jackkuo commited on
Commit
0627e6d
·
verified ·
1 Parent(s): 78e6dc9

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. -dFST4oBgHgl3EQfcTgr/content/tmp_files/2301.13802v1.pdf.txt +651 -0
  2. -dFST4oBgHgl3EQfcTgr/content/tmp_files/load_file.txt +328 -0
  3. -tFST4oBgHgl3EQfcjgx/content/2301.13803v1.pdf +3 -0
  4. .gitattributes +34 -0
  5. 0tE1T4oBgHgl3EQflAQk/content/2301.03279v1.pdf +3 -0
  6. 0tE1T4oBgHgl3EQflAQk/vector_store/index.faiss +3 -0
  7. 0tFAT4oBgHgl3EQfCRy0/content/tmp_files/2301.08409v1.pdf.txt +0 -0
  8. 0tFAT4oBgHgl3EQfCRy0/content/tmp_files/load_file.txt +0 -0
  9. 19AzT4oBgHgl3EQfDfqo/vector_store/index.faiss +3 -0
  10. 1tFLT4oBgHgl3EQfqC-n/content/2301.12138v1.pdf +3 -0
  11. 1tFLT4oBgHgl3EQfqC-n/vector_store/index.faiss +3 -0
  12. 1tFLT4oBgHgl3EQfqC-n/vector_store/index.pkl +3 -0
  13. 2NE2T4oBgHgl3EQfNgYt/content/tmp_files/2301.03737v1.pdf.txt +4539 -0
  14. 2NE2T4oBgHgl3EQfNgYt/content/tmp_files/load_file.txt +0 -0
  15. 4NFKT4oBgHgl3EQf9C5Z/vector_store/index.pkl +3 -0
  16. 69E1T4oBgHgl3EQfnASE/content/2301.03304v1.pdf +3 -0
  17. 6NE1T4oBgHgl3EQfBQJe/content/tmp_files/2301.02849v1.pdf.txt +1136 -0
  18. 6NE1T4oBgHgl3EQfBQJe/content/tmp_files/load_file.txt +0 -0
  19. 7dAyT4oBgHgl3EQfQvYd/content/2301.00050v1.pdf +3 -0
  20. 7dAyT4oBgHgl3EQfQvYd/vector_store/index.faiss +3 -0
  21. 8NFLT4oBgHgl3EQfsy_c/vector_store/index.pkl +3 -0
  22. 8dE3T4oBgHgl3EQfRwni/content/tmp_files/2301.04426v1.pdf.txt +2081 -0
  23. 8dE3T4oBgHgl3EQfRwni/content/tmp_files/load_file.txt +0 -0
  24. ANFQT4oBgHgl3EQf8jdP/vector_store/index.pkl +3 -0
  25. AtE0T4oBgHgl3EQfPgDv/content/tmp_files/2301.02181v1.pdf.txt +107 -0
  26. AtE0T4oBgHgl3EQfPgDv/content/tmp_files/load_file.txt +121 -0
  27. BdE1T4oBgHgl3EQfVgTd/content/tmp_files/2301.03104v1.pdf.txt +2028 -0
  28. BdE1T4oBgHgl3EQfVgTd/content/tmp_files/load_file.txt +0 -0
  29. BdE3T4oBgHgl3EQfUAoU/content/tmp_files/2301.04446v1.pdf.txt +1117 -0
  30. BdE3T4oBgHgl3EQfUAoU/content/tmp_files/load_file.txt +0 -0
  31. BtE1T4oBgHgl3EQfpgUG/content/2301.03331v1.pdf +3 -0
  32. BtE1T4oBgHgl3EQfpgUG/vector_store/index.pkl +3 -0
  33. CNE1T4oBgHgl3EQf9wYh/content/tmp_files/2301.03559v1.pdf.txt +1544 -0
  34. CNE1T4oBgHgl3EQf9wYh/content/tmp_files/load_file.txt +0 -0
  35. CNE5T4oBgHgl3EQfTg-d/content/tmp_files/2301.05537v1.pdf.txt +2268 -0
  36. CNE5T4oBgHgl3EQfTg-d/content/tmp_files/load_file.txt +0 -0
  37. D9E0T4oBgHgl3EQfQgCE/content/tmp_files/2301.02194v1.pdf.txt +1419 -0
  38. D9E0T4oBgHgl3EQfQgCE/content/tmp_files/load_file.txt +0 -0
  39. DNE2T4oBgHgl3EQf9Qm6/content/tmp_files/2301.04227v1.pdf.txt +3169 -0
  40. DNE2T4oBgHgl3EQf9Qm6/content/tmp_files/load_file.txt +0 -0
  41. DtAzT4oBgHgl3EQfwv4v/content/tmp_files/2301.01726v1.pdf.txt +0 -0
  42. DtAzT4oBgHgl3EQfwv4v/content/tmp_files/load_file.txt +0 -0
  43. GNE3T4oBgHgl3EQftgtb/content/tmp_files/2301.04676v1.pdf.txt +1889 -0
  44. GNE3T4oBgHgl3EQftgtb/content/tmp_files/load_file.txt +0 -0
  45. I9E0T4oBgHgl3EQfiAGs/content/tmp_files/2301.02440v1.pdf.txt +1178 -0
  46. I9E0T4oBgHgl3EQfiAGs/content/tmp_files/load_file.txt +0 -0
  47. INAzT4oBgHgl3EQfHvu0/content/2301.01051v1.pdf +3 -0
  48. INAzT4oBgHgl3EQfHvu0/vector_store/index.pkl +3 -0
  49. JNAzT4oBgHgl3EQfVPyV/vector_store/index.faiss +3 -0
  50. NNFLT4oBgHgl3EQfNy8i/content/tmp_files/load_file.txt +0 -0
-dFST4oBgHgl3EQfcTgr/content/tmp_files/2301.13802v1.pdf.txt ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1
2
+ Armouring of a frictional interface by mechanical noise
3
+ Elisa El Sergany, Matthieu Wyart, Tom W.J. de Geus
4
+ Physics Institute, ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) Switzerland
5
+ Abstract
6
+ A dry frictional interface loaded in shear often displays stick-slip. The amplitude of this cycle depends
7
+ on the probability that a slip event nucleates into a rupture, and on the rate at which slip events are
8
+ triggered. This rate is determined by the distribution P(x) of soft spots which yields if the shear stress is
9
+ increased by some amount x. In minimal models of a frictional interface that include disorder, inertia and
10
+ long-range elasticity, we discovered an ‘armouring’ mechanism, by which the interface is greatly stabilised
11
+ after a large slip event: P(x) then vanishes at small arguments, as P(x) ∼ xθ [1]. The exponent θ > 0,
12
+ which exists only in the presence of inertia (otherwise θ = 0), was found to depend on the statistics of
13
+ the disorder in the model, a phenomenon that was not explained. Here, we show that a single-particle
14
+ toy model with inertia and disorder captures the existence of a non-trivial exponent θ > 0, which we can
15
+ analytically relate to the statistics of the disorder.
16
+ 1
17
+ Introduction
18
+ We study systems in which disorder and elasticity
19
+ compete, leading to intermittent, avalanche-type re-
20
+ sponse under loading.
21
+ Examples include an elastic
22
+ line being pulled over a disordered pinning potential,
23
+ or frictional interfaces
24
+ [2–4].
25
+ When subject to an
26
+ external load f, such systems are pinned by disor-
27
+ der when the load is below a critical value fc.
28
+ At
29
+ f > fc, the system moves forward at a finite rate. At
30
+ f = fc the system displays a crackling-type response
31
+ described by avalanches whose sizes and durations are
32
+ distributed according to powerlaws.
33
+ A key aspect of such systems is the distribution
34
+ of soft spots [5]. If we define x as the force increase
35
+ needed to trigger an instability locally, then increas-
36
+ ing the remotely applied force by ∆f will trigger
37
+ na ∝
38
+ � ∆f
39
+ 0
40
+ P(x)dx avalanches, with P(x) the probabil-
41
+ ity density of x. The relevant behaviour of P(x) there-
42
+ fore is that at small x. Let us assume that P(x) ∼ xθ
43
+ at small x, such that na ∝ (∆f)θ+1.
44
+ Classical models used to study the depinning tran-
45
+ sition consider an over-damped dynamics [2]. In that
46
+ case, it can be shown that θ = 0 [2]. This result is
47
+ not true for certain phenomena, including the plastic-
48
+ ity of amorphous solids or mean-field spin glasses. In
49
+ these cases, due to the fact that elastic interactions
50
+ are long-range and can vary in sign (which is not the
51
+ case for the depinning transition, where a region that
52
+ is plastically rearranged can only destabilise other re-
53
+ gions), one can prove that θ > 0, as reviewed in [5, 6].
54
+ Recently, we studied simple models of dry fric-
55
+ tional interface [1, 7]. We considered disorder, long-
56
+ range elastic interactions along the interface. These
57
+ interactions are strictly positive as in the usual class
58
+ of the depinning transition. However, we studied the
59
+ role of inertia, that turns out to have dramatic ef-
60
+ fects.
61
+ Inertia causes transient overshoots and un-
62
+ dershoots of the stress resulting from a local plas-
63
+ tic event. It thus generates a mechanical noise, that
64
+ lasts until damping ultimately takes place. Remark-
65
+ ably, we found that right after system-spanning slip
66
+ events, θ > 0 [1] in the presence of inertia.
67
+ Intu-
68
+ itively, such an ‘armouring’ mechanism results from
69
+ the mechanical noise stemming inertial effects, that
70
+ destabilises spots close to an instability (i.e. small
71
+ x), thus depleting P(x) at small argument.
72
+ This
73
+ property is consequential: the number of avalanches
74
+ of plastic events triggered after a system-spanning
75
+ rupture is very small. As a consequence, the inter-
76
+ face can increase its load when driven quasistatically
77
+ in a finite system, without much danger of trigger-
78
+ ing large slip events. The interface therefore present
79
+ larger stick-slip cycles due to this effect, as sketched in
80
+ Fig. 1. Thus, one of the central quantities governing
81
+ the stick-slip amplitude is θ [1].
82
+ Our previous model [1] divided the interface in
83
+ blocks whose mechanical response was given by a po-
84
+ tential energy landscape that, as a function of slip,
85
+ comprised a sequence of parabolic wells with equal
86
+ curvature. We drew the widths w of each well ran-
87
+ domly from a Weibull distribution, such that its dis-
88
+ arXiv:2301.13802v1 [cond-mat.soft] 31 Jan 2023
89
+
90
+ 2
91
+ tribution Pw(w) ∼ wk at small k.
92
+ We empirically
93
+ found θ ≃ 2.5 for k = 1 and θ ≃ 1.4 for k = 0.2.
94
+ Here we present a toy model for a region of space
95
+ that stops moving at the end of a large slip event. In
96
+ the most idealised view, we describe this region as a
97
+ single particle that moves over a disordered potential
98
+ energy landscape, and that slows down due to dissipa-
99
+ tion. We model this potential energy landscape by a
100
+ sequence of parabolic potentials that have equal cur-
101
+ vature κ but different widths taken from Pw(w), with
102
+ w the width of a parabola. In this model, x = κw/2
103
+ and is thus proportional to the width of the well in
104
+ which the particle stops.
105
+ Below we prove that for
106
+ such a model, P(x) ∼ xk+2 if Pw(w) ∼ wk.
107
+ This
108
+ result explains both why θ > 0 and why this expo-
109
+ nent in non-universal, as it depends on k that char-
110
+ acterises the disorder. Although this prediction does
111
+ not match quantitatively our previous observations,
112
+ the agreement is already noticeable for such a sim-
113
+ ple model. We support our argument with analytical
114
+ proofs, and verify our conclusion numerically.
115
+ The
116
+ generality of our argument suggests that the presence
117
+ of a non-trivial exponent θ may hold in other depin-
118
+ ning systems, as long a inertia is present.
119
+ force
120
+ slip
121
+ (a)
122
+ (b)
123
+ avalanche
124
+ slip
125
+ Figure 1. (a) Sketch of stick-slip response: “slip” events
126
+ punctuate periods in which the interface is macroscopi-
127
+ cally stuck, but microscopic events (“avalanches”) do oc-
128
+ cur. The number of avalanches na ∝ (∆f)θ+1, which can
129
+ be linked to (b) the distribution of soft spots. x is thereby
130
+ the amount of force needed to trigger an instability locally.
131
+ Right after a large slip event, its distribution empirically
132
+ scales like P(x) ∼ xθ at small x as indicated (log-scale
133
+ implied).
134
+ 2
135
+ Model
136
+ During a big slip event, all regions in space are moving
137
+ but eventually slow down and stop. We model this by
138
+ considering a single region in space in which a particle
139
+ of finite mass is thrown into the potential energy land-
140
+ scape at a finite velocity. In the simplest case, this
141
+ particle is “free”, such that it experiences no external
142
+ driving and stops due to dissipation, see Fig. 2. This
143
+ corresponds to the Prandtl-Tomlinson [8–10] model
144
+ that describes the dynamics of one (driven) particle
145
+ in a potential energy landscape. The equation of mo-
146
+ tion of the “free” particle reads
147
+ m¨r = fe(r) − η ˙r.
148
+ (1)
149
+ with r the particle’s position, m its mass, and η
150
+ a damping coefficient.
151
+ fe(r) is the restoring force
152
+ due to the potential energy landscape.
153
+ We con-
154
+ sider a potential energy landscape that consists of a
155
+ sequence of finite-sized, symmetric, quadratic wells,
156
+ such that the potential energy inside a well i is given
157
+ by U(r) = (κ/2)(r − ri
158
+ min)2 + U i
159
+ 0 for ri
160
+ y < r ≤ ri+1
161
+ y
162
+ ,
163
+ with wi ≡ ri+1
164
+ y
165
+ − ri
166
+ y the width of the well, κ the
167
+ elastic constant, ri
168
+ min ≡ (ri
169
+ y + ri+1
170
+ y
171
+ )/2 the position of
172
+ the center of the well, and U i
173
+ 0 = κ(wi)2/8 an unim-
174
+ portant offset.
175
+ The elastic force deriving from this
176
+ potential energy is fe(r) ≡ −∂xU(r) = κ(ri
177
+ min − r).
178
+ With κ is constant, the landscape is parameterised by
179
+ the distance between two subsequent cusps wi, which
180
+ we assume identically distributed (iid) according to
181
+ a distribution Pw(w). We consider underdamped dy-
182
+ namics corresponding to η2 < 4mκ. Within a well,
183
+ the dynamics is simply that of a underdamped oscil-
184
+ lator, as recalled in Appendix A.
185
+ 0.0
186
+ 0.5
187
+ 1.0
188
+ 1.5
189
+ 2.0
190
+ λt
191
+ 0
192
+ 1
193
+ 2
194
+ 3
195
+ E/⟨U⟩
196
+ 0
197
+ 4
198
+ 8
199
+ r/⟨w⟩
200
+ −1
201
+ 0
202
+ U/⟨U⟩
203
+ Figure 2. Evolution of the kinetic energy E as a function
204
+ of position r (in red) of the “free” particle ‘thrown’ into
205
+ a potential energy landscape (shown in the inset). Every
206
+ entry into a new well is indicated using a marker. A thin
207
+ green line shows the evolution of the total energy (with
208
+ the definition of the inset, it has the local minimum of the
209
+ last well as arbitrary offset).
210
+
211
+ 3
212
+ 3
213
+ Stopping well
214
+ Distribution.
215
+ We are interested in the width of the
216
+ well in which the particle eventually stops. Suppose
217
+ that a particle enters a well of width w with a kinetic
218
+ energy E. The particle stops in that well if E < Ec(w),
219
+ with Ec the minimum kinetic energy with which the
220
+ particle needs to enter a well of width w to be able to
221
+ exit. The distribution of wells in which particles stop
222
+ in that case is
223
+ Ps(w) ∼ Pw(w)P(E < Ec(w)),
224
+ (2)
225
+ with Pw(w) the probability density of well widths,
226
+ and Ps(w) the probability of well widths in which the
227
+ particle stops. Within one well, the particle is sim-
228
+ ply a damped harmonic oscillator as has been studied
229
+ abundantly. In the limit of a weakly damped system,
230
+ the amount of kinetic energy lost during one cycle is
231
+ ∆E = κw2(1 − exp(−2π/Q))/8 with the quality fac-
232
+ tor Q =
233
+
234
+ 4mκ/η2 − 1. The minimal kinetic energy
235
+ with which the particle needs to enter the well in or-
236
+ der to be able to exist is thus Ec = ∆E ∝ w2 (see
237
+ Appendix B for the exact calculation of Ec). Further-
238
+ more, if P(E) is a constant at small argument (as we
239
+ will argue below), then
240
+ P(E < Ec(w)) =
241
+ � Ec
242
+ 0
243
+ P(E)dE ∼ Ec(w).
244
+ (3)
245
+ Therefore, the particle stops in a well whose width is
246
+ distributed as
247
+ Ps(w) ∼ w2Pw(w).
248
+ (4)
249
+ Central result.
250
+ Once stopped, the force, x, by
251
+ which we need to tilt the well in which the particle
252
+ stopped, in order for it to exit again is x = κw/2 1,
253
+ such that our central result is that
254
+ P(x) ∼ x2Pw(x).
255
+ (5)
256
+ For example, if Pw(w) ∼ wk at small w, we predict
257
+ that
258
+ P(x) ∼ x2+k.
259
+ (6)
260
+ Energy at entry.
261
+ We will now argue that the den-
262
+ sity of kinetic energy with which the particle enters
263
+ the final well, P(E), is finite at small E.
264
+ For one
265
+ realisation, E results from passing many wells with
266
+ random widths. If its kinetic energy is much larger
267
+ than the potential energy of the typical wells, it will
268
+ 1Without external forces, the particle ends in the local min-
269
+ imum – the center of the well.
270
+ not stop. We thus consider that the particle energy
271
+ has decreased up to some typical kinetic energy E0 of
272
+ the order of the typical potential energy κ⟨w2⟩/8. If
273
+ the particle exits the next well, at exit it will have a
274
+ kinetic energy K = E0 − ∆E(E0, w). For a given E0
275
+ and distributed w, we have:
276
+ P(E) =
277
+
278
+ dw Pw(w) δ(K(E0, w) − E).
279
+ (7)
280
+ It thus implies that:
281
+ P(E = 0) = Pw(w∗)/
282
+ ��∂wK
283
+ ��
284
+ w=w∗
285
+ (8)
286
+ w∗ is the well width for which the particle reaches the
287
+ end of the well with zero velocity, i.e. E0 = Ec(w∗).
288
+ By assumption, Pw(w∗) > 0. Furthermore we prove
289
+ in Appendix C that ∂wK|w=w∗ = κw∗/2 > 0. Over-
290
+ all, it implies that P(E = 0) > 0, i.e. P(E) does not
291
+ vanish as E → 0, from which our conclusions follow.
292
+ Here we give a simple argument for ∂wK|w=w∗ =
293
+ κw∗/2 > 0. Given E0, but an infinitesimally smaller
294
+ well of width w∗ −δw, the particle will enter the next
295
+ well. Because the velocity is negligible in the vicinity
296
+ of w∗, the damping is negligible. Therefore, δK is of
297
+ the order of the difference in potential energy on a
298
+ scale δw, δU = U(w∗) − U(w∗ − δw) ≈ κw∗δw/2, as
299
+ we illustrate in Fig. 3. We thus find that ∂wK|w=w∗ =
300
+ limδw→0 δK/δw = κw∗/2.
301
+ −w∗/2
302
+ 0
303
+ w∗/2
304
+ position
305
+ 0
306
+ energy
307
+ 1
308
+ 2κw∗δw
309
+ δw
310
+ 1
311
+ 2κw∗δw
312
+ δw
313
+ potential energy U
314
+ kinetic energy E
315
+ total energy E + U
316
+ Figure 3. Evolution of the kinetic energy E (red), po-
317
+ tential energy U (black), and total energy E + V (green)
318
+ for a particle that has entered a well of width w∗ with a
319
+ kinetic energy E0 = Ec(w∗) such that it stops just. Con-
320
+ sequently, ∂r(E + V )|w∗/2 = 0, which can be decomposed
321
+ in ∂rV |w∗/2 = κw∗/2 such that ∂rE|w∗/2 = −κw∗/2, as
322
+ indicated using thin lines.
323
+
324
+ 4
325
+ 4
326
+ Numerical support
327
+ Objective.
328
+ We now numerically verify our predic-
329
+ tion that P(x) ∼ xk+2 (Eq. (6)). We simulate a large
330
+ number of realisations of a potential energy landscape
331
+ constructed from randomly drawn widths (consider-
332
+ ing different distributions Pw(w)) and constant cur-
333
+ vature. We study the distribution of stopping wells
334
+ if a “free” particle is ‘thrown’ into the landscape at
335
+ a high initial velocity (much larger than vc(⟨w⟩) such
336
+ that particle transverses many wells before stopping).
337
+ Map.
338
+ We find an analytical solution for Eq. (1) in
339
+ the form of a map. In particular, we derive the evo-
340
+ lution of the position in a well based on an initial po-
341
+ sition −w/2 and velocity in Appendix A. This maps
342
+ the velocity with which the particle enters a well at
343
+ position w/2, to an exit velocity which corresponds
344
+ to the entry velocity of the next well, etc.
345
+ Stopping well.
346
+ We record the width of the stop-
347
+ ping well, x, and the velocity V with which the parti-
348
+ cle enters the final well. We find clear evidence for the
349
+ scaling P(x) ∼ xk+2 in Fig. 4. Perturbing the evolu-
350
+ tion with random force kicks2 changes nothing to our
351
+ observations, as included in Fig. 4 (see caption). We,
352
+ furthermore, show that the probability density of the
353
+ kinetic energy with which the particle enters the final
354
+ well, P(E), is constant as small argument in Fig. 5.
355
+ 5
356
+ Concluding remarks
357
+ Our central result is that P(x) ∼ x2Pw(x) in our
358
+ toy model. For a disorder Pw(w) ∼ wk we thus find
359
+ P(x) ∼ xk+2. We expect this result to qualitatively
360
+ apply to generic depinning systems in the presence of
361
+ inertia. In particular they are qualitatively (but not
362
+ quantitatively) consistent with our previous empiri-
363
+ cal observations θ ≃ 2.5 for k = 1 [1] and θ ≃ 1.4
364
+ for k = 0.2. A plausible limitation of our approach
365
+ is underlined by the following additional observation:
366
+ in Ref. [1], it was found that for x to be small, the
367
+ stopping well was typically small (by definition), but
368
+ also that the next well had to be small. Such corre-
369
+ lations can exist only if the degree of freedom con-
370
+ sidered had visited the next well, before coming back
371
+ and stopping. This scenario cannot occur in our sim-
372
+ ple description where the particle only moves forward,
373
+ except when it oscillates in its final well.
374
+ 2Such the for each well is tilted with a random force that we
375
+ take independent and identically distributed (iid) according to
376
+ a normal distribution with zero mean.
377
+ 10−2
378
+ 100
379
+ x
380
+ 10−5
381
+ 100
382
+ P(x)/cx
383
+ 1
384
+ 2
385
+ 1
386
+ 3
387
+ 1
388
+ 4
389
+ k = 0 1 2
390
+ weibull
391
+ power
392
+ uniform
393
+ Figure 4.
394
+ Width of the stopping well, x, for different
395
+ Pw(w): a uniform, Weibull, and powerlaw distribution,
396
+ that scale as Pw(w) ∼ wk at small w, as indicated in the
397
+ legend (the bottom row for each distribution corresponds
398
+ to perturbing the dynamcs with random force kicks, tilt-
399
+ ing individual wells by a force F = N(0, 0.1), with N the
400
+ normal distribution; the top row corresponds to F = 0).
401
+ To emphasise the scaling, the distributions have been
402
+ rescaled by a fit of the prefactors: P(x) = cxxk+2. Fur-
403
+ thermore, we use m = κ = 1, η = 0.1, v0 = N(100, 10),
404
+ and ⟨w⟩ ≈ 1.
405
+ 10−5
406
+ 10−1
407
+ E
408
+ 10−2
409
+ 100
410
+ P(E)/ce
411
+ Figure 5.
412
+ The kinetic energy with which the particle
413
+ enters the well in which it stops for different realisations,
414
+ P(E), normalised by its prefactor ce (that is here simply
415
+ the density of the first bin). See Fig. 4 for legend.
416
+
417
+ 5
418
+ References
419
+ [1] T.W.J. de Geus, M. Popovi´c, W. Ji, A. Rosso, and
420
+ M. Wyart. How collective asperity detachments nucleate slip
421
+ at frictional interfaces. Proc. Natl. Acad. Sci., 116(48):
422
+ 23977–23983, 2019. doi: 10.1073/pnas.1906551116.
423
+ arXiv: 1904.07635.
424
+ [2] D.S. Fisher. Collective transport in random media: From
425
+ superconductors to earthquakes. Phys. Rep., 301(1–3):
426
+ 113–150, 1998. doi: 10.1016/S0370-1573(98)00008-8.
427
+ arXiv: cond-mat/9711179.
428
+ [3] O. Narayan and D.S. Fisher. Threshold critical dynamics of
429
+ driven interfaces in random media. Phys. Rev. B, 48(10):
430
+ 7030–7042, 1993. doi: 10.1103/PhysRevB.48.7030.
431
+ [4] M. Kardar. Nonequilibrium dynamics of interfaces and lines.
432
+ Phys. Rep., 301(1–3):85–112, 1998.
433
+ doi: 10.1016/S0370-1573(98)00007-6.
434
+ arXiv: cond-mat/9704172.
435
+ [5] M. M¨uller and M. Wyart. Marginal Stability in Structural,
436
+ Spin, and Electron Glasses. Annu. Rev. Condens. Matter
437
+ Phys., 6(1):177–200, 2015.
438
+ doi: 10.1146/annurev-conmatphys-031214-014614.
439
+ [6] Alberto Rosso, James P Sethna, and Matthieu Wyart.
440
+ Avalanches and deformation in glasses and disordered
441
+ systems. arXiv preprint: 2208.04090, 2022.
442
+ doi: 10.48550/arXiv.2208.04090.
443
+ [7] T.W.J. de Geus and M. Wyart. Scaling theory for the
444
+ statistics of slip at frictional interfaces. Phys. Rev. E, 106
445
+ (6):065001, 2022. doi: 10.1103/PhysRevE.106.065001.
446
+ arXiv: 2204.02795.
447
+ [8] L. Prandtl. Ein Gedankenmodell zur kinetischen Theorie der
448
+ festen K¨orper. Z. angew. Math. Mech., 8(2):85–106, 1928.
449
+ doi: 10.1002/zamm.19280080202.
450
+ [9] G.A. Tomlinson. CVI. A molecular theory of friction. The
451
+ London, Edinburgh, and Dublin Philosophical Magazine
452
+ and Journal of Science, 7(46):905–939, 1929.
453
+ doi: 10.1080/14786440608564819.
454
+ [10] V.L. Popov and J.A.T. Gray. Prandtl-Tomlinson Model: A
455
+ Simple Model Which Made History. In E. Stein, editor, The
456
+ History of Theoretical, Material and Computational
457
+ Mechanics - Mathematics Meets Mechanics and
458
+ Engineering, volume 1, pages 153–168. Springer Berlin
459
+ Heidelberg, 2014. ISBN 978-3-642-39904-6
460
+ 978-3-642-39905-3. doi: 10.1007/978-3-642-39905-3 10.
461
+ A
462
+ Analytical solution
463
+ Anasatz.
464
+ We look for the solution of a general lin-
465
+ ear equation of motion in one well
466
+ m¨r + η ˙r + κr − F = 0.
467
+ (9)
468
+ where the position r is expressed relative to the local
469
+ minimum in potential energy. The external force F
470
+ tilts the potential energy landscape and will be used
471
+ as a perturbation to check the robustness of our ar-
472
+ gument. An ansatz to this differential equation is
473
+ r(τ) = αe−λ−τ + βe−λ+τ + ∆r,
474
+ (10)
475
+ where ∆r = F/κ, and τ is the time that the parti-
476
+ cle has spent since the entry in the current well at
477
+ r(τ = 0) ≡ −w/2. We denote the particle’s veloc-
478
+ ity v(τ) ≡ ˙r(τ), whereby we take v(τ = 0) ≡ v0.
479
+ Substituting this ansatz in Eq. (9) leads to λ± =
480
+ (η ±
481
+
482
+ η2 − 4mκ)/(2m). The prefactors α and β are
483
+ set by the initial conditions such that
484
+ α, β = ±r0λ± + v0
485
+ λ+ − λ−
486
+ ,
487
+ (11)
488
+ with r0 ≡ −w/2 − ∆r.
489
+ Underdamped.
490
+ We recognise that if λ± are real
491
+ (η2 > 4mκ), the dynamics are overdamped and the
492
+ velocity decays exponentially.
493
+ Conversely, the un-
494
+ derdamped dynamics that we consider correspond to
495
+ η2 < 4mκ 3.
496
+ Oscillator.
497
+ In the underdamped case, λ± and α, β
498
+ are complex conjugates. This allows us to simplify
499
+ the solution by expressing those coefficients as λ± =
500
+ λ ± iω and α, β = (L/2)e±iφ as follows 4
501
+ r(τ) = Le−λτ cos(ωτ + φ) + ∆r.
502
+ (12)
503
+ We remark that the velocity v(τ) can be expressed as
504
+ a phase shift with respect to r(τ) 5
505
+ v(τ) = −Ae−λτ cos
506
+
507
+ ωτ + φ − arctan
508
+ �ω
509
+ λ
510
+ ��
511
+ (13)
512
+ with A = λL
513
+
514
+ 1 + (ω/λ)2. We summarise the ampli-
515
+ tudes, frequency, and phase. From λ± we find
516
+ λ =
517
+ η
518
+ 2m,
519
+ ω2 = κ
520
+ m −
521
+ � η
522
+ 2m
523
+ �2
524
+ .
525
+ (14)
526
+ Furthermore, Eq. (11) gives
527
+ α, β = 1
528
+ 2
529
+
530
+ r0 ∓ i(λr0 + v0)/ω
531
+
532
+ ,
533
+ (15)
534
+ such that
535
+ L2 = 4
536
+
537
+ Re(α)2 + Im(α)2�
538
+ (16)
539
+ =
540
+
541
+ (ωr0)2 + (λr0 + v0)2�
542
+ /ω2,
543
+ (17)
544
+ and
545
+ φ = χπ + arctan (Im(α)/Re(α))
546
+ (18)
547
+ = χπ − arctan (λ/ω + v0/(ωr0)) ,
548
+ (19)
549
+ where χ depends on α 6.
550
+ 3Note that our solution warrants some caution for critical
551
+ damping η2 = 4mκ.
552
+ 4cos(z) = (eiz + e−iz)/2
553
+ 5a cos(z) + b sin(z) = sgn(a)
554
+
555
+ a2 + b2 cos (z − arctan(b/a))
556
+ 6Re(α) ≥ 0 → χ = 0. (Re(α) < 0, Im(α) ≥ 0) → χ = 1.
557
+ (Re(α) < 0, Im(α) < 0) → χ = −1.
558
+
559
+ 6
560
+ B
561
+ Exiting well
562
+ We will show that the minimum kinetic energy with
563
+ which the particle needs to enter a well to be able
564
+ to exit Ec ∝ w2, whereby we consider F = 0. The
565
+ particle exits the well if v0 > vc. vc thus corresponds
566
+ to the case that r(τe) = w/2 = −r0 for which v(τe) =
567
+ 0. Let us make the ansatz that v0 = vc = w/τc and
568
+ look for the solution of τc.
569
+ We note that on the interval τ ∈ [0, τe) the posi-
570
+ tion is strictly monotonically increasing. The solution
571
+ of v(τn) = 0 corresponds to
572
+ ωτn + φ − arctan(ω/λ) = (n + 1/2)π,
573
+ n ∈ Z. (20)
574
+ The for us relevant solution is τe = min(τn > 0) 7 .
575
+ r(τe) = w/2 corresponds to
576
+ Le−λτe = w/(2c0),
577
+ (21)
578
+ with
579
+ c0 = cos((n + 1/2)π + arctan(ω/λ)).
580
+ (22)
581
+ Using the definition of τe in Eq. (20) leads to
582
+ Leλφ/ω = w/(2c0c1),
583
+ (23)
584
+ with
585
+ c1 = e−λ(n+1/2)π/ω−(λ/ω) arctan(ω/λ).
586
+ (24)
587
+ Furthermore,
588
+ L2 = 1
589
+ 4
590
+
591
+ ω2 + (2/τc − λ)2�
592
+ (w/ω)2,
593
+ (25)
594
+ φ = sign (2/τc − λ) π + arctan
595
+ ��
596
+ 2/τc − λ
597
+
598
+
599
+
600
+ , (26)
601
+ such that
602
+ L′eλφ/ω = 1/(2c0c1),
603
+ (27)
604
+ with L′ = L/w.
605
+ Eq. (27) is w independent and can
606
+ be solved for τc = τc(λ, ω, n), proving that vc = w/τc.
607
+ This results thus corresponds to
608
+ Ec = 1
609
+ 2mv2
610
+ c = m
611
+ 2τ 2c
612
+ w2.
613
+ (28)
614
+ as we used to go from Eq. (2) to obtain Eq. (4) using
615
+ Eq. (3).
616
+ 7i.e. n = ±1 depending on (r0, v0)
617
+ C
618
+ Entry kinetic energy
619
+ With K the kinetic energy at exiting the well, we show
620
+ that ∂wK
621
+ ��
622
+ w=w∗ > 0. We again consider F = 0. In
623
+ particular, we show that
624
+ ∂wK = m ve ∂wve > 0.
625
+ (29)
626
+ The derivative of the velocity as a function of the well
627
+ size is
628
+ ∂rv = ∂τv/∂τr = a(τ)/v(τ),
629
+ (30)
630
+ where the acceleration a(τ) ≡ ¨r(τ) = αλ2
631
+ −e−λ−τ +
632
+ βλ2
633
+ +e−λ+τ. By evaluating this expression with initial
634
+ conditions r(τ = 0) = −w∗/2 and v(τ = 0) = 0, we
635
+ find
636
+ ∂wK
637
+ ��
638
+ w=w∗ = m (αλ2
639
+ − + βλ2
640
+ +) = −m
641
+ 2 (λ2 + ω2) w∗.
642
+ (31)
643
+ From the definitions of λ and ω in Eq. (14), we thus
644
+ find
645
+ ∂wK
646
+ ��
647
+ w=w∗ = −κw∗/2,
648
+ (32)
649
+ as we argued above to show that P(E = 0) > 0 using
650
+ Eq. (8).
