b), an ensemble of ten random aberrations were corrected, imaging over the same FOV. Error bars on the plot
427
+ showed the SD of the fluorescence intensity before and after correction. (c)-(f) show specific corrections imaging microtubules
428
+ of BPAE cells, illustrating performance for different specimen structures and imaging conditions. The images were acquired
429
+ before and after correction through the different methods (as marked on the metric plots). Insets on the images show residual
430
+ wavefronts after correction for each image. The grayscale colorbars show phase in radians.
431
+ 6/16
432
+
433
+ 3N conv
434
+ 2N+1 conv
435
+ Fluorescence intensity
436
+ ast network
437
+ 2N network
438
+ 0
439
+ 10
440
+ 20
441
+ 30
442
+ number of sample exposures2元
443
+ 0
444
+ -22
445
+ T3N conv
446
+ 2N+1 conv
447
+ Fluorescence intensity
448
+ ast network
449
+ 2N network
450
+ 0
451
+ 10
452
+ 20
453
+ 30
454
+ number of sample exposures3N conv
455
+ 2N+1 conv
456
+ Fluorescence intensity
457
+ ast network
458
+ 2N network
459
+ 0
460
+ 10
461
+ 20
462
+ 30
463
+ number of sample exposures4.5元
464
+ 0
465
+ -4.5元3N conv
466
+ 2N+1 conv
467
+ Fluorescence intensity
468
+ ast network
469
+ 2N network
470
+ 0
471
+ 10
472
+ 20
473
+ 30
474
+ number of sample exposures3N conv
475
+ 2N+1 conv
476
+ Fluorescence intensity
477
+ ast network
478
+ 2N network
479
+ 0
480
+ 10
481
+ 20
482
+ 30
483
+ number of sample exposures1.5元
484
+ 0
485
+ -1.5元3N conv
486
+ 2N+1 conv
487
+ Fluorescence intensity
488
+ ast network
489
+ 2N network
490
+ 0
491
+ 10
492
+ 20
493
+ 30
494
+ number of sample exposures6
495
+ 4
496
+ 2
497
+ 0
498
+ -2
499
+ -4
500
+ -66
501
+ 4
502
+ 2
503
+ 0
504
+ -2
505
+ -4
506
+ -66
507
+ 4
508
+ 2
509
+ 0
510
+ -2
511
+ -4
512
+ -66
513
+ 4
514
+ 2
515
+ 0
516
+ -2
517
+ -4
518
+ -66
519
+ 4
520
+ 2
521
+ 0
522
+ -2
523
+ -4
524
+ -66
525
+ 2
526
+ 0
527
+ -2
528
+ -4
529
+ -62元
530
+ 0
531
+ -22
532
+ T2元
533
+ 0
534
+ -22
535
+ T(b) GCaMP at 250 μm
536
+ (a) static GFP at 660 μm
537
+ i
538
+ iv
539
+ 4N MLAO it:1
540
+ 20μm
541
+ ii
542
+ Pre MLAO
543
+ iii
544
+ ast4 MLAO it:5
545
+ yI
546
+ yF
547
+ 0
548
+ 4
549
+ 8 12 16 20
550
+ 28
551
+ ast4 MLAO
552
+ 4N MLAO
553
+ v
554
+ 0
555
+ 4
556
+ 8 12 16 20
557
+ 28
558
+ No. of images
559
+ ast4
560
+ it:5
561
+ 4N
562
+ it:1
563
+ vi
564
+ Post MLAO it:5
565
+ iii
566
+ 1
567
+ 1
568
+ Post MLAO
569
+ it:5
570
+ Pre
571
+ MLAO
572
+ 0
573
+ 50
574
+ 100
575
+ time / s
576
+ 4
577
+ 3
578
+ 2
579
+ it:1
580
+ Pre MLAO
581
+ ii
582
+ 20μm
583
+ A
584
+ B
585
+ C
586
+ D
587
+ E
588
+ F
589
+ G
590
+ H
591
+ ast4 MLAO
592
+ bias mode i = 5
593
+ 1
594
+ 3
595
+ 2
596
+ 4
597
+ -1
598
+ rad
599
+ -0.5
600
+ rad
601
+ +1
602
+ rad
603
+ +0.5
604
+ rad
605
+ 1
606
+ 3
607
+ 2
608
+ 4
609
+ ast4 MLAO
610
+ 4N MLAO
611
+ ±0.5,±1 rad
612
+ bias mode i = 5
613
+ 6
614
+ 7
615
+ 8
616
+ 9
617
+ 10 11
618
+ +0.5
619
+ rad
620
+ +1
621
+ rad
622
+ -0.5
623
+ rad
624
+ -1
625
+ rad
626
+ bias mode i=
627
+ i
628
+ 0
629
+ 4
630
+ 8
631
+ 12
632
+ 16
633
+ 20
634
+ yI
635
+ ast4 MLAO
636
+ iv
637
+ 0
638
+ 4
639
+ 8
640
+ 12
641
+ 16
642
+ 20
643
+ No. of images
644
+ yS
645
+ v
646
+ it:1
647
+ it:2
648
+ it:3
649
+ it:4
650
+ it:5
651
+ A
652
+ B
653
+ 0
654
+ 50
655
+ 100
656
+ time / s
657
+ C
658
+ D
659
+ 0
660
+ 50
661
+ 100
662
+ time / s
663
+ E
664
+ F
665
+ 0
666
+ 50
667
+ 100
668
+ time / s
669
+ G
670
+ H
671
+ 0
672
+ 50
673
+ 100
674
+ time / s
675
+ vi
676
+ Figure 3. Aberration correction in three-photon microscopy of live mouse brains: (a) GFP-labelled cells at depth 660µm and
677
+ (b) functional activity of GCaMP-labelled cells at 250µm. Wavefronts inserted to the figures showed the phase modulations
678
+ applied by the DM at the relevant step; the common scale is indicated by the colorbar next to (a) and (b) ii.
679
+ (a) i shows example single-frame images used in correction with the corresponding bias modes as insets. 1-4 were the image
680
+ inputs to ast4 MLAO. For 4N MLAO, six more bias modes and thus 24 more images were also used in each iteration. (a) ii-iv
681
+ show images averaged from 20 frames after motion correction. The rectangular boxes highlight regions of interest for
682
+ comparison. (a) v and vi show the intensity metric (yI) and the Fourier metric (yF), respectively, calculated from single image
683
+ frames, against the number of images acquired for five iterations ast4 MLAO one iteration of 4N MLAO.
684
+ (b) i 1-4 shows example single-frame images used as inputs to the ast4 MLAO correction with the corresponding bias modes as
685
+ insets. White squares highlight two cells for comparison to show the fluorescence fluctuations over time neural activity. (b) ii
686
+ and iii show respectively before and after ast4 MLAO correction through five iterations (it:1 to 5), 200 frame averages after
687
+ motion correction. In iii, time traces shown to the left were taken from the marked line (1). (b) iv and v show the intensity
688
+ metric (yI) and the sharpness metric (yS), respectively, calculated from single image frames, against the number of images
689
+ acquired for five iterations ast4 MLAO. (b) vi shows the calcium activity of 8 cells (A-H marked on ii).
690
+ 7/16
691
+
692
+ T
693
+ 1
694
+ 0
695
+ 2
696
+ -T
697
+ 1
698
+ 22
699
+ 1
700
+ 0
701
+ -1
702
+ -2
703
+ -30
704
+ 50
705
+ 100
706
+ time / s2
707
+ 1
708
+ 0
709
+ -1
710
+ -2
711
+ -32
712
+ 1
713
+ 0
714
+ -1
715
+ -2
716
+ -32
717
+ 1
718
+ 0
719
+ -1
720
+ -2
721
+ -32
722
+ 1
723
+ 0
724
+ -1
725
+ -2
726
+ -3T
727
+ 1
728
+ 0
729
+ 2
730
+ -T
731
+ 1
732
+ 2demonstrations, ast4 MLAO corrected more quickly at first, but converged to a lower correction level. In contrast, 4N MLAO
733
+ preformed better overall correction, but required more images. Panels ii-iv show averaged images in which processes previously
734
+ hidden below the noise level are revealed through MLAO correction (as highlighted in the white rectangles). The example
735
+ biased images shown in Figure 3 (a) i provide an indication of the low raw-data SNR that the MLAO method can successfully
736
+ use.
737
+ Figure 3 (b) shows results from imaging calcium activity in a live mouse. The ast4 MLAO method successfully improved
738
+ image quality despite the low SNR and fluorescence fluctuations of the sample. From both time traces of line 1 and cells A-H, it
739
+ could be clearly seen that after corrections, signals were increase. The 4N MLAO method failed to correct in this experimental
740
+ scenario (results not shown). We will discuss the likely hypotheses for this in the discussion section.
741
+ The fluctuating fluorescence levels due to neural activity mean that conventional metrics would not be effective in sensorless
742
+ AO optimisation processes. This is illustrated in Figure 3 (b) iv and v, where it can be seen that no single metric can accurately
743
+ reflect the image quality during the process of ast4 MLAO correction. These observations illustrate the advantages of MLAO
744
+ methods, as their optimisation process did not rely on any single scalar metric.
745
+ Widefield 3-D structured illumination microscopy
746
+ The architecture of the NN was conceived so that it would be translatable to different forms of microscopy. In order to illustrate
747
+ this versatility, and to complement to the previously shown 2-P and 3-P laser scanning systems, we applied MLAO to a widefield
748
+ method. The 3D SIM microscope included multiple lasers and fluorescence detection channels and an electromagnetic DM as
749
+ the correction element. Structured illumination patterns were introduced using a focal plane SLM. The detailed experimental
750
+ set-up was included in Figure S6 (c) in the supplemental document.
751
+ Without AO, 3D SIM reconstruction suffers artefacts caused by aberrations. Since typical specimens contain 3D structures,
752
+ the lack of optical sectioning in widefield imaging means that the aberration correction process can be affected by out of focus
753
+ light. As total intensity metrics are not suitable for conventional AO algorithms in widefield imaging, Fourier based sharpness
754
+ metrics have often been used. However, such metrics depend on the frequency components of the specimen structure39. In
755
+ particular, emission from out of focus planes can also affect the sensitivity and accuracy of correction. However, the NN based
756
+ MLAO methods were designed and trained to mitigate against the effects of the sample structures and out of focus light.
757
+ Figure 4 shows results from two NN-based methods ast2 MLAO and 2N MLAO compared to the conventional algorithm 3N
758
+ conv, which used the yS metric. Sensorless AO was implemented using widefield images as the input (Figure 4 (a, b)). The
759
+ correction settings thus obtained by the 2N MLAO method were then applied to super-resolution 3D SIM operation (Figure 4 (c,
760
+ d)). N = 8 Zernike modes were involved in the aberration determination. The specimen was a multiple labelled Drosophila
761
+ larval neuromuscular junction (NMJ). For the details of the sample preparation, please refer to section 7B in supplemental
762
+ document.
763
+ Figure 4 (b) showed that ast2 MLAO corrected most quickly; 2N MLAO corrected to a similar level but required more
764
+ sample exposures; 3N MLAO was less effective. Figure 4 (a) showed the effectiveness of correction on raw and deconvolved
765
+ widefield images. Part iii showed the changes in image spectrum after correction. The dashed line shows a threshold where
766
+ signal falls below the noise level. It can be seen that both (C) ast2 MLAO and (D) 2N MLAO increased high frequency content
767
+ compared to (A) before AO correction and (B) after 3N conv corrections. Figure 4 (c) and (d) showed the images after 3D
768
+ SIM reconstruction. It can be clearly seen that when by-passing AO (i), there was strong artefacts due to aberrations. After
769
+ correcting using five iterations of 2N MLAO, artefacts were suppressed and z-resolution was improved (see sections through
770
+ line 1 and 2 in Figure 4 (d))
771
+ Discussion
772
+ The power and simplicity of the MLAO method arise mainly from a combination of three aspects: the pre-processing of image
773
+ data, the bespoke NN architecture, and the definition of the training data set. All of these aspects are informed by physical
774
+ and mathematical principles of image formation. This forms a contrast with many other data-driven deep learning approaches,
775
+ where complex NNs are trained using vast amount of acquired data.
776
+ The calculation of the pseudo-PSF from pair of biased images (as shown in Figure 1 (c) and elaborated in the Methods)
777
+ acts to remove most of the effects of unknown specimen structure from the input data. The information contained within the
778
+ pseudo-PSF encodes indirectly how aberrations affect the imaging PSF (see Figure S2 in the supplemental document for more
779
+ details). There is a spatial correspondence between a pixel in the pseudo-PSF and the PSF itself. Hence, spatial correlations
780
+ across the pseudo-PSF relate to spatial effects of aberrations on the images.
781
+ The set of pseudo-PSFs forms the input to the convolutional layers of the NN. The masks in each convolutional layer probe,
782
+ in effect, different scales across the pseudo-PSF. Hence, one can attribute a correspondence between the output of these layers
783
+ and the effects aberrations have over different physical scales in the image. Such phenomena are heuristically demonstrated in
784
+ 8/16
785
+
786
+ 5μm
787
+ 1
788
+ 2
789
+ 1
790
+ 2
791
+ 2
792
+ 2
793
+ 1
794
+ 1
795
+ z
796
+ z=6μm
797
+ z
798
+ z
799
+ (d)
800
+ i
801
+ ii
802
+ A
803
+ B
804
+ D
805
+ C
806
+ 5μm
807
+ (b)
808
+ (c)
809
+ i
810
+ ii
811
+ Pre
812
+ Post-MLAO
813
+ Pre
814
+ Post-MLAO
815
+ A i
816
+ B i
817
+ C i
818
+ D i
819
+ Widefield Deconvolution
820
+ Image
821
+ spectrum
822
+ 10μm
823
+ ii
824
+ iii
825
+ ii
826
+ iii
827
+ ii
828
+ iii
829
+ ii
830
+ iii
831
+ (a)
832
+ a.u.
833
+ yS
834
+ Figure 4. Aberration correction in a widefield structured illumination microscope. (a) Widefield images acquired A i before
835
+ and B-D i after correction through different methods (as marked on the metric plot (b)). The second column ii shows
836
+ corresponding deconvolved widefield images. The third column iii shows corresponding image spectra; dashed lines show the
837
+ threshold where signal falls below the noise level.
838
+ (b) The sharpness metric yS against the number of images, for two iterations of 3N conv, ten iterations of ast4 MLAO and three
839
+ iterations of 2N MLAO.
840
+ (c, d) 3-D projections of 3-D reconstructed SIM image stack of (c) 10µm and (d) 6µm when (i) by-passing AO and (ii) after
841
+ five iterations of 2N MLAO correction; square inserts show zoomed in region for comparison. x-y and y-z sections are shown
842
+ through lines 1 and 2.
843
+ Insets to (a,c and d) show wavefronts corrected by the DM for each image acquisition; phase is shown on the adjacent scale bar.
844
+ 9/16
845
+
846
+ 3N conv
847
+ -ast2 MLAO
848
+ 2N MLAO
849
+ 2
850
+ 14
851
+ 24
852
+ 32
853
+ 48
854
+ no. of imagesT
855
+ 0
856
+ -T2元
857
+ 0
858
+ -2
859
+ T2元
860
+ 0
861
+ -2
862
+ T102
863
+ -2
864
+ 10
865
+ 一Layer
866
+ 1
867
+ 2
868
+ 3
869
+ 4
870
+ 5
871
+ astX MLAO
872
+ 0.23
873
+ 0.19
874
+ 0.17
875
+ 0.18
876
+ 0.23
877
+ XN MLAO
878
+ 0.39
879
+ 0.14
880
+ 0.15
881
+ 0.13
882
+ 0.20
883
+ Table 1. The RMS of the weight distributions extracted from different convolutional layers of the two classes of trained CNNs,
884
+ astX MLAO and XN MLAO. The values shown are calculated from the ensemble of corresponding layers from all CNNs of the
885
+ given class.
886
+ section 3 of the supplementary information. By extracting relevant weight connections from inside the NN, we can observe
887
+ embedded physical interpretations of how the machine learned to process aberration information contained in images.
888
+ To illustrate this, we extracted from the trained NN the weights between the layer embedding physical interpretations and
889
+ the next fully connected layer (marked by red arrows in Figure 1 (c)). Going down the convolutional layers, the scale of probed
890
+ features increases from a single pixel, through small scale features, up to large scale features (as explained in section 3 of the
891
+ supplemental document). The RMS values of the weights from each convolutional layer are shown in Table 1, where the data
892
+ are shown for the ensembles of the two classes of MLAO networks used in this paper, astX MLAO and XN MLAO (where X =2
893
+ or 4). A full breakdown is provided in the Figure S4 of the supplementary document.
894
+ The largest weight variation was in the first layer in the XN MLAO NN, which indicates that this algorithm extracts more
895
+ information from the single pixel detail than from larger scale correlations. In contrast, astX MLAO assigns weights more
896
+ evenly across all layers. As explained in the supplementary document, the single pixel extraction from the pseudo-PSF is
897
+ related to the Strehl ratio of the PSF and the intensity information of the images in non-linear systems. Hence, it is expected
898
+ that the XN MLAO NN, which uses as similar set of bias aberrations to the conventional method, would learn as part of its
899
+ operation similar behaviour to the conventional algorithm. The same phenomena can also explain why in 3-P GCaMP imaging
900
+ of neural activity astX MLAO was less affected by the fluorescence fluctuations than XN MLAO, as astX MLAO relies less on
901
+ overall fluorescence intensity changes. Conversely, astX MLAO generally performed worse than XN MLAO in 2-P imaging
902
+ when structured noise present, as astX MLAO used fewer images and hence had access to less detectable intensity variations
903
+ than XN MLAO. The fact that astX MLAO had access to less well-conditioned image information may also explain why in
904
+ general it was able to correct aberrations to a lower final level than XN MLAO.
905
+ Conclusion
906
+ The MLAO methods achieved the aims explained at the outset. They provided more efficient aberration correction with fewer
907
+ images over a larger range, reducing time required and specimen exposure. The training procedure, which was based on
908
+ synthesised data, ensured that the AO correction was robust to uncertainty in microscope properties, the presence of noise, and
909
+ variations in specimen structure. The concept was translatable across different microscope modalities, simply requiring training
910
+ using a revised imaging model.
911
+ The new methods used NN architectures that are orders of magnitude simpler, in terms of trainable parameters, than in
912
+ previous similar work (see supplementary information, section 5). This vast simplification was achieved through pre-processing
913
+ of data to remove most of the effects of unknown specimen structure. The physics-informed design of the NN also meant that –
914
+ unusually for most NN applications – the learned weights inside the network provided indications of the physical information
915
+ used by the network. This provides constructive feedback that can inform future AO system designs and the basis for extension
916
+ of the MLAO concept to more demanding tasks in microscopy and other imaging applications.
917
+ Methods
918
+ Image pre-processing
919
+ Image data were pre-processed before being used by the NN, in order to remove effects of the unknown specimen structure. The
920
+ resulting “pseudo-PSFs” were better conditioned for the extraction of aberration information, independently of the specimen.
921
+ The image formation can be modelled as a convolution between specimen fluorescence distribution and an intensity PSF. The
922
+ AO introduced pre-chosen bias aberrations, so that multiple images with different PSFs could be acquired over the same FOV.
923
+ Mathematically, this process can be expressed as
924
+ I1 = O∗ f1 +δ1
925
+ I2 = O∗ f2 +δ2
926
+ (1)
927
+ where I1 and I2 were the images acquired with two different PSFs f1 and f2 for the same unknown specimen structure O. δ1
928
+ and δ2 represent combined background and noise in each image. In order to remove (or at least reduce) the effects of specimen
929
+ 10/16
930
+
931
+ structures, we defined the pseudo-PSF as
932
+ pseudo-PSF = F −1
933
+ �F(I1)
934
+ F(I2)
935
+
936
+ = F −1
937
+ �F(O∗ f1 +δ1)
938
+ F(O∗ f2 +δ2)
939
+
940
+ = F −1
941
+ �F(O)×F( f1)+F(δ1)
942
+ F(O)×F( f2)+F(δ2)
943
+
944
+ where F was the 2D Fourier transform and F −1 was its inverse (see Figure 1 (c)). The term “pseudo-PSF” was chosen as the
945
+ function was defined in the same variable space as a PSF, although it is not used directly in any imaging process. A similar
946
+ computational process was shown elsewhere for different applications using defocussed images52. Assuming the noise is small
947
+ enough to be neglected
948
+ pseudo-PSF = F −1
949
+ �F(I1)
950
+ F(I2)
951
+
952
+ ≈ F −1
953
+ �F( f1)
954
+ F( f2)
955
+
956
+ (2)
957
+ There is an implicit assumption here that there are no zeroes in the object spectrum F(O) or the optical transfer function F(f2).
958
+ In practice, it was found that a small non-zero value of F(δ2) mitigated against any problems caused by this. Furthermore,
959
+ although structured noise was present in the pseudo-PSFs (see e.g. Figure S1 in the supplemental document), it was found that
960
+ this did not detrimentally affect data extraction through the subsequent NN. As a further mitigation, we calculated pairs of
961
+ pseudo-PSFs from pairs of biased input images by swapping the order from ( f1, f2) for the first pseudo-PSF to ( f2, f1) for the
962
+ second.
963
+ Example pseudo-PSFs are shown in Figure S1 and S2 in the Supplemental document. As most information was contained
964
+ within the central region, to ensure more efficient computation, we cropped the central region (32×32 pixels) of the pseudo-
965
+ PSFs to be used as the input to the NN. Dependent upon the MLAO algorithm, the input to the NN would consist of a single pair
966
+ of cropped pseudo-PSFs, or multiple pairs corresponding to the multiple pairs of bias aberrations applied in different modes.
967
+ Neural network training
968
+ To estimate phase aberrations from pseudo-PSFs, a convolutional based neural network was designed incorporating physical
969
+ understanding of the imaging process and was trained through supervised learning. Synthetic data were used for training and
970
+ the trained networks were then tested on real AO microscopes. For each imaging modality (i.e. 2-P, 3-P and widefield), a
971
+ separate training dataset was generated, with the imaging model and parameters adjusted for different applications.
972
+ Neural network architecture
973
+ A convolutional neural network was designed to determine the aberrations from pseudo-PSFs, while embedding physical
974
+ understanding of image formation. The conceptual structure is shown in Figure 1 (c); more specific details of the architecture
975
+ and learning process are provided in Section S1 of the supplementary document. This CNN architecture allowed convolutional
976
+ masks to – in effect – probe different spatial scales within the pseudo-PSF images and, hence, to learn from the effects
977
+ aberrations had at different spatial scales in microscope images. The outputs from these convolutional layers acted as inputs to
978
+ a single concatenated fully connected layer (FCL). This was followed by another FCL then the output layer, whose outputs
979
+ corresponded to the Zernike mode coefficients estimated for aberration correction. This shallow architecture with the order of
980
+ 104 trainable parameters was effective due to the pre-processing of data that meant the input information was better conditioned
981
+ to this estimation task than raw images.
982
+ The weight connections between the concatenated FCL immediately following the CNN layer and the subsequent FCL
983
+ (marked in red arrows in Figure 1 (c)) depended upon the significance of the information learnt from the different scales
984
+ embedded in the CNN layers. Analysis of these weights could therefore provide insight into the pseudo-PSF information that
985
+ was used by the ML process.
986
+ Synthetic data generation
987
+ Due to the impracticality of acquiring sufficient high-quality data experimentally, a large dataset of simulated image data was
988
+ constructed. The simulations were designed to resemble images collected from different microscopes when imaging a range of
989
+ samples.
990
+ We started with a collection of image stacks (containing around a total of 350 images) obtained from high-resolution 3D
991
+ microscopy of various specimens labelled with nuclear, cytoplasmic membrane and/or single-molecule markers. The images
992
+ were down-sampled to 8-bit (128×128) and separated into their individual channels. This formed a pool of realistic sample
993
+ structures which were later used to generate synthetic images. To further augment the varieties of sample structures, random
994
+ rotations were applied and synthetic shapes including dots, rings, circular shapes, curved and straight lines of varying sizes
995
+ were randomly introduced.
996
+ 11/16
997
+
998
+ The simulated training dataset was generated by convolving the sample structures with synthetic PSFs, f (see Eq. 1). f was
999
+ modelled as a pixel array through
1000
+ f =
1001
+ ���F
1002
+
1003
+ Pe j(Ψ+Φ+Ξ)����
1004
+ l
1005
+ (3)
1006
+ where F represented the 2D discrete Fourier transform. P was the circular pupil function, defined such that pixels in the region
1007
+ outside the pupil had value zero. The ratio between the radius of the pupil in pixels and the size in pixels of the overall array
1008
+ was adjusted to match sampling rates for different microscopes. In practical scanning optical microscopes, the sampling rates
1009
+ can be easily adjusted, although perhaps not arbitrarily. Hence, for experimental flexibility, the ratio for the simulated training
1010
+ dataset was tuned to be within the range of 1.0× to 1.2× the base sampling rate. The base sampling rate was defined as using
1011
+ two pixels to sample the full width half maximum (FWHM) of the PSF of the system when aberration free. For the widefield
1012
+ system, the ratio was tuned to simulate the projection of the camera pixel sampling rate at the specimen. Figure S5 in the
1013
+ supplemental document shows how tolerable a trained network was when tested on data collected at different pixel sampling.
1014
+ P also incorporated the illumination profile for different practical imaging systems, such as when using truncated Gaussian
1015
+ illumination at the pupil in the 3-P microscope. The exponent l varied with imaging modes: when simulating a 3-P, a 2-P and a
1016
+ widefield microscope, l was set to 6, 4 and 2 respectively.
1017
+ The total aberration was expressed as a sum of chosen Zernike polynomial modes Ψ+Φ+Ξ = ∑i aiZi. Ψ was the sum
1018
+ of the randomly generated specimen aberrations, which included all modes that the AO system was designed to correct. Φ
1019
+ represented the additional bias aberrations. Ξ included additional non-correctable higher order Zernike modes. The coefficients
1020
+ of the correctable modes were randomly generated for each data set. Representing the set of coefficients {ai} as a vector a, the
1021
+ random coefficients followed a modified uniform n-sphere distribution53 where both the direction and the two-norm of a were
1022
+ uniformly distributed. The maximum two-norm (size) of a were chosen differently for different imaging applications. This
1023
+ distribution allowed a denser population close to zero aberration, which was intuitively beneficial to train a stable NN. We
1024
+ also added random small errors to the correctable coefficients so that the labels were slightly inaccurate. This was to simulate
1025
+ situations when the AO would be incapable of introducing perfect Zernike modes. The spurious high order non-correctable
1026
+ Zernike modes were included to further resemble realistic scenarios in a practical microscope.
1027
+ Poisson, Gaussian, pink and structured noise of varying noise level were also introduced to the generated images after the
1028
+ convolution to allow the training dataset to simulate more closely real microscope images.
1029
+ Note that the scalar Fourier approximation of Eq. 3 was chosen for simplicity, although more accurate, vectorial, high
1030
+ numerical aperture (NA) objective lens models could have been applied54–57. Although the chosen model would deviate from
1031
+ high NA and vectorial effects, the main phenomena under consideration here – namely the effects of phase aberrations on PSFs
1032
+ and images – are adequately modelled by scalar theory.
1033
+ Image quality metrics
1034
+ Different image quality metrics were defined for use as the basis for optimisation in conventional sensorless AO methods and as
1035
+ proxies to quantify the level of aberration correction. yI is an intensity based metric and can be used in non-linear imaging
1036
+ systems. It is defined as
1037
+ yI =
1038
+ � �
1039
+ I(x)d2x
1040
+ yF is a Fourier based metric and provides an alternative aspect to the intensity metric. It is defined as
1041
+ yF =
1042
+ � �
1043
+ 0.1fmax<| f|<0.6fmax
1044
+ |F[I(x)]|d2 f
1045
+ where F[I(x)] is the 2D Fourier transform of image I(x) from x domain to f domain; fmax is the maximum frequency limit of
1046
+ the imaging system. The range 0.1fmax < |f| < 0.6 fmax was selected such that most PSF related frequency information was
1047
+ included in the range.
1048
+ yS is a sharpness metric that can be used for optimisation in widefield systems, where the other metrics are not practical, or
1049
+ applications with fluorescence fluctuations. It is defined as
1050
+ yS =
1051
+ � �
1052
+ nfmax<| f|<mfmax|F[I(x)]|d2 f
1053
+ � �
1054
+ 0<| f|<nfmax|F[I(x)]|d2 f
1055
+ where 1 > m > n > 0. This metric is defined as the ratio of higher to lower spatial frequency content, which is dependent upon
1056
+ aberration content, but independent of changes in overall brightness.
1057
+ 12/16
1058
+
1059
+ Microscope implementations
1060
+ Three microscopes were used to demonstrate and examine the MLAO method. The microscope implementations are briefly
1061
+ described here and fully elaborated in the supplementary document section 9A.
1062
+ In the home built 2-P system, a Newport-Spectra-Physics DeepSee femtosecond laser was used as the illumination with
1063
+ wavelength set at 850nm. Light was modulated by a Hamamatsu spatial light modulator before passing through a water
1064
+ immersion objective lens with NA equals to 1.15 and reaching the sample plane.
1065
+ A commercial Scientifica microscope system was used as the basis for our 3-P demonstration. In the 3-P system, a
1066
+ Ti:Sapphire laser passed through a pair of compressors and operated at 1300nm. Light was modulated by a Mirao 52E
1067
+ deformable mirror before reaching a water dipping objective lens with NA equals to 0.8.
1068
+ In the home built widefield 3D SIM system, two continuous wave lasers with wavelengths equal to 488 and 561nm were
1069
+ used as the illumination. Light was modulated by a ALPAO 69 deformable mirror before reaching a water dipping objective
1070
+ lens with NA of 1.1.
1071
+ Image acquisition and processing
1072
+ For 3-P imaging of live specimens, where motion was present, averaging was performed after inter-frame motion correction
1073
+ using TurboReg58. Time traces were taken from 200 raw frames captured at 4 Hz consecutively for each of the pre- and
1074
+ post-MLAO corrections.