651
+
-dFST4oBgHgl3EQfcTgr/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,328 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf,len=327
2
+ page_content='1 Armouring of a frictional interface by mechanical noise Elisa El Sergany, Matthieu Wyart, Tom W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
3
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
4
+ page_content=' de Geus Physics Institute, ´Ecole Polytechnique F´ed´erale de Lausanne (EPFL) Switzerland Abstract A dry frictional interface loaded in shear often displays stick-slip.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
5
+ page_content=' The amplitude of this cycle depends on the probability that a slip event nucleates into a rupture, and on the rate at which slip events are triggered.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
6
+ page_content=' This rate is determined by the distribution P(x) of soft spots which yields if the shear stress is increased by some amount x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
7
+ page_content=' In minimal models of a frictional interface that include disorder, inertia and long-range elasticity, we discovered an ‘armouring’ mechanism, by which the interface is greatly stabilised after a large slip event: P(x) then vanishes at small arguments, as P(x) ∼ xθ [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
8
+ page_content=' The exponent θ > 0, which exists only in the presence of inertia (otherwise θ = 0), was found to depend on the statistics of the disorder in the model, a phenomenon that was not explained.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
9
+ page_content=' Here, we show that a single-particle toy model with inertia and disorder captures the existence of a non-trivial exponent θ > 0, which we can analytically relate to the statistics of the disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
10
+ page_content=' 1 Introduction We study systems in which disorder and elasticity compete, leading to intermittent, avalanche-type re- sponse under loading.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
11
+ page_content=' Examples include an elastic line being pulled over a disordered pinning potential, or frictional interfaces [2–4].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
12
+ page_content=' When subject to an external load f, such systems are pinned by disor- der when the load is below a critical value fc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
13
+ page_content=' At f > fc, the system moves forward at a finite rate.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
14
+ page_content=' At f = fc the system displays a crackling-type response described by avalanches whose sizes and durations are distributed according to powerlaws.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
15
+ page_content=' A key aspect of such systems is the distribution of soft spots [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
16
+ page_content=' If we define x as the force increase needed to trigger an instability locally, then increas- ing the remotely applied force by ∆f will trigger na ∝ � ∆f 0 P(x)dx avalanches, with P(x) the probabil- ity density of x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
17
+ page_content=' The relevant behaviour of P(x) there- fore is that at small x.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
18
+ page_content=' Let us assume that P(x) ∼ xθ at small x, such that na ∝ (∆f)θ+1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
19
+ page_content=' Classical models used to study the depinning tran- sition consider an over-damped dynamics [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
20
+ page_content=' In that case, it can be shown that θ = 0 [2].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
21
+ page_content=' This result is not true for certain phenomena, including the plastic- ity of amorphous solids or mean-field spin glasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
22
+ page_content=' In these cases, due to the fact that elastic interactions are long-range and can vary in sign (which is not the case for the depinning transition, where a region that is plastically rearranged can only destabilise other re- gions), one can prove that θ > 0, as reviewed in [5, 6].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
23
+ page_content=' Recently, we studied simple models of dry fric- tional interface [1, 7].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
24
+ page_content=' We considered disorder, long- range elastic interactions along the interface.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
25
+ page_content=' These interactions are strictly positive as in the usual class of the depinning transition.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
26
+ page_content=' However, we studied the role of inertia, that turns out to have dramatic ef- fects.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
27
+ page_content=' Inertia causes transient overshoots and un- dershoots of the stress resulting from a local plas- tic event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
28
+ page_content=' It thus generates a mechanical noise, that lasts until damping ultimately takes place.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
29
+ page_content=' Remark- ably, we found that right after system-spanning slip events, θ > 0 [1] in the presence of inertia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
30
+ page_content=' Intu- itively, such an ‘armouring’ mechanism results from the mechanical noise stemming inertial effects, that destabilises spots close to an instability (i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
31
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
32
+ page_content=' small x), thus depleting P(x) at small argument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
33
+ page_content=' This property is consequential: the number of avalanches of plastic events triggered after a system-spanning rupture is very small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
34
+ page_content=' As a consequence, the inter- face can increase its load when driven quasistatically in a finite system, without much danger of trigger- ing large slip events.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
35
+ page_content=' The interface therefore present larger stick-slip cycles due to this effect, as sketched in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
36
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
37
+ page_content=' Thus, one of the central quantities governing the stick-slip amplitude is θ [1].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
38
+ page_content=' Our previous model [1] divided the interface in blocks whose mechanical response was given by a po- tential energy landscape that, as a function of slip, comprised a sequence of parabolic wells with equal curvature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
39
+ page_content=' We drew the widths w of each well ran- domly from a Weibull distribution, such that its dis- arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
40
+ page_content='13802v1 [cond-mat.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
41
+ page_content='soft] 31 Jan 2023 2 tribution Pw(w) ∼ wk at small k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
42
+ page_content=' We empirically found θ ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
43
+ page_content='5 for k = 1 and θ ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
44
+ page_content='4 for k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
45
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
46
+ page_content=' Here we present a toy model for a region of space that stops moving at the end of a large slip event.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
47
+ page_content=' In the most idealised view, we describe this region as a single particle that moves over a disordered potential energy landscape, and that slows down due to dissipa- tion.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
48
+ page_content=' We model this potential energy landscape by a sequence of parabolic potentials that have equal cur- vature κ but different widths taken from Pw(w), with w the width of a parabola.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
49
+ page_content=' In this model, x = κw/2 and is thus proportional to the width of the well in which the particle stops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
50
+ page_content=' Below we prove that for such a model, P(x) ∼ xk+2 if Pw(w) ∼ wk.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
51
+ page_content=' This result explains both why θ > 0 and why this expo- nent in non-universal, as it depends on k that char- acterises the disorder.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
52
+ page_content=' Although this prediction does not match quantitatively our previous observations, the agreement is already noticeable for such a sim- ple model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
53
+ page_content=' We support our argument with analytical proofs, and verify our conclusion numerically.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
54
+ page_content=' The generality of our argument suggests that the presence of a non-trivial exponent θ may hold in other depin- ning systems, as long a inertia is present.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
55
+ page_content=' force slip (a) (b) avalanche slip Figure 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
56
+ page_content=' (a) Sketch of stick-slip response: “slip” events punctuate periods in which the interface is macroscopi- cally stuck, but microscopic events (“avalanches”) do oc- cur.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
57
+ page_content=' The number of avalanches na ∝ (∆f)θ+1, which can be linked to (b) the distribution of soft spots.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
58
+ page_content=' x is thereby the amount of force needed to trigger an instability locally.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
59
+ page_content=' Right after a large slip event, its distribution empirically scales like P(x) ∼ xθ at small x as indicated (log-scale implied).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
60
+ page_content=' 2 Model During a big slip event, all regions in space are moving but eventually slow down and stop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
61
+ page_content=' We model this by considering a single region in space in which a particle of finite mass is thrown into the potential energy land- scape at a finite velocity.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
62
+ page_content=' In the simplest case, this particle is “free”, such that it experiences no external driving and stops due to dissipation, see Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
63
+ page_content=' 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
64
+ page_content=' This corresponds to the Prandtl-Tomlinson [8–10] model that describes the dynamics of one (driven) particle in a potential energy landscape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
65
+ page_content=' The equation of mo- tion of the “free” particle reads m¨r = fe(r) − η ˙r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
66
+ page_content=' (1) with r the particle’s position, m its mass, and η a damping coefficient.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
67
+ page_content=' fe(r) is the restoring force due to the potential energy landscape.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
68
+ page_content=' We con- sider a potential energy landscape that consists of a sequence of finite-sized, symmetric, quadratic wells, such that the potential energy inside a well i is given by U(r) = (κ/2)(r − ri min)2 + U i 0 for ri y < r ≤ ri+1 y , with wi ≡ ri+1 y − ri y the width of the well, κ the elastic constant, ri min ≡ (ri y + ri+1 y )/2 the position of the center of the well, and U i 0 = κ(wi)2/8 an unim- portant offset.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
69
+ page_content=' The elastic force deriving from this potential energy is fe(r) ≡ −∂xU(r) = κ(ri min − r).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
70
+ page_content=' With κ is constant, the landscape is parameterised by the distance between two subsequent cusps wi, which we assume identically distributed (iid) according to a distribution Pw(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
71
+ page_content=' We consider underdamped dy- namics corresponding to η2 < 4mκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
72
+ page_content=' Within a well, the dynamics is simply that of a underdamped oscil- lator, as recalled in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
73
+ page_content=' 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
74
+ page_content='0 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
75
+ page_content='5 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
76
+ page_content='0 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
77
+ page_content='5 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
78
+ page_content='0 λt 0 1 2 3 E/⟨U⟩ 0 4 8 r/⟨w⟩ −1 0 U/⟨U⟩ Figure 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
79
+ page_content=' Evolution of the kinetic energy E as a function of position r (in red) of the “free” particle ‘thrown’ into a potential energy landscape (shown in the inset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
80
+ page_content=' Every entry into a new well is indicated using a marker.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
81
+ page_content=' A thin green line shows the evolution of the total energy (with the definition of the inset, it has the local minimum of the last well as arbitrary offset).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
82
+ page_content=' 3 3 Stopping well Distribution.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
83
+ page_content=' We are interested in the width of the well in which the particle eventually stops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
84
+ page_content=' Suppose that a particle enters a well of width w with a kinetic energy E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
85
+ page_content=' The particle stops in that well if E < Ec(w), with Ec the minimum kinetic energy with which the particle needs to enter a well of width w to be able to exit.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
86
+ page_content=' The distribution of wells in which particles stop in that case is Ps(w) ∼ Pw(w)P(E < Ec(w)), (2) with Pw(w) the probability density of well widths, and Ps(w) the probability of well widths in which the particle stops.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
87
+ page_content=' Within one well, the particle is sim- ply a damped harmonic oscillator as has been studied abundantly.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
88
+ page_content=' In the limit of a weakly damped system, the amount of kinetic energy lost during one cycle is ∆E = κw2(1 − exp(−2π/Q))/8 with the quality fac- tor Q = � 4mκ/η2 − 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
89
+ page_content=' The minimal kinetic energy with which the particle needs to enter the well in or- der to be able to exist is thus Ec = ∆E ∝ w2 (see Appendix B for the exact calculation of Ec).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
90
+ page_content=' Further- more, if P(E) is a constant at small argument (as we will argue below), then P(E < Ec(w)) = � Ec 0 P(E)dE ∼ Ec(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
91
+ page_content=' (3) Therefore, the particle stops in a well whose width is distributed as Ps(w) ∼ w2Pw(w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
92
+ page_content=' (4) Central result.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
93
+ page_content=' Once stopped, the force, x, by which we need to tilt the well in which the particle stopped, in order for it to exit again is x = κw/2 1, such that our central result is that P(x) ∼ x2Pw(x).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
94
+ page_content=' (5) For example, if Pw(w) ∼ wk at small w, we predict that P(x) ∼ x2+k.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
95
+ page_content=' (6) Energy at entry.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
96
+ page_content=' We will now argue that the den- sity of kinetic energy with which the particle enters the final well, P(E), is finite at small E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
97
+ page_content=' For one realisation, E results from passing many wells with random widths.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
98
+ page_content=' If its kinetic energy is much larger than the potential energy of the typical wells, it will 1Without external forces, the particle ends in the local min- imum – the center of the well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
99
+ page_content=' not stop.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
100
+ page_content=' We thus consider that the particle energy has decreased up to some typical kinetic energy E0 of the order of the typical potential energy κ⟨w2⟩/8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
101
+ page_content=' If the particle exits the next well, at exit it will have a kinetic energy K = E0 − ∆E(E0, w).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
102
+ page_content=' For a given E0 and distributed w, we have: P(E) = � dw Pw(w) δ(K(E0, w) − E).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
103
+ page_content=' (7) It thus implies that: P(E = 0) = Pw(w∗)/ ��∂wK �� w=w∗ (8) w∗ is the well width for which the particle reaches the end of the well with zero velocity, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
104
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
105
+ page_content=' E0 = Ec(w∗).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
106
+ page_content=' By assumption, Pw(w∗) > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
107
+ page_content=' Furthermore we prove in Appendix C that ∂wK|w=w∗ = κw∗/2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
108
+ page_content=' Over- all, it implies that P(E = 0) > 0, i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
109
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
110
+ page_content=' P(E) does not vanish as E → 0, from which our conclusions follow.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
111
+ page_content=' Here we give a simple argument for ∂wK|w=w∗ = κw∗/2 > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
112
+ page_content=' Given E0, but an infinitesimally smaller well of width w∗ −δw, the particle will enter the next well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
113
+ page_content=' Because the velocity is negligible in the vicinity of w∗, the damping is negligible.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
114
+ page_content=' Therefore, δK is of the order of the difference in potential energy on a scale δw, δU = U(w∗) − U(w∗ − δw) ≈ κw∗δw/2, as we illustrate in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
115
+ page_content=' 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
116
+ page_content=' We thus find that ∂wK|w=w∗ = limδw→0 δK/δw = κw∗/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
117
+ page_content=' −w∗/2 0 w∗/2 position 0 energy 1 2κw∗δw δw 1 2κw∗δw δw potential energy U kinetic energy E total energy E + U Figure 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
118
+ page_content=' Evolution of the kinetic energy E (red), po- tential energy U (black), and total energy E + V (green) for a particle that has entered a well of width w∗ with a kinetic energy E0 = Ec(w∗) such that it stops just.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
119
+ page_content=' Con- sequently, ∂r(E + V )|w∗/2 = 0, which can be decomposed in ∂rV |w∗/2 = κw∗/2 such that ∂rE|w∗/2 = −κw∗/2, as indicated using thin lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
120
+ page_content=' 4 4 Numerical support Objective.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
121
+ page_content=' We now numerically verify our predic- tion that P(x) ∼ xk+2 (Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
122
+ page_content=' (6)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
123
+ page_content=' We simulate a large number of realisations of a potential energy landscape constructed from randomly drawn widths (consider- ing different distributions Pw(w)) and constant cur- vature.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
124
+ page_content=' We study the distribution of stopping wells if a “free” particle is ‘thrown’ into the landscape at a high initial velocity (much larger than vc(⟨w⟩) such that particle transverses many wells before stopping).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
125
+ page_content=' Map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
126
+ page_content=' We find an analytical solution for Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
127
+ page_content=' (1) in the form of a map.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
128
+ page_content=' In particular, we derive the evo- lution of the position in a well based on an initial po- sition −w/2 and velocity in Appendix A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
129
+ page_content=' This maps the velocity with which the particle enters a well at position w/2, to an exit velocity which corresponds to the entry velocity of the next well, etc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
130
+ page_content=' Stopping well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
131
+ page_content=' We record the width of the stop- ping well, x, and the velocity V with which the parti- cle enters the final well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
132
+ page_content=' We find clear evidence for the scaling P(x) ∼ xk+2 in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
133
+ page_content=' 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
134
+ page_content=' Perturbing the evolu- tion with random force kicks2 changes nothing to our observations, as included in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
135
+ page_content=' 4 (see caption).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
136
+ page_content=' We, furthermore, show that the probability density of the kinetic energy with which the particle enters the final well, P(E), is constant as small argument in Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
137
+ page_content=' 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
138
+ page_content=' 5 Concluding remarks Our central result is that P(x) ∼ x2Pw(x) in our toy model.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
139
+ page_content=' For a disorder Pw(w) ∼ wk we thus find P(x) ∼ xk+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
140
+ page_content=' We expect this result to qualitatively apply to generic depinning systems in the presence of inertia.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
141
+ page_content=' In particular they are qualitatively (but not quantitatively) consistent with our previous empiri- cal observations θ ≃ 2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
142
+ page_content='5 for k = 1 [1] and θ ≃ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
143
+ page_content='4 for k = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
144
+ page_content='2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
145
+ page_content=' A plausible limitation of our approach is underlined by the following additional observation: in Ref.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
146
+ page_content=' [1], it was found that for x to be small, the stopping well was typically small (by definition), but also that the next well had to be small.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
147
+ page_content=' Such corre- lations can exist only if the degree of freedom con- sidered had visited the next well, before coming back and stopping.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
148
+ page_content=' This scenario cannot occur in our sim- ple description where the particle only moves forward, except when it oscillates in its final well.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
149
+ page_content=' 2Such the for each well is tilted with a random force that we take independent and identically distributed (iid) according to a normal distribution with zero mean.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
150
+ page_content=' 10−2 100 x 10−5 100 P(x)/cx 1 2 1 3 1 4 k = 0 1 2 weibull power uniform Figure 4.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
151
+ page_content=' Width of the stopping well, x, for different Pw(w): a uniform, Weibull, and powerlaw distribution, that scale as Pw(w) ∼ wk at small w, as indicated in the legend (the bottom row for each distribution corresponds to perturbing the dynamcs with random force kicks, tilt- ing individual wells by a force F = N(0, 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
152
+ page_content='1), with N the normal distribution;' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
153
+ page_content=' the top row corresponds to F = 0).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
154
+ page_content=' To emphasise the scaling, the distributions have been rescaled by a fit of the prefactors: P(x) = cxxk+2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
155
+ page_content=' Fur- thermore, we use m = κ = 1, η = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
156
+ page_content='1, v0 = N(100, 10), and ⟨w⟩ ≈ 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
157
+ page_content=' 10−5 10−1 E 10−2 100 P(E)/ce Figure 5.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
158
+ page_content=' The kinetic energy with which the particle enters the well in which it stops for different realisations, P(E), normalised by its prefactor ce (that is here simply the density of the first bin).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
159
+ page_content=' See Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
160
+ page_content=' 4 for legend.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
161
+ page_content=' 5 References [1] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
162
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
163
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
164
+ page_content=' de Geus, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
165
+ page_content=' Popovi´c, W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
166
+ page_content=' Ji, A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
167
+ page_content=' Rosso, and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
168
+ page_content=' Wyart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
169
+ page_content=' How collective asperity detachments nucleate slip at frictional interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
170
+ page_content=' Proc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
171
+ page_content=' Natl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
172
+ page_content=' Acad.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
173
+ page_content=' Sci.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
174
+ page_content=', 116(48): 23977–23983, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
175
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
176
+ page_content='1073/pnas.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
177
+ page_content='1906551116.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
178
+ page_content=' arXiv: 1904.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
179
+ page_content='07635.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
180
+ page_content=' [2] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
181
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
182
+ page_content=' Fisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
183
+ page_content=' Collective transport in random media: From superconductors to earthquakes.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
184
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
185
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
186
+ page_content=', 301(1–3): 113–150, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
187
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
188
+ page_content='1016/S0370-1573(98)00008-8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
189
+ page_content=' arXiv: cond-mat/9711179.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
190
+ page_content=' [3] O.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
191
+ page_content=' Narayan and D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
192
+ page_content='S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
193
+ page_content=' Fisher.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
194
+ page_content=' Threshold critical dynamics of driven interfaces in random media.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
195
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
196
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
197
+ page_content=' B, 48(10): 7030–7042, 1993.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
198
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
199
+ page_content='1103/PhysRevB.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
200
+ page_content='48.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
201
+ page_content='7030.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
202
+ page_content=' [4] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
203
+ page_content=' Kardar.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
204
+ page_content=' Nonequilibrium dynamics of interfaces and lines.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
205
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
206
+ page_content=' Rep.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
207
+ page_content=', 301(1–3):85–112, 1998.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
208
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
209
+ page_content='1016/S0370-1573(98)00007-6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
210
+ page_content=' arXiv: cond-mat/9704172.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
211
+ page_content=' [5] M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
212
+ page_content=' M¨uller and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
213
+ page_content=' Wyart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
214
+ page_content=' Marginal Stability in Structural, Spin, and Electron Glasses.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
215
+ page_content=' Annu.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
216
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
217
+ page_content=' Condens.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
218
+ page_content=' Matter Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
219
+ page_content=', 6(1):177–200, 2015.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
220
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
221
+ page_content='1146/annurev-conmatphys-031214-014614.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
222
+ page_content=' [6] Alberto Rosso, James P Sethna, and Matthieu Wyart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
223
+ page_content=' Avalanches and deformation in glasses and disordered systems.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
224
+ page_content=' arXiv preprint: 2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
225
+ page_content='04090, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
226
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
227
+ page_content='48550/arXiv.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
228
+ page_content='2208.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
229
+ page_content='04090.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
230
+ page_content=' [7] T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
231
+ page_content='W.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
232
+ page_content='J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
233
+ page_content=' de Geus and M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
234
+ page_content=' Wyart.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
235
+ page_content=' Scaling theory for the statistics of slip at frictional interfaces.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
236
+ page_content=' Phys.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
237
+ page_content=' Rev.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
238
+ page_content=' E, 106 (6):065001, 2022.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
239
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
240
+ page_content='1103/PhysRevE.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
241
+ page_content='106.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
242
+ page_content='065001.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
243
+ page_content=' arXiv: 2204.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
244
+ page_content='02795.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
245
+ page_content=' [8] L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
246
+ page_content=' Prandtl.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
247
+ page_content=' Ein Gedankenmodell zur kinetischen Theorie der festen K¨orper.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
248
+ page_content=' Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
249
+ page_content=' angew.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
250
+ page_content=' Math.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
251
+ page_content=' Mech.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
252
+ page_content=', 8(2):85–106, 1928.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
253
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
254
+ page_content='1002/zamm.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
255
+ page_content='19280080202.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
256
+ page_content=' [9] G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
257
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
258
+ page_content=' Tomlinson.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
259
+ page_content=' CVI.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
260
+ page_content=' A molecular theory of friction.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
261
+ page_content=' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 7(46):905–939, 1929.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
262
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
263
+ page_content='1080/14786440608564819.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
264
+ page_content=' [10] V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
265
+ page_content='L.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
266
+ page_content=' Popov and J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
267
+ page_content='A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
268
+ page_content='T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
269
+ page_content=' Gray.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
270
+ page_content=' Prandtl-Tomlinson Model: A Simple Model Which Made History.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
271
+ page_content=' In E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
272
+ page_content=' Stein, editor, The History of Theoretical, Material and Computational Mechanics - Mathematics Meets Mechanics and Engineering, volume 1, pages 153–168.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
273
+ page_content=' Springer Berlin Heidelberg, 2014.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
274
+ page_content=' ISBN 978-3-642-39904-6 978-3-642-39905-3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
275
+ page_content=' doi: 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
276
+ page_content='1007/978-3-642-39905-3 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
277
+ page_content=' A Analytical solution Anasatz.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
278
+ page_content=' We look for the solution of a general lin- ear equation of motion in one well m¨r + η ˙r + κr − F = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
279
+ page_content=' (9) where the position r is expressed relative to the local minimum in potential energy.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
280
+ page_content=' The external force F tilts the potential energy landscape and will be used as a perturbation to check the robustness of our ar- gument.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
281
+ page_content=' An ansatz to this differential equation is r(τ) = αe−λ−τ + βe−λ+τ + ∆r, (10) where ∆r = F/κ, and τ is the time that the parti- cle has spent since the entry in the current well at r(τ = 0) ≡ −w/2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
282
+ page_content=' We denote the particle’s veloc- ity v(τ) ≡ ˙r(τ), whereby we take v(τ = 0) ��� v0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
283
+ page_content=' Substituting this ansatz in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
284
+ page_content=' (9) leads to λ± = (η ± � η2 − 4mκ)/(2m).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
285
+ page_content=' The prefactors α and β are set by the initial conditions such that α, β = ±r0λ± + v0 λ+ − λ− , (11) with r0 ≡ −w/2 − ∆r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
286
+ page_content=' Underdamped.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
287
+ page_content=' We recognise that if λ± are real (η2 > 4mκ), the dynamics are overdamped and the velocity decays exponentially.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
288
+ page_content=' Conversely, the un- derdamped dynamics that we consider correspond to η2 < 4mκ 3.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
289
+ page_content=' Oscillator.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
290
+ page_content=' In the underdamped case, λ± and α, β are complex conjugates.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
291
+ page_content=' This allows us to simplify the solution by expressing those coefficients as λ± = λ ± iω and α, β = (L/2)e±iφ as follows 4 r(τ) = Le−λτ cos(ωτ + φ) + ∆r.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
292
+ page_content=' (12) We remark that the velocity v(τ) can be expressed as a phase shift with respect to r(τ) 5 v(τ) = −Ae−λτ cos � ωτ + φ − arctan �ω λ �� (13) with A = λL � 1 + (ω/λ)2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
293
+ page_content=' We summarise the ampli- tudes, frequency, and phase.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
294
+ page_content=' From λ± we find λ = η 2m, ω2 = κ m − � η 2m �2 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
295
+ page_content=' (14) Furthermore, Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
296
+ page_content=' (11) gives α, β = 1 2 � r0 ∓ i(λr0 + v0)/ω � , (15) such that L2 = 4 � Re(α)2 + Im(α)2� (16) = � (ωr0)2 + (λr0 + v0)2� /ω2, (17) and φ = χπ + arctan (Im(α)/Re(α)) (18) = χπ − arctan (λ/ω + v0/(ωr0)) , (19) where χ depends on α 6.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
297
+ page_content=' 3Note that our solution warrants some caution for critical damping η2 = 4mκ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
298
+ page_content=' 4cos(z) = (eiz + e−iz)/2 5a cos(z) + b sin(z) = sgn(a) √ a2 + b2 cos (z − arctan(b/a)) 6Re(α) ≥ 0 → χ = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
299
+ page_content=' (Re(α) < 0, Im(α) ≥ 0) → χ = 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
300
+ page_content=' (Re(α) < 0, Im(α) < 0) → χ = −1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
301
+ page_content=' 6 B Exiting well We will show that the minimum kinetic energy with which the particle needs to enter a well to be able to exit Ec ∝ w2, whereby we consider F = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
302
+ page_content=' The particle exits the well if v0 > vc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
303
+ page_content=' vc thus corresponds to the case that r(τe) = w/2 = −r0 for which v(τe) = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
304
+ page_content=' Let us make the ansatz that v0 = vc = w/τc and look for the solution of τc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
305
+ page_content=' We note that on the interval τ ∈ [0, τe) the posi- tion is strictly monotonically increasing.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
306
+ page_content=' The solution of v(τn) = 0 corresponds to ωτn + φ − arctan(ω/λ) = (n + 1/2)π, n ∈ Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
307
+ page_content=' (20) The for us relevant solution is τe = min(τn > 0) 7 .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
308
+ page_content=' r(τe) = w/2 corresponds to Le−λτe = w/(2c0), (21) with c0 = cos((n + 1/2)π + arctan(ω/λ)).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
309
+ page_content=' (22) Using the definition of τe in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
310
+ page_content=' (20) leads to Leλφ/ω = w/(2c0c1), (23) with c1 = e−λ(n+1/2)π/ω−(λ/ω) arctan(ω/λ).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
311
+ page_content=' (24) Furthermore, L2 = 1 4 � ω2 + (2/τc − λ)2� (w/ω)2, (25) φ = sign (2/τc − λ) π + arctan �� 2/τc − λ � /ω � , (26) such that L′eλφ/ω = 1/(2c0c1), (27) with L′ = L/w.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
312
+ page_content=' Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
313
+ page_content=' (27) is w independent and can be solved for τc = τc(λ, ω, n), proving that vc = w/τc.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
314
+ page_content=' This results thus corresponds to Ec = 1 2mv2 c = m 2τ 2c w2.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
315
+ page_content=' (28) as we used to go from Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
316
+ page_content=' (2) to obtain Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
317
+ page_content=' (4) using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
318
+ page_content=' (3).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
319
+ page_content=' 7i.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
320
+ page_content='e.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
321
+ page_content=' n = ±1 depending on (r0, v0) C Entry kinetic energy With K the kinetic energy at exiting the well, we show that ∂wK �� w=w∗ > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
322
+ page_content=' We again consider F = 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
323
+ page_content=' In particular, we show that ∂wK = m ve ∂wve > 0.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
324
+ page_content=' (29) The derivative of the velocity as a function of the well size is ∂rv = ∂τv/∂τr = a(τ)/v(τ), (30) where the acceleration a(τ) ≡ ¨r(τ) = αλ2 −e−λ−τ + βλ2 +e−λ+τ.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
325
+ page_content=' By evaluating this expression with initial conditions r(τ = 0) = −w∗/2 and v(τ = 0) = 0, we find ∂wK �� w=w∗ = m (αλ2 − + βλ2 +) = −m 2 (λ2 + ω2) w∗.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
326
+ page_content=' (31) From the definitions of λ and ω in Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
327
+ page_content=' (14), we thus find ∂wK �� w=w∗ = −κw∗/2, (32) as we argued above to show that P(E = 0) > 0 using Eq.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
328
+ page_content=' (8).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/-dFST4oBgHgl3EQfcTgr/content/2301.13802v1.pdf'}
-tFST4oBgHgl3EQfcjgx/content/2301.13803v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ec4a491cbb15125a132c600492dde2bebbbf9da238559cfff708730b0a82390
3
+ size 2428479
.gitattributes CHANGED
@@ -5449,3 +5449,37 @@ j9E3T4oBgHgl3EQf5Quy/content/2301.04780v1.pdf filter=lfs diff=lfs merge=lfs -tex
5449
  SdA0T4oBgHgl3EQfD_9b/content/2301.02011v1.pdf filter=lfs diff=lfs merge=lfs -text
5450
  19AzT4oBgHgl3EQfDfqo/content/2301.00978v1.pdf filter=lfs diff=lfs merge=lfs -text
5451
  gNE5T4oBgHgl3EQfhg_G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5449
  SdA0T4oBgHgl3EQfD_9b/content/2301.02011v1.pdf filter=lfs diff=lfs merge=lfs -text
5450
  19AzT4oBgHgl3EQfDfqo/content/2301.00978v1.pdf filter=lfs diff=lfs merge=lfs -text
5451
  gNE5T4oBgHgl3EQfhg_G/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5452
+ j9E3T4oBgHgl3EQf5Quy/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5453
+ 0tE1T4oBgHgl3EQflAQk/content/2301.03279v1.pdf filter=lfs diff=lfs merge=lfs -text
5454
+ eNFAT4oBgHgl3EQfZR37/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5455
+ l9FIT4oBgHgl3EQfsisx/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5456
+ e9FST4oBgHgl3EQfGTh-/content/2301.13721v1.pdf filter=lfs diff=lfs merge=lfs -text
5457
+ 7dAyT4oBgHgl3EQfQvYd/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5458
+ eNFAT4oBgHgl3EQfZR37/content/2301.08545v1.pdf filter=lfs diff=lfs merge=lfs -text
5459
+ 0tE1T4oBgHgl3EQflAQk/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5460
+ vtFQT4oBgHgl3EQfvDZj/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5461
+ wdAzT4oBgHgl3EQfQPvW/content/2301.01197v1.pdf filter=lfs diff=lfs merge=lfs -text
5462
+ j9AzT4oBgHgl3EQfbfze/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5463
+ tNAyT4oBgHgl3EQfmvgr/content/2301.00475v1.pdf filter=lfs diff=lfs merge=lfs -text
5464
+ VdAzT4oBgHgl3EQfJ_tt/content/2301.01089v1.pdf filter=lfs diff=lfs merge=lfs -text
5465
+ U9AyT4oBgHgl3EQfV_cW/content/2301.00152v1.pdf filter=lfs diff=lfs merge=lfs -text
5466
+ q9FRT4oBgHgl3EQfezfQ/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5467
+ JNAzT4oBgHgl3EQfVPyV/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5468
+ vtE_T4oBgHgl3EQf-xzf/content/2301.08389v1.pdf filter=lfs diff=lfs merge=lfs -text
5469
+ INAzT4oBgHgl3EQfHvu0/content/2301.01051v1.pdf filter=lfs diff=lfs merge=lfs -text
5470
+ 1tFLT4oBgHgl3EQfqC-n/content/2301.12138v1.pdf filter=lfs diff=lfs merge=lfs -text
5471
+ VNAzT4oBgHgl3EQfX_zt/content/2301.01329v1.pdf filter=lfs diff=lfs merge=lfs -text
5472
+ e9FST4oBgHgl3EQfGTh-/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5473
+ -tFST4oBgHgl3EQfcjgx/content/2301.13803v1.pdf filter=lfs diff=lfs merge=lfs -text
5474
+ 19AzT4oBgHgl3EQfDfqo/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5475
+ 1tFLT4oBgHgl3EQfqC-n/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5476
+ vtE_T4oBgHgl3EQf-xzf/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5477
+ btE2T4oBgHgl3EQfwQhi/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5478
+ x9E2T4oBgHgl3EQfhQeR/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5479
+ BtE1T4oBgHgl3EQfpgUG/content/2301.03331v1.pdf filter=lfs diff=lfs merge=lfs -text
5480
+ y9E5T4oBgHgl3EQfNw4V/content/2301.05491v1.pdf filter=lfs diff=lfs merge=lfs -text
5481
+ fNFST4oBgHgl3EQfGjh7/vector_store/index.faiss filter=lfs diff=lfs merge=lfs -text
5482
+ 7dAyT4oBgHgl3EQfQvYd/content/2301.00050v1.pdf filter=lfs diff=lfs merge=lfs -text
5483
+ vdFJT4oBgHgl3EQffCyN/content/2301.11555v1.pdf filter=lfs diff=lfs merge=lfs -text
5484
+ 69E1T4oBgHgl3EQfnASE/content/2301.03304v1.pdf filter=lfs diff=lfs merge=lfs -text
5485
+ PNFPT4oBgHgl3EQfnjVw/content/2301.13130v1.pdf filter=lfs diff=lfs merge=lfs -text
0tE1T4oBgHgl3EQflAQk/content/2301.03279v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4b35fe7cdf77abb096c8a1c1f82b57e9a5007a02bd901b10514d1d302f6be07f
3
+ size 243087
0tE1T4oBgHgl3EQflAQk/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e081cdbe200fa67261ee3bf58c34b90a7e1dbef9733117036648bfa55d019705
3
+ size 3866669
0tFAT4oBgHgl3EQfCRy0/content/tmp_files/2301.08409v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
0tFAT4oBgHgl3EQfCRy0/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
19AzT4oBgHgl3EQfDfqo/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:368a380856cc20211a7e2963ed9669bd16c326d9c7f17a261e5567fc7095deff
3
+ size 1507373
1tFLT4oBgHgl3EQfqC-n/content/2301.12138v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b3388d4e19dca1f5b895bd808c806d688b7f445aeef0a565fd5d2639b97553f0
3
+ size 4008479
1tFLT4oBgHgl3EQfqC-n/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8cca964cdac233dfb088458b921bc29b937ea62d3f04f2ba2e50f501c6cd33b0
3
+ size 8978477
1tFLT4oBgHgl3EQfqC-n/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95342751e3089557556c92b7310483caf0c05aae676d1a9e962d091cafdbf2f9
3
+ size 333061
2NE2T4oBgHgl3EQfNgYt/content/tmp_files/2301.03737v1.pdf.txt ADDED
@@ -0,0 +1,4539 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03737v1 [hep-ph] 10 Jan 2023
2
+ EPHOU-23-001
3
+ Quark hierarchical structures in modular symmetric
4
+ flavor models at level 6
5
+ Shota Kikuchi, Tatsuo Kobayashi, Kaito Nasu,
6
+ Shohei Takada, and Hikaru Uchida
7
+ Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
8
+ Abstract
9
+ We study modular symmetric quark flavor models without fine-tuning. Mass matrices are
10
+ written in terms of modular forms, and modular forms in the vicinity of the modular fixed
11
+ points become hierarchical depending on their residual charges. Thus modular symmetric
12
+ flavor models in the vicinity of the modular fixed points have a possibility to describe
13
+ mass hierarchies without fine-tuning. Since describing quark hierarchies without fine-tuning
14
+ requires Zn residual symmetry with n ≥ 6, we focus on Γ6 modular symmetry in the
15
+ vicinity of the cusp τ = i∞ where Z6 residual symmetry remains. We use only modular
16
+ forms belonging to singlet representations of Γ6 to make our analysis simple. Consequently,
17
+ viable quark flavor models are obtained without fine-tuning.
18
+
19
+ 1
20
+ Introduction
21
+ The origin of quark and lepton flavor structures such as hierarchical masses and mixing angles
22
+ is one of challenging issues in particle physics.
23
+ Indeed, many works were done in order to
24
+ solve the problem. Among such works, modular symmetric flavor models are interesting. In
25
+ these flavor models, the quark and lepton mass matrices are written in terms of modular forms,
26
+ which are holomorphic functions of the modulus τ [1] 1. It is well known that the finite modular
27
+ groups ΓN for N = 2, 3, 4, 5 are isomorphic to the non-Abelian finite groups S3, A4, S4 and
28
+ A5, respectively [17]. This is interesting since the non-Abelian finite groups are long familiar
29
+ in flavor models for quarks and leptons [18–28]. Inspired by this point, the modular symmetric
30
+ lepton flavor models have been proposed in Γ2 ≃ S3 [29], Γ3 ≃ A4 [1], Γ4 ≃ S4 [30] and
31
+ Γ5 ≃ A5 [31, 32]. In addition, modular symmetries at levels 6 [33] and 7 [34] were studied.
32
+ Furthermore, modular forms of other groups were also studied [7,35–38].
33
+ Using these various modular forms, the mass ratios and flavor mixing of quarks and leptons
34
+ have been discussed successfully in these years. Phenomenological studies have been developed
35
+ in many works and interesting results have been obtained [39–78]. However, one needs to fine-
36
+ tune coefficients of modular forms in Yukawa couplings in order to describe the hierarchical
37
+ structure of fermion masses, in particular quark mass hierarchies.
38
+ Describing the lepton flavors without fine-tuning on modular invariant models was proposed
39
+ in Ref. [79].
40
+ Authors focused on the vicinity of three modular fixed points, τ = i, ω (=
41
+ e2πi/3) and i∞ where residual symmetries remain [42]. The values of modular forms become
42
+ hierarchical as close to these modular fixed points due to approximate residual symmetries.
43
+ Then, the hierarchy among values of the modular forms is determined by charges of residual
44
+ symmetries at the modular fixed points. For instance the modular forms of Γ4 ≃ S4 with Z4
45
+ (T-transformation) charges 0, 1, 2 and 3 can take the sizes 1, ε, ε2 and ε3, respectively in the
46
+ vicinity of τ = i∞, where ε expresses the deviation from the modular fixed points. Indeed viable
47
+ lepton models on the double covering groups of ΓN, Γ′
48
+ 3 ≃ A′
49
+ 4, Γ′
50
+ 4 ≃ S′
51
+ 4 and Γ5 ≃ A′
52
+ 5, were studied
53
+ in Ref. [79]. This is one successful way to generate hierarchical structures without fine-tuning.
54
+ Nevertheless the realization of the quark flavor structure is not straightforward. Experiments
55
+ show mass hierarchies of up sector quarks as mu/mt ∼ 10−5 and mc/mt ∼ 10−2-10−3 and ones
56
+ of down sector quarks as md/mb ∼ 10−3 and ms/mb ∼ 10−2 [80]. Suppose that ε = O(0.1).
57
+ Then, we could explain these mass ratios except mu/mt ∼ 10−5. However, ε5 does not appear
58
+ in the framework of the finite modular group of level N less than 6 since the present residual
59
+ symmetries Z2, Z3 and ZN at τ = i, ω and i∞ do not possess the charge larger than 4.
60
+ Thus describing the quark flavor structure without fine-tuning requires the way generating
61
+ hierarchical mass ratios including ε5 = O(10−5).
62
+ One way is to relax the quark mass eigenvalues by tuning the values of coupling constants in
63
+ Yukawa couplings. In Ref. [81], the quark flavor model with A4 modular symmetry was studied
64
+ and succeeded to generate both up and down sector quark mass hierarchies by adjusting one
65
+ 1The modular flavor symmetry was also studied from the top-down approach such as string theory [2–16].
66
+ 1
67
+
68
+ coupling constant ratio denoted by gu/gd to O(10). As a result, quark mass hierarchies originate
69
+ from following two origins,
70
+ (i) The vacuum expectation value (VEV) of the modulus τ (the deviation from the modular
71
+ fixed points),
72
+ (ii) The coupling constants in Yukawa couplings.
73
+ Another way is to introduce the finite modular symmetry including Zn residual symmetry
74
+ with n ≥ 6. In such models, the modular forms in the vicinity of the symmetric points can
75
+ take the sizes 1, ε, · · ·, εn−1 depending on their residual charges. Hence, it may be possible
76
+ to generate mass hierarchies in both up and down sector quarks without fine-tuning using the
77
+ hierarchical values of the modular forms up to ε5. Note that in this way quark mass hierarchies
78
+ simply originate from (i) above. In this paper, we study the modular symmetric quark flavor
79
+ model with the finite modular group of level 6, Γ6 ≃ S3 × A4. The finite modular symmetry
80
+ Γ6 breaks into Z6 (T-transformation) residual symmetry at τ = i∞ and can generate the
81
+ hierarchical values of the modular forms up to ε5 in the vicinity of τ = i∞.
82
+ This paper is organized as follows. In section 2, we study generic aspects for the modular
83
+ symmetric quark flavor models being able to realize both up and down sector quark mass
84
+ hierarchies without fine-tuning along the lines proposed in Ref. [79]. In section 3, we study quark
85
+ flavor models with the finite modular group Γ6. Section 4 is our conclusion. We summarize
86
+ group theoretical aspects of Γ6 in appendix A and the modular forms of level 6 in appendix B.
87
+ 2
88
+ Hierarchical quark mass matrices without fine-tuning
89
+ In this section, we present modular symmetric quark flavor models without fine-tuning. We
90
+ start from the following assignment of modular weights to supermultiplets:
91
+ • quark doublets Q = (Q1, Q2, Q3) are assigned into three-dimensional (reducible or irre-
92
+ ducible ) representation of a finite modular group with weight −kQ,
93
+ • up sector quark singlets uR = (u1
94
+ R, u2
95
+ R, u3
96
+ R) are assigned into three-dimensional (reducible
97
+ or irreducible ) representation of a finite modular group with weight −ku,
98
+ • down sector quark singlets dR = (d1
99
+ R, d2
100
+ R, d3
101
+ R) are assigned into three-dimensional (re-
102
+ ducible or irreducible ) representation of a finite modular group with weight −kd,
103
+ • each of up and down sector Higgs fields Hu,d is assigned into one-dimensional representa-
104
+ tions of a finite modular group with weight −kHu,d.
105
+ Note that three-dimensional representations are constructed by combining singlets, doublets
106
+ and triplets of any finite modular groups. The most general form of the superpotential relevant
107
+ 2
108
+
109
+ to up sector quark masses is written as
110
+ Wu =
111
+
112
+ ri
113
+
114
+ Y (kYu)
115
+ ri
116
+
117
+ Q1
118
+ Q2
119
+ Q3�
120
+
121
+
122
+ α11
123
+ ri
124
+ α12
125
+ ri
126
+ α13
127
+ ri
128
+ α21
129
+ ri
130
+ α22
131
+ ri
132
+ α23
133
+ ri
134
+ α31
135
+ ri
136
+ α32
137
+ ri
138
+ α33
139
+ ri
140
+
141
+
142
+
143
+
144
+ u1
145
+ R
146
+ u2
147
+ R
148
+ u3
149
+ R
150
+
151
+  Hu
152
+
153
+
154
+ 1
155
+ ,
156
+ (1)
157
+ where Y (kYu)
158
+ ri
159
+ denotes the modular forms of irreducible representation ri for weight kYu = kQ +
160
+ ku + kHu. Some of coupling constants αij may be related each other when quark doublets Q
161
+ and/or up sector quark singlets uR belong to multiplets. Similarly the superpotential relevant
162
+ to down sector quark masses is written as
163
+ Wd =
164
+
165
+ ri
166
+
167
+ Y
168
+ (kYd)
169
+ ri
170
+
171
+ Q1
172
+ Q2
173
+ Q3�
174
+
175
+
176
+ β11
177
+ ri
178
+ β12
179
+ ri
180
+ β13
181
+ ri
182
+ β21
183
+ ri
184
+ β22
185
+ ri
186
+ β23
187
+ ri
188
+ β31
189
+ ri
190
+ β32
191
+ ri
192
+ β33
193
+ ri
194
+
195
+
196
+
197
+
198
+ d1
199
+ R
200
+ d2
201
+ R
202
+ d3
203
+ R
204
+
205
+  Hd
206
+
207
+
208
+ 1
209
+ ,
210
+ (2)
211
+ with kYd = kQ + kd + kHd. They lead to the up and down sector quark mass matrices, Mu and
212
+ Md,
213
+
214
+ Q1
215
+ Q2
216
+ Q3�
217
+ Mu
218
+
219
+
220
+ u1
221
+ R
222
+ u2
223
+ R
224
+ u3
225
+ R
226
+
227
+  =
228
+
229
+ ri
230
+
231
+ Y (kYu)
232
+ ri
233
+
234
+ Q1
235
+ Q2
236
+ Q3�
237
+
238
+
239
+ α11
240
+ ri
241
+ α12
242
+ ri
243
+ α13
244
+ ri
245
+ α21
246
+ ri
247
+ α22
248
+ ri
249
+ α23
250
+ ri
251
+ α31
252
+ ri
253
+ α32
254
+ ri
255
+ α33
256
+ ri
257
+
258
+
259
+
260
+
261
+ u1
262
+ R
263
+ u2
264
+ R
265
+ u3
266
+ R
267
+
268
+  ⟨Hu⟩
269
+
270
+
271
+ 1
272
+ , (3)
273
+
274
+ Q1
275
+ Q2
276
+ Q3�
277
+ Md
278
+
279
+
280
+ d1
281
+ R
282
+ d2
283
+ R
284
+ d3
285
+ R
286
+
287
+  =
288
+
289
+ ri
290
+
291
+ Y
292
+ (kYd)
293
+ ri
294
+
295
+ Q1
296
+ Q2
297
+ Q3�
298
+
299
+
300
+ β11
301
+ ri
302
+ β12
303
+ ri
304
+ β13
305
+ ri
306
+ β21
307
+ ri
308
+ β22
309
+ ri
310
+ β23
311
+ ri
312
+ β31
313
+ ri
314
+ β32
315
+ ri
316
+ β33
317
+ ri
318
+
319
+
320
+
321
+
322
+ d1
323
+ R
324
+ d2
325
+ R
326
+ d3
327
+ R
328
+
329
+  ⟨Hd⟩
330
+
331
+
332
+ 1
333
+ .
334
+ (4)
335
+ We expect that the coefficients αij and βij are of O(1), because we do not explain quark
336
+ mass hierarchies by using hierarchies of these coefficients. In particular, we restrict all coupling
337
+ constants αij and βij to ±1 and study the realization of the orders of mass ratios and the
338
+ Cabibbo, Kobayashi, Maskawa (CKM) matrix elements. Then free parameter is only the value
339
+ of the modulus τ (and the choices of +1 or −1 in coupling constants αij and βij).
340
+ (mu, mc, mt)/mt
341
+ (1.26 × 10−5, 7.38 × 10−3, 1)
342
+ (md, ns, mb)/mb
343
+ (1.12 × 10−3, 2.22 × 10−2, 1)
344
+ Table 1: Observed values of quark masses [80].
345
+ In order to realize hierarchical quark masses as shown in Table 1 without fine-tuning, it is
346
+ necessary to generate hierarchies by values of the modular forms. Actually such hierarchical
347
+ values of the modular forms can be realized in a vicinity of three modular fixed points, τ = i,
348
+ ω and i∞. This can be understood as follows. As an example let us consider Zn symmetric
349
+ point and quark doublets Q, up sector quark singlets uR and up-type Higgs field Hu with the
350
+ following Zn residual charges,
351
+ Q : (1, n − 1, 0),
352
+ uR : (1, 0, 0),
353
+ Hu : 0.
354
+ (5)
355
+ 3
356
+
357
+ Then the entities of the up sector quark mass matrix, Mij
358
+ u , must have the following Zn residual
359
+ charges to make Lagrangian modular invariant,
360
+ Mij
361
+ u :
362
+
363
+
364
+ n − 2
365
+ n − 1
366
+ n − 1
367
+ 0
368
+ 1
369
+ 1
370
+ n − 1
371
+ 0
372
+ 0
373
+
374
+  .
375
+ (6)
376
+ In the vicinity of Zn symmetric point, the modular forms with Zn residual charge q, f(τ), can
377
+ be expanded by the deviation from the symmetric point to the power of q [79]:
378
+ 1. τ ∼ i: f(τ) ∼ εq, ε ≡ τ−i
379
+ τ+i,
380
+ 2. τ ∼ ω: f(τ) ∼ εq, ε ≡
381
+ τ−ω
382
+ τ−ω2,
383
+ 3. τ ∼ i∞: f(τ) ∼ εq, ε ≡ e−2πImτ/N (N is a level of the finite modular group).
384
+ Thus the above up sector quark mass matrix can be evaluated as
385
+ Mij
386
+ u ∼
387
+
388
+
389
+ εn−2
390
+ εn−1
391
+ εn−1
392
+ 1
393
+ ε
394
+ ε
395
+ εn−1
396
+ 1
397
+ 1
398
+
399
+  ,
400
+ (7)
401
+ in the vicinity of Zn symmetric point. Similarly, for the down sector quark mass matrix as
402
+ well as lepton mass matrices, the modular forms take hierarchical values depending on their
403
+ residual charges and lead to hierarchical mass matrices as close to the modular fixed points.
404
+ In Ref. [79], lepton flavor models without fine-tuning around the vicinity of the modular fixed
405
+ points was studied.
406
+ On the other hand, it is difficult to realize quark mass hierarchies by the values of the
407
+ modular forms in the vicinity of τ = i and ω. To realize both up and down sector quark mass
408
+ hierarchies in Table 1 simultaneously, we may need ε to the fifth power, when ε = O(0.1). Hence
409
+ we need five different residual charges. This requirement excludes the vicinity of τ = i and ω
410
+ since they correspond to Z2 and Z3 symmetries, respectively. In other words, such hierarchical
411
+ masses can be realized in the vicinity of the cusp τ = i∞ with ZN charge for N ≥ 6.
412
+ Let us discuss the candidates of the modular symmetry.
413
+ As mentioned above the level
414
+ of the modular symmetry must be lager than 5. Here we focus on the levels 6 and 7, that
415
+ is, Γ6 ≃ S3 × A4 and Γ7 ≃ PSL(2, Z7) as the candidates of the modular symmetry. As the
416
+ irreducible representations less than four dimension, Γ7 ≃ PSL(2, Z7) has only one singlet 1
417
+ and two triplets 3 and ¯3 [34]; this variety of irreducible representations may not be enough
418
+ to find the models being able to realize both up and down sector quark masses. In contrast,
419
+ Γ6 ≃ S3 × A4 has six singlets, 10
420
+ 0, 10
421
+ 1, 10
422
+ 2, 11
423
+ 0, 11
424
+ 1 and 11
425
+ 2, three doublets, 20, 21 and 22, and two
426
+ triplets, 30 and 31 [33]. They would be sufficient to find realistic models. In the following, we
427
+ consider the models with Γ6 modular symmetry and realize quark flavors without fine-tuning
428
+ in the vicinity of τ = i∞.
429
+ 4
430
+
431
+ 3
432
+ The models with Γ6 modular symmetry
433
+ Here we study the models with Γ6 modular symmetry and realize the quark flavor structure
434
+ without fine-tuning. As we have mentioned in the previous section, we restrict all couplings αij
435
+ and βij to ±1 in quark mass matrices to avoid fine-tuning by them. We study the realization
436
+ of the orders of mass ratios and mixing angles. We use only the modulus τ (and the choices of
437
+ +1 or -1 in αij and βij) as a free parameter.
438
+ In Γ6 modular symmetry, ε to the power up to 5 can appear in mass matrices. Indeed six
439
+ Γ6 singlets with six different T-charges correspond to different powers of ε in the vicinity of
440
+ τ = i∞ as shown in Table 2.
441
+ singlet
442
+ 10
443
+ 0
444
+ 11
445
+ 2
446
+ 10
447
+ 1
448
+ 11
449
+ 0
450
+ 10
451
+ 2
452
+ 11
453
+ 1
454
+ T-charge
455
+ 0
456
+ 1
457
+ 2
458
+ 3
459
+ 4
460
+ 5
461
+ order
462
+ 1
463
+ ε
464
+ ε2
465
+ ε3
466
+ ε4
467
+ ε5
468
+ Table 2: T-charges of six Γ6 singlets and their orders in the vicinity of τ = i∞.
469
+ To realize the quark flavor structure, let us consider the following four types of mass matrices,
470
+ Type I:
471
+ Mu ∝
472
+
473
+
474
+ ε5
475
+ ε3−a+b
476
+ εb
477
+ ±ε5+a−b
478
+ ±ε3
479
+ ±εa
480
+ ±ε5−b
481
+ ±ε3−a
482
+ ±1
483
+
484
+  ,
485
+ Md ∝
486
+
487
+
488
+ ε3
489
+ ε2−a+b
490
+ εb
491
+ ±ε3+a−b
492
+ ±ε2
493
+ ±εa
494
+ ±ε3−b
495
+ ±ε2−a
496
+ ±1
497
+
498
+  ,
499
+ (8)
500
+ Type II:
501
+ Mu ∝
502
+
503
+
504
+ ε5
505
+ ε3−a+b
506
+ εb
507
+ ±ε5+a−b
508
+ ±ε3
509
+ ±εa
510
+ ±ε5−b
511
+ ±ε3−a
512
+ ±1
513
+
514
+  ,
515
+ Md ∝
516
+
517
+
518
+ ε4
519
+ ε2−a+b
520
+ εb
521
+ ±ε4+a−b
522
+ ±ε2
523
+ ±εa
524
+ ±ε4−b
525
+ ±ε2−a
526
+ ±1
527
+
528
+  ,
529
+ (9)
530
+ Type III:
531
+ Mu ∝
532
+
533
+
534
+ ε5
535
+ ε2−a+b
536
+ εb
537
+ ±ε5+a−b
538
+ ±ε2
539
+ ±εa
540
+ ±ε5−b
541
+ ±ε2−a
542
+ ±1
543
+
544
+  ,
545
+ Md ∝
546
+
547
+
548
+ ε3
549
+ ε2−a+b
550
+ εb
551
+ ±ε3+a−b
552
+ ±ε2
553
+ ±εa
554
+ ±ε3−b
555
+ ±ε2−a
556
+ ±1
557
+
558
+  ,
559
+ (10)
560
+ Type IV:
561
+ Mu ∝
562
+
563
+
564
+ ε5
565
+ ε2−a+b
566
+ εb
567
+ ±ε5+a−b
568
+ ±ε2
569
+ ±εa
570
+ ±ε5−b
571
+ ±ε2−a
572
+ ±1
573
+
574
+  ,
575
+ Md ∝
576
+
577
+
578
+ ε4
579
+ ε2−a+b
580
+ εb
581
+ ±ε4+a−b
582
+ ±ε2
583
+ ±εa
584
+ ±ε4−b
585
+ ±ε2−a
586
+ ±1
587
+
588
+  ,
589
+ (11)
590
+ where ± corresponds any possible combinations of signs and a, b ∈ {0, 1, 2, 3, 4, 5}. Note that
591
+ it is always possible to fix the signs of (1,1), (1,2) and (1,3) components to +1 by the basis
592
+ transformation for right-handed quarks. We set powers of ε on diagonal components in up and
593
+ down sector quark mass matrices to (5,3,0) and (3,2,0) for type I, (5,3,0) and (4,2,0) for type
594
+ II, (5,2,0) and (3,2,0) for type III and (5,2,0) and (4,2,0) for type IV in order to realize their
595
+ hierarchical masses. Here, we use only six Γ6 singlets, 10
596
+ 0, 10
597
+ 1, 10
598
+ 2, 11
599
+ 0, 11
600
+ 1 and 11
601
+ 2, as irreducible
602
+ representations to make our analysis simple. Note that again powers of ε in mass matrices are
603
+ determined by Z6 charges of entities of mass matrices. Thus mass matrices of each type can be
604
+ 5
605
+
606
+ led by the following assignments,
607
+ Type I :
608
+ Q = (1b mod 2
609
+ b mod 3, 1a mod 2
610
+ a mod 3, 10
611
+ 0), uR = (15−b mod 2
612
+ 5−b mod 3, 13−a mod 2
613
+ 3−a mod 3, 10
614
+ 0), dR = (13−b mod 2
615
+ 3−b mod 3, 12−a mod 2
616
+ 2−a mod 3, 10
617
+ 0),
618
+ (12)
619
+ Type II :
620
+ Q = (1b mod 2
621
+ b mod 3, 1a mod 2
622
+ a mod 3, 10
623
+ 0), uR = (15−b mod 2
624
+ 5−b mod 3, 13−a mod 2
625
+ 3−a mod 3, 10
626
+ 0), dR = (14−b mod 2
627
+ 4−b mod 3, 12−a mod 2
628
+ 2−a mod 3, 10
629
+ 0),
630
+ (13)
631
+ Type III :
632
+ Q = (1b mod 2
633
+ b mod 3, 1a mod 2
634
+ a mod 3, 10
635
+ 0), uR = (15−b mod 2
636
+ 5−b mod 3, 12−a mod 2
637
+ 2−a mod 3, 10
638
+ 0), dR = (13−b mod 2
639
+ 3−b mod 3, 12−a mod 2
640
+ 2−a mod 3, 10
641
+ 0),
642
+ (14)
643
+ Type IV :
644
+ Q = (1b mod 2
645
+ b mod 3, 1a mod 2
646
+ a mod 3, 10
647
+ 0), uR = (15−b mod 2
648
+ 5−b mod 3, 12−a mod 2
649
+ 2−a mod 3, 10
650
+ 0), dR = (14−b mod 2
651
+ 4−b mod 3, 12−a mod 2
652
+ 2−a mod 3, 10
653
+ 0).
654
+ (15)
655
+ On the other hand, it is not always true that mass matrices in four types are definitely realized
656
+ by the above assignments. It depends on weights of the Yukawa couplings. All of the singlet
657
+ modular forms of Γ6 with certain Z6 charges do not exist for weights less than 14 as shown in
658
+ appendix B. For instance, the modular forms of weight 12 belong to 11
659
+ 1 do not exist. Yukawa
660
+ couplings of the weights less than 14 can lead to mass matrices with some zeros due to this
661
+ shortage of the modular forms on low weights. We study the case of Yukawa couplings of the
662
+ weight 14 in subsection 3.1 and one of the weights less than 14 in subsection 3.2.
663
+ 3.1
664
+ Weight 14
665
+ First of all, we study the models with Yukawa couplings of weight 14 to avoid zero textures in
666
+ mass matrices of four types. We choose τ = 3.2i as a benchmark point of the modulus. At
667
+ weight 14, seven singlet modular forms, Y (14)
668
+ 10
669
+ 0 , Y (14)
670
+ 11
671
+ 2i , Y (14)
672
+ 10
673
+ 1 , Y (14)
674
+ 11
675
+ 0 , Y (14)
676
+ 10
677
+ 2 , Y (14)
678
+ 11
679
+ 1
680
+ and Y (14)
681
+ 11
682
+ 2ii, exist
683
+ and they are approximated by ε as
684
+ Y (14)
685
+ 10
686
+ 0 /Y (14)
687
+ 10
688
+ 0
689
+ = 1 → 1,
690
+ Y (14)
691
+ 11
692
+ 2i /Y (14)
693
+ 10
694
+ 0
695
+ = 0.172 → ε,
696
+ (16)
697
+ Y (14)
698
+ 10
699
+ 1 /Y (14)
700
+ 10
701
+ 0
702
+ = 0.0208 → ε2,
703
+ Y (14)
704
+ 11
705
+ 0 /Y (14)
706
+ 10
707
+ 0
708
+ = 0.00358 → ε3,
709
+ (17)
710
+ Y (14)
711
+ 10
712
+ 2 /Y (14)
713
+ 10
714
+ 0
715
+ = 0.000435 → ε4,
716
+ Y (14)
717
+ 11
718
+ 1 /Y (14)
719
+ 10
720
+ 0
721
+ = 0.0000746 → ε5,
722
+ (18)
723
+ Y (14)
724
+ 11
725
+ 2ii/Y (14)
726
+ 10
727
+ 0
728
+ = 0.00000156 → ε7,
729
+ (19)
730
+ at τ = 3.2i. Note that Y (14)
731
+ 11
732
+ 2ii ∼ ε7 originates from Y (6)
733
+ 11
734
+ 0 Y (8)
735
+ 10
736
+ 2 ∼ ε3 · ε4 while Y (14)
737
+ 11
738
+ 2i ∼ ε originates
739
+ from Y (6)
740
+ 11
741
+ 2 Y (8)
742
+ 10
743
+ 0 ∼ ε · 1. εn for n > 5 can appear when the different modular forms of the same
744
+ irreducible representations exist. In what follows, we ignore Y (14)
745
+ 11
746
+ 2ii because it belongs to the
747
+ same representation as Y (14)
748
+ 11
749
+ 2i and Y (14)
750
+ 11
751
+ 2i >> Y (14)
752
+ 11
753
+ 2ii.
754
+ 6
755
+
756
+ 3.1.1
757
+ Type I: (5,3,0) and (3,2,0)
758
+ The mass matrices of type I are given by
759
+ Mu =
760
+
761
+
762
+
763
+
764
+
765
+ α11Y (14)
766
+ 11
767
+ 1
768
+ α12Y (14)
769
+ 13+a−b mod 2
770
+ 3+a−b mod 3
771
+ α13Y (14)
772
+ 16−b mod 2
773
+ 6−b mod 3
774
+ α21Y (14)
775
+ 11−a+b mod 2
776
+ 1−a+b mod 3
777
+ α22Y (14)
778
+ 11
779
+ 0
780
+ α23Y (14)
781
+ 16−a mod 2
782
+ 6−a mod 3
783
+ α31Y (14)
784
+ 11+b mod 2
785
+ 1+b mod 3
786
+ α32Y (14)
787
+ 13+a mod 2
788
+ 3+a mod 3
789
+ α33Y (14)
790
+ 10
791
+ 0
792
+
793
+
794
+
795
+
796
+  ,
797
+ (20)
798
+ Md =
799
+
800
+
801
+
802
+
803
+
804
+ β11Y (14)
805
+ 11
806
+ 0
807
+ β12Y (14)
808
+ 14+a−b mod 2
809
+ 4+a−b mod 3
810
+ β13Y (14)
811
+ 16−b mod 2
812
+ 6−b mod 3
813
+ β21Y (14)
814
+ 13−a+b mod 2
815
+ 3−a+b mod 3
816
+ β22Y (14)
817
+ 10
818
+ 1
819
+ β23Y (14)
820
+ 16−a mod 2
821
+ 6−a mod 3
822
+ β31Y (14)
823
+ 13+b mod 2
824
+ 3+b mod 3
825
+ β32Y (14)
826
+ 14+a mod 2
827
+ 4+a mod 3
828
+ β33Y (14)
829
+ 10
830
+ 0
831
+
832
+
833
+
834
+
835
+  ,
836
+ (21)
837
+ where αij and βij are coupling constants which we restrict to ±1. The hierarchical mass matrices
838
+ in Eq. (8) can be obtained by choosing +1 or −1 appropriately in αij and βij. As a result, we
839
+ find best-fit mass matrices at τ = 3.2i,
840
+ Mu/Y (14)
841
+ 10
842
+ 0
843
+ =
844
+
845
+
846
+
847
+
848
+ Y (14)
849
+ 11
850
+ 1
851
+ Y (14)
852
+ 10
853
+ 2
854
+ Y (14)
855
+ 11
856
+ 0
857
+ Y (14)
858
+ 10
859
+ 2
860
+ Y (14)
861
+ 11
862
+ 0
863
+ Y (14)
864
+ 10
865
+ 1
866
+ −Y (14)
867
+ 10
868
+ 1
869
+ −Y (14)
870
+ 11
871
+ 2i
872
+ Y (14)
873
+ 10
874
+ 0
875
+
876
+
877
+
878
+  /Y (14)
879
+ 10
880
+ 0
881
+ =
882
+
883
+
884
+ 0.0000746
885
+ 0.000435
886
+ 0.00358
887
+ 0.000435
888
+ 0.00358
889
+ 0.0208
890
+ −0.0208
891
+ −0.172
892
+ 1
893
+
894
+
895
+
896
+
897
+
898
+ ε5
899
+ ε4
900
+ ε3
901
+ ε4
902
+ ε3
903
+ ε2
904
+ −ε2
905
+ −ε
906
+ 1
907
+
908
+  ,
909
+ (22)
910
+ Md/Y (14)
911
+ 10
912
+ 0
913
+ =
914
+
915
+
916
+
917
+
918
+ Y (14)
919
+ 11
920
+ 0
921
+ Y (14)
922
+ 11
923
+ 0
924
+ Y (14)
925
+ 11
926
+ 0
927
+ Y (14)
928
+ 10
929
+ 1
930
+ −Y (14)
931
+ 10
932
+ 1
933
+ −Y (14)
934
+ 10
935
+ 1
936
+ −Y (14)
937
+ 10
938
+ 0
939
+ Y (14)
940
+ 10
941
+ 0
942
+ −Y (14)
943
+ 10
944
+ 0
945
+
946
+
947
+
948
+  /Y (14)
949
+ 10
950
+ 0
951
+ =
952
+
953
+
954
+ 0.00358
955
+ 0.00358
956
+ 0.00358
957
+ 0.0208
958
+ −0.0208
959
+ −0.0208
960
+ −1
961
+ 1
962
+ −1
963
+
964
+
965
+
966
+
967
+
968
+ ε3
969
+ ε3
970
+ ε3
971
+ ε2
972
+ −ε2
973
+ −ε2
974
+ −1
975
+ 1
976
+ −1
977
+
978
+  .
979
+ (23)
980
+ These mass matrices correspond to a = 2, b = 3 and can be realized by
981
+ Q = (11
982
+ 0, 10
983
+ 2, 10
984
+ 0),
985
+ uR = (10
986
+ 2, 11
987
+ 1, 10
988
+ 0),
989
+ dR = (10
990
+ 0, 10
991
+ 0, 10
992
+ 0),
993
+ (24)
994
+ and their mass matrices are written by,
995
+ Mu =
996
+
997
+
998
+
999
+
1000
+ α11Y (14)
1001
+ 11
1002
+ 1
1003
+ α12Y (14)
1004
+ 10
1005
+ 2
1006
+ α13Y (14)
1007
+ 11
1008
+ 0
1009
+ α21Y (14)
1010
+ 10
1011
+ 2
1012
+ α22Y (14)
1013
+ 11
1014
+ 0
1015
+ α23Y (14)
1016
+ 10
1017
+ 1
1018
+ α31Y (14)
1019
+ 10
1020
+ 1
1021
+ α32Y (14)
1022
+ 11
1023
+ 2i
1024
+ α33Y (14)
1025
+ 10
1026
+ 0
1027
+
1028
+
1029
+
1030
+  ,
1031
+ Md =
1032
+
1033
+
1034
+
1035
+
1036
+ β11Y (14)
1037
+ 11
1038
+ 0
1039
+ β12Y (14)
1040
+ 11
1041
+ 0
1042
+ β13Y (14)
1043
+ 11
1044
+ 0
1045
+ β21Y (14)
1046
+ 10
1047
+ 1
1048
+ β22Y (14)
1049
+ 10
1050
+ 1
1051
+ β23Y (14)
1052
+ 10
1053
+ 1
1054
+ β31Y (14)
1055
+ 10
1056
+ 0
1057
+ β32Y (14)
1058
+ 10
1059
+ 0
1060
+ β33Y (14)
1061
+ 10
1062
+ 0
1063
+
1064
+
1065
+
1066
+  ,
1067
+ (25)
1068
+ 7
1069
+
1070
+ with the following choises of +1 or −1 in coupling constants,
1071
+
1072
+
1073
+ α11
1074
+ α12
1075
+ α13
1076
+ α21
1077
+ α22
1078
+ α23
1079
+ α31
1080
+ α32
1081
+ α33
1082
+
1083
+  =
1084
+
1085
+
1086
+ 1
1087
+ 1
1088
+ 1
1089
+ 1
1090
+ 1
1091
+ 1
1092
+ −1
1093
+ −1
1094
+ 1
1095
+
1096
+  ,
1097
+
1098
+
1099
+ β11
1100
+ β12
1101
+ β13
1102
+ β21
1103
+ β22
1104
+ β23
1105
+ β31
1106
+ β32
1107
+ β33
1108
+
1109
+  =
1110
+
1111
+
1112
+ 1
1113
+ 1
1114
+ 1
1115
+ 1
1116
+ −1
1117
+ −1
1118
+ −1
1119
+ 1
1120
+ −1
1121
+
1122
+  .
1123
+ (26)
1124
+ They lead to the following quark mass ratios,
1125
+ (mu, mc, mt)/mt = (2.11 × 10−5, 7.07 × 10−3, 1),
1126
+ (27)
1127
+ (md, ms, mb)/mb = (2.91 × 10−3, 1.97 × 10−2, 1),
1128
+ (28)
1129
+ and the absolute values of the CKM matrix elements,
1130
+ |VCKM| =
1131
+
1132
+
1133
+ 0.973
1134
+ 0.231
1135
+ 0.000681
1136
+ 0.231
1137
+ 0.973
1138
+ 0.0270
1139
+ 0.00690
1140
+ 0.0261
1141
+ 1.00
1142
+
1143
+  .
1144
+ (29)
1145
+ Results are shown in Table 3. Our purpose is to derive quark masses and mixing angles
1146
+ without fine-tuning. Thus, we have fixed αij, βij = ±1 to make our point clear. If we vary
1147
+ αij, βij = O(1) without fixing αij, βij = ±1, we can obtain more realistic values. Of course, we
1148
+ have ambiguity in normalization of modular forms, although we expect naturally that normal-
1149
+ ization factors would not lead a large hierarchy. Our values appear at a high energy scale such
1150
+ as the GUT scale. Renormalization group effects change values by some factors, although such
1151
+ radiative corrections may be realized by varying αij, βij = O(1).
1152
+ Obtained values
1153
+ Observed values
1154
+ (mu, mc, mt)/mt
1155
+ (2.11 × 10−5, 7.07 × 10−3, 1)
1156
+ (1.26 × 10−5, 7.38 × 10−3, 1)
1157
+ (md, ms, mb)/mb
1158
+ (2.91 × 10−3, 1.97 × 10−2, 1)
1159
+ (1.12 × 10−3, 2.22 × 10−2, 1)
1160
+ |VCKM|
1161
+
1162
+
1163
+
1164
+
1165
+ 0.973
1166
+ 0.231
1167
+ 0.000681
1168
+ 0.231
1169
+ 0.973
1170
+ 0.0270
1171
+ 0.00690
1172
+ 0.0261
1173
+ 1.00
1174
+
1175
+
1176
+
1177
+
1178
+
1179
+
1180
+
1181
+
1182
+ 0.974
1183
+ 0.227
1184
+ 0.00361
1185
+ 0.226
1186
+ 0.973
1187
+ 0.0405
1188
+ 0.00854
1189
+ 0.0398
1190
+ 0.999
1191
+
1192
+
1193
+
1194
+
1195
+ Table 3: The mass ratios of the quarks and the absolute values of the CKM matrix elements
1196
+ at the benchmark point τ = 3.2i in the best-fit model by Eqs. (24) and (26) of type I with
1197
+ Yukawa couplings of weight 14. Observed values are shown in Ref. [80].
1198
+ 8
1199
+
1200
+ 3.1.2
1201
+ Type II: (5,3,0) and (4,2,0)
1202
+ The mass matrices of type II are given by Eq. (20) and
1203
+ Md =
1204
+
1205
+
1206
+
1207
+
1208
+
1209
+ β11Y (14)
1210
+ 10
1211
+ 2
1212
+ β12Y (14)
1213
+ 14+a−b mod 2
1214
+ 4+a−b mod 3
1215
+ β13Y (14)
1216
+ 16−b mod 2
1217
+ 6−b mod 3
1218
+ β21Y (14)
1219
+ 12−a+b mod 2
1220
+ 2−a+b mod 3
1221
+ β22Y (14)
1222
+ 10
1223
+ 1
1224
+ β23Y (14)
1225
+ 16−a mod 2
1226
+ 6−a mod 3
1227
+ β31Y (14)
1228
+ 12+b mod 2
1229
+ 2+b mod 3
1230
+ β32Y (14)
1231
+ 14+a mod 2
1232
+ 4+a mod 3
1233
+ β33Y (14)
1234
+ 10
1235
+ 0
1236
+
1237
+
1238
+
1239
+
1240
+  .
1241
+ (30)
1242
+ The hierarchical mass matrices in Eq. (9) can be obtained by choosing +1 or −1 appropriately
1243
+ in αij and βij. As a result, we find best-fit mass matrices at τ = 3.2i,
1244
+ Mu/Y (14)
1245
+ 10
1246
+ 0
1247
+ =
1248
+
1249
+
1250
+
1251
+
1252
+ Y (14)
1253
+ 11
1254
+ 1
1255
+ Y (14)
1256
+ 10
1257
+ 2
1258
+ Y (14)
1259
+ 11
1260
+ 0
1261
+ Y (14)
1262
+ 10
1263
+ 2
1264
+ Y (14)
1265
+ 11
1266
+ 0
1267
+ −Y (14)
1268
+ 10
1269
+ 1
1270
+ −Y (14)
1271
+ 10
1272
+ 1
1273
+ −Y (14)
1274
+ 11
1275
+ 2i
1276
+ −Y (14)
1277
+ 10
1278
+ 0
1279
+
1280
+
1281
+
1282
+  /Y (14)
1283
+ 10
1284
+ 0
1285
+ =
1286
+
1287
+
1288
+ 0.0000746
1289
+ 0.000435
1290
+ 0.00358
1291
+ 0.000435
1292
+ 0.00358
1293
+ −0.0208
1294
+ −0.0208
1295
+ −0.172
1296
+ −1
1297
+
1298
+
1299
+
1300
+
1301
+
1302
+ ε5
1303
+ ε4
1304
+ ε3
1305
+ ε4
1306
+ ε3
1307
+ −ε2
1308
+ −ε2
1309
+ −ε
1310
+ −1
1311
+
1312
+  ,
1313
+ (31)
1314
+ Md/Y (14)
1315
+ 10
1316
+ 0
1317
+ =
1318
+
1319
+
1320
+
1321
+
1322
+ Y (14)
1323
+ 10
1324
+ 2
1325
+ Y (14)
1326
+ 11
1327
+ 0
1328
+ Y (14)
1329
+ 11
1330
+ 0
1331
+ −Y (14)
1332
+ 11
1333
+ 0
1334
+ Y (14)
1335
+ 10
1336
+ 1
1337
+ Y (14)
1338
+ 10
1339
+ 1
1340
+ Y (14)
1341
+ 11
1342
+ 2i
1343
+ Y (14)
1344
+ 10
1345
+ 0
1346
+ −Y (14)
1347
+ 10
1348
+ 0
1349
+
1350
+
1351
+
1352
+  /Y (14)
1353
+ 10
1354
+ 0
1355
+ =
1356
+
1357
+
1358
+ 0.000435
1359
+ 0.00358
1360
+ 0.00358
1361
+ −0.00358
1362
+ 0.0208
1363
+ 0.0208
1364
+ 0.172
1365
+ 1
1366
+ −1
1367
+
1368
+
1369
+
1370
+
1371
+
1372
+ ε4
1373
+ ε3
1374
+ ε3
1375
+ −ε3
1376
+ ε2
1377
+ ε2
1378
+ ε
1379
+ 1
1380
+ −1
1381
+
1382
+  .
1383
+ (32)
1384
+ These mass matrices correspond to a = 2, b = 3 and can be realized by
1385
+ Q = (11
1386
+ 0, 10
1387
+ 2, 10
1388
+ 0),
1389
+ uR = (10
1390
+ 2, 11
1391
+ 1, 10
1392
+ 0),
1393
+ dR = (11
1394
+ 1, 10
1395
+ 0, 10
1396
+ 0),
1397
+ (33)
1398
+ and their mass matrices are written by,
1399
+ Mu =
1400
+
1401
+
1402
+
1403
+
1404
+ α11Y (14)
1405
+ 11
1406
+ 1
1407
+ α12Y (14)
1408
+ 10
1409
+ 2
1410
+ α13Y (14)
1411
+ 11
1412
+ 0
1413
+ α21Y (14)
1414
+ 10
1415
+ 2
1416
+ α22Y (14)
1417
+ 11
1418
+ 0
1419
+ α23Y (14)
1420
+ 10
1421
+ 1
1422
+ α31Y (14)
1423
+ 10
1424
+ 1
1425
+ α32Y (14)
1426
+ 11
1427
+ 2i
1428
+ α33Y (14)
1429
+ 10
1430
+ 0
1431
+
1432
+
1433
+
1434
+  ,
1435
+ Md =
1436
+
1437
+
1438
+
1439
+
1440
+ β11Y (14)
1441
+ 10
1442
+ 2
1443
+ β12Y (14)
1444
+ 11
1445
+ 0
1446
+ β13Y (14)
1447
+ 11
1448
+ 0
1449
+ β21Y (14)
1450
+ 11
1451
+ 0
1452
+ β22Y (14)
1453
+ 10
1454
+ 1
1455
+ β23Y (14)
1456
+ 10
1457
+ 1
1458
+ β31Y (14)
1459
+ 11
1460
+ 2i
1461
+ β32Y (14)
1462
+ 10
1463
+ 0
1464
+ β33Y (14)
1465
+ 10
1466
+ 0
1467
+
1468
+
1469
+
1470
+  ,
1471
+ (34)
1472
+ with the following choises of +1 or −1 in coupling constants,
1473
+
1474
+
1475
+ α11
1476
+ α12
1477
+ α13
1478
+ α21
1479
+ α22
1480
+ α23
1481
+ α31
1482
+ α32
1483
+ α33
1484
+
1485
+  =
1486
+
1487
+
1488
+ 1
1489
+ 1
1490
+ 1
1491
+ 1
1492
+ 1
1493
+ −1
1494
+ −1
1495
+ −1
1496
+ −1
1497
+
1498
+  ,
1499
+
1500
+
1501
+ β11
1502
+ β12
1503
+ β13
1504
+ β21
1505
+ β22
1506
+ β23
1507
+ β31
1508
+ β32
1509
+ β33
1510
+
1511
+  =
1512
+
1513
+
1514
+ 1
1515
+ 1
1516
+ 1
1517
+ −1
1518
+ 1
1519
+ 1
1520
+ 1
1521
+ 1
1522
+ −1
1523
+
1524
+  .
1525
+ (35)
1526
+ 9
1527
+
1528
+ They lead to the following quark mass ratios,
1529
+ (mu, mc, mt)/mt = (2.14 × 10−5, 7.00 × 10−3, 1),
1530
+ (36)
1531
+ (md, ms, mb)/mb = (7.16 × 10−4, 2.11 × 10−2, 1),
1532
+ (37)
1533
+ and the absolute values of the CKM matrix elements,
1534
+ |VCKM| =
1535
+
1536
+
1537
+ 0.982
1538
+ 0.190
1539
+ 0.00309
1540
+ 0.190
1541
+ 0.982
1542
+ 0.0200
1543
+ 0.00683
1544
+ 0.0191
1545
+ 1.00
1546
+
1547
+  .
1548
+ (38)
1549
+ Results are shown in Table 4.
1550
+ Obtained values
1551
+ Observed values
1552
+ (mu, mc, mt)/mt
1553
+ (2.14 × 10−5, 7.00 �� 10−3, 1)
1554
+ (1.26 × 10−5, 7.38 × 10−3, 1)
1555
+ (md, ms, mb)/mb
1556
+ (7.16 × 10−4, 2.11 × 10−2, 1)
1557
+ (1.12 × 10−3, 2.22 × 10−2, 1)
1558
+ |VCKM|
1559
+
1560
+
1561
+
1562
+
1563
+ 0.982
1564
+ 0.190
1565
+ 0.00309
1566
+ 0.190
1567
+ 0.982
1568
+ 0.0200
1569
+ 0.00683
1570
+ 0.0191
1571
+ 1.00
1572
+
1573
+
1574
+
1575
+
1576
+
1577
+
1578
+
1579
+
1580
+ 0.974
1581
+ 0.227
1582
+ 0.00361
1583
+ 0.226
1584
+ 0.973
1585
+ 0.0405
1586
+ 0.00854
1587
+ 0.0398
1588
+ 0.999
1589
+
1590
+
1591
+
1592
+
1593
+ Table 4: The mass ratios of the quarks and the absolute values of the CKM matrix elements
1594
+ at the benchmark point τ = 3.2i in the best-fit model by Eqs. (33) and (35) of type II with
1595
+ Yukawa couplings of weight 14. Observed values are shown in Ref. [80].
1596
+ 3.1.3
1597
+ Type III: (5,2,0) and (3,2,0)
1598
+ The mass matrices of type III are given by Eq. (21) and
1599
+ Mu =
1600
+
1601
+
1602
+
1603
+
1604
+
1605
+ α11Y (14)
1606
+ 11
1607
+ 1
1608
+ α12Y (14)
1609
+ 14+a−b mod 2
1610
+ 4+a−b mod 3
1611
+ α13Y (14)
1612
+ 16−b mod 2
1613
+ 6−b mod 3
1614
+ α21Y (14)
1615
+ 11−a+b mod 2
1616
+ 1−a+b mod 3
1617
+ α22Y (14)
1618
+ 10
1619
+ 1
1620
+ α23Y (14)
1621
+ 16−a mod 2
1622
+ 6−a mod 3
1623
+ α31Y (14)
1624
+ 11+b mod 2
1625
+ 1+b mod 3
1626
+ α32Y (14)
1627
+ 14+a mod 2
1628
+ 4+a mod 3
1629
+ α33Y (14)
1630
+ 10
1631
+ 0
1632
+
1633
+
1634
+
1635
+
1636
+  .
1637
+ (39)
1638
+ 10
1639
+
1640
+ The hierarchical mass matrices in Eq. (10) can be obtained by choosing +1 or −1 appropriately
1641
+ in αij and βij. As a result, we find best-fit mass matrices at τ = 3.2i,
1642
+ Mu/Y (14)
1643
+ 10
1644
+ 0
1645
+ =
1646
+
1647
+
1648
+
1649
+
1650
+ Y (14)
1651
+ 11
1652
+ 1
1653
+ Y (14)
1654
+ 11
1655
+ 0
1656
+ Y (14)
1657
+ 11
1658
+ 0
1659
+ Y (14)
1660
+ 10
1661
+ 2
1662
+ −Y (14)
1663
+ 10
1664
+ 1
1665
+ −Y (14)
1666
+ 10
1667
+ 1
1668
+ Y (14)
1669
+ 10
1670
+ 1
1671
+ Y (14)
1672
+ 10
1673
+ 0
1674
+ −Y (14)
1675
+ 10
1676
+ 0
1677
+
1678
+
1679
+
1680
+  /Y (14)
1681
+ 10
1682
+ 0
1683
+ =
1684
+
1685
+
1686
+ 0.0000746
1687
+ 0.00358
1688
+ 0.00358
1689
+ 0.000435
1690
+ −0.0208
1691
+ −0.0208
1692
+ 0.0208
1693
+ 1
1694
+ −1
1695
+
1696
+
1697
+
1698
+
1699
+
1700
+ ε5
1701
+ ε3
1702
+ ε3
1703
+ ε4
1704
+ −ε2
1705
+ −ε2
1706
+ ε2
1707
+ 1
1708
+ −1
1709
+
1710
+  ,
1711
+ (40)
1712
+ Md/Y (14)
1713
+ 10
1714
+ 0
1715
+ =
1716
+
1717
+
1718
+
1719
+
1720
+ Y (14)
1721
+ 11
1722
+ 0
1723
+ Y (14)
1724
+ 11
1725
+ 0
1726
+ Y (14)
1727
+ 11
1728
+ 0
1729
+ Y (14)
1730
+ 10
1731
+ 1
1732
+ Y (14)
1733
+ 10
1734
+ 1
1735
+ −Y (14)
1736
+ 10
1737
+ 1
1738
+ Y (14)
1739
+ 10
1740
+ 0
1741
+ −Y (14)
1742
+ 10
1743
+ 0
1744
+ Y (14)
1745
+ 10
1746
+ 0
1747
+
1748
+
1749
+
1750
+  /Y (14)
1751
+ 10
1752
+ 0
1753
+ =
1754
+
1755
+
1756
+ 0.00358
1757
+ 0.00358
1758
+ 0.00358
1759
+ 0.0208
1760
+ 0.0208
1761
+ −0.0208
1762
+ 1
1763
+ −1
1764
+ 1
1765
+
1766
+
1767
+
1768
+
1769
+
1770
+ ε3
1771
+ ε3
1772
+ ε3
1773
+ ε2
1774
+ ε2
1775
+ −ε2
1776
+ 1
1777
+ −1
1778
+ 1
1779
+
1780
+  .
1781
+ (41)
1782
+ These mass matrices correspond to a = 2, b = 3 and can be realized by
1783
+ Q = (11
1784
+ 0, 10
1785
+ 2, 10
1786
+ 0),
1787
+ uR = (10
1788
+ 2, 10
1789
+ 0, 10
1790
+ 0),
1791
+ dR = (10
1792
+ 0, 10
1793
+ 0, 10
1794
+ 0),
1795
+ (42)
1796
+ and their mass matrices are written by,
1797
+ Mu =
1798
+
1799
+
1800
+
1801
+
1802
+ α11Y (14)
1803
+ 11
1804
+ 1
1805
+ α12Y (14)
1806
+ 11
1807
+ 0
1808
+ α13Y (14)
1809
+ 11
1810
+ 0
1811
+ α21Y (14)
1812
+ 10
1813
+ 2
1814
+ α22Y (14)
1815
+ 10
1816
+ 1
1817
+ α23Y (14)
1818
+ 10
1819
+ 1
1820
+ α31Y (14)
1821
+ 10
1822
+ 1
1823
+ α32Y (14)
1824
+ 10
1825
+ 0
1826
+ α33Y (14)
1827
+ 10
1828
+ 0
1829
+
1830
+
1831
+
1832
+  ,
1833
+ Md =
1834
+
1835
+
1836
+
1837
+
1838
+ β11Y (14)
1839
+ 11
1840
+ 0
1841
+ β12Y (14)
1842
+ 11
1843
+ 0
1844
+ β13Y (14)
1845
+ 11
1846
+ 0
1847
+ β21Y (14)
1848
+ 10
1849
+ 1
1850
+ β22Y (14)
1851
+ 10
1852
+ 1
1853
+ β23Y (14)
1854
+ 10
1855
+ 1
1856
+ β31Y (14)
1857
+ 10
1858
+ 0
1859
+ β32Y (14)
1860
+ 10
1861
+ 0
1862
+ β33Y (14)
1863
+ 10
1864
+ 0
1865
+
1866
+
1867
+
1868
+  ,
1869
+ (43)
1870
+ with the following choises of +1 or −1 in coupling constants,
1871
+
1872
+
1873
+ α11
1874
+ α12
1875
+ α13
1876
+ α21
1877
+ α22
1878
+ α23
1879
+ α31
1880
+ α32
1881
+ α33
1882
+
1883
+  =
1884
+
1885
+
1886
+ 1
1887
+ 1
1888
+ 1
1889
+ 1
1890
+ −1
1891
+ −1
1892
+ 1
1893
+ 1
1894
+ −1
1895
+
1896
+  ,
1897
+
1898
+
1899
+ β11
1900
+ β12
1901
+ β13
1902
+ β21
1903
+ β22
1904
+ β23
1905
+ β31
1906
+ β32
1907
+ β33
1908
+
1909
+  =
1910
+
1911
+
1912
+ 1
1913
+ 1
1914
+ 1
1915
+ 1
1916
+ 1
1917
+ −1
1918
+ 1
1919
+ −1
1920
+ 1
1921
+
1922
+  .
1923
+ (44)
1924
+ They lead to the following quark mass ratios,
1925
+ (mu, mc, mt)/mt = (1.04 × 10−4, 2.12 × 10−2, 1),
1926
+ (45)
1927
+ (md, ms, mb)/mb = (2.91 × 10−3, 1.97 × 10−2, 1),
1928
+ (46)
1929
+ and the absolute values of the CKM matrix elements,
1930
+ |VCKM| =
1931
+
1932
+
1933
+ 0.967
1934
+ 0.255
1935
+ 0.00000171
1936
+ 0.255
1937
+ 0.967
1938
+ 0.00706
1939
+ 0.00180
1940
+ 0.00682
1941
+ 1.00
1942
+
1943
+  .
1944
+ (47)
1945
+ 11
1946
+
1947
+ Results are shown in Table 5.
1948
+ Obtained values
1949
+ Observed values
1950
+ (mu, mc, mt)/mt
1951
+ (1.04 × 10−4, 2.12 × 10−2, 1)
1952
+ (1.26 × 10−5, 7.38 × 10−3, 1)
1953
+ (md, ms, mb)/mb
1954
+ (2.91 × 10−3, 1.97 × 10−2, 1)
1955
+ (1.12 × 10−3, 2.22 × 10−2, 1)
1956
+ |VCKM|
1957
+
1958
+
1959
+
1960
+
1961
+ 0.967
1962
+ 0.255
1963
+ 0.00000171
1964
+ 0.255
1965
+ 0.967
1966
+ 0.00706
1967
+ 0.00180
1968
+ 0.00682
1969
+ 1.00
1970
+
1971
+
1972
+
1973
+
1974
+
1975
+
1976
+
1977
+
1978
+ 0.974
1979
+ 0.227
1980
+ 0.00361
1981
+ 0.226
1982
+ 0.973
1983
+ 0.0405
1984
+ 0.00854
1985
+ 0.0398
1986
+ 0.999
1987
+
1988
+
1989
+
1990
+
1991
+ Table 5: The mass ratios of the quarks and the absolute values of the CKM matrix elements
1992
+ at the benchmark point τ = 3.2i in the best-fit model by Eqs. (42) and (44) of type III with
1993
+ Yukawa couplings of weight 14. Observed values are shown in Ref. [80].
1994
+ 3.1.4
1995
+ Type IV: (5,2,0) and (4,2,0)
1996
+ The mass matrices of type IV are given by Eqs. (39) and (30). The hierarchical mass matrices
1997
+ in Eq. (11) can be obtained by choosing +1 or −1 appropriately in αij and βij. As a result, we
1998
+ find best-fit mass matrices at τ = 3.2i,
1999
+ Mu/Y (14)
2000
+ 10
2001
+ 0
2002
+ =
2003
+
2004
+
2005
+
2006
+
2007
+ Y (14)
2008
+ 11
2009
+ 1
2010
+ Y (14)
2011
+ 11
2012
+ 0
2013
+ Y (14)
2014
+ 10
2015
+ 0
2016
+ Y (14)
2017
+ 10
2018
+ 2
2019
+ Y (14)
2020
+ 10
2021
+ 1
2022
+ Y (14)
2023
+ 11
2024
+ 1
2025
+ Y (14)
2026
+ 11
2027
+ 1
2028
+ −Y (14)
2029
+ 11
2030
+ 0
2031
+ −Y (14)
2032
+ 10
2033
+ 0
2034
+
2035
+
2036
+
2037
+  /Y (14)
2038
+ 10
2039
+ 0
2040
+ =
2041
+
2042
+
2043
+ 0.0000746
2044
+ 0.00358
2045
+ 1
2046
+ 0.000435
2047
+ 0.0208
2048
+ 0.0000746
2049
+ 0.0000746
2050
+ −0.00358
2051
+ −1
2052
+
2053
+
2054
+
2055
+
2056
+
2057
+ ε5
2058
+ ε3
2059
+ 1
2060
+ ε4
2061
+ ε2
2062
+ ε5
2063
+ ε5
2064
+ −ε3
2065
+ −1
2066
+
2067
+  ,
2068
+ (48)
2069
+ Md/Y (14)
2070
+ 10
2071
+ 0
2072
+ =
2073
+
2074
+
2075
+
2076
+
2077
+ Y (14)
2078
+ 10
2079
+ 2
2080
+ Y (14)
2081
+ 11
2082
+ 0
2083
+ Y (14)
2084
+ 10
2085
+ 0
2086
+ Y (14)
2087
+ 11
2088
+ 0
2089
+ −Y (14)
2090
+ 10
2091
+ 1
2092
+ −Y (14)
2093
+ 11
2094
+ 1
2095
+ Y (14)
2096
+ 10
2097
+ 2
2098
+ Y (14)
2099
+ 11
2100
+ 0
2101
+ −Y (14)
2102
+ 10
2103
+ 0
2104
+
2105
+
2106
+
2107
+  /Y (14)
2108
+ 10
2109
+ 0
2110
+ =
2111
+
2112
+
2113
+ 0.000435
2114
+ 0.00358
2115
+ 1
2116
+ 0.00358
2117
+ −0.0208
2118
+ −0.0000746
2119
+ 0.000435
2120
+ 0.00358
2121
+ −1
2122
+
2123
+
2124
+
2125
+
2126
+
2127
+ ε4
2128
+ ε3
2129
+ 1
2130
+ ε3
2131
+ −ε2
2132
+ −ε5
2133
+ ε4
2134
+ ε3
2135
+ −1
2136
+
2137
+  .
2138
+ (49)
2139
+ These mass matrices correspond to a = 5, b = 0 and can be realized by
2140
+ Q = (10
2141
+ 0, 11
2142
+ 2, 10
2143
+ 0),
2144
+ uR = (11
2145
+ 2, 11
2146
+ 0, 10
2147
+ 0),
2148
+ dR = (10
2149
+ 1, 11
2150
+ 0, 10
2151
+ 0),
2152
+ (50)
2153
+ 12
2154
+
2155
+ and their mass matrices are written by,
2156
+ Mu =
2157
+
2158
+
2159
+
2160
+
2161
+ α11Y (14)
2162
+ 11
2163
+ 1
2164
+ α12Y (14)
2165
+ 11
2166
+ 0
2167
+ α13Y (14)
2168
+ 10
2169
+ 0
2170
+ α21Y (14)
2171
+ 10
2172
+ 2
2173
+ α22Y (14)
2174
+ 10
2175
+ 1
2176
+ α23Y (14)
2177
+ 11
2178
+ 1
2179
+ α31Y (14)
2180
+ 11
2181
+ 1
2182
+ α32Y (14)
2183
+ 11
2184
+ 0
2185
+ α33Y (14)
2186
+ 10
2187
+ 0
2188
+
2189
+
2190
+
2191
+  ,
2192
+ Md =
2193
+
2194
+
2195
+
2196
+
2197
+ β11Y (14)
2198
+ 10
2199
+ 2
2200
+ β12Y (14)
2201
+ 11
2202
+ 0
2203
+ β13Y (14)
2204
+ 10
2205
+ 0
2206
+ β21Y (14)
2207
+ 11
2208
+ 0
2209
+ β22Y (14)
2210
+ 10
2211
+ 1
2212
+ β23Y (14)
2213
+ 11
2214
+ 1
2215
+ β31Y (14)
2216
+ 10
2217
+ 2
2218
+ β32Y (14)
2219
+ 11
2220
+ 0
2221
+ β33Y (14)
2222
+ 10
2223
+ 0
2224
+
2225
+
2226
+
2227
+  ,
2228
+ (51)
2229
+ with the following choises of +1 or −1 in coupling constants,
2230
+
2231
+
2232
+ α11
2233
+ α12
2234
+ α13
2235
+ α21
2236
+ α22
2237
+ α23
2238
+ α31
2239
+ α32
2240
+ α33
2241
+
2242
+  =
2243
+
2244
+
2245
+ 1
2246
+ 1
2247
+ 1
2248
+ 1
2249
+ 1
2250
+ 1
2251
+ 1
2252
+ −1
2253
+ −1
2254
+
2255
+  ,
2256
+
2257
+
2258
+ β11
2259
+ β12
2260
+ β13
2261
+ β21
2262
+ β22
2263
+ β23
2264
+ β31
2265
+ β32
2266
+ β33
2267
+
2268
+  =
2269
+
2270
+
2271
+ 1
2272
+ 1
2273
+ 1
2274
+ 1
2275
+ −1
2276
+ −1
2277
+ 1
2278
+ 1
2279
+ −1
2280
+
2281
+  .
2282
+ (52)
2283
+ They lead to the following quark mass ratios,
2284
+ (mu, mc, mt)/mt = (7.46 × 10−5, 1.47 × 10−2, 1),
2285
+ (53)
2286
+ (md, ms, mb)/mb = (1.01 × 10−3, 1.54 × 10−2, 1),
2287
+ (54)
2288
+ and the absolute values of the CKM matrix elements,
2289
+ |VCKM| =
2290
+
2291
+
2292
+ 0.974
2293
+ 0.226
2294
+ 0.0000000194
2295
+ 0.226
2296
+ 0.974
2297
+ 0.000158
2298
+ 0.0000358
2299
+ 0.000154
2300
+ 1.00
2301
+
2302
+  .
2303
+ (55)
2304
+ Results are shown in Table 6.
2305
+ Obtained values
2306
+ Observed values
2307
+ (mu, mc, mt)/mt
2308
+ (7.46 × 10−5, 1.47 × 10−2, 1)
2309
+ (1.26 × 10−5, 7.38 × 10−3, 1)
2310
+ (md, ms, mb)/mb
2311
+ (1.01 × 10−3, 1.54 × 10−2, 1)
2312
+ (1.12 × 10−3, 2.22 × 10−2, 1)
2313
+ |VCKM|
2314
+
2315
+
2316
+
2317
+
2318
+ 0.974
2319
+ 0.226
2320
+ 0.0000000194
2321
+ 0.226
2322
+ 0.974
2323
+ 0.000158
2324
+ 0.0000358
2325
+ 0.000154
2326
+ 1.00
2327
+
2328
+
2329
+
2330
+
2331
+
2332
+
2333
+
2334
+
2335
+ 0.974
2336
+ 0.227
2337
+ 0.00361
2338
+ 0.226
2339
+ 0.973
2340
+ 0.0405
2341
+ 0.00854
2342
+ 0.0398
2343
+ 0.999
2344
+
2345
+
2346
+
2347
+
2348
+ Table 6: The mass ratios of the quarks and the absolute values of the CKM matrix elements
2349
+ at the benchmark point τ = 3.2i in the best-fit model by Eqs. (50) and (52) of type IV with
2350
+ Yukawa couplings of weight 14. Observed values are shown in Ref. [80].
2351
+ 3.2
2352
+ Weights less than 14
2353
+ Next we study the models with Yukawa couplings of weights less than 14. In this case, some
2354
+ of entities in mass matrices vanish because there do not exist modular forms of proper weights
2355
+ 13
2356
+
2357
+ and representations. As an example, let us consider the case that Yukawa couplings for the up
2358
+ sector have the weight 8 and ones for the down sector have the weight 10. We choose τ = 3.7i
2359
+ as a benchmark point of the modulus. At weight 8, four singlet modular forms, Y (8)
2360
+ 10
2361
+ 0 , Y (8)
2362
+ 11
2363
+ 2 , Y (8)
2364
+ 10
2365
+ 1
2366
+ and Y (8)
2367
+ 10
2368
+ 2 , exist and they are approximated by ε as
2369
+ Y (8)
2370
+ 10
2371
+ 0 /Y (8)
2372
+ 10
2373
+ 0 = 1 → 1,
2374
+ Y (8)
2375
+ 11
2376
+ 2 /Y (8)
2377
+ 10
2378
+ 0 = −0.0719 → ε,
2379
+ (56)
2380
+ Y (8)
2381
+ 10
2382
+ 1 /Y (8)
2383
+ 10
2384
+ 0 = 0.00732 → ε2,
2385
+ Y (8)
2386
+ 10
2387
+ 2 /Y (8)
2388
+ 10
2389
+ 0 = 0.0000535 → ε4,
2390
+ (57)
2391
+ at τ = 3.7i. At weight 10, five singlet modular forms, Y (10)
2392
+ 10
2393
+ 0 , Y (10)
2394
+ 11
2395
+ 2 , Y (10)
2396
+ 10
2397
+ 1 , Y (10)
2398
+ 11
2399
+ 0
2400
+ and Y (10)
2401
+ 11
2402
+ 1 , exist
2403
+ and they are approximated by ε as
2404
+ Y (10)
2405
+ 10
2406
+ 0 /Y (10)
2407
+ 10
2408
+ 0
2409
+ = 1 → 1,
2410
+ Y (10)
2411
+ 11
2412
+ 2 /Y (10)
2413
+ 10
2414
+ 0
2415
+ = 0.102 → ε,
2416
+ (58)
2417
+ Y (10)
2418
+ 10
2419
+ 1 /Y (10)
2420
+ 10
2421
+ 0
2422
+ = 0.00732 → ε2,
2423
+ Y (10)
2424
+ 11
2425
+ 0 /Y (10)
2426
+ 10
2427
+ 0
2428
+ = 0.000744 → ε3,
2429
+ (59)
2430
+ Y (10)
2431
+ 11
2432
+ 1 /Y (10)
2433
+ 10
2434
+ 0
2435
+ = 0.00000544 → ε5,
2436
+ (60)
2437
+ at τ = 3.7i. As a result, we find the following best-fit mass matrices of type III,
2438
+ Mu/Y (8)
2439
+ 10
2440
+ 0 =
2441
+
2442
+
2443
+
2444
+
2445
+ 0
2446
+ 0
2447
+ Y (8)
2448
+ 10
2449
+ 1
2450
+ Y (8)
2451
+ 10
2452
+ 2
2453
+ Y (8)
2454
+ 10
2455
+ 1
2456
+ Y (8)
2457
+ 11
2458
+ 2
2459
+ 0
2460
+ −Y (8)
2461
+ 11
2462
+ 2
2463
+ −Y (8)
2464
+ 10
2465
+ 0
2466
+
2467
+
2468
+
2469
+  /Y (8)
2470
+ 10
2471
+ 0 =
2472
+
2473
+
2474
+ 0
2475
+ 0
2476
+ 0.00732
2477
+ 0.0000535
2478
+ 0.00732
2479
+ −0.0719
2480
+ 0
2481
+ 0.0719
2482
+ −1
2483
+
2484
+
2485
+
2486
+
2487
+
2488
+ 0
2489
+ 0
2490
+ ε2
2491
+ ε4
2492
+ ε2
2493
+ −ε
2494
+ 0
2495
+ ε
2496
+ −1
2497
+
2498
+  ,
2499
+ (61)
2500
+ Md/Y (10)
2501
+ 10
2502
+ 0
2503
+ =
2504
+
2505
+
2506
+
2507
+
2508
+ Y (10)
2509
+ 11
2510
+ 0
2511
+ Y (10)
2512
+ 11
2513
+ 0
2514
+ Y (10)
2515
+ 10
2516
+ 1
2517
+ −Y (10)
2518
+ 10
2519
+ 1
2520
+ −Y (10)
2521
+ 10
2522
+ 1
2523
+ Y (10)
2524
+ 11
2525
+ 2
2526
+ Y (10)
2527
+ 11
2528
+ 2
2529
+ −Y (10)
2530
+ 11
2531
+ 2
2532
+ Y (10)
2533
+ 10
2534
+ 0
2535
+
2536
+
2537
+
2538
+  /Y (10)
2539
+ 10
2540
+ 0
2541
+ =
2542
+
2543
+
2544
+ 0.000744
2545
+ 0.000744
2546
+ 0.00732
2547
+ −0.00732
2548
+ −0.00732
2549
+ 0.102
2550
+ 0.102
2551
+ −0.102
2552
+ 1
2553
+
2554
+
2555
+
2556
+
2557
+
2558
+ ε3
2559
+ ε3
2560
+ ε2
2561
+ −ε2
2562
+ −ε2
2563
+ ε
2564
+ ε
2565
+ −ε
2566
+ 1
2567
+
2568
+  .
2569
+ (62)
2570
+ These mass matrices correspond to a = 1, b = 2 and can be realized by
2571
+ Q = (10
2572
+ 2, 11
2573
+ 1, 10
2574
+ 0),
2575
+ uR = (11
2576
+ 0, 11
2577
+ 1, 10
2578
+ 0),
2579
+ dR = (11
2580
+ 1, 11
2581
+ 1, 10
2582
+ 0),
2583
+ (63)
2584
+ and their mass matrices,
2585
+ Mu =
2586
+
2587
+
2588
+
2589
+
2590
+ 0
2591
+ 0
2592
+ α13Y (8)
2593
+ 10
2594
+ 1
2595
+ α21Y (8)
2596
+ 10
2597
+ 2
2598
+ α22Y (8)
2599
+ 10
2600
+ 1
2601
+ α23Y (8)
2602
+ 11
2603
+ 2
2604
+ 0
2605
+ α32Y (8)
2606
+ 11
2607
+ 2
2608
+ α33Y (8)
2609
+ 10
2610
+ 0
2611
+
2612
+
2613
+
2614
+  ,
2615
+ Md =
2616
+
2617
+
2618
+
2619
+
2620
+ β11Y (10)
2621
+ 11
2622
+ 0
2623
+ β12Y (10)
2624
+ 11
2625
+ 0
2626
+ β13Y (10)
2627
+ 10
2628
+ 1
2629
+ β21Y (10)
2630
+ 10
2631
+ 1
2632
+ β22Y (10)
2633
+ 10
2634
+ 1
2635
+ β23Y (10)
2636
+ 11
2637
+ 2
2638
+ β31Y (10)
2639
+ 11
2640
+ 2
2641
+ β32Y (10)
2642
+ 11
2643
+ 2
2644
+ β33Y (10)
2645
+ 10
2646
+ 0
2647
+
2648
+
2649
+
2650
+  ,
2651
+ (64)
2652
+ 14
2653
+
2654
+ with the following choises of +1 or −1 in coupling constants,
2655
+
2656
+
2657
+ -
2658
+ -
2659
+ α13
2660
+ α21
2661
+ α22
2662
+ α23
2663
+ -
2664
+ α32
2665
+ α33
2666
+
2667
+  =
2668
+
2669
+
2670
+ -
2671
+ -
2672
+ 1
2673
+ 1
2674
+ 1
2675
+ 1
2676
+ -
2677
+ −1
2678
+ −1
2679
+
2680
+  ,
2681
+
2682
+
2683
+ β11
2684
+ β12
2685
+ β13
2686
+ β21
2687
+ β22
2688
+ β23
2689
+ β31
2690
+ β32
2691
+ β33
2692
+
2693
+  =
2694
+
2695
+
2696
+ 1
2697
+ 1
2698
+ 1
2699
+ −1
2700
+ −1
2701
+ 1
2702
+ 1
2703
+ −1
2704
+ 1
2705
+
2706
+  .
2707
+ (65)
2708
+ They lead to the following up quark and down quark mass ratios,
2709
+ (mu, mc, mt)/mt = (1.27 × 10−5, 2.18 × 10−3, 1),
2710
+ (66)
2711
+ (md, ms, mb)/mb = (1.44 × 10−3, 1.74 × 10−2, 1),
2712
+ (67)
2713
+ and the absolute values of the CKM matrix elements,
2714
+ |VCKM| =
2715
+
2716
+
2717
+ 0.974
2718
+ 0.227
2719
+ 0.00741
2720
+ 0.227
2721
+ 0.973
2722
+ 0.0300
2723
+ 0.0140
2724
+ 0.0276
2725
+ 1.00
2726
+
2727
+  .
2728
+ (68)
2729
+ Results are shown in Table 7. Thus it is also possible to realize a realistic quark flavor structure
2730
+ in the models with Yukawa couplings of weights less than 14 despite some zeros in mass matrices.
2731
+ Here we studied the case that Yukawa couplings for the up sector have weight 8 and ones for
2732
+ the down sector have weight 10 but other cases may be available for realization of the quark
2733
+ flavor structure.
2734
+ Obtained values
2735
+ Observed values
2736
+ (mu, mc, mt)/mt
2737
+ (1.27 × 10−5, 2.18 × 10−3, 1)
2738
+ (1.26 × 10−5, 7.38 × 10−3, 1)
2739
+ (md, ms, mb)/mb
2740
+ (1.44 × 10−3, 1.74 × 10−2, 1)
2741
+ (1.12 × 10−3, 2.22 × 10−2, 1)
2742
+ |VCKM|
2743
+
2744
+
2745
+
2746
+
2747
+ 0.974
2748
+ 0.227
2749
+ 0.00741
2750
+ 0.227
2751
+ 0.973
2752
+ 0.0300
2753
+ 0.0140
2754
+ 0.0276
2755
+ 1.00
2756
+
2757
+
2758
+
2759
+
2760
+
2761
+
2762
+
2763
+
2764
+ 0.974
2765
+ 0.227
2766
+ 0.00361
2767
+ 0.226
2768
+ 0.973
2769
+ 0.0405
2770
+ 0.00854
2771
+ 0.0398
2772
+ 0.999
2773
+
2774
+
2775
+
2776
+
2777
+ Table 7: The mass ratios of the quarks and the absolute values of the CKM matrix elements at
2778
+ the benchmark point τ = 3.7i in the best-fit model by Eqs. (63) and (65) of type III with up
2779
+ sector Yukawa couplings of weight 8 and down sector Yukawa couplings of weight 10. Observed
2780
+ values are shown in Ref. [80].
2781
+ 3.3
2782
+ Comment on the origin of Γ6 modular symmetry
2783
+ Here we comment on a plausible origin of Γ6 modular symmetry of the theories. For example,
2784
+ some modular forms are derived from the torus compactification T 2
2785
+ 1 ×T 2
2786
+ 2 ×T 2
2787
+ 3 of the low-energy
2788
+ effective theory of the superstring theory with magnetic flux background [6–11]. The group Γ6
2789
+ 15
2790
+
2791
+ may originate from one of T 2
2792
+ i , while the others T 2
2793
+ j lead to a trivial symmetry. Alternatively,
2794
+ since Γ6 ≃ S3 × A4 ≃ Γ2 × Γ3, it may be expected that Γ2 ≃ S3 originates from one torus T 2
2795
+ 1
2796
+ and Γ3 ≃ A4 originates from another torus T 2
2797
+ 2 with the moduli stabilization τ1 = τ2 ≡ τ. Then
2798
+ T 2
2799
+ 3 contributes to the group symmetry trivially.
2800
+ 4
2801
+ Conclusion
2802
+ We have discussed the possibility to describe mass hierarchies of both up and down sector quarks
2803
+ as well as mixing angles without fine-tuning. Describing the quark flavor structure requires Zn
2804
+ residual symmetry with n ≥ 6. We have studied the modular symmetric quark flavor models
2805
+ of Γ6 ≃ S3 × A4 in the vicinity of the cusp τ = i∞ where Z6 residual symmetry remains. Then
2806
+ the values of the modular forms become hierarchical as close to the cusp depending on their Z6
2807
+ residual charges.
2808
+ In order to obtain viable models, we consider four types of quark mass matrices; the diagonal
2809
+ components in up and down sector quark mass matrices are written by ε with the powers of
2810
+ (5, 3, 0) and (3, 2, 0) respectively for type I, (5, 3, 0) and (4, 2, 0) for type II, (5, 2, 0) and (3, 2, 0)
2811
+ for type III, and (5, 2, 0) and (4, 2, 0) for type IV. The powers of non-diagonal components in up
2812
+ and down sector quark mass matrices have been treated as model depending values. When we
2813
+ assign the irreducible representations into quarks and Higgs fields, powers of ε in mass matrix
2814
+ components are determined by residual charges of mass matrix components. For simplicity, we
2815
+ have used only six singlets 10
2816
+ 0, 10
2817
+ 1, 10
2818
+ 2, 11
2819
+ 0, 11
2820
+ 1 and 11
2821
+ 2 as the irreducible representations of Γ6.
2822
+ In addition, we have restricted the values of the coupling constants to ±1 to avoid fine-tuning
2823
+ by them.
2824
+ Firstly, we have investigated the case that up and down sector Yukawa couplings have weight
2825
+ 14. In such cases, mass matrices have no zeros, that is, all of their components are written in
2826
+ terms of the modular forms for Γ6 of weight 14. Consequently, we have obtained viable models
2827
+ at τ = 3.2i for each type without fine-tuning.
2828
+ Second, we have shown the viable model in the case that Yukawa couplings of the up sector
2829
+ have weight 8 and ones of the down sector have weight 10. In this case some components of
2830
+ mass matrices can become zero because there do not exist modular forms of proper weights
2831
+ and representations. As a result, we have obtained the viable model at τ = 3.7i despite three
2832
+ zeros in the up quark mass matrix, Eq. (61).