1075
+ For the widefield/SIM results, widefield images were processed where indicated using the Fiji iterative deconvolution 3-D
1076
+ plugin59. A PSF for deconvolution was first generated using the Fiji plugin Diffraction PSF 3-D with settings the same as the
1077
+ widefield microscope. For the deconvolution, the following settings were applied: Wiener filter gamma equals to 0; both x-y
1078
+ and z direction low pass filter pixels equal to 1; maximum number of iterations equals to 100; and the iteration terminates when
1079
+ mean delta is smaller than 0.01%.
1080
+ The thresholds shown on the widefield image spectra were calculated by identifying the largest frequency in all x-y
1081
+ directions with image spectrum components higher than noise level. The noise level was identified by averaging the components
1082
+ of the highest spectral frequency, i.e. at the four corners of the image spectrum. Starting from the lowest frequency, each
1083
+ angular and radial fragment was averaged and compared to the noise level. The largest component which was still above the
1084
+ noise level was traced on the image spectra by the dashed line and identified as the threshold.
1085
+ Each 3D-SIM frame were extracted from a set of 15 image frames using the SoftWorx package (Applied Precision).60 The
1086
+ projected images were obtained by summing frames at different z depths into an extended focus xy image.
1087
+ References
1088
+ 1. Booth, M. J. Adaptive optics in microscopy. Philos. Transactions Royal Soc. Lond. A: Math. Phys. Eng. Sci. 365,
1089
+ 2829–2843, DOI: 10.1098/rsta.2007.0013 (2007).
1090
+ 2. Booth, M. J. Adaptive optical microscopy: the ongoing quest for a perfect image. Light. Sci. & Appl. 3, e165–e165, DOI:
1091
+ 10.1038/lsa.2014.46 (2014).
1092
+ 3. Booth, M. J. & Patton, B. R. Adaptive Optics for Fluorescence Microscopy. In Cornea, A. & Conn, P. M. (eds.)
1093
+ Fluorescence Microscopy: Super-Resolution and other Novel Techniques, 15–33, DOI: 10.1016/B978-0-12-409513-7.
1094
+ 00002-6 (Academic Press, Boston, 2014).
1095
+ 4. Booth, M., Andrade, D., Burke, D., Patton, B. & Zurauskas, M. Aberrations and adaptive optics in super-resolution
1096
+ microscopy. Microscopy 64, 251–261, DOI: 10.1093/jmicro/dfv033 (2015). https://academic.oup.com/jmicro/article-pdf/
1097
+ 64/4/251/26556994/dfv033.pdf.
1098
+ 5. Ji, N. Adaptive optical fluorescence microscopy. Nat. Methods 14, 374–380, DOI: 10.1038/nmeth.4218 (2017).
1099
+ 6. Hampson, K. M. et al. Adaptive optics for high-resolution imaging. Nat Rev Methods Primers 1, DOI: 10.1038/
1100
+ s43586-021-00066-7 (2021).
1101
+ 7. Hartmann, J. Zeitschrift f¨ur Instrumentenkunde, 1, 33, 97 (Springer, 1904).
1102
+ 8. Shack, R. V. & Platt, B. C. Production and use of a lenticular hartmann screen. J. Opt. Soc. Am. 61, 656, DOI:
1103
+ 10.1364/JOSA.61.000648 (1971).
1104
+ 9. Schwertner, M., Booth, M. & Wilson, T. Characterizing specimen induced aberrations for high NA adaptive optical
1105
+ microscopy. Opt. Express 12, 6540, DOI: 10.1364/opex.12.006540 (2004).
1106
+ 10. Booth, M., Wilson, T., Sun, H.-B., Ota, T. & Kawata, S. Methods for the characterization of deformable membrane mirrors.
1107
+ Appl. Opt. 44, 5131–5139, DOI: 10.1364/AO.44.005131 (2005).
1108
+ 13/16
1109
+
1110
+ 11. Antonello, J., Wang, J., He, C., Phillips, M. & Booth, M. Interferometric calibration of a deformable mirror. https:
1111
+ //doi.org/10.5281/zenodo.3714951, DOI: 10.5281/zenodo.3714951 (2020).
1112
+ 12. Hu, Q. et al. A universal framework for microscope sensorless adaptive optics: Generalized aberration representations.
1113
+ APL Photonics 5, 100801, DOI: 10.1063/5.0022523 (2020). https://doi.org/10.1063/5.0022523.
1114
+ 13. Hu, Q. Chapter 4 ‘Adaptive optics for corrections of phase and polarisation state aberrations in microscopes’. Ph.D.
1115
+ thesis, University of Oxford (2021).
1116
+ 14. Booth, M. J., Neil, M. A. A. & Wilson, T. New modal wave-front sensor: application to adaptive confocal fluorescence
1117
+ microscopy and two-photon excitation fluorescence microscopy. J. Opt. Soc. Am. A 19, 2112–2120, DOI: 10.1364/JOSAA.
1118
+ 19.002112 (2002).
1119
+ 15. Sherman, L., Ye, J. Y., Albert, O. & Norris, T. B. Adaptive correction of depth-induced aberrations in multiphoton scanning
1120
+ microscopy using a deformable mirror. J. Microsc. 206, 65–71, DOI: https://doi.org/10.1046/j.1365-2818.2002.01004.x
1121
+ (2002). https://onlinelibrary.wiley.com/doi/pdf/10.1046/j.1365-2818.2002.01004.x.
1122
+ 16. Marsh, P. N., Burns, D. & Girkin, J. M. Practical implementation of adaptive optics in multiphoton microscopy. Opt.
1123
+ Express 11, 1123–1130, DOI: 10.1364/OE.11.001123 (2003).
1124
+ 17. Wright, A. J. et al. Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal
1125
+ and multiphoton microscopy. Microsc. Res. Tech. 67, 36–44, DOI: 10.1002/jemt.20178 (2005).
1126
+ 18. Jesacher, A. et al. Adaptive harmonic generation microscopy of mammalian embryos. Opt. Lett. 34, 3154–3156, DOI:
1127
+ 10.1364/OL.34.003154 (2009).
1128
+ 19. D´ebarre, D. et al. Image-based adaptive optics for two-photon microscopy. Opt. Lett. 34, 2495–2497, DOI: 10.1364/OL.
1129
+ 34.002495 (2009).
1130
+ 20. Tang, J., Germain, R. N. & Cui, M. Superpenetration optical microscopy by iterative multiphoton adaptive compensation
1131
+ technique. Proc. Natl. Acad. Sci. 109, 8434–8439, DOI: 10.1073/pnas.1119590109 (2012).
1132
+ 21. Facomprez, A., Beaurepaire, E. & D´ebarre, D. Accuracy of correction in modal sensorless adaptive optics. Opt. Express
1133
+ 20, 2598, DOI: 10.1364/oe.20.002598 (2012).
1134
+ 22. Fiolka, R., Si, K. & Cui, M. Complex wavefront corrections for deep tissue focusing using low coherence backscattered
1135
+ light. Opt. Express 20, 16532–16543, DOI: 10.1364/OE.20.016532 (2012).
1136
+ 23. Katz, O., Small, E., Guan, Y. & Silberberg, Y. Noninvasive nonlinear focusing and imaging through strongly scattering
1137
+ turbid layers. Optica 1, 170–174, DOI: 10.1364/OPTICA.1.000170 (2014).
1138
+ 24. Kong, L. & Cui, M. In vivo neuroimaging through the highly scattering tissue via iterative multi-photon adaptive
1139
+ compensation technique. Opt. Express 23, 6145–6150, DOI: 10.1364/OE.23.006145 (2015).
1140
+ 25. Sinefeld, D., Paudel, H. P., Ouzounov, D. G., Bifano, T. G. & Xu, C. Adaptive optics in multiphoton microscopy:
1141
+ comparison of two, three and four photon fluorescence. Opt. Express 23, 31472–31483, DOI: 10.1364/OE.23.031472
1142
+ (2015).
1143
+ 26. Galwaduge, P. T., Kim, S. H., Grosberg, L. E. & Hillman, E. M. C. Simple wavefront correction framework for two-photon
1144
+ microscopy of in-vivo brain. Biomed. Opt. Express 6, 2997–3013, DOI: 10.1364/BOE.6.002997 (2015).
1145
+ 27. Streich, L. et al. High-resolution structural and functional deep brain imaging using adaptive optics three-photon microscopy.
1146
+ Nat. Methods 18, 1253–1258, DOI: 10.1038/s41592-021-01257-6 (2021).
1147
+ 28. D´ebarre, D., Booth, M. J. & Wilson, T. Image based adaptive optics through optimisation of low spatial frequencies. Opt.
1148
+ Express 15, 8176–8190, DOI: 10.1364/OE.15.008176 (2007).
1149
+ 29. Lee, W. M. & Yun, S. H. Adaptive aberration correction of GRIN lenses for confocal endomicroscopy. Opt. Lett. 36,
1150
+ 4608–4610, DOI: 10.1364/OL.36.004608 (2011).
1151
+ 30. Gould, T. J., Burke, D., Bewersdorf, J. & Booth, M. J. Adaptive optics enables 3D STED microscopy in aberrating
1152
+ specimens. Opt. Express 20, 20998–21009, DOI: 10.1364/OE.20.020998 (2012).
1153
+ 31. Bourgenot, C., Saunter, C. D., Taylor, J. M., Girkin, J. M. & Love, G. D. 3D adaptive optics in a light sheet microscope.
1154
+ Opt. Express 20, 13252–13261, DOI: 10.1364/OE.20.013252 (2012).
1155
+ 32. Burke, D., Patton, B., Huang, F., Bewersdorf, J. & Booth, M. J. Adaptive optics correction of specimen-induced aberrations
1156
+ in single-molecule switching microscopy. Optica 2, 177–185, DOI: 10.1364/OPTICA.2.000177 (2015).
1157
+ 33. Patton, B. R. et al. Three-dimensional STED microscopy of aberrating tissue using dual adaptive optics. Opt. Express 24,
1158
+ 8862–8876, DOI: 10.1364/OE.24.008862 (2016).
1159
+ 14/16
1160
+
1161
+ 34. Wang, B. & Booth, M. J. Optimum deformable mirror modes for sensorless adaptive optics. Opt. Commun. 282, 4467–4474,
1162
+ DOI: 10.1016/j.optcom.2009.08.010 (2009).
1163
+ 35. Milkie, D. E., Betzig, E. & Ji, N. Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination. Opt.
1164
+ Lett. 36, 4206–4208, DOI: 10.1364/OL.36.004206 (2011).
1165
+ 36. Booth, M. J., Neil, M. A. A., Juˇskaitis, R. & Wilson, T. Adaptive aberration correction in a confocal microscope. Proc.
1166
+ Natl. Acad. Sci. 99, 5788–5792, DOI: 10.1073/pnas.082544799 (2002).
1167
+ 37. Wang, F. Wavefront sensing through measurements of binary aberration modes. Appl. Opt. 48, 2865–2870, DOI:
1168
+ 10.1364/AO.48.002865 (2009).
1169
+ 38. Antonello, J. et al. Semidefinite programming for model-based sensorless adaptive optics. J. Opt. Soc. Am. A 29,
1170
+ 2428–2438, DOI: 10.1364/JOSAA.29.002428 (2012).
1171
+ 39. Antonello, J., Barbotin, A., Chong, E. Z., Rittscher, J. & Booth, M. J. Multi-scale sensorless adaptive optics: application to
1172
+ stimulated emission depletion microscopy. Opt. Express 28, 16749–16763, DOI: 10.1364/OE.393363 (2020).
1173
+ 40. Jin, Y. et al. Machine learning guided rapid focusing with sensor-less aberration corrections. Opt. Express 26, 30162–30171,
1174
+ DOI: 10.1364/OE.26.030162 (2018).
1175
+ 41. M¨ockl, L., Petrov, P. N. & Moerner, W. E. Accurate phase retrieval of complex 3D point spread functions with deep residual
1176
+ neural networks. Appl. Phys. Lett. 115, 251106, DOI: 10.1063/1.5125252 (2019). https://doi.org/10.1063/1.5125252.
1177
+ 42. Vishniakou, I. & Seelig, J. D. Wavefront correction for adaptive optics with reflected light and deep neural networks. Opt.
1178
+ Express 28, 15459–15471, DOI: 10.1364/OE.392794 (2020).
1179
+ 43. Cumming, B. P. & Gu, M. Direct determination of aberration functions in microscopy by an artificial neural network. Opt.
1180
+ Express 28, 14511–14521, DOI: 10.1364/OE.390856 (2020).
1181
+ 44. Khorin, P. A., Dzyuba, A. P., Serafimovich, P. G. & Khonina, S. N. Neural networks application to determine the types and
1182
+ magnitude of aberrations from the pattern of the point spread function out of the focal plane. J. Physics: Conf. Ser. 2086,
1183
+ 012148, DOI: 10.1088/1742-6596/2086/1/012148 (2021).
1184
+ 45. Zhang, H. et al. Application of adamspgd algorithm to sensor-less adaptive optics in coherent free-space optical communi-
1185
+ cation system. Opt. Express 30, 7477–7490, DOI: 10.1364/OE.451350 (2022).
1186
+ 46. Saha, D. et al. Practical sensorless aberration estimation for 3D microscopy with deep learning. Opt. Express 28,
1187
+ 29044–29053, DOI: 10.1364/OE.401933 (2020).
1188
+ 47. Durech, E., Newberry, W., Franke, J. & Sarunic, M. V. Wavefront sensor-less adaptive optics using deep reinforcement
1189
+ learning. Biomed. Opt. Express 12, 5423–5438, DOI: 10.1364/BOE.427970 (2021).
1190
+ 48. Wang, F. et al. Phase imaging with an untrained neural network. Light. Sci. & Appl. 9, 77, DOI: 10.1038/s41377-020-0302-3
1191
+ (2020).
1192
+ 49. Bostan, E., Heckel, R., Chen, M., Kellman, M. & Waller, L. Deep phase decoder: self-calibrating phase microscopy with
1193
+ an untrained deep neural network. Optica 7, 559–562, DOI: 10.1364/OPTICA.389314 (2020).
1194
+ 50. Noll, R. J. Zernike polynomials and atmospheric turbulence. J. Opt. Soc. Am. 66, 207–211, DOI: 10.1364/JOSA.66.000207
1195
+ (1976).
1196
+ 51. Hall, N. Chapter 3.2.2 ‘Accessible adaptive optics and super-resolution microscopy to enable improved imaging’. Ph.D.
1197
+ thesis, University of Oxford (2020).
1198
+ 52. Xin, Q., Ju, G., Zhang, C. & Xu, S. Object-independent image-based wavefront sensing approach using phase diversity
1199
+ images and deep learning. Opt. Express 27, 26102–26119, DOI: 10.1364/OE.27.026102 (2019).
1200
+ 53. Marsaglia, G. Choosing a point from the surface of a sphere. The Annals Math. Stat. 43, 645–646, DOI: 10.1214/aoms/
1201
+ 1177692644 (1972).
1202
+ 54. Ignatowski, V. S. Diffraction by a lens of arbitrary aperture. Trans. Opt. Inst. 1(4), 1, DOI: 10.1017/9781108552264.019
1203
+ (1919).
1204
+ 55. Richards, B., Wolf, E. & Gabor, D. Electromagnetic diffraction in optical systems, ii. structure of the image field in an
1205
+ aplanatic system. Proc. Royal Soc. London. Ser. A. Math. Phys. Sci. 253, 358–379, DOI: 10.1098/rspa.1959.0200 (1959).
1206
+ https://royalsocietypublishing.org/doi/pdf/10.1098/rspa.1959.0200.
1207
+ 56. Stamnes, J. J. Waves in focal regions : propagation, diffraction, and focusing of light, sound, and water waves. Adam
1208
+ Hilger series on optics and optoelectronics (Adam Hilger, Bristol, 1986).
1209
+ 15/16
1210
+
1211
+ 57. Boruah, B. & Neil, M. Focal field computation of an arbitrarily polarized beam using fast fourier transforms. Opt. Commun.
1212
+ 282, 4660–4667, DOI: https://doi.org/10.1016/j.optcom.2009.09.019 (2009).
1213
+ 58. Th´evenaz, P., Ruttimann, U. & Unser, M. A pyramid approach to subpixel registration based on intensity. IEEE Transactions
1214
+ on Image Process. 7, 27–41 (1998).
1215
+ 59. Dougherty, R. Extensions of DAMAS and Benefits and Limitations of Deconvolution in Beamforming. No. 0 in Aeroacoustics
1216
+ Conferences (American Institute of Aeronautics and Astronautics, 2005).
1217
+ 60. Gustafsson, M. G. et al. Three-dimensional resolution doubling in wide-field fluorescence microscopy by structured
1218
+ illumination. Biophys. J. 94, 4957–4970, DOI: https://doi.org/10.1529/biophysj.107.120345 (2008).
1219
+ Acknowledgements
1220
+ This work was supported by grants from the European Research Council (to MJB: AdOMiS, No. 695140, to AMP: No. 852765),
1221
+ Wellcome Trust (to MJB: 203285/C/16/Z, to ID and MJB: 107457/Z/15/Z, to AMP: 204651/Z/16/Z, to HA: 222807/Z/21/Z),
1222
+ Engineering and Physical Sciences Research Council (to MJB: EP/W024047/1),
1223
+ Author contributions
1224
+ QH and MJB conceived the overall physics-informed approach including data pre-processing and bespoke NN architecture.
1225
+ MH, QH and MJB developed NN architectures and the training approach. QH, MH, MW, JA and DS developed the software
1226
+ packages. JW, QH, AMP set up the microscopes for the experimental demonstrations. QH performed the two-photon
1227
+ experiments, supervised by MJB. HA, JW and QH performed the three-photon experiments, supervised by AMP and MJB. JW,
1228
+ MW, DS, QH and RMP performed the widefield/SIM experiments, for which DG, TC and RMP prepared specimens, supervised
1229
+ by ID and MJB. QH performed data analysis. QH and MJB wrote the manuscript. All authors reviewed the manuscript.
1230
+ Additional information
1231
+ All experimental procedures involving animals were conducted in accordance with the UK animals in Scientific Procedures Act
1232
+ (1986).
1233
+ 16/16
1234
+
1235
+ Universal adaptive optics for
1236
+ microscopy through embedded neural
1237
+ network control: supplemental
1238
+ document
1239
+ 1. MLAO PROCESS AND CNN ARCHITECTURE
1240
+ The MLAO aberration estimation process consists of two parts: image pre-processing to compute
1241
+ pseudo-PSFs from images and a CNN-based machine learning process for mode coefficient
1242
+ determination. A stack of M images over the same field of view, each with a different pre-
1243
+ determined bias phase modulation, was used to calculate pseudo-PSFs according to the procedure
1244
+ in the methods section. It was observed and understood that most of the information was
1245
+ contained within the central region of the calculated pseudo-PSFs. 1 A central patch of 32 × 32
1246
+ pixels was then cropped and used as the inputs to the CNN. Cropped pseudo-PSFs were processed
1247
+ by a sequence of convolutional layers (CL) with trainable 3 × 3 kernels, each followed by a local
1248
+ 2 × 2 max-pooling and thus the x and y sizes were reduced by half but the stack size was increased
1249
+ twice going down each CL. For the input pseudo-PSFs and each of the CL outputs, a global
1250
+ max-pooling was applied and concatenated into a fully connected layer (FCL). This concatenated
1251
+ FCL was connected to the next FCL containing 32 neurons, which in turn was connected to the
1252
+ output layer, which produced the coefficients of the N chosen Zernike modes. The activation
1253
+ functions were chosen to be tanh and linear (only for the last layer connection FCL 32 and the
1254
+ output). The regularizer used was L1L2, the initializer was glorot-uniform and the optimizer
1255
+ was AdamW. The CNN architecture was built and the network training was conducted using
1256
+ TensorFlow.[1] As elaborated in the results section of the manuscript, M and N may be varied to
1257
+ suit different applications.
1258
+ The weights in the connection between the concatenated FCL and FCL32 (enclosed by a grey
1259
+ dashed square) were extracted and analysed to understand the physical significance of structures
1260
+ in the pseudo-PSFs in influencing the learning of the CNN. Further analysis of such weights is
1261
+ provided in Discussion of the main paper and section 4.
1262
+ 1The process of calculating pseudo-PSFs can be interpreted as a deconvolution between two PSFs. Depending on the
1263
+ sampling size of the imaging system, most details of a deformed PSF typically occupy a central region of a few pixels. Most
1264
+ features of the pseudo-PSFs were thus captured within the central region.
1265
+ arXiv:2301.02647v1 [eess.IV] 6 Jan 2023
1266
+
1267
+ Image stack over the
1268
+ same field of view
1269
+ (128×128×M)
1270
+ Cropped
1271
+ pseudo-PSFs
1272
+ (32×32×M)
1273
+ CL
1274
+ 16×16×8
1275
+ CL
1276
+ 8×8×16
1277
+ CL
1278
+ 4×4×32
1279
+ CL
1280
+ 2×2×64
1281
+ M
1282
+ 8
1283
+ 16
1284
+ 32
1285
+ 64
1286
+ FCL
1287
+ 32
1288
+ Concatenate
1289
+ FCL
1290
+ Output
1291
+ N
1292
+ Pseudo-PSF computation
1293
+ Convolution
1294
+ +
1295
+ local maxpooling
1296
+ Global maxpooling
1297
+ Fully connected layers
1298
+ Calculated
1299
+ pseudo-PSFs
1300
+ (128×128×M)
1301
+ CNN
1302
+ Fig. S1. A schematic illustration of the MLAO process and CNN architecture (enclosed by a
1303
+ black dashed square) designed for phase determination applications. CL: convolutional layer
1304
+ followed by local max-pooling; FCL: fully connected layer; M: number of input images and
1305
+ computed pseudo-PSFs; N: number of estimated output Zernike modes.
1306
+ 2. ZERNIKE POLYNOMIALS AND EXAMPLE PSEUDO-PSFS
1307
+ A total of ten Zernike polynomials were used for aberration estimation and correction presented
1308
+ in the paper. A list of the polynomials, sequenced using Noll’s indices, were included in Figure
1309
+ S2 (a).
1310
+ Figure S2 (b) included some examples of pseudo-PSFs. It can be observed that when aberration
1311
+ size increases, the maximum pixel value of the Pseudo-PSF decreases; a global max-pooling of
1312
+ the pseudo-PSF extracts information related to the Strehl ratio of the PSFs. Pseudo-PSFs also have
1313
+ shapes that are related to the aberrated PSF shapes.
1314
+ 3. PHYSICAL INFORMATION EMBEDDED IN THE CNN ARCHITECTURE
1315
+ As mentioned in the main paper, the bespoke CNN architecture embedded information about
1316
+ the physical effects of aberrations on images within the trainable parameters. To illustrate these
1317
+ phenomena, we designed six input patterns and two filters to calculate how values obtained
1318
+ after global max-poolings from different convolutional layers were related to the features of the
1319
+ patterns. Normally, the filters would be learned as part of the training process, but for illustrative
1320
+ purposes, we have defined them manually here.
1321
+ As shown in Figure S3, patterns 1 to 3 had the same general shape but varying sizes. They were
1322
+ all convolved with the same filter 1. Pattern 1 had the largest feature and the values obtained were
1323
+ almost constant throughout layers 1 to 5 (see Figure S3 (b)). Patterns 2 and 3 had smaller features
1324
+ and the extracted values reduced when moving further down the layers, where the embedded
1325
+ physical scales were more closely related to large scale features. Patterns 4 to 6 had the same
1326
+ general shape with four peaks positioned at the corners of a square. They were all convolved
1327
+ with filter 2, which shared a similar general shape. Pattern 4 had the smallest feature size and
1328
+ resulted a largest value in layer 2. Patterns 5 and 6 had larger feature sizes and resulted in largest
1329
+ values in layers 3 and 4, respectively. This trend confirms the expectation that layers later in the
1330
+ CNN probe larger scales in the input images. Note that all the patterns were designed in such a
1331
+ way that the maximum pixel reading (and thus the value max-pooled from layer 1) equalled to 1.
1332
+ 2
1333
+
1334
+ i = 5
1335
+ astigmatism
1336
+ 8
1337
+ coma
1338
+ 9
1339
+ trefoil
1340
+ 10
1341
+ trefoil
1342
+ 11
1343
+ primary
1344
+ spherical
1345
+ 12
1346
+ secondary
1347
+ astigmatism
1348
+ 13
1349
+ secondary
1350
+ astigmatism
1351
+ 22
1352
+ secondary
1353
+ spherical
1354
+ 6
1355
+ astigmatism
1356
+ 7
1357
+ coma
1358
+ (a)
1359
+ (b)
1360
+ 0 rad
1361
+ 0.5 rad
1362
+ i = 7
1363
+ ±1 rad
1364
+ i = 7
1365
+ 1.5 rad
1366
+ i = 7
1367
+ 2.5 rad
1368
+ i = 7
1369
+ Aberration
1370
+ Bias
1371
+ Pseudo-PSF
1372
+ Aberration
1373
+ Bias
1374
+ Pseudo-PSF
1375
+ 0 rad
1376
+ 0.5 rad
1377
+ i = 5
1378
+ ±1 rad
1379
+ i = 5
1380
+ 0.8 rad
1381
+ i = 5
1382
+ 1.5 rad
1383
+ i = 5
1384
+ 0
1385
+ 1 a.u.
1386
+ 0
1387
+ π rad
1388
+ Fig. S2. (a) Zernike polynomials Noll’s index 5-13, 22. This is a whole list of the polynomi-
1389
+ als used for aberration determinations in the paper. (b) Examples of pseudo-PSFs. The first
1390
+ column is the input aberration and the second column is the bias mode used in pseudo-PSFs
1391
+ generation.
1392
+ 3
1393
+
1394
+ ∗ filter1
1395
+ ∗ filter2
1396
+ Local
1397
+ max-pooling
1398
+ Convolution
1399
+ Layer
1400
+ 1
1401
+ Layer
1402
+ 2
1403
+ Layer
1404
+ 3
1405
+ Layer
1406
+ 4
1407
+ Layer
1408
+ 5
1409
+ Pattern
1410
+ 1
1411
+ Pattern
1412
+ 4
1413
+ Pattern
1414
+ 5
1415
+ Pattern
1416
+ 6
1417
+ (a)
1418
+ (b)
1419
+ Pattern
1420
+ 2
1421
+ Pattern
1422
+ 3
1423
+ Layer 1-5
1424
+ Normalised max-pooling value
1425
+ Pattern 1
1426
+ 2
1427
+ 3
1428
+ 4
1429
+ 5
1430
+ 6
1431
+ Single
1432
+ pixel
1433
+ feature
1434
+ Small
1435
+ scale
1436
+ feature
1437
+ Large
1438
+ scale
1439
+ feature
1440
+ 0
1441
+ 1 a.u.
1442
+ 3×3
1443
+ 3×3
1444
+ Fig. S3. Demonstrations of the link between feature sizes and convolutional layers. (a) Pattern
1445
+ 1 to 6 each underwent a series of convolutions followed by a 2 × 2 local max-pooling. Pattern
1446
+ 1 to 3 were convolved with filter 1 and pattern 4 to 6 were convolved with filter 2. For each
1447
+ layer, a global max-pooling were carried out to extract the maximum reading of each layer. The
1448
+ physical interpretations of the extracted values of the different layers were related to Strehl
1449
+ ratio (layer 1) and shapes with features ranging from small scales (layer 2) to large scales (layer
1450
+ 5). The extracted readings was normalised with the readings of their respective previous layer
1451
+ and displayed in (b). The horizontal axis of each plot in (b) indicates from which layer the
1452
+ normalised maximum reading (indicated by the vertical axis) was extracted from.
1453
+ 4
1454
+
1455
+ ast2 2-P
1456
+ 0
1457
+ 0.4
1458
+ 2N 2-P
1459
+ 0
1460
+ 0.4
1461
+ ast4 3-P
1462
+ 0
1463
+ 0.4
1464
+ 4N 3-P
1465
+ 0
1466
+ 0.4
1467
+ ast2 widefield
1468
+ 0
1469
+ 0.4
1470
+ 2N widefield
1471
+ 0
1472
+ 0.4
1473
+ Layer 1-5
1474
+ RMS of weights
1475
+ Fig. S4. Analysis of the weight distributions across convolutional layers in the CNNs trained
1476
+ for different biasing schemes and microscopes.
1477
+ 4. WEIGHT ANALYSIS OF DIFFERENT TRAINED NEURAL NETWORKS
1478
+ Figure S4 shows the root-mean-square (RMS) values of the weights at the output of each section
1479
+ of the concatenated FCL following the convolutional layers of the CNN. These weights encode
1480
+ information about physical phenomena in the pseudo-PSF that is related to the spatial effects
1481
+ of aberrations on images. Higher numbered layers correspond to larger scale features. Similar
1482
+ distributions are seen for all of the ast CNNs class and all of the 2/4N class. Most notably, it can
1483
+ be seen that the 2/4N networks all carry heavier weights in layer 1, which is most similar to the
1484
+ Strehl ratio variations of the PSFs.
1485
+ 5. TRAINABLE NEURAL NETWORK PARAMETERS
1486
+ The bespoke NN and data pre-processing steps were designed with knowledge of the physical
1487
+ basis of image formation. This permitted signficant reduction in NN complexity compared
1488
+ to previous methods for aberration estimation. This architecture not only allowed improved
1489
+ performances, providing insights on internal workings, but also had a structure size orders of
1490
+ magnitude smaller than common NNs used in similar applications (see the comparison in Table
1491
+ S1). This will be beneficial for future applications as NN with fewer trainable parameters would
1492
+ generally require less training data and a shorter training time. Furthermore, the simplified design
1493
+ means that there is greater potential for extending the method to more challenging applications.
1494
+ 5
1495
+
1496
+ Neural network method
1497
+ Number of trainable parameters
1498
+ ResNet[2]
1499
+ >0.27M
1500
+ Inception V3/ GoogLeNet[3, 4]
1501
+ 23.6M
1502
+ Xception[5, 6]
1503
+ 22.8M
1504
+ Deep Image Prior[7]
1505
+ 2M
1506
+ PHASENET[8, 9]
1507
+ 1M
1508
+ MLAO in this paper
1509
+ 0.028M to 0.032M
1510
+ Table S1. A list of NNs used in image processing and phase determination with their number
1511
+ of trainable parameters. Inception V3[3], Xception[5] and PHASENET[8] have been directly
1512
+ demonstrated for phase determination. ResNet is a common basic NN architecture that has
1513
+ been used in many different image processing and phase determination architectures[8]. A 20
1514
+ layer ResNet is the smallest architecture proposed in the ResNet paper[2] that has ∼0.27M
1515
+ trainable parameters. Deep Image Prior employs a U-Net architecture that is a commonly
1516
+ used in many biomedical image processing applications. Deep phase decoder[10], a network
1517
+ designed for wavefront and image reconstruction, was also inspired and adapted from Deep
1518
+ Image Prior.