2833
+ Thus, the modular symmetric quark flavor models based on Γ6 in the vicinity of the cusp τ =
2834
+ i∞ lead to successful quark mass matrices without fine-tuning. As we have commented in the
2835
+ end of previous section, Γ6 ≃ S3 × A4 ≃ Γ2 × Γ3 may originate from the torus compactification
2836
+ T 2
2837
+ 1 ×T 2
2838
+ 2 ×T 2
2839
+ 3 of the low-energy effective theory of superstring theory. Motivated this point, the
2840
+ modular flavor models based on the direct product of finite modular groups, ΓN1 × ΓN2 × ΓN3,
2841
+ may be interesting. Also we can extend our analysis to the lepton sector. We will study them
2842
+ in the near future.
2843
+ 16
2844
+
2845
+ In our models, the important parameter is the modulus τ. It must be stabilized such that
2846
+ the proper mass hierarchies are realized. We would study such modulus stabilization elsewhere2.
2847
+ Acknowledgement
2848
+ This work was supported by JSPS KAKENHI Grant Numbers JP22J10172 (SK) and JP20J20388
2849
+ (HU), and JST SPRING Grant Number JPMJSP2119(KN).
2850
+ Appendix
2851
+ A
2852
+ Tensor product of Γ6 group
2853
+ Here, we give a review on group theoretical aspects of Γ6. The generators of Γ6 are denoted by
2854
+ S and T, and they satisfy the following algebraic relations:
2855
+ S2 = (ST)3 = T 6 = ST 2ST 3ST 4ST 3 = 1,
2856
+ S2T = TS2.
2857
+ (69)
2858
+ In Γ6 group, there are 12 irreducible representations, six singlets 10
2859
+ 0, 10
2860
+ 1, 10
2861
+ 2, 11
2862
+ 0, 11
2863
+ 1 and 11
2864
+ 2,
2865
+ three doublets 20, 21 and 22, two triplets 30 and 31 and one six-dimensional representation 6.
2866
+ Each irreducible representation is given by
2867
+ 1r
2868
+ k : S = (−1)r,
2869
+ T = (−1)rωk,
2870
+ (70)
2871
+ 2k : S = 1
2872
+ 2
2873
+ �−1
2874
+
2875
+ 3
2876
+
2877
+ 3
2878
+ 1
2879
+
2880
+ ,
2881
+ T = ωk
2882
+ �1
2883
+ 0
2884
+ 0
2885
+ −1
2886
+
2887
+ ,
2888
+ (71)
2889
+ 3r : (−1)ra3,
2890
+ (−1)rb3,
2891
+ (72)
2892
+ 6 : 1
2893
+ 2
2894
+ � −a3
2895
+
2896
+ 3a3
2897
+
2898
+ 3a3
2899
+ a3
2900
+
2901
+ ,
2902
+ T =
2903
+ �b3
2904
+ 0
2905
+ 0
2906
+ −b3
2907
+
2908
+ ,
2909
+ (73)
2910
+ where r = 0, 1, k = 0, 1, 2 and
2911
+ a3 = 1
2912
+ 3
2913
+
2914
+
2915
+ −1
2916
+ 2
2917
+ 2
2918
+ 2
2919
+ −1
2920
+ 2
2921
+ 2
2922
+ 2
2923
+ −1
2924
+
2925
+  ,
2926
+ b3 =
2927
+
2928
+
2929
+ 1
2930
+ 0
2931
+ 0
2932
+ 0
2933
+ ω
2934
+ 0
2935
+ 0
2936
+ 0
2937
+ ω2
2938
+
2939
+  .
2940
+ (74)
2941
+ In this basis, the Kronecker products between irreducible representations are:
2942
+ 1r
2943
+ i ⊗ 1s
2944
+ j = 1t
2945
+ m,
2946
+ 1r
2947
+ i ⊗ 2j = 2m,
2948
+ 1r
2949
+ i ⊗ 3s = 3t,
2950
+ 1r
2951
+ i ⊗ 6 = 6,
2952
+ (75)
2953
+ 2i ⊗ 2j = 10
2954
+ m ⊕ 11
2955
+ m ⊕ 2m,
2956
+ 2i ⊗ 3r = 6,
2957
+ 2i ⊗ 6 = 30 ⊕ 31 ⊕ 6,
2958
+ (76)
2959
+ 3r ⊗ 3s = 1t
2960
+ 0 ⊕ 1t
2961
+ 1 ⊕ 1t
2962
+ 2 ⊕ 3t
2963
+ 1 ⊕ 3t
2964
+ 2,
2965
+ 3r ⊗ 6 = 20 ⊕ 21 ⊕ 22 ⊕ 6 ⊕ 6,
2966
+ (77)
2967
+ 6 ⊗ 6 = 10
2968
+ 0 ⊕ 10
2969
+ 1 ⊕ 10
2970
+ 2 ⊕ 11
2971
+ 0 ⊕ 11
2972
+ 1 ⊕ 11
2973
+ 2 ⊕ 20 ⊕ 21 ⊕ 22 ⊕ 30 ⊕ 30 ⊕ 31 ⊕ 31 ⊕ 6 ⊕ 6,
2974
+ (78)
2975
+ 2See for modulus stabilization in modular flavor symmetric models Refs. [82–86] .
2976
+ 17
2977
+
2978
+ where i, j = 0, 1, 2, r, s = 0, 1, m = i + j (mod 3) and t = r + s (mod 2). In the following, we
2979
+ show the Clebsch-Gordon (CG) coefficients of these products.
2980
+ (α1)1r
2981
+ i ⊗
2982
+ �β1
2983
+ β2
2984
+
2985
+ 2j
2986
+ = α1P r
2987
+ 2
2988
+ �β1
2989
+ β2
2990
+
2991
+ 2m
2992
+ ,
2993
+ (α1)1r
2994
+ i ⊗
2995
+
2996
+
2997
+ β1
2998
+ β2
2999
+ β3
3000
+
3001
+
3002
+ 3s
3003
+ = α1P i
3004
+ 3
3005
+
3006
+
3007
+ β1
3008
+ β2
3009
+ β3
3010
+
3011
+
3012
+ 3t
3013
+ ,
3014
+ (α1)1r
3015
+ i ⊗
3016
+
3017
+
3018
+
3019
+
3020
+
3021
+
3022
+
3023
+
3024
+
3025
+ β1
3026
+ β2
3027
+ β3
3028
+ β4
3029
+ β5
3030
+ β6
3031
+
3032
+
3033
+
3034
+
3035
+
3036
+
3037
+
3038
+
3039
+
3040
+ 6
3041
+ = α1P6(r, i)
3042
+
3043
+
3044
+
3045
+
3046
+
3047
+
3048
+
3049
+
3050
+
3051
+ β1
3052
+ β2
3053
+ β3
3054
+ β4
3055
+ β5
3056
+ β6
3057
+
3058
+
3059
+
3060
+
3061
+
3062
+
3063
+
3064
+
3065
+
3066
+ 6
3067
+ ,
3068
+ �α1
3069
+ α2
3070
+
3071
+ 2i
3072
+
3073
+ �β1
3074
+ β2
3075
+
3076
+ 2j
3077
+ = 1
3078
+
3079
+ 2
3080
+ (α1β1 + α2β2)10m ⊕ 1
3081
+
3082
+ 2
3083
+ (α1β2 − α2β1)11m ⊕ 1
3084
+
3085
+ 2
3086
+ � α1β1 − α2β2
3087
+ −α1β2 − α2β1
3088
+
3089
+ 2m
3090
+ ,
3091
+ �α1
3092
+ α2
3093
+
3094
+ 2i
3095
+
3096
+
3097
+
3098
+ β1
3099
+ β2
3100
+ β3
3101
+
3102
+
3103
+ 3r
3104
+ = P6(r, i)
3105
+
3106
+
3107
+
3108
+
3109
+
3110
+
3111
+
3112
+
3113
+
3114
+ α1β1
3115
+ α1β2
3116
+ α1β3
3117
+ α2β1
3118
+ α2β2
3119
+ α2β3
3120
+
3121
+
3122
+
3123
+
3124
+
3125
+
3126
+
3127
+
3128
+
3129
+ 6
3130
+ ,
3131
+ �α1
3132
+ α2
3133
+
3134
+ 2i
3135
+
3136
+
3137
+
3138
+
3139
+
3140
+
3141
+
3142
+
3143
+
3144
+
3145
+ β1
3146
+ β2
3147
+ β3
3148
+ β4
3149
+ β5
3150
+ β6
3151
+
3152
+
3153
+
3154
+
3155
+
3156
+
3157
+
3158
+
3159
+
3160
+ 6
3161
+ = P i
3162
+ 3
3163
+
3164
+ 2
3165
+
3166
+
3167
+ α1β1 + α2β4
3168
+ α1β2 + α2β5
3169
+ α1β3 + α2β6
3170
+
3171
+
3172
+ 30
3173
+ ⊕ P i
3174
+ 3
3175
+
3176
+ 2
3177
+
3178
+
3179
+ α1β4 − α2β1
3180
+ α1β5 − α2β2
3181
+ α1β6 − α2β3
3182
+
3183
+
3184
+ 31
3185
+ ⊕ P6(0, i)
3186
+
3187
+ 2
3188
+
3189
+
3190
+
3191
+
3192
+
3193
+
3194
+
3195
+
3196
+
3197
+ α1β1 − α2β4
3198
+ α1β2 − α2β5
3199
+ α1β3 − α2β6
3200
+ −α1β4 − α2β1
3201
+ −α1β5 − α2β2
3202
+ −α1β6 − α2β3
3203
+
3204
+
3205
+
3206
+
3207
+
3208
+
3209
+
3210
+
3211
+
3212
+ 6
3213
+ ,
3214
+ 18
3215
+
3216
+
3217
+
3218
+ α1
3219
+ α2
3220
+ α3
3221
+
3222
+
3223
+ 3r
3224
+
3225
+
3226
+
3227
+ β1
3228
+ β2
3229
+ β3
3230
+
3231
+
3232
+ 3s
3233
+ = 1
3234
+
3235
+ 3(α1β1 + α2β3 + α3β2)1t
3236
+ 0 ⊕ 1
3237
+
3238
+ 3(α1β2 + α2β1 + α3β3)1t
3239
+ 1
3240
+ ⊕ 1
3241
+
3242
+ 3
3243
+ (α1β3 + α2β2 + α3β1)1t
3244
+ 2 ⊕ 1
3245
+
3246
+ 3
3247
+
3248
+
3249
+ 2α1β1 − α2β3 − α3β2
3250
+ −α1β2 − α2β1 + 2α3β3
3251
+ −α1β3 + 2α2β2 − α3β1
3252
+
3253
+
3254
+ 3t
3255
+ 1
3256
+ ⊕ 1
3257
+
3258
+ 2
3259
+
3260
+
3261
+ −α2β3 + α3β2
3262
+ −α1β2 + α2β1
3263
+ α1β3 − α3β1
3264
+
3265
+
3266
+ 3t
3267
+ 2
3268
+ ,
3269
+
3270
+
3271
+ α1
3272
+ α2
3273
+ α3
3274
+
3275
+
3276
+ 3r
3277
+
3278
+
3279
+
3280
+
3281
+
3282
+
3283
+
3284
+
3285
+
3286
+
3287
+ β1
3288
+ β2
3289
+ β3
3290
+ β4
3291
+ β5
3292
+ β6
3293
+
3294
+
3295
+
3296
+
3297
+
3298
+
3299
+
3300
+
3301
+
3302
+ 6
3303
+ = P r
3304
+ 2
3305
+
3306
+ 3
3307
+ �α1β1 + α2β3 + α3β2
3308
+ α1β4 + α2β6 + α3β5
3309
+
3310
+ 20
3311
+ ⊕ P r
3312
+ 2
3313
+
3314
+ 3
3315
+ �α1β2 + α2β1 + α3β3
3316
+ α1β5 + α2β4 + α3β6
3317
+
3318
+ 21
3319
+ ⊕ P r
3320
+ 2
3321
+
3322
+ 3
3323
+ �α1β3 + α2β2 + α3β1
3324
+ α1β6 + α2β5 + α3β4
3325
+
3326
+ 22
3327
+ ⊕ P6(r, 0)
3328
+
3329
+ 2
3330
+
3331
+
3332
+
3333
+
3334
+
3335
+
3336
+
3337
+
3338
+
3339
+ α1β1 − α3β2
3340
+ −α2β1 + α3β3
3341
+ −α1β3 + α2β2
3342
+ α1β4 − α3β5
3343
+ −α2β4 + α3β6
3344
+ −α1β6 + α2β5
3345
+
3346
+
3347
+
3348
+
3349
+
3350
+
3351
+
3352
+
3353
+
3354
+ 6
3355
+ ⊕ P6(r, 0)
3356
+
3357
+ 2
3358
+
3359
+
3360
+
3361
+
3362
+
3363
+
3364
+
3365
+
3366
+
3367
+ α2β3 − α3β2
3368
+ α1β2 − α2β1
3369
+ −α1β3 + α3β1
3370
+ α2β6 − α3β5
3371
+ α1β5 − α2β4
3372
+ −α1β6 + α3β4
3373
+
3374
+
3375
+
3376
+
3377
+
3378
+
3379
+
3380
+
3381
+
3382
+ 6
3383
+ ,
3384
+ 19
3385
+
3386
+
3387
+
3388
+
3389
+
3390
+
3391
+
3392
+
3393
+
3394
+
3395
+ α1
3396
+ α2
3397
+ α3
3398
+ α4
3399
+ α5
3400
+ α6
3401
+
3402
+
3403
+
3404
+
3405
+
3406
+
3407
+
3408
+
3409
+
3410
+ 6
3411
+
3412
+
3413
+
3414
+
3415
+
3416
+
3417
+
3418
+
3419
+
3420
+
3421
+ β1
3422
+ β2
3423
+ β3
3424
+ β4
3425
+ β5
3426
+ β6
3427
+
3428
+
3429
+
3430
+
3431
+
3432
+
3433
+
3434
+
3435
+
3436
+ 6
3437
+ =
3438
+ 1
3439
+
3440
+ 6(α1β1 + α2β3 + α3β2 + α4β4 + α5β6 + α6β5)10
3441
+ 0
3442
+ ⊕ 1
3443
+
3444
+ 6(α1β2 + α2β1 + α3β3 + α4β5 + α5β4 + α6β6)10
3445
+ 1
3446
+ ⊕ 1
3447
+
3448
+ 6(α1β3 + α2β2 + α3β1 + α4β6 + α5β5 + α6β4)10
3449
+ 2
3450
+ ⊕ 1
3451
+
3452
+ 6(α1β4 + α2β6 + α3β5 − α4β1 − α5β3 − α6β2)11
3453
+ 0
3454
+ ⊕ 1
3455
+
3456
+ 6(α1β5 + α2β4 + α3β6 − α4β2 − α5β1 − α6β3)11
3457
+ 1
3458
+ ⊕ 1
3459
+
3460
+ 6(α1β6 + α2β5 + α3β4 − α4β3 − α5β2 − α6β1)11
3461
+ 2
3462
+
3463
+ 1
3464
+
3465
+ 6
3466
+ � α1β1 + α2β3 + α3β2 − α4β4 − α5β6 − α6β5
3467
+ −(α1β4 + α2β6 + α3β5 + α4β1 + α5β3 + α6β2)
3468
+
3469
+ 20
3470
+
3471
+ 1
3472
+
3473
+ 6
3474
+ � α1β2 + α2β1 + α3β3 − α4β5 − α5β4 − α6β6
3475
+ −(α1β5 + α2β4 + α3β6 + α4β2 + α5β1 + α6β3)
3476
+
3477
+ 21
3478
+
3479
+ 1
3480
+
3481
+ 6
3482
+ � α1β3 + α2β2 + α3β1 − α4β6 − α5β5 − α6β4
3483
+ −(α1β6 + α2β5 + α3β4 + α4β3 + α5β2 + α6β1)
3484
+
3485
+ 22
3486
+
3487
+ 1
3488
+ 2
3489
+
3490
+ 3
3491
+
3492
+
3493
+ 2α1β1 − α2β3 − α3β2 + 2α4β4 − α5β6 − α6β5
3494
+ 2α3β3 − α1β2 − α2β1 + 2α6β6 − α4β5 − α5β4
3495
+ 2α2β2 − α1β3 − α3β1 + 2α5β5 − α4β6 − α6β4
3496
+
3497
+
3498
+ 30
3499
+ ⊕ 1
3500
+ 2
3501
+
3502
+
3503
+ α2β3 − α3β2 + α5β6 − α6β5
3504
+ α1β2 − α2β1 + α4β5 − α5β4
3505
+ −α1β3 + α3β1 − α4β6 + α6β4
3506
+
3507
+
3508
+ 30
3509
+ ⊕ 1
3510
+ 2
3511
+
3512
+
3513
+ α2β6 − α3β5 − α5β3 + α6β2
3514
+ α1β5 − α2β4 − α4β2 + α5β1
3515
+ −α1β6 + α3β4 + α4β3 − α6β1
3516
+
3517
+
3518
+ 31
3519
+
3520
+ 1
3521
+ 2
3522
+
3523
+ 3
3524
+
3525
+
3526
+ 2α1β4 − α2β6 − α3β5 − 2α4β1 + α5β3 + α6β2
3527
+ −α1β5 − α2β4 + 2α3β6 + α4β2 + α5β1 − 2α6β3
3528
+ −α1β6 + 2α2β5 − α3β4 + α4β3 − 2α5β2 + α6β1
3529
+
3530
+
3531
+ 31
3532
+
3533
+ 1
3534
+ 2
3535
+
3536
+ 3
3537
+
3538
+
3539
+
3540
+
3541
+
3542
+
3543
+
3544
+
3545
+
3546
+ 2α1β1 − α2β3 − α3β2 − 2α4β4 + α5β6 + α6β5
3547
+ −α1β2 − α2β1 + 2α3β3 + α4β5 + α5β4 − 2α6β6
3548
+ −α1β3 + 2α2β2 − α3β1 + α4β6 − 2α5β5 + α6β4
3549
+ −2α1β4 + α2β6 + α3β5 − 2α4β1 + α5β3 + α6β2
3550
+ α1β5 + α2β4 − 2α3β6 + α4β2 + α5β1 − 2α6β3
3551
+ α1β6 − 2α2β5 + α3β4 + α4β3 − 2α5β2 + α6β1
3552
+
3553
+
3554
+
3555
+
3556
+
3557
+
3558
+
3559
+
3560
+
3561
+ 6
3562
+ ⊕ 1
3563
+ 2
3564
+
3565
+
3566
+
3567
+
3568
+
3569
+
3570
+
3571
+
3572
+
3573
+ α2β3 − α3β2 − α5β6 + α6β5
3574
+ α1β2 − α2β1 − α4β5 + α5β4
3575
+ −α1β3 + α3β1 + α4β6 − α6β4
3576
+ −α2β6 + α3β5 − α5β3 + α6β2
3577
+ −α1β5 + α2β4 − α4β2 + α5β1
3578
+ α1β6 − α3β4 + α4β3 − α6β1
3579
+
3580
+
3581
+
3582
+
3583
+
3584
+
3585
+
3586
+
3587
+
3588
+ 6
3589
+ .
3590
+ 20
3591
+
3592
+ Here we have used the notations,
3593
+ P2 =
3594
+ � 0
3595
+ 1
3596
+ −1
3597
+ 0
3598
+
3599
+ ,
3600
+ P3 =
3601
+
3602
+
3603
+ 0
3604
+ 0
3605
+ 1
3606
+ 1
3607
+ 0
3608
+ 0
3609
+ 0
3610
+ 1
3611
+ 0
3612
+
3613
+  ,
3614
+ P6(r, i) =
3615
+ � 03
3616
+ 13
3617
+ −13
3618
+ 03
3619
+ �r �P3
3620
+ 03
3621
+ 03
3622
+ P3
3623
+ �i
3624
+ .
3625
+ (79)
3626
+ Further details can be found in Ref. [33].
3627
+ B
3628
+ Modular forms of Γ6
3629
+ Here we give a review on the modular forms of Γ6. The modular forms of level 6 of even weights
3630
+ can be constructed from the products of the Dedekind eta function [33],
3631
+ η(τ) = q1/24
3632
+
3633
+
3634
+ n=1
3635
+ (1 − qn),
3636
+ q = e2πiτ.
3637
+ (80)
3638
+ Using η, four linearly independent modular forms of weight 2 can be written down as
3639
+ Y (2)
3640
+ 30 (τ) =
3641
+
3642
+
3643
+ −Y 2
3644
+ 1
3645
+
3646
+ 2Y1Y2
3647
+ Y 2
3648
+ 2
3649
+
3650
+  ,
3651
+ Y (2)
3652
+ 11
3653
+ 2 (τ) = Y3Y6 − Y4Y5,
3654
+ Y (2)
3655
+ 20 (τ) = 1
3656
+
3657
+ 2
3658
+ �Y1Y4 − Y2Y3
3659
+ Y1Y6 − Y2Y5
3660
+
3661
+ ,
3662
+ (81)
3663
+ Y (2)
3664
+ 6 (τ) = 1
3665
+
3666
+ 2
3667
+
3668
+
3669
+
3670
+
3671
+
3672
+
3673
+
3674
+
3675
+
3676
+ Y1Y4 + Y2Y3
3677
+
3678
+ 2Y2Y4
3679
+
3680
+
3681
+ 2Y1Y3
3682
+ Y1Y6 + Y2Y5
3683
+
3684
+ 2Y2Y6
3685
+
3686
+
3687
+ 2Y1Y5
3688
+
3689
+
3690
+
3691
+
3692
+
3693
+
3694
+
3695
+
3696
+
3697
+ ,
3698
+ (82)
3699
+ where
3700
+ Y1(τ) = 3η3(3τ)
3701
+ η(τ) + η3(τ/3)
3702
+ η(τ) ,
3703
+ (83)
3704
+ Y2(τ) = 3
3705
+
3706
+ 2η3(3τ)
3707
+ η(τ) ,
3708
+ (84)
3709
+ Y3(τ) = 3
3710
+
3711
+ 2η3(6τ)
3712
+ η(2τ) ,
3713
+ (85)
3714
+ Y4(τ) = −3η3(6τ)
3715
+ η(2τ) − η3(2τ/3)
3716
+ η(2τ) ,
3717
+ (86)
3718
+ Y5(τ) =
3719
+
3720
+ 6η3(6τ)
3721
+ η(2τ) −
3722
+
3723
+ 6η3(3τ/2)
3724
+ η(τ/2) ,
3725
+ (87)
3726
+ Y6(τ) = −
3727
+
3728
+ 3η3(6τ)
3729
+ η(2τ) + 1
3730
+
3731
+ 3
3732
+ η3(τ/6)
3733
+ η(τ/2) − 1
3734
+
3735
+ 3
3736
+ η3(2τ/3)
3737
+ η(2τ)
3738
+ +
3739
+
3740
+ 3η3(3τ/2)
3741
+ η(τ/2) .
3742
+ (88)
3743
+ 21
3744
+
3745
+ Then we can construct the modular forms of weight 4 by the CG coefficients shown in appendix
3746
+ A as
3747
+ Y (4)
3748
+ 10
3749
+ 0 (τ) =
3750
+
3751
+ Y (2)
3752
+ 20 Y (2)
3753
+ 20
3754
+
3755
+ 10
3756
+ 0
3757
+ ,
3758
+ Y (4)
3759
+ 10
3760
+ 1 (τ) =
3761
+
3762
+ Y (2)
3763
+ 11
3764
+ 2 Y (2)
3765
+ 11
3766
+ 2
3767
+
3768
+ 10
3769
+ 1
3770
+ ,
3771
+ Y (4)
3772
+ 20 (τ) =
3773
+
3774
+ Y (2)
3775
+ 20 Y (2)
3776
+ 20
3777
+
3778
+ 20 ,
3779
+ (89)
3780
+ Y (4)
3781
+ 22 (τ) =
3782
+
3783
+ Y (2)
3784
+ 11
3785
+ 2 Y (2)
3786
+ 20
3787
+
3788
+ 22 ,
3789
+ Y (4)
3790
+ 30 (τ) =
3791
+
3792
+ Y (2)
3793
+ 20 Y (2)
3794
+ 6
3795
+
3796
+ 30 ,
3797
+ Y (4)
3798
+ 31 (τ) =
3799
+
3800
+ Y (2)
3801
+ 11
3802
+ 2 Y (2)
3803
+ 30
3804
+
3805
+ 31 ,
3806
+ (90)
3807
+ Y (4)
3808
+ 6i (τ) =
3809
+
3810
+ Y (2)
3811
+ 11
3812
+ 2 Y (2)
3813
+ 6
3814
+
3815
+ 6 ,
3816
+ Y (4)
3817
+ 6ii (τ) =
3818
+
3819
+ Y (2)
3820
+ 20 Y (2)
3821
+ 30
3822
+
3823
+ 6 .
3824
+ (91)
3825
+ Note that Y (4)
3826
+ 6i
3827
+ and Y (4)
3828
+ 6ii stand for two linearly independent six-dimensional modular forms of
3829
+ weight 4. We use the same convention for other modular forms. Similarly, we construct the
3830
+ modular forms of weight 6 as
3831
+ Y (6)
3832
+ 10
3833
+ 0 (τ) =
3834
+
3835
+ Y (2)
3836
+ 20 Y (4)
3837
+ 20
3838
+
3839
+ 10
3840
+ 0
3841
+ ,
3842
+ Y (6)
3843
+ 11
3844
+ 0 (τ) =
3845
+
3846
+ Y (2)
3847
+ 11
3848
+ 2 Y (4)
3849
+ 10
3850
+ 1
3851
+
3852
+ 11
3853
+ 0
3854
+ ,
3855
+ Y (6)
3856
+ 11
3857
+ 2 (τ) =
3858
+
3859
+ Y (2)
3860
+ 11
3861
+ 2 Y (4)
3862
+ 10
3863
+ 0
3864
+
3865
+ 11
3866
+ 2
3867
+ ,
3868
+ (92)
3869
+ Y (6)
3870
+ 20 (τ) =
3871
+
3872
+ Y (2)
3873
+ 20 Y (4)
3874
+ 10
3875
+ 0
3876
+
3877
+ 20 ,
3878
+ Y (6)
3879
+ 21 (τ) =
3880
+
3881
+ Y (2)
3882
+ 20 Y (4)
3883
+ 10
3884
+ 1
3885
+
3886
+ 21 ,
3887
+ Y (6)
3888
+ 22 (τ) =
3889
+
3890
+ Y (2)
3891
+ 11
3892
+ 2 Y (4)
3893
+ 20
3894
+
3895
+ 22 ,
3896
+ (93)
3897
+ Y (6)
3898
+ 30i(τ) =
3899
+
3900
+ Y (2)
3901
+ 30 Y (4)
3902
+ 10
3903
+ 1
3904
+
3905
+ 30 ,
3906
+ Y (6)
3907
+ 30ii(τ) =
3908
+
3909
+ Y (2)
3910
+ 30 Y (4)
3911
+ 10
3912
+ 0
3913
+
3914
+ 30 ,
3915
+ Y (6)
3916
+ 31 (τ) =
3917
+
3918
+ Y (2)
3919
+ 11
3920
+ 2 Y (4)
3921
+ 30
3922
+
3923
+ 31 ,
3924
+ (94)
3925
+ Y (6)
3926
+ 6i (τ) =
3927
+
3928
+ Y (2)
3929
+ 20 Y (4)
3930
+ 31
3931
+
3932
+ 6 ,
3933
+ Y (6)
3934
+ 6ii (τ) =
3935
+
3936
+ Y (2)
3937
+ 6 Y (4)
3938
+ 10
3939
+ 0
3940
+
3941
+ 6 ,
3942
+ Y (6)
3943
+ 6iii(τ) =
3944
+
3945
+ Y (2)
3946
+ 30 Y (4)
3947
+ 20
3948
+
3949
+ 6 .
3950
+ (95)
3951
+ In Table 8 we summarize the modular forms of level 6 of even weights up to 6.
3952
+ Modular form Y (kY )
3953
+ r
3954
+ kY = 2
3955
+ Y (2)
3956
+ 11
3957
+ 2 , Y (2)
3958
+ 20 , Y (2)
3959
+ 30 , Y (2)
3960
+ 6
3961
+ kY = 4
3962
+ Y (4)
3963
+ 10
3964
+ 0 , Y (4)
3965
+ 10
3966
+ 1 , Y (4)
3967
+ 20 , Y (4)
3968
+ 22 , Y (4)
3969
+ 30 , Y (4)
3970
+ 31 , Y (4)
3971
+ 6i , Y (4)
3972
+ 6ii
3973
+ kY = 6
3974
+ Y (6)
3975
+ 10
3976
+ 0 , Y (6)
3977
+ 11
3978
+ 0 , Y (6)
3979
+ 11
3980
+ 2 , Y (6)
3981
+ 20 , Y (6)
3982
+ 21 , Y (6)
3983
+ 22 , Y (6)
3984
+ 30i, Y (6)
3985
+ 30ii, Y (6)
3986
+ 31 , Y (6)
3987
+ 6i , Y (6)
3988
+ 6ii , Y (6)
3989
+ 6iii
3990
+ Table 8: The modular forms of level 6 of even weights up to 6.
3991
+ Also we construct the singlet modular forms of weights 8, 10, 12 and 14 which we have used
3992
+ in our analysis. First, the singlet modular forms of weight 8 are given by
3993
+ Y (8)
3994
+ 10
3995
+ 0 =
3996
+
3997
+ Y (4)
3998
+ 10
3999
+ 0 Y (4)
4000
+ 10
4001
+ 0
4002
+
4003
+ 10
4004
+ 0
4005
+ ,
4006
+ Y (8)
4007
+ 10
4008
+ 1 =
4009
+
4010
+ Y (4)
4011
+ 10
4012
+ 0 Y (4)
4013
+ 10
4014
+ 1
4015
+
4016
+ 10
4017
+ 1
4018
+ ,
4019
+ Y (8)
4020
+ 10
4021
+ 2 =
4022
+
4023
+ Y (4)
4024
+ 10
4025
+ 1 Y (4)
4026
+ 10
4027
+ 1
4028
+
4029
+ 10
4030
+ 2
4031
+ ,
4032
+ Y (8)
4033
+ 11
4034
+ 2 =
4035
+
4036
+ Y (4)
4037
+ 20 Y (4)
4038
+ 22
4039
+
4040
+ 11
4041
+ 2
4042
+ .
4043
+ (96)
4044
+ The singlet modular forms of weight 10 are given by
4045
+ Y (10)
4046
+ 10
4047
+ 0
4048
+ =
4049
+
4050
+ Y (4)
4051
+ 10
4052
+ 0 Y (6)
4053
+ 10
4054
+ 0
4055
+
4056
+ 10
4057
+ 0
4058
+ ,
4059
+ Y (10)
4060
+ 10
4061
+ 1
4062
+ =
4063
+
4064
+ Y (4)
4065
+ 10
4066
+ 1 Y (6)
4067
+ 10
4068
+ 0
4069
+
4070
+ 10
4071
+ 1
4072
+ ,
4073
+ Y (10)
4074
+ 11
4075
+ 0
4076
+ =
4077
+
4078
+ Y (4)
4079
+ 10
4080
+ 0 Y (6)
4081
+ 11
4082
+ 0
4083
+
4084
+ 11
4085
+ 0
4086
+ ,
4087
+ (97)
4088
+ Y (10)
4089
+ 11
4090
+ 1
4091
+ =
4092
+
4093
+ Y (4)
4094
+ 10
4095
+ 1 Y (6)
4096
+ 11
4097
+ 0
4098
+
4099
+ 11
4100
+ 1
4101
+ ,
4102
+ Y (10)
4103
+ 11
4104
+ 2
4105
+ =
4106
+
4107
+ Y (4)
4108
+ 10
4109
+ 0 Y (6)
4110
+ 11
4111
+ 2
4112
+
4113
+ 11
4114
+ 2
4115
+ .
4116
+ (98)
4117
+ 22
4118
+
4119
+ The singlet modular forms of weight 12 are given by
4120
+ Y (12)
4121
+ 10
4122
+ 0i =
4123
+
4124
+ Y (6)
4125
+ 10
4126
+ 0 Y (6)
4127
+ 10
4128
+ 0
4129
+
4130
+ 10
4131
+ 0
4132
+ ,
4133
+ Y (12)
4134
+ 10
4135
+ 0ii =
4136
+
4137
+ Y (6)
4138
+ 11
4139
+ 0 Y (6)
4140
+ 11
4141
+ 0
4142
+
4143
+ 10
4144
+ 0
4145
+ ,
4146
+ Y (12)
4147
+ 10
4148
+ 1
4149
+ =
4150
+
4151
+ Y (6)
4152
+ 11
4153
+ 2 Y (6)
4154
+ 11
4155
+ 2
4156
+
4157
+ 10
4158
+ 1
4159
+ ,
4160
+ (99)
4161
+ Y (12)
4162
+ 10
4163
+ 2
4164
+ =
4165
+
4166
+ Y (6)
4167
+ 11
4168
+ 0 Y (6)
4169
+ 11
4170
+ 2
4171
+
4172
+ 10
4173
+ 2
4174
+ ,
4175
+ Y (12)
4176
+ 11
4177
+ 0
4178
+ =
4179
+
4180
+ Y (6)
4181
+ 10
4182
+ 0 Y (6)
4183
+ 11
4184
+ 0
4185
+
4186
+ 11
4187
+ 0
4188
+ ,
4189
+ Y (12)
4190
+ 11
4191
+ 2
4192
+ =
4193
+
4194
+ Y (6)
4195
+ 10
4196
+ 0 Y (6)
4197
+ 11
4198
+ 2
4199
+
4200
+ 11
4201
+ 2
4202
+ .
4203
+ (100)
4204
+ The singlet modular forms of weight 14 are given by
4205
+ Y (14)
4206
+ 10
4207
+ 0
4208
+ =
4209
+
4210
+ Y (6)
4211
+ 10
4212
+ 0 Y (8)
4213
+ 10
4214
+ 0
4215
+
4216
+ 10
4217
+ 0
4218
+ ,
4219
+ Y (14)
4220
+ 10
4221
+ 1
4222
+ =
4223
+
4224
+ Y (6)
4225
+ 10
4226
+ 0 Y (8)
4227
+ 10
4228
+ 1
4229
+
4230
+ 10
4231
+ 1
4232
+ ,
4233
+ Y (14)
4234
+ 10
4235
+ 2
4236
+ =
4237
+
4238
+ Y (6)
4239
+ 10
4240
+ 0 Y (8)
4241
+ 10
4242
+ 2
4243
+
4244
+ 10
4245
+ 2
4246
+ ,
4247
+ (101)
4248
+ Y (14)
4249
+ 11
4250
+ 0
4251
+ =
4252
+
4253
+ Y (6)
4254
+ 11
4255
+ 0 Y (8)
4256
+ 10
4257
+ 0
4258
+
4259
+ 11
4260
+ 0
4261
+ ,
4262
+ Y (14)
4263
+ 11
4264
+ 1
4265
+ =
4266
+
4267
+ Y (6)
4268
+ 11
4269
+ 0 Y (8)
4270
+ 10
4271
+ 1
4272
+
4273
+ 11
4274
+ 1
4275
+ ,
4276
+ Y (14)
4277
+ 11
4278
+ 2i =
4279
+
4280
+ Y (6)
4281
+ 11
4282
+ 2 Y (8)
4283
+ 10
4284
+ 0
4285
+
4286
+ 11
4287
+ 2
4288
+ ,
4289
+ (102)
4290
+ Y (14)
4291
+ 11
4292
+ 2ii =
4293
+
4294
+ Y (6)
4295
+ 11
4296
+ 0 Y (8)
4297
+ 10
4298
+ 2
4299
+
4300
+ 11
4301
+ 2
4302
+ .
4303
+ (103)
4304
+ In Table 9 we summarize the singlet modular forms of level 6 of weights 8, 10, 12 and 14.
4305
+ Modular form Y (kY )
4306
+ r
4307
+ kY = 8
4308
+ Y (8)
4309
+ 10
4310
+ 0 , Y (8)
4311
+ 10
4312
+ 1 , Y (8)
4313
+ 10
4314
+ 2 , Y (8)
4315
+ 11
4316
+ 2
4317
+ kY = 10
4318
+ Y (10)
4319
+ 10
4320
+ 0 , Y (10)
4321
+ 10
4322
+ 1 , Y (10)
4323
+ 11
4324
+ 0 , Y (10)
4325
+ 11
4326
+ 1 , Y (10)
4327
+ 11
4328
+ 2
4329
+ kY = 12
4330
+ Y (12)
4331
+ 10
4332
+ 0i , Y (12)
4333
+ 10
4334
+ 0ii, Y (12)
4335
+ 10
4336
+ 1 , Y (12)
4337
+ 10
4338
+ 2 , Y (12)
4339
+ 11
4340
+ 0 , Y (12)
4341
+ 11
4342
+ 2
4343
+ kY = 14
4344
+ Y (14)
4345
+ 10
4346
+ 0 , Y (14)
4347
+ 10
4348
+ 1 , Y (14)
4349
+ 10
4350
+ 2 , Y (14)
4351
+ 11
4352
+ 0 , Y (14)
4353
+ 11
4354
+ 1 , Y (14)
4355
+ 11
4356
+ 2i , Y (14)
4357
+ 11
4358
+ 2ii
4359
+ Table 9: The singlet modular forms of level 6 of weights 8, 10, 12 and 14.
4360
+ 23
4361
+
4362
+ References
4363
+ [1] F. Feruglio, in From My Vast Repertoire ...: Guido Altarelli’s Legacy, A. Levy, S. Forte,
4364
+ Stefano, and G. Ridolfi, eds., pp.227–266, 2019, arXiv:1706.08749 [hep-ph].
4365
+ [2] S. Ferrara, D. Lust, A. D. Shapere and S. Theisen, Phys. Lett. B 225, 363 (1989).
4366
+ [3] S. Ferrara, D. Lust and S. Theisen, Phys. Lett. B 233 (1989), 147-152.
4367
+ [4] W. Lerche, D. Lust and N. P. Warner, Phys. Lett. B 231 (1989), 417-424.
4368
+ [5] J. Lauer, J. Mas and H. P. Nilles, Nucl. Phys. B 351, 353 (1991).
4369
+ [6] T. Kobayashi, S. Nagamoto, S. Takada, S. Tamba and T. H. Tatsuishi, Phys. Rev. D 97,
4370
+ no. 11, 116002 (2018) [arXiv:1804.06644 [hep-th]].
4371
+ [7] T. Kobayashi and S. Tamba, Phys. Rev. D 99 (2019) no.4, 046001 [arXiv:1811.11384
4372
+ [hep-th]].
4373
+ [8] H. Ohki, S. Uemura and R. Watanabe, Phys. Rev. D 102, no.8, 085008 (2020)
4374
+ [arXiv:2003.04174 [hep-th]].
4375
+ [9] S. Kikuchi, T. Kobayashi, S. Takada, T. H. Tatsuishi and H. Uchida, Phys. Rev. D 102,
4376
+ no.10, 105010 (2020) [arXiv:2005.12642 [hep-th]].
4377
+ [10] S. Kikuchi, T. Kobayashi, H. Otsuka, S. Takada and H. Uchida, JHEP 11, 101 (2020)
4378
+ [arXiv:2007.06188 [hep-th]].
4379
+ [11] S. Kikuchi, T. Kobayashi and H. Uchida, Phys. Rev. D 104, no.6, 065008 (2021)
4380
+ [arXiv:2101.00826 [hep-th]].
4381
+ [12] Y. Almumin, M. C. Chen, V. Knapp-Perez, S. Ramos-Sanchez, M. Ratz and S. Shukla,
4382
+ JHEP 05 (2021), 078 [arXiv:2102.11286 [hep-th]].
4383
+ [13] A. Baur, H. P. Nilles, A. Trautner and P. K. S. Vaudrevange, Nucl. Phys. B 947 (2019),
4384
+ 114737 [arXiv:1908.00805 [hep-th]].
4385
+ [14] H. P. Nilles, S. Ramos-S´anchez and P. K. S. Vaudrevange, Nucl. Phys. B 957 (2020),
4386
+ 115098 [arXiv:2004.05200 [hep-ph]].
4387
+ [15] A. Baur, M. Kade, H. P. Nilles, S. Ramos-Sanchez and P. K. S. Vaudrevange, JHEP 02
4388
+ (2021), 018 [arXiv:2008.07534 [hep-th]].
4389
+ [16] H. P. Nilles, S. Ramos–S´anchez and P. K. S. Vaudrevange, Nucl. Phys. B 966 (2021),
4390
+ 115367 [arXiv:2010.13798 [hep-th]].
4391
+ 24
4392
+
4393
+ [17] R. de Adelhart Toorop, F. Feruglio and C. Hagedorn, Nucl. Phys. B 858, 437 (2012)
4394
+ [arXiv:1112.1340 [hep-ph]].
4395
+ [18] G. Altarelli and F. Feruglio, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211 [hep-ph]].
4396
+ [19] H. Ishimori, T. Kobayashi, H. Ohki, Y. Shimizu, H. Okada and M. Tanimoto, Prog. Theor.
4397
+ Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552 [hep-th]].
4398
+ [20] H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes
4399
+ Phys. 858 (2012) 1, Springer.
4400
+ [21] T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, Lect. Notes Phys. 995
4401
+ (2022) 1, Springer doi:10.1007/978-3-662-64679-3.
4402
+ [22] D. Hernandez and A. Y. Smirnov, Phys. Rev. D 86 (2012) 053014 [arXiv:1204.0445 [hep-
4403
+ ph]].
4404
+ [23] S. F. King and C. Luhn, Rept. Prog. Phys. 76 (2013) 056201 [arXiv:1301.1340 [hep-ph]].
4405
+ [24] S. F. King, A. Merle, S. Morisi, Y. Shimizu and M. Tanimoto, New J. Phys. 16, 045018
4406
+ (2014) [arXiv:1402.4271 [hep-ph]].
4407
+ [25] M. Tanimoto, AIP Conf. Proc. 1666 (2015) 120002.
4408
+ [26] S. F. King, Prog. Part. Nucl. Phys. 94 (2017) 217 [arXiv:1701.04413 [hep-ph]].
4409
+ [27] S. T. Petcov, Eur. Phys. J. C 78 (2018) no.9, 709 [arXiv:1711.10806 [hep-ph]].
4410
+ [28] F. Feruglio and A. Romanino, arXiv:1912.06028 [hep-ph].
4411
+ [29] T. Kobayashi, K. Tanaka and T. H. Tatsuishi, Phys. Rev. D 98, no. 1, 016004 (2018)
4412
+ [arXiv:1803.10391 [hep-ph]].
4413
+ [30] J. T. Penedo and S. T. Petcov, Nucl. Phys. B 939, 292 (2019) [arXiv:1806.11040 [hep-ph]].
4414
+ [31] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904, 174 (2019)
4415
+ [arXiv:1812.02158 [hep-ph]].
4416
+ [32] G. J. Ding, S. F. King and X. G. Liu, Phys. Rev. D 100 (2019) no.11, 115005
4417
+ [arXiv:1903.12588 [hep-ph]].
4418
+ [33] C. C. Li, X. G. Liu and G. J. Ding, JHEP 10 (2021), 238 doi:10.1007/JHEP10(2021)238
4419
+ [arXiv:2108.02181 [hep-ph]].
4420
+ [34] G. J.
4421
+ Ding,
4422
+ S.
4423
+ F. King,
4424
+ C.
4425
+ C.
4426
+ Li and Y. L.
4427
+ Zhou,
4428
+ JHEP 08
4429
+ (2020),
4430
+ 164
4431
+ doi:10.1007/JHEP08(2020)164 [arXiv:2004.12662 [hep-ph]].
4432
+ 25
4433
+
4434
+ [35] X. G. Liu and G. J. Ding, JHEP 08, 134 (2019) [arXiv:1907.01488 [hep-ph]].
4435
+ [36] P. P. Novichkov, J. T. Penedo and S. T. Petcov, Nucl. Phys. B 963 (2021), 115301
4436
+ [arXiv:2006.03058 [hep-ph]].
4437
+ [37] X. G. Liu, C. Y. Yao and G. J. Ding, Phys. Rev. D 103, no.5, 056013 (2021)
4438
+ [arXiv:2006.10722 [hep-ph]].
4439
+ [38] X. G. Liu, C. Y. Yao, B. Y. Qu and G. J. Ding, Phys. Rev. D 102, no.11, 115035 (2020)
4440
+ [arXiv:2007.13706 [hep-ph]].
4441
+ [39] J. C. Criado and F. Feruglio, SciPost Phys. 5 (2018) no.5, 042 [arXiv:1807.01125 [hep-ph]].
4442
+ [40] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP
4443
+ 11 (2018), 196 [arXiv:1808.03012 [hep-ph]].
4444
+ [41] G. J. Ding, S. F. King and X. G. Liu, JHEP 1909 (2019) 074 [arXiv:1907.11714 [hep-ph]].
4445
+ [42] P. P. Novichkov, J. T. Penedo, S. T. Petcov and A. V. Titov, JHEP 1904 (2019) 005
4446
+ [arXiv:1811.04933 [hep-ph]].
4447
+ [43] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, JHEP 02 (2020),
4448
+ 097 [arXiv:1907.09141 [hep-ph]].
4449
+ [44] X. Wang and S. Zhou, JHEP 05 (2020), 017 [arXiv:1910.09473 [hep-ph]].
4450
+ [45] P. Chen, G. J. Ding, J. N. Lu and J. W. F. Valle, Phys. Rev. D 102 (2020) no.9, 095014
4451
+ [arXiv:2003.02734 [hep-ph]].
4452
+ [46] I. de Medeiros Varzielas, S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.5, 055033
4453
+ [arXiv:1906.02208 [hep-ph]].
4454
+ [47] T. Asaka,
4455
+ Y. Heo,
4456
+ T. H. Tatsuishi and T. Yoshida,
4457
+ JHEP 2001 (2020) 144
4458
+ [arXiv:1909.06520 [hep-ph]].
4459
+ [48] T. Asaka, Y. Heo and T. Yoshida, Phys. Lett. B 811 (2020), 135956 [arXiv:2009.12120
4460
+ [hep-ph]].
4461
+ [49] F. J. de Anda, S. F. King and E. Perdomo, Phys. Rev. D 101 (2020) no.1, 015028
4462
+ [arXiv:1812.05620 [hep-ph]].
4463
+ [50] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, PTEP 2020,
4464
+ no.5, 053B05 (2020) [arXiv:1906.10341 [hep-ph]].
4465
+ [51] P. P. Novichkov, S. T. Petcov and M. Tanimoto, Phys. Lett. B 793 (2019) 247
4466
+ [arXiv:1812.11289 [hep-ph]].
4467
+ 26
4468
+
4469
+ [52] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto, T. H. Tatsuishi and H. Uchida, Phys.
4470
+ Lett. B 794 (2019) 114 [arXiv:1812.11072 [hep-ph]].
4471
+ [53] H. Okada and M. Tanimoto, Phys. Lett. B 791 (2019) 54 [arXiv:1812.09677 [hep-ph]].
4472
+ [54] H. Okada and M. Tanimoto, Eur. Phys. J. C 81 (2021) no.1, 52 [arXiv:1905.13421 [hep-
4473
+ ph]].
4474
+ [55] T. Nomura and H. Okada, Phys. Lett. B 797, 134799 (2019) [arXiv:1904.03937 [hep-ph]].
4475
+ [56] H. Okada and Y. Orikasa, Phys. Rev. D 100, no.11, 115037 (2019) [arXiv:1907.04716
4476
+ [hep-ph]].
4477
+ [57] T. Nomura and H. Okada, Nucl. Phys. B 966 (2021), 115372 [arXiv:1906.03927 [hep-ph]].
4478
+ [58] T. Nomura, H. Okada and O. Popov, Phys. Lett. B 803 (2020) 135294 [arXiv:1908.07457
4479
+ [hep-ph]].
4480
+ [59] J. C. Criado, F. Feruglio and S. J. D. King, JHEP 2002 (2020) 001 [arXiv:1908.11867
4481
+ [hep-ph]].
4482
+ [60] S. F. King and Y. L. Zhou, Phys. Rev. D 101 (2020) no.1, 015001 [arXiv:1908.02770
4483
+ [hep-ph]].
4484
+ [61] G. J. Ding, S. F. King, X. G. Liu and J. N. Lu, JHEP 1912 (2019) 030 [arXiv:1910.03460
4485
+ [hep-ph]].
4486
+ [62] I. de Medeiros Varzielas, M. Levy and Y. L. Zhou, JHEP 11 (2020), 085 [arXiv:2008.05329
4487
+ [hep-ph]].
4488
+ [63] D. Zhang, Nucl. Phys. B 952 (2020) 114935 [arXiv:1910.07869 [hep-ph]].
4489
+ [64] T. Nomura, H. Okada and S. Patra, Nucl. Phys. B 967 (2021), 115395 [arXiv:1912.00379
4490
+ [hep-ph]].
4491
+ [65] T. Kobayashi, T. Nomura and T. Shimomura, Phys. Rev. D 102 (2020) no.3, 035019
4492
+ [arXiv:1912.00637 [hep-ph]].
4493
+ [66] J. N. Lu, X. G. Liu and G. J. Ding, Phys. Rev. D 101 (2020) no.11, 115020
4494
+ [arXiv:1912.07573 [hep-ph]].
4495
+ [67] X. Wang, Nucl. Phys. B 957 (2020), 115105 [arXiv:1912.13284 [hep-ph]].
4496
+ [68] S. J. D. King and S. F. King, JHEP 09 (2020), 043 [arXiv:2002.00969 [hep-ph]].
4497
+ [69] M. Abbas, Phys. Rev. D 103 (2021) no.5, 056016 [arXiv:2002.01929 [hep-ph]].
4498
+ 27
4499
+
4500
+ [70] H. Okada and Y. Shoji, Phys. Dark Univ. 31 (2021), 100742 [arXiv:2003.11396 [hep-ph]].
4501
+ [71] H. Okada and Y. Shoji, Nucl. Phys. B 961 (2020), 115216 [arXiv:2003.13219 [hep-ph]].
4502
+ [72] G. J. Ding and F. Feruglio, JHEP 06 (2020), 134 [arXiv:2003.13448 [hep-ph]].
4503
+ [73] H. Okada and M. Tanimoto, [arXiv:2005.00775 [hep-ph]].
4504
+ [74] H. Okada and M. Tanimoto, Phys. Rev. D 103 (2021) no.1, 015005 [arXiv:2009.14242
4505
+ [hep-ph]].
4506
+ [75] K. I. Nagao and H. Okada, JCAP 05 (2021), 063 [arXiv:2008.13686 [hep-ph]].
4507
+ [76] X. Wang, B. Yu and S. Zhou, Phys. Rev. D 103 (2021) no.7, 076005 [arXiv:2010.10159
4508
+ [hep-ph]].
4509
+ [77] H. Okada and M. Tanimoto, JHEP 03 (2021), 010 [arXiv:2012.01688 [hep-ph]].
4510
+ [78] C. Y. Yao, J. N. Lu and G. J. Ding, JHEP 05 (2021), 102 [arXiv:2012.13390 [hep-ph]].
4511
+ [79] P.
4512
+ P.
4513
+ Novichkov,
4514
+ J.
4515
+ T.
4516
+ Penedo
4517
+ and
4518
+ S.
4519
+ T.
4520
+ Petcov,
4521
+ JHEP
4522
+ 04
4523
+ (2021),
4524
+ 206
4525
+ doi:10.1007/JHEP04(2021)206 [arXiv:2102.07488 [hep-ph]].
4526
+ [80] P. A. Zyla et al. [Particle Data Group], PTEP 2020 (2020) no.8, 083C01
4527
+ [81] S. T. Petcov and M. Tanimoto, [arXiv:2212.13336 [hep-ph]].
4528
+ [82] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T. H. Tatsuishi, Phys. Rev. D 100,
4529
+ no.11, 115045 (2019) [erratum: Phys. Rev. D 101, no.3, 039904 (2020)] [arXiv:1909.05139
4530
+ [hep-ph]].
4531
+ [83] K. Ishiguro, T. Kobayashi and H. Otsuka, JHEP 03, 161 (2021) [arXiv:2011.09154 [hep-
4532
+ ph]].
4533
+ [84] H. Abe, T. Kobayashi, S. Uemura and J. Yamamoto, Phys. Rev. D 102, no.4, 045005
4534
+ (2020) [arXiv:2003.03512 [hep-th]].
4535
+ [85] P. P. Novichkov, J. T. Penedo and S. T. Petcov, JHEP 03, 149 (2022) [arXiv:2201.02020
4536
+ [hep-ph]].
4537
+ [86] K. Ishiguro, H. Okada and H. Otsuka, JHEP 09, 072 (2022) [arXiv:2206.04313 [hep-ph]].
4538
+ 28
4539
+
2NE2T4oBgHgl3EQfNgYt/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
4NFKT4oBgHgl3EQf9C5Z/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a04ee84131e21b3d7e08811799e7a868b09995dc39fa9f5484244fcbc822bab7
3
+ size 67112
69E1T4oBgHgl3EQfnASE/content/2301.03304v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92410a6bb34295da4282c12a96d17744e0398b9cedfa2655f3c8b98ae978e3f4
3
+ size 19524360
6NE1T4oBgHgl3EQfBQJe/content/tmp_files/2301.02849v1.pdf.txt ADDED
@@ -0,0 +1,1136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Temperature and density effects on the two-nucleon momentum correlation function
2
+ from excited single nuclei
3
+ Ting-Ting Wang(王婷婷),1 Yu-Gang Ma(马余刚),1, 2 De-Qing Fang(方德清),1, 2 and Huan-Ling Liu(刘焕玲)3
4
+ 1Key Laboratory of Nuclear Physics and Ion-Beam Application (MOE),
5
+ Institute of Modern Physics, Fudan University, Shanghai 200433, China
6
+ 2Shanghai Research Center for Theoretical Nuclear Physics,NSFC and Fudan University, Shanghai 200438, China
7
+ 3Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
8
+ (Dated: January 10, 2023)
9
+ Two-nucleon momentum correlation functions are investigated for different single thermal sources
10
+ at given initial temperature (T) and density (ρ). To this end, the space-time evolutions of various
11
+ single excited nuclei at T = 1 − 20 MeV and ρ = 0.2 - 1.2 ρ0 are simulated by using the ther-
12
+ mal isospin-dependent quantum molecular dynamics (ThIQMD) model. Momentum correlation
13
+ functions of identical proton-pairs (Cpp(q)) or neutron-pairs (Cnn(q)) at small relative momenta
14
+ are calculated by Lednick´y and Lyuboshitz analytical method. The results illustrate that Cpp(q)
15
+ and Cnn(q) are sensitive to the source size (A) at lower T or higher ρ, but almost not at higher
16
+ T or lower ρ. And the sensitivities become stronger for smaller source. Moreover, the T, ρ and A
17
+ dependencies of the Gaussian source radii are also extracted by fitting the two-proton momentum
18
+ correlation functions, and the results are consistent with the above conclusions.
19
+ I.
20
+ INTRODUCTION
21
+ Properties of nuclear matter is one of the most in-
22
+ teresting topics in heavy-ion physics
23
+ [1–4] and lots of
24
+ works have been done around zero temperature, includ-
25
+ ing the nuclear equation of state (EOS). However, the
26
+ studies on properties of nuclear matter at finite tem-
27
+ peratures are relatively limited.
28
+ Many previous works
29
+ mainly focus on the temperature dependence of hot nu-
30
+ clear matter and the nuclear liquid-gas phase transition
31
+ (LGPT) [5–14], the ratio between shear viscosity over
32
+ entropy density (η/s) [15–19], as well as the nuclear gi-
33
+ ant dipole resonance [20–22] etc. Among above works,
34
+ the relationship between the phase transition tempera-
35
+ ture and the source size has been investigated [5].
36
+ In
37
+ Ref. [5], the finite-size scaling effects on nuclear liquid-
38
+ gas phase transition probes are investigated by study-
39
+ ing de-excitation processes of the thermal sources by the
40
+ isospin-dependent quantum molecular dynamics model
41
+ (IQMD). Several probes, including the total multiplicity
42
+ derivative, second moment parameter, intermediate mass
43
+ fragment multiplicity, Fisher,s power-law exponent as
44
+ well as nuclear Zipf ,s law exponent of Ma [9] were ex-
45
+ plored, and the phase transition temperatures were then
46
+ obtained.
47
+ Recently, the deep neural network has also
48
+ been used to determine the nuclear liquid gas phase tran-
49
+ sition [23] and to estimate the temperature of excited
50
+ nuclei by the charge multiplicity distribution of emitted
51
+ fragments [24]. The latter work proposed that the charge
52
+ multiplicity distribution can be used as a thermometer of
53
+ heavy-ion collisions.
54
+ Considering that the intermediate-state at high tem-
55
+ perature and density in the evolution process of nuclear
56
+ reactions cannot be directly measured, one always ex-
57
+ plore properties of nuclear matter and the dynamical
58
+ description of heavy-ion collisions through the analysis
59
+ of the final-state products.
60
+ As well known, the two-
61
+ particle momentum correlation function in the final-state
62
+ has been extensively used as a probe of the space-time
63
+ properties and characteristics of the emission source [25–
64
+ 27]. The two-proton momentum correlation function has
65
+ been explored systematically by a lot of experiments as
66
+ well as different models, several reviews can be found
67
+ in Refs. [28–31]. In various studies on the momentum
68
+ correlation function, impacts of the impact parameter,
69
+ the total momentum of nucleon pairs, the isospin of the
70
+ emission source, the nuclear symmetry energy, the nu-
71
+ clear equation of state (EOS) as well as the in-medium
72
+ nucleon-nucleon cross section have been discussed in lit-
73
+ erature [32–38].
74
+ Even more, nuclear structure effects
75
+ were also carefully investigated, such as the effects from
76
+ binding energy and separation energy of the nucleus [39],
77
+ density distribution of valence neutrons in neutron-rich
78
+ nuclei [40], as well as high momentum tail of the nucleon-
79
+ momentum distribution [41] etc. Two-proton momentum
80
+ correlation function was also constructed in few-body re-
81
+ actions as well as α-clustered nucleus induced collisions
82
+ [42–46]. In addition, momentum correlation function be-
83
+ tween two light charged particles also offers a unique
84
+ tool to investigate dynamical expansion of the reaction
85
+ zone [38].
86
+ Here we extend the momentum correlation method
87
+ of final-state interaction to study the time-spatial infor-
88
+ mation of the finite-temperature nuclear systems which
89
+ have different initial density. The purpose of the present
90
+ paper is to systematically investigate the relationship
91
+ between two-particle momentum correlation functions
92
+ and system parameters, such as the source-temperature,
93
+ density as well as system-size in a framework of the
94
+ thermal isospin-dependent quantum molecular dynamics
95
+ (ThIQMD) model
96
+ [5, 14, 17]. In addition, the Gaus-
97
+ sian source radii are quantitatively extracted by assump-
98
+ tion of Gaussian source fits to the momentum correla-
99
+ tion function distributions. In this article, the evolution
100
+ process of excited nuclear sources at given initial tem-
101
+ arXiv:2301.02849v1 [nucl-th] 7 Jan 2023
102
+
103
+ 2
104
+ peratures varying from 1 MeV to 20 MeV are studied.
105
+ The present work selects six different nuclear systems
106
+ with similar ratio of neutron to proton numbers, i.e.,
107
+ N/Z ∼ 1.3, which include (A, Z) = (36, 15), (52, 24),
108
+ (80, 33), (100, 45), (112, 50), and (129, 54) nuclei. Then,
109
+ Lednick´y-Lyuboshitz theoretical approach [47] is applied
110
+ for calculating two-particle momentum correlation func-
111
+ tions which are constructed based on phase-space infor-
112
+ mation from the evolution process of single excited nu-
113
+ clear sources by the ThIQMD model.
114
+ The rest of this article is organized as follows. In Sec-
115
+ tion II, we firstly describe the thermal isospin-dependent
116
+ quantum molecular dynamics model [14, 17], then briefly
117
+ introduce the momentum correlation technique using
118
+ Lednick´y and Lyuboshitz analytical formalism. In Sec-
119
+ tion III, we show the results of the ThIQMD plus
120
+ the LL method for the source-temperature dependence
121
+ of two-particle momentum correlation function.
122
+ The
123
+ two-particle momentum correlation functions of differ-
124
+ ent system-sizes at different initial densities are sys-
125
+ tematically discussed. The detailed analysis of the ex-
126
+ tracted Gaussian source radii are presented under differ-
127
+ ent source-temperature and density.
128
+ Furthermore, the
129
+ momentum correlation function of two-neutron is also
130
+ analyzed. Finally, Section IV gives a summary of the
131
+ paper.
132
+ II.
133
+ MODELS AND FORMALISM
134
+ A.
135
+ THE ThIQMD MODEL
136
+ In this paper, the thermal isospin-dependent Quan-
137
+ tum Molecular Dynamics transport model is used as
138
+ the event generator, which has been applied success-
139
+ fully to study the LGPT [5, 24].
140
+ In the following
141
+ discussion, we introduce this model briefly.
142
+ As well
143
+ known, isospin-dependent Quantum Molecular Dynam-
144
+ ics (IQMD) model was used to describe the collision
145
+ process between two nuclei.
146
+ The Quantum Molecular
147
+ Dynamics transport model is a n-body transport theory,
148
+ which describes heavy-ion reaction dynamics from inter-
149
+ mediate to relativistic energies [48–51]. In the present
150
+ work, we use a single excited source in the ThIQMD
151
+ which is different from the traditional IQMD. Usually,
152
+ the ground state of the initial nucleus is considered to be
153
+ T = 0 MeV in the traditional IQMD model. However,
154
+ the ThIQMD model developed by Fang, Ma, and Zhou
155
+ in Ref. [17] is used to simulate single thermal source at
156
+ different temperatures and densities.
157
+ The main parts of QMD transport model include the
158
+ following issues: the initialization of the projectile and
159
+ the target, nucleon propagation under the effective po-
160
+ tential, the collisions between the nucleons in the nuclear
161
+ medium and the Pauli blocking effect. In the ThIQMD,
162
+ instead of using the Fermi-Dirac distribution for T = 0
163
+ MeV with the nucleon’s maximum momentum limited
164
+ by P i
165
+ F (⃗r) = ℏ
166
+
167
+ 3π2ρi(⃗r)
168
+ �1/3, the initial momentum of nu-
169
+ cleons is sampled by the Fermi-Dirac distribution at finite
170
+ temperature:
171
+ n (ek) =
172
+ g (ek)
173
+ e
174
+ ek−µi
175
+ T
176
+ + 1
177
+ ,
178
+ (1)
179
+ where the kinetic energy ek =
180
+ p2
181
+ 2m, p and m is the mo-
182
+ mentum and mass of the nucleon, respectively. g (ek) =
183
+ V
184
+ 2π2
185
+ � 2m
186
+ ℏ2
187
+ � 3
188
+ 2 √ek represents the state density with the vol-
189
+ ume of the source V = 4
190
+ 3πr3 where r = rV A
191
+ 1
192
+ 3 (rV is a
193
+ parameter to adjust the initial density).
194
+ In addition, the chemical potential µi is determined by
195
+ the following equation:
196
+ 1
197
+ 2π2
198
+ �2m
199
+ ℏ2
200
+ � 3
201
+ 2 � ∞
202
+ 0
203
+ √ek
204
+ e
205
+ ek−µi
206
+ T
207
+ + 1
208
+ dek = ρi.
209
+ (2)
210
+ where i = n or p refer to the neutron or proton.
211
+ In the ThIQMD model, the interaction potential is
212
+ also represented by the form as follows:
213
+ U = USky + UCoul + UY uk + USym + UMDI,
214
+ (3)
215
+ where USky, UCoul, UY uk, USym, and UMDI are the
216
+ density-dependent Skyrme potential, the Coulomb po-
217
+ tential, the surface Yukawa potential, the isospin asym-
218
+ metry potential, and the momentum-dependent interac-
219
+ tion, respectively. Among these potentials, the Skyrme
220
+ potential, the Coulomb potential and the momentum-
221
+ dependent interaction can be written as follows:
222
+ USky = α( ρ
223
+ ρ0
224
+ ) + β( ρ
225
+ ρ0
226
+ )γ,
227
+ (4)
228
+ where ρ and ρ0 are total nucleon density and its normal
229
+ value at the ground state, i.e., 0.16 fm−3, respectively.
230
+ The above parameters α, β, and γ with an incompress-
231
+ ibility parameter K are related to the nuclear equation
232
+ of state [52–58].
233
+ USym = Csym
234
+ (ρn − ρp)
235
+ ρ0
236
+ τz,
237
+ (5)
238
+ UCoul = 1
239
+ 2 (1 − τz) Vc,
240
+ (6)
241
+ where ρn and ρp are neutron and proton densities, re-
242
+ spectively, τz is the z-th component of the isospin degree
243
+ of freedom for the nucleon, which equals 1 or −1 for a
244
+ neutron or proton, respectively, and Csym is the symme-
245
+ try energy coefficient. UCoul is the Coulomb potential
246
+ where Vc is its parameter for protons.
247
+ UMDI = δ · ln2 �
248
+ ϵ · (∆p)2 + 1
249
+
250
+ · ρ
251
+ ρ0
252
+ ,
253
+ (7)
254
+ where ∆p is the relative momentum, δ and ϵ can be found
255
+ in Refs. [48, 49].
256
+ Their values of the above potential
257
+ parameters are all listed in Table I:
258
+
259
+ 3
260
+ TABLE I. The value of the interaction potential parameters.
261
+ α
262
+ β
263
+ γ
264
+ K
265
+ δ
266
+ ϵ
267
+ (MeV ) (MeV )
268
+ (MeV ) (MeV ) ((GeV/c)−2)
269
+ −390.1
270
+ 320.3
271
+ 1.14
272
+ 200
273
+ 1.57
274
+ 500
275
+ B.
276
+ LEDNICK ´Y AND LYUBOSHITZ
277
+ ANALYTICAL FORMALISM
278
+ Next, we briefly review the method for the two-particle
279
+ momentum correlation function proposed by Lednick´y
280
+ and Lyuboshitz [47, 59, 60]. The momentum correlation
281
+ technique in nuclear collisions is based on the principle
282
+ as follows: when they are emitted at small relative mo-
283
+ mentum, the two-particle momentum correlation is deter-
284
+ mined by the space-time characteristics of the production
285
+ processes owing to the effects of quantum statistics (QS)
286
+ and final-state interactions (FSI) [61, 62].
287
+ Therefore,
288
+ the two-particle momentum correlation function can be
289
+ expressed through a square of the symmetrizied Bethe-
290
+ Salpeter amplitude averaging over the four coordinates
291
+ of the emitted particles and the total spin of the two-
292
+ particle system, which represents the continuous spec-
293
+ trum of the two-particle state.
294
+ In this theoretical approach, the final-state interactions
295
+ of the particle pairs is assumed independent in the pro-
296
+ duction process. According to the conditions in Ref. [63],
297
+ the correlation function of two particles can be written
298
+ as the expression:
299
+ C (k∗) =
300
+
301
+ S (r∗, k∗) |Ψk∗ (r∗)|2 d4r∗
302
+
303
+ S (r∗, k∗) d4r∗
304
+ ,
305
+ (8)
306
+ where r∗ = x1 − x2 is the relative distance of the two
307
+ particles in the pair rest frame (PRF) at their kinetic
308
+ freeze-out, k∗ is half of the relative momentum between
309
+ two particles in the PRF, S (r∗, k∗) is the probability to
310
+ emit a particle pair with given r∗ and k∗, i.e., the source
311
+ emission function, and Ψk∗ (r∗) is the equal-time (t∗ = 0)
312
+ reduced Bethe-Salpeter amplitude which can be approx-
313
+ imated by the outer solution of the scattering problem in
314
+ the PRF [64, 65]. This approximation is valid on condi-
315
+ tion |t∗| ≪ m (r∗)2, which is well fulfilled for sufficiently
316
+ heavy particles like protons or kaons and reasonably ful-
317
+ filled even for pions [59]. In the above limit, the asymp-
318
+ totic solution of the wave function of the two charged
319
+ particles approximately takes the expression:
320
+ Ψk∗ (r∗) = eiδc�
321
+ Ac (λ)×
322
+
323
+ e−ik∗r∗F (−iλ, 1, iξ) + fc (k∗)
324
+ ˜G (ρ, λ)
325
+ r∗
326
+
327
+ .
328
+ (9)
329
+ In the above equation, δc = arg Γ (1 + iλ) is the Coulomb
330
+ s-wave phase shift with λ = (k∗ac)−1 where ac is the two-
331
+ particle Bohr radius, Ac (λ) = 2πλ [exp (2πλ) − 1]−1 is
332
+ the Coulomb penetration factor, and its positive (neg-
333
+ ative) value corresponds to the repulsion (attraction).
334
+ ˜G (ρ, λ) =
335
+
336
+ Ac (λ) [G0 (ρ, λ) + iF0 (ρ, λ)] is a combina-
337
+ tion of regular (F0) and singular (G0) s-wave Coulomb
338
+ functions [59, 60]. F (−iλ, 1, iξ) = 1 + (−iλ) (iξ) /1!2 +
339
+ (−iλ) (−iλ + 1) (iξ)2 /2!2 + · · · is the confluent hyperge-
340
+ ometric function with ξ = k∗r∗ + ρ, ρ = k∗r∗.
341
+ fc (k∗) =
342
+
343
+ Kc (k∗) − 2
344
+ ac
345
+ h (λ) − ik∗Ac (λ)
346
+ �−1
347
+ (10)
348
+ is the s-wave scattering amplitude renormalizied by
349
+ the long-range Coulomb interaction,
350
+ with h (λ)
351
+ =
352
+ λ2 �∞
353
+ n=1
354
+
355
+ n
356
+
357
+ n2 + λ2��−1−C −ln [λ] where C = 0.5772 is
358
+ the Euler constant. Kc (k∗) =
359
+ 1
360
+ f0 + 1
361
+ 2d0k∗2 +Pk∗4 +· · · is
362
+ the effective range function, where d0 is the effective ra-
363
+ dius of the strong interaction, f0 is the scattering length
364
+ and P is the shape parameter. The parameters of the
365
+ effective range function are important parameters char-
366
+ acterizing the essential properties of the FSI, and can
367
+ be extracted from the correlation function measured ex-
368
+ perimentally [38, 65–67].
369
+ For n-n momentum correlation functions which include
370
+ uncharged particle, only the short-range particle inter-
371
+ action works. For p-p momentum correlation functions,
372
+ both the Coulomb interaction and the short-range parti-
373
+ cle interaction dominated by the s-wave interaction are
374
+ taken into account.
375
+ III.
376
+ ANALYSIS AND DISCUSSION
377
+ Within
378
+ the
379
+ framework
380
+ of
381
+ the
382
+ thermal
383
+ isospin-
384
+ dependent
385
+ quantum
386
+ molecular
387
+ dynamics
388
+ model
389
+ [5,
390
+ 14, 17], the two-particle momentum correlation func-
391
+ tions are calculated by using the phase-space infor-
392
+ mation from the freeze-out stage of the excited nu-
393
+ clear source at an initial temperature varying from 1
394
+ MeV
395
+ to 20 MeV
396
+ and/or density varying from ρ =
397
+ 0.2ρ0 to 1.2ρ0.
398
+ This work performs calculations for
399
+ thermal source systems with different mass including
400
+ (A, Z)
401
+ =
402
+ (36, 15), (52, 24), (80, 33), (100, 45), (112, 50),
403
+ and (129, 54).
404
+ We firstly calculated the proton-proton momentum
405
+ correlation function Cpp(q) for finite-size systems at tem-
406
+ peratures ranging from 1 to 20 MeV .
407
+ In Fig. 1, the
408
+ results of Cpp(q) for temperature of 2, 4, 6, 8, 10 and
409
+ 12 MeV at different values of density (0.2ρ0 - 1.2ρ0)
410
+ are presented.
411
+ The proton-proton momentum correla-
412
+ tion function exhibits a peak at relative momentum q =
413
+ 20 MeV/c, which is due to the strong final-state s-wave
414
+ attraction together with the suppression at lower rela-
415
+ tive momentum as a result of Coulomb repulsion and the
416
+ antisymmetrization wave function between two protons.
417
+ The shape of the two-proton momentum correlation func-
418
+ tions is consistent with many previous experimental data
419
+ in heavy-ion collisions, eg. Ref. [68]. For protons which
420
+ are emitted from the lower temperature (T < 8 MeV )
421
+ source in Fig. 1 (a)-(c), the general trend is very similar.
422
+ The figure shows that Cpp(q) increases as ρ increases for
423
+
424
+ 4
425
+ 0.5
426
+ 1.0
427
+ 1.5
428
+ 2.0
429
+ 2.5
430
+ 0.5
431
+ 1.0
432
+ 1.5
433
+ 2.0
434
+ 2.5
435
+ 20
436
+ 40
437
+ 60
438
+ 80
439
+ 0.5
440
+ 1.0
441
+ 1.5
442
+ 2.0
443
+ 2.5
444
+ 20
445
+ 40
446
+ 60
447
+ 80
448
+ (a) T = 2.0 MeV
449
+ ρ = 0.2 ρ0
450
+ ρ = 0.4 ρ0
451
+ ρ = 0.6 ρ0
452
+ ρ = 0.8 ρ0
453
+ ρ = 1.0 ρ0
454
+ ρ = 1.2 ρ0
455
+ Cpp(q)
456
+ (d) T = 8.0 MeV
457
+ (b) T = 4.0 MeV
458
+ (e) T = 10.0 MeV
459
+ (c) T = 6.0 MeV
460
+ (f) T = 12.0 MeV
461
+ q (MeV/c)
462
+ FIG. 1.
463
+ The proton-proton momentum correlation function
464
+ (Cpp(q)) at different densities (i.e., 0.2ρ0, 0.4ρ0, 0.6ρ0, 0.8ρ0,
465
+ 1.0ρ0, and 1.2ρ0) for the smaller nucleus (A=36, Z=15) with
466
+ fixed source-temperatures T = 2 MeV (a), 4 MeV (b), 6
467
+ MeV (c), 8 MeV (d), 10 MeV (e) and 12 MeV (f), respec-
468
+ tively. The freeze-out time is taken to be 200 fm/c.
469
+ fixed T (T < 8 MeV ). The increase of the density in-
470
+ dicates that the geometrical size becomes smaller for a
471
+ source with fixed neutrons and protons, which makes the
472
+ strength of the momentum correlation function stronger.
473
+ Finally, the p-p momentum correlation function becomes
474
+ almost one at q > 60 MeV/c.
475
+ For larger T (T > 8
476
+ MeV ) in Fig. 1 (d)-(f), the difference of Cpp(q) between
477
+ different densities becomes smaller.
478
+ From Fig. 1, it is
479
+ found that the Cpp(q) almost keep the same above T = 8
480
+ MeV for different densities and the p-p momentum cor-
481
+ relation function becomes almost unique above approx-
482
+ imately q = 30 MeV/c.
483
+ It indicates that the emitted
484
+ proton is not affected by the change of density when the
485
+ source temperature beyond certain value (T ≈ 8 MeV in
486
+ present work). In order to understand which one of the
487
+ two factors (i.e., temperature and density) has larger in-
488
+ fluence, the two-particle momentum correlation in fig. 2
489
+ is plotted by exchanging of the two input parameters.
490
+ From fig. 2, we can intuitively observe dependence of the
491
+ two-particle momentum correlation on the source tem-
492
+ perature. The dependence of Cpp(q) on the source tem-
493
+ perature is stronger than on density.
494
+ In other words,
495
+ the Cpp(q) is more sensitive to T than to density ρ. In
496
+ 0.5
497
+ 1.0
498
+ 1.5
499
+ 2.0
500
+ 2.5
501
+ 0.5
502
+ 1.0
503
+ 1.5
504
+ 2.0
505
+ 2.5
506
+ 20
507
+ 40
508
+ 60
509
+ 80
510
+ 0.5
511
+ 1.0
512
+ 1.5
513
+ 2.0
514
+ 2.5
515
+ 20
516
+ 40
517
+ 60
518
+ 80
519
+ (d) ρ = 0.8 ρ0
520
+ (a) ρ = 0.2 ρ0
521
+ Τ = 2 MeV
522
+ Τ = 8 MeV
523
+ Τ = 4 MeV
524
+ Τ = 10 MeV
525
+ Τ = 6 MeV
526
+ Τ = 12 MeV
527
+ Cpp(q)
528
+ (c) ρ = 0.6 ρ0
529
+ (b) ρ = 0.4 ρ0
530
+ (f) ρ = 1.2 ρ0
531
+ (e) ρ = 1.0 ρ0
532
+ q (MeV/c)
533
+
534
+ FIG. 2.
535
+ Similar to Fig. 1, but at different source-
536
+ temperatures (T = 2, 4, 6, 8, 10 and 12 MeV ) with different
537
+ fixed densities, namely ρ = 0.2ρ0 (a), 0.4 ρ0 (b), 0.6 ρ0 (c),
538
+ 0.8 ρ0 (d), 1.0 ρ0 (e), and 1.2ρ0 (f).
539
+ addition, for larger ρ from fig. 2 (a) to (f), the differ-
540
+ ence of Cpp(q) between different densities becomes bigger.
541
+ Next, we explore whether the phenomenon exists in mo-
542
+ mentum correlation functions for the uncharged-particle
543
+ pairs. Fig. 3 presents the neutron-neutron momentum
544
+ correlation functions (Cnn(q)) for temperature of 2, 4,
545
+ 6, 8, 10 and 12 MeV at different values of density, re-
546
+ spectively. For neutron-neutron momentum correlation
547
+ function, it peaks at q ≈ 0 MeV/c caused by the s-wave
548
+ attraction. Although the Cnn(q) has different shape com-
549
+ pared with the p-p momentum correlation function, it has
550
+ the similar dependence on the source temperature and
551
+ density. The similar trend in Cpp(q) and Cnn(q) shows
552
+ the close emission mechanism in the evolution process.
553
+ Fig. 4 shows the results of a larger system at differ-
554
+ ent source-temperature and density, and a similar be-
555
+ havior of Cpp(q) is demonstrated. We also observe that
556
+ the proton-proton momentum correlation in larger-size
557
+ system ((A, Z) = (129, 54)) in Fig. 4 becomes weaker
558
+ in comparison with the smaller-size source ((A, Z) =
559
+ (36, 15)) in Fig. 1. In view of the above phenomenon,
560
+ Fig. 5 describes the relationship between system-size and
561
+ momentum correlation function in more details.
562
+ The
563
+ decreasing of Cpp(q) as the system-size increasing for a
564
+ fixed value of T or ρ can be clearly seen in Fig. 5 (g),
565
+
566
+ 5
567
+ 2
568
+ 4
569
+ 6
570
+ 8
571
+ 10
572
+ 12
573
+ 14
574
+ 2
575
+ 4
576
+ 6
577
+ 8
578
+ 10
579
+ 12
580
+ 14
581
+ 20
582
+ 40
583
+ 60
584
+ 80
585
+ 2
586
+ 4
587
+ 6
588
+ 8
589
+ 10
590
+ 12
591
+ 14
592
+ 20
593
+ 40
594
+ 60
595
+ 80
596
+ (b) T = 4.0 MeV
597
+ (a) T = 2.0 MeV
598
+ ρ = 0.2 ρ0
599
+ ρ = 0.4 ρ0
600
+ ρ = 0.6 ρ0
601
+ ρ = 0.8 ρ0
602
+ ρ = 1.0 ρ0
603
+ ρ = 1.2 ρ0
604
+ (d) T = 8.0 MeV
605
+ (e) T = 10.0 MeV
606
+ (c) T = 6.0 MeV
607
+ q (MeV/c)
608
+ Cnn(q)
609
+ (f) T = 12.0 MeV
610
+ FIG. 3.
611
+ The neutron-neutron (n-n) momentum correlation
612
+ functions (Cnn(q)) in the same conditions as Fig. 1.
613
+ which is consistent with the previous results of Gaussian
614
+ source [37, 38, 69]. In Fig. 5 (a)-(i), with larger temper-
615
+ ature or lower density, the difference of Cpp(q) between
616
+ different T or ρ becomes smaller, respectively. The Gaus-
617
+ sian source radii are extracted for further discussion later
618
+ in this article.
619
+ From the above plots, we can extract Cmax(q), i.e.,
620
+ the maximum value of Cpp(q) as well as the full width at
621
+ half maximum (FWHM) of Cpp(q) distribution, i.e. at
622
+ Cpp(q) = [Cmax(q)−1]/2. The source-temperature T de-
623
+ pendence of Cmax(q) and FWHM for the proton-proton
624
+ momentum correlation function with different density are
625
+ given in Fig. 6. As shown in Fig. 6 (a) and (b), both
626
+ Cmax(q) and FWHM decrease gradually with the in-
627
+ creasing of T. In addition, both of them increase grad-
628
+ ually with density.
629
+ At high temperature, the change
630
+ of Cmax(q) and FWHM is very small and not plotted
631
+ in the figure.
632
+ Of course, the behavior of the Cmax(q)
633
+ and FWHM with T and ρ can also be clearly seen in
634
+ Fig. 2, and the increasing of Cmax(q) and FWHM are
635
+ generally inversely proportional to Gaussian radius r0 as
636
+ shown later.
637
+ Similarly, the system-size A dependence
638
+ of Cmax(q) and FWHM for the proton-proton momen-
639
+ tum correlation function at T = 2MeV and ρ = 0.6ρ0
640
+ is shown in Fig. 7.
641
+ The dependence of Cmax(q) and
642
+ FWHM on system-size A is quite similar to the temper-
643
+ ature dependence in Fig. 6. The Cmax(q) and FWHM
644
+ 0.5
645
+ 1.0
646
+ 1.5
647
+ 2.0
648
+ 2.5
649
+ 0.5
650
+ 1.0
651
+ 1.5
652
+ 2.0
653
+ 2.5
654
+ 20
655
+ 40
656
+ 60
657
+ 80
658
+ 0.5
659
+ 1.0
660
+ 1.5
661
+ 2.0
662
+ 2.5
663
+ 20
664
+ 40
665
+ 60
666
+ 80
667
+ (a) T = 2.0 MeV
668
+ ρ = 0.2 ρ0
669
+ ρ = 0.4 ρ0
670
+ ρ = 0.6 ρ0
671
+ ρ = 0.8 ρ0
672
+ ρ = 1.0 ρ0
673
+ ρ = 1.2 ρ0
674
+ (d) T = 8.0 MeV
675
+ (b) T = 4.0 MeV
676
+ (e) T = 10.0 MeV
677
+ (c) T = 6.0 MeV
678
+ (f) T = 12.0 MeV
679
+ Cpp(q)
680
+ q (MeV/c)
681
+ FIG. 4.
682
+ Same to Fig. 1, but for a larger system (A=129,
683
+ Z=54).
684
+ values become smaller for larger systems.
685
+ Fig. 8 shows the source-temperature, density, and
686
+ system-size dependence of Gaussian radii extracted from
687
+ two-particle momentum correlation functions,
688
+ where
689
+ panels (a) and (b) are results with the smaller source
690
+ size and the larger source size, respectively. The radii
691
+ are extracted by a Gaussian source assumption, i.e.,
692
+ S(r) ≈ exp[−r2/(4r2
693
+ 0)], where r0 is the Gaussian source
694
+ radius from the proton-proton momentum correlation
695
+ functions.
696
+ The theoretical calculations for Cpp(q) was
697
+ performed by using the Lednick´y and Lyuboshitz an-
698
+ alytical method.
699
+ The best fitting radius is judged by
700
+ finding the minimum of the reduced chi-square between
701
+ the ThIQMD calculations and the Gaussian source as-
702
+ sumption. Since the effect of the strong FSI scales as
703
+ fc (k∗) /r∗ in Eq. (9), one may read the sensitivity of
704
+ the correlation function to the temperature T, density
705
+ ρ and atomic number A from their effects on the Gaus-
706
+ sian radius r0. One may observe a linear dependence on
707
+ these parameters up to T ≈ 8 MeV and then a lost of
708
+ sensitivity in a plateau region at higher temperatures in
709
+ Fig. 8. As the density decreases, the decreasing speed of
710
+ the Gaussian radius of the small system is larger than
711
+ that of the larger system. Fig. 9 shows the Gaussian ra-
712
+ dius of the different system-size varies with the temper-
713
+ ature in panels (a)-(c) or density in panels (d)-(f). The
714
+ Gaussian source radius is consistent with the system-size,
715
+
716
+ 6
717
+ 0.5
718
+ 1.0
719
+ 1.5
720
+ 2.0
721
+ 0.5
722
+ 1.0
723
+ 1.5
724
+ 2.0
725
+ 40
726
+ 80
727
+ 0.5
728
+ 1.0
729
+ 1.5
730
+ 2.0
731
+ 40
732
+ 80
733
+ 40
734
+ 80
735
+ (a)
736
+ ρ = 1.0ρ0
737
+ ρ = 0.6ρ0
738
+ ρ = 0.2ρ0
739
+ T = 6 MeV
740
+ T = 4 MeV
741
+ A = 36
742
+ A = 52
743
+ A = 80
744
+ A = 96
745
+ A = 100
746
+ A = 112
747
+ A = 129
748
+
749
+
750
+
751
+
752
+ T = 2 MeV
753
+ (b)
754
+ (c)
755
+ (d)
756
+ (g)
757
+ (e)
758
+ (f)
759
+ (h)
760
+ (i)
761
+ Cpp(q)
762
+ q (MeV/c)
763
+ FIG. 5.
764
+ Cpp(q) of different source size systems at fixed temperatures (i.e., from left column to right column, they correspond
765
+ to T = 2, 4 and 6 MeV , respectively) or fixed densities (i.e., from top row to bottom row, they correspond to ρ = 0.2ρ0, 0.6ρ0,
766
+ 1.0ρ0, respectively).
767
+ i.e., at higher temperature or larger density, the differ-
768
+ ences of Gaussian source between different system sizes
769
+ are bigger in the low density and low temperature region,
770
+ but the difference in opposite conditions almost disap-
771
+ pear. In other words, the sensitivity of the source radii
772
+ to the system size seem to be different in the different
773
+ regions of temperatures and densities. For example, the
774
+ sensitivity is better in the region of lower T and higher ρ
775
+ (Fig. 9(b) and (c)), or it is better in the higher T region
776
+ for the lower ρ (Fig. 9(a)), or it is better in the higher ρ
777
+ region for the lower T (Fig. 9(d)).
778
+ From the above discussion, it is demonstrated that
779
+ the strength of the two-particle momentum correlation
780
+ function is affected by the source temperature, density
781
+ and system size. The two-particle momentum correlation
782
+ function strength is larger for a single source with lower
783
+ temperature, higher density or smaller mass number as
784
+ shown in Fig. 1-5.
785
+ Otherwise, the strength becomes
786
+ smaller. To some extents, the strong correlation between
787
+ two particles is mainly caused by the closed position of
788
+ each other in phase space in both coordinate and momen-
789
+ tum. Varying only one in the three condition parameters
790
+ (temperature, density and system size), lower temper-
791
+ ature means smaller momentum space, higher density
792
+ means smaller coordinate space and small system size
793
+ also mean smaller coordinate space to keep fixed den-
794
+ sity compared with large system size.
795
+ The dependen-
796
+ cies of the two-particle momentum correlation function
797
+ strength on the source temperature, density and system
798
+ size could be explained by the change of the phase space
799
+ sizes. Two particles emitted from small phase space will
800
+ have strong correlation and those from large phase space
801
+ will have weak correlation. For example, the increase of
802
+ the Cpp(q) strength with the increase of the density for
803
+
804
+ 7
805
+ 1.0
806
+ 1.5
807
+ 2.0
808
+ 2.5
809
+ 2
810
+ 3
811
+ 4
812
+ 5
813
+ 6
814
+ 4
815
+ 6
816
+ 8
817
+ 10
818
+ 12
819
+ (a)
820
+ ρ = 0.2 ρ0
821
+ ρ = 0.4 ρ0
822
+ ρ = 0.6 ρ0
823
+ ρ = 0.8 ρ0
824
+ ρ = 1.0 ρ0
825
+ ρ = 1.2 ρ0
826
+ Cmax(q)
827
+ (b)
828
+ FWHM (Mev/c)
829
+ T (MeV)
830
+ FIG. 6.
831
+ Source-temperature T dependencies of Cmax(q)
832
+ (a) and of FWHM (b) of Cpp(q) distributions at different
833
+ densities (0.2ρ0 - 1.2ρ0) for the (A = 35, Z = 16) system.
834
+ 1.4
835
+ 1.6
836
+ 1.8
837
+ 40
838
+ 60
839
+ 80
840
+ 100
841
+ 120
842
+ 6.0
843
+ 6.5
844
+ 7.0
845
+ 7.5
846
+ 8.0
847
+ 8.5
848
+ (a)
849
+ y = b+a*x value
850
+ a
851
+ -0.0055
852
+ b
853
+ 2.0358
854
+ Cmax(q)
855
+ Cmax(q)
856
+ Fitting curve
857
+ (b)
858
+ y = b+a*x value
859
+ a
860
+ -0.022
861
+ b
862
+ 8.913
863
+ A
864
+ FWHM (Mev/c)
865
+ FWHM
866
+ Fitting curve
867
+ FIG. 7.
868
+ Cmax(q) (a) and FWHM (b) for different source-
869
+ size systems at given T = 2 MeV and ρ = 0.6ρ0.
870
+ 2
871
+ 3
872
+ 4
873
+ 5
874
+ 6
875
+ 7
876
+ 4
877
+ 8
878
+ 12
879
+ 16
880
+ 20
881
+ 2
882
+ 3
883
+ 4
884
+ 5
885
+ 6
886
+ 7
887
+ (a) A=36 Z=15
888
+ r0 (fm)
889
+ (b) A=129 Z=54
890
+ ρ = 0.2 ρ0
891
+ ρ = 0.4 ρ0
892
+ ρ = 0.6 ρ0
893
+ ρ = 0.8 ρ0
894
+ ρ = 1.0 ρ0
895
+ ρ = 1.2 ρ0
896
+ T (MeV)
897
+ FIG. 8.
898
+ Gaussian source radius as a function of temperature
899
+ at different densities (ρ = 0.2ρ0, 0.4ρ0, 0.6ρ0, 0.8ρ0, 1.0ρ0,
900
+ 1.2ρ0) for a fixed source size. Panel (a) and (b) correspond to
901
+ the smaller source size with (A = 36, Z = 15) and the larger
902
+ source size with (A = 129, Z = 54), respectively.
903
+ a fixed system size could be explained by the decreasing
904
+ of the coordinate space as shown in Fig. 1 (a). And the
905
+ small Cpp(q) strength at temperature higher than 8 MeV
906
+ could be caused by the large momentum space compared
907
+ with lower temperatures as shown in Fig. 1 (d-f). The
908
+ decrease of the Cpp(q) strength with the increase of the
909
+ system size for a fixed density could also be explained by
910
+ the increasing of the coordinate space as shown in Fig. 5
911
+ (g). Thus it is concluded that the phase space size for
912
+ the emitted nucleons have strong effect on strength of the
913
+ two-particle momentum correlation function, which can
914
+ also be seen in the extracted Gaussian radii as shown in
915
+ Fig. 8.
916
+ IV.
917
+ SUMMARY
918
+ In summary, the two-particle momentum correlation
919
+ functions for single excited sources are investigated using
920
+ the Lednick´y and Lyuboshitz analytical formalism with
921
+ the phase-space information at the freeze-out stage for
922
+ different initial temperatures and densities in a frame-
923
+ work of the ThIQMD transport approach. We mainly
924
+ performed a series of studies focusing on the varied ef-
925
+ fects of source temperature, density and system-size on
926
+ the two-particle momentum correlation functions. The
927
+ results reflect that the shape of the two-proton momen-
928
+
929
+ 8
930
+ 2
931
+ 3
932
+ 4
933
+ 5
934
+ 6
935
+ 7
936
+ 2
937
+ 3
938
+ 4
939
+ 5
940
+ 6
941
+ 7
942
+ 4
943
+ 8
944
+ 12
945
+ 16
946
+ 20
947
+ 2
948
+ 3
949
+ 4
950
+ 5
951
+ 6
952
+ 7
953
+ 0.2 0.4 0.6 0.8 1.0 1.2
954
+ (a) ρ = 0.2 ρ0
955
+ A = 36
956
+ A = 52
957
+ A = 80
958
+ A = 96
959
+ A = 100
960
+ A = 112
961
+ A = 129
962
+ (d) T = 2 MeV
963
+ (c) ρ = 1.0 ρ0
964
+ (b) ρ = 0.6 ρ0
965
+ r0 (fm)
966
+ (e) T = 6 MeV
967
+ (f) T = 10 MeV
968
+ T (MeV)
969
+ ρ / ρ0
970
+ FIG. 9.
971
+ Gaussian source radius as a function of temperature
972
+ or density at different source-size systems.
973
+ Left and right
974
+ columns correspond to r0 at different densities, i.e ρ = 0.2 ρ0
975
+ (a), 0.6 ρ0 (b), and 1.0 ρ0 (c) as well as different temperatures,
976
+ i.e. T = 2 (d), 6 (e), and 10 (f) MeV , respectively.
977
+ tum correlation function is in accordance with the previ-
978
+ ous experimental data in heavy-ion collisions [68].
979
+ At
980
+ the same time, the trend of the relationship between
981
+ the two-proton momentum correlation and system-size
982
+ is consistent with previous simulations [37, 38, 69]. At
983
+ low source-temperature, the larger density makes the
984
+ two-particle momentum correlation stronger. However,
985
+ at higher source temperature, the effect becomes almost
986
+ disappear. Both proton-proton correlations and neutron-
987
+ neutron correlations have the similar responses to tem-
988
+ perature and density.
989
+ This work also shows that the
990
+ emission source is not much influenced by density above
991
+ a certain temperature for a single excited source. In the
992
+ same way, the emission source are softly influenced by
993
+ temperature below a given density for a single excited
994
+ source. In one word, the dependence of the two-particle
995
+ momentum correlation function on the source tempera-
996
+ ture, density and system size could be explained by the
997
+ change of the coordinate and/or momentum phase space
998
+ sizes. In the end, the Gaussian radii are extracted to ex-
999
+ plore the emission source sizes in single excited systems.
1000
+ Gaussian radii become larger in the larger systems. The
1001
+ dependence of the extracted Gaussian radius on source-
1002
+ temperature and density is consistent with behavior of
1003
+ the two-proton momentum correlation function as dis-
1004
+ cussed in the texts.
1005
+ ACKNOWLEDGMENTS
1006
+ This work was supported in part by the National Nat-
1007
+ ural Science Foundation of China under contract Nos.
1008
+ 11890710, 11890714, 11875066, 11925502, 11961141003,
1009
+ 11935001, 12147101 and 12047514, the Strategic Pri-
1010
+ ority Research Program of CAS under Grant No.
1011
+ XDB34000000, National Key R&D Program of China un-
1012
+ der Grant No. 2016YFE0100900 and 2018YFE0104600,
1013
+ Guangdong Major Project of Basic and Applied Basic
1014
+ Research No. 2020B0301030008, and the China PostDoc-
1015
+ toral Science Foundation under Grant No. 2020M681140.
1016
+ [1] G. Giuliani, H. Zheng, and A. Bonasera, Prog. Part.
1017
+ Nucl. Phys. 76, 116 (2014).
1018
+ [2] B. A. Li, L. W. Chen, and C. M. Ko, Phys. Rep. 464,
1019
+ 113 (2008).
1020
+ [3] B. Borderie and M. F. Rivet, Prog. Part. Nucl. Phys. 61,
1021
+ 551 (2008).
1022
+ [4] C. W. Ma and Y.-G. Ma, Prog. Part. Nucl. Phys. 99,
1023
+ 120(2018).
1024
+ [5] H. L. Liu, Y. G. Ma, and D. Q. Fang, Phys. Rev. C 99,
1025
+ 054614 (2019).
1026
+ [6] J. E. Finn, S. Agarwal, A. Bujak et al., Phys. Rev. Lett.
1027
+ 49, 1321 (1982).
1028
+ [7] P. J . Siemens, Nature 305, 410 (1983).
1029
+ [8] Y. G. Ma, A. Siwek, J. P´eter et al., Phys. Lett. B 390,
1030
+ 41 (1997).
1031
+ [9] Y. G. Ma, Phys. Rev. Lett. 83, 3617 (1999).
1032
+ [10] P. Chomaz, V. Duflot, and F. Gulminelli, Phys. Rev.
1033
+ Lett. 85, 3587 (2000).
1034
+ [11] J. B. Natowitz, K. Hagel, Y. G. Ma, M. Murray, L. Qin,
1035
+ R. Wada, J. Wang, Phys. Rev. Lett. 89, 212701 (2002).
1036
+ [12] Y. G. Ma, J.B. Natowitz, R. Wada et al., Phys. Rev. C
1037
+ 71, 054606 (2005).
1038
+ [13] B. Borderie, J. Frankland, Prog. Part. Nucl. Phys. 105,
1039
+ 82 (2019).
1040
+ [14] Zhen-Fang Zhang, De-Qing Fang, and Yu-Gang Ma,
1041
+ Nucl. Sci. Tech. 29, 78 (2018).
1042
+ [15] N. Auerbach, S. Shlomo, Phys. Rev. Lett. 103, 172501
1043
+ (2009).
1044
+ [16] N. D. Dang, Phys. Rev. C 84, 034309 (2011).
1045
+ [17] D. Q. Fang, Y. G. Ma, C. L. Zhou, Phys. Rev. C 89,
1046
+ 047601 (2014).
1047
+ [18] X. G. Deng, Y. G. Ma, M. Veselsk´y, Phys. Rev. C 94,
1048
+ 044622 (2016).
1049
+ [19] D. Mondal, D. Pandit, S. Mukhopadhyay et al., Phys.
1050
+ Rev. Lett. 118, 192501 (2017).
1051
+
1052
+ 9
1053
+ [20] A. Bracco, J. J. Gaardhje, A. M. Bruce et al., Phys. Rev.