1519
+ 6. CHOICE OF BIAS MODE
1520
+ The simplest MLAO implementation uses a pair of biased images as the input. The nature of
1521
+ the bias aberrations is a design choice. In order to investigate this, we tested individual Zernike
1522
+ modes as the bias and trained different MLAO networks with identical architecture to correct the
1523
+ same randomly generated aberrations. The loss function of the different NNs during training
1524
+ was shown in Fig. S5 (a). Results from correcting 20 randomly generated aberrations were shown
1525
+ in Fig. S5 (b).
1526
+ 0
1527
+ 0.2
1528
+ 0.4
1529
+ 0.6
1530
+ 0.8
1531
+ 1
1532
+ 1.2
1533
+ 0
1534
+ 1k
1535
+ 2k
1536
+ 3k
1537
+ 4k
1538
+ 5k
1539
+ 6k
1540
+ 5
1541
+ 8
1542
+ 7
1543
+ 6
1544
+ 11
1545
+ i=
1546
+ Training epochs
1547
+ RMS loss function
1548
+ 0
1549
+ 0.5
1550
+ 1
1551
+ 1.5
1552
+ 2
1553
+ 2.5
1554
+ Aberration RMS / rad
1555
+ pre
1556
+ correction
1557
+ 4
1558
+ 5
1559
+ 6
1560
+ 7
1561
+ 8
1562
+ 11
1563
+ Bias mode i
1564
+ (a)
1565
+ (b)
1566
+ 188nm/px
1567
+ 5μm aberration
1568
+ free
1569
+ aberration
1570
+ 1.88 rad
1571
+ Fig. S5. Testing Zernike modes as choice of bias aberration. (a) A plot of the root mean square
1572
+ (RMS) loss function against the number of epochs when training NNs of the same architec-
1573
+ ture from the same dataset but using different bias modes. (b) Statistical results of testing the
1574
+ trained NNs to correct the same sets of random aberrations over 2-P microscope images of
1575
+ beads. Twenty randomly generated aberrations consisting five Zernike modes and RMS value
1576
+ smaller than 2.2 radians were introduced for correction (dark gray bar). The remaining aberra-
1577
+ tions after correction by different networks were averaged and shown in the figure; standard
1578
+ deviations of the remaining aberrations are represented as the error bar. Insets showed an
1579
+ example of the FOV when no aberration was introduced and an example when 1.88 rad of
1580
+ aberration was introduced into the system.
1581
+ The two networks using oblique and vertical astigmatism (index i =5 and 6) converged to
1582
+ similar loss function during training (Fig. S5 (a)). The same two networks also gave similar
1583
+ 6
1584
+
1585
+ averaged remaining aberrations during experimental aberration correction on a bead sample
1586
+ (Fig. S5 (b)). The two networks using vertical and horizontal coma (index 7 and 8) also showed
1587
+ mutually similar values. This was expected as these pairs of modes (5 and 6; 7 and 8) differ only
1588
+ by rotation, which should not have an effect on how effective the networks determine aberrations.
1589
+ From these results, the NNs using astigmatism as the bias modes converged to the smallest
1590
+ loss function during training. This possibly suggested that the astigmatism modes, on average,
1591
+ allowed the network to learn more from the training data. It was also observed from the ex-
1592
+ perimental results where, in general, the NN obtained the smallest remaining aberrations. We
1593
+ therefore chose to use astigmatism as the modulation modes for the two-bias NN methods in the
1594
+ experiments conducted in this paper.
1595
+ 7. TOLERANCE TO SAMPLING RATE
1596
+ As described in the paper, the networks for scanning microscopy were trained on simulated
1597
+ dataset with pixel sampling within the range of 1.0× to 1.2× of the base sampling rate (see the
1598
+ method section in the main paper for more details). However in many practical cases, there can
1599
+ be uncertainty in pixel sampling for a system or constraints on the sampling rates that may be
1600
+ used. We hence tested the tolerance of our networks to pixel sampling rates outside the range of
1601
+ the training dataset (see Fig. S6).
1602
+ 0
1603
+ 1
1604
+ 2
1605
+ 3
1606
+ 4
1607
+ pre correction
1608
+ 2N+1 conv
1609
+ ast2 MLAO
1610
+ 2N MLAO
1611
+ 219nm/px
1612
+ 5μm
1613
+ 188nm/px
1614
+ 5μm
1615
+ 156nm/px
1616
+ 5μm
1617
+ 5μm
1618
+ 125nm/px
1619
+ Aberration RMS / rad
1620
+ Image sampling rate
1621
+ Fig. S6. Testing of robustness to pixel sampling. Statistical results of remaining aberrations
1622
+ before (red plot) and after correction using 2N+1 conv, ast2 MLAO and 2N MLAO methods.
1623
+ The results were averaged from 20 randomly generated aberrations and the SDs were shown
1624
+ as the error bars. The same algorithms were used to correct the same aberrations over images
1625
+ collected at different pixel sampling as shown by the horizontal axis. Insets show examples of
1626
+ the images collected at different sampling rates.
1627
+ In this case, 188nm per pixel was close to the sampling of the generated dataset on which the
1628
+ two NNs were trained. When images were sampled at a smaller or larger rate, ast2 MLAO and
1629
+ 2N MLAO were still able to correct aberrations, but were slightly less effective.
1630
+ 8. FURTHER THREE-PHOTON MICROSCOPE DEMONSTRATIONS
1631
+ Figure S7 showed the performance of the ast4 MLAO algorithm, for imaging neuronal activity
1632
+ at a depth of 670 µm in a mouse brain. Despite the very low SNR of the image data, the image
1633
+ quality and cell activity data were considerably improved.
1634
+ 9. DETAILS OF THE EXPERIMENTAL METHODOLOGY
1635
+ Three optical systems, a 2-P, 3-P and widefield microscope, were used for demonstrations on
1636
+ different samples. Networks with different parameter settings are also adjusted for different
1637
+ applications.
1638
+ 7
1639
+
1640
+ vi
1641
+
1642
+ A
1643
+ B
1644
+ C
1645
+ D
1646
+ E
1647
+ F
1648
+ G
1649
+ H
1650
+ Post MLAO it:3
1651
+ Pre MLAO
1652
+ Post MLAO it:3
1653
+ 1
1654
+ 2
1655
+ Post MLAO
1656
+ it:3
1657
+ Pre
1658
+ MLAO
1659
+ Post
1660
+ MLAO
1661
+ it:3
1662
+ iii
1663
+ 1
1664
+ 2
1665
+ Pre
1666
+ MLAO
1667
+ 0
1668
+ 50
1669
+ 100
1670
+ 0
1671
+ 50
1672
+ 100
1673
+ time / s
1674
+ time / s
1675
+ yS
1676
+ yI
1677
+ Images
1678
+ Images
1679
+ it:1
1680
+ it:2
1681
+ it:3
1682
+ iv
1683
+ v
1684
+ it:2
1685
+ it:1
1686
+ 20μm
1687
+ A
1688
+ B
1689
+ C
1690
+ D
1691
+ E
1692
+ F
1693
+ G
1694
+ H
1695
+ GCaMP at 670 μm
1696
+ vii
1697
+ Pre MLAO
1698
+ i
1699
+ -1 rad
1700
+ -0.5 rad
1701
+ +0.5 rad
1702
+ +1 rad
1703
+ ast4 MLAO
1704
+ 1
1705
+ 3
1706
+ 2
1707
+ 4
1708
+ Bias mode i=5
1709
+ ii
1710
+ Fig. S7. Three-photon microscopy imaging GCaMP neuronal activities at depth 670µm. Power
1711
+ at sample was 44 mW. Wavefronts inserted to the figures showed the phase modulations ap-
1712
+ plied by the DM at the relevant step; the common scale is indicated by the colorbar above v. i
1713
+ and iii show respectively before and after ast4 MLAO correction through three iterations (it:1
1714
+ to 3), 200 frame averages after motion correction. In iii, time traces shown to the right and
1715
+ bottom were taken from the marked lines (1) and (2) respectively. ii 1-4 shows example single-
1716
+ frame images used as inputs to the ast4 MLAO correction with the corresponding bias modes
1717
+ as insets. iv and v show the intensity metric (yI) and the sharpness metric (yS), respectively,
1718
+ calculated from single image frames, against the number of images acquired for three iterations
1719
+ ast4 MLAO. vi shows the Calcium activity of 8 cells (A-H marked on i). vii shows a histogram
1720
+ of the 200 frames collected pre MLAO (blue), post MLAO (red) and the differences between pre
1721
+ and post MLAO (yellow).
1722
+ 8
1723
+
1724
+ A
1725
+ 0
1726
+ 50
1727
+ 100
1728
+ time / s0
1729
+ S
1730
+ time / s
1731
+ 50
1732
+ 1002
1733
+ 1
1734
+ 0
1735
+ -1
1736
+ -2
1737
+ -3based metric (y)
1738
+ Sharpness
1739
+ *ast4 MLAO
1740
+ 0
1741
+ 4
1742
+ 8
1743
+ 12
1744
+ number of
1745
+ sample exposuresFluorescence
1746
+ intensity (y,)
1747
+ *一ast4 MLAO
1748
+ 0
1749
+ 4
1750
+ 8
1751
+ 12
1752
+ number of
1753
+ sample exposures2
1754
+ 1
1755
+ 0
1756
+ -1
1757
+ -2
1758
+ -32
1759
+ 1
1760
+ 0
1761
+ -1
1762
+ -2
1763
+ -3×105
1764
+ Pre MLAO
1765
+ Post MLAO it:5
1766
+ Difference between
1767
+ post and pre MLAO
1768
+ 0T
1769
+ 1
1770
+ 0
1771
+ 2
1772
+ -T
1773
+ 1
1774
+ 2×105
1775
+ PreMLAO
1776
+ Post MLAO it:3
1777
+ Difference between
1778
+ post and pre MLAO0
1779
+ 50
1780
+ 100
1781
+ time / sA. Experimental setups
1782
+ c
1783
+ Widefield
1784
+ 3-D SIM
1785
+ microscope
1786
+ f200
1787
+ SLM
1788
+ DM
1789
+ f175
1790
+ Obj:W-D
1791
+ f60
1792
+ BX
1793
+ f175
1794
+ f125
1795
+ f200
1796
+ FS
1797
+ AP
1798
+ f175
1799
+ f75
1800
+ f400
1801
+ f50
1802
+ C1
1803
+ C2
1804
+ M
1805
+ M
1806
+ M
1807
+ PL
1808
+ M
1809
+ M
1810
+ DF
1811
+ DF
1812
+ M
1813
+ PR
1814
+ /2
1815
+ f175
1816
+ f200
1817
+ f200
1818
+ EF
1819
+ EF
1820
+ SF
1821
+ EF
1822
+ LS488
1823
+ LS561
1824
+ M
1825
+ ST
1826
+ M
1827
+ /2
1828
+ FS laser
1829
+ HWP
1830
+ PBS
1831
+ Dump
1832
+ compressor
1833
+ M
1834
+ f50
1835
+ f200
1836
+ M
1837
+ Galvo scanners
1838
+ f206
1839
+ f30
1840
+ DF
1841
+ PZ
1842
+ EF
1843
+ PMT
1844
+ Obj:W-D
1845
+ b
1846
+ Three-photon
1847
+ microscope
1848
+ f500
1849
+ f75
1850
+ auto-
1851
+ correlator
1852
+ DM
1853
+ FS laser
1854
+ HWP
1855
+ PBS
1856
+ Dump
1857
+ f50
1858
+ f150
1859
+ M
1860
+ M
1861
+ Galvo x
1862
+ FM
1863
+ f75
1864
+ f75
1865
+ Galvo y
1866
+ f75
1867
+ f120
1868
+ M
1869
+ M
1870
+ f150
1871
+ f75
1872
+ DF
1873
+ EF
1874
+ PMT
1875
+ PZ
1876
+ f150
1877
+ f100
1878
+ SLM
1879
+ M
1880
+ f200
1881
+ f200
1882
+ FS
1883
+ Obj:W-I
1884
+ a
1885
+ Two-photon
1886
+ microscope
1887
+ DF
1888
+ DF
1889
+ FM
1890
+ FM
1891
+ M
1892
+ Fig. S8. Configuration of the (a) 2-P (b) 3-P (c) widefield 3-D SIM microscope. (Caption contin-
1893
+ ued on the next page.)
1894
+ 9
1895
+
1896
+ Femtosecond (FS) Laser; Continuous-wave lasers with wavelenths 488nm and 561nm (LS488 and
1897
+ LS561); half wave plate (HWP); polarisation beam splitter (PBS); laser beam dump (Dump); lens
1898
+ with focal length = x mm (fx); broadband dielectric mirror (M); flip mirror (FM); Hamamatsu
1899
+ spatial light modulator (SLM); Mirao 52E deformable mirror (DM) in the 3-P system; ALPAO
1900
+ 69 deformable mirror (DM) in the widefield 3-D SIM system; aperture (AP); spatial filter (SF);
1901
+ field stopper (FS); X galvanometer (Galvo x); Y galvanometer (Galvo y); beam expansion (BX);
1902
+ half waveplate (λ/2); linear polariser (PL); polarisation rotator (PR); Olympus 40× numerical
1903
+ aperture (NA) 1.15 water immersion objective lens (Obj:W-I) used in the 2-P system; Nikon 16×
1904
+ NA 0.8 water dipping objective lens (Obj:W-D) used in the 3-P system; Olympus 60× NA 1.1
1905
+ water dipping objective lens (Obj:W-D) in the widefield 3-D SIM system; Z-piezo translation stage
1906
+ (PZ); X-Y-Z translational sample mounting stage (ST); Dichroic filter (DF) allow emission signal
1907
+ from fluorophores to be reflected through emission filter (EF) into a photo-multiplier tube (PMT)
1908
+ in a multi-photon system; cameras (C1 and C2)
1909
+ B. Sample preparation
1910
+ The 3-P results were collected from imaging male (Lhx6-eGFP)BP221Gsat; Gt(ROSA)26Sortm32(CAG-
1911
+ COP4*H134R/EYFP)Hze mice (static imaging) and female and male Tg(tetO-GCaMP6s)2Niell
1912
+ mice (calcium imaging). Mice were between 8-12 weeks of age when surgery was performed. The
1913
+ scalp was removed bilaterally from the midline to the temporalis muscles, and a metal headplate
1914
+ with a 5 mm circular imaging well was fixed to the skull with dental cement (Super-Bond C&B,
1915
+ Sun-Medical). A 4–5 mm circular craniotomy was performed during which any bleeding was
1916
+ washed away with sterile external solution or staunched with Sugi-sponges (Sugi, Kettenbach).
1917
+ Cranial windows composed of 4 or 5 mm circular glass coverslips were press-fit into the cran-
1918
+ iotomy, sealed to the skull by a thin layer of cyanoacrylate (VetBond) and fixed in place by dental
1919
+ cement.
1920
+ The widefield 3-D SIM results were collected from imaging NMJ of Drosophila larvae. For
1921
+ the immunofluorescence sample with one coloured channel, it was prepared as previously [11].
1922
+ Crawling 3rd instar larvae of wildtype Oregon-R Drosophila melanogaster were dissected on a
1923
+ Sylgard-coated Petri Dish in HL3 buffer with 0.3mM Ca2+ to prepare larval fillet [12]. Then, the
1924
+ larval fillet samples were fixed in Paraformaldehyde 4% in PBS containing 0.3% (v/v) Triton
1925
+ X-100 (PBSTX) for 30 minutes. The brains were removed post-fixation, and the fillet samples were
1926
+ transferred to a Microcentrifuge tube containing PBSTX for 45 minutes of permeabilisation. The
1927
+ samples were stained with HRP conjugated to Alexa Fluor 488 and DAPI for 1 hour at room
1928
+ temperature (21C◦). After the washes, the samples were mounted in Vectashield.
1929
+ For the 3-D SIM results collected on the Drosophila larvae sample with two coloured channels,
1930
+ it was prepared by following the protocol presented in [11]. 3rd instar Drosophila melanogaster
1931
+ larvae (Brp-GFP strain) were dissected in HL3 buffer with 0.3mM Ca2+ to prepare a so-called
1932
+ larval fillet, and the larval brains were removed. After this, larvae were stained for 15 minutes
1933
+ with HRP conjugated to Alexa Fluor 568 to visualise the neurons, washed with HL3 buffer with
1934
+ 0.3mM Ca2+ and imaged in HL3 buffer without Ca2+ to prevent the larvae from moving.
1935
+ C. Network parameters
1936
+ Table S2 showed the network settings used in different imaging applications.
1937
+ 10
1938
+
1939
+ Results in
1940
+ Method label
1941
+ M
1942
+ N
1943
+ Bias
1944
+ Bias
1945
+ Corrected
1946
+ modes, i
1947
+ depths
1948
+ modes, i
1949
+ Fig. 2 (a, c, f)
1950
+ ast2 MLAO
1951
+ 2
1952
+ 5
1953
+ 5
1954
+ ±1 rad
1955
+ 5–8, 11
1956
+ Fig. S3
1957
+ Fig. 2 (a, c, f)
1958
+ 2N MLAO
1959
+ 10
1960
+ 5
1961
+ 5–8, 11
1962
+ ±1 rad
1963
+ 5–8, 11
1964
+ Fig. 2 (b, d, e)
1965
+ ast2 MLAO
1966
+ 2
1967
+ 9
1968
+ 5
1969
+ ±1 rad
1970
+ 5–13
1971
+ Fig. 2 (b, d, e)
1972
+ 2N MLAO
1973
+ 18
1974
+ 9
1975
+ 5–13
1976
+ ±1 rad
1977
+ 5–13
1978
+ Fig. 3 (a, b)
1979
+ ast4 MLAO
1980
+ 4
1981
+ 7
1982
+ 5
1983
+ ±0.5
1984
+ 5–11
1985
+ Fig. S4
1986
+ ±1 rad
1987
+ Fig. 3 (a)
1988
+ 4N MLAO
1989
+ 28
1990
+ 7
1991
+ 5–11
1992
+ ±0.5
1993
+ 5–11
1994
+ ±1 rad
1995
+ Fig. 4
1996
+ ast2 MLAO
1997
+ 2
1998
+ 8
1999
+ 5
2000
+ ±1 rad
2001
+ 5–11, 22
2002
+ Fig. 4
2003
+ 2N MLAO
2004
+ 2
2005
+ 8
2006
+ 5–11, 22
2007
+ ±1 rad
2008
+ 5–11, 22
2009
+ Table S2. A list of MLAO parameters chosen for different imaging applications. The Zernike
2010
+ modes were sequenced using Noll’s indices.
2011
+ REFERENCES
2012
+ 1.
2013
+ M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
2014
+ J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Joze-
2015
+ fowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
2016
+ M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
2017
+ sudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
2018
+ “TensorFlow: Large-scale machine learning on heterogeneous systems,” (2015). Software
2019
+ available from tensorflow.org.
2020
+ 2.
2021
+ K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
2022
+ Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016).
2023
+ 3.
2024
+ T. Andersen, M. Owner-Petersen, and A. Enmark, “Neural networks for image-based wave-
2025
+ front sensing for astronomy,” Opt. Lett. 44, 4618–4621 (2019).
2026
+ 4.
2027
+ C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and
2028
+ A. Rabinovich, “Going deeper with convolutions,” in 2015 IEEE Conference on Computer Vision
2029
+ and Pattern Recognition (CVPR), (2015), pp. 1–9.
2030
+ 5.
2031
+ P. A. Khorin, A. P. Dzyuba, P. G. Serafimovich, and S. N. Khonina, “Neural networks
2032
+ application to determine the types and magnitude of aberrations from the pattern of the
2033
+ point spread function out of the focal plane,” J. Physics: Conf. Ser. 2086, 012148 (2021).
2034
+ 6.
2035
+ F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” (2016).
2036
+ 7.
2037
+ D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” Int. J. Comput. Vis. 128,
2038
+ 1867–1888 (2020).
2039
+ 8.
2040
+ D. Saha, U. Schmidt, Q. Zhang, A. Barbotin, Q. Hu, N. Ji, M. J. Booth, M. Weigert, and E. W.
2041
+ Myers, “Practical sensorless aberration estimation for 3D microscopy with deep learning,”
2042
+ Opt. Express 28, 29044–29053 (2020).
2043
+ 9.
2044
+ D. Saha and U. Schmidt, “Phasenet,” https://github.com/mpicbg-csbd/phasenet (2020).
2045
+ 10.
2046
+ E. Bostan, R. Heckel, M. Chen, M. Kellman, and L. Waller, “Deep phase decoder: self-
2047
+ calibrating phase microscopy with an untrained deep neural network,” Optica 7, 559–562
2048
+ (2020).
2049
+ 11.
2050
+ J. R. Brent, K. M. Werner, and B. D. McCabe, “Drosophila larval nmj dissection.” J Vis Exp
2051
+ (2009).
2052
+ 12.
2053
+ R. M. Parton, A. M. Vallés, I. M. Dobbie, and I. Davis, “Drosophila Larval Fillet Preparation
2054
+ and Imaging of Neurons,” Cold Spring Harb. Protoc. 2010, pdb.prot5405 (2010).
2055
+ 11
2056
+
ANE0T4oBgHgl3EQfxgKB/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9FQT4oBgHgl3EQfQDZ4/content/tmp_files/2301.13281v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9FQT4oBgHgl3EQfQDZ4/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DdFJT4oBgHgl3EQfBSxP/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9e742e9493556fa0128c1d4f12a7541360069d7cdf26d659e6a00aab56288c1
3
+ size 7143469
DdFKT4oBgHgl3EQfZC4_/content/tmp_files/2301.11801v1.pdf.txt ADDED
@@ -0,0 +1,1090 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.11801v1 [physics.gen-ph] 12 Jan 2023
2
+ 4D Einstein–Gauss–Bonnet gravity coupled to modified
3
+ logarithmic nonlinear electrodynamics
4
+ Sergey Il’ich Kruglov 1
5
+ Department of Physics, University of Toronto,
6
+ 60 St. Georges St., Toronto, ON M5S 1A7, Canada
7
+ Department of Chemical and Physical Sciences, University of Toronto,
8
+ 3359 Mississauga Road North, Mississauga, Ontario L5L 1C6, Canada
9
+ Abstract
10
+ Spherically symmetric solution in 4D Einstein–Gauss–Bonnet grav-
11
+ ity coupled to modified logarithmic nonlinear electrodynamics (Mod-
12
+ LogNED) is found.
13
+ This solution at infinity possesses the charged
14
+ black hole Reissner–Nordstr¨om behavior.
15
+ We study the black hole
16
+ thermodynamics, entropy, shadow, energy emission rate and quasi-
17
+ normal modes. It was shown that black holes can possess the phase
18
+ transitions and at some range of event horizon radii black holes are
19
+ stable. The entropy has the logarithmic correction to the area law.
20
+ The shadow radii were calculated for variety of parameters. We found
21
+ that there is a peak of the black hole energy emission rate. The real
22
+ and imaginary parts of the quasinormal modes frequencies were cal-
23
+ culated. The energy conditions of ModLogNED are investigated.
24
+ Keywords: Einstein−Gauss−Bonnet gravity; nonlinear electrodynamics;
25
+ Hawking temperature; entropy; heat capacity; black hole shadow; energy
26
+ emission rate; quasinormal modes
27
+ 1
28
+ Introduction
29
+ Nowadays, there are many theories of gravity that are alternatives to Ein-
30
+ stein’s theory [1, 2]. The motivation of generalisations of Einstein’s theory of
31
+ General Relativity (GR) is to resolve some problems in cosmology and astro-
32
+ physics. One of important modification of GR is the Einstein–Gauss–Bonnet
33
+ 1E-mail: [email protected]
34
+ 1
35
+
36
+ (EGB) theory [3, 4, 5, 6]. EGB theories do not include extra degrees of free-
37
+ dom and field equations have second derivatives of the metric. These theories
38
+ also prevent Ostrogradsky instability [7]. The four dimensional (4D) EGB
39
+ theory, that includes the Einstein–Hilbert action plus GB term, is a particu-
40
+ lar case of the Lovelock theory. It represents the generalization of Einstein’s
41
+ GR for higher dimensions and EGB theory results covariant second-order
42
+ field equations. The GB part of the action possesses higher order curvature
43
+ terms.
44
+ It is worth mentioning that at low energy the action of the het-
45
+ erotic string theory includes higher order curvature terms [8, 9, 10, 11, 12].
46
+ Therefore, it is of interest to study gravity action with the GB term. The
47
+ GB term is a topological invariant in 4D and before a regularization it does
48
+ not contribute to the equation of motion. But Glavan and Lin [13] showed
49
+ that re-scaling the coupling constant, after the regularization, GB term con-
50
+ tributes to the equation of motion. The consistent theory of 4D EGB gravity,
51
+ was proposed in [14, 15, 16], is in agreement with the Lovelock theorem [5]
52
+ and possesses two dynamical degrees of freedom breaking the temporal dif-
53
+ feomorphism invariance. It is worth noting that the theory of [14, 15, 16],
54
+ in the spherically-symmetric metrics, gives the solution which is a solution
55
+ in the framework of [13] scheme (see [17]). Some aspects of 4D EGB gravity
56
+ were considered in [18]. The black hole and wormhole type solutions in the
57
+ effective gravity models, including higher curvature terms, were obtained in
58
+ [19].
59
+ Here, we study the black hole thermodynamics, the entropy, the shadow,
60
+ the energy emission rate and quasinormal modes in the framework of the
61
+ ModLogNED model (proposed in [20]) coupled to 4D EGB gravity. It is
62
+ worth noting that ModLogNED model is simpler compared with logarithmic
63
+ model [21] and generalized logarithmic model [22] because the mass and met-
64
+ ric functions here are expressed through simple elementary functions. The
65
+ black hole quasinormal modes, deflection angles, shadows and the Hawking
66
+ radiation were studied in [23, 24, 25, 26, 27, 28, 29].
67
+ The structure of the paper is as follows. In Sect. 2, we obtain the spher-
68
+ ically symmetric solution of black holes in the 4D EGB gravity coupled to
69
+ ModLogNED. At infinity the Reissner−Nordstr¨om behavior of the charged
70
+ black holes takes place. The black hole thermodynamics is studied in Sect. 3.
71
+ We calculate the Hawking temperature, the heat capacity and the entropy.
72
+ At some parameters second order phase transitions occur. The entropy in-
73
+ cludes the logarithmic correction to Bekenstein–Hawking entropy. In Sect. 4
74
+ the black hole shadow is investigated. We calculate the photon sphere, the
75
+ 2
76
+
77
+ event horizon, and the shadow radii. The black hole energy emission rate is
78
+ investigate in Sect. 5. In Sect. 6 we study quasinormal modes and find com-
79
+ plex frequencies. Section 7 is a summary. In Appendix A energy conditions
80
+ of ModLogNED model are investigated.
81
+ 2
82
+ 4D EGB model
83
+ The action of EGB gravity coupled to nonlinear electrodynamics (NED) in
84
+ D-dimensions is given by
85
+ I =
86
+
87
+ dDx√−g
88
+
89
+ 1
90
+ 16πG (R + αLGB) + LNED
91
+
92
+ ,
93
+ (1)
94
+ where G is the Newton’s constant, α has the dimension of (length)2. The
95
+ Lagrangian of ModLogNED, proposed in [20], is
96
+ LNED = −
97
+
98
+ 2F
99
+ 8πβ ln
100
+
101
+ 1 + β
102
+
103
+ 2F
104
+
105
+ ,
106
+ (2)
107
+ where we use Gaussian units. The parameter β (β ≥ 0) possesses the di-
108
+ mension of (length)2, Fµν = ∂µAν − ∂νAµ is the field strength tensor, and
109
+ F = (1/4)FµνF µν = (B2 − E2)/2, where B and E are the induction mag-
110
+ netic and electric fields, correspondingly. Making use of the limit β → 0 in
111
+ Eq. (2), we arrive at the Maxwell’s Lagrangian LM = −F/(4π). The GB
112
+ Lagrangian has the structure
113
+ LGB = RµναβRµναβ − 4RµνRµν + R2.
114
+ (3)
115
+ By varying action (1) with respect to the metric we have EGB equations
116
+ Rµν − 1
117
+ 2gµνR + αHµν = −8πGTµν,
118
+ (4)
119
+ Hµν = 2
120
+
121
+ RRµν − 2RµαRα
122
+ ν − 2RµανβRαβ − RµαβγRαβγ
123
+ ν
124
+
125
+ − 1
126
+ 2LGBgµν,
127
+ (5)
128
+ where Tµν is the stress (energy-momentum) tensor. To obtain the solution
129
+ of field equations we need to use an ansatz for the interval. But the va-
130
+ lidity of Birkhoff’s theorem [30] for our case of 4D EGB gravity coupled to
131
+ ModLogNED model is not proven. Therefore, to simplify the problem we
132
+ consider magnetic black holes with the static spherically symmetric metric
133
+ 3
134
+
135
+ in D dimension. In addition, we assume that components of the interval are
136
+ restricted by the relation g11 = g−1
137
+ 00 . Thus, we suppose that the metric has
138
+ the form
139
+ ds2 = −f(r)dt2 + dr2
140
+ f(r) + r2dΩ2
141
+ D−2.
142
+ (6)
143
+ The dΩ2
144
+ D−2 is the line element of the unit (D − 2)-dimensional sphere. By
145
+ following [13] we replace α by α → α/(D − 4) and taking the limit D → 4.
146
+ We study the magnetic black holes and find F = q2/(2r4), where q is a
147
+ magnetic charge. Then the magnetic energy density becomes [20]
148
+ ρ = T 0
149
+ 0 = −L =
150
+
151
+ 2F
152
+ 8πβ ln
153
+
154
+ 1 + β
155
+
156
+ 2F
157
+
158
+ =
159
+ q
160
+ 8πβr2 ln
161
+
162
+ 1 + βq
163
+ r2
164
+
165
+ .