1054
+ Lett. 62, 2080 (1989).
1055
+ [21] P. F. Bortignon, A. Bracco, D. Brink, R. A. Broglia,
1056
+ Phys. Rev. Lett. 67, 3360 (1991).
1057
+ [22] O. Wieland, A. Bracco, F. Camera et al., Phys. Rev.
1058
+ Lett. 97, 012501 (2006).
1059
+ [23] Rui Wang, Yu-Gang Ma, R. Wada et al., Phys. Rev. Res.
1060
+ 2, 043202 (2020).
1061
+ [24] Y. D. Song, R. Wang, Y. G. Ma, X. G. Deng, H. L. Liu,
1062
+ Phys. Lett. B 814, 136084 (2021).
1063
+ [25] R. Kotte et al., Eur. Phys. J. A 23, 271 (2005).
1064
+ [26] R. Ghetti et al., Phys. Rev. Lett. 91, 092701 (2003).
1065
+ [27] D. Gourio et al., Eur. Phys. J. A 7, 245 (2000).
1066
+ [28] D. H. Boal, C. K. Gelbke, B. K. Jennings, Rev. Mod.
1067
+ Phys. 62, 553 (1990).
1068
+ [29] U. A. Wiedemann, U. Heinz, Phys. Rep. 319, 145 (1999).
1069
+ [30] M. A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev.
1070
+ Nucl. Part. Sci. 55, 357 (2005).
1071
+ [31] G. Verde, A. Chbihi, R. Ghetti, J. Helgesson, Eur. Phys.
1072
+ J. A 30, 81 (2006).
1073
+ [32] W. G. Gong, W. Bauer, C. K. Gelbke, and S. Pratt, Phys.
1074
+ Rev. C 43, 781 (1991).
1075
+ [33] G. Verde, D. A. Brown, P. Danielewicz, C. K. Gelbke,
1076
+ W. G. Lynch, and M. B. Tsang, Phys. Rev. C 65, 054609
1077
+ (2002).
1078
+ [34] Y. G. Ma et al., Phys. Rev. C 73, 014604 (2006).
1079
+ [35] R. Ghetti et al., Phys. Rev. C. 69, 031605(R) (2004).
1080
+ [36] L. W. Chen, V. Greco, C. M. Ko, and B. A. Li, Phys.
1081
+ Rev. Lett. 90, 162701 (2003).
1082
+ [37] Ting-Ting Wang, Yu-Gang Ma, Chun-Jian Zhang and
1083
+ Zheng-Qiao Zhang, Phys. Rev. C 97, 034617 (2018).
1084
+ [38] Ting-Ting Wang, Yu-Gang Ma, and Zheng-Qiao Zhang,
1085
+ Phys. Rev. C 99, 054626 (2019).
1086
+ [39] Y. B. Wei, Y. G. Ma, W. Q. Shen et al., Phys. Lett. B
1087
+ 586, 225 (2004).
1088
+ [40] X. G. Cao, X. Z. Cai, Y. G. Ma, D. Q. Fang, G. Q. Zhang,
1089
+ W. Guo, J. G. Chen, and J. S. Wang, Phys. Rev. C 86,
1090
+ 044620 (2012).
1091
+ [41] Gao-Feng Wei, Xi-Guang Cao, Qi-Jun Zhi, Xin-Wei Cao,
1092
+ and Zheng-Wen Long, Phys. Rev. C 101, 014613 (2020).
1093
+ [42] B. S. Huang, Y. G. Ma, Phys. Rev. C 101, 034615 (2020).
1094
+ [43] D. Q. Fang, Y. G. Ma, X. Y. Sun et al., Phys. Rev. C
1095
+ 94, 044621 (2016).
1096
+ [44] Bo-Song Huang, Yu-Gang Ma, Chin. Phys. C 44, 094105
1097
+ (2020).
1098
+ [45] L. Shen, B. S. Huang, Y. G. Ma, Phys. Rev. C 105,
1099
+ 014603 (2022).
1100
+ [46] J. J. He, S. Zhang, Y. G. Ma, J. H. Chen, C. Zhong, Eur.
1101
+ Phys. J. A 56, 52 (2020).
1102
+ [47] R. Lednick´y, Nucl. Phys. A 774, 189 (2006).
1103
+ [48] J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, and
1104
+ W. Greiner, Phys. Rev. Lett. 58, 1926 (1987).
1105
+ [49] J. Aichelin, Phys. Rep. 202, 233 (1991).
1106
+ [50] G. Peilert, H. St¨ocker, W. Greiner, A. Rosenhauer, A.
1107
+ Bohnet, and J. Aichelin, Phys. Rev. C 39, 1402 (1989).
1108
+ [51] Zhao-Qing Feng, Nucl. Sci. Tech. 29, 40 (2018).
1109
+ [52] Bao-An Li, Lie-Wen Chen, Che Ming Ko, Phys. Rep.
1110
+ 464, 113 (2008).
1111
+ [53] J. Liu, C. Gao, N. Wan and C. Xu, Nucl. Sci. Tech. 32,
1112
+ 117 (2021).
1113
+ [54] Fan Zhang, Jun Su, Nucl. Sci. Tech. 31, 77 (2020) .
1114
+ [55] Hao Yu, De-Qing Fang, Yu-Gang Ma, Nucl. Sci. Tech.
1115
+ 31, 61 (2020).
1116
+ [56] Gao-Feng Wei, Qi-Jun Zhi, Xin-Wei Cao, Zheng-Wen
1117
+ Long, Nucl. Sci. Tech. 31, 71 (2020) .
1118
+ [57] Chong-Ji Jiang, Yu Qiang, Da-Wei Guan et al., Chin.
1119
+ Phys. Lett. 38, 052101 (2021) .
1120
+ [58] Jun Xu, Chin. Phys. Lett. 38, 042101 (2021) .
1121
+ [59] R. Lednick´y, Phys. Part. Nucl. 40, 307 (2009).
1122
+ [60] R. Lednick´y, Phys. Ato. Nucl. 71, 1572 (2008).
1123
+ [61] S. E. Koonin, Phys. Lett. B 70, 43 (1977).
1124
+ [62] R. Lednick´y, Braz. J. Phys. 37, 939 (2007).
1125
+ [63] R. Lednick´y, V.L. Lyuboshitz, B. Erazmus, and D.
1126
+ Nouais, Phys. Lett. B 373, 30 (1996).
1127
+ [64] R. Lednick´y, V.L. Lyuboshitz, Sov. J. Nucl. Phys. 35,
1128
+ 770 (1982).
1129
+ [65] L. Adamczyk et al. (STAR Collaboration), Nature 527,
1130
+ 345 (2015).
1131
+ [66] B. Erazmus, L. Martin, R. Lednicky, N. Carjan, Phys.
1132
+ Rev. C 49, 349 (1994).
1133
+ [67] J. Arvieux, Nucl. Phys. A 221, 253 (1974).
1134
+ [68] R. Ghetti et al., Nucl. Phys. A 674, 277 (2000).
1135
+ [69] Long Zhou, De-Qing Fang, Nucl. Sci. Tech. 21, 52 (2020).
1136
+
6NE1T4oBgHgl3EQfBQJe/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
7dAyT4oBgHgl3EQfQvYd/content/2301.00050v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e41c97a3da87f0414c27724fd1389402c049091f24a13bd9415addc9df8be98
3
+ size 10181532
7dAyT4oBgHgl3EQfQvYd/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b089c632e6e647d666510f9fbcde81cbc4b72d865917fbc9a5d5da347b50b7cf
3
+ size 3735597
8NFLT4oBgHgl3EQfsy_c/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:10fb9b2e9b175aae52d32c6fe1ea726ead27e25f3f8c53495e6f4110e19b55c0
3
+ size 152610
8dE3T4oBgHgl3EQfRwni/content/tmp_files/2301.04426v1.pdf.txt ADDED
@@ -0,0 +1,2081 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Flagged observation analyses as a tool for scoping and communication in
2
+ Integrated Ecosystem Assessments
3
+
4
+ Solvang, Hiroko Kato
5
+ Institute of Marine Research, P.O. Box 1870 Nordnes, N-5817 Bergen, Norway
6
7
+ Arneberg, Per
8
+ Institute of Marine Research, Fram Centre, P.O. Box 6606, 9296 Langnes, Norway
9
10
+
11
+ Abstract
12
+ Working groups for integrated ecosystem assessments are often challenged with understanding and
13
+ assessing recent change in ecosystems. As a basis for this, the groups typically have at their disposal
14
+ many time series and will often need to prioritize which ones to follow up for closer analyses and
15
+ assessment. Here we provide a procedure termed Flagged observation analyses that can be applied to
16
+ all the available time series to help identifying time series that should be prioritized. The statistical
17
+ procedure first applies a structural time series model including a stochastic trend model to the data to
18
+ estimate the long-term trend. The model adopts a state space representation, and the trend component
19
+ is estimated by a Kalman filter algorithm. The algorithm obtains one- or more-years-ahead prediction
20
+ values using all past information from the data. Thus, depending on the number of years the investigator
21
+ wants to consider as “the most recent”, the expected trend for these years is estimated through the
22
+ statistical procedure by using only information from the years prior to them. Forecast bands are
23
+ estimated around the predicted trends for the recent years, and in the final step, an assessment is made
24
+ on the extent to which observations from the most recent years fall outside these forecast bands. Those
25
+ that do, may be identified as flagged observations. A procedure is also presented for assessing whether
26
+ the combined information from all of the most recent observations form a pattern that deviates from the
27
+ predicted trend and thus represents an unexpected tendency that may be flagged. In addition to form the
28
+ basis for identifying time series that should be prioritized in an integrated ecosystem assessment,
29
+ flagged observations can provide the basis for communicating with managers and stakeholders about
30
+ recent ecosystem change. Applications of the framework are illustrated with two worked examples.
31
+
32
+ Keywords: Trend estimation, Kalman filter, Prediction, Forecast band, Stakeholder, Climate change
33
+
34
+
35
+
36
+ Introduction
37
+ Against a background of increasing impact from climate change and other anthropogenic drivers,
38
+ causing elevated rates of change in marine ecosystems [1-6] leading to patterns of variability beyond
39
+ the range of the Holocene [7-12], ecosystem-based management (EBM) is increasingly identified as a
40
+ needed framework for management of marine socio-ecological systems [13]. Integrated ecosystem
41
+
42
+ assessments (IEA) have been developed to provide the scientific basis for EBM [14], and numerous
43
+ groups of scientists working with IEA have been established, such as the regional IEA groups within
44
+ the International Council for the Exploration of the Sea (ICES, Walther and Möllmann (15)).
45
+ Among the core activities of IEA groups are analyses of time series to summarize changes that have
46
+ occurred in recent decades in ecosystems, highlight possible connections between physical, biological,
47
+ and human ecosystem components [14, 16]. Emphasis is put on keeping an open communication
48
+ management and stakeholders [13, 17, 18]. As the groups typically have at their disposal a large number
49
+ of time series [16, 19], it will often be necessary to prioritize a subset of them for more extensive
50
+ analyses and communication purposes [20, 21]. Prioritization should preferably be done using a
51
+ standardized framework applied to all time series. Here we present an approach which is based analyses
52
+ of patterns of recent change, where the aim is to identify time series in which the most recent values
53
+ deviate significantly from an expected trend, possibly indicating unexpected change. This should be of
54
+ high relevance for IEA groups, as they are often challenged with understanding and interpreting recent
55
+ change [14].
56
+ Our approach is based on first estimating trends of time series before assessing whether the most recent
57
+ observations deviate significantly from these trends. Since temporal changes in ecosystems can take the
58
+ form of long-term movements as well as short- or mid-term cyclic periods and noise components,
59
+ different definitions of trends have been used in marine IEAs [16]. In the field of statistical time series
60
+ analysis, the long-term movements are commonly classified as ‘trends’, while short- or mid-term cyclic
61
+ periods are not, due to the different assumptions about the statistical properties. When investigating a
62
+ trend in time series data, it can therefore be useful to separately identify non-stationary trends and
63
+ stationary cyclic components. This decomposition is performed by a framework called ‘structural time
64
+ series modelling’, which is using a state space representation where the state of each component is
65
+ estimated by the Kalman filter algorithm [22]. The concept is basically different from applying an
66
+ Autoregressive integrated moving average model to adjust with the aim of studying stationary processes
67
+ from nonstationary time series data [23].
68
+ The Kalman filter algorithm can make one- or multistep-ahead predictions in the numerical procedure.
69
+ The numerical procedure introduced in this paper uses prediction values and forecast uncertainty bands
70
+
71
+ to assess the status of a recent observation, which determines whether the most recent observation
72
+ follows the prediction or deviates from it [24], thus giving an indication whether change that is
73
+ unexpected from the predicted trend, is occurring in the time series. We call the significant deviated
74
+ observations a “Flagged Observation (FO)” and the approach “Flagged Observation analysis”. The
75
+ interpretation of a FO is not equivalent to the types of early warning signals that have been proposed
76
+ with the aim of predicting critical transitions in marine populations or ecosystems [25, 26], nonlinear
77
+ ecological change [27] or early warning signs based on theoretical framework in social-ecological
78
+ networks [28], but is, as described above, a practical tool for IAE groups for prioritizing time series for
79
+ in depth analyses, communication and other purposes.
80
+ In this article, we first introduce the numerical procedure and then demonstrate two examples using
81
+ time series data for, respectively, the Atlantic Multi-decadal Oscillation (AMO) and the Norwegian Sea
82
+ ecosystem.
83
+
84
+ Statistical method
85
+ The statistical method includes first a procedure for trend estimation and second a procedure for flagged
86
+ observations analyses (FO analyses) based on multistep ahead prediction values. The output from these
87
+ analyses can be used to identify observations (for example years) that deviate significantly from the
88
+ expected trend. In addition, it can also be interesting to explore whether observations from the predicted
89
+ years together form a pattern where all are consecutively either above or below the predicted trend in a
90
+ way that is not expected. This is equivalent to asking whether there is an unexpected tendency for the
91
+ most recent years. The probability for observing this is smaller than the probability of detecting an FO
92
+ for a single observation. The details are given as below:
93
+ Trend estimation procedure
94
+ The observation model of a time series is given by
95
+ ( )
96
+ ( )
97
+ ( ),
98
+ 1,
99
+ ,
100
+ y n
101
+ t n
102
+ u n
103
+ n
104
+ N
105
+ =
106
+ +
107
+ =
108
+ ⋅⋅⋅
109
+ ,
110
+ (1)
111
+
112
+ where ( )
113
+ t n is the trend component and ( )
114
+ u n is the residual component at time step n, assuming Gaussian
115
+ white noise. In this article, we introduce a stochastic trend model given by a dth-order difference
116
+ equation model and a method for estimating the trend [29, 30].
117
+ The stochastic differential trend model is defined by the dth-order difference equation, which was posed
118
+ as a smoothing problem by [31]. This model allows for more flexible trends than does the polynomial
119
+ regression model. The stochastic trend model for k variables is expressed in the following way:
120
+ ( )
121
+ ( ),
122
+ 1,
123
+ , ,
124
+ i
125
+ d
126
+ i
127
+ t
128
+ t n
129
+ v n
130
+ i
131
+ k
132
+
133
+ =
134
+ =
135
+ ⋅⋅⋅
136
+ (2)
137
+ where ∇ is a difference operator
138
+ ( )
139
+ ( )
140
+ (
141
+ 1)
142
+ t n
143
+ t n
144
+ t n
145
+
146
+ =
147
+
148
+
149
+ and
150
+ ( )
151
+ itv n is assumed to be a white noise
152
+ sequence. If
153
+ 1
154
+ d =
155
+ , ( )
156
+ (
157
+ 1)
158
+ t n
159
+ t n
160
+
161
+
162
+ and the trend is known as a random walk model. If
163
+ 2
164
+ d =
165
+ ,
166
+ ( )
167
+ 2 (
168
+ 1)
169
+ (
170
+ 2)
171
+ 0
172
+ t n
173
+ t n
174
+ t n
175
+
176
+
177
+ +
178
+
179
+
180
+ [29]. Provided that the variance of
181
+ ( )
182
+ itv n is sufficiently small, ( )
183
+ it n
184
+ yields a smooth trend. We choose the second order difference stochastic model to estimate trend in this
185
+ study.
186
+ The model can be represented in linear state space form [22, 29, 30], as
187
+ ( )
188
+ (
189
+ 1)
190
+ ( ),
191
+ ( )
192
+ ( )
193
+ ( ),
194
+ z n
195
+ Fz n
196
+ Gv n
197
+ y n
198
+ Hz n
199
+ w n
200
+ =
201
+
202
+ +
203
+ =
204
+ +
205
+
206
+ (3)
207
+ where ( )
208
+ z n is the state vector corresponding to ( )
209
+ t n , ( )
210
+ v n is the system noise vector with mean 0 and
211
+ unknown variance
212
+ 2
213
+ v
214
+ σ , F ,G , and H indicate integers or matrices, and
215
+ ( )
216
+ w n is observation error
217
+ with mean 0 and unknown variance
218
+ 2
219
+ w
220
+ σ . The state ( )
221
+ z n corresponds to the trend component, which we
222
+ cannot directly observe from the data. The component is modelled by the dth-order differential equation
223
+ model. Corresponding to the above dth-order difference equation, when
224
+ 1
225
+ d =
226
+ in equation (2),
227
+ ( )
228
+ ( )
229
+ t n
230
+ z n
231
+
232
+
233
+
234
+
235
+ =
236
+ ,
237
+ 1
238
+ F
239
+ G
240
+ H
241
+ =
242
+ =
243
+ = .
244
+
245
+ When
246
+ 2
247
+ d =
248
+ , the state vector and matrices are as follows:
249
+
250
+ ( )
251
+ ( )
252
+ (
253
+ 1)
254
+ t n
255
+ z n
256
+ t n
257
+
258
+
259
+ = 
260
+
261
+
262
+
263
+  ,
264
+ 2
265
+ 1
266
+ 1
267
+ 0
268
+ F
269
+
270
+
271
+
272
+ = 
273
+
274
+
275
+ ,
276
+ 1
277
+ 0
278
+ G
279
+  
280
+ =  
281
+   , and
282
+ 1
283
+ 0
284
+ H
285
+  
286
+ =  
287
+ ���  .
288
+
289
+ The observation error corresponds to ( )
290
+ u n in equation (1) in this case. The trend component is estimated
291
+ with a Kalman filter, which is a powerful numerical algorithm that recursively operates the state
292
+ estimation, prediction and filtering:
293
+ prediction:
294
+ ( |
295
+ 1)
296
+ (
297
+ 1|
298
+ 1)
299
+ ( |
300
+ 1)
301
+ (
302
+ 1|
303
+ 1)
304
+ '
305
+ z n n
306
+ Fz n
307
+ n
308
+ V n n
309
+ FV n
310
+ n
311
+ GQG
312
+
313
+ =
314
+
315
+
316
+
317
+ =
318
+
319
+
320
+ +
321
+ (4)
322
+ filtering:
323
+ 1
324
+ ( )
325
+ ( |
326
+ 1)
327
+ '(
328
+ ( |
329
+ 1)
330
+ '
331
+ )
332
+ ( | )
333
+ ( |
334
+ 1)
335
+ ( ( )
336
+ ( |
337
+ 1))
338
+ ( | )
339
+ (
340
+ ) ( |
341
+ 1)
342
+ K n
343
+ V n n
344
+ H
345
+ H V n n
346
+ H
347
+ R
348
+ z n n
349
+ z n n
350
+ K y n
351
+ H z n n
352
+ V n n
353
+ I
354
+ K H V n n
355
+
356
+ =
357
+
358
+
359
+ +
360
+ =
361
+
362
+ +
363
+
364
+
365
+ =
366
+
367
+
368
+ (5)
369
+ Here, ( |
370
+ 1)
371
+ z n n −
372
+ and
373
+ ( |
374
+ 1)
375
+ V n n −
376
+ correspond to the conditional mean and conditional variance of the
377
+ state, R is set as the observation error, and K is called the Kalman gain. Setting the initial state
378
+ (
379
+ )
380
+ 1| 0
381
+ z
382
+ and variance
383
+ (
384
+ )
385
+ 1| 0
386
+ V
387
+ as zero and the pre-determined system noise, the Kalman gain is
388
+ calculated by the initial variance and observation noise, and the filtering value (
389
+ )
390
+ 1|1
391
+ z
392
+ is obtained by
393
+ using observation
394
+ ( )
395
+ 1
396
+ y
397
+ and the calculated gain from the filtering procedure (5). Then the next
398
+ prediction values (
399
+ )
400
+ 2 |1
401
+ z
402
+ and
403
+ (
404
+ )
405
+ 2 |1
406
+ V
407
+ are calcualted using (
408
+ )
409
+ 1|1
410
+ z
411
+ and
412
+ (
413
+ )
414
+ 1|1
415
+ V
416
+ in the prediction
417
+ procedure (4). The iterative calculation procedure for the state is continued until n
418
+ N
419
+ =
420
+ . Recursive
421
+ methods based on state space representations are known to be very efficient for calculating the
422
+ likelihood functions of discrete-time Gaussian proceeses. The state space model and the Kalman filter
423
+ provide an efficient method for the computation of the likelihood of the time series models [29]. In this
424
+ case, the trend model includes the parameter vector
425
+ 2
426
+ 2
427
+ ( ,
428
+ ,
429
+ )
430
+ v
431
+ w
432
+ d
433
+ θ
434
+ σ
435
+ σ
436
+ =
437
+ . The log-likelihood function ( )
438
+ l θ
439
+ of the model is given by
440
+
441
+ 1
442
+ 1
443
+ 1
444
+ 2
445
+ ( )
446
+ log
447
+ ( ( ) |
448
+ (
449
+ 1), ),
450
+ 1
451
+ 1
452
+ log
453
+ exp
454
+ ( )' ( )
455
+ ( )
456
+ ,
457
+ 2
458
+ (2 ) det ( )
459
+ N
460
+ n
461
+ N
462
+ n
463
+ l
464
+ f y n
465
+ Y n
466
+ y n
467
+ n
468
+ y n
469
+ n
470
+ θ
471
+ θ
472
+ π
473
+ =
474
+
475
+ =
476
+ =
477
+
478
+
479
+
480
+
481
+
482
+
483
+
484
+ =
485
+
486
+
487
+ Σ
488
+
489
+
490
+
491
+
492
+
493
+
494
+
495
+ Σ
496
+
497
+
498
+
499
+
500
+
501
+
502
+
503
+ where
504
+ (
505
+ 1)
506
+ ( (1), (2),
507
+ , (
508
+ 1))
509
+ Y n
510
+ y
511
+ y
512
+ y n
513
+
514
+ =
515
+ ⋅⋅⋅
516
+
517
+ ,
518
+ ( )
519
+ ( )
520
+ ( |
521
+ 1)
522
+ y n
523
+ y n
524
+ Hz n n
525
+
526
+ =
527
+
528
+
529
+ ,
530
+ and
531
+ 2
532
+ ( )
533
+ ( )
534
+ ( |
535
+ 1)
536
+ '( )
537
+ w
538
+ n
539
+ H n V n n
540
+ H n
541
+ σ
542
+ Σ
543
+ =
544
+
545
+ +
546
+ . The flexibility of the estimated trend depends on
547
+ 2
548
+ v
549
+ σ , which can be
550
+ determined by maximum likelihood within an arbitry variance range. The variance
551
+ 2
552
+ w
553
+ σ can be directly
554
+ set to the variance of the observation. If it is necessary to compare differernt order differential stochastic
555
+ model, the optimum differential order d is identified by the AIC [32] , which was formulated by the
556
+ maximum log-likelihood and number of parameters for d and the variances of system noise and
557
+ observation noise, given by AIC( )
558
+ 2 ( )
559
+ 2
560
+ number of parameters
561
+ c
562
+ l θ
563
+ = −
564
+ +
565
+ ×
566
+ .
567
+ After identifying the optimum trend model, the smoothed trend is estimated by a fixed-interval
568
+ smoother algorithm [33]:
569
+ 1
570
+ ( )
571
+ ( | )
572
+ ' (
573
+ 1| )
574
+ ( |
575
+ )
576
+ ( | )
577
+ ( )( (
578
+ 1|
579
+ )
580
+ (
581
+ 1| ))
582
+ ( |
583
+ )
584
+ ( | )
585
+ ( )( (
586
+ 1|
587
+ )
588
+ (
589
+ 1| )) ( )'
590
+ A n
591
+ V n n F V n
592
+ n
593
+ z n N
594
+ z n n
595
+ A n
596
+ z n
597
+ N
598
+ z n
599
+ n
600
+ V n N
601
+ V n n
602
+ A n V n
603
+ N
604
+ V n
605
+ n A n
606
+
607
+ =
608
+ +
609
+ =
610
+ +
611
+ +
612
+
613
+ +
614
+ =
615
+ +
616
+ +
617
+
618
+ +
619
+
620
+ In this study, we set the differential order as
621
+ 2
622
+ d =
623
+ to obtain smooth trend for all time series data as
624
+ introduced in Kitagawa and Gersch (33) and take a procedure finding an optimum Q controlling
625
+ variability for the trend estimation within a range.
626
+
627
+ FO analysis by multistep-ahead prediction values
628
+ Using the Kalman filter algorithm directly, it can give only one-ahead prediction. However, it can be
629
+ expanded to multistep-ahead (j-ahead) prediction (
630
+ 1
631
+ j >
632
+ ). Let us consider a relevant situation. With the
633
+ Kalman filter, one-ahead prediction for (
634
+ )
635
+ 1
636
+ z n +
637
+ is obtained by (
638
+ )
639
+ 1|
640
+ z n
641
+ n
642
+ +
643
+ and variance (
644
+ )
645
+ 1|
646
+ V n
647
+ n
648
+ +
649
+ .
650
+ If the data
651
+ (
652
+ )
653
+ 1
654
+ y n +
655
+ are not observed, the calculation is formally conducted by assuming
656
+
657
+ (
658
+ )
659
+ ( )
660
+ 1
661
+ Y n
662
+ Y n
663
+ +
664
+ =
665
+ ,
666
+ where
667
+ (
668
+ )
669
+ ( )
670
+ (1), (2),
671
+ , ( )
672
+ Y n
673
+ y
674
+ y
675
+ y n
676
+ =
677
+ ⋅⋅⋅
678
+ .
679
+ Accordingly,
680
+ it
681
+ is
682
+ clear
683
+ that
684
+ (
685
+ )
686
+ (
687
+ )
688
+ 1|
689
+ 1
690
+ 1|
691
+ z n
692
+ n
693
+ z n
694
+ n
695
+ +
696
+ +
697
+ =
698
+ +
699
+ and
700
+ (
701
+ )
702
+ (
703
+ )
704
+ 1|
705
+ 1
706
+ 1|
707
+ V n
708
+ n
709
+ V n
710
+ n
711
+ +
712
+ +
713
+ =
714
+ +
715
+ . Then, two-ahead prediction
716
+ (
717
+ )
718
+ 2 |
719
+ z n
720
+ n
721
+ +
722
+ and variance
723
+ (
724
+ )
725
+ 2 |
726
+ V n
727
+ n
728
+ +
729
+ are obtained by (
730
+ )
731
+ 1|
732
+ z n
733
+ n
734
+ +
735
+ and (
736
+ )
737
+ 1|
738
+ V n
739
+ n
740
+ +
741
+ . In general, we
742
+ assume ( )
743
+ (
744
+ 1)
745
+ (
746
+ )
747
+ Y n
748
+ Y n
749
+ Y n
750
+ j
751
+ =
752
+ +
753
+ = ⋅⋅⋅ =
754
+ +
755
+ to obtain the j-ahead prediction, and the prediction step is
756
+ iteratively conducted j times. The algorithm used to predict states (
757
+ )
758
+ (
759
+ )
760
+ (
761
+ )
762
+ 1 ,
763
+ 2 ,
764
+ ,
765
+ z n
766
+ z n
767
+ z n
768
+ j
769
+ +
770
+ +
771
+ ⋅⋅⋅
772
+ +
773
+ ,
774
+ based on the data ( )
775
+ Y n observed until time point n , is expressed as follows:
776
+ (
777
+ )
778
+ (
779
+ )
780
+ (
781
+ )
782
+ (
783
+ )
784
+ |
785
+ 1|
786
+ ,
787
+ |
788
+ 1|
789
+ '
790
+ ',
791
+ 1,
792
+ , .
793
+ z n
794
+ i n
795
+ Fz n
796
+ i
797
+ n
798
+ V n
799
+ i n
800
+ FV n
801
+ i
802
+ n F
803
+ GQG
804
+ i
805
+ j
806
+ +
807
+ =
808
+ + −
809
+ +
810
+ =
811
+ + −
812
+ +
813
+ =
814
+ ⋅⋅⋅
815
+
816
+ Now, let the mean and variance for the prediction (
817
+ )
818
+ y n
819
+ j
820
+ +
821
+ of the data denote
822
+ (
823
+ )
824
+ ( )
825
+ (
826
+ )
827
+ E
828
+ |
829
+ y n
830
+ j
831
+ Y n
832
+ +
833
+ and
834
+ (
835
+ )
836
+ ( )
837
+ (
838
+ )
839
+ Cov
840
+ |
841
+ y n
842
+ j
843
+ Y n
844
+ +
845
+ , where
846
+ ( )
847
+ E ⋅ and
848
+ ( )
849
+ Cov ⋅ are notations for expectation and variance-
850
+ covariance matrix (but in this study only variance because the data are univariate). Using the
851
+ observation equation (3), the mean of (
852
+ )
853
+ y n
854
+ j
855
+ +
856
+ is expressed by
857
+ (
858
+ )
859
+ (
860
+ )
861
+ (
862
+ )
863
+ ( )
864
+ (
865
+ )
866
+ (
867
+ )
868
+ |
869
+ =E
870
+ |
871
+ |
872
+ .
873
+ y n
874
+ j n
875
+ Hz n
876
+ j
877
+ w n
878
+ j
879
+ Y n
880
+ Hz n
881
+ j n
882
+ +
883
+ +
884
+ +
885
+ +
886
+ =
887
+ +
888
+ (6)
889
+ The variance of (
890
+ )
891
+ y n
892
+ j
893
+ +
894
+ is given by
895
+ (
896
+ )
897
+ (
898
+ )
899
+ (
900
+ )
901
+ ( )
902
+ (
903
+ )
904
+ (
905
+ )
906
+ ( )
907
+ (
908
+ )
909
+ (
910
+ )
911
+ (
912
+ )
913
+ ( )
914
+ (
915
+ )
916
+ (
917
+ )
918
+ (
919
+ )
920
+ ( )
921
+ (
922
+ )
923
+ (
924
+ )
925
+ ( )
926
+ (
927
+ )
928
+ (
929
+ )
930
+ (
931
+ )
932
+ |
933
+ =Cov
934
+ |
935
+ ,
936
+ Cov
937
+ |
938
+ '
939
+ Cov
940
+ ,
941
+ |
942
+ Cov
943
+ ,
944
+ |
945
+ ' Cov
946
+ |
947
+ ,
948
+ |
949
+ '
950
+ .
951
+ d n
952
+ j n
953
+ Hz n
954
+ j
955
+ w n
956
+ j
957
+ Y n
958
+ H
959
+ z n
960
+ j
961
+ Y n
962
+ H
963
+ H
964
+ z n
965
+ j
966
+ w n
967
+ j
968
+ Y n
969
+ w n
970
+ j
971
+ z n
972
+ j
973
+ Y n
974
+ H
975
+ w n
976
+ j
977
+ Y n
978
+ H V n
979
+ j n H
980
+ R n
981
+ j
982
+ +
983
+ +
984
+ +
985
+ +
986
+ =
987
+ +
988
+ +
989
+ +
990
+ +
991
+ +
992
+ +
993
+ +
994
+ +
995
+ +
996
+ =
997
+ +
998
+ +
999
+ +
1000
+ (7)
1001
+ Therefore, the prediction distribution for (
1002
+ )
1003
+ y n
1004
+ j
1005
+ +
1006
+ based on data ( )
1007
+ Y n is a normal distribution with
1008
+ mean (
1009
+ )
1010
+ |
1011
+ y n
1012
+ j n
1013
+ +
1014
+ and variance
1015
+ (
1016
+ )
1017
+ |
1018
+ d n
1019
+ j n
1020
+ +
1021
+ or a standard deviation
1022
+ (
1023
+ )
1024
+ |
1025
+ d n
1026
+ j n
1027
+ +
1028
+ . The forecast
1029
+ bands (FBs), e.g. mean ± 1.96 (~2) × standard deviation that corresponds to around 95-96% forecast
1030
+ interval [34], are easily calculated by equations (6) and (7). Note that we define the values given by
1031
+
1032
+ multistep-ahead prediction procedure as ‘forecast value’ because it is calculated by using the previous
1033
+ data in the algorithm.
1034
+ Assessing unexpected tendencies - joint probability for detected FO
1035
+ As the time series data is sampled as one sample at one time point, the joint probability that all of the
1036
+ most recent years fall either above or below the predicted trend (i.e., whether there is an unexpected
1037
+ tendency for the most recent years) should be calculated by random variables, which is generated from
1038
+ a normal distribution. We provide the following procedure to calculate the joint probabilities in this
1039
+ way:
1040
+ 1. Generate 10000 random number set
1041
+ jr by a normal distribution with mean (
1042
+ | )
1043
+ y n
1044
+ j n
1045
+ +
1046
+ and
1047
+ variance (
1048
+ | )
1049
+ d n
1050
+ j n
1051
+ +
1052
+ of the prediction values at n
1053
+ j
1054
+ +
1055
+ ;
1056
+ 2. The probability value
1057
+ jp is calculated by the formula
1058
+
1059
+ #{
1060
+ (
1061
+ | )} if (
1062
+ | ) is upper over FB
1063
+ 10000
1064
+ #{
1065
+ (
1066
+ | )} if (
1067
+ | ) is lower under FB
1068
+ 10000
1069
+ j
1070
+ j
1071
+ j
1072
+ r
1073
+ y n
1074
+ j n
1075
+ y n
1076
+ j n
1077
+ p
1078
+ r
1079
+ y n
1080
+ j n
1081
+ y n
1082
+ j n
1083
+
1084
+
1085
+ +
1086
+
1087
+ +
1088
+ 
1089
+ = 
1090
+
1091
+ +
1092
+
1093
+ +
1094
+ 
1095
+ ;
1096
+ 3. The joint probability values
1097
+ 1
1098
+ (
1099
+ ,
1100
+ ,
1101
+ )
1102
+ J
1103
+ P p
1104
+ p
1105
+ L
1106
+ are calculated for
1107
+ 1,
1108
+ ,
1109
+ j
1110
+ J
1111
+ = L
1112
+ by
1113
+
1114
+ 1
1115
+ 1
1116
+ (
1117
+ ,
1118
+ ,
1119
+ )
1120
+ J
1121
+ J
1122
+ P p
1123
+ p
1124
+ p
1125
+ p
1126
+ =
1127
+ ×
1128
+ ×
1129
+ L
1130
+ L
1131
+ ; and
1132
+ 4. The procedure from 1 to 3 is iterated for 1000 and the averaged joint probability values are
1133
+ calculated by
1134
+
1135
+ 1000
1136
+ 1
1137
+ 1
1138
+ 1
1139
+ 1
1140
+ (
1141
+ ,
1142
+ ,
1143
+ )
1144
+ (
1145
+ ,
1146
+ ,
1147
+ )
1148
+ 1000
1149
+ J
1150
+ b
1151
+ J
1152
+ b
1153
+ P p
1154
+ p
1155
+ P p
1156
+ p
1157
+ =
1158
+ =
1159
+
1160
+ L
1161
+ L
1162
+ .
1163
+
1164
+ A conceptual outline of this study’s analysis procedure for FO analysis is given in Fig 1. The numerical
1165
+ procedure is implemented using MATLAB code [35], which is summarized in Supplementary folder.
1166
+ Illustrative examples
1167
+ The dataset for the Atlantic Multi-decadal Oscillation (AMO) is based on index monthly raw data [36],
1168
+ while for the Norwegian Sea ecosystem, we use the yearly data assembled by the ICES integrated
1169
+ ecosystem assessment working group for the Norwegian Sea (WGINOR, ICES (37)). Abbreviations for
1170
+ the Norwegian Sea data used in this article is summarized in Supplementary Table1. In the examples,
1171
+
1172
+ we do not attempt to fully interpret any FOs revealed, but comment on the possible background for
1173
+ some of them to illustrate the context for further work in IEA groups.
1174
+ The Atlantic Multi-Decadal Oscillation (AMO)
1175
+ AMO is a pronounced signal of climate variability in the North Atlantic Sea surface temperature (SST)
1176
+ [38]. The monthly data recorded from December in 1869 to March in 2021 has been published under
1177
+ the NCAR CLIMATE data guide [39]. We extracted monthly raw data for the period 1980-2020, from
1178
+ which we calculated annual means, giving a time series with 31-time points.
1179
+ To illustrate how inferences may differ for different time periods, both seven-years and three-years
1180
+ predictions are shown for this example. Thus, we first set the specific time point j as 2014 and 2017,
1181
+ respectively. The stochastic difference trend model was applied to the data until j-1 time points (that is,
1182
+ 2013 and 2016). To optimize Q for the model, we set 0.05
1183
+ 0.5
1184
+ Q
1185
+
1186
+
1187
+ as a search range. The
1188
+ calculated maximum log-likelihood and optimum Q for each dataset are summarized in Table 1a. The
1189
+ details for the log-likelihood in the range of Q are summarized in Table 2.
1190
+ Using the parameters of the model, the Kalman filter algorithm was run to calculate seven-years- and
1191
+ three-years-ahead predictions. Fig 2 presents the outputs of this.
1192
+ For the case of seven-years-ahead prediction, none of the observations for the most recent years fall
1193
+ outside the 95% or 80% FBs, but the observation for 2015 fall outside the 70% FB. Thus, only a single
1194
+ possible FO is identified when looking at each of the seven most recent years individually, and this is
1195
+ due to a marked decrease in SST in 2015 that contrasts the slightly increasing trend predicted for 2014-
1196
+ 2020. However, all observations for the seven most recent years fall below the predicted trend (Fig 2).
1197
+ The joint probability for this pattern is small (Table 2), suggesting that there is a tendency in the data
1198
+ that differs from the predicted trend and thus represents a FO. For the case of three-years-ahead
1199
+ predictions, none of the observations from the most recent years fall outside any of the FBs, and they
1200
+ are spread evenly around the predicted trend (Fig 2). Thus, while there are ample indications that the
1201
+ seven most recent observations deviate from the trend predicted for the last seven years, no such pattern
1202
+ is seen for the trend predicted for the last three years, suggesting that an assessment group may need to
1203
+ look differently at change over these two time periods.
1204
+
1205
+ Norwegian Sea ecosystem
1206
+ The Norwegian Sea is located West and Northwest of Norway, bordered by the North Sea and the
1207
+ Atlantic Ocean to the south, the Greenland Sea to the west and the Arctic Ocean and Barents Sea to the
1208
+ north and east. It is a deep-sea area with three species of mainly planktivorous pelagic fish making up
1209
+ the economically most important fish stocks: mackerel (Scomber scombrus), Norwegian spring-
1210
+ spawning herring (Clupea harengus) and blue whiting (Micromesistius poutassou). Ocean currents are
1211
+ dominated by relatively warm and saline Atlantic water masses flowing in from the south and colder
1212
+ and fresher Arctic water masses flowing in from the northwest [40]. There is considerable negative
1213
+ density dependence acting on biomass within the three pelagic fish stocks, presumably through
1214
+ intraspecific competition over food [41]. While there are also indications of competition among the
1215
+ stocks, most strongly between mackerel and herring [41], other work has suggested that interspecific
1216
+ competition is less significant [42]. The combined biomass of the three species has increased over the
1217
+ last decades while zooplankton biomass has declined, and it has been hypothesized that the pelagic fish
1218
+ biomass may have exceeded the carrying capacity of the system [21]. The climate has historically varied
1219
+ between cold and warm phases, with plankton and fish productivity tending to increase in the warmer
1220
+ phases [43]. Here, we analyse time series on spawning stock biomass, recruitment and growth (age and
1221
+ weight at age 6) for the three pelagic fish stocks, zooplankton biomass, and three key variables for the
1222
+ physical environment: heat content, freshwater content and the North Atlantic Oscillation index. The
1223
+ observations have been recorded annually, although the starting/ending years of observation vary
1224
+ among the time series.
1225
+ For the current work, we used time series with different start years and 2019 as the last year [37]. As
1226
+ one of the main aims of IEAs in the Norwegian Sea has been to provide background information for
1227
+ advisory work for operational fisheries management [44, 45], change over a short period of the most
1228
+ recent years is typically of interest. The conditions for making the prediction were therefore set to three-
1229
+ years-ahead predictions for 2017-2019 using the data observed up to 2016. The calculated maximum
1230
+ likelihood, and optimum Q for each data are summarized in Table 1. The
1231
+ 2
1232
+ w
1233
+ σ was calculated using the
1234
+ observations until 2016.
1235
+
1236
+ Using the parameters of the model, the Kalman filter algorithm was run to calculate three-years-ahead
1237
+ predictions. Fig 3 presents the outputs of this. Looking at variables for the physical environment, FOs
1238
+ for individual years were observed for relative freshwater content (RFW), where the observation for
1239
+ 2018 fall outside the 80% FB and for 2019 outside the 95% FB. In addition, observations for all of the
1240
+ last three years fall well above the predicted trend, and the joint probability for this pattern is low (Table
1241
+ 2), indicating an unexpected tendency in the data when compared with the expected trend. While
1242
+ freshening of the Norwegian Sea had been going on for nearly a decade before 2019 [46], these
1243
+ unexpected increases in freshwater content point to a recent intensification of this that might require the
1244
+ attention in IEAs of the Norwegian Sea.
1245
+ For zooplankton biomass (ZooB), two of the most recent years fall above the 80% FB and above the
1246
+ 70% FB, with a low overall probability of the pattern (Table 2), indicating, again, an unexpected upward
1247
+ tendency in the data. This suggests that an IEA should pay attention to a possible recovery of the
1248
+ zooplankton biomass, which declined sharply in the early 2000s and remained at low levels in the
1249
+ following years [18].
1250
+ Looking at variables for pelagic fish stocks, little evidence for unexpected changes is seen for herring
1251
+ and mackerel. For the four variables related to mackerel, no years fall outside any of the FBs and
1252
+ observations generally lie relatively close to or on both sides of the predicted trends (Fig 3). A similar
1253
+ pattern is seen for herring, except one estimate of recruitment falling above the 70% FB (Fig 3). As
1254
+ pelagic fish recruitment is highly variable, a single observation falling outside the expected trend may
1255
+ not be reason for flagging this variable for prioritization in an IEA.
1256
+ A different picture emerges for blue whiting. For spawning stock biomass (BWB), two of the three most
1257
+ recent years fall above the 70% FB and the third year also well above the predicted trend (Fig 3). The
1258
+ joint probability of this pattern is low (Table 2), suggesting that there is a tendency for an increase in
1259
+ biomass beyond the expected. At the same time, there are indications of unexpected declines in blue
1260
+ whiting individual growth, shown for weight at age 6 (BWW), where all observations fall below the
1261
+ 70% FB (Fig 3) and the joint probability for the pattern is low (Table 2). These changes may be linked,
1262
+ as increases in biomass tend to be associated with decreases in growth, possibly though intraspecific
1263
+ competition over food [41]. In addition, for blue withing recruitment (BWR), two observations fall
1264
+
1265
+ below the 70% FB and one below the 80% FB (Fig 3) with a low joint probability for the overall pattern
1266
+ (Table 2), indicating that the decline in recruitment for the most recent years represent an unexpected
1267
+ tendency. Although pelagic fish recruitment remains hard to forecast (e.g. [47]), it is interesting to note
1268
+ that considerable progress has been made in predicting variation in the geographical location of blue
1269
+ whiting spawning habitat, which may be linked to recruitment success [48-50], thus offering a possible
1270
+ avenue for more detailed assessments and studies following up the changes in blue whiting recruitment.
1271
+
1272
+ Discussion
1273
+ We have introduced a time series analysis procedure for making predictions for a specific time period
1274
+ using a structural time series model including a trend model. Based on this, we have outlined a
1275
+ framework for investigating whether the most recent observations deviate from the predicted trend for
1276
+ this time period and thus represent possible flagged observations (FOs). This includes assessing both
1277
+ whether single years represent FOs or whether all of the observations from the recent years together
1278
+ represent an unexpected tendency that is classified as a FO. The trend was estimated using a stochastic
1279
+ trend model and observed time series data, and the specific-years-ahead predictions were systematically
1280
+ calculated according to the iterative procedure of the Kalman filter algorithm. The statistical analysis is
1281
+ followed by a qualitative evaluation of each FO, where it may be decided to follow some of them up by
1282
+ more detailed analyses within an integrated ecosystem assessment (IEA). We note that applications may
1283
+ also extend beyond IEAs to other areas of science and advisory processes where an overview of recent
1284
+ change is required across multiple time series.
1285
+ The time series available from marine ecosystems that are relevant for analyses described here are
1286
+ typically short (i.e., < 50 time points) [19, 51]. This puts constraints on the types of time series analyses
1287
+ that can be performed. For example, null hypothesis testing using a frequentist statistical approach can
1288
+ produce misleading results, including false positive and negative results [52]. The procedure described
1289
+ here does not include null hypothesis statistical testing, and the type of structural time series model used
1290
+ by us is not based on a frequentist framework but corresponds to a Bayesian approach [53], which may
1291
+ properly assess trends in short time series that cannot be analysed using a frequentist approach [52]. An
1292
+
1293
+ alternative method to the one used here could have been the Box Jenkins model, which transforms a
1294
+ non-stationary mean time series to a stationary process [54]. However, effective fitting using this
1295
+ method, again, requires longer time series than what is normally available in marine ecosystems [19,
1296
+ 51]. Thus, for short time series, the Bayesian framework used here appears to be more robust than
1297
+ alternative approaches.
1298
+ To study and assess recent change, IEA groups often rely on examinations of anomaly plots. In such
1299
+ plots, recent change appears as deviations from a long-term mean, often estimated for the whole length
1300
+ of the time series (see e.g. Bulgin, Merchant (55) for an application to global sea surface temperatures,
1301
+ SST). By focusing on deviations from the expected trend for the most recent years (where the expected
1302
+ trend is estimated by using information from the whole time series), FO analysis can provide a different
1303
+ perspective of recent change. For example, using a seven-years prediction, the FO analysis indicates
1304
+ that there is a tendency in North Atlantic Sea SST towards a more negative trend than what should be
1305
+ expected for the last 7 years of the time series. We argue that the same interpretation is less evident
1306
+ from an anomaly plot of the same time series (see Supplementary Fig 1). Thus, while positive and
1307
+ negative values indicate how observations deviate from a constant mean value in an anomaly plot, the
1308
+ trend changes through time, making it harder to assess how the most recent observations deviate from
1309
+ the trend that should be expected for these recent years. Recognizing that anomaly plots are important
1310
+ for a large range of purposes within IEAs, we emphasize that FO analysis can provide useful additional
1311
+ information for the practical work in IEA groups, in particular in the light of the challenge they are
1312
+ often faced with of understanding and assessing the most recent development of an ecosystem [14].
1313
+ Since the cumulative output of FO analysis also aim at giving a sweeping overview of the recent
1314
+ dynamics of all the measured elements in an ecosystem by highlighting the variables that exhibit
1315
+ unexpected change while at the same time showing trends and data for those that do not, the approach
1316
+ should be useful for facilitating the necessary dialogue between scientists and stakeholders about recent
1317
+ ecosystem change within the process of an IEA. Such overviews can also contribute to the scientific
1318
+ output used to educate and inform the public and the political system during parts of policymaking
1319
+ processes related to for example ecosystem-based management [56].
1320
+
1321
+
1322
+ Acknowledgements
1323
+ We would like to thank Benjamin Planque, who motivated us to consider this approach to analysing the
1324
+ time series data compiled by the ICES integrated ecosystem assessment working groups and Mette
1325
+ Mauritzen and Daniel Howell for comments on an earlier draft of the paper. This study was carried out
1326
+ as part of the project “Sustainable multi-species harvest from the Norwegian Sea and adjacent
1327
+ ecosystems”, funded by The Research Council of Norway (pr. nr. 299554).
1328
+
1329
+ References
1330
+ 1.
1331
+ Bindoff NL, Cheung WW, Kairo JG, Arístegui J, Guinder VA, Hallberg R, et al. Changing
1332
+ ocean, marine ecosystems, and dependent communities. In: Pörtner H-O, Roberts DC, Masson-
1333
+ Delmotte V, Zhai P, Tignor M, Poloczanska E, et al., editors. IPCC special report on the ocean and
1334
+ cryosphere in a changing climate2019. p. 477-587.
1335
+ 2.
1336
+ Hoegh-Guldberg O, Cai R, Poloczanska ES, Brewer PG, Sundby S, Hilmi K, et al. The ocean.
1337
+ In: Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, et al., editors. Climate
1338
+ Change 2014: Impacts, Adaptation, and Vulnerability Part B: Regional Aspects Contribution of
1339
+ Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
1340
+ Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. p. 1655-
1341
+ 731.
1342
+ 3.
1343
+ Meredith M, Sommerkorn M, Cassota S, Derksen C, Ekaykin A, Hollowed A, et al. Polar
1344
+ regions. In: Pörtner H-O, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, et al.,
1345
+ editors. IPCC special report on the ocean and cryosphere in a changing climate2019.
1346
+ 4.
1347
+ O’Hara CC, Frazier M, Halpern BS. At-risk marine biodiversity faces extensive, expanding,
1348
+ and intensifying human impacts. Science. 2021;372(6537):84-7. doi: 10.1126/science.abe6731.
1349
+ 5.
1350
+ Pörtner H-O, Karl DM, Boyd P, Cheung W, Lluch-Cota S, Nojiri Y, et al. Ocean systems. In:
1351
+ Barros VR, Field CB, Dokken DJ, Mastrandrea MD, Mach KJ, Bilir TE, et al., editors. Climate
1352
+ Change 2014: Impacts, Adaptation, and Vulnerability Part B: Regional Aspects Contribution of
1353
+ Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
1354
+ Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press; 2014. p. 411-
1355
+ 84.
1356
+ 6.
1357
+ Koul V, Sguotti C, Årthun M, Brune S, Düsterhus A, Bogstad B, et al. Skilful prediction of
1358
+ cod stocks in the North and Barents Sea a decade in advance. Communications Earth & Environment.
1359
+ 2021;2(1):140. doi: 10.1038/s43247-021-00207-6.
1360
+ 7.
1361
+ McLeod KL, Lubchenco J, Palumbi SR, Rosenberg AA. Scientific Consensus Statement on
1362
+ Marine Ecosystem-Based Management. Signed by 217 academic scientists and policy experts with
1363
+ relevant expertise and published by the Communication Partnership for Science and the Sea at
1364
+ http://compassonline.org/?q=EBM. 2005.
1365
+ 8.
1366
+ O’Boyle R, Jamieson G. Observations on the implementation of ecosystem-based
1367
+ management: Experiences on Canada's east and west coasts. Fisheries Research. 2006;79(1):1-12. doi:
1368
+ https://doi.org/10.1016/j.fishres.2005.11.027.
1369
+ 9.
1370
+ Tallis H, Levin PS, Ruckelshaus M, Lester SE, McLeod KL, Fluharty DL, et al. The many
1371
+ faces of ecosystem-based management: Making the process work today in real places. Marine Policy.
1372
+ 2010;34(2):340-8. doi: https://doi.org/10.1016/j.marpol.2009.08.003.
1373
+ 10.
1374
+ Winther J-G, Dai M, Rist T, Hoel AH, Li Y, Trice A, et al. Integrated ocean management for
1375
+ a sustainable ocean economy. Nature Ecology & Evolution. 2020;4(11):1451-8. doi: 10.1038/s41559-
1376
+ 020-1259-6.
1377
+
1378
+ 11.
1379
+ Fulton EA, Punt AE, Dichmont CM, Harvey CJ, Gorton R. Ecosystems say good
1380
+ management pays off. Fish and Fisheries. 2019;20(1):66-96. doi: https://doi.org/10.1111/faf.12324.
1381
+ 12.
1382
+ Holsman KK, Haynie AC, Hollowed AB, Reum JCP, Aydin K, Hermann AJ, et al.
1383
+ Ecosystem-based fisheries management forestalls climate-driven collapse. Nat Commun.
1384
+ 2020;11(1):4579. doi: 10.1038/s41467-020-18300-3.
1385
+ 13.
1386
+ Dickey-Collas M, Link JS, Snelgrove P, Roberts JM, Anderson MR, Kenchington E, et al.
1387
+ Exploring ecosystem-based management in the North Atlantic. Journal of Fish Biology.
1388
+ 2022;101(2):342-50. doi: https://doi.org/10.1111/jfb.15168.
1389
+ 14.
1390
+ Levin PS, Fogarty MJ, Murawski SA, Fluharty D. Integrated Ecosystem Assessments:
1391
+ Developing the Scientific Basis for Ecosystem-Based Management of the Ocean. Plos Biology.
1392
+ 2009;7(1):23-8. doi: e1000014
1393
+ 10.1371/journal.pbio.1000014. PubMed PMID: WOS:000262811000004.
1394
+ 15.
1395
+ Walther YM, Möllmann C. Bringing integrated ecosystem assessments to real life: a scientific
1396
+ framework for ICES. Ices Journal of Marine Science. 2014;71(5):1183-6. doi: 10.1093/icesjms/fst161.
1397
+ PubMed PMID: WOS:000338630800019.
1398
+ 16.
1399
+ ICES. Report of the Workshop on integrated trend analyses in support to integrated ecosystem
1400
+ assessment (WKINTRA). ICES CM 2018/IEASG: 15: 23pp. 2018. doi:
1401
+ https://doi.org/10.17895/ices.pub.8278.
1402
+ 17.
1403
+ Dickey-Collas M. Why the complex nature of integrated ecosystem assessments requires a
1404
+ flexible and adaptive approach. ICES Journal of Marine Science. 2014;71(5):1174-82. doi:
1405
+ 10.1093/icesjms/fsu027.
1406
+ 18.
1407
+ ICES. Working Group on the Integrated Assessments of the Norwegian Sea (WGINOR;
1408
+ outputs from 2020 meeting). ICES Scientific Reports. 3:35. 114 pp. . 2021.
1409
+ 19.
1410
+ ICES. The second workshop on integrated trend analyses in support to integrated ecosystem
1411
+ as-sessment (WKINTRA2). ICES Scientific Reports. 1:86. 2019.
1412
+ 20.
1413
+ Holsman K, Samhouri J, Cook G, Hazen E, Olsen E, Dillard M, et al. An ecosystem-based
1414
+ approach to marine risk assessment. Ecosystem Health and Sustainability. 2017;3(1):e01256-n/a. doi:
1415
+ 10.1002/ehs2.1256.
1416
+ 21.
1417
+ ICES. Report of the Working Group on Integrated Ecosystem Assessments for the Norwegian
1418
+ Sea (WGINOR). ICES WGINOR REPORT 2018 26-30 November 2018. Reykjavik, Iceland. ICES
1419
+ CM 2018/IEASG:10. 123 pp. 2019.
1420
+ 22.
1421
+ Harvey AC. Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge:
1422
+ Cambridge University Press; 1990.
1423
+ 23.
1424
+ Hamilton JD. Time Series Analysis. New Jersey, United States: Princeton University Press;
1425
+ 1994.
1426
+ 24.
1427
+ Mitchell PL, Sheehy JE. Comparison of predictions and observations to assess model
1428
+ performance: a method of empirical validation. In: Kropff MJ, Teng P, Aggarwal PK, Bouma J,
1429
+ Bouman BAM, Jones JW, et al., editors. Applications of Systems Approaches at the Filed Level:
1430
+ Kluwer Academic Publishers; 1997. p. 437-51.
1431
+ 25.
1432
+ Clements CF, McCarthy MA, Blanchard JL. Early warning signals of recovery in complex
1433
+ systems. Nat Commun. 2019;10(1):1681. doi: 10.1038/s41467-019-09684-y.
1434
+ 26.
1435
+ Clements CF, Ozgul A. Indicators of transitions in biological systems. Ecol Lett.
1436
+ 2018;21(6):905-19. doi: 10.1111/ele.12948.
1437
+ 27.
1438
+ Litzow MA, Hunsicker ME. Early warning signals, nonlinearity, and signs of hysteresis in
1439
+ real ecosystems. Ecosphere. 2016;7(12). doi: 10.1002/ecs2.1614. PubMed PMID:
1440
+ WOS:000390136700014.
1441
+ 28.
1442
+ Suweis S, D'Odorico P. Early Warning Signs in Social-Ecological Networks. PLoS One.
1443
+ 2014;9(7). doi: 10.1371/journal.pone.0101851. PubMed PMID: WOS:000339378400043.
1444
+ 29.
1445
+ Kitagawa G, Gersch W. Smoothness Priors Analysis of Time Series. Lecture Notes in
1446
+ Statistics 116. New York: Springer-Verlag 1996.
1447
+ 30.
1448
+ Kato H, Naniwa S, Ishiguro M. A bayesian multivariate nonstationary time series model for
1449
+ estimating mutual relationships among variables. Journal of Econometrics. 1996;75(1):147-61. doi:
1450
+ https://doi.org/10.1016/0304-4076(95)01774-7.
1451
+ 31.
1452
+ Whittaker E. On a new method of graduation. Proceedings of the Edinburgh Mathematical
1453
+ Society. 1923;41:63-75. doi: 10.1017/S0013091500077853.
1454
+
1455
+ 32.
1456
+ Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic
1457
+ Control. 1974;19(6):716-23. doi: 10.1109/TAC.1974.1100705.
1458
+ 33.
1459
+ Kitagawa G, Gersch W. A smoothness priors state-space modelling of time-series with trend
1460
+ and seasonality. Journal of the American Statistical Association. 1984;79(386):378-89. doi:
1461
+ 10.2307/2288279. PubMed PMID: WOS:A1984SW65000024.
1462
+ 34.
1463
+ Hyndman RJ, Athanasopoulos G. Forecasting. Principles and practice. 2nd Edition (May 6,
1464
+ 2018). Melbourne: OTexts; 2018.
1465
+ 35.
1466
+ MATLAB. Natick, Massachusetts: The MathWorks Inc. ver. R2018b.
1467
+ 36.
1468
+ Trenberth KE, Shea DJ. Atlantic hurricanes and natural variability in 2005. Geophys Res Lett.
1469
+ 2006;33(12). doi: https://doi.org/10.1029/2006GL026894.
1470
+ 37.
1471
+ ICES. Working Group on the Integrated Assessments of the Norwegian Sea (WGINOR;
1472
+ outputs from 2019 meeting). ICES Scientific Reports. 2:29. 46 pp. . 2020.
1473
+ 38.
1474
+ Dijkstra HA, te Raa L, Schmeits M, Gerrits J. On the physics of the Atlantic Multidecadal
1475
+ Oscillation. Ocean Dynamics. 2006;56(1):36-50. doi: 10.1007/s10236-005-0043-0.
1476
+ 39.
1477
+ Schneider DP, Deser C, Fasullo J, Trenberth KE. Climate Data Guide Spurs Discovery and
1478
+ Understanding. Eos, Transactions American Geophysical Union. 2013;94(13):121-2. doi:
1479
+ https://doi.org/10.1002/2013EO130001.
1480
+ 40.
1481
+ Skjoldal HRe. The Norwegian Sea Ecosystem. Trondheim: Tapir Academic Press; 2004.
1482
+ 41.
1483
+ Huse G, Holst JC, Utne K, Nottestad L, Melle W, Slotte A, et al. Effects of interactions
1484
+ between fish populations on ecosystem dynamics in the Norwegian Sea - results of the INFERNO
1485
+ project Preface. Marine Biology Research. 2012;8(5-6):415-9. doi: 10.1080/17451000.2011.653372.
1486
+ PubMed PMID: WOS:000303560300001.
1487
+ 42.
1488
+ Planque B, A. F, B. H, Mousing E, C. H, C. B, et al. Quantification of trophic interactions in
1489
+ the Norwegian Sea pelagic food-web over multiple decades. ICES J Mar Sci. 2022. doi:
1490
+ https://doi.org/10.1093/icesjms/fsac111.
1491
+ 43.
1492
+ Drinkwater KF, Miles M, Medhaug I, Otterå OH, Kristiansen T, Sundby S, et al. The Atlantic
1493
+ Multidecadal Oscillation: Its manifestations and impacts with special emphasis on the Atlantic region
1494
+ north of 60°N. Journal of Marine Systems. 2014;133:117-30. doi:
1495
+ https://doi.org/10.1016/j.jmarsys.2013.11.001.
1496
+ 44.
1497
+ ICES. Working Group on the Integrated Assessments of the Norwegian Sea (WGINOR;
1498
+ outputs from 2021 meeting). ICES Scientific Reports. 4:35. 48pp.
1499
+ https://doi.org/10.17895/ices.pub.19643271. 2022.
1500
+ 45.
1501
+ ICES. Working Group on Widely Distributed Stocks (WGWIDE). ICES Scientific Reports.
1502
+ 3:95. 874 pp. http://doi.org/10.17895/ices.pub.8298. 2021.
1503
+ 46.
1504
+ Mork KA, Skagseth Ø, Søiland H. Recent Warming and Freshening of the Norwegian Sea
1505
+ Observed by Argo Data. Journal of Climate. 2019;32(12):3695-705. doi: 10.1175/jcli-d-18-0591.1.
1506
+ 47.
1507
+ Garcia T, Planque B, Arneberg P, Bogstad B, Skagseth Ø, Tiedemann M. An appraisal of the
1508
+ drivers of Norwegian spring-spawning herring (Clupea harengus) recruitment. Fisheries
1509
+ Oceanography. 2020;30(2):159-73. doi: 10.1111/fog.12510.
1510
+ 48.
1511
+ Miesner AK, Payne MR. Oceanographic variability shapes the spawning distribution of blue
1512
+ whiting (Micromesistius poutassou). Fisheries Oceanography. 2018;27(6):623-38. doi:
1513
+ doi:10.1111/fog.12382.
1514
+ 49.
1515
+ Hatun H, Payne MR, Jacobsen JA. The North Atlantic subpolar gyre regulates the spawning
1516
+ distribution of blue whiting (Micromesistius poutassou). Canadian Journal of Fisheries and Aquatic
1517
+ Sciences. 2009;66(5):759-70. doi: 10.1139/f09-037. PubMed PMID: WOS:000267811500005.
1518
+ 50.
1519
+ ICES. Interim Report of the Working Group on Seasonal to Decadal Prediction of Marine
1520
+ Ecosystems (WGS2D), 27–31 August 2018, ICES Headquarters, Copenhagen, Denmark. ICES CM
1521
+ 2018/EPDSG:22. 42 pp. 2018.
1522
+ 51.
1523
+ Samhouri JF, Andrews KS, Fay G, Harvey CJ, Hazen EL, Hennessey SM, et al. Defining
1524
+ ecosystem thresholds for human activities and environmental pressures in the California Current.
1525
+ Ecosphere. 2017;8(6):e01860. doi: 10.1002/ecs2.1860.
1526
+ 52.
1527
+ Hardison S, Perretti CT, DePiper GS, Beet A. A simulation study of trend detection methods
1528
+ for integrated ecosystem assessment. ICES Journal of Marine Science. 2019. doi:
1529
+ 10.1093/icesjms/fsz097.
1530
+ 53.
1531
+ West M, Harrison J. Bayesian Forecasting and Dynamic Models. New York: Springer; 1997.
1532
+ 54.
1533
+ Box G, Jenkins G. Time Series Analysis: Forecasting and Control. San Francisco: Holden-
1534
+ Day; 1970.
1535
+
1536
+ 55.
1537
+ Bulgin CE, Merchant CJ, Ferreira D. Tendencies, variability and persistence of sea surface
1538
+ temperature anomalies. Scientific Reports. 2020;10(1):7986. doi: 10.1038/s41598-020-64785-9.
1539
+ 56.
1540
+ Cormier R, Kelble CR, Anderson MR, Allen JI, Grehan A, Gregersen O. Moving from
1541
+ ecosystem-based policy objectives to operational implementation of ecosystem-based management
1542
+ measures. Ices Journal of Marine Science. 2017;74(1):406-13. doi: 10.1093/icesjms/fsw181. PubMed
1543
+ PMID: WOS:000397136400039.
1544
+
1545
+
1546
+
1547
+
1548
+
1549
+
1550
+
1551
+
1552
+
1553
+
1554
+
1555
+
1556
+
1557
+
1558
+
1559
+
1560
+
1561
+
1562
+
1563
+
1564
+ Table 1. Calculated log-likelihood (LL) and the optimum Q by applying stochastic trend model for
1565
+ 2
1566
+ d =
1567
+ for the AMO and Norwegian Sea ecosystem datasets.
1568
+
1569
+ Dataset
1570
+ Variable
1571
+ Q
1572
+ Maximum log-
1573
+ likelihood
1574
+ AMO
1575
+ AMOS
1576
+ 0.50
1577
+ -51.2
1578
+ Norwegian Sea
1579
+ ecosystem
1580
+ (WGINOR)
1581
+ RHC
1582
+ 0.05
1583
+ -82.8
1584
+ RFW
1585
+ 0.08
1586
+ -82.6
1587
+ NAO
1588
+ 0.05
1589
+ -161.3
1590
+ ZooB
1591
+ 0.09
1592
+ -29.1
1593
+ MacB
1594
+ 0.12
1595
+ -43.3
1596
+ MacR
1597
+ 0.06
1598
+ -42.1
1599
+ MacW
1600
+ 0.07
1601
+ -44.1
1602
+ MacL
1603
+ 0.07
1604
+ -71.8
1605
+ HerB
1606
+ 0.06
1607
+ -125.7
1608
+ HerR
1609
+ 0.05
1610
+ -42.6
1611
+ HerW
1612
+ 0.11
1613
+ -87.1
1614
+ HerL
1615
+ 0.08
1616
+ -93.7
1617
+ BWB
1618
+ 0.13
1619
+ -42.4
1620
+ BWR
1621
+ 0.16
1622
+ -48.7
1623
+ BWW
1624
+ 0.09
1625
+ -43.8
1626
+ BWL
1627
+ 0.08
1628
+ -57.3
1629
+
1630
+
1631
+
1632
+
1633
+ Table 2. Averaged p-values and joint probability for the prediction and observation for
1634
+ AMOS, RFW, ZooB, BWB, BWR, and BWW.
1635
+
1636
+ Year
1637
+ AMOS
1638
+ RFW
1639
+ ZooB
1640
+ BWB
1641
+ BWR
1642
+ BWW
1643
+ 2014
1644
+ 0.19
1645
+
1646
+ 2015
1647
+ 0.14
1648
+ 2016
1649
+ 0.29
1650
+ 2017
1651
+ 0.42
1652
+ 0.22
1653
+ 0.12
1654
+ 0.13
1655
+ 0.1003
1656
+ 0.12
1657
+ 2018
1658
+ 0.22
1659
+ 0.061
1660
+ 0.28
1661
+ 0.16
1662
+ 0.1237
1663
+ 0.11
1664
+ 2019
1665
+ 0.28
1666
+ 0.023
1667
+ 0.13
1668
+ 0.29
1669
+ 0.1415
1670
+ 0.13
1671
+ 2020
1672
+ 0.42
1673
+
1674
+ Joint
1675
+ probability
1676
+ 8.24e-05
1677
+ 3.06e-04
1678
+ 0.0045
1679
+ 0.0063
1680
+ 0.0018
1681
+ 0.0016
1682
+
1683
+
1684
+
1685
+
1686
+
1687
+
1688
+ Fig1. Outline of proposed Flagged observation (FO) analysis
1689
+
1690
+ Time series data
1691
+ 2.5
1692
+ Estimationof thetrend
1693
+ 1.5
1694
+ Ecosystem-based
1695
+ in the period 1950 - 2016
1696
+ fisheries management
1697
+ and
1698
+ 0.
1699
+ prediction of the data
1700
+ contribution
1701
+ in the period 2017-2019
1702
+ 1960
1703
+ 1970
1704
+ 1980
1705
+ 1990
1706
+ 2000
1707
+ 2010
1708
+ 12020
1709
+ Yea
1710
+ Dataintheperiod1950-2016
1711
+ RealdataoutsideofFBs
1712
+ deviatedfromrecent3-year
1713
+ Estimated trend =(n)
1714
+ trend - Flagged observation
1715
+ 17
1716
+ RealdatawithinFBsfollowed
1717
+ recent 3-year trend
1718
+ Forecast bands (FBs)
1719
+ y(n+jln)+2×/d(n+j|n)
1720
+ 1619
1721
+ Prediction of the data
1722
+ y(n+ jln), j=1, 2, 3
1723
+
1724
+
1725
+
1726
+
1727
+ Fig 2. The estimated three-years (upper) and seven-years (lower) prediction values of sea
1728
+ surface temperature and the most recent observations for the dataset on the Atlantic
1729
+ Multi-decadal Oscillation. The solid grey lines indicate the observations used for making
1730
+ the forecast values and the black points indicate the observations that were plotted for
1731
+ comparison with the prediction values (dotted blue line). The dotted grey line presents
1732
+ the prediction value
1733
+ and the solid blue lines present the smoothed trend
1734
+ estimates obtained by a fixed-interval smoother algorithm. The band coloured by light-
1735
+ blue presents the 95% FB, 80% and approximately 70% FBs, which upper and lower limits
1736
+ were calculated by mean
1737
+ ± 1.96 (1.28, 1) × standard deviation
1738
+ ,
1739
+ where
1740
+ or
1741
+ . The observations in the years applying the prediction are
1742
+ shown with black points.
1743
+
1744
+
1745
+
1746
+ 0.6
1747
+ 0.4
1748
+ 0.2
1749
+ 0.2
1750
+ -0.4
1751
+ -0.6
1752
+ -0.8
1753
+ -1
1754
+ 1980
1755
+ 17
1756
+ 20
1757
+ lyearelsius]
1758
+ .0.5
1759
+ -0.5
1760
+ 1980
1761
+ 06
1762
+ 0913
1763
+ 1619
1764
+ [year]Climate:
1765
+
1766
+ Plankton:
1767
+
1768
+
1769
+ Fig 3 Continued.
1770
+
1771
+
1772
+
1773
+
1774
+
1775
+
1776
+
1777
+
1778
+ RHC
1779
+ 225
1780
+ -wr
1781
+ [108
1782
+ 20
1783
+ 15
1784
+ 10
1785
+ 5
1786
+ 0
1787
+ -5
1788
+ -10
1789
+ -15
1790
+ 1951
1791
+ 1619
1792
+ [year]RFW
1793
+ E
1794
+ 1.5
1795
+ 1
1796
+ 0.5
1797
+ 0.5
1798
+ -1.5
1799
+ 2
1800
+ 1951
1801
+ 1619
1802
+ [year]NAO
1803
+ [djfm]
1804
+ 5
1805
+ -2
1806
+ 3
1807
+ 1907
1808
+ 1619
1809
+ [year]ZooB
1810
+ 235
1811
+ [gm-2
1812
+ 30
1813
+ 25
1814
+ 20
1815
+ 15
1816
+ 10
1817
+ 1995
1818
+ 16
1819
+ 19
1820
+ [year]Pelagic fish:
1821
+ Fig 3 Continued.
1822
+
1823
+
1824
+
1825
+
1826
+
1827
+
1828
+
1829
+
1830
+
1831
+
1832
+
1833
+
1834
+
1835
+ MacB
1836
+ 6
1837
+ 5
1838
+ 1
1839
+ 3
1840
+ 2
1841
+ 1
1842
+ 0
1843
+ 1980
1844
+ 1619
1845
+ [year]X106
1846
+ MacR
1847
+ 4.597
1848
+ o!l
1849
+ 4.596
1850
+ 4.595
1851
+ 4.594
1852
+ 4.593
1853
+ 4.592
1854
+ 4.591
1855
+ 4.59
1856
+ 4.589
1857
+ 4.588
1858
+ 1980
1859
+ 1619
1860
+ [vear]MacW
1861
+ 0.1
1862
+ 0.05
1863
+ 0
1864
+ -0.05
1865
+ 0.1
1866
+ -0.15
1867
+ 1980
1868
+ 16
1869
+ 19
1870
+ [year]MacL
1871
+ 48
1872
+ 46
1873
+ 44
1874
+ 42
1875
+ 40
1876
+ 38
1877
+ 1963
1878
+ 16 19
1879
+ [year]HerB
1880
+ tonnes
1881
+ 45
1882
+ 40
1883
+ [million t
1884
+ 35
1885
+ 30
1886
+ 25
1887
+ 20
1888
+ 15
1889
+ 10
1890
+ 5
1891
+ 1907
1892
+ 1619
1893
+ [year]X108
1894
+ HerR
1895
+ 2.7868
1896
+ O
1897
+ 2.7866
1898
+ 2.7864
1899
+ 2.7862
1900
+ 2.786
1901
+ 2.7858
1902
+ 2.7856
1903
+ 2.7854
1904
+ 1988
1905
+ 16
1906
+ 19
1907
+ [year]Herw
1908
+ 0.2
1909
+ 0.15
1910
+ 0.1
1911
+ 0.05
1912
+ 0
1913
+ -0.05
1914
+ 0.1
1915
+ -0.15
1916
+ 0.2
1917
+ 1950
1918
+ 1619
1919
+ [year]HerL
1920
+ 44
1921
+ 42
1922
+ 40
1923
+ 38
1924
+ 36
1925
+ 34
1926
+ 1944
1927
+ 1619
1928
+ [year]Pelagic fish:
1929
+ Fig 3. The estimated three-years prediction values and the three most recent observations for
1930
+ data on variables related to climate, plankton and pelagic fish in the Norwegian Sea
1931
+ ecosystem. The solid grey lines indicate the observations used for making the forecast values
1932
+ and the black points indicate the observations that were plotted for comparison with the
1933
+ prediction values (dotted blue line). The dotted grey line presents the prediction value
1934
+ and the solid blue lines present the smoothed trend estimates obtained by a
1935
+ fixed-interval smoother algorithm. The band coloured by light-blue presents the 95% FB, 80%
1936
+ and approximately 70% FBs, which upper and lower limits were calculated by mean
1937
+ ± 1.96 (1.28, 1) × standard deviation
1938
+ , where
1939
+ . The
1940
+ observations in the years applying the prediction are shown with black points.
1941
+
1942
+
1943
+
1944
+
1945
+
1946
+
1947
+
1948
+
1949
+
1950
+
1951
+
1952
+
1953
+
1954
+ BWB
1955
+ [milliont
1956
+ 10
1957
+ 8
1958
+ 6
1959
+ 4
1960
+ 2
1961
+ 0
1962
+ 2
1963
+ 1981
1964
+ 1619
1965
+ [year]X108
1966
+ BWR
1967
+ 3.1656
1968
+ 3.1652
1969
+ 3.165
1970
+ 3.1648
1971
+ 3.1646
1972
+ 3.1644
1973
+ 3.1642
1974
+ 1981
1975
+ 1619
1976
+ lyearBWW
1977
+ 0.06
1978
+ 0.04
1979
+ 0.02
1980
+ 0
1981
+ 0.02
1982
+ -0.04
1983
+ -0.06
1984
+ -0.08
1985
+ 1981
1986
+ 16
1987
+ 19
1988
+ [year]BWL
1989
+ 48
1990
+ 46
1991
+ 44
1992
+ 42
1993
+ 40
1994
+ 38
1995
+ 1972
1996
+ 1619
1997
+ [year]Supplementary Fig 1
1998
+
1999
+
2000
+
2001
+
2002
+
2003
+
2004
+
2005
+
2006
+
2007
+ Supplementary Fig 1. Bar plots for anomalies of AMOS’s yearly data from 1980 to 2020. The y-
2008
+ axis indicates the value subtracting mean value of yearly data from 1980 to 2020. The x-axis
2009
+ indicates year. The negative/positive values correspond lower/higher temperature to the mean
2010
+ value.
2011
+
2012
+ 0.4
2013
+ 0.3
2014
+ 0.2
2015
+ 0.1
2016
+ 0
2017
+ -0.1
2018
+ 0.2
2019
+ -0.3
2020
+ -0.4
2021
+ 1980
2022
+ 1985
2023
+ 1990
2024
+ 1995
2025
+ 20002
2026
+ 2005
2027
+ 2010
2028
+ 2015
2029
+ 2020Supplementary Table. Abbreviations used in figures and tables
2030
+ Type
2031
+ Abbreviation
2032
+ in figures
2033
+ and tables
2034
+ Explanation of relevant data
2035
+
2036
+ Climate
2037
+ RHC
2038
+ Relative heat content in 108 Jm-2
2039
+ RFW
2040
+ Relative freshwater content in m
2041
+ NAO
2042
+ North Atlantic Oscillation expressed as djfm
2043
+ Zooplankton
2044
+ ZooB
2045
+ Total zooplankton biomass the Norwegian Sea in in May, g m-2
2046
+
2047
+
2048
+
2049
+
2050
+
2051
+
2052
+ Pelagic fish
2053
+ MacB
2054
+ Spawning stock biomass of Mackerel in million tonnes
2055
+ MacR
2056
+ Recruitment of Mackerel per year class at age 0 in millions
2057
+ MacW
2058
+ Weight of Mackerel at age 6 in the stock (in kg)
2059
+ MacL
2060
+ Length of Mackerel at age 6 in cm
2061
+ HerB
2062
+ Spawning stock biomass of Herring in million tonnes
2063
+ HerR
2064
+ Recruitment of Herring per year class at age 2 in millions
2065
+ HerW
2066
+ Weight of Herring at age 6 in the stock (in kg)
2067
+ HerL
2068
+ Length of Herring at age 6 in cm
2069
+ BWB
2070
+ Spawning stock biomass of Blue whiting in million tonnes
2071
+ BWR
2072
+ Recruitment of Blue whiting per year class at age 1 in millions
2073
+ BWW
2074
+ Weight of Blue whiting age 6 in the catch (in kg)
2075
+ BWL
2076
+ Length of Blue whiting at age 6 in cm
2077
+
2078
+
2079
+
2080
+
2081
+
8dE3T4oBgHgl3EQfRwni/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
ANFQT4oBgHgl3EQf8jdP/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:015d95bcc843dcce8b460633ddac3e462342a33ddf18b8dd39a336e1e6a7dd6a
3
+ size 98288
AtE0T4oBgHgl3EQfPgDv/content/tmp_files/2301.02181v1.pdf.txt ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ A Critical Appraisal of Data Augmentation Methods
2
+ for Imaging-Based Medical Diagnosis Applications
3
+ Tara M. Pattilachan∗¶, Ugur Demir†¶, Elif Keles†, Debesh Jha†, Derk Klatte‡, Megan Engels‡,
4
+ Sanne Hoogenboom‡, Candice Bolan‡, Michael Wallace§, Ulas Bagci†
5
+ ∗University of Central Florida, FL, USA,
6
+ †Machine and Hybrid Intelligence Lab, Northwestern University, IL, USA,
7
+ ‡ Mayo Clinic, Jacksonville, FL, USA,
8
+ § Mayo Clinic, Sheikh Shakhbout Medical City, UAE
9
+ Abstract—Current data augmentation techniques and trans-
10
+ formations are well suited for improving the size and quality
11
+ of natural image datasets but are not yet optimized for medical
12
+ imaging. We hypothesize that sub-optimal data augmentations
13
+ can easily distort or occlude medical images, leading to false
14
+ positives or negatives during patient diagnosis, prediction, or
15
+ therapy/surgery evaluation. In our experimental results, we found
16
+ that utilizing commonly used intensity-based data augmentation
17
+ distorts the MRI scans and leads to texture information loss,
18
+ thus negatively affecting the overall performance of classification.
19
+ Additionally, we observed that commonly used data augmenta-
20
+ tion methods cannot be used with a plug-and-play approach in
21
+ medical imaging, and requires manual tuning and adjustment.
22
+ Index Terms—Augmentation, diagnosis, deep learning, IPMN
23
+ I. INTRODUCTION
24
+ In this study, we investigate how commonly used data
25
+ augmentation methods affect medical imaging based diagnosis
26
+ tasks, the following methods are used: RandAugment [1],
27
+ AutoAugment [2], Fast AutoAugment [3], Trivial Augment [4]
28
+ and AugMix [5].
29
+ Fig. 1. Overall architecture for ResNeST [6] training with data augmentation.
30
+ II. METHOD
31
+ Figure 1 shows the block diagram of the proposed method.
32
+ In this study, we tested commonly used data augmentation
33
+ methods RandAugment [1], AutoAugment [2], Fast AutoAug-
34
+ ment [3], Trivial Augment [4] and AugMix [5], and their
35
+ impact on the MRI based IPMN classification problem. The
36
+ classification problem was modelled via a deep learning archi-
37
+ tecture, called ResNeST [6], where we classified the images
38
+ into normal, low grade and high grade categories.
39
+ A. Results
40
+ Table I exhibits the performance of each augmentation
41
+ method and the baseline. It can be observed that the baseline
42
+ TABLE I
43
+ MRI BASED IPMN CLASSIFICATION RESULTS WITH RESPECT TO DATA
44
+ AUGMENTATION METHODS.
45
+ .
46
+ Method
47
+ Accuracy
48
+ Baseline
49
+ 61.70% ± 9.42
50
+ RandAug
51
+ 55.30% ± 9.29
52
+ RandAug - geometric
53
+ 61.67% ± 8.37
54
+ Auto Augment
55
+ 51.03% ± 10.31
56
+ Fast Auto Augment
57
+ 55.34% ± 12.78
58
+ Trivial Augment
59
+ 51.75% ± 9.30
60
+ AugMix
61
+ 54.56% ± 8.19
62
+ achieves an accuracy of 61.70% ± 9.42. However, other
63
+ augmentation methods such as RandAug, Auto Augment, Fast
64
+ Auto Augment, Trivial Augment and AugMix are causing
65
+ significant performance drop (refer Table I). Table shows
66
+ that when the intensity based augmentation is removed per-
67
+ formance stays close to the baseline in the “RandAug -
68
+ geometric” experiments where it achieves 61.67% ± 8.37.
69
+ III. CONCLUSION
70
+ In this study, we raised critical appraisals for the role of
71
+ data augmentation for medical imaging tasks. We analyzed five
72
+ commonly used data augmentation approaches and their effect
73
+ on the performance of the MRI based IPMN classification
74
+ problem. Our study in the controlled experiments showed that
75
+ the commonly used data augmentation methods are designed
76
+ specifically for natural images and they can have adverse
77
+ effects in medical diagnosis tasks if used without modification.
78
+ Acknowledgement: This project is supported by the NIH
79
+ funding: R01-CA246704 and R01-CA240639.
80
+ REFERENCES
81
+ [1] E. D. Cubuk, B. Zoph, J. Shlens, and Q. Le, “Randaugment: Practical au-
82
+ tomated data augmentation with a reduced search space,” in Proceedings
83
+ of the Advances in NIPS, vol. 33, 2020, pp. 18 613–18 624.
84
+ [2] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaug-
85
+ ment: Learning augmentation policies from data,” in Proceedings of the
86
+ CVPR, 2019.
87
+ [3] S. Lim, I. Kim, T. Kim, C. Kim, and S. Kim, “Fast autoaugment,” in
88
+ Proceedings of the NIPS, vol. 32, 2019.
89
+ [4] S. G. M¨uller and F. Hutter, “Trivialaugment: Tuning-free yet state-of-the-
90
+ art data augmentation,” in Proceedings of the ICCV, 2021, pp. 774–782.
91
+ [5] D. Hendrycks*, N. Mu*, E. D. Cubuk, B. Zoph, J. Gilmer, and B. Lak-
92
+ shminarayanan, “Augmix: A simple method to improve robustness and
93
+ uncertainty under data shift,” in Proceedings of the ICLR, 2020.
94
+ [6] H. Zhang, C. Wu, Z. Zhang, Y. Zhu, Z. Zhang, H. Lin, Y. Sun, T. He,
95
+ J. Muller, R. Manmatha, M. Li, and A. Smola, “Resnest: Split-attention
96
+ networks,” arXiv preprint arXiv:2004.08955, 2020.
97
+ arXiv:2301.02181v1 [eess.IV] 14 Dec 2022
98
+
99
+ Input
100
+ Augmented Input
101
+ Normal
102
+ LowGrade
103
+ Data
104
+ ResNeST
105
+ Augmentation
106
+ High Grade
107
+ ..
AtE0T4oBgHgl3EQfPgDv/content/tmp_files/load_file.txt ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ filepath=/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf,len=120
2
+ page_content='A Critical Appraisal of Data Augmentation Methods for Imaging-Based Medical Diagnosis Applications Tara M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
3
+ page_content=' Pattilachan∗¶,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
4
+ page_content=' Ugur Demir†¶,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
5
+ page_content=' Elif Keles†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
6
+ page_content=' Debesh Jha†,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
7
+ page_content=' Derk Klatte‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
8
+ page_content=' Megan Engels‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
9
+ page_content=' Sanne Hoogenboom‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
10
+ page_content=' Candice Bolan‡,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
11
+ page_content=' Michael Wallace§,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
12
+ page_content=' Ulas Bagci† ∗University of Central Florida,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
13
+ page_content=' FL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
14
+ page_content=' USA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
15
+ page_content=' †Machine and Hybrid Intelligence Lab,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
16
+ page_content=' Northwestern University,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
17
+ page_content=' IL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
18
+ page_content=' USA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
19
+ page_content=' ‡ Mayo Clinic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
20
+ page_content=' Jacksonville,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
21
+ page_content=' FL,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
22
+ page_content=' USA,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
23
+ page_content=' § Mayo Clinic,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
24
+ page_content=' Sheikh Shakhbout Medical City,' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
25
+ page_content=' UAE Abstract—Current data augmentation techniques and trans- formations are well suited for improving the size and quality of natural image datasets but are not yet optimized for medical imaging.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
26
+ page_content=' We hypothesize that sub-optimal data augmentations can easily distort or occlude medical images, leading to false positives or negatives during patient diagnosis, prediction, or therapy/surgery evaluation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
27
+ page_content=' In our experimental results, we found that utilizing commonly used intensity-based data augmentation distorts the MRI scans and leads to texture information loss, thus negatively affecting the overall performance of classification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
28
+ page_content=' Additionally, we observed that commonly used data augmenta- tion methods cannot be used with a plug-and-play approach in medical imaging, and requires manual tuning and adjustment.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
29
+ page_content=' Index Terms—Augmentation, diagnosis, deep learning, IPMN I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
30
+ page_content=' INTRODUCTION In this study, we investigate how commonly used data augmentation methods affect medical imaging based diagnosis tasks, the following methods are used: RandAugment [1], AutoAugment [2], Fast AutoAugment [3], Trivial Augment [4] and AugMix [5].' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
31
+ page_content=' Fig.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
32
+ page_content=' 1.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
33
+ page_content=' Overall architecture for ResNeST [6] training with data augmentation.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
34
+ page_content=' II.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
35
+ page_content=' METHOD Figure 1 shows the block diagram of the proposed method.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
36
+ page_content=' In this study, we tested commonly used data augmentation methods RandAugment [1], AutoAugment [2], Fast AutoAug- ment [3], Trivial Augment [4] and AugMix [5], and their impact on the MRI based IPMN classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
37
+ page_content=' The classification problem was modelled via a deep learning archi- tecture, called ResNeST [6], where we classified the images into normal, low grade and high grade categories.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
38
+ page_content=' A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
39
+ page_content=' Results Table I exhibits the performance of each augmentation method and the baseline.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
40
+ page_content=' It can be observed that the baseline TABLE I MRI BASED IPMN CLASSIFICATION RESULTS WITH RESPECT TO DATA AUGMENTATION METHODS.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
41
+ page_content=' .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
42
+ page_content=' Method Accuracy Baseline 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
43
+ page_content='70% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
44
+ page_content='42 RandAug 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
45
+ page_content='30% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
46
+ page_content='29 RandAug - geometric 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
47
+ page_content='67% ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
48
+ page_content='37 Auto Augment 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
49
+ page_content='03% ± 10.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
50
+ page_content='31 Fast Auto Augment 55.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
51
+ page_content='34% ± 12.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
52
+ page_content='78 Trivial Augment 51.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
53
+ page_content='75% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
54
+ page_content='30 AugMix 54.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
55
+ page_content='56% ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
56
+ page_content='19 achieves an accuracy of 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
57
+ page_content='70% ± 9.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
58
+ page_content='42.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
59
+ page_content=' However, other augmentation methods such as RandAug, Auto Augment, Fast Auto Augment, Trivial Augment and AugMix are causing significant performance drop (refer Table I).' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
60
+ page_content=' Table shows that when the intensity based augmentation is removed per- formance stays close to the baseline in the “RandAug - geometric” experiments where it achieves 61.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
61
+ page_content='67% ± 8.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
62
+ page_content='37.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
63
+ page_content=' III.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
64
+ page_content=' CONCLUSION In this study, we raised critical appraisals for the role of data augmentation for medical imaging tasks.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
65
+ page_content=' We analyzed five commonly used data augmentation approaches and their effect on the performance of the MRI based IPMN classification problem.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
66
+ page_content=' Our study in the controlled experiments showed that the commonly used data augmentation methods are designed specifically for natural images and they can have adverse effects in medical diagnosis tasks if used without modification.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
67
+ page_content=' Acknowledgement: This project is supported by the NIH funding: R01-CA246704 and R01-CA240639.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
68
+ page_content=' REFERENCES [1] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
69
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
70
+ page_content=' Cubuk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
71
+ page_content=' Zoph, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
72
+ page_content=' Shlens, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
73
+ page_content=' Le, “Randaugment: Practical au- tomated data augmentation with a reduced search space,” in Proceedings of the Advances in NIPS, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
74
+ page_content=' 33, 2020, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
75
+ page_content=' 18 613–18 624.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
76
+ page_content=' [2] E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
77
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
78
+ page_content=' Cubuk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
79
+ page_content=' Zoph, D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
80
+ page_content=' Mane, V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
81
+ page_content=' Vasudevan, and Q.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
82
+ page_content=' V.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
83
+ page_content=' Le, “Autoaug- ment: Learning augmentation policies from data,” in Proceedings of the CVPR, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
84
+ page_content=' [3] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
85
+ page_content=' Lim, I.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
86
+ page_content=' Kim, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
87
+ page_content=' Kim, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
88
+ page_content=' Kim, and S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
89
+ page_content=' Kim, “Fast autoaugment,” in Proceedings of the NIPS, vol.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
90
+ page_content=' 32, 2019.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
91
+ page_content=' [4] S.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
92
+ page_content=' G.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
93
+ page_content=' M¨uller and F.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
94
+ page_content=' Hutter, “Trivialaugment: Tuning-free yet state-of-the- art data augmentation,” in Proceedings of the ICCV, 2021, pp.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
95
+ page_content=' 774–782.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
96
+ page_content=' [5] D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
97
+ page_content=' Hendrycks*, N.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
98
+ page_content=' Mu*, E.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
99
+ page_content=' D.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
100
+ page_content=' Cubuk, B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
101
+ page_content=' Zoph, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
102
+ page_content=' Gilmer, and B.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
103
+ page_content=' Lak- shminarayanan, “Augmix: A simple method to improve robustness and uncertainty under data shift,” in Proceedings of the ICLR, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
104
+ page_content=' [6] H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
105
+ page_content=' Zhang, C.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
106
+ page_content=' Wu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
107
+ page_content=' Zhang, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
108
+ page_content=' Zhu, Z.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
109
+ page_content=' Zhang, H.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
110
+ page_content=' Lin, Y.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
111
+ page_content=' Sun, T.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
112
+ page_content=' He, J.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
113
+ page_content=' Muller, R.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
114
+ page_content=' Manmatha, M.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
115
+ page_content=' Li, and A.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
116
+ page_content=' Smola, “Resnest: Split-attention networks,” arXiv preprint arXiv:2004.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
117
+ page_content='08955, 2020.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
118
+ page_content=' arXiv:2301.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
119
+ page_content='02181v1 [eess.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
120
+ page_content='IV] 14 Dec 2022 Input Augmented Input Normal LowGrade Data ResNeST Augmentation High Grade .' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
121
+ page_content='.' metadata={'source': '/home/zjlab/wf/langchain-ChatGLM/knowledge_base/AtE0T4oBgHgl3EQfPgDv/content/2301.02181v1.pdf'}
BdE1T4oBgHgl3EQfVgTd/content/tmp_files/2301.03104v1.pdf.txt ADDED
@@ -0,0 +1,2028 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.03104v1 [math.AG] 8 Jan 2023
2
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
3
+ ANGELO FELICE LOPEZ* AND DEBADITYA RAYCHAUDHURY**
4
+ Abstract. We study varieties X ⊆ PN of dimension n such that TX(k) is an Ulrich vector bundle for
5
+ some k ∈ Z. First we give a sharp bound for k in the case of curves. Then we show that k ≤ n + 1 if
6
+ 2 ≤ n ≤ 12. We classify the pairs (X, OX(1)) for k = 1 and we show that, for n ≥ 4, the case k = 2
7
+ does not occur.
8
+ 1. Introduction
9
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. As is well known, the study of
10
+ vector bundles on X can give important geometrical information about X itself. Regarding this, one
11
+ of the most interesting family of vector bundles associated to X and its embedding, that received a lot
12
+ of attention lately, is that of Ulrich vector bundles, that is bundles E such that Hi(E(−p)) = 0 for all
13
+ i ≥ 0 and 1 ≤ p ≤ n. The study of such bundles is closely related with several areas of commutative
14
+ algebra and algebraic geometry, and often gives interesting consequences on the geometry of X and on
15
+ the cohomology of sheaves on X (see for example in [ES, Be1, CMRPL] and references therein).
16
+ Perhaps the most challenging question in these matters is whether every X ⊆ PN carries an Ulrich
17
+ vector bundle (see for example [ES, page 543]). It comes therefore very natural to ask if usual vector
18
+ bundles associated to X can be Ulrich. Also, since Ulrich vector bundles are globally generated, it is
19
+ better to consider twisted versions of the usual bundles associated to X. The cases of the (twisted)
20
+ normal, cotangent, restricted tangent and cotangent bundles have been dealt with in [Lop], with an
21
+ essentially complete classification.
22
+ In this paper we study the more delicate question: for which integers k one has that TX(k) is an
23
+ Ulrich vector bundle?
24
+ Ulrich vector bundles have special cohomological features, but also numerical ones. This makes the
25
+ above question rather tricky. It is easy to show that k ≥ 0 unless (X, OX(1), k) = (P1, OP1(1), −2).
26
+ In the case k = 0, a recent result [BMPT, Prop. 4.1, Thm. 4.5] gives a classification: (X, OX(1)) =
27
+ (P1, OP1(3)), (P2, OP2(2)) (we will give a new and simple proof in section 8; another proof is given in
28
+ [C2]). On the other hand, for k ≥ 1, the question is more subtle as we will see below.
29
+ In the case of curves, one sees that k = 1 is not possible (see Lemma 4.3(i)), while the cases k = 2, 3
30
+ can be dealt with on any curve (see Lemma 5.1 and Example 5.2). On the other hand, the following
31
+ sharp bound holds, showing that for curves k can be as large as wanted.
32
+ Theorem 1.
33
+ Let X ⊆ PN be a smooth irreducible curve of genus g. If TX(k) is an Ulrich line bundle, then
34
+ (1.1)
35
+ k ≤
36
+ √8g + 1 − 1
37
+ 2
38
+ and equality holds if and only if k is even and either X is one of the curves (5.1) lying on a smooth
39
+ cubic or X is a curve of type (k
40
+ 2 +1, k +2) on a smooth quadric. Also, in both cases, TX(k) is an Ulrich
41
+ line bundle, hence the bound is sharp for every even k ≥ 0. Moreover, if X has general moduli, then
42
+ k ≤ 4.
43
+ As far as we know, only curves show this kind of behavior, meaning that k is not bounded in terms
44
+ of the dimension (a somewhat bad bound can also be given in terms of the degree, see Lemma 4.7). As
45
+ supporting evidence, we prove the following
46
+ * Research partially supported by PRIN “Advances in Moduli Theory and Birational Classification”, GNSAGA-INdAM
47
+ and the MIUR grant Dipartimenti di Eccellenza 2018-2022.
48
+ ** Research partially supported by a Simons Postdoctoral Fellowship from the Fields Institute for Research in Mathe-
49
+ matical Sciences.
50
+ Mathematics Subject Classification : Primary 14J60. Secondary 14J35, 14J40.
51
+ 1
52
+
53
+ 2
54
+ A.F. LOPEZ, D. RAYCHAUDHURY
55
+ Theorem 2.
56
+ Let X ⊆ PN be a smooth irreducible variety of dimension n such that 2 ≤ n ≤ 12. If TX(k) is an
57
+ Ulrich vector bundle, then k ≤ n + 1.
58
+ We should point out that, for n ≥ 2, we know no examples with k ≥ 2 and only one example with
59
+ k = 1. As a matter of fact, the case k = 1 can be completely characterized, as follows
60
+ Theorem 3.
61
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Then TX(1) is an Ulrich vector
62
+ bundle if and only if (X, OX(1)) = (S5, −2KS5), where S5 is a Del Pezzo surface of degree 5.
63
+ On the other hand, for k = 2, we have
64
+ Theorem 4.
65
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 4. Then TX(2) is not an Ulrich vector
66
+ bundle.
67
+ We do not know what happens for k = 2, n = 3, even though some evidence suggests that it might
68
+ not be possible. Also, for surfaces, the cases k = 2, 3 point out to the possible existence, that needs to be
69
+ further investigated, of some minimal surfaces of general type, as shown in Lemma 6.1 and Proposition
70
+ 6.2.
71
+ Finally, in any dimension, another interesting case is the one in which ωX and OX(1) are numerically
72
+ proportional. This is dealt with in Theorem 4.10, Corollaries 4.11 and 4.12.