166
+ (7)
167
+ At the limit D → 4 and from Eq. (4) we obtain
168
+ r(2αf(r) − r2 − 2α)f ′(r) − (r2 + αf(r) − 2α)f(r) + r2 − α = 2r4Gρ.
169
+ (8)
170
+ By virtue of Eq. (7 ) one finds
171
+
172
+ � r
173
+ 0 r2ρdr = mM + q
174
+
175
+
176
+ r ln
177
+
178
+ 1 + βq
179
+ r2
180
+
181
+ − 2
182
+
183
+ βq arctan
184
+ �√βq
185
+ r
186
+ ��
187
+ ,
188
+ (9)
189
+ mM = 4π
190
+ � ∞
191
+ 0
192
+ r2ρdr = q
193
+
194
+ � ∞
195
+ 0
196
+ ln
197
+
198
+ 1 + βq
199
+ r2
200
+
201
+ dr = πq3/2
202
+ 2√β ,
203
+ (10)
204
+ where mM is the black hole magnetic mass. Making use of Eqs. (9) and (10)
205
+ we obtain the solution to Eq. (8)
206
+ f(r) = 1 + r2
207
+
208
+
209
+ 1 ±
210
+
211
+ 1 + 8αG
212
+ r3 (m + h(r)
213
+
214
+  ,
215
+ h(r) = mM + q
216
+
217
+
218
+ r ln
219
+
220
+ 1 + βq
221
+ r2
222
+
223
+ − 2
224
+
225
+ βq arctan
226
+ �√βq
227
+ r
228
+ ��
229
+ ,
230
+ (11)
231
+ where m is the constant of integration (the Schwarzschild mass) and the total
232
+ black hole mass is M = m+mM which is the ADM mass. At the limit β → 0
233
+ one has
234
+ lim
235
+ β→0 h(r) = mM − q2/2r.
236
+ 4
237
+
238
+ Then making use of Eq. (11), for the negative branch, we obtain
239
+ lim
240
+ β→0,α→0 f(r) = 1 − 2MG
241
+ r
242
+ + Gq2
243
+ r2 ,
244
+ that corresponds to GR coupled to Maxwell electrodynamics (the Reissner–
245
+ Nordstr¨om solution).
246
+ It is worth mentioning that for spherically symmetric D-dimensional line
247
+ element (6), the Weyl tensor of the D-dimensional spatial part becomes zero
248
+ [17]. Therefore, solution (11) corresponds to the consistent theory [14, 15, 16].
249
+ By introducing the dimensionless variable x = r/√βq, Eq. (11) is rewritten
250
+ in the form
251
+ f(x) = 1 + Cx2 ± C
252
+
253
+ x4 + x(A − Bg(x)),
254
+ (12)
255
+ where
256
+ A = 8αGM
257
+ (βq)3/2, B = 4αG
258
+ β2 , C = βq
259
+ 2α, g(x) = 2 arctan
260
+ �1
261
+ x
262
+
263
+ − x ln
264
+
265
+ 1 + 1
266
+ x2
267
+
268
+ .
269
+ (13)
270
+ We will use the negative branch in Eqs. (11) and (12) with the minus sign
271
+ of the square root to have black holes without ghosts. As α → 0, r → ∞ the
272
+ metric function f(r) (11), for the negative branch, becomes
273
+ f(r) = 1 − 2MG
274
+ r
275
+ + Gq2
276
+ r2 + O(r−3),
277
+ (14)
278
+ showing, at infinity, the Reissner−Nordstr¨om behavior of the charged black
279
+ holes. The plot of function (12) for a particular chose of parameters, A = 15,
280
+ C = 1 (as an example), is depicted in Fig.
281
+ 1.
282
+ The expansion (14) was
283
+ observed in other models (see, for example, [31]). According to Fig. 1 there
284
+ can be two horizons or one (the extreme) horizon of black holes.
285
+ 3
286
+ The black hole thermodynamics
287
+ To study the black hole thermal stability we will calculate the Hawking tem-
288
+ perature
289
+ TH(r+) = f ′(r) |r=r+
290
+
291
+ ,
292
+ (15)
293
+ 5
294
+
295
+ 1
296
+ 2
297
+ 3
298
+ 4
299
+ 5
300
+ 6
301
+ 7
302
+ 8
303
+ 9
304
+ 10
305
+ −0.5
306
+ 0
307
+ 0.5
308
+ 1
309
+ 1.5
310
+ 2
311
+ 2.5
312
+ 3
313
+ x
314
+ f(x)
315
+
316
+
317
+ B=23
318
+ B=27.5
319
+ B=32
320
+ Figure 1: The plot of the function f(x) for A = 15, C = 1.
321
+ where r+ is the event horizon radius (f(r+) = 0). From Eqs. (12) and (15)
322
+ one finds the Hawking temperature
323
+ TH(x+) =
324
+ 1
325
+ 4π√βq
326
+ �2Cx2
327
+ + − 1 + BC2x2
328
+ +g′(x+)
329
+ 2x+(1 + Cx2
330
+ +)
331
+
332
+ ,
333
+ (16)
334
+ g′(x+) = − ln
335
+
336
+ 1 + 1
337
+ x2
338
+ +
339
+
340
+ .
341
+ Parameter A was substituted into Eq. (15) from equation f(x+) = 0. The
342
+ plot of the dimensionless function TH(x+)√βq versus x+, for the case C = 1,
343
+ is represented in Fig. 2. Figure 2 shows that the Hawking temperature is
344
+ positive for some interval of event horizon radii. We will calculate the heat
345
+ capacity to study the black hole local stability
346
+ Cq(x+) = TH
347
+ ��� ∂S
348
+ ∂TH
349
+
350
+ q
351
+ = ∂M(x+)
352
+ ∂TH(x+) = ∂M(x+)/∂x+
353
+ ∂TH(x+)/∂x+
354
+ ,
355
+ (17)
356
+ 6
357
+
358
+ 1
359
+ 2
360
+ 3
361
+ 4
362
+ 5
363
+ 6
364
+ 7
365
+ −0.05
366
+ −0.04
367
+ −0.03
368
+ −0.02
369
+ −0.01
370
+ 0
371
+ 0.01
372
+ 0.02
373
+ 0.03
374
+ x+
375
+ TH β1/2 q1/2
376
+
377
+
378
+ B=2
379
+ B=4
380
+ B=6
381
+ Figure 2: The plot of the function TH(x+)√βq at C = 1.
382
+ where M(x+) is the black hole gravitational mass as a function of the event
383
+ horizon radius. Making use of equation f(x+) = 0 we obtain the black hole
384
+ mass
385
+ M(x+) = (βq)3/2
386
+ 8αG
387
+ �1 + 2Cx2
388
+ +
389
+ C2x+
390
+ + Bg(x+)
391
+
392
+ .
393
+ (18)
394
+ With the help of Eqs. (16) and (18) one finds
395
+ ∂M(x+)
396
+ ∂x+
397
+ = (βq)3/2
398
+ 8αG
399
+ �2Cx2
400
+ + − 1
401
+ C2x2+
402
+ + Bg′(x+)
403
+
404
+ ,
405
+ (19)
406
+ ∂TH(x+)
407
+ ∂x+
408
+ =
409
+ 1
410
+ 8π√βq
411
+ �5Cx2
412
+ + − 2C2x4
413
+ + + 1
414
+ x2
415
+ +(1 + Cx2
416
+ +)2
417
+ +BC2[g′(x+)(1 − Cx2
418
+ +) + x+g′′(x+)(1 + Cx2
419
+ +)]
420
+ (1 + Cx2+)2
421
+
422
+ ,
423
+ (20)
424
+ 7
425
+
426
+ g′′(x+) =
427
+ 2
428
+ x+(x2+ + 1).
429
+ In accordance with Eq. (17) the heat capacity has a singularity when the
430
+ Hawking temperature possesses an extremum (∂TH(x+)/∂x+ = 0). Equa-
431
+ tions (16) and (17) show that at one point, x+ = x1, the Hawking temper-
432
+ ature and heat capacity become zero and the black hole remnant mass is
433
+ formed. In another point x+ = x2 with ∂TH(x+)/∂x+ = 0, the heat capac-
434
+ ity has a singularity where the second-order phase transition occurs. Black
435
+ holes in the range x2 > x+ > x1 are locally stable but at x+ > x2 black holes
436
+ are unstable. Making use of Eqs. (17), (19) and (20) the heat capacity is
437
+ depicted in Fig. 3 at C = 1. The Hawking temperature and heat capacity
438
+ 1.5
439
+ 2
440
+ 2.5
441
+ 3
442
+ 3.5
443
+ 4
444
+ −5000
445
+ −4000
446
+ −3000
447
+ −2000
448
+ −1000
449
+ 0
450
+ 1000
451
+ 2000
452
+ 3000
453
+ x+
454
+ Cqα G/(β2 q2)
455
+
456
+
457
+ B=2
458
+ B=4
459
+ B=6
460
+ Figure 3: The plot of the function Cq(x+)αG/(β2q2) at C = 1.
461
+ are positive in the range x2 > x+ > x1 and locally stable.
462
+ From the first law of black hole thermodynamics dM(x+) = TH(x+)dS +
463
+ 8
464
+
465
+ φdq we obtain the entropy at the constant charge [32]
466
+ S =
467
+ � dM(x+)
468
+ TH(x+) =
469
+
470
+ 1
471
+ TH(x+)
472
+ ∂M(x+)
473
+ ∂x+
474
+ dx+.
475
+ (21)
476
+ From Eqs. (16), (19) and (21) one finds the entropy
477
+ S = π(βq)2
478
+ C2αG
479
+ � 1 + Cx2
480
+ +
481
+ x+
482
+ dx+ = πr2
483
+ +
484
+ G + 4πα
485
+ G ln
486
+ � r+
487
+ √βq
488
+
489
+ + Const,
490
+ (22)
491
+ with the integration constant Const. The integration constant can be chosen
492
+ in the form
493
+ Const = 2πα
494
+ G ln
495
+ �πqβ
496
+ G
497
+
498
+ .
499
+ (23)
500
+ Then making use of Eqs. (22) and (23) we obtain the black hole entropy
501
+ S = S0 + 2πα
502
+ G ln (S0) ,
503
+ (24)
504
+ with S0 = πr2
505
+ +/G being the Bekenstein–Hawking entropy and with the log-
506
+ arithmic correction but without the coupling β. One can find same entropy
507
+ (24) in other models [33, 34, 35].
508
+ 4
509
+ Black holes shadows
510
+ The light gravitational lensing leads to the formation of black hole shadow
511
+ and a black circular disk. The Event Horizon Telescope collaboration [36] ob-
512
+ served the image of the super-massive black hole M87*. A neutral Schwarzschild
513
+ black hole shadow was studied in [37]. We will consider photons moving in the
514
+ equatorial plane, ϑ = π/2. With the help of the Hamilton−Jacobi method
515
+ one obtains the equation for the photon motion in null curves [38]
516
+ H = 1
517
+ 2gµνpµpν = 1
518
+ 2
519
+ �L2
520
+ r2 − E2
521
+ f(r) +
522
+ ˙r2
523
+ f(r)
524
+
525
+ = 0,
526
+ (25)
527
+ where pµ is the photon momentum ( ˙r = ∂H/∂pr). The photon energy and
528
+ angular momentum are constants of motion, and they are E = −pt and
529
+ L = pφ, correspondingly. We can represent Eq. (25) as
530
+ V + ˙r2 = 0,
531
+ V = f(r)
532
+ �L2
533
+ r2 − E2
534
+ f(r)
535
+
536
+ .
537
+ (26)
538
+ 9
539
+
540
+ Photon circular orbit radius rp can be found from equation V (rp) = V ′(r)|r=rp =
541
+ 0. Making use of Eq. (26) we find
542
+ ξ ≡ L
543
+ E =
544
+ rp
545
+
546
+ f(rp)
547
+ ,
548
+ f ′(rp)rp − 2f(rp) = 0,
549
+ (27)
550
+ where ξ is the impact parameter. For a distant observer as r0 → ∞, the
551
+ shadow radius becomes rs = rp/
552
+
553
+ f(rp) (rs = ξ). By virtue of Eq. (12) and
554
+ equation f(r+) = 0 we obtain parameters A, B and C versus x+
555
+ A = 1 + 2Cx2
556
+ +
557
+ C2x+
558
+ + Bg(x+),
559
+ B = AC2x+ − 2Cx2
560
+ + − 1
561
+ C2x+g(x+)
562
+ ,
563
+ C =
564
+ x2
565
+ + +
566
+
567
+ x4+ + x+(A − Bg(x+))
568
+ x+(A − Bg(x+))
569
+ ,
570
+ (28)
571
+ with x+ = r+/√βq. The functions (28) plots are depicted in Fig. 4. In
572
+ accordance with Fig. 4, Subplot 1, event horizon radius x+ increases when
573
+ parameter A increases and Subplot 2 indicates that if parameter B increases,
574
+ the event horizon radius decreases. According to Subplot 3 of Fig. 4, when
575
+ parameter C increases the event horizon radius x+ also increases.
576
+ The photon sphere radii (xp), the event horizon radii (x+), and the shadow
577
+ radii (xs) for A = 15 and C = 1 are presented in Table 1. It is worth noting
578
+ that the null geodesics radii xp correspond to the maximum of the potential
579
+ V (r) (V ′′ ≤ 0) and belong to unstable orbits.
580
+ Table 1 shows that when
581
+ Table 1: The event horizon, photon sphere and shadow dimensionless radii
582
+ for A=15, C=1
583
+ B
584
+ 9
585
+ 13.5
586
+ 14
587
+ 15
588
+ 16.5
589
+ 17.5
590
+ 18
591
+ 19
592
+ x+
593
+ 6.763
594
+ 6.365
595
+ 6.317
596
+ 6.219
597
+ 6.063
598
+ 5.953
599
+ 5.896
600
+ 5.777
601
+ xp
602
+ 10.313
603
+ 9.806
604
+ 9.746
605
+ 9.623
606
+ 9.431
607
+ 9.298
608
+ 9.229
609
+ 9.088
610
+ xs
611
+ 18.311
612
+ 17.677
613
+ 17.603
614
+ 17.451
615
+ 17.216
616
+ 17.054
617
+ 16.971
618
+ 16.802
619
+ parameter B increases the shadow radius xs decreases. As xs > x+ shadow
620
+ radii are defined by rs = xs
621
+ √βq.
622
+ 10
623
+
624
+ 0
625
+ 2
626
+ 4
627
+ 6
628
+ 8
629
+ 0
630
+ 10
631
+ 20
632
+ 30
633
+ x+
634
+ A
635
+ Subplot 1: B = 2, 4, 6; C = 1
636
+
637
+
638
+ 0
639
+ 1
640
+ 2
641
+ 3
642
+ 4
643
+ 0
644
+ 5
645
+ 10
646
+ 15
647
+ x+
648
+ B
649
+ Subplot 2: A = 8, 9, 10; C = 1
650
+
651
+
652
+ 0
653
+ 2
654
+ 4
655
+ 6
656
+ 8
657
+ 0.2
658
+ 0.4
659
+ 0.6
660
+ 0.8
661
+ 1
662
+ x+
663
+ C
664
+ Subplot 3: B = 2, 6, 8; A = 20
665
+
666
+
667
+ B=2
668
+ B=4
669
+ B=6
670
+ A=8
671
+ A=9
672
+ A=10
673
+ B=2
674
+ B=6
675
+ B=8
676
+ Figure 4: The plots of the functions A(x+), B(x+), C(x+)
677
+ .
678
+ It is worth mentioning that currently there is not unique calculation of
679
+ the shadow radius of M87* or SgrA* black holes within ModLogNED because
680
+ our model possesses four free parameters M, α, β and q (or M, A, B and C)
681
+ but from observations one knows only two values: the black hole mass and
682
+ the shadow radius.
683
+ 5
684
+ Black holes energy emission rate
685
+ The black hole shadow, for the observer at infinity, is connected with the
686
+ high energy absorption cross section [25, 39].
687
+ At very high energies the
688
+ absorption cross-section σ ≈ πr2
689
+ s oscillates around the photon sphere. The
690
+ 11
691
+
692
+ energy emission rate of black holes is given by
693
+ d2E(ω)
694
+ dtdω
695
+ =
696
+ 2π3ω3r2
697
+ s
698
+ exp (ω/TH(r+)) − 1,
699
+ (29)
700
+ where ω is the emission frequency. By using dimensionless variable x+ =
701
+ r+/√βq the black hole energy emission rate (29) becomes
702
+
703
+ βqd2E(ω)
704
+ dtdω
705
+ =
706
+ 2π3̟3x2
707
+ s
708
+ exp
709
+
710
+ ̟/ ¯TH(x+)
711
+
712
+ − 1
713
+ ,
714
+ (30)
715
+ with ¯TH(x+) = √βqTH(x+) and ̟ = √βqω. The radiation rate versus the
716
+ dimensionless emission frequency ¯ω for C = 1, A = 15 and B = 9, 14, 19,
717
+ is depicted in Fig. 5. Figure 5 shows that there is a peak of the black hole
718
+ 0
719
+ 0.05
720
+ 0.1
721
+ 0.15
722
+ 0.2
723
+ 0.25
724
+ 0
725
+ 0.005
726
+ 0.01
727
+ 0.015
728
+ 0.02
729
+ 0.025
730
+ 0.03
731
+ 0.035
732
+ ϖ
733
+
734
+
735
+ B=9
736
+ B=14
737
+ B=19
738
+ Figure 5: The plot of the function √βq d2E(ω)
739
+ dtdω
740
+ vs. ̟ for B = 9, 14, 19, A = 15,
741
+ C = 1.
742
+ energy emission rate. When parameter B increases, the energy emission rate
743
+ 12
744
+
745
+ peak becomes smaller and corresponds to the lower frequency. The black
746
+ hole has a bigger lifetime when parameter B is bigger.
747
+ 6
748
+ Quasinormal modes
749
+ The stability of BHs under small perturbations are characterised by quasi-
750
+ normal modes (QNMs) with complex frequencies ω. When Im ω < 0 modes
751
+ are stable but if Im ω > 0 modes are unstable. Re ω, in the eikonal limit, is
752
+ linked with the black hole radius shadow [40, 41]. Around black holes, the
753
+ perturbations by scalar massless fields are described by the effective potential
754
+ barrier
755
+ V (r) = f(r)
756
+ �f ′(r)
757
+ r
758
+ + l(l + 1)
759
+ r2
760
+
761
+ ,
762
+ (31)
763
+ with l being the multipole number l = 0, 1, 2.... Equation (31) can be rewrit-
764
+ ten in the form
765
+ V (x)βq = f(x)
766
+ �f ′(x)
767
+ x
768
+ + l(l + 1)
769
+ x2
770
+
771
+ .
772
+ (32)
773
+ Dimensionless variable V (x)βq is depicted in Fig. 6 for A = 15, B = 10,
774
+ C = 1 (Subplot 1) and for A = 15, C = 1, l = 5 (Subplot 2). According to
775
+ Figure 6, Subplot l, the potential barriers of effective potentials have maxima.
776
+ For l increasing the height of the potential increases. Figure 6, Subplot 2,
777
+ shows that when the parameter B increases the height of the potential also
778
+ increases. The quasinormal frequencies are given by [40, 41]
779
+ Re ω = l
780
+ rs
781
+ =
782
+ l
783
+
784
+ f(rp)
785
+ rp
786
+ ,
787
+ Im ω = −2n + 1
788
+ 2
789
+
790
+ 2rs
791
+
792
+ 2f(rp) − r2
793
+ pf ′′(rp),
794
+ (33)
795
+ where rs is the black hole shadow radius, rp is the black hole photon sphere
796
+ radius, and n = 0, 1, 2, ... is the overtone number. The frequencies, at A = 15,
797
+ C = 1, n = 5, l = 10, are given in Table 2. Because the imaginary parts
798
+ of the frequencies in Table 2 are negative, modes are stable. The real part
799
+ Re ω gives the oscillations frequency.
800
+ In accordance with Table 2 when
801
+ parameter B increasing the real part of frequency √βqRe ω increases and
802
+ the absolute value of the frequency imaginary part | √βqIm ω | decreases.
803
+ Therefore, when the parameter B increases the scalar perturbations oscillate
804
+ with greater frequency and decay lower.
805
+ 13
806
+
807
+ 0
808
+ 10
809
+ 20
810
+ 30
811
+ 40
812
+ 0
813
+ 0.02
814
+ 0.04
815
+ 0.06
816
+ 0.08
817
+ 0.1
818
+ 0.12
819
+ 0.14
820
+ 0.16
821
+ 0.18
822
+ x
823
+ V(x)qβ
824
+ Subplot 1: l=3,5,7; A=15; B=10; C=1
825
+
826
+
827
+ 0
828
+ 10
829
+ 20
830
+ 30
831
+ 40
832
+ 0
833
+ 0.02
834
+ 0.04
835
+ 0.06
836
+ 0.08
837
+ 0.1
838
+ 0.12
839
+ x
840
+ V(x)qβ
841
+ Subplot 2: B =9,14,19; A=15; l=5; C=1
842
+
843
+
844
+ l=3
845
+ l=5
846
+ l=7
847
+ B=9
848
+ B=14
849
+ B=19
850
+ Figure 6: The plot of the function V (x)βq for A = 15, C = 1.
851
+ 7
852
+ Summary
853
+ The exact spherically symmetric solution of magnetic black holes is obtained
854
+ in 4D EGB gravity coupled to ModLogNED. We studied the thermodynamics
855
+ and the thermal stability of magnetically charged black holes. The Hawking
856
+ temperature and the heat capacity were calculated. The phase transitions
857
+ occur when the Hawking temperature has an extremum.
858
+ Black holes are
859
+ thermodynamically stable at some range of event horizon radii when the
860
+ heat capacity and the Hawking temperature are positive. The heat capacity
861
+ has a discontinuity where the second-order phase transitions take place. The
862
+ black hole entropy was calculated which has the logarithmic correction. We
863
+ calculated the photon sphere radii, the event horizon radii, and the shadow
864
+ radii. It was shown that when the model parameter B increases the black
865
+ 14
866
+
867
+ Table 2: The real and the imaginary parts of the frequencies vs the parameter
868
+ B at n = 5, l = 10, A = 15, C = 1
869
+ B
870
+ 14
871
+ 15
872
+ 16.5
873
+ 17.5
874
+ 18
875
+ 19
876
+ √βqRe ω
877
+ 0.568
878
+ 0.573
879
+ 0.581
880
+ 0.586
881
+ 0.589
882
+ 0.595
883
+ −√βqIm ω
884
+ 0.2853
885
+ 0.2852
886
+ 0.2849
887
+ 0.2845
888
+ 0.2842
889
+ 0.2835
890
+ hole energy emission rate decreases and the black hole possesses a bigger
891
+ lifetime. We show that when the parameter B increases the scalar pertur-
892
+ bations oscillate with greater frequency and decay lower. Other solutions in
893
+ 4D EGB gravity coupled to NED were found in [33, 34, 35].
894
+ Appendix A
895
+ With the spherical symmetry the energy-momentum tensor possesses the
896
+ property T t
897
+ t
898
+ = T r
899
+ r . Then, the radial pressure is pr = −T r
900
+ r
901
+ = −ρ. The
902
+ tangential pressure p⊥ = −T ϑ
903
+ ϑ = −T φ
904
+ φ
905
+ is given by [42]
906
+ p⊥ = −ρ − r
907
+ 2ρ′(r),
908
+ (A1)
909
+ with the prime being the derivative with respect to the radius r. The Weak
910
+ Energy Condition (WEC) is valid when ρ ≥ 0 and ρ + pk ≥ 0 (k=1,2,3) [43],
911
+ and then the energy density is positive. According to Eq. (7) ρ ≥ 0. Making
912
+ use of Eq. (7) we obtain
913
+ ρ′(r) = − q
914
+ βr3 ln
915
+
916
+ 1 + qβ
917
+ r2
918
+
919
+
920
+ q2
921
+ r3(r2 + βq) ≤ 0.
922
+ (A2)
923
+ Therefore WEC, ρ ≥ 0, ρ + pr ≥ 0, ρ + p⊥ ≥ 0, is satisfied. The Dominant
924
+ Energy Condition (DEC) takes place if and only if [43] ρ ≥ 0, ρ + pk ≥ 0,
925
+ ρ − pk ≥ 0, that includes WEC. One needs only to check the condition
926
+ ρ − p⊥ ≥ 0. By virtue of Eqs. (7), (A1) and A(2) one finds
927
+ ρ − p⊥ =
928
+ q
929
+ 2βr2
930
+
931
+ ln
932
+
933
+ 1 + qβ
934
+ r2
935
+
936
+
937
+
938
+ r2 + βq
939
+
940
+ .
941
+ (A3)
942
+ One can verify that ρ − p⊥ ≥ 0 for any parameters. DEC is satisfied and
943
+ therefore the sound speed is less than the speed of light. The Strong Energy
944
+ 15
945
+
946
+ Condition (SEC) is valid when ρ + �3
947
+ k=1 pk ≥ 0 [43]. From Eqs. (8)-(10) we
948
+ obtain
949
+ ρ +
950
+ 3
951
+
952
+ k=1
953
+ pk = ρ + p⊥ + pr = p⊥ < 0.
954
+ (A4)
955
+ In accordance with Eq. (A4) SEC is not satisfied.
956
+ References
957
+ [1] T. Clifton, P. G. Ferreira, A. Padilla, and C. Skordis. Modified Gravity
958
+ and Cosmology, Phys. Rept. 513, 1 (2012) [arXiv:1106.2476].
959
+ [2] C. M. Will. The Confrontation between General Relativity and Experi-
960
+ ment. Living Rev. Rel. 17, 4 (2014).
961
+ [3] C. Lanczos. Elektromagnetismus als nat¨urliche eigenschaft der rie-
962
+ mannschen geometrie, Zeitschrift f¨ur Physik, 73,147 (1932).
963
+ [4] C. Lanczos. A remarkable property of the riemann-christoffel tensor in
964
+ four dimensions, Annals of Mathematics, 842–850 (1938).
965
+ [5] D. Lovelock. Divergence-free tensorial concomitants. Aequationes math-
966
+ ematicae, 4, 127 (1970).
967
+ [6] D. Lovelock, The Einstein tensor and its generalizations, J. Math. Phys.
968
+ 12, 498 (1971).
969
+ [7] M. Ostrogradsky. M´emoires sur les´equations diff´erentielles, relatives au
970
+ probl`eme des isop´erim`etres. Mem. Acad. St. Petersbourg, 6, 385 (1850).
971
+ [8] D. J. Gross and E. Witten, Superstring modifications of Einstein’s equa-
972
+ tions, Nucl. Phys. B 277, 1 (1986).
973
+ [9] D. J. Gross and J. H. Sloan, The quartic effective action for the heterotic
974
+ string, Nucl. Phys. B 291, 41 (1987).
975
+ [10] R. R. Metsaev and A. A. Tseytlin, Two-loop β-function for the gener-
976
+ alized bosonic sigma model, Phys. Lett. B 191, 354 (1987).
977
+ 16
978
+
979
+ [11] R. R. Metsaev and A. A. Tseytlin, Order α’ (two-loop) equivalence of the
980
+ string equations of motion and the σ-model Weyl invariance conditions:
981
+ Dependence on the dilaton and the antisymmetric tensor, Nucl. Phys.
982
+ B 293, 385 (1987).
983
+ [12] B. Zwiebach, Curvature squared terms and string theories, Phys. Lett.
984
+ B 156, 315 (1985).
985
+ [13] D.
986
+ Glavan
987
+ and
988
+ C.
989
+ Lin,
990
+ Einstein-Gauss-Bonnet
991
+ gravity
992
+ in
993
+ four-
994
+ dimensional
995
+ spacetime,
996
+ Phys.
997
+ Rev.
998
+ Lett.
999
+ 124,
1000
+ 081301
1001
+ (2020)
1002
+ [arXiv:1905.03601].
1003
+ [14] K. Aoki, M. A. Gorji, and S. Mukohyama, A consistent theory of
1004
+ D → 4 Einstein–Gauss–Bonnet gravity Phys. Lett. B 810, 135843
1005
+ (2020) [arXiv:2005.03859].
1006
+ [15] K. Aoki, M. A. Gorji, and S. Mukohyama, Inflationary gravitational
1007
+ waves in consistent D → 4 Einstein–Gauss–Bonnet gravity, JCAP 09,
1008
+ 014 (2020) [arXiv:2005.08428].
1009
+ [16] K. Aoki, M. A. Gorji, S. Mizuno and S. Mukohyama, Inflation-
1010
+ ary gravitational waves in consistent D → 4 Einstein–Gauss–Bonnet
1011
+ gravity, JCAP 01, 054 (2021); JCAP 05, E01 (2021), (erratum)
1012
+ [arXiv:2010.03973].
1013
+ [17] K. Jafarzade, M. K. Zangeneh, F. S. N. Lobo, Shadow, deflection angle
1014
+ and quasinormal modes of Born–Infeld charged black holes, JCAP 04,
1015
+ 008 (2021) [arXiv:2010.05755].
1016
+ [18] P. G. Fernandes, P. Carrilho, T. Clifton, and D. J. Mulryne, The 4D
1017
+ Einstein-–Gauss—Bonnet theory of gravity: a review, Class. Quant.
1018
+ Grav. 39, 063001 (2022).
1019
+ [19] S. Alexeyev, and M. Sendyuk, Black Holes and Wormholes in Extended
1020
+ Gravity, Universe 6, 25 (2020).
1021
+ [20] S. I. Kruglov, Magnetic black holes in AdS space with nonlinear
1022
+ electrodynamics, extended phase space thermodynamics and Joule-
1023
+ –Thomson expansion, Int. J. Geom. Meth. Mod. Phys. 20, 2350008
1024
+ (2023) [arXiv:2210.10627].
1025
+ 17
1026
+
1027
+ [21] H. H. Soleng, Charged black points in General Relativity coupled to
1028
+ the logarithmic U(1) gauge theory, Phys. Rev. D 52 (1995), 6178
1029
+ [arXiv:hep-th/9509033].
1030
+ [22] S. I. Kruglov, On Generalized Logarithmic Electrodynamics, Eur. Phys.
1031
+ J. C 75 (2015), 88 [arXiv:1411.7741].
1032
+ [23] R. A. Konoplya and A. F. Zinhailo, Quasinormal modes, stability and
1033
+ shadows of a black hole in the 4D Einstein-Gauss-Bonnet gravity, Eur.
1034
+ Phys. J. C 80, 1049 (2020) [arXiv:2003.01188].
1035
+ [24] R. A. Konoplya and A. F. Zinhailo, 4D Einstein–Lovelock black holes:
1036
+ Hierarchy of orders in curvature, Phys. Lett. B 807, 135607 (2020).
1037
+ [25] A. Belhaj, M. Benali, A. El Balali, H. El Moumni, and S. E. En-
1038
+ nadifi, Deflection Angle and Shadow Behaviors of Quintessential Black
1039
+ Holes in arbitrary Dimensions, Class. Quant. Grav. 37, 215004 (2020)
1040
+ [arXiv:2006.01078].
1041
+ [26] R. A. Konoplya and Z. Stuchlik, Are eikonal quasinormal modes linked
1042
+ to the unstable circular null geodesics, Phys. Lett. B 771, 597 (2017)
1043
+ [arXiv:1705.05928].
1044
+ [27] I. Z. Stefanov, S. S. Yazadjiev, and G. G. Gyulchev, Connection between
1045
+ black-hole quasinormal modes and lensing in the strong deflection limit,
1046
+ Phys. Rev. Lett. 104, 251103 (2010) [arXiv:1003.1609].
1047
+ [28] Y. Guo and Y. G. Miao, Null geodesics, quasinormal modes and the
1048
+ correspondence with shadows in high-dimensional Einstein-Yang-Mills
1049
+ spacetimes, Phys. Rev. D 102, 084057 (2020) [arXiv:2007.08227].
1050
+ [29] S. W. Wei and Y. X. Liu, Null geodesics, quasinormal modes, and
1051
+ thermodynamic phase transition for charged black holes in asymp-
1052
+ totically flat and dS spacetimes, Chin. Phys. C 44, 115103 (2020)
1053
+ [arXiv:1909.11911].
1054
+ [30] G. D. Birkhoff, Relativity and Modern Physics (Harvard University
1055
+ Press, Cambrige, USA, 1923), p. 253.
1056
+ [31] S. Mignemi, N. R. Stewart, Charged black holes in effective string theory,
1057
+ Phys. Rev. D 47, 5259 (1993).
1058
+ 18
1059
+
1060
+ [32] A. J. M. Medved and E. C. Vagenas, When conceptual worlds col-
1061
+ lide: The GUP and the BH entropy, Phys. Rev. D 70, 124021 (2004)
1062
+ [arXiv:hep-th/0411022].
1063
+ [33] S. I. Kruglov, Einstein–Gauss–Bonnet gravity with nonlinear electrody-
1064
+ namics, Ann. Phys. 428, 168449 (2021) [arXiv:2104.08099].
1065
+ [34] S. I. Kruglov, Einstein—Gauss—Bonnet Gravity with Nonlinear Elec-
1066
+ trodynamics: Entropy, Energy Emission, Quasinormal Modes and De-
1067
+ flection Angle, Symmetry 13, 944 (2021).
1068
+ [35] S. I. Kruglov, Einstein–Gauss–Bonnet gravity with rational nonlinear
1069
+ electrodynamics, EPL 133, 6 (2021) [arXiv:2106.00586].
1070
+ [36] K. Akiyama et al., First M87 Event Horizon Telescope Results, Astro-
1071
+ phys. J.875, L1 (2019) [arXiv:1906.11241].
1072
+ [37] J. L. Synge, The escape of photons from gravitationally intense stars,
1073
+ Mon. Not. Roy. Astron. Soc. 131, 463 (1966).
1074
+ [38] S. I. Kruglov, 4D Einstein—Gauss—Bonnet Gravity Coupled with Non-
1075
+ linear Electrodynamics, Symmetry 13, 204 (2021).
1076
+ [39] S. W. Wei and Y. X. Liu, Observing the shadow of Einstein-Maxwell-
1077
+ Dilaton-Axion black hole, JCAP 11, 063 (2013) [arXiv:1311.4251].
1078
+ [40] K. Jusufi, Quasinormal Modes of Black Holes Surrounded by Dark Mat-
1079
+ ter and Their Connection with the Shadow Radius, Phys. Rev. D 101,
1080
+ 084055 (2020) [arXiv:1912.13320].
1081
+ [41] K. Jusufi, Connection Between the Shadow Radius and Quasinormal
1082
+ Modes in Rotating Spacetimes, Phys. Rev. D 101, 124063 (2020)
1083
+ [arXiv:2004.04664].
1084
+ [42] I. Dymnikova, Regular electrically charged vacuum structures with de
1085
+ Sitter centre in nonlinear electrodynamics coupled to general relativity,
1086
+ Class. Quant. Grav. 21, 4417 (2004) [arXiv:gr-qc/0407072].
1087
+ [43] S. W. Hawking and G. F. R. Ellis, The large scale structure of space-
1088
+ time, Cambridge Univ. Press, Cambridge UK (1973).
1089
+ 19
1090
+
DdFKT4oBgHgl3EQfZC4_/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DtAzT4oBgHgl3EQfif1c/content/tmp_files/2301.01500v1.pdf.txt ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.01500v1 [nucl-th] 4 Jan 2023
2
+ The Langevin approach for fission of heavy and
3
+ super-heavy nuclei∗
4
+ F.A.Ivanyuk, S.V.Radionov
5
+ Institute for Nuclear Research, Kyiv, Ukraine
6
+ C.Ishizuka, S.Chiba
7
+ Tokyo Institute of Technology, Tokyo, Japan
8
+ In this contribution, we present the main relations of the Langevin
9
+ approach to the description of fission or fusion-fission reactions. The results
10
+ of Langevin calculations are shown for the mass distributions of fission
11
+ fragments of super-heavy elements and used for the investigation of memory
12
+ effects in nuclear fission.
13
+ 1. Introduction
14
+ We describe the nuclear fission process by the four-dimensional set of
15
+ the Langevin equations for the shape degrees of freedom with the shape
16
+ given by the two-center shell model (TCSM) shape parametrization. The
17
+ potential energy is calculated within the macroscopic-microscopic method.
18
+ The collective mass, M, and friction, γ, tensors are defined in macroscopic
19
+ (Werner-Wheller and wall-and-window formula) or microscopic (linear re-
20
+ sponse theory) approaches.
21
+ We start calculations from the ground state shape with zero collective
22
+ velocities and solve equations until the neck radius of the nucleus turns zero
23
+ (scission point). At the scission point, the solutions of Langevin equations
24
+ supply complete information about the system, its shape, excitation energy,
25
+ and collective velocities.
26
+ This information makes it possible to calculate
27
+ the mass distributions, the total kinetic energy, and the excitation energies
28
+ of fission fragments. The results of numerous previous calculations are in
29
+ reasonable agreement with the available experimental data.
30
+ ∗ Presented at the Zakopane Conference on Nuclear Physics, Zakopane, Poland, 28
31
+ August - 4 September 2022
32
+ (1)
33
+
34
+ 2
35
+ preprint
36
+ printed on January 5, 2023
37
+ Below in this contribution, we present the calculated results for the mass
38
+ distributions of super-heavy nuclei and clarify the impact of memory effects
39
+ on the fission width of heavy nuclei.
40
+ The physics of super-heavy elements (SHE) has a long history. The ex-
41
+ istence of the “island of stability” was predicted at the end of the 1960s
42
+ [1]. Nevertheless, it took almost 30 years until the alpha-decay of the ele-
43
+ ment with Z=114 was observed experimentally at Flerov Nuclear Reactions
44
+ Laboratory in Dubna [2].
45
+ With the development of experimental facility, it became possible not
46
+ only to fix the fact of formation of SHE, but examine their properties.
47
+ One of the first property of interest – the process of fission of SHEs. For
48
+ the successful planning and carrying out of experiments, it is crucial to
49
+ understand what kind of fission fragments mass distribution (FFMD) one
50
+ should expect in the result of the fission of SHEs. The two double magic
51
+ nuclei 132Sn and 208Pb may contribute. Both have the shell correction in
52
+ the ground state of the same magnitude.
53
+ In order to clarify what kind of FFMD one could expect in the fission of
54
+ SHEs, we have carried out the calculations of FFMD for a number of SHEs.
55
+ The results are given in Section 3.
56
+ Another problem we address in this contribution is the influence of mem-
57
+ ory effects on the probability of the fission process. Commonly one uses the
58
+ Markovian approximation to Langevin approach in which all quantities are
59
+ defined at the same moment. This approximation provides reasonable re-
60
+ sults, but its accuracy is not well established. In publications, one can find
61
+ statements that the memory effects have a significant influence on the fusion
62
+ or fission processes and the statements that memory effects are very small.
63
+ To clarify this uncertainty, we have calculated the fission width using
64
+ the Langevin approach with memory effects included in a wide range of im-
65
+ portant parameters: the excitation energy E∗ of the system, the damping
66
+ parameter η, the relaxation time τ. The details and results of the calcula-
67
+ tions are given in Section 4.
68
+ 2. The Langevin approach for the fission process
69
+ Within the Langevin approach, the fission process is described by solving
70
+ the equations for the time evolution of the shape of nuclear surface of the fis-
71
+ sioning system. For the shape parametrization, we use that of the two-center
72
+ shell model (TCSM) [3] with 4 deformation parameters qµ = z0/R0, δ1, δ2, α.
73
+ Here z0/R0 refers to the distance between the centers of left and right os-
74
+ cillator potentials, R0 being the radius of spherical nucleus with the mass
75
+ number A. The parameters δi describe the deformation of the right and left
76
+ fragment tips. The fourth parameter α is the mass asymmetry and the fifth
77
+
78
+ preprint
79
+ printed on January 5, 2023
80
+ 3
81
+ parameter of the TCSM shape parametrization ǫ was kept constant, ǫ=0.35,
82
+ in all our calculations.
83
+ The first-order differential equations (Langevin equations) for the time
84
+ dependence of collective variables qµ and the conjugated momenta pµ are:
85
+ dqµ
86
+ dt
87
+ =
88
+
89
+ m−1�
90
+ µν pν,
91
+ (1)
92
+ dpµ
93
+ dt
94
+ = −∂F(q, T)
95
+ ∂qµ
96
+ − 1
97
+ 2
98
+ ∂m−1
99
+ νσ
100
+ ∂qµ
101
+ pνpσ − γµνm−1
102
+ ν�� pσ + Rµ(t).
103
+ In Eqs. (1) the F(q, T) is the temperature-dependent free energy of the
104
+ system, and γµν and (m−1)µν are the friction and inverse of mass tensors.
105
+ The free energy F(q, T) is calculated within the shell correction method.
106
+ The single particle energies are calculated with the deformed Woods-Saxon
107
+ potential fitted to the mentioned above TCSM shapes.
108
+ The collective inertia tensor mµν is calculated by the Werner-Wheeler
109
+ approximation and for the friction tensor γµν we used the wall-and-window
110
+ formula. The random force Rµ(t) is the product of the temperature-depen-
111
+ dent strength factors gµν and the white noise ξν(t), Rµ(t) = gµνξν(t). The
112
+ factors gµν are related to the temperature and friction tensor via the Einstein
113
+ relation,
114
+ gµσgσν = Tγµν
115
+ (2)
116
+ The temperature T is kept constant, aT 2 = E∗, or adjusted to the local
117
+ excitation energy on each step of integration by the relation,
118
+ aT 2 = E∗ − p2(t)/2M − [Epot(q) − Epot(qgs)].
119
+ (3)
120
+ Here qgs is the ground state deformation. More details are given in our
121
+ earlier publications [4, 5, 6, 7].
122
+ Initially, the momenta pµ are set to zero, and calculations are started
123
+ from the ground state deformation. Such calculations are continued until the
124
+ trajectories reach the ”scission point”, defined as the point in deformation
125
+ space where the neck radius turns zero.
126
+ 3. Fission fragments mass distributions of super-heavy nuclei
127
+ In order to understand what kind of mass distributions one can expect
128
+ from the solution of Langevin equations for super-heavy nuclei, we looked
129
+ first at the potential energy of fissioning nuclei. Fig. 1 shows the potential
130
+ energy Edef of nuclei 296Lv and 302120 at zero temperature as a function
131
+ of elongation (the distance R12 between the centers of mass of left and
132
+ right parts of a nucleus) and the mass asymmetry (fragment mass number).
133
+
134
+ 4
135
+ preprint
136
+ printed on January 5, 2023
137
+ In the top part of Fig. 1 the energy was minimized with respect to the
138
+ deformation parameters δ1 and δ2. One sees the bottom of potential energy
139
+ leading to almost symmetric mass splitting. There is also a hint on the mass
140
+ asymmetric valley at AF close to AF =208.
141
+ 1.0
142
+ 1.5
143
+ 2.0
144
+ 100
145
+ 150
146
+ 200
147
+ 302120, δ1= - 0.2, δ2= 0.2
148
+ R12 / R0
149
+ Fragment mass number
150
+ -60
151
+ -52
152
+ -44
153
+ -36
154
+ -28
155
+ -20
156
+ -12
157
+ -4.0
158
+ 4.0
159
+ 10
160
+ 1.0
161
+ 1.5
162
+ 2.0
163
+ 100
164
+ 150
165
+ 200
166
+ 302120, δ1,δ2 - min.
167
+ Fragment mass number
168
+ -60
169
+ -52
170
+ -44
171
+ -36
172
+ -28
173
+ -20
174
+ -12
175
+ -4.0
176
+ 4.0
177
+ 10
178
+ 1.0
179
+ 1.5
180
+ 2.0
181
+ 50
182
+ 100
183
+ 150
184
+ 200
185
+ 296Lv, δ1= - 0.2, δ2= 0.2
186
+ R12 / R0
187
+ Fragment mass number
188
+ -60
189
+ -52
190
+ -44
191
+ -36
192
+ -28
193
+ -20
194
+ -12
195
+ -4.0
196
+ 4.0
197
+ 10
198
+ 1.0
199
+ 1.5
200
+ 2.0
201
+ 50
202
+ 100
203
+ 150
204
+ 200
205
+ Fragment mass number
206
+ -60
207
+ -52
208
+ -44
209
+ -36
210
+ -28
211
+ -20
212
+ -12
213
+ -4.0
214
+ 4.0
215
+ 10
216
+ 296Lv, δ1,δ2 - min.
217
+ Fig. 1. (top) The potential energy of 296Lv and 302120 at T = 0 minimized with
218
+ respect to deformation parameters δ1 and δ2 (bottom), and at fixed values δ1 =
219
+ −0.2 and δ2 = 0.2.
220
+ If the trajectories followed the bottom of potential energy, the mass
221
+ distributions would be symmetric. However, it is well known that the tra-
222
+ jectories may deviate substantially from the bottom of the potential valley
223
+ due to dynamic effects. We calculate the trajectories in four-dimensional
224
+ deformation space. In this space, the local minima could lead away from
225
+ the bottom of the potential valley. An example is shown in the bottom part
226
+ of Fig. 1. Here we show the potential energy for fixed δ1= - 0.2 and δ2=0.2.
227
+ One clearly sees another valley, leading to strongly mass asymmetric split-
228
+ ting.
229
+ In Fig. 2, we show the fission fragment mass distributions of super-heavy
230
+ nuclei from 276Hs to 308122 as a function of fragment mass number AF . The
231
+ FFMDs of nuclei from 276Cn to 308122 have three or four peak structures.
232
+ The main component is the symmetric peak, split into two components in
233
+ some isotopes. The peaks of lighter fragments are located around AF =140.
234
+
235
+ preprint
236
+ printed on January 5, 2023
237
+ 5
238
+ 5
239
+ 10
240
+
241
+ Fission from the ground state, ---- E
242
+ *=10 MeV, ---- E
243
+ *=20 MeV, ---- E
244
+ *=30 MeV
245
+ N = 168 170 172 174 176 178 180 182 184 186
246
+ Z = 108 110 112 114 116 118 120 122
247
+ 5
248
+ 10
249
+
250
+ 5
251
+ 10
252
+
253
+ 5
254
+ 10
255
+
256
+ 0
257
+ 5
258
+ 10
259
+ 5
260
+ 10
261
+ 15
262
+
263
+ 140
264
+ 5
265
+ 10
266
+ 15
267
+
268
+ 5
269
+ 10
270
+ 15
271
+ 20
272
+
273
+ 40 140
274
+ 05
275
+ 10
276
+ 15
277
+ 20
278
+
279
+ 40 140
280
+ F r a g m e n t m a s s n u m b e r
281
+ Yield (%)
282
+ 40 14040 14040 14040 14040 14040 14040 14040 140
283
+
284
+ Fig. 2. The fission fragment mass distributions of super-heavy nuclei from 276Hs to
285
+ 308122 calculated for the excitation energies E∗=10, 20 and 30 MeV as a function
286
+ of the fragment mass number
287
+ One can also see the strongly asymmetric peak at the mass number
288
+ close to AF =208. The strength of the (almost) symmetric and asymmetric
289
+ components in FFMD of SHEs depends on the proton and neutron num-
290
+ bers of the compound nucleus. For 276Cn, the contribution of a strongly
291
+ asymmetric peak is tiny. This contribution becomes larger for more heavy
292
+ SHE. In some elements of SHEs with Z =116-122, the symmetric and mass-
293
+ asymmetric peaks are of the same magnitude. More details can be found in
294
+ [8].
295
+ The similar strongly mass-asymmetric peaks in FFMD of SHEs were
296
+ also found recently in [9] within the Langevin approach with the so call
297
+ Fourier shape parametrization.
298
+
299
+ 6
300
+ preprint
301
+ printed on January 5, 2023
302
+ 4. The memory effects in nuclear fission
303
+ In order to investigate the role of memory effects in nuclear fission, we
304
+ exploit a simple one-dimensional model with the potential energy given by
305
+ the two-parabolic potential (Kramers potential), see Fig. 3.
306
+ Epot(q) = 2Vbq(q − q0)/q2
307
+ 0, 0 < q < q0; 2Vb(q − q0)(2q0 − q)q2
308
+ 0, q0 < q < 2q0.
309
+ (4)
310
+ The potential (4) depends on two parameters, the barrier height Vb and the
311
+ barrier width q0. We have fixed the barrier height Vb = 6 MeV, which is
312
+ close to the value of the fission barrier of actinide nuclei. The width of the
313
+ barrier is somewhat uncertain. It depends on the definition of the collective
314
+ coordinate q and the model for the potential energy. For simplicity, we have
315
+ put here q0 = 1.0.
316
+ For the potential (4) one can define the stiffness C = d2Epot/dq2 and
317
+ the frequency of harmonic vibrations ω0 =
318
+
319
+ C/M. In the present work,
320
+ we fix ¯hω0 =1.0 MeV, which is close to the frequency of collective vibra-
321
+ tions calculated for 224Th in [10] within the microscopic linear response
322
+ theory. Then, for the mass parameter we will have the deformation and
323
+ temperature-independent value,
324
+ M = C/ω2
325
+ 0 = 4Vb/(ω2
326
+ 0q2
327
+ 0).
328
+ (5)
329
+ For the friction coefficient ¯γ we use a slightly modified approximation of
330
+ [10],
331
+ ¯γ/M = 0.6(T 2 + ¯h2ω2
332
+ 0/π2))/(1 + T 2/40).
333
+ (6)
334
+ For the temperature, we consider here two options: constant temperature
335
+ regime and constant energy regime. In a constant temperature regime, the
336
+ temperature is time-independent, related to the initial excitation energy E∗
337
+ by the Fermi-gas relation, aT 2 = E∗, where a is the level density parameter
338
+ of T¨oke and Swiatecki [11].
339
+ The fission width calculated in a constant
340
+ temperature regime will be denoted as Γf(T).
341
+ At small excitations, the temperature varies with deformation and time,
342
+ and there is no reason to consider it constant. So, it should be adjusted
343
+ to the local excitation energy on each integration step by the relation (3).
344
+ Correspondingly, fission width calculated in a constant energy regime is
345
+ denoted as Γf(E).
346
+ The fission width, Γf, is defined assuming the exponential decay of the
347
+ number of ”particles” in the potential well,
348
+ P(t) = e−Γf t/¯h → Γf = −¯h ln[P(t)]/t.
349
+ (7)
350
+ By solving the Langevin equations one will get the set of time moments tb,
351
+ at which some trajectories would cross the barrier. From this information,
352
+ one can find the probability P(t) and the fission width Γf, see [12].
353
+
354
+ preprint
355
+ printed on January 5, 2023
356
+ 7
357
+ -0.5
358
+ 0.0
359
+ 0.5
360
+ 1.0
361
+ 1.5
362
+ 2.0
363
+ 0
364
+ 5
365
+ 10
366
+ Epot (MeV)
367
+ q
368
+ A=236, E
369
+ *=Vb
370
+ 0.0
371
+ 0.5
372
+ 1.0
373
+ 1.5
374
+ 2.0
375
+ 0
376
+ 1000
377
+ 2000
378
+ 3000
379
+
380
+
381
+ Γf (eV)
382
+ η
383
+ Γf(T)
384
+ ΓLV
385
+ ΓHV
386
+ T=1.5 MeV
387
+ Fig. 3. (left) The two-parabolic potential (4) and few examples of the dynamical
388
+ trajectories. (right) The fission width as the solution of Eqs. (1, 4, 7) calculated at
389
+ constant temperature (open dots), and the Kramers approximations (8) for high
390
+ and low damping limits.
391
+ The Markovian fission width Γf(T) calculated by Eqs. (1, 4, 7) is plotted
392
+ as function of the damping parameter η in the right part of Fig. 3.
393
+ To
394
+ present the results in a broader range of parameters, the damping parameter
395
+ η ≡ ¯γ/2Mω0 in these calculations was considered as a free parameter.
396
+ For the comparison, in Fig.3 we also show the Kramers decay width
397
+ ΓHV , ΓLV in limits of high and low viscosity (friction) [13],
398
+ ΓHV = ¯hω0
399
+ 2π e−Vb/T (
400
+
401
+ 1 + η2 − η) ,
402
+ ΓLV = ¯h¯γ
403
+ M
404
+ Vb
405
+ T e−Vb/T .
406
+ (8)
407
+ As one can see, the dependence of Γf(T) on η is rather complicated. The
408
+ fission width Γf(T) grows as function of η in low damping region (η < 0.1).
409
+ For η > 0.2, the fission width Γf(T) decreases as function of η.
410
+ In nuclear systems, the Markovian assumption is often too restrictive.
411
+ We thus have to generalize the above Langevin equations to allow for finite
412
+ memory effects. They read as [14],
413
+ dq/dt = p(t)/M,
414
+ (9)
415
+ dp
416
+ dt = −∂Epot
417
+ ∂q
418
+
419
+ � t
420
+ 0
421
+ dt′γ(t − t′)p(t′)/M + ζ ,
422
+ γ(t − t′) ≡ ¯γe− t−t′
423
+ τ /τ ,
424
+ where τ is the memory (or relaxation) time.
425
+ The extension consists in
426
+ allowing the friction to have a memory time, i.e., the friction reacts on past
427
+ stages of the system, what is called a retarded friction.
428
+ The random numbers ζ in (9) are the normally distributed random num-
429
+ bers with the properties < ζ(t) >= 0, < ζ(t)ζ(t′) >= Tγ(t−t′). In the limit
430
+ ω0τ << 1, one recovers the Markovian limit of nuclear fission dynamics, i.e.,
431
+
432
+ 8
433
+ preprint
434
+ printed on January 5, 2023
435
+ when the friction force is simply given by γ ˙q(t). The random numbers ζ(t)
436
+ in (9) satisfy the equation
437
+ dζ(t)/dt = −ζ(t)/τ + R(t)/τ ,
438
+ (10)
439
+ and are used in the description of the so-called Ornstein-Uhlenbeck pro-
440
+ cesses.
441
+ In the top part of Fig. 4 the calculated fission width Γf(E) is shown as
442
+ a function of the damping parameter η both for small and large excitation
443
+ energies, E∗=10, 25 and 60 MeV, for few values of the relaxation time.
444
+ Besides τ = 0, we choose in calculations below the two values of τ, τ =
445
+ 5 · 10−22 sec and τ = 10−21 sec.
446
+ 0
447
+ 1
448
+ 2
449
+ 0
450
+ 5
451
+ 10
452
+ Γf (eV)
453
+ η
454
+ Γf(E)
455
+ Γeff(T)
456
+ E*=10 MeV, Tin=0.6 MeV
457
+ 0
458
+ 1
459
+ 2
460
+ 0
461
+ 100
462
+ 200
463
+ 300
464
+ E*=25 MeV, Tin=1.0 MeV
465
+ η
466
+ 0
467
+ 1
468
+ 2
469
+ 0
470
+ 1000
471
+ 2000
472
+ 3000
473
+ E*=60 MeV. Tin=1.5 MeV
474
+ η
475
+ τ=0
476
+ τ=5 10
477
+ -22 sec
478
+ τ=10 10
479
+ -22 sec
480
+ 0
481
+ 5
482
+ 10
483
+ 0
484
+ 5
485
+ 10
486
+ Γf(E)
487
+ Γeff(T)
488
+ Γf (eV)
489
+ τ (10
490
+ -22 sec)
491
+ 0
492
+ 5
493
+ 10
494
+ 0
495
+ 100
496
+ 200
497
+ 300
498
+ τ (10
499
+ -22 sec)
500
+ 0
501
+ 5
502
+ 10
503
+ 0
504
+ 1000
505
+ 2000
506
+ 3000
507
+ τ (10
508
+ -22 sec)
509
+ η=0.1
510
+ η=0.5
511
+ η=1.0
512
+ Fig. 4. (top) The dependence of the fission width Γf(E) (solid) and the approxima-
513
+ tion (11) (dashed) on the damping parameter η for few values of the relaxation time
514
+ τ, τ=0, τ = 5 · 10−22 sec, τ = 10−21 sec and the initial excitation energies E∗
515
+ in=10,
516
+ 25 and 60 MeV. (bottom) The dependence of the fission width Γf(E) (solid) and
517
+ the approximation (11) (dashed) on the relaxation time τ for a few values of the
518
+ damping parameter η, η=0.1, 0.5 and 1.0.
519
+ The results of Langevin calculations satisfying the energy conservation
520
+ condition are shown in Fig. 4 by solid lines. The fission width Γf(E) grows
521
+
522
+ preprint
523
+ printed on January 5, 2023
524
+ 9
525
+ as a function of η and decreases as a function of τ in low damping region.
526
+ The tendency is the opposite in the high damping region; the fission width
527
+ Γf falls as a function of η and increases as a function of τ. Such dependence
528
+ is common both for small and large excitation energies.
529
+ In the bottom part of Fig. 4, the fission width Γf(E) (solid lines) is shown
530
+ as a function of the relaxation time τ for a few fixed values of the damping
531
+ parameter η.
532
+ The bottom part of Fig. 4 confirms the above conclusion:
533
+ the dependence of fission width Γf on η and τ is opposite in low and high
534
+ damping regions.
535
+ For the comparison, we show by dashed lines in Fig. 4 the available
536
+ analytical approximation for Γf(T, τ) [14, 15, 16],
537
+ 1
538
+ Γeff
539
+ =
540
+ 1
541
+ ΓLV
542
+ +
543
+ 1
544
+ ΓHV
545
+ ,
546
+ ΓLV (τ) = ΓLV (0)
547
+ 1 + ω2
548
+ 0τ 2 ,
549
+ ΓHV (τ) = ¯hλ
550
+ 2π e−Vb/T , (11)
551
+ where λ is the largest positive solution of the secular equation,
552
+ λ3 + λ2/τ + (¯γ/Mτ − ω2
553
+ 0)λ − ω2
554
+ 0/τ = 0 .
555
+ (12)
556
+ As can be seen, the results of Langevin calculations for Γf(E) are smaller
557
+ than the analytical estimate (11) both in low and high damping limits. The
558
+ ratio Γf(E)/Γeff is close to 1 at E∗=60 MeV and close to 0.1 at E∗=10
559
+ MeV.
560
+ 5. Summary
561
+ The calculated mass distributions of fission fragments of super-heavy
562
+ nuclei from 268Hs to 308122 demonstrate a three-four peaks structure of mass
563
+ distributions. In light super-heavies, we see the dominant mass symmetric
564
+ peak at AF ≈ 140. With increasing mass and charge numbers of fissioning
565
+ nuclei, the highly asymmetric peaks at AH ≈ 208 appears. In 290−296Lv
566
+ and 290−296Og, the three peaks in FFMD are approximately of the same
567
+ magnitude at E*=10 MeV.
568
+ The investigation of memory effects in nuclear fission is carried out. The
569
+ calculations presented here offer complete information on the dependence
570
+ of fission probability on all essential parameters, the relaxation time τ, the
571
+ damping parameter η, and the excitation energy E*.
572
+ It turned out that the fission width Γf(E) calculated under the constant
573
+ energy requirement is generally smaller than that calculated in the constant
574
+ temperature regime, Γf(T), or the Bohr-Wheeler approximation.
575
+ The dependence of the fission width Γf(E) on the relaxation time τ is
576
+ very sensitive to the damping parameter η. In the low viscosity region, the
577
+ fission width Γf(E) grows as a function of η and decreases as a function of τ.
578
+
579
+ 10
580
+ preprint
581
+ printed on January 5, 2023
582
+ In the high-viscosity region, the tendency is the opposite. Such dependence
583
+ is common both for small and large excitation energies.
584
+ Acknowledgements. The authors are grateful to Prof. K.Pomorski
585
+ for the valuable discussions and presentation of our results at the Zakopane
586
+ Conference
587
+ REFERENCES
588
+ [1] S.G.Nilsson, C.F. Tsang, A. Sobiczewski et al, Nucl. Phys. A 131, 1 (1969).
589
+ [2] Yu.Ts. Oganessian, A.V. Yeremin, A.G. Popeko et al, Nature 400, 242 (1999).
590
+ [3] J. Maruhn and W. Greiner, Zeit. f. Phys. 251, 431 (1972).
591
+ [4] M.D. Usang, F.A. Ivanyuk, C. Ishisuka, and S. Chiba, Phys. Rev. C 94, 044602
592
+ (2016).
593
+ [5] C. Ishizuka, M.D. Usang, F.A. Ivanyuk et al, Phys. Rev. C 96, 064616 (2017).
594
+ [6] M.D. Usang, F.A. Ivanyuk, C. Ishizuka, and S. Chiba, Phys. Rev. C 96, 064617
595
+ (2017).
596
+ [7] M.D. Usang, F.A. Ivanyuk, C. Ishisuka, and S. Chiba, Scientific Reports 9,
597
+ 1525 (2019).
598
+ [8] C. Ishisuka, X. Zhang, M. D. Usang, F. A. Ivanyuk, and S. Chiba, Phys. Rev.
599
+ C 101, 011601(R) (2020).
600
+ [9] P.V. Kostryukov, A. Dobrowolski, B. Nerlo-Pomorska et al, Chin. Phys. C 45,
601
+ 124108 (2021).
602
+ [10] H. Hofmann, F. A. Ivanyuk, C. Rummel, and S. Yamaji, Phys. Rev. C 64,
603
+ 054316 (2001).
604
+ [11] J. T¨oke, W. J. Swiatecki, Nucl. Phys. A 372, 141 (1981).
605
+ [12] F.A. Ivanyuk, S.V. Radionov, C. ishizuka and S. Chiba, Nucl. Phys. A 1028,
606
+ 122526 (2022).
607
+ [13] H. A. Kramers, Physica VII, 284 (1940).
608
+ [14] Y. Abe, S. Ayik, P.-G. Reinhard, and E. Suraud, Phys. Rep. 275, 49 (1996).
609
+ [15] R.F. Grote and J.T. Hynes, Jour. Chem. Phys. 73, 2715 (1980).
610
+ [16] D.Boilley, Y.Lallouet, Jour. Stat. Phys. 125, 477 (2006).
611
+
DtAzT4oBgHgl3EQfif1c/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,348 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf,len=347
2
+ page_content='arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
3
+ page_content='01500v1 [nucl-th] 4 Jan 2023 The Langevin approach for fission of heavy and super-heavy nuclei∗ F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
4
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
5
+ page_content='Ivanyuk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
6
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
7
+ page_content='Radionov Institute for Nuclear Research, Kyiv, Ukraine C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
8
+ page_content='Ishizuka, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
9
+ page_content='Chiba Tokyo Institute of Technology, Tokyo, Japan In this contribution, we present the main relations of the Langevin approach to the description of fission or fusion-fission reactions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
10
+ page_content=' The results of Langevin calculations are shown for the mass distributions of fission fragments of super-heavy elements and used for the investigation of memory effects in nuclear fission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
11
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
12
+ page_content=' Introduction We describe the nuclear fission process by the four-dimensional set of the Langevin equations for the shape degrees of freedom with the shape given by the two-center shell model (TCSM) shape parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
13
+ page_content=' The potential energy is calculated within the macroscopic-microscopic method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
14
+ page_content=' The collective mass, M, and friction, γ, tensors are defined in macroscopic (Werner-Wheller and wall-and-window formula) or microscopic (linear re- sponse theory) approaches.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
15
+ page_content=' We start calculations from the ground state shape with zero collective velocities and solve equations until the neck radius of the nucleus turns zero (scission point).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
16
+ page_content=' At the scission point, the solutions of Langevin equations supply complete information about the system, its shape, excitation energy, and collective velocities.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
17
+ page_content=' This information makes it possible to calculate the mass distributions, the total kinetic energy, and the excitation energies of fission fragments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
18
+ page_content=' The results of numerous previous calculations are in reasonable agreement with the available experimental data.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
19
+ page_content=' ∗ Presented at the Zakopane Conference on Nuclear Physics, Zakopane, Poland, 28 August - 4 September 2022 (1) 2 preprint printed on January 5, 2023 Below in this contribution, we present the calculated results for the mass distributions of super-heavy nuclei and clarify the impact of memory effects on the fission width of heavy nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
20
+ page_content=' The physics of super-heavy elements (SHE) has a long history.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
21
+ page_content=' The ex- istence of the “island of stability” was predicted at the end of the 1960s [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
22
+ page_content=' Nevertheless, it took almost 30 years until the alpha-decay of the ele- ment with Z=114 was observed experimentally at Flerov Nuclear Reactions Laboratory in Dubna [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
23
+ page_content=' With the development of experimental facility, it became possible not only to fix the fact of formation of SHE, but examine their properties.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
24
+ page_content=' One of the first property of interest – the process of fission of SHEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
25
+ page_content=' For the successful planning and carrying out of experiments, it is crucial to understand what kind of fission fragments mass distribution (FFMD) one should expect in the result of the fission of SHEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
26
+ page_content=' The two double magic nuclei 132Sn and 208Pb may contribute.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
27
+ page_content=' Both have the shell correction in the ground state of the same magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
28
+ page_content=' In order to clarify what kind of FFMD one could expect in the fission of SHEs, we have carried out the calculations of FFMD for a number of SHEs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
29
+ page_content=' The results are given in Section 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
30
+ page_content=' Another problem we address in this contribution is the influence of mem- ory effects on the probability of the fission process.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
31
+ page_content=' Commonly one uses the Markovian approximation to Langevin approach in which all quantities are defined at the same moment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
32
+ page_content=' This approximation provides reasonable re- sults, but its accuracy is not well established.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
33
+ page_content=' In publications, one can find statements that the memory effects have a significant influence on the fusion or fission processes and the statements that memory effects are very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
34
+ page_content=' To clarify this uncertainty, we have calculated the fission width using the Langevin approach with memory effects included in a wide range of im- portant parameters: the excitation energy E∗ of the system, the damping parameter η, the relaxation time τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
35
+ page_content=' The details and results of the calcula- tions are given in Section 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
36
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
37
+ page_content=' The Langevin approach for the fission process Within the Langevin approach, the fission process is described by solving the equations for the time evolution of the shape of nuclear surface of the fis- sioning system.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
38
+ page_content=' For the shape parametrization, we use that of the two-center shell model (TCSM) [3] with 4 deformation parameters qµ = z0/R0, δ1, δ2, α.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
39
+ page_content=' Here z0/R0 refers to the distance between the centers of left and right os- cillator potentials, R0 being the radius of spherical nucleus with the mass number A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
40
+ page_content=' The parameters δi describe the deformation of the right and left fragment tips.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
41
+ page_content=' The fourth parameter α is the mass asymmetry and the fifth preprint printed on January 5, 2023 3 parameter of the TCSM shape parametrization ǫ was kept constant, ǫ=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
42
+ page_content='35, in all our calculations.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
43
+ page_content=' The first-order differential equations (Langevin equations) for the time dependence of collective variables qµ and the conjugated momenta pµ are: dqµ dt = � m−1� µν pν, (1) dpµ dt = −∂F(q, T) ∂qµ − 1 2 ∂m−1 νσ ∂qµ pνpσ − γµνm−1 νσ pσ + Rµ(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
44
+ page_content=' In Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
45
+ page_content=' (1) the F(q, T) is the temperature-dependent free energy of the system, and γµν and (m−1)µν are the friction and inverse of mass tensors.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
46
+ page_content=' The free energy F(q, T) is calculated within the shell correction method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
47
+ page_content=' The single particle energies are calculated with the deformed Woods-Saxon potential fitted to the mentioned above TCSM shapes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
48
+ page_content=' The collective inertia tensor mµν is calculated by the Werner-Wheeler approximation and for the friction tensor γµν we used the wall-and-window formula.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
49
+ page_content=' The random force Rµ(t) is the product of the temperature-depen- dent strength factors gµν and the white noise ξν(t), Rµ(t) = gµνξν(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
50
+ page_content=' The factors gµν are related to the temperature and friction tensor via the Einstein relation, gµσgσν = Tγµν (2) The temperature T is kept constant, aT 2 = E∗, or adjusted to the local excitation energy on each step of integration by the relation, aT 2 = E∗ − p2(t)/2M − [Epot(q) − Epot(qgs)].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
51
+ page_content=' (3) Here qgs is the ground state deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
52
+ page_content=' More details are given in our earlier publications [4, 5, 6, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
53
+ page_content=' Initially, the momenta pµ are set to zero, and calculations are started from the ground state deformation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
54
+ page_content=' Such calculations are continued until the trajectories reach the ”scission point”, defined as the point in deformation space where the neck radius turns zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
55
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
56
+ page_content=' Fission fragments mass distributions of super-heavy nuclei In order to understand what kind of mass distributions one can expect from the solution of Langevin equations for super-heavy nuclei, we looked first at the potential energy of fissioning nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
57
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
58
+ page_content=' 1 shows the potential energy Edef of nuclei 296Lv and 302120 at zero temperature as a function of elongation (the distance R12 between the centers of mass of left and right parts of a nucleus) and the mass asymmetry (fragment mass number).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
59
+ page_content=' 4 preprint printed on January 5, 2023 In the top part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
60
+ page_content=' 1 the energy was minimized with respect to the deformation parameters δ1 and δ2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
61
+ page_content=' One sees the bottom of potential energy leading to almost symmetric mass splitting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
62
+ page_content=' There is also a hint on the mass asymmetric valley at AF close to AF =208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
63
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
64
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
65
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
66
+ page_content='0 100 150 200 302120, δ1= - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
67
+ page_content='2, δ2= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
68
+ page_content='2 R12 / R0 Fragment mass number 60 52 44 36 28 20 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
69
+ page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
70
+ page_content='0 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
71
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
72
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
73
+ page_content='0 100 150 200 302120, δ1,δ2 - min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
74
+ page_content=' Fragment mass number 60 52 44 36 28 20 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
75
+ page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
76
+ page_content='0 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
77
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
78
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
79
+ page_content='0 50 100 150 200 296Lv, δ1= - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
80
+ page_content='2, δ2= 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
81
+ page_content='2 R12 / R0 Fragment mass number 60 52 44 36 28 20 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
82
+ page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
83
+ page_content='0 10 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
84
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
85
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
86
+ page_content='0 50 100 150 200 Fragment mass number 60 52 44 36 28 20 12 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
87
+ page_content='0 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
88
+ page_content='0 10 296Lv, δ1,δ2 - min.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
89
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
90
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
91
+ page_content=' (top) The potential energy of 296Lv and 302120 at T = 0 minimized with respect to deformation parameters δ1 and δ2 (bottom), and at fixed values δ1 = −0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
92
+ page_content='2 and δ2 = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
93
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
94
+ page_content=' If the trajectories followed the bottom of potential energy, the mass distributions would be symmetric.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
95
+ page_content=' However, it is well known that the tra- jectories may deviate substantially from the bottom of the potential valley due to dynamic effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
96
+ page_content=' We calculate the trajectories in four-dimensional deformation space.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
97
+ page_content=' In this space, the local minima could lead away from the bottom of the potential valley.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
98
+ page_content=' An example is shown in the bottom part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
99
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
100
+ page_content=' Here we show the potential energy for fixed δ1= - 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
101
+ page_content='2 and δ2=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
102
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
103
+ page_content=' One clearly sees another valley, leading to strongly mass asymmetric split- ting.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
104
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
105
+ page_content=' 2, we show the fission fragment mass distributions of super-heavy nuclei from 276Hs to 308122 as a function of fragment mass number AF .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
106
+ page_content=' The FFMDs of nuclei from 276Cn to 308122 have three or four peak structures.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
107
+ page_content=' The main component is the symmetric peak, split into two components in some isotopes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
108
+ page_content=' The peaks of lighter fragments are located around AF =140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
109
+ page_content=' preprint printed on January 5, 2023 5 5 10 Fission from the ground state, ---- E =10 MeV, ---- E =20 MeV, ---- E =30 MeV N = 168 170 172 174 176 178 180 182 184 186 Z = 108 110 112 114 116 118 120 122 5 10 5 10 5 10 0 5 10 5 10 15 140 5 10 15 5 10 15 20 40 140 05 10 15 20 40 140 F r a g m e n t m a s s n u m b e r Yield (%) 40 14040 14040 14040 14040 14040 14040 14040 140 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
110
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
111
+ page_content=' The fission fragment mass distributions of super-heavy nuclei from 276Hs to 308122 calculated for the excitation energies E∗=10, 20 and 30 MeV as a function of the fragment mass number One can also see the strongly asymmetric peak at the mass number close to AF =208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
112
+ page_content=' The strength of the (almost) symmetric and asymmetric components in FFMD of SHEs depends on the proton and neutron num- bers of the compound nucleus.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
113
+ page_content=' For 276Cn, the contribution of a strongly asymmetric peak is tiny.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
114
+ page_content=' This contribution becomes larger for more heavy SHE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
115
+ page_content=' In some elements of SHEs with Z =116-122, the symmetric and mass- asymmetric peaks are of the same magnitude.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
116
+ page_content=' More details can be found in [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
117
+ page_content=' The similar strongly mass-asymmetric peaks in FFMD of SHEs were also found recently in [9] within the Langevin approach with the so call Fourier shape parametrization.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
118
+ page_content=' 6 preprint printed on January 5, 2023 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
119
+ page_content=' The memory effects in nuclear fission In order to investigate the role of memory effects in nuclear fission, we exploit a simple one-dimensional model with the potential energy given by the two-parabolic potential (Kramers potential), see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
120
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
121
+ page_content=' Epot(q) = 2Vbq(q − q0)/q2 0, 0 < q < q0;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
122
+ page_content=' 2Vb(q − q0)(2q0 − q)q2 0, q0 < q < 2q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
123
+ page_content=' (4) The potential (4) depends on two parameters, the barrier height Vb and the barrier width q0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
124
+ page_content=' We have fixed the barrier height Vb = 6 MeV, which is close to the value of the fission barrier of actinide nuclei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
125
+ page_content=' The width of the barrier is somewhat uncertain.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
126
+ page_content=' It depends on the definition of the collective coordinate q and the model for the potential energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
127
+ page_content=' For simplicity, we have put here q0 = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
128
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
129
+ page_content=' For the potential (4) one can define the stiffness C = d2Epot/dq2 and the frequency of harmonic vibrations ω0 = � C/M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
130
+ page_content=' In the present work, we fix ¯hω0 =1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
131
+ page_content='0 MeV, which is close to the frequency of collective vibra- tions calculated for 224Th in [10] within the microscopic linear response theory.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
132
+ page_content=' Then, for the mass parameter we will have the deformation and temperature-independent value, M = C/ω2 0 = 4Vb/(ω2 0q2 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
133
+ page_content=' (5) For the friction coefficient ¯γ we use a slightly modified approximation of [10], ¯γ/M = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
134
+ page_content='6(T 2 + ¯h2ω2 0/π2))/(1 + T 2/40).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
135
+ page_content=' (6) For the temperature, we consider here two options: constant temperature regime and constant energy regime.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
136
+ page_content=' In a constant temperature regime, the temperature is time-independent, related to the initial excitation energy E∗ by the Fermi-gas relation, aT 2 = E∗, where a is the level density parameter of T¨oke and Swiatecki [11].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
137
+ page_content=' The fission width calculated in a constant temperature regime will be denoted as Γf(T).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
138
+ page_content=' At small excitations, the temperature varies with deformation and time, and there is no reason to consider it constant.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
139
+ page_content=' So, it should be adjusted to the local excitation energy on each integration step by the relation (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
140
+ page_content=' Correspondingly, fission width calculated in a constant energy regime is denoted as Γf(E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
141
+ page_content=' The fission width, Γf, is defined assuming the exponential decay of the number of ”particles” in the potential well, P(t) = e−Γf t/¯h → Γf = −¯h ln[P(t)]/t.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
142
+ page_content=' (7) By solving the Langevin equations one will get the set of time moments tb, at which some trajectories would cross the barrier.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
143
+ page_content=' From this information, one can find the probability P(t) and the fission width Γf, see [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
144
+ page_content=' preprint printed on January 5, 2023 7 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
145
+ page_content='5 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
146
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
147
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
148
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
149
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
150
+ page_content='0 0 5 10 Epot (MeV) q A=236, E =Vb 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
151
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
152
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
153
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
154
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
155
+ page_content='0 0 1000 2000 3000 Γf (eV) η Γf(T) ΓLV ΓHV T=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
156
+ page_content='5 MeV Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
157
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
158
+ page_content=' (left) The two-parabolic potential (4) and few examples of the dynamical trajectories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
159
+ page_content=' (right) The fission width as the solution of Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
160
+ page_content=' (1, 4, 7) calculated at constant temperature (open dots), and the Kramers approximations (8) for high and low damping limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
161
+ page_content=' The Markovian fission width Γf(T) calculated by Eqs.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
162
+ page_content=' (1, 4, 7) is plotted as function of the damping parameter η in the right part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
163
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
164
+ page_content=' To present the results in a broader range of parameters, the damping parameter η ≡ ¯γ/2Mω0 in these calculations was considered as a free parameter.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
165
+ page_content=' For the comparison, in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
166
+ page_content='3 we also show the Kramers decay width ΓHV , ΓLV in limits of high and low viscosity (friction) [13], ΓHV = ¯hω0 2π e−Vb/T ( � 1 + η2 − η) , ΓLV = ¯h¯γ M Vb T e−Vb/T .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
167
+ page_content=' (8) As one can see, the dependence of Γf(T) on η is rather complicated.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
168
+ page_content=' The fission width Γf(T) grows as function of η in low damping region (η < 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
169
+ page_content='1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
170
+ page_content=' For η > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
171
+ page_content='2, the fission width Γf(T) decreases as function of η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
172
+ page_content=' In nuclear systems, the Markovian assumption is often too restrictive.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
173
+ page_content=' We thus have to generalize the above Langevin equations to allow for finite memory effects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
174
+ page_content=' They read as [14], dq/dt = p(t)/M, (9) dp dt = −∂Epot ∂q − � t 0 dt′γ(t − t′)p(t′)/M + ζ , γ(t − t′) ≡ ¯γe− t−t′ τ /τ , where τ is the memory (or relaxation) time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
175
+ page_content=' The extension consists in allowing the friction to have a memory time, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
176
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
177
+ page_content=', the friction reacts on past stages of the system, what is called a retarded friction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
178
+ page_content=' The random numbers ζ in (9) are the normally distributed random num- bers with the properties < ζ(t) >= 0, < ζ(t)ζ(t′) >= Tγ(t−t′).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
179
+ page_content=' In the limit ω0τ << 1, one recovers the Markovian limit of nuclear fission dynamics, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
180
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
181
+ page_content=', 8 preprint printed on January 5, 2023 when the friction force is simply given by γ ˙q(t).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
182
+ page_content=' The random numbers ζ(t) in (9) satisfy the equation dζ(t)/dt = −ζ(t)/τ + R(t)/τ , (10) and are used in the description of the so-called Ornstein-Uhlenbeck pro- cesses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
183
+ page_content=' In the top part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
184
+ page_content=' 4 the calculated fission width Γf(E) is shown as a function of the damping parameter η both for small and large excitation energies, E∗=10, 25 and 60 MeV, for few values of the relaxation time.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
185
+ page_content=' Besides τ = 0, we choose in calculations below the two values of τ, τ = 5 · 10−22 sec and τ = 10−21 sec.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
186
+ page_content=' 0 1 2 0 5 10 Γf (eV) η Γf(E) Γeff(T) E*=10 MeV, Tin=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
187
+ page_content='6 MeV 0 1 2 0 100 200 300 E*=25 MeV, Tin=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
188
+ page_content='0 MeV η 0 1 2 0 1000 2000 3000 E*=60 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
189
+ page_content=' Tin=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
190
+ page_content='5 MeV η τ=0 τ=5 10 22 sec τ=10 10 22 sec 0 5 10 0 5 10 Γf(E) Γeff(T) Γf (eV) τ (10 22 sec) 0 5 10 0 100 200 300 τ (10 22 sec) 0 5 10 0 1000 2000 3000 τ (10 22 sec) η=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
191
+ page_content='1 η=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
192
+ page_content='5 η=1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
193
+ page_content='0 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
194
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
195
+ page_content=' (top) The dependence of the fission width Γf(E) (solid) and the approxima- tion (11) (dashed) on the damping parameter η for few values of the relaxation time τ, τ=0, τ = 5 · 10−22 sec, τ = 10−21 sec and the initial excitation energies E∗ in=10, 25 and 60 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
196
+ page_content=' (bottom) The dependence of the fission width Γf(E) (solid) and the approximation (11) (dashed) on the relaxation time τ for a few values of the damping parameter η, η=0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
197
+ page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
198
+ page_content='5 and 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
199
+ page_content='0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
200
+ page_content=' The results of Langevin calculations satisfying the energy conservation condition are shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
201
+ page_content=' 4 by solid lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
202
+ page_content=' The fission width Γf(E) grows preprint printed on January 5, 2023 9 as a function of η and decreases as a function of τ in low damping region.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
203
+ page_content=' The tendency is the opposite in the high damping region;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
204
+ page_content=' the fission width Γf falls as a function of η and increases as a function of τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
205
+ page_content=' Such dependence is common both for small and large excitation energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
206
+ page_content=' In the bottom part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
207
+ page_content=' 4, the fission width Γf(E) (solid lines) is shown as a function of the relaxation time τ for a few fixed values of the damping parameter η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
208
+ page_content=' The bottom part of Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
209
+ page_content=' 4 confirms the above conclusion: the dependence of fission width Γf on η and τ is opposite in low and high damping regions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
210
+ page_content=' For the comparison, we show by dashed lines in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
211
+ page_content=' 4 the available analytical approximation for Γf(T, τ) [14, 15, 16], 1 Γeff = 1 ΓLV + 1 ΓHV , ΓLV (τ) = ΓLV (0) 1 + ω2 0τ 2 , ΓHV (τ) = ¯hλ 2π e−Vb/T , (11) where λ is the largest positive solution of the secular equation, λ3 + λ2/τ + (¯γ/Mτ − ω2 0)λ − ω2 0/τ = 0 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
212
+ page_content=' (12) As can be seen, the results of Langevin calculations for Γf(E) are smaller than the analytical estimate (11) both in low and high damping limits.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
213
+ page_content=' The ratio Γf(E)/Γeff is close to 1 at E∗=60 MeV and close to 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
214
+ page_content='1 at E∗=10 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
215
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
216
+ page_content=' Summary The calculated mass distributions of fission fragments of super-heavy nuclei from 268Hs to 308122 demonstrate a three-four peaks structure of mass distributions.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
217
+ page_content=' In light super-heavies, we see the dominant mass symmetric peak at AF ≈ 140.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
218
+ page_content=' With increasing mass and charge numbers of fissioning nuclei, the highly asymmetric peaks at AH ≈ 208 appears.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
219
+ page_content=' In 290−296Lv and 290−296Og, the three peaks in FFMD are approximately of the same magnitude at E*=10 MeV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
220
+ page_content=' The investigation of memory effects in nuclear fission is carried out.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
221
+ page_content=' The calculations presented here offer complete information on the dependence of fission probability on all essential parameters, the relaxation time τ, the damping parameter η, and the excitation energy E*.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
222
+ page_content=' It turned out that the fission width Γf(E) calculated under the constant energy requirement is generally smaller than that calculated in the constant temperature regime, Γf(T), or the Bohr-Wheeler approximation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
223
+ page_content=' The dependence of the fission width Γf(E) on the relaxation time τ is very sensitive to the damping parameter η.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
224
+ page_content=' In the low viscosity region, the fission width Γf(E) grows as a function of η and decreases as a function of τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
225
+ page_content=' 10 preprint printed on January 5, 2023 In the high-viscosity region, the tendency is the opposite.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
226
+ page_content=' Such dependence is common both for small and large excitation energies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
227
+ page_content=' Acknowledgements.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
228
+ page_content=' The authors are grateful to Prof.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
229
+ page_content=' K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
230
+ page_content='Pomorski for the valuable discussions and presentation of our results at the Zakopane Conference REFERENCES [1] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
231
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
232
+ page_content='Nilsson, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
233
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
234
+ page_content=' Tsang, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
235
+ page_content=' Sobiczewski et al, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
236
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
237
+ page_content=' A 131, 1 (1969).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
238
+ page_content=' [2] Yu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
239
+ page_content='Ts.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
240
+ page_content=' Oganessian, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
241
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
242
+ page_content=' Yeremin, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
243
+ page_content='G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
244
+ page_content=' Popeko et al, Nature 400, 242 (1999).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
245
+ page_content=' [3] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
246
+ page_content=' Maruhn and W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
247
+ page_content=' Greiner, Zeit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
248
+ page_content=' f.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
249
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
250
+ page_content=' 251, 431 (1972).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
251
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
252
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
253
+ page_content=' Usang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
254
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
255
+ page_content=' Ivanyuk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
256
+ page_content=' Ishisuka, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
257
+ page_content=' Chiba, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
258
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
259
+ page_content=' C 94, 044602 (2016).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
260
+ page_content=' [5] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
261
+ page_content=' Ishizuka, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
262
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
263
+ page_content=' Usang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
264
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
265
+ page_content=' Ivanyuk et al, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
266
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
267
+ page_content=' C 96, 064616 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
268
+ page_content=' [6] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
269
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
270
+ page_content=' Usang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
271
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
272
+ page_content=' Ivanyuk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
273
+ page_content=' Ishizuka, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
274
+ page_content=' Chiba, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
275
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
276
+ page_content=' C 96, 064617 (2017).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
277
+ page_content=' [7] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
278
+ page_content='D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
279
+ page_content=' Usang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
280
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
281
+ page_content=' Ivanyuk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
282
+ page_content=' Ishisuka, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
283
+ page_content=' Chiba, Scientific Reports 9, 1525 (2019).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
284
+ page_content=' [8] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
285
+ page_content=' Ishisuka, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
286
+ page_content=' Zhang, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
287
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
288
+ page_content=' Usang, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
289
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
290
+ page_content=' Ivanyuk, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
291
+ page_content=' Chiba, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
292
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
293
+ page_content=' C 101, 011601(R) (2020).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
294
+ page_content=' [9] P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
295
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
296
+ page_content=' Kostryukov, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
297
+ page_content=' Dobrowolski, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
298
+ page_content=' Nerlo-Pomorska et al, Chin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
299
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
300
+ page_content=' C 45, 124108 (2021).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
301
+ page_content=' [10] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
302
+ page_content=' Hofmann, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
303
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
304
+ page_content=' Ivanyuk, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
305
+ page_content=' Rummel, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
306
+ page_content=' Yamaji, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
307
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
308
+ page_content=' C 64, 054316 (2001).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
309
+ page_content=' [11] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
310
+ page_content=' T¨oke, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
311
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
312
+ page_content=' Swiatecki, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
313
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
314
+ page_content=' A 372, 141 (1981).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
315
+ page_content=' [12] F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
316
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
317
+ page_content=' Ivanyuk, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
318
+ page_content='V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
319
+ page_content=' Radionov, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
320
+ page_content=' ishizuka and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
321
+ page_content=' Chiba, Nucl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
322
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
323
+ page_content=' A 1028, 122526 (2022).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
324
+ page_content=' [13] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
325
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
326
+ page_content=' Kramers, Physica VII, 284 (1940).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
327
+ page_content=' [14] Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
328
+ page_content=' Abe, S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
329
+ page_content=' Ayik, P.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
330
+ page_content='-G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
331
+ page_content=' Reinhard, and E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
332
+ page_content=' Suraud, Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
333
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
334
+ page_content=' 275, 49 (1996).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
335
+ page_content=' [15] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
336
+ page_content='F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
337
+ page_content=' Grote and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
338
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
339
+ page_content=' Hynes, Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
340
+ page_content=' Chem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
341
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
342
+ page_content=' 73, 2715 (1980).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
343
+ page_content=' [16] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
344
+ page_content='Boilley, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
345
+ page_content='Lallouet, Jour.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
346
+ page_content=' Stat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
347
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
348
+ page_content=' 125, 477 (2006).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/DtAzT4oBgHgl3EQfif1c/content/2301.01500v1.pdf'}
INFLT4oBgHgl3EQfIy9R/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae3e4e57c10facd41e81bbdeedae1eb4cdde8499ad7c6b2f69d3793fcaddae10
3
+ size 4325421
ItE4T4oBgHgl3EQfhQ0t/content/tmp_files/2301.05123v1.pdf.txt ADDED
@@ -0,0 +1,659 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Physical Layer Security Techniques Applied to
2
+ Vehicle-to-Everything Networks
3
+ Leonardo B. da Silva, Evelio M. G. Fernández and Ândrei Camponogara
4
+ Abstract— Physical Layer Security (PLS) is an emerging con-
5
+ cept in the field of secrecy for wireless communications that can
6
+ be used alongside cryptography to prevent unauthorized devices
7
+ from eavesdropping a legitimate transmission. It offers low com-
8
+ putational cost and overhead by injecting an interfering signal
9
+ in the wiretap channels of potential eavesdroppers. This paper
10
+ discusses the benefits of the Artificial Noise and Cooperative
11
+ Jamming techniques in the context of Vehicle-to-everything (V2X)
12
+ networks, which require secure data exchange with small latency.
13
+ The simulations indicate that messages can be safely delivered
14
+ even with devices that have low available power.
15
+ Keywords— Wireless communication networks, Physical Layer
16
+ Security, secrecy, Vehicle-to-everything, Artificial Noise, Cooper-
17
+ ative Jamming.
18
+ I. INTRODUCTION
19
+ Urban mobility is one of the main focuses of the Internet
20
+ of Things (IoT) when applied to smart cities, due to the
21
+ necessity for more responsive and safe traffic control. Gener-
22
+ ally, the solutions proposed in this scope involve the wireless
23
+ communication between not only the vehicles themselves,
24
+ but also with pedestrians, infrastructure, and networks. This
25
+ paradigm is known as Vehicle-to-everything (V2X) and it can
26
+ be standardized by protocols such as C-ITS (Cellular Intelli-
27
+ gent Transportation System) and WAVE (Wireless Access for
28
+ Vehicular Environment) that are based on the IEEE 802.11p
29
+ amendment, and the Cellular-V2X (C-V2X) that implements
30
+ the 5G standard from 3GPP (3rd Generation Partnership
31
+ Project) [1].
32
+ A. Problem Outline
33
+ Due to the ever-changing location of most of the involved
34
+ communication nodes and the time-sensitive nature of the
35
+ data involved (brake position, vehicle speed, traffic volume,
36
+ accident reports, etc), the transmission needs not only to occur
37
+ at high rates, but also offer reliability through high secrecy, low
38
+ packet loss, and small delay. Furthermore, those nodes have
39
+ to be affordable to justify their implementation on a city-wide
40
+ scale, thus having low power consumption and the most cost-
41
+ efficient embedded processing unit possible [2].
42
+ Since the main source of information security in today’s
43
+ landscape is provided through cryptography, the secrecy con-
44
+ straint can negatively affect most of these criteria. As a result
45
+ L.
46
+ B.
47
+ da
48
+ Silva,
49
+ E.
50
+ M.
51
+ G.
52
+ Fernandez,
53
+ Â.
54
+ Camponogara,
55
+ Electri-
56
+ cal Engineering Department, Federal University of Paraná (UFPR), Cu-
57
+ ritiba, PR, Brazil, e-mails: [email protected], [email protected] and
58
+ [email protected]. This study was financed in part by the Coorde-
59
+ nação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) –
60
+ Finance Code 001.
61
+ of the growth in the availability of portable and connected
62
+ equipment with high processing capabilities, the safety mea-
63
+ sures implemented need to match this computational power
64
+ with proportionally longer and more complex keys to not be
65
+ vulnerable to brute-force attacks from well-equipped malicious
66
+ devices [2], [3]. This approach, however, is not sustainable,
67
+ because it produces increasingly long authentication routines,
68
+ due to the raise in computational overhead and processing cost
69
+ as a result of the implemented security algorithms.
70
+ B. Overview of the proposed solution
71
+ To counterbalance this issue, this paper studies the use of
72
+ Physical Layer Security (PLS) techniques as an additional
73
+ protection to increase the secrecy of wireless communications
74
+ in a V2X environment. As the name suggests, PLS is applied
75
+ at the Physical Layer, making it an alternative that can be used
76
+ with low processing cost when compared with cryptography,
77
+ which is more oriented towards the computational side of the
78
+ network stack on the Application Layer [1].
79
+ Since cryptography techniques provide security in different
80
+ sections of the wireless protocols, PLS is proposed as a
81
+ complement to them, rather than a replacement [1]. Through
82
+ the use of both approaches on the same node, it is possible to
83
+ offer high secrecy without the necessity of infinitely growing
84
+ key complexity.
85
+ The PLS has its origins on the analytical proposal of
86
+ Wyner’s wiretap channel [4], where it is described a commu-
87
+ nication between two legitimate nodes that is spied on by an
88
+ eavesdropper through an unauthorized channel called wiretap.
89
+ In the modern literature, these devices are usually referred to
90
+ as a transmitter called Alice, an authorized receiver Bob, and
91
+ the set of K eavesdroppers named Eves.
92
+ In the wiretap channel model shown in Fig. 1, the original
93
+ message m is encoded and transmitted by Alice as the signal
94
+ sa, that reaches Bob through the main channel hAB. The
95
+ received signal yB is then decoded by Bob, obtaining the
96
+ estimated message ˆm. Additionally, the k-th Eve can intercept
97
+ sa through the wiretap channel hAE,k, obtaining the signal
98
+ yE,k that when decoded produces z.
99
+ The main focus of PLS is to guarantee that the mutual
100
+ information between m and z is as close to zero as possible.
101
+ When this condition is met, even if z is know, it is impossible
102
+ for Eve to infer the contents of the original message.
103
+ Wyner then presents a set of parameters that enable the use
104
+ of the physical imperfections of the channel, such as noise
105
+ and fading, to provide information secrecy by raising the level
106
+ of confusion on undesired nodes. Rendering them unable to
107
+ distinguish between the message and the interference.
108
+ arXiv:2301.05123v1 [eess.SP] 12 Jan 2023
109
+
110
+ Fig. 1: The wiretap channel generic model based on [4]
111
+ Currently, plenty of techniques to provide security at the
112
+ physical layer level have been proposed in the literature [3].
113
+ This paper will focus on two approaches first presented in [5]:
114
+ • Artificial Noise (AN): This approach uses a portion of
115
+ the transmitter node’s power to inject artificially gener-
116
+ ated noise in the eavesdropper’s channel;
117
+ • Cooperative Jamming (CJ): This approach expands the
118
+ AN model by proposing a connected network where
119
+ nearby relay nodes (Charlies) send a jamming signal to
120
+ the eavesdropper’s channel.
121
+ To demonstrate the viability of AN and CJ applications in
122
+ a V2X network, it is common to create stochastic geometric
123
+ models that randomly generate streets and distribute com-
124
+ munication nodes in a predefined area to represent an urban
125
+ mobility scenario [6], [7]. When implementing these methods,
126
+ metrics such as the Signal-to-Interference Ratio (SIR) are used
127
+ to define the threshold of confusion necessary to provide se-
128
+ crecy at the physical layer. The SIR on each eavesdropper can
129
+ then be evaluated to determine the secrecy outage probability
130
+ (SOP) of the data transmission with different densities of the
131
+ involved nodes in the simulated network.
132
+ In this paper, Section II describes the stochastic algorithms
133
+ implemented to model a V2X network that includes streets
134
+ and communication nodes (vehicular and planar). Section III
135
+ presents the analytical basis of the AN and CJ techniques,
136
+ while also introducing the SIR and SOP metrics. In Section
137
+ IV, the results of numerical simulations are shown to illustrate
138
+ the benefits of the considered PLS techniques on the generated
139
+ V2X networks. Finally, Section V states some final remarks.
140
+ Notation: IN is an identity matrix of order N, Poisson(n)
141
+ is a Poisson distribution with mean number of arrivals n,
142
+ CN(m, n) is a complex normal distribution with average m
143
+ and covariance n, exp(n) is an exponential distribution with
144
+ mean n and Gamma(m, n) is the gamma distribution with
145
+ form m and scale n.
146
+ II. THE V2X NETWORK MODEL
147
+ As mentioned previously, vehicular networks are dynamic,
148
+ with devices changing location constantly. Thus, a determin-
149
+ istic model is not well-suited for this application. A common
150
+ alternative is the use of stochastic geometry to represent this
151
+ random spatial nature through a variety of different processes
152
+ to distribute the streets and communication nodes within the
153
+ desired coverage area [8].
154
+ A viable option is the use of Poisson processes, as they are
155
+ memoryless counting processes for integer arrivals [9]. In other
156
+ words, each set of elements generated will be independent
157
+ with a Poisson distributed integer number of uniformly spaced
158
+ nodes. The intensity of the arrivals in these processes are
159
+ represented by λ and the expected number of elements is
160
+ the product of the said intensity and the Lebesgue measure,
161
+ which in this context is essentially the spatial measurement
162
+ associated with the object that the points will be distributed on.
163
+ For instance, the Lebesgue measure to populate a circle is its
164
+ area and for a line is the length. One realization of the resulting
165
+ spatial model derived from the use of different variations of
166
+ the Poisson processes is represented in Fig. 2.
167
+ Fig. 2:
168
+ Spatial simulation of the modeled V2X network.
169
+ The color green indicates the Charlies implemented in CJ
170
+ techniques and the Eves are in red. The planar devices are
171
+ generated by PPPs represented by circles (◦) with intensity λ
172
+ = 10−6/m2 for both node types. Through a PLP, the streets
173
+ (blue lines) have been modeled with an intensity of λl = 10−3
174
+ /m, and the vehicular devices are originated from PLP-driven
175
+ Cox Processes indicated with triangles (△) of intensity u =
176
+ 10−3/m for both Charlies and Eves. A single Alice is indicated
177
+ with a black × at the origin.
178
+ In this model, the wireless devices of pedestrians and
179
+ connected infrastructure are considered free to be positioned in
180
+ the whole area A of the modeled network, which is a circle of
181
+ radius r = 3 km. Thus, these “planar nodes“ are generated by
182
+ 2-D Poisson Point Processes (PPP) and the expected amount
183
+ of elements is given by Poisson(λ · A). The set of planar
184
+ nodes is indicated by Φ, thus the planar Eves and Charlies
185
+ are respectively represented by ΦE and ΦC.
186
+ The streets are represented by uniformly distributed lines
187
+ with density µl = λl/π generated by a Poisson Line Process
188
+ (PLP) Φl based on the second method of the Bertrand paradox
189
+ [10], in which a set of expected Poisson(µl·2πr) midpoints are
190
+ created [11], each with a random radius P ∈ [0, r) and angle
191
+ θ ∈ [0, 2π). From these coordinates, a segment perpendicular
192
+ to P is traced between two points at the edge of the circle
193
+ of radius r. This effectively means that a pair of 1-D PPP
194
+ points are created in the perimeter of the circular area for
195
+ each modeled street.
196
+ On those PLP-generated lines, a Cox process of intensity u
197
+
198
+ YB
199
+ TRANSMITTER
200
+ MAIN CHANNEL
201
+ RECEIVER
202
+ m -
203
+ (ALICE)
204
+ hAB
205
+ m
206
+ (BOB)
207
+ Ye,k
208
+ WIRETAP CHANNEL
209
+ k-thEAVESDROPPER
210
+ >Z
211
+ (EVE)3000
212
+ X
213
+ Alice node
214
+ Planar Charlies
215
+ Q
216
+ Planar Eves
217
+ Vehicular Charlies
218
+ O
219
+ A
220
+ Vehicular Eves
221
+ 2000
222
+ O
223
+ Q
224
+ 1000
225
+ O
226
+ F 0
227
+ 2
228
+ X
229
+ O
230
+ -1000
231
+ C
232
+ -2000
233
+ 3000
234
+ 4000
235
+ 3000
236
+ -2000
237
+ -1000
238
+ 0
239
+ 1000
240
+ 2000
241
+ 3000
242
+ 4000is implemented, which is used to create the “vehicular nodes“
243
+ on each segment [12]. These elements represent vehicles
244
+ whose spatial distribution are constrained to a street by a 1-D
245
+ PPP. Considering a street of length l, the number of vehicles
246
+ in it is given by Poisson(u · l).
247
+ The set of vehicular Eves and Charlies on each street l are
248
+ respectively denoted by ψE and ψC. Based on these, the total
249
+ nodes of each type can be obtained by evaluating the sets on
250
+ the whole range of Φl [6], resulting in ΨE = {ψE(l)}l∈Φl for
251
+ Eves and ΨC = {ψC(l)}l∈Φl for Charlies.
252
+ Furthermore, a single deterministic transmitter (Alice) is
253
+ included at the origin of the circle. This point is selected to
254
+ simplify the distance calculations between a legitimate device
255
+ and the Eve nodes, which can be planar or vehicular. This
256
+ measurement is one of the parameters for the SIR calculations,
257
+ that are considered to determine the effectiveness of the PLS.
258
+ For the CJ case, auxiliary nodes (Charlies) are also modeled,
259
+ some as planar and others as vehicular devices. Note that the
260
+ distance between Charlies and Eves influences the power of
261
+ the interference injected on the unauthorized channels as part
262
+ of the jamming technique.
263
+ III. PLS TECHNIQUES
264
+ The PLS techniques presented in this paper are part of the
265
+ key-less-based class [2], which implements secure information
266
+ transmission by making the unauthorized channel’s capacity
267
+ (CE) lower than that of the legitimate channel’s (CB). This re-
268
+ lationship can be presented by evaluating these values through
269
+ the Shannon-Hartley theorem, which produces the secrecy
270
+ capacity (CS) metric as
271
+ CS = CB − CE = log2(1 + γB) − log2(1 + γE),
272
+ (1)
273
+ where γB and γE are, respectively, the SIRs of Bob and Eve.
274
+ Based on this expression, it can be inferred that in order to
275
+ guarantee that CB is sufficiently larger than CE, the value of
276
+ γE must be as low as possible. The approach utilized by AN
277
+ and CJ is the injection of artificially generated interference in
278
+ the eavesdropper channels.
279
+ Typically, this injection is implemented with multi-antenna
280
+ networks, as it enables the use of beamforming to selectively
281
+ direct the transmission to legitimate receivers with minimum
282
+ noise and high efficiency [3]. The unintended receivers on
283
+ the other hand, intercept a signal that contains the secret
284
+ message as well as AN. Therefore, secrecy is provided when
285
+ the distinction between them by the Eves is improbable.
286
+ The wireless channels in this paper are modeled with com-
287
+ plex normal distributions (CN) which implies in a Rayleigh
288
+ fading model. This decision provides simpler analytical equa-
289
+ tions and also proposes a more pessimistic scenario, in which
290
+ there is no Line-of-Sight (LoS) available. By evaluating the
291
+ metrics in these worst-case conditions, it is possible to verify
292
+ that even then the secrecy can be guaranteed.
293
+ A. Artificial Noise
294
+ In the AN scenario, the legitimate communication is es-
295
+ tablished between a single transmitter Alice and a receiver
296
+ Bob. Additional nodes (both planar and vehicular) that try to
297
+ obtain Alice’s signal are then considered eavesdroppers and
298
+ their channels will be affected by the AN.
299
+ The signal transmitted by the Alice node with NA antennas
300
+ is composed of two terms: the first contains a message x
301
+ intended for Bob and the second is based on a zero-forcing
302
+ vector for the unauthorized devices [13], i.e,
303
+ sa =
304
+
305
+ φPt
306
+ ha
307
+ ∥ha∥x +
308
+
309
+ (1 − φ)Pt
310
+ NA − 1 Wana,
311
+ (2)
312
+ where ha/∥ha∥ is the beamforming vector with the normaliza-
313
+ tion of the Alice’s channel estimation ha ∈ CNA×1, that will
314
+ be modeled as CN(0, INA). The AN is formed by the null-
315
+ space orthonormal basis Wa ∈ CNA×(NA−1) and the noise
316
+ signal na ∈ C(NA−1)×1.
317
+ The distribution of the available power, Pt, between the
318
+ two terms of (2) is controlled by φ ∈ {0,1}. φ = 0 means that
319
+ all power is allocated to noise generation and no message is
320
+ sent. Conversely, when φ = 1 the AN is not active and Pt is
321
+ allocated entirely for data transmission.
322
+ B. Cooperative Jamming
323
+ The Cooperative Jamming extends the AN case, maintaining
324
+ the single Alice-Bob authorized transmission with multiple
325
+ Eves, however, adding auxiliary nodes in the network. These
326
+ devices, typically called Charlies, can also be either planar or
327
+ vehicular, just like the Eves. In contrast, they are responsible
328
+ for providing additional security by sending jamming signals
329
+ that further decrease the channel quality of the Eves.
330
+ For simplicity, it is considered that only Alice will transmit
331
+ messages in the scenarios evaluated in this paper. Hence, the
332
+ signals sent by the Charlie nodes are made of only the AN
333
+ (zero-forcing) portion, as follows
334
+ sc =
335
+
336
+ Pc
337
+ NC − 1Wcnc,
338
+ (3)
339
+ where NC is the number of antennas of each Charlie and PC
340
+ is the power available for jamming. Notice that since these
341
+ nodes are not transmitting messages, all the available power
342
+ is directed towards CJ. Additionally, Wc ∈ CNC×(NC−1) is
343
+ the null space orthonormal matrix and nc ∈ C(NC−1)×1 is the
344
+ artificial noise component.
345
+ C. Received Signals
346
+ By considering that the channel estimation ha is precisely
347
+ the main channel established between Alice and Bob, hAB,
348
+ it is implied that the receiver node is not affected by the
349
+ interference from AN or CJ. That happens because the or-
350
+ thonormal basis Wa and Wc are null when applied to the
351
+ authorized channels, resulting in the relationships h†
352
+ ABWa = 0
353
+ and h†
354
+ ABWc = 0, respectively. Therefore, the signal received
355
+ by Bob can be expressed as
356
+ yB =
357
+
358
+ φPt ∥ha∥ D−α/2
359
+ AB
360
+ x,
361
+ (4)
362
+ where DAB is the distance between the devices and α > 2
363
+ is the path loss exponent considering an NLoS scenario. The
364
+
365
+ distances are obtained through simple trigonometry based on
366
+ the coordinates randomly generated by the stochastic processes
367
+ described in Section II.
368
+ For the signal intercepted by the eavesdroppers, it is eval-
369
+ uated a set of K = (ΦE + ΨE) Eves, containing both planar
370
+ and vehicular nodes. Similar considerations are adopted for
371
+ the Charlies in the CJ scenario, resulting in C = (ΦC + ΨC).
372
+ As discussed when sa was presented, Alice sends a signal
373
+ containing the secret information and AN. Since authorized
374
+ Alice-Eves channels are not expected in the beamforming
375
+ sense, the orthonormal basis are not null, thus the Eves
376
+ receive interference. When the Cooperative Jamming is taken
377
+ into consideration, Eves are also affected by the interference
378
+ generated by the nearby Charlies through the sc signals. With
379
+ that in mind, the signal obtained by the k-th Eve is given by
380
+ yE,k =
381
+
382
+ φPt h†
383
+ AE,k D−α/2
384
+ AE,k x
385
+ +
386
+
387
+ (1 − φ)Pt
388
+ NA − 1 h†
389
+ AE,k Wa D−α/2
390
+ AE,k na
391
+ +
392
+
393
+ c ∈C
394
+
395
+ Pc
396
+ NC − 1 h†
397
+ c,k Wc D−α/2
398
+ c,k
399
+ nc ,
400
+ (5)
401
+ which is composed of essentially three terms. The first is the
402
+ intercepted secret message itself, the second term is the AN
403
+ signal generated by Alice, and the third term is a sum of all
404
+ the interference injected by the Charlie nodes. Since CJ only
405
+ affects the last term of (5), the AN scenario can be obtained
406
+ by simply adopting that the sum in this term is equal to zero.
407
+ From (4) and (5), it is possible to determine the SIR of Bob
408
+ and the K Eves. Thus, the SIR of Bob can be determined as
409
+ γB = Ptφ ∥ha∥2 D−α
410
+ AB,
411
+ (6)
412
+ and the SIR for each Eve can be obtained from (5) as follows
413
+ γE,k =
414
+ Pt φ
415
+ ���h†
416
+ AE,k ha/∥ha∥
417
+ ���
418
+ 2
419
+ D−α
420
+ AE,k
421
+ Pt (1−φ)
422
+ NA−1
423
+ ���h†
424
+ AE,k Wa
425
+ ���
426
+ 2
427
+ D−α
428
+ AE,k + Ic
429
+ ,
430
+ (7)
431
+ where Ic is the sum of the interference injected by the Charlies
432
+ given by
433
+ Ic =
434
+
435
+ c ∈ C
436
+ Pc
437
+ Nc − 1∥h†
438
+ c,k Wc∥2 D−α
439
+ ck ,
440
+ (8)
441
+ which is non-zero only in the CJ scenario. The products h†
442
+ AE,k·
443
+ ha/∥ha∥ and h†
444
+ AE,k ·Wa from the Alice-Eve channel and also
445
+ h†
446
+ ck·Wc from Charlie-Eve produce independent identically dis-
447
+ tributed CN random variables with unitary variance [6]. This
448
+ enables the approximations
449
+ ���h†
450
+ AE,k(ha/∥ha∥)
451
+ ���
452
+ 2
453
+ ∼ exp(1),
454
+ ∥h†
455
+ AE,kWa∥2 ∼ Gamma(NA − 1, 1) and ∥h†
456
+ c,k Wc∥2 ∼
457
+ Gamma(NC − 1, 1).
458
+ D. Performance metric
459
+ Considering that Alice transmits codewords at a rate Rb with
460
+ a secrecy rate RS ≤ CS, the redundancy rate can be defined
461
+ as Re = Rb − RS. Then a secrecy outage event occurs when
462
+ the channel capacity of any Eve is higher than the redundancy
463
+ rate that Alice can provide, i.e., CE > Re.
464
+ In a multiple passive Eves scenario, whose Channel State
465
+ Information (CSI) are unknown, the secrecy performance is
466
+ addressed in terms of the Secrecy Outage Probability (SOP),
467
+ since the only available information about the Alice-Eve
468
+ channel is its statistics. Thus, the SOP is defined as
469
+ SOP = 1 − Pr
470
+
471
+ max
472
+ k∈K γE,k < β
473
+
474
+ ,
475
+ (9)
476
+ which is the complement of the probability that the highest
477
+ SIR among all Eves is less than the threshold β = 2Re − 1.
478
+ This means that higher values of secrecy can be obtained by
479
+ implementing the aforementioned PLS techniques to reduce
480
+ γE,k as much as possible.
481
+ IV. NUMERICAL RESULTS
482
+ Various simulations with different parameters were per-
483
+ formed to evaluate the relationship between the SOP and the
484
+ decrease of the SIR for the k-th Eve. Since the V2X network
485
+ model is randomly generated, the coordinates of each node
486
+ and street change with each run. To provide more consistent
487
+ results, the curves presented below are the average of multiple
488
+ realizations of each simulation configuration.
489
+ Fig. 3 illustrates the SOP for different Pt and Pc values,
490
+ ranging from 10 mW (10 dBm) to 1 W (30 dBm). As expected,
491
+ when the devices have more power available for interference,
492
+ the SOP is greatly reduced. However, for the AN scenario
493
+ secrecy is still not guaranteed when φ grows. For CJ, the SOP
494
+ increases in a much slower rate due to the larger amount of
495
+ nodes jamming the signal received by the Eves.
496
+ (a) Artificial Noise
497
+ (b) Cooperative Jamming
498
+ Fig. 3: SOP versus φ (25 realizations) for the AN and CJ with
499
+ different available power {0.01, 0.1, 1} W. β = 0 dB, α = 3,
500
+ NA = NC = 4, λE = λC = 10−6/m2 , µE = µC = 10−3/m, r
501
+ = 3 km.
502
+ Through the simulation results presented in Fig. 4, it can be
503
+ easily noted that as β increases the SOP decreases, because
504
+
505
+ 1.0
506
+ 0.8
507
+ 0.6
508
+ SOP
509
+ S
510
+ 0.4
511
+ 0.2
512
+ Pt = 0.01 W
513
+ Pt = 0.10 W
514
+ Pt = 1.00 W
515
+ 0.0
516
+ 0.00
517
+ 0.25
518
+ 0.50
519
+ 0.75
520
+ 1.00
521
+ Φ1.0
522
+ Pt = Pc = 0.01 W
523
+ Pt = Pc = 0.10 W
524
+ Pt = Pc = 1.00 W
525
+ 0.8
526
+ 0.6
527
+ SOP
528
+ 0.4
529
+ 0.2
530
+ 0.0
531
+ 0.00
532
+ 0.25
533
+ 0.50
534
+ 0.75
535
+ 1.00the criteria for secrecy failure is becoming more selective.
536
+ Furthermore, φ have an opposing effect when compared to
537
+ β, suggesting that for higher threshold values to guarantee
538
+ low SOP, more power needs to be allocated to interference.
539
+ Because of that, in applications where the devices have limited
540
+ power (such as IoT and V2X), CJ is a more economic approach
541
+ as long as there are sufficient nearby auxiliary nodes.
542
+ Fig. 4:
543
+ SOP versus β (50 realizations) for the AN and CJ
544
+ with different power allocation ratios {0.4, 0.6, 0.8}. α = 3,
545
+ Pt = Pc = 20 dBm, NA = NC = 4, λE = λC = 10−6/m2 ,
546
+ µE = µC = 10−3/m, r = 3 km.
547
+ In Fig. 5, it is evaluated the influence that the proportion
548
+ of Charlies to Eves have on the SOP. This is achieved by
549
+ implementing different values of intensities (λ and u) for
550
+ the Poisson processes that generate these nodes. The SOP
551
+ grows rapidly in the AN, indicating that the available power
552
+ is insufficient to guarantee secrecy with the given Eve density.
553
+ For the CJ cases, however, as the number of Charlie nodes
554
+ rises, the SOP starts to reduce, making the communication
555
+ viable even for higher values of φ. When there are more
556
+ Charlies than Eves it is shown that very little power needs
557
+ to be applied in each device to provide a low SOP.
558
+ V. CONCLUSION
559
+ In this paper, a stochastic geometric approach was presented
560
+ as a method to randomly generate V2X network models. The
561
+ coordinates of these elements were then used to evaluate the
562
+ effectiveness of PLS techniques in different realizations of
563
+ vehicular networks subjected to path loss with NLoS.
564
+ Both AN and CJ were introduced based on the analytical
565
+ signals that the involved nodes transmit. Next, expressions
566
+ were obtained for the SIR of Bob and the k-th Eve. Finally,
567
+ the SOP was computed to evaluate the level of information
568
+ security provided by the presented PLS techniques.
569
+ Based on numerical results, it can be concluded that PLS
570
+ can provide additional security for the V2X networks with
571
+ relative low power cost, specially when both the techniques
572
+ are combined. It is also noted that in the CJ scenario, when
573
+ Fig. 5:
574
+ SOP versus φ (25 realizations) for the AN and CJ
575
+ with different λC/λE ratios {0.1, 0.5, 1, 5, 10}. β = 0 dB, α
576
+ = 3, Pt = Pc = 10 dBm, NA = NC = 4, λE = 10−6/m2 , µE
577
+ = 10−3/m, r = 3 km.
578
+ there are more Charlies in the proximity, the security increases.
579
+ Therefore, the urban networks are the most benefited by this
580
+ technique, since it is expected a higher density of wireless
581
+ devices in the same area in these environments.
582
+ REFERENCES
583
+ [1] B. M. ElHalawany, A. A. El-Banna and K. Wu, “Physical-Layer Se-
584
+ curity and Privacy for Vehicle-to-Everything”, IEEE Communications
585
+ Magazine, vol. 57, n. 10, pp. 84-90, 2019.
586
+ [2] J. M. Hamamreh, H. M. Furqan and H. Arslan, “Classifications and
587
+ Applications of Physical Layer Security Techniques for Confidentiality:
588
+ A Comprehensive Survey”, IEEE Communications Surveys & Tutorials,
589
+ vol. 21, n. 2, pp. 1773-1828, 2019.
590
+ [3] A. Sanenga, G. A. Mapunda, T. M. L. Jacob, L. Marata, B. Basutli and
591
+ J. M. Chuma, “An Overview of Key Technologies in Physical Layer
592
+ Security”, Entropy, vol. 22, n. 11, MDPI, 2020.
593
+ [4] A. D. Wyner, “The wire-tap channel”, The Bell System Technical
594
+ Journal, vol. 54, n. 8, pp. 1355-1387, 1975.
595
+ [5] R. Negi and S. Goel, “Secret communication using artificial noise”,
596
+ VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, vol.
597
+ 3, pp. 1906-1910, 2005.
598
+ [6] C. Wang, Z. Li, X. Xia, J. Shi, J. Si, and Y. Zou, “Physical Layer Security
599
+ Enhancement Using Artificial Noise in Cellular Vehicle-to-Everything
600
+ (C-V2X) Networks”, IEEE Transactions on Vehicular Technology, vol.
601
+ 69, n. 12, pp. 15253-15268, 2020.
602
+ [7] B. Qiu and C. Jing, “Performance Analysis for Cooperative Jamming
603
+ and Artificial Noise Aided Secure Transmission Scheme in Vehicular
604
+ Communication Network”, Research Square Platform LLC, 2020.
605
+ [8] M. Haenggi, Stochastic Geometry for Wireless Networks. Cambridge:
606
+ Cambridge University Press, 2012.
607
+ [9] R. D. Yates and D. J. Goodman, “Probability and Stochastic Processes: A
608
+ Friendly Introduction for Electrical and Computer Engineers”, Nashville,
609
+ TN: John Wiley & Sons, 2005.
610
+ [10] J. Bertrand, Calcul des probabilités. Gauthier-Villars, 1889.
611
+ [11] V. V. Chetlur and H. S. Dhillon, “Coverage Analysis of a Vehicular
612
+ Network Modeled as Cox Process Driven by Poisson Line Process”,
613
+ IEEE Transactions on Wireless Communications, vol. 17, n. 7, 2018.
614
+ [12] C. Choi and F. Baccelli, “Poisson Cox Point Processes for Vehicular
615
+ Networks”, IEEE Transactions on Vehicular Technology, vol. 67, n. 10,
616
+ pp. 10160-10165, 2018.
617
+ [13] L. Hu, H. Wen, B. Wu, F. Pan, R. Liao, H. Song, J. Tang, and X.
618
+ Wang, “Cooperative Jamming for Physical Layer Security Enhancement
619
+ in Internet of Things”, IEEE Internet of Things Journal, vol. 5, n. 1,
620
+ 2018.
621
+
622
+ 100
623
+ 10-1
624
+ SOP
625
+ 10~2
626
+ 10-3
627
+ -10
628
+ -5
629
+ 0
630
+ 5
631
+ 10
632
+ 15
633
+ β
634
+ AN: Φ = 0.4
635
+ AN: Φ = 0.6
636
+ -
637
+ AN: @ = 0.8
638
+ CJ: Φ = 0.4
639
+ CJ: Φ = 0.6
640
+ -
641
+ CJ: Φ = 0.81.0
642
+ 0.8
643
+ 0.6
644
+ SOP
645
+ 0.4
646
+ 0.2
647
+ 0.0
648
+ 0.0
649
+ 0.2
650
+ 0.4
651
+ 0.6
652
+ 0.8
653
+ 1.0
654
+ AN
655
+ CJ: Charlies/Eves = 0.5
656
+ CJ: Charlies/Eves = 5.0
657
+ CJ: Charlies/Eves = 0.1
658
+ CJ: Charlies/Eves = 1.0
659
+ CJ: Charlies/Eves = 10.0
ItE4T4oBgHgl3EQfhQ0t/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,333 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf,len=332
2
+ page_content='Physical Layer Security Techniques Applied to Vehicle-to-Everything Networks Leonardo B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
3
+ page_content=' da Silva, Evelio M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
4
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
5
+ page_content=' Fernández and Ândrei Camponogara Abstract— Physical Layer Security (PLS) is an emerging con- cept in the field of secrecy for wireless communications that can be used alongside cryptography to prevent unauthorized devices from eavesdropping a legitimate transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
6
+ page_content=' It offers low com- putational cost and overhead by injecting an interfering signal in the wiretap channels of potential eavesdroppers.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
7
+ page_content=' This paper discusses the benefits of the Artificial Noise and Cooperative Jamming techniques in the context of Vehicle-to-everything (V2X) networks, which require secure data exchange with small latency.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
8
+ page_content=' The simulations indicate that messages can be safely delivered even with devices that have low available power.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
9
+ page_content=' Keywords— Wireless communication networks, Physical Layer Security, secrecy, Vehicle-to-everything, Artificial Noise, Cooper- ative Jamming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
10
+ page_content=' I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
11
+ page_content=' INTRODUCTION Urban mobility is one of the main focuses of the Internet of Things (IoT) when applied to smart cities, due to the necessity for more responsive and safe traffic control.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
12
+ page_content=' Gener- ally, the solutions proposed in this scope involve the wireless communication between not only the vehicles themselves, but also with pedestrians, infrastructure, and networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
13
+ page_content=' This paradigm is known as Vehicle-to-everything (V2X) and it can be standardized by protocols such as C-ITS (Cellular Intelli- gent Transportation System) and WAVE (Wireless Access for Vehicular Environment) that are based on the IEEE 802.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
14
+ page_content='11p amendment, and the Cellular-V2X (C-V2X) that implements the 5G standard from 3GPP (3rd Generation Partnership Project) [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
15
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
16
+ page_content=' Problem Outline Due to the ever-changing location of most of the involved communication nodes and the time-sensitive nature of the data involved (brake position, vehicle speed, traffic volume, accident reports, etc), the transmission needs not only to occur at high rates, but also offer reliability through high secrecy, low packet loss, and small delay.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
17
+ page_content=' Furthermore, those nodes have to be affordable to justify their implementation on a city-wide scale, thus having low power consumption and the most cost- efficient embedded processing unit possible [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
18
+ page_content=' Since the main source of information security in today’s landscape is provided through cryptography, the secrecy con- straint can negatively affect most of these criteria.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
19
+ page_content=' As a result L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
20
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
21
+ page_content=' da Silva, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
22
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
23
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
24
+ page_content=' Fernandez, Â.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
25
+ page_content=' Camponogara, Electri- cal Engineering Department, Federal University of Paraná (UFPR), Cu- ritiba, PR, Brazil, e-mails: leonardobarbosa@ufpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
26
+ page_content='br, evelio@ufpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
27
+ page_content='br and andrei.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
28
+ page_content='camponogara@ufpr.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
29
+ page_content='br.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
30
+ page_content=' This study was financed in part by the Coorde- nação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
31
+ page_content=' of the growth in the availability of portable and connected equipment with high processing capabilities, the safety mea- sures implemented need to match this computational power with proportionally longer and more complex keys to not be vulnerable to brute-force attacks from well-equipped malicious devices [2], [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
32
+ page_content=' This approach, however, is not sustainable, because it produces increasingly long authentication routines, due to the raise in computational overhead and processing cost as a result of the implemented security algorithms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
33
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
34
+ page_content=' Overview of the proposed solution To counterbalance this issue, this paper studies the use of Physical Layer Security (PLS) techniques as an additional protection to increase the secrecy of wireless communications in a V2X environment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
35
+ page_content=' As the name suggests, PLS is applied at the Physical Layer, making it an alternative that can be used with low processing cost when compared with cryptography, which is more oriented towards the computational side of the network stack on the Application Layer [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
36
+ page_content=' Since cryptography techniques provide security in different sections of the wireless protocols, PLS is proposed as a complement to them, rather than a replacement [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
37
+ page_content=' Through the use of both approaches on the same node, it is possible to offer high secrecy without the necessity of infinitely growing key complexity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
38
+ page_content=' The PLS has its origins on the analytical proposal of Wyner’s wiretap channel [4], where it is described a commu- nication between two legitimate nodes that is spied on by an eavesdropper through an unauthorized channel called wiretap.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
39
+ page_content=' In the modern literature, these devices are usually referred to as a transmitter called Alice, an authorized receiver Bob, and the set of K eavesdroppers named Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
40
+ page_content=' In the wiretap channel model shown in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
41
+ page_content=' 1, the original message m is encoded and transmitted by Alice as the signal sa, that reaches Bob through the main channel hAB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
42
+ page_content=' The received signal yB is then decoded by Bob, obtaining the estimated message ˆm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
43
+ page_content=' Additionally, the k-th Eve can intercept sa through the wiretap channel hAE,k, obtaining the signal yE,k that when decoded produces z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
44
+ page_content=' The main focus of PLS is to guarantee that the mutual information between m and z is as close to zero as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
45
+ page_content=' When this condition is met, even if z is know, it is impossible for Eve to infer the contents of the original message.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
46
+ page_content=' Wyner then presents a set of parameters that enable the use of the physical imperfections of the channel, such as noise and fading, to provide information secrecy by raising the level of confusion on undesired nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
47
+ page_content=' Rendering them unable to distinguish between the message and the interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
48
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
49
+ page_content='05123v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
50
+ page_content='SP] 12 Jan 2023 Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
51
+ page_content=' 1: The wiretap channel generic model based on [4] Currently, plenty of techniques to provide security at the physical layer level have been proposed in the literature [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
52
+ page_content=' This paper will focus on two approaches first presented in [5]: Artificial Noise (AN): This approach uses a portion of the transmitter node’s power to inject artificially gener- ated noise in the eavesdropper’s channel;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
53
+ page_content=' Cooperative Jamming (CJ): This approach expands the AN model by proposing a connected network where nearby relay nodes (Charlies) send a jamming signal to the eavesdropper’s channel.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
54
+ page_content=' To demonstrate the viability of AN and CJ applications in a V2X network, it is common to create stochastic geometric models that randomly generate streets and distribute com- munication nodes in a predefined area to represent an urban mobility scenario [6], [7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
55
+ page_content=' When implementing these methods, metrics such as the Signal-to-Interference Ratio (SIR) are used to define the threshold of confusion necessary to provide se- crecy at the physical layer.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
56
+ page_content=' The SIR on each eavesdropper can then be evaluated to determine the secrecy outage probability (SOP) of the data transmission with different densities of the involved nodes in the simulated network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
57
+ page_content=' In this paper, Section II describes the stochastic algorithms implemented to model a V2X network that includes streets and communication nodes (vehicular and planar).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
58
+ page_content=' Section III presents the analytical basis of the AN and CJ techniques, while also introducing the SIR and SOP metrics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
59
+ page_content=' In Section IV, the results of numerical simulations are shown to illustrate the benefits of the considered PLS techniques on the generated V2X networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
60
+ page_content=' Finally, Section V states some final remarks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
61
+ page_content=' Notation: IN is an identity matrix of order N, Poisson(n) is a Poisson distribution with mean number of arrivals n, CN(m, n) is a complex normal distribution with average m and covariance n, exp(n) is an exponential distribution with mean n and Gamma(m, n) is the gamma distribution with form m and scale n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
62
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
63
+ page_content=' THE V2X NETWORK MODEL As mentioned previously, vehicular networks are dynamic, with devices changing location constantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
64
+ page_content=' Thus, a determin- istic model is not well-suited for this application.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
65
+ page_content=' A common alternative is the use of stochastic geometry to represent this random spatial nature through a variety of different processes to distribute the streets and communication nodes within the desired coverage area [8].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
66
+ page_content=' A viable option is the use of Poisson processes, as they are memoryless counting processes for integer arrivals [9].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
67
+ page_content=' In other words, each set of elements generated will be independent with a Poisson distributed integer number of uniformly spaced nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
68
+ page_content=' The intensity of the arrivals in these processes are represented by λ and the expected number of elements is the product of the said intensity and the Lebesgue measure, which in this context is essentially the spatial measurement associated with the object that the points will be distributed on.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
69
+ page_content=' For instance, the Lebesgue measure to populate a circle is its area and for a line is the length.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
70
+ page_content=' One realization of the resulting spatial model derived from the use of different variations of the Poisson processes is represented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
71
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
72
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
73
+ page_content=' 2: Spatial simulation of the modeled V2X network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
74
+ page_content=' The color green indicates the Charlies implemented in CJ techniques and the Eves are in red.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
75
+ page_content=' The planar devices are generated by PPPs represented by circles (◦) with intensity λ = 10−6/m2 for both node types.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
76
+ page_content=' Through a PLP, the streets (blue lines) have been modeled with an intensity of λl = 10−3 /m, and the vehicular devices are originated from PLP-driven Cox Processes indicated with triangles (△) of intensity u = 10−3/m for both Charlies and Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
77
+ page_content=' A single Alice is indicated with a black × at the origin.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
78
+ page_content=' In this model, the wireless devices of pedestrians and connected infrastructure are considered free to be positioned in the whole area A of the modeled network, which is a circle of radius r = 3 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
79
+ page_content=' Thus, these “planar nodes“ are generated by 2-D Poisson Point Processes (PPP) and the expected amount of elements is given by Poisson(λ · A).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
80
+ page_content=' The set of planar nodes is indicated by Φ, thus the planar Eves and Charlies are respectively represented by ΦE and ΦC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
81
+ page_content=' The streets are represented by uniformly distributed lines with density µl = λl/π generated by a Poisson Line Process (PLP) Φl based on the second method of the Bertrand paradox [10], in which a set of expected Poisson(µl·2πr) midpoints are created [11], each with a random radius P ∈ [0, r) and angle θ ∈ [0, 2π).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
82
+ page_content=' From these coordinates, a segment perpendicular to P is traced between two points at the edge of the circle of radius r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
83
+ page_content=' This effectively means that a pair of 1-D PPP points are created in the perimeter of the circular area for each modeled street.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
84
+ page_content=' On those PLP-generated lines, a Cox process of intensity u YB TRANSMITTER MAIN CHANNEL RECEIVER m - (ALICE) hAB m (BOB) Ye,k WIRETAP CHANNEL k-thEAVESDROPPER >Z (EVE)3000 X Alice node Planar Charlies Q Planar Eves Vehicular Charlies O A Vehicular Eves 2000 O Q 1000 O F 0 2 X O 1000 C 2000 3000 4000 3000 2000 1000 0 1000 2000 3000 4000is implemented, which is used to create the “vehicular nodes“ on each segment [12].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
85
+ page_content=' These elements represent vehicles whose spatial distribution are constrained to a street by a 1-D PPP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
86
+ page_content=' Considering a street of length l, the number of vehicles in it is given by Poisson(u · l).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
87
+ page_content=' The set of vehicular Eves and Charlies on each street l are respectively denoted by ψE and ψC.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
88
+ page_content=' Based on these, the total nodes of each type can be obtained by evaluating the sets on the whole range of Φl [6], resulting in ΨE = {ψE(l)}l∈Φl for Eves and ΨC = {ψC(l)}l∈Φl for Charlies.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
89
+ page_content=' Furthermore, a single deterministic transmitter (Alice) is included at the origin of the circle.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
90
+ page_content=' This point is selected to simplify the distance calculations between a legitimate device and the Eve nodes, which can be planar or vehicular.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
91
+ page_content=' This measurement is one of the parameters for the SIR calculations, that are considered to determine the effectiveness of the PLS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
92
+ page_content=' For the CJ case, auxiliary nodes (Charlies) are also modeled, some as planar and others as vehicular devices.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
93
+ page_content=' Note that the distance between Charlies and Eves influences the power of the interference injected on the unauthorized channels as part of the jamming technique.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
94
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
95
+ page_content=' PLS TECHNIQUES The PLS techniques presented in this paper are part of the key-less-based class [2], which implements secure information transmission by making the unauthorized channel’s capacity (CE) lower than that of the legitimate channel’s (CB).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
96
+ page_content=' This re- lationship can be presented by evaluating these values through the Shannon-Hartley theorem, which produces the secrecy capacity (CS) metric as CS = CB − CE = log2(1 + γB) − log2(1 + γE), (1) where γB and γE are, respectively, the SIRs of Bob and Eve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
97
+ page_content=' Based on this expression, it can be inferred that in order to guarantee that CB is sufficiently larger than CE, the value of γE must be as low as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
98
+ page_content=' The approach utilized by AN and CJ is the injection of artificially generated interference in the eavesdropper channels.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
99
+ page_content=' Typically, this injection is implemented with multi-antenna networks, as it enables the use of beamforming to selectively direct the transmission to legitimate receivers with minimum noise and high efficiency [3].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
100
+ page_content=' The unintended receivers on the other hand, intercept a signal that contains the secret message as well as AN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
101
+ page_content=' Therefore, secrecy is provided when the distinction between them by the Eves is improbable.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
102
+ page_content=' The wireless channels in this paper are modeled with com- plex normal distributions (CN) which implies in a Rayleigh fading model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
103
+ page_content=' This decision provides simpler analytical equa- tions and also proposes a more pessimistic scenario, in which there is no Line-of-Sight (LoS) available.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
104
+ page_content=' By evaluating the metrics in these worst-case conditions, it is possible to verify that even then the secrecy can be guaranteed.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
105
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
106
+ page_content=' Artificial Noise In the AN scenario, the legitimate communication is es- tablished between a single transmitter Alice and a receiver Bob.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
107
+ page_content=' Additional nodes (both planar and vehicular) that try to obtain Alice’s signal are then considered eavesdroppers and their channels will be affected by the AN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
108
+ page_content=' The signal transmitted by the Alice node with NA antennas is composed of two terms: the first contains a message x intended for Bob and the second is based on a zero-forcing vector for the unauthorized devices [13], i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
109
+ page_content='e, sa = � φPt ha ∥ha∥x + � (1 − φ)Pt NA − 1 Wana, (2) where ha/∥ha∥ is the beamforming vector with the normaliza- tion of the Alice’s channel estimation ha ∈ CNA×1, that will be modeled as CN(0, INA).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
110
+ page_content=' The AN is formed by the null- space orthonormal basis Wa ∈ CNA×(NA−1) and the noise signal na ∈ C(NA−1)×1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
111
+ page_content=' The distribution of the available power, Pt, between the two terms of (2) is controlled by φ ∈ {0,1}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
112
+ page_content=' φ = 0 means that all power is allocated to noise generation and no message is sent.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
113
+ page_content=' Conversely, when φ = 1 the AN is not active and Pt is allocated entirely for data transmission.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
114
+ page_content=' B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
115
+ page_content=' Cooperative Jamming The Cooperative Jamming extends the AN case, maintaining the single Alice-Bob authorized transmission with multiple Eves, however, adding auxiliary nodes in the network.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
116
+ page_content=' These devices, typically called Charlies, can also be either planar or vehicular, just like the Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
117
+ page_content=' In contrast, they are responsible for providing additional security by sending jamming signals that further decrease the channel quality of the Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
118
+ page_content=' For simplicity, it is considered that only Alice will transmit messages in the scenarios evaluated in this paper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
119
+ page_content=' Hence, the signals sent by the Charlie nodes are made of only the AN (zero-forcing) portion, as follows sc = � Pc NC − 1Wcnc, (3) where NC is the number of antennas of each Charlie and PC is the power available for jamming.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
120
+ page_content=' Notice that since these nodes are not transmitting messages, all the available power is directed towards CJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
121
+ page_content=' Additionally, Wc ∈ CNC×(NC−1) is the null space orthonormal matrix and nc ∈ C(NC−1)×1 is the artificial noise component.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
122
+ page_content=' C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
123
+ page_content=' Received Signals By considering that the channel estimation ha is precisely the main channel established between Alice and Bob, hAB, it is implied that the receiver node is not affected by the interference from AN or CJ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
124
+ page_content=' That happens because the or- thonormal basis Wa and Wc are null when applied to the authorized channels, resulting in the relationships h† ABWa = 0 and h† ABWc = 0, respectively.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
125
+ page_content=' Therefore, the signal received by Bob can be expressed as yB = � φPt ∥ha∥ D−α/2 AB x, (4) where DAB is the distance between the devices and α > 2 is the path loss exponent considering an NLoS scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
126
+ page_content=' The distances are obtained through simple trigonometry based on the coordinates randomly generated by the stochastic processes described in Section II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
127
+ page_content=' For the signal intercepted by the eavesdroppers, it is eval- uated a set of K = (ΦE + ΨE) Eves, containing both planar and vehicular nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
128
+ page_content=' Similar considerations are adopted for the Charlies in the CJ scenario, resulting in C = (ΦC + ΨC).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
129
+ page_content=' As discussed when sa was presented, Alice sends a signal containing the secret information and AN.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
130
+ page_content=' Since authorized Alice-Eves channels are not expected in the beamforming sense, the orthonormal basis are not null, thus the Eves receive interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
131
+ page_content=' When the Cooperative Jamming is taken into consideration, Eves are also affected by the interference generated by the nearby Charlies through the sc signals.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
132
+ page_content=' With that in mind, the signal obtained by the k-th Eve is given by yE,k = � φPt h† AE,k D−α/2 AE,k x + � (1 − φ)Pt NA − 1 h† AE,k Wa D−α/2 AE,k na + � c ∈C � Pc NC − 1 h† c,k Wc D−α/2 c,k nc , (5) which is composed of essentially three terms.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
133
+ page_content=' The first is the intercepted secret message itself, the second term is the AN signal generated by Alice, and the third term is a sum of all the interference injected by the Charlie nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
134
+ page_content=' Since CJ only affects the last term of (5), the AN scenario can be obtained by simply adopting that the sum in this term is equal to zero.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
135
+ page_content=' From (4) and (5), it is possible to determine the SIR of Bob and the K Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
136
+ page_content=' Thus, the SIR of Bob can be determined as γB = Ptφ ∥ha∥2 D−α AB, (6) and the SIR for each Eve can be obtained from (5) as follows γE,k = Pt φ ���h† AE,k ha/∥ha∥ ��� 2 D−α AE,k Pt (1−φ) NA−1 ���h† AE,k Wa ��� 2 D−α AE,k + Ic , (7) where Ic is the sum of the interference injected by the Charlies given by Ic = � c ∈ C Pc Nc − 1∥h† c,k Wc∥2 D−α ck , (8) which is non-zero only in the CJ scenario.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
137
+ page_content=' The products h† AE,k· ha/∥ha∥ and h† AE,k ·Wa from the Alice-Eve channel and also h† ck·Wc from Charlie-Eve produce independent identically dis- tributed CN random variables with unitary variance [6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
138
+ page_content=' This enables the approximations ���h† AE,k(ha/∥ha∥) ��� 2 ∼ exp(1), ∥h† AE,kWa∥2 ∼ Gamma(NA − 1, 1) and ∥h† c,k Wc∥2 ∼ Gamma(NC − 1, 1).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
139
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
140
+ page_content=' Performance metric Considering that Alice transmits codewords at a rate Rb with a secrecy rate RS ≤ CS, the redundancy rate can be defined as Re = Rb − RS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
141
+ page_content=' Then a secrecy outage event occurs when the channel capacity of any Eve is higher than the redundancy rate that Alice can provide, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
142
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
143
+ page_content=', CE > Re.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
144
+ page_content=' In a multiple passive Eves scenario, whose Channel State Information (CSI) are unknown, the secrecy performance is addressed in terms of the Secrecy Outage Probability (SOP), since the only available information about the Alice-Eve channel is its statistics.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
145
+ page_content=' Thus, the SOP is defined as SOP = 1 − Pr � max k∈K γE,k < β � , (9) which is the complement of the probability that the highest SIR among all Eves is less than the threshold β = 2Re − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
146
+ page_content=' This means that higher values of secrecy can be obtained by implementing the aforementioned PLS techniques to reduce γE,k as much as possible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
147
+ page_content=' IV.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
148
+ page_content=' NUMERICAL RESULTS Various simulations with different parameters were per- formed to evaluate the relationship between the SOP and the decrease of the SIR for the k-th Eve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
149
+ page_content=' Since the V2X network model is randomly generated, the coordinates of each node and street change with each run.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
150
+ page_content=' To provide more consistent results, the curves presented below are the average of multiple realizations of each simulation configuration.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
151
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
152
+ page_content=' 3 illustrates the SOP for different Pt and Pc values, ranging from 10 mW (10 dBm) to 1 W (30 dBm).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
153
+ page_content=' As expected, when the devices have more power available for interference, the SOP is greatly reduced.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
154
+ page_content=' However, for the AN scenario secrecy is still not guaranteed when φ grows.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
155
+ page_content=' For CJ, the SOP increases in a much slower rate due to the larger amount of nodes jamming the signal received by the Eves.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
156
+ page_content=' (a) Artificial Noise (b) Cooperative Jamming Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
157
+ page_content=' 3: SOP versus φ (25 realizations) for the AN and CJ with different available power {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
158
+ page_content='01, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
159
+ page_content='1, 1} W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
160
+ page_content=' β = 0 dB, α = 3, NA = NC = 4, λE = λC = 10−6/m2 , µE = µC = 10−3/m, r = 3 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
161
+ page_content=' Through the simulation results presented in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
162
+ page_content=' 4, it can be easily noted that as β increases the SOP decreases, because 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
163
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
164
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
165
+ page_content='6 SOP S 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
166
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
167
+ page_content='2 Pt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
168
+ page_content='01 W Pt = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
169
+ page_content='10 W Pt = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
170
+ page_content='00 W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
171
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
172
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
173
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
174
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
175
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
176
+ page_content='00 Φ1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
177
+ page_content='0 Pt = Pc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
178
+ page_content='01 W Pt = Pc = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
179
+ page_content='10 W Pt = Pc = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
180
+ page_content='00 W 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
181
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
182
+ page_content='6 SOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
183
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
184
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
185
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
186
+ page_content='00 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
187
+ page_content='25 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
188
+ page_content='50 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
189
+ page_content='75 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
190
+ page_content='00the criteria for secrecy failure is becoming more selective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
191
+ page_content=' Furthermore, φ have an opposing effect when compared to β, suggesting that for higher threshold values to guarantee low SOP, more power needs to be allocated to interference.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
192
+ page_content=' Because of that, in applications where the devices have limited power (such as IoT and V2X), CJ is a more economic approach as long as there are sufficient nearby auxiliary nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
193
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
194
+ page_content=' 4: SOP versus β (50 realizations) for the AN and CJ with different power allocation ratios {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
195
+ page_content='4, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
196
+ page_content='6, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
197
+ page_content='8}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
198
+ page_content=' α = 3, Pt = Pc = 20 dBm, NA = NC = 4, λE = λC = 10−6/m2 , µE = µC = 10−3/m, r = 3 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
199
+ page_content=' In Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
200
+ page_content=' 5, it is evaluated the influence that the proportion of Charlies to Eves have on the SOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
201
+ page_content=' This is achieved by implementing different values of intensities (λ and u) for the Poisson processes that generate these nodes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
202
+ page_content=' The SOP grows rapidly in the AN, indicating that the available power is insufficient to guarantee secrecy with the given Eve density.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
203
+ page_content=' For the CJ cases, however, as the number of Charlie nodes rises, the SOP starts to reduce, making the communication viable even for higher values of φ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
204
+ page_content=' When there are more Charlies than Eves it is shown that very little power needs to be applied in each device to provide a low SOP.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
205
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
206
+ page_content=' CONCLUSION In this paper, a stochastic geometric approach was presented as a method to randomly generate V2X network models.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
207
+ page_content=' The coordinates of these elements were then used to evaluate the effectiveness of PLS techniques in different realizations of vehicular networks subjected to path loss with NLoS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
208
+ page_content=' Both AN and CJ were introduced based on the analytical signals that the involved nodes transmit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
209
+ page_content=' Next, expressions were obtained for the SIR of Bob and the k-th Eve.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
210
+ page_content=' Finally, the SOP was computed to evaluate the level of information security provided by the presented PLS techniques.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
211
+ page_content=' Based on numerical results, it can be concluded that PLS can provide additional security for the V2X networks with relative low power cost, specially when both the techniques are combined.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
212
+ page_content=' It is also noted that in the CJ scenario, when Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
213
+ page_content=' 5: SOP versus φ (25 realizations) for the AN and CJ with different λC/λE ratios {0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
214
+ page_content='1, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
215
+ page_content='5, 1, 5, 10}.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
216
+ page_content=' β = 0 dB, α = 3, Pt = Pc = 10 dBm, NA = NC = 4, λE = 10−6/m2 , µE = 10−3/m, r = 3 km.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
217
+ page_content=' there are more Charlies in the proximity, the security increases.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
218
+ page_content=' Therefore, the urban networks are the most benefited by this technique, since it is expected a higher density of wireless devices in the same area in these environments.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
219
+ page_content=' REFERENCES [1] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
220
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
221
+ page_content=' ElHalawany, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
222
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
223
+ page_content=' El-Banna and K.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
224
+ page_content=' Wu, “Physical-Layer Se- curity and Privacy for Vehicle-to-Everything”, IEEE Communications Magazine, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
225
+ page_content=' 57, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
226
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
227
+ page_content=' 84-90, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
228
+ page_content=' [2] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
229
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
230
+ page_content=' Hamamreh, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
231
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
232
+ page_content=' Furqan and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
233
+ page_content=' Arslan, “Classifications and Applications of Physical Layer Security Techniques for Confidentiality: A Comprehensive Survey”, IEEE Communications Surveys & Tutorials, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
234
+ page_content=' 21, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
235
+ page_content=' 2, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
236
+ page_content=' 1773-1828, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
237
+ page_content=' [3] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
238
+ page_content=' Sanenga, G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
239
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
240
+ page_content=' Mapunda, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
241
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
242
+ page_content=' L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
243
+ page_content=' Jacob, L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
244
+ page_content=' Marata, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
245
+ page_content=' Basutli and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
246
+ page_content=' M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
247
+ page_content=' Chuma, “An Overview of Key Technologies in Physical Layer Security”, Entropy, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
248
+ page_content=' 22, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
249
+ page_content=' 11, MDPI, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
250
+ page_content=' [4] A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
251
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
252
+ page_content=' Wyner, “The wire-tap channel”, The Bell System Technical Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
253
+ page_content=' 54, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
254
+ page_content=' 8, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
255
+ page_content=' 1355-1387, 1975.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
256
+ page_content=' [5] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
257
+ page_content=' Negi and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
258
+ page_content=' Goel, “Secret communication using artificial noise”, VTC-2005-Fall.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
259
+ page_content=' 2005 IEEE 62nd Vehicular Technology Conference, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
260
+ page_content=' 3, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
261
+ page_content=' 1906-1910, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
262
+ page_content=' [6] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
263
+ page_content=' Wang, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
264
+ page_content=' Li, X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
265
+ page_content=' Xia, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
266
+ page_content=' Shi, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
267
+ page_content=' Si, and Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
268
+ page_content=' Zou, “Physical Layer Security Enhancement Using Artificial Noise in Cellular Vehicle-to-Everything (C-V2X) Networks”, IEEE Transactions on Vehicular Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
269
+ page_content=' 69, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
270
+ page_content=' 12, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
271
+ page_content=' 15253-15268, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
272
+ page_content=' [7] B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
273
+ page_content=' Qiu and C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
274
+ page_content=' Jing, “Performance Analysis for Cooperative Jamming and Artificial Noise Aided Secure Transmission Scheme in Vehicular Communication Network”, Research Square Platform LLC, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
275
+ page_content=' [8] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
276
+ page_content=' Haenggi, Stochastic Geometry for Wireless Networks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
277
+ page_content=' Cambridge: Cambridge University Press, 2012.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
278
+ page_content=' [9] R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
279
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
280
+ page_content=' Yates and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
281
+ page_content=' J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
282
+ page_content=' Goodman, “Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers”, Nashville, TN: John Wiley & Sons, 2005.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
283
+ page_content=' [10] J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
284
+ page_content=' Bertrand, Calcul des probabilités.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
285
+ page_content=' Gauthier-Villars, 1889.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
286
+ page_content=' [11] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
287
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
288
+ page_content=' Chetlur and H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
289
+ page_content=' S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
290
+ page_content=' Dhillon, “Coverage Analysis of a Vehicular Network Modeled as Cox Process Driven by Poisson Line Process”, IEEE Transactions on Wireless Communications, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
291
+ page_content=' 17, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
292
+ page_content=' 7, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
293
+ page_content=' [12] C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
294
+ page_content=' Choi and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
295
+ page_content=' Baccelli, “Poisson Cox Point Processes for Vehicular Networks”, IEEE Transactions on Vehicular Technology, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
296
+ page_content=' 67, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
297
+ page_content=' 10, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
298
+ page_content=' 10160-10165, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
299
+ page_content=' [13] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
300
+ page_content=' Hu, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
301
+ page_content=' Wen, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
302
+ page_content=' Wu, F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
303
+ page_content=' Pan, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
304
+ page_content=' Liao, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
305
+ page_content=' Song, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
306
+ page_content=' Tang, and X.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
307
+ page_content=' Wang, “Cooperative Jamming for Physical Layer Security Enhancement in Internet of Things”, IEEE Internet of Things Journal, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
308
+ page_content=' 5, n.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
309
+ page_content=' 1, 2018.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
310
+ page_content=' 100 10-1 SOP 10~2 10-3 10 5 0 5 10 15 β AN: Φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
311
+ page_content='4 AN: Φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
312
+ page_content='6 AN: @ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
313
+ page_content='8 CJ: Φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
314
+ page_content='4 CJ: Φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
315
+ page_content='6 CJ: Φ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
316
+ page_content='81.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
317
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
318
+ page_content='8 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
319
+ page_content='6 SOP 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
320
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
321
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
322
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
323
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
324
+ page_content='2 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
325
+ page_content='4 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
326
+ page_content='6 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
327
+ page_content='8 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
328
+ page_content='0 AN CJ: Charlies/Eves = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
329
+ page_content='5 CJ: Charlies/Eves = 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
330
+ page_content='0 CJ: Charlies/Eves = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
331
+ page_content='1 CJ: Charlies/Eves = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
332
+ page_content='0 CJ: Charlies/Eves = 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
333
+ page_content='0' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/ItE4T4oBgHgl3EQfhQ0t/content/2301.05123v1.pdf'}
JtFIT4oBgHgl3EQfZit-/content/2301.11253v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bed56590e05f50628e061f98c493df615522f06ad339441513619e5f55f3df05
3
+ size 1551996
JtFIT4oBgHgl3EQfZit-/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b07bf94ce7bf2e357a9b53c16250678c6e60fef2be308398f93e40518a257c30
3
+ size 504238
K9E1T4oBgHgl3EQfGgPl/content/2301.02916v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:651171e26d5bc99ae10022eb232c4b32ce023b4ec812e3b6d0ef527a336d3974
3
+ size 8529313
KtE5T4oBgHgl3EQfYA_J/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e42d4bd4e448e8acb2981a183b8637e3adbe3d26eb3633949134a401de83a9e
3
+ size 5832749
L9E0T4oBgHgl3EQfjAEs/content/2301.02452v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ac81c3e1b80c3bbe0be7408b4bb89809fc71ea79c9032e03f22b5e895a3d802
3
+ size 11848573