73
+ 2. Notation
74
+ Throughout the paper we work over the complex numbers. Moreover we henceforth establish the
75
+ following
76
+ Notation 2.1.
77
+ • X is a smooth irreducible variety of dimension n ≥ 1.
78
+ • H is a very ample divisor on X.
79
+ • For any sheaf G on X we set G(l) = G(lH).
80
+ • d = Hn is the degree of X.
81
+ • C is a general curve section of X under the embedding given by H.
82
+ • S is a general surface section of X under the embedding given by H, when n ≥ 2
83
+ • g = g(C) = 1
84
+ 2[KXHn−1 + (n − 1)d] + 1 is the sectional genus of X.
85
+ • For 1 ≤ i ≤ n − 1, let Hi ∈ |H| be general divisors and set Xn := X and Xi = H1 ∩ · · · ∩ Hn−i.
86
+ 3. Generalities on Ulrich bundles
87
+ We collect some well-known facts, to be used sometimes later.
88
+ Definition 3.1. Let E be a vector bundle on X. We say that E is an Ulrich vector bundle for (X, H)
89
+ if Hi(E(−p)) = 0 for all i ≥ 0 and 1 ≤ p ≤ n.
90
+ We have
91
+ Lemma 3.2. Let E be a rank r Ulrich vector bundle for (X, H). Then
92
+ (i) c1(E)Hn−1 = r
93
+ 2[KX + (n + 1)H]Hn−1,
94
+ (ii) If n ≥ 2, then c2(E)Hn−2 = 1
95
+ 2[c1(E)2 − c1(E)KX]Hn−2 + r
96
+ 12[K2
97
+ X + c2(X) − 3n2+5n+2
98
+ 2
99
+ H2]Hn−2.
100
+ (iii) χ(E(m)) = rd
101
+ n!(m + 1) · · · (m + n).
102
+ (iv) Hn(E(m)) = 0 if and only if m ≥ −n.
103
+ (v) E∗(KX + (n + 1)H) is also an Ulrich vector bundle for (X, H).
104
+ (vi) E is globally generated.
105
+ (vii) h0(E) = rd.
106
+ (viii) E is arithmetically Cohen-Macaulay (aCM), that is Hi(E(j)) = 0 for 0 < i < n and all j ∈ Z.
107
+ (ix) E|Y is Ulrich on a smooth hyperplane section Y of X.
108
+
109
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
110
+ 3
111
+ Proof. We have
112
+ (3.1)
113
+ KXi = (KX + (n − i)H)|Xi , 1 ≤ i ≤ n.
114
+ By [CH, Lemma 2.4(iii)] we have that
115
+ c1(E)Hn−1 = deg(E|C) = r(d + g − 1)
116
+ and using (3.1) on C = X1 we have
117
+ KXHn−1 = 2(g − 1) − (n − 1)d
118
+ thus giving (i). To see (ii) observe that the exact sequences, for 1 ≤ i ≤ n − 1,
119
+ 0 → TXi → (TXi+1)|Xi → H|Xi → 0
120
+ and (3.1) give by induction that
121
+ (3.2)
122
+ c2(S) = c2(X2) = c2(X)Hn−2 + (n − 2)KXHn−1 +
123
+ �n − 1
124
+ 2
125
+
126
+ d.
127
+ It follows from [C1, Prop. 2.1(2.2)], (3.1), and Noether’s formula 12χ(OS) − K2
128
+ S = c2(S) that
129
+ c2(E)Hn−2
130
+ = 1
131
+ 2[c1(E)2 − c1(E)(KX + (n − 2)H)]Hn−2 − r
132
+
133
+ Hn − [KX+(n−2)]2Hn−2+c2(S)
134
+ 12
135
+
136
+ =
137
+ = 1
138
+ 2[c1(E)2 − c1(E)KX]Hn−2 − n−2
139
+ 2 c1(E)Hn−1 − r
140
+
141
+ Hn − [KX+(n−2)H]2Hn−2+c2(S)
142
+ 12
143
+
144
+ Now (ii) follows from the above equation by using (i) and (3.2). Next, (iii) is [CH, Lemma 2.6]. To see
145
+ (iv) observe that E is 0-regular, hence it is q-regular for every q ≥ 0 and therefore Hn(E(q − n)) = 0,
146
+ that is (iv). Also, (v) follows by definition and Serre duality, while (vi) follows by definition, since E is
147
+ 0-regular, and [Laz, Thm. 1.8.5]. For (vii), (viii) and (ix) see [ES, Prop. 2.1] (or [Be1, (3.1)]) and [Be1,
148
+ (3.4)].
149
+
150
+ 4. TX(k) Ulrich in any dimension
151
+ We start by drawing some consequences on (X, H, k), of cohomological and numerical type, when
152
+ TX(k) is an Ulrich vector bundle.
153
+ Lemma 4.1. Let (X, H) = (Pn, OPn(1)), n ≥ 1. Then TX(k) is an Ulrich vector bundle if and only if
154
+ n = 1 and k = −2.
155
+ Proof. The assertion is obvious if (X, H, k) = (P1, OP1(1), −2). Vice versa suppose that TX(k) is an
156
+ Ulrich vector bundle.
157
+ If (X, H) = (Pn, OPn(1)), it follows by [ES, Prop. 2.1] (or [Be1, Thm. 2.3])
158
+ that TPn(k) ∼= O⊕n
159
+ Pn , hence 0 = det(TPn(k)) = OPn(nk + n + 1), so that 1 = −n(k + 1), giving
160
+ n = 1, k = −2.
161
+
162
+ Lemma 4.2. (cohomological conditions)
163
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. If TX(k) is an Ulrich vector bundle
164
+ we have:
165
+ (i) Either (X, H, k) = (P1, OP1(1), −2), or k ≥ 0.
166
+ (ii) If n ≥ 2, then TX is aCM, that is Hi(TX(j)) = 0 for 1 ≤ i ≤ n − 1 and for every j ∈ Z. In
167
+ particular Hi(TX) = 0 for 1 ≤ i ≤ n − 1.
168
+ (iii) If k ≥ 1, then H0(TX) = 0, hence X has discrete automorphism group.
169
+ (iv) If n ≥ 2, then X is infinitesimally rigid, that is H1(TX) = 0.
170
+ (v) H0(KX + (n − k − 2)H) = 0 and, if n ≥ 2, also H0(KX + (n − k − 1)H) = 0.
171
+ (vi) If q(X) ̸= 0 then H0(KX + (n − k)H) = 0.
172
+ (vii) If k ≤ n − 1, then pg(X) = 0.
173
+ (viii) Let a(X, H) = min{l ∈ Z : lH − KX ≥ 0}. Then k ≤ a(X,H)(n+2)
174
+ 2n
175
+ + n+1
176
+ 2 .
177
+ Moreover H0((⌈n(2k−n−1)
178
+ n+2
179
+ ⌉ − 1)H − KX) = 0.
180
+ (ix) KX − kH is not big.
181
+
182
+ 4
183
+ A.F. LOPEZ, D. RAYCHAUDHURY
184
+ Proof. Since TX(k) is an Ulrich vector bundle, it is globally generated by Lemma 3.2(vi).
185
+ Now if
186
+ k ≤ −1 we would have that 0 ̸= H0(TX(k)) ⊆ H0(TX(−1)).
187
+ But then the Mori-Sumihiro-Wahl’s
188
+ theorem [MS, Thm. 8], [W, Thm. 1] implies that (X, H) = (P1, OP1(2)), (Pn, OPn(1)).
189
+ In the first
190
+ case we have that 0 = Hi(TP1(k − 1)) = Hi(OP1(2k)) = 0 for i ≥ 0, a contradiction. In the second
191
+ case apply Lemma 4.1. This proves (i). Now (ii) follows by Lemma 3.2(viii). If k ≥ 1 we have that
192
+ H0(TX) ⊆ H0(TX(k − 1)) = 0, hence (iii). (iv) is implied by (ii). As for (v), recall that, as is well
193
+ known, Ω1
194
+ X(2) is globally generated. Now if H0(KX + (n − k − 2)H) ̸= 0 then we get the contradiction
195
+ 0 ̸= H0(Ω1
196
+ X(2)) ⊆ H0(Ω1
197
+ X(KX + (n − k)H)) = Hn(TX(k − n))∗ = 0.
198
+ This gives the first part of (v). Similarly, if q(X) ̸= 0 and H0(KX + (n − k)H) ̸= 0 then we get the
199
+ contradiction
200
+ 0 ̸= H0(Ω1
201
+ X) ⊆ H0(Ω1
202
+ X(KX + (n − k)H)) = Hn(TX(k − n))∗ = 0.
203
+ This gives (vi). Now if n ≥ 2, consider Y ∈ |H| smooth. Then TX(k)|Y is an Ulrich vector bundle on
204
+ Y by Lemma 3.2(ix), hence Hn−1(TX(k − n + 1)|Y ) = 0. Now the exact sequence
205
+ 0 → TY (k − n + 1) → TX(k − n + 1)|Y → OY (k − n + 2) → 0
206
+ implies that Hn−1(OY (k − n + 2)) = 0. Hence, setting L = KX + (n − k − 1)H, we get by Serre’s
207
+ duality that
208
+ H0(L|Y ) = H0(KY + (n − k − 2)H|Y ) = 0.
209
+ Therefore H0(L(−l)|Y ) = 0 for every l ≥ 0 and the exact sequences
210
+ 0 → L(−l − 1) → L(−l) → L(−l)|Y → 0
211
+ show that h0(L(−l − 1)) = h0(L(−l)) for every l ≥ 0. Since this is zero for l ≫ 0, we get that they
212
+ are all zero, hence H0(KX + (n − k − 1)H) = 0. This proves the second part of (v). Now, to see (vii),
213
+ suppose that k ≤ n − 1. If n ≥ 2, we see that (v) gives H0(KX) ⊆ H0(KX + (n − k − 1)H) = 0,
214
+ hence (vii). If n = 1 we have that k ≤ 0, hence X = P1 by (i) and Lemma 4.3(i). Observe that
215
+ a(X, H)H − KX ≥ 0, hence (a(X, H)H − KX)Hn−1 ≥ 0 and using Lemma 4.3(ii), we get
216
+ a(X, H) ≥ n(2k − n − 1)
217
+ n + 2
218
+ This gives (viii) since, by its own definition, H0((a(X, H) − 1)H − KX) = 0. Finally assume that
219
+ KX − kH is big. Then Serre’s duality gives H0(TX(k)) = Hn(Ω1
220
+ X(KX − kH))∗ = 0 by Bogomolov-
221
+ Sommese vanishing [Bo, Thm. 4], contradicting Lemma 3.2(vi).
222
+
223
+ Lemma 4.3. (numerical conditions)
224
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. If TX(k) is an Ulrich vector bundle
225
+ we have:
226
+ (i) d = (n+2)(g−1)
227
+ nk−1
228
+ . In particular either (X, H, k) = (P1, OP1(1), −2), or g = k = 0, or g ≥ 2.
229
+ (ii) k = n+1
230
+ 2
231
+ +
232
+ � n+2
233
+ 2nd
234
+
235
+ KXHn−1; equivalently KXHn−1 = n(2k−n−1)
236
+ n+2
237
+ d.
238
+ (iii) If k < n+1
239
+ 2 , then X is rationally connected and Hi(OX) = 0 for every i ≥ 1.
240
+ (iv) If k > n+1
241
+ 2 , then −KX is not pseff.
242
+ (v) TX is semistable.
243
+ (vi) If n ≥ 2, then K2
244
+ XHn−2 ≤
245
+ 2n
246
+ n−1c2(X)Hn−2.
247
+ (vii) If n ≥ 2, then
248
+ (12kn − 12k2 + 12k − 3n2 − 5n − 2)nd + 2(n + 12)K2
249
+ XHn−2 + 2(n − 12)c2(X)Hn−2 = 0.
250
+ Proof. Since c1(TX(k)) = −KX + nkH, we get by Lemma 3.2(i) that
251
+ (−KX + nkH)Hn−1 = n
252
+ 2
253
+
254
+ KXHn−1 + (n + 1)d
255
+
256
+ and this gives (ii). Also, using KXHn−1 = 2(g − 1) − (n − 1)d, we get that
257
+ (nk − 1)d = (n + 2)(g − 1).
258
+ Now if nk − 1 = 0 then n = k = g = 1, but then TX(k) = OX(1) is not Ulrich. Therefore nk − 1 ̸= 0
259
+ and d = (n+2)(g−1)
260
+ nk−1
261
+ . Hence g ̸= 1 and if g = 0 then either k = 0 or k ̸= 0 and in the latter case we
262
+
263
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
264
+ 5
265
+ have that nk < 1, hence (X, H, k) = (P1, OP1(1), −2) by Lemma 4.2(i). This proves (i). Next, (v)
266
+ follows since Ulrich vector bundles are semistable by [CH, Thm. 2.9], hence Bogomolov’s inequality
267
+ gives (vi). To see (iii), suppose that k < n+1
268
+ 2 . If n ≥ 2, then (ii) gives that KXHn−1 < 0, hence X is
269
+ rationally connected by (v) and [BMQ, Main Thm.] (see also [CP, Thm. 1.1]). Hence, as is well known,
270
+ Hi(OX) = 0 for every i ≥ 1. If n = 1 then k ≤ 0 and X = P1 by (i). Thus we get (iii). If k > n+1
271
+ 2 ,
272
+ then either n = 1 and g ≥ 2 by (i), so that −KX is not pseff, or n ≥ 2 and (ii) gives that KXHn−1 > 0,
273
+ hence again −KX is not pseff and we get (iv). To see (vii), observe that
274
+ (4.1)
275
+ c2(TX(k))Hn−2 = c2(X)Hn−2 − k(n − 1)KXHn−1 +
276
+ �n
277
+ 2
278
+
279
+ k2d.
280
+ From Lemma 3.2(ii), we get
281
+ (4.2)
282
+ c2(TX(k))Hn−2 =
283
+ �n2k2
284
+ 2
285
+ − n
286
+ 24
287
+
288
+ 3n2 + 5n + 2
289
+ ��
290
+ d−3nk
291
+ 2 KXHn−1+
292
+
293
+ 1 + n
294
+ 12
295
+
296
+ K2
297
+ XHn−2+ n
298
+ 12c2(X)Hn−2.
299
+ Combining (4.1), (4.2) and (ii), we obtain (vii).
300
+
301
+ Definition 4.4. For n ≥ 1 we denote by Qn a smooth quadric in Pn+1.
302
+ Lemma 4.5. Let (X, H) = (Qn, OQn(1)), n ≥ 1. Then TX(k) is not an Ulrich vector bundle for any
303
+ integer k.
304
+ Proof. Since g = 0, it follows by Lemma 4.3(i) that k = 0 and 2 = d = n + 2, a contradiction.
305
+
306
+ We will use the nef value of (X, H):
307
+ (4.3)
308
+ τ(X, H) = min{t ∈ R : KX + tH is nef}.
309
+ We observe that in [BS, Def. 1.5.3] the nef value is defined only when KX is not nef. On the other
310
+ hand, it makes sense and it will be used, throughout this paper, also when KX is nef.
311
+ A very useful observation is the following.
312
+ Lemma 4.6. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. If TX(k) is an Ulrich
313
+ vector bundle, then Ω1
314
+ Y (KX |Y +(n+1−k)H|Y ) is globally generated for any smooth subvariety Y ⊆ X.
315
+ Moreover:
316
+ (i) If ±(KX + n(n+1−2k)
317
+ n+2
318
+ H) is pseff, then KX ≡ n(2k−n−1)
319
+ n+2
320
+ H.
321
+ (ii) τ(X, H) ≥ n(n+1−2k)
322
+ n+2
323
+ .
324
+ (iii) τ(X, H) ≤ n −
325
+ nk
326
+ n+1. In particular, if KX is not nef, then k ≤ n.
327
+ (iv) If k ≥ n + 1, then KX is ample.
328
+ Proof. Note that Ω1
329
+ X(KX + (n + 1 − k)H) is Ulrich and globally generated by Lemma 3.2(v) and (vi).
330
+ Since Ω1
331
+ X(KX + (n + 1 − k)H) surjects onto Ω1
332
+ Y (KX |Y + (n + 1 − k)H|Y ), the latter is also globally
333
+ generated. Moreover so is det(Ω1
334
+ X(KX+(n+1−k)H) = (n+1)KX+n(n+1−k)H, hence we get (iii) and,
335
+ if k ≥ n+2, we also deduce that KX is ample. On the other hand, if k = n+1, then Ω1
336
+ X(KX) is Ulrich,
337
+ and we claim that det(Ω1
338
+ X(KX)) = (n + 1)KX is ample. In fact, if not, then [LS, Thm. 1] implies that
339
+ there is a line L ⊂ X such that Ω1
340
+ X(KX)|L is trivial. Hence (n + 1)KX · L = deg(Ω1
341
+ X(KX)|L) = 0. But
342
+ then we have a surjection Ω1
343
+ X(KX)|L → Ω1
344
+ L, contradicting the fact that Ω1
345
+ L is not globally generated.
346
+ This proves (iv). As for (i) and (ii), set q = n(n+1−2k)
347
+ n+2
348
+ , so that (KX + qH)Hn−1 = 0 by Lemma 4.3(ii).
349
+ Now if ±(KX + qH) is pseff, then KX + qH ≡ 0 by [FL2, Cor. 3.15] (see also [FL1, Prop. 3.7]), thus
350
+ proving (i). Also, (i) implies that either KX ≡ −qH and then τ(X, H) = q, or KX + qH is not pseff,
351
+ hence not nef. Therefore, in the latter case, τ(X, H) > q, proving (ii).
352
+
353
+ Lemma 4.7. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. If TX(k) is an Ulrich
354
+ vector bundle we have that
355
+ k ≤ (n + 2)(d − 4) + 4
356
+ 4n
357
+ .
358
+ Proof. We have X ⊂ PH0(H) = PN. If N = n then (X, H) = (Pn, OPn(1)) and Lemma 4.1 gives that
359
+ n = 1 and k = −2. Since d = 1 we have that k = −2 ≤ − 5
360
+ 4 = (n+2)(d−4)+4
361
+ 4n
362
+ .
363
+
364
+ 6
365
+ A.F. LOPEZ, D. RAYCHAUDHURY
366
+ We now show that it cannot be that N = n + 1. Assume that N = n + 1, so that d ≥ 2. If n = 1 we
367
+ have that KX = (d − 3)H, g =
368
+ �d−1
369
+ 2
370
+
371
+ and k = 3(d−3)
372
+ 2
373
+ + 1 by Lemma 4.3(i). Now 0 = H0(TX(k − 1)) =
374
+ H0((−d + 2 + k)H) and therefore −d + 2 + k ≤ −1, giving the contradiction d ≤ 1. Hence n ≥ 2 and
375
+ since C ⊂ P2 we have that g − 1 = d(d−3)
376
+ 2
377
+ and Lemma 4.3(i) implies that d = 2(nk−1)
378
+ n+2
379
+ + 3. On the other
380
+ hand Lemma 4.2(v) gives that
381
+ 0 = H0(KX + (n − k − 1)H) = H0((d − k − 3)H)
382
+ and therefore
383
+ 2(nk − 1)
384
+ n + 2
385
+ − k ≤ −1
386
+ that is k(n − 2) + n ≤ 0, a contradiction.
387
+ Therefore N ≥ n + 2 and C ⊂ PN−n+1 can be projected isomorphically to a non-degenerate smooth
388
+ irreducible curve in P3. Then Castelnuovo’s bound gives that g − 1 ≤ d(d−4)
389
+ 4
390
+ and Lemma 4.3(ii) implies
391
+ the required bound on k.
392
+
393
+ A nice consequence of the above lemmas is the following.
394
+ Proposition 4.8. There does not exist any (X, H, k) with TX(k) an Ulrich vector bundle, when:
395
+ (i) KX ≡ 0.
396
+ (ii) ±KX is pseff and k = n+1
397
+ 2 .
398
+ Proof. Under hypothesis (ii), we get from Lemma 4.6(i) that KX ≡ 0. Thus we will be done if we prove
399
+ (i). Assume next that KX ≡ 0, so that k = n+1
400
+ 2
401
+ by Lemma 4.3(ii) and n ≥ 3 by Lemma 4.3(i). Since
402
+ H − KX is ample, it follows by Kodaira vanishing that Hi(H) = Hi(KX + H − KX) = 0 for i > 0,
403
+ hence
404
+ h0(KX + H) = χ(KX + H) = χ(H) = h0(H) ̸= 0.
405
+ On the other hand, Lemma 4.2(v) gives that h0(KX + n−3
406
+ 2 H) = 0, whence, if n ≥ 5, we get the
407
+ contradiction h0(KX + H) = 0.
408
+ It remains to consider the case n = 3, k = 2. Note that pg(X) = 0 by Lemma 4.2(vii) and q(X) = 0,
409
+ for otherwise Lemma 4.2(vi) gives that h0(KX + H) = 0. Therefore χ(OX) ≥ 1. On the other hand
410
+ χ(OX) =
411
+ 1
412
+ 24c1(X)c2(X) = 0, a contradiction.
413
+
414
+ We now prove Theorem 2.
415
+ Proof of Theorem 2. By the Hodge index theorem we have that H2
416
+ |SK2
417
+ S ≤ (H|SKS)2, that is
418
+ (4.4)
419
+ dK2
420
+ XHn−2 ≤ (KXHn−1)2.
421
+ Using Lemma 4.3(vi), (vii) and (4.4) we obtain that
422
+ 0 = (12kn − 12k2 + 12k − 3n2 − 5n − 2)nd + 2(n + 12)K2
423
+ XHn−2 + 2(n − 12)c2(X)Hn−2 ≤
424
+ ≤ (12kn − 12k2 + 12k − 3n2 − 5n − 2)nd + 3n2 + 11n + 12
425
+ n
426
+ K2
427
+ XHn−2 ≤
428
+ ≤ (12kn − 12k2 + 12k − 3n2 − 5n − 2)nd + 3n2 + 11n + 12
429
+ nd
430
+ (KXHn−1)2
431
+ which, using Lemma 4.3(ii) becomes
432
+ 4nk2 − 4n(n + 1)k − 3n2 − 7n − 4 ≤ 0
433
+ giving
434
+ k ≤ n2 + n +
435
+
436
+ n4 + 5n3 + 8n2 + 4n
437
+ 2n
438
+ < n + 2.
439
+
440
+ The case k = 0 is known:
441
+ Theorem 4.9. ([BMPT, Prop. 4.1, Thm. 4.5])
442
+ Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Then TX is an Ulrich vector bundle
443
+ if and only if (X, H) = (P1, OP1(3)), (P2, OP2(2)).
444
+
445
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
446
+ 7
447
+ We will give a quick alternative proof in section 8.
448
+ Next we study the case when KX and H are proportional.
449
+ Theorem 4.10. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Suppose that the
450
+ numerical classes of H and KX are proportional and that either
451
+ (i) 1 ≤ n ≤ 11 and either k ≤ n+1
452
+ 2
453
+ or k ≥ n + 2; or
454
+ (ii) n = 12, or
455
+ (iii) n ≥ 13 and k ̸∈ {n + 2, n + 3}.
456
+ Then TX(k) is Ulrich if and only if (X, H, k) is one of the following:
457
+ (1) (P1, OP1(1), −2),
458
+ (2) (P1, OP1(3), 0),
459
+ (3) (P2, OP2(2), 0),
460
+ (4) (S5, −2KS5, 1), where S5 is a Del Pezzo surface of degree 5.
461
+ Proof. In the cases (1)-(4) we have that TX(k) is Ulrich by Lemma 4.3(i), Theorem 4.9 and Theorem
462
+ 6.3.
463
+ Vice versa, suppose that the numerical classes of H and KX are proportional and that we are under
464
+ one of hypotheses (i), (ii) or (iii) and that TX(k) is Ulrich.
465
+ Observe that, since N 1(X) is a torsion free finitely generated abelian group, we can find an ample
466
+ primitive divisor A and some r, s ∈ Z such that s > 0, H ≡ sA and KX ≡ −rA. In particular, Lemma
467
+ 4.3(ii) gives
468
+ (4.5)
469
+ r(n + 2) = n(n + 1 − 2k)s.
470
+ If k ≤ 0 we are in cases (1)-(3) by Lemma 4.2(i) and Theorem 4.9. Hence assume that k ≥ 1. Note
471
+ that Proposition 4.8 shows that k ̸= n+1
472
+ 2 .
473
+ If (ii) or (iii) holds, since the numerical classes of H and KX are proportional, Lemma 4.3(vi), (ii)
474
+ and (vii) imply that
475
+ 4nk2 − 4n(n + 1)k − 3n2 − 7n − 4 ≥ 0
476
+ so that k > n + 1. This is a contradiction under hypothesis (ii) by Theorem 2. Under hypothesis (iii),
477
+ we get that k ≥ n + 4. Then it follows by (4.5) that
478
+ −r − ks = (n − 2)k − n2 − n
479
+ n + 2
480
+ s ≥ n − 8
481
+ n + 2s > 0
482
+ hence KX − kH = (−r − ks)A is ample, contradicting Lemma 4.2(ix). Thus it remains to consider
483
+ hypothesis (i).
484
+ Now assume (i), so that n ≥ 2 and Theorem 2 implies that it cannot be that k ≥ n + 2. Hence
485
+ k < n+1
486
+ 2
487
+ and Lemma 4.3(ii) implies that X is Fano. Consequently, the numerical and linear equivalence
488
+ for divisors coincide on X and then KX = −rA and H = sA. We can also assume that r ≤ n − 1, for
489
+ otherwise, as is well known, (X, H) = (Pn, OPn(1)), (Qn, OQn(1)), contradicting Lemmas 4.1 and 4.5.
490
+ Next, set PA(t) := χ(KX + tA), so that PA(t) = h0(KX + tA) whenever t ≥ 1 is an integer. By
491
+ Riemann-Roch (see for example [Ho, eq. (1), p. 2], we have
492
+ (4.6)
493
+ PA(t) = An
494
+ n! tn + An−1KX
495
+ 2(n − 1)!tn−1 + An−2(K2
496
+ X + c2(X))
497
+ 12(n − 2)!
498
+ tn−2 + · · · + (−1)nχ(OX).
499
+ Note that n is even, for otherwise n and n + 2 are coprime, and consequently n divides r by (4.5),
500
+ hence r ≥ n, a contradiction.
501
+ Set n = 2m, where 1 ≤ m ≤ 5.
502
+ If m = 1 we have that n = 2, k = 1 and we are in case (4) by Theorem 6.3.
503
+ We will now exclude the remaining cases for m.
504
+ Note that we can rewrite (4.5) as
505
+ (4.7)
506
+ (m + 1)r = m(2m − 2k + 1)s.
507
+ Case 1: m = 2. In this case k ≤ 2 and r ≤ 3.
508
+ (1a): k = 1. We see that r = 2s. Thus (r, s) = (2, 1), contradicting Lemma 4.2(v).
509
+ (1b): k = 2. We see that 2s = 3r. Thus (r, s) = (2, 3) and Lemma 4.2(v) shows that h0(A) = 0.
510
+ This contradicts [A, Lemma 2] or [K, Thm. 5.1].
511
+
512
+ 8
513
+ A.F. LOPEZ, D. RAYCHAUDHURY
514
+ Case 2: m = 3. In this case k ≤ 3 and r ≤ 5.
515
+ (2a): k = 1. We see that 4r = 15s. Thus, 15 divides r which is clearly impossible.
516
+ (2b): k = 2. We see that 9s = 4r. Thus, 9 divides r which is a contradiction.
517
+ (2c): k = 3. We see that 3s = 4r. Thus (r, s) = (3, 4) and Lemma 4.2(v) shows that h0(KX+8A) = 0.
518
+ This is a contradiction by [GL, Thm. 1.2], as KX + 8A is base-point-free.
519
+ Case 3: m = 4. In this case k ≤ 4 and r ≤ 7.
520
+ (3a): k = 1. We see that 5r = 28s. Thus, 28 divides r which is clearly impossible.
521
+ (3b): k = 2. We see that 4s = r. Thus (r, s) = (4, 1) and Lemma 4.2(v) shows h0(KX + 5A) =
522
+ h0(H) = 0, a contradiction.
523
+ (3c): k = 3. We see that 12s = 5r. Thus, 12 divides r which is absurd.
524
+ (3d): k = 4. We see that 4s = 5r. Thus, (r, s) = (4, 5).
525
+ We have KX = −4A and H = 5A. Hence H0(KX + 15A) = 0 by Lemma 4.2(v). Then
526
+ PA(1) = PA(2) = PA(3) = PA(5) = PA(10) = PA(15) = 0,
527
+ PA(0) = PA(4) = 1
528
+ and
529
+ PA(t) = A8
530
+ 8! (t − 1)(t − 2)(t − 3)(t − 5)(t − 10)(t − 15)(t2 + at + b).
531
+ Therefore
532
+ (4.8)
533
+ 1 = PA(0) = A8
534
+ 8! (4500b) =⇒ A8
535
+ 8! b =
536
+ 1
537
+ 4500
538
+ and calculating the coefficient of t7 in (4.6) we get
539
+ (4.9)
540
+ A8
541
+ 8! (a − 36) = A7KX
542
+ 2(7!)
543
+ =⇒ a = 20.
544
+ We also know that PA(4) = 1 and that gives us
545
+ −A8
546
+ 8! (396)(16 + 4a + b) = 1.
547
+ We simplify the above using (4.8) and (4.9) to obtain
548
+ −38016A8
549
+ 8! = 1 + 396
550
+ 4500
551
+ which is clearly absurd.
552
+ Case 4: m = 5. In this case k ≤ 5 and r ≤ 9.
553
+ (4a): k = 1. We see that 2r = 15s. Thus, 15 divides r which is impossible.
554
+ (4b): k = 2. We see that 35s = 6r. Thus, 35 divides r which is also impossible.
555
+ (4c): k = 3. We see that 25s = 6r. Thus, 25 divides r which is also impossible.
556
+ (4d): k = 4. We see that 5s = 2r. Thus (r, s) = (5, 2) and Lemma 4.2(v) shows that h0(KX +10A) =
557
+ 0. Then
558
+ PA(1) = PA(2) = PA(3) = PA(4) = PA(6) = PA(8) = PA(10) = 0,
559
+ PA(0) = PA(5) = 1
560
+ so that we obtain
561
+ PA(t) = A10
562
+ 10! (t − 1)(t − 2)(t − 3)(t − 4)(t − 6)(t − 8)(t − 10)(t3 + at2 + bt + c).
563
+ Therefore
564
+ (4.10)
565
+ 1 = PA(0) = −A10
566
+ 10! (11520c) = 1 =⇒ A10
567
+ 10! c = −
568
+ 1
569
+ 11520.
570
+ and calculating the coefficient of t9 in (4.6) we get
571
+ (4.11)
572
+ A10
573
+ 10! (a − 34) = A9KX
574
+ 2(9!)
575
+ =⇒ a = 9.
576
+ We also know that PA(5) = 1 and that gives us
577
+ −A10
578
+ 10! (360)(125 + 25a + 5b + c) = 1.
579
+
580
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
581
+ 9
582
+ We simplify the above using (4.10) and (4.11) to obtain
583
+ (4.12)
584
+ A10
585
+ 10! b =
586
+ 1
587
+ 5(11520) −
588
+ 1
589
+ 5(360) − 70A10
590
+ 10! .
591
+ Finally, calculating the coefficient of t8 in (4.6) we get
592
+ (4.13)
593
+ A10
594
+ 10! (b − 34a + 463) = A8(K2
595
+ X + c2(X))
596
+ 12(8!)
597
+ .
598
+ We simplify (4.13) using (4.11) and (4.12) to obtain
599
+ (4.14)
600
+ 67A10 + 5A8c2(X) + 1302 = 0.
601
+ On the other hand, Lemma 4.3(vii) shows that
602
+ 115A10 = A8c2(X)
603
+ and combining with (4.14), we get that A10 is negative, which is clearly impossible.
604
+ (4e): k = 5. We see that 5s = 6r. Thus (r, s) = (5, 6). We have KX = −5A and H = 6A. Again
605
+ H0(KX + 24A) = 0 by Lemma 4.2(v). Then
606
+ PA(1) = PA(2) = PA(3) = PA(4) = PA(6) = PA(12) = PA(18) = PA(24) = 0,
607
+ PA(0) = PA(5) = 1.
608
+ Thus, we obtain
609
+ PA(t) = A10
610
+ 10! (t − 1)(t − 2)(t − 3)(t − 4)(t − 6)(t − 12)(t − 18)(t − 24)(t2 + at + b).
611
+ Then
612
+ (4.15)
613
+ 1 = PA(0) = A10
614
+ 10! (746496b) =⇒ A10
615
+ 10! b =
616
+ 1
617
+ 746496.
618
+ calculating the coefficient of t9 in (4.6) we get
619
+ (4.16)
620
+ A10
621
+ 10! (a − 70) = A9KX
622
+ 2(9!)
623
+ =⇒ a = 45.
624
+ We also know that PA(5) = 1 and that gives us
625
+ A10
626
+ 10! (41496)(25 + 5a + b) = 1.
627
+ We simplify the above using (4.15) and (4.16) to obtain
628
+ A10 =
629
+ �705000
630
+ 746496
631
+
632
+ (10!)
633
+ which is clearly absurd since A10 is an integer.
634
+
635
+ Corollary 4.11. Suppose that KX = eH, e ∈ Z (hence, in particular, if Pic(X) = ZH). Then TX(k)
636
+ is Ulrich if and only if (X, H, k) = (P1, OP1(1), −2).
637
+ Proof. This follows by [Lop, Prop. 4.1(i)]. We give another proof. We have that e = n(2k−n−1)
638
+ n+2
639
+ by
640
+ Lemma 4.3(ii). If k ≤ n+1
641
+ 2
642
+ it follows by Theorem 4.10 that (X, H, k) = (P1, OP1(1), −2). Now assume
643
+ that k > n+1
644
+ 2 , so that e ≥ 1. If n ≥ 2, Lemma 4.2(v) gives that k ≥ n + e, hence k(n − 2) + n ≤ 0, a
645
+ contradiction. Then n = 1 and e = 2(k−1)
646
+ 3
647
+ . But 0 = H0(TX(k − 1)) = H0((k − 1 − e)H), hence e ≥ k,
648
+ so that k ≤ −2, contradicting k > 1.
649
+
650
+ Corollary 4.12. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 2 with TX(k) is Ulrich.
651
+ Suppose that there is an ample line bundle A on X such that KX = rA, H = sA for some r, s ∈ Z
652
+ (hence, in particular, if Pic(X) ∼= Z). Let m(H, A) := min{m ≥ 0 : H0(mH + qA) ̸= 0 for all q ≥ 1}.
653
+ Then:
654
+ (i) m(H, A) > (n−2)k−2
655
+ n+2
656
+ and, if n ≥ 3, then k < (n+2)m(H,A)+2
657
+ n−2
658
+ .
659
+ (ii) If A is effective, then n = 2.
660
+ (iii) If m(H, A) ≤ n − 3, then n ≤ 11.
661
+
662
+ 10
663
+ A.F. LOPEZ, D. RAYCHAUDHURY
664
+ Proof. Observe first that, if n ≥ 3, then (n−2)k−2 ≥ k−2 ≥ 0: In fact if k ≤ 1 we have a contradiction
665
+ by Theorem 4.10. Now Lemma 4.3(ii) implies that
666
+ (4.17)
667
+ r(n + 2) = n(2k − n − 1)s
668
+ and Lemma 4.2(v) gives
669
+ (4.18)
670
+ 0 = H0(KX + (n − k − 1)H) = H0((nk − 2k − 2)s
671
+ n + 2
672
+ A).
673
+ To see (i), notice that it is obvious for n = 2, for m(H, A) ≥ 0 by definition. If n ≥ 3 we see by (4.18)
674
+ that (nk−2k−2)s
675
+ n+2
676
+ ∈ Z and we can write (nk−2k−2)s
677
+ n+2
678
+ = as+b for some a, b ∈ Z with a ≥ 0, 0 ≤ b < s. Since
679
+ H0(aH + bA) = 0 by (4.18), we get that
680
+ (n − 2)k − 2
681
+ n + 2
682
+ − 1 < a ≤ m(H, A) − 1
683
+ giving (i). Now suppose that A is effective. If n ≥ 3 we know that (n − 2)k − 2 ≥ 0, contradicting
684
+ (4.18). This proves (ii). To see (iii), notice that if n ≥ 12, then k ≥ n + 2 by Theorem 4.10(ii) and (iii).
685
+ Hence (n−2)k−2
686
+ n+2
687
+ > n − 3 and (4.18) gives that
688
+ 0 = H0((nk − 2k − 2)s
689
+ n + 2
690
+ A) = H0((n − 3)H + qA)
691
+ for some q ≥ 1, contradicting the hypothesis m(H, A) ≤ n − 3.
692
+
693
+ 5. Curves
694
+ Throughout this section we will have that X ⊆ PN is a smooth irreducible curve.
695
+ It follows by Lemma 4.3(i) and Theorem 4.9 that if n = 1 and TX(k) is an Ulrich line bundle, then
696
+ (X, H, k) = (P1, OP1(1), −2), (P1, OP1(3), 0) or k ≥ 2 and g ≥ 2.
697
+ We will give below examples with k = 2, 3, essentially on any curve. Then we will give a sharp bound
698
+ on k depending on the genus.
699
+ The case k = 2 can be characterized. Note that g ≥ 3 when k = 2 by Lemma 4.3(i).
700
+ Lemma 5.1. Let X ⊆ PN be a smooth irreducible curve. Then TX(2) is Ulrich if and only if there
701
+ exists M ∈ Pic(X) such that Hi(M) = 0 for i ≥ 0 and H = KX + M is very ample. This occurs if and
702
+ only if g ≥ 3.
703
+ Proof. If TX(2) is Ulrich, set M = H −KX. Then Hi(M) = Hi(TX(1)) = 0 for i ≥ 0 and KX +M = H
704
+ is very ample. Vice versa let M ∈ Pic(X) be such that Hi(M) = 0 for i ≥ 0 and H = KX + M is very
705
+ ample. Then Hi(TX(1)) = Hi(M) = 0 for i ≥ 0, so that TX(2) is Ulrich.
706
+ Suppose that g ≥ 3 and let M ∈ Pic(X) be such that Hi(M) = 0 for i ≥ 0.
707
+ We claim that
708
+ H := KX + M is very ample. In fact deg M = g − 1 by Riemann-Roch, hence deg H = 3g − 3. If g ≥ 4,
709
+ then deg H ≥ 2g + 1, hence H is very ample. If g = 3 we have that deg H = 2g and, as is well known,
710
+ H is very ample unless H = KX + P + Q for two points P, Q ∈ X. But then M = P + Q is effective,
711
+ a contradiction. Instead, if g = 2 we have that deg(KX + M) = 3 > 2g − 2, hence h0(KX + M) = 2
712
+ by Riemann-Roch.
713
+ Let P + Q + R be an effective divisor linearly equivalent to KX + M.
714
+ Then
715
+ KX + M − P − Q ∼ R, hence h0(KX + M − P − Q) = 1 and therefore KX + M is not very ample.
716
+
717
+ Example 5.2. The case k = 3 occurs on any curve X with (necessarily) odd genus g ≥ 9. This was
718
+ suggested to us by E. Sernesi, whom we thank.
719
+ Proof. Let d = 3(g−1)
720
+ 2
721
+ . We claim that a general H ∈ Picd(X) is very ample. In fact, first observe that
722
+ H1(H) = 0, for otherwise KX − H ≥ 0. But KX − H is a general line bundle of degree g−1
723
+ 2
724
+ ≤ g − 1,
725
+ hence h0(KX − H) = 0. Now, if H were not very ample, there will be two points p, q ∈ X such that
726
+ h0(H − p − q) ≥ h0(H) − 1. But this can be rewritten, by Riemann-Roch, as h1(H − p − q) ≥ 1, that
727
+ is KX − H + p + q ≥ 0. Hence there are some points p1, . . . , p g+3
728
+ 2
729
+ ∈ X such that
730
+ KX − H + p + q ∼ p1 + . . . + p g+3
731
+ 2
732
+ that is
733
+ H ∼ KX − p1 − . . . − p g+3
734
+ 2
735
+ + p + q.
736
+
737
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
738
+ 11
739
+ This means that H is in the image of the morphism h : X
740
+ g+7
741
+ 2
742
+ → Picd(X) sending (p1, . . . , p g+3
743
+ 2 , p, q) to
744
+ KX − p1 − . . . − p g+3
745
+ 2
746
+ + p + q. But dim Imh ≤ g+7
747
+ 2
748
+ < g, contradicting that H is general. This proves
749
+ that there is a non-empty open subset W of Picd(X) such that any H ∈ W is very ample.
750
+ Consider the surjective morphism ψ : Picd(X) → Pic3g−3(X) given by ψ(L) = 2L and the isomor-
751
+ phism ϕ : Pic3g−3(X) → Picg−1(X) given by ϕ(L) = L − KX. Let U be the non-empty open subset
752
+ of Picg−1(X) such that Hi(M) = 0 for i ≥ 0 for any M ∈ U. Now let H ∈ ψ−1(ϕ−1(U)) ∩ V ∩ W.
753
+ Then H is very ample and 2H = KX + M. In the embedding given by H we have that Hi(TX(2)) =
754
+ Hi(−KX + 2H) = Hi(M) = 0 for i ≥ 0, hence TX(3) is Ulrich.
755
+
756
+ Remark 5.3. If k ≥ 1 and g − 1 is a prime number, then k ∈ {2, 4}.
757
+ Proof. By Lemma 4.3(i) we get that (k − 1)d = 3(g − 1) and g ≥ 2, hence d ≥ 4. If 3 does not divide
758
+ k − 1 we get that 3 divides d and (k − 1)d
759
+ 3 = g − 1, so that k = 2. If 3 divides k − 1 we get that
760
+ k−1
761
+ 3 d = g − 1, so that k = 4.
762
+
763
+ Example 5.4. Every odd k ≥ 3 occurs.
764
+ Proof. Let E be an elliptic curve, let D be a divisor of degree 3 on E and let S = E × P1 with two
765
+ projections π1 : S → E, π2 : S → P1. Set C0 = π∗
766
+ 2(OP1(1)). Then H = C0 + π∗
767
+ 1D is very ample on S.
768
+ Let M ∈ Pic0(E) be not 2-torsion and let B = k−1
769
+ 2 D + M. Again H1 := (k + 2)C0 + π∗
770
+ 1B is very ample
771
+ on S. Set
772
+ L = −KS + (k − 1)H = (k + 1)C0 + π∗
773
+ 1(2B − 2M)
774
+ so that
775
+ L − H1 = −C0 + π∗
776
+ 1(B − 2M)
777
+ while
778
+ L − 2H1 = −(k + 3)C0 + π∗
779
+ 1(−2M)
780
+ and it is easily seen by the K¨unneth formula, that Hi(L − pH1) = 0 for i ≥ 0, 1 ≤ p ≤ 2. Hence, if
781
+ X ∈ |H1| is a smooth irreducible curve, the exact sequence
782
+ 0 → L − 2H1 → L − H1 → TX(k − 1) → 0
783
+ shows that Hi(TX(k − 1)) = 0 for i ≥ 0, that is TX(k) is an Ulrich line bundle.
784
+
785
+ We now give a bound for k.
786
+ We first analyze a special case.
787
+ We use the notation (a; b1, b2, b3, b4, b5, b6) ∈ Z7 for the divisor
788
+ aε∗L − �6
789
+ i=1 biEi on a smooth cubic W ⊂ P3, where ε : W → P2 is the blow up in six points, no three
790
+ collinear and not on a conic, with exceptional divisors Ei and L is a line in P2.
791
+ Lemma 5.5. Let X ⊂ P3 be a smooth irreducible curve of genus 3 and degree 6 lying on a smooth cubic
792
+ W. Then TX(2) is Ulrich if and only if X is linearly equivalent to one of the following divisors on W:
793
+ (5.1)
794
+ (4; 1, 1, 1, 1, 1, 1), (5; 2, 2, 2, 1, 1, 1), (6; 3, 2, 2, 2, 2, 1), (7; 3, 3, 3, 2, 2, 2), (8; 3, 3, 3, 3, 3, 3).
795
+ Proof. Let D = −KW .
796
+ We have that D · X = 6 and X2 = 10.
797
+ Thus Riemann-Roch gives that
798
+ χ(2D − X) = 0. Further, D(2D − X) = 0, whence H0(2D − X) = 0, for otherwise X ∼ 2D and then
799
+ X2 = 12, a contradiction. Also, D(−3D + X) = −3, whence H0(−3D + X) = 0, which, be Serre’s
800
+ duality, is H2(2D − X) = 0. Thus, also H1(2D − X) = 0. Now the exact sequence
801
+ 0 → 2D − 2X → 2D − X → TX(1) → 0
802
+ gives that
803
+ h1(TX(1)) = h2(2D − 2X) = h0(3KW + 2X)
804
+ by Serre’s duality. Since deg TX(1) = 2, we deduce by Riemann-Roch, that TX(2) is Ulrich if and only
805
+ if H1(TX(1)) = 0, hence
806
+ (5.2)
807
+ TX(2) is Ulrich if and only if H0(3KW + 2X) = 0.
808
+ Let (a; b1, · · · , b6) with b1 ≥ b2 ≥ · · · ≥ b6 ≥ 0 be the class of X. It follows from the assumption on
809
+ degree and genus that (A.7) holds, whence X is as in (5.1) by Lemma A.2. Using (5.2), it remains to
810
+ show that H0(3KW + 2X) = 0 in all of these cases.
811
+
812
+ 12
813
+ A.F. LOPEZ, D. RAYCHAUDHURY
814
+ In case (4; 1, 1, 1, 1, 1, 1), we have that 3KW + 2X = (−1; 1, 1, 1, 1, 1, 1) is clearly not effective.
815
+ In case (5; 2, 2, 2, 1, 1, 1), we have that 3KW + 2X = (1; −1, −1, −1, 1, 1, 1). If it were effective, then
816
+ so would be (1; 0, 0, 0, 1, 1, 1), a contradiction since no three blown-up points are collinear.
817
+ In case (6; 3, 2, 2, 2, 2, 1), we have that 3KW + 2X = (3; 3, 1, 1, 1, 1, −1). Assume it is effective. In-
818
+ tersecting with (1; 1, 1, 0, 0, 0, 0) we see that (2; 2, 0, 1, 1, 1, −1) must be effective. Intersecting the latter
819
+ with (1; 1, 0, 1, 0, 0, 0) we conclude that (1; 1, 0, 0, 1, 1, −1) must be effective, hence also (1; 1, 0, 0, 1, 1, 0),
820
+ a contradiction since no three blown-up points are collinear.
821
+ In case (7; 3, 3, 3, 2, 2, 2), we have that 3KW + 2X = (5; 3, 3, 3, 1, 1, 1). Assume it is effective. In-
822
+ tersecting with (1; 1, 1, 0, 0, 0, 0) we see that (4; 2, 2, 3, 1, 1, 1) must be effective. Intersecting the latter
823
+ with (1; 1, 0, 1, 0, 0, 0) we conclude that (3; 1, 2, 2, 1, 1, 1) must be effective. Finally, intersecting with
824
+ (1; 0, 1, 1, 0, 0, 0) we conclude that (2; 1, 1, 1, 1, 1, 1) must be effective, a contradiction since the blown-
825
+ up points do not lie on a conic.
826
+ In case (8; 3, 3, 3, 3, 3, 3), we have that 3KW +2X = (7; 3, 3, 3, 3, 3, 3). Observe that D(3KW +2X) = 3.
827
+ Thus, if 3KW + 2X were effective, it would contain a divisor Γ that is either irreducible, or is a union
828
+ of three lines, or is a union of a line and a conic. Now pa(Γ) = −3, hence Γ is not irreducible. On the
829
+ other hand, since the first coefficient of a line in W is at most 2 and of a conic at most 3, we see that
830
+ Γ, whose first coefficient is 7, is not a union of three lines nor of a line and a conic. This contradiction
831
+ shows that 3KW + 2X is not effective.
832
+
833
+ Now we give the sharp bound.
834
+ Proof of Theorem 1. First assume that g = 0. Then Lemma 4.3(i) gives that k ≤ 0, that is the required
835
+ bound, and if equality holds, then Theorem 4.9 shows that X is a curve of type (1, 2) on a smooth
836
+ quadric.
837
+ Thus, by Lemma 4.3(i), we can now assume that g ≥ 2.
838
+ Observe that h0(H) ≥ 4. In fact, the only possibility remaining is that h0(H) = 3. But then KX =
839
+ (d−3)H, g =
840
+ �d−1
841
+ 2
842
+
843
+ and k = 3(d−3)
844
+ 2
845
+ +1 by Lemma 4.3(i). Now 0 = H0(TX(k −1)) = H0((−d+2+k)H)
846
+ and therefore −d + 2 + k ≤ −1, giving the contradiction d ≤ 1.
847
+ Now, if X has general moduli, since it has a g3
848
+ d, the Brill-Noether theorem implies that ρ(g, 3, d) ≥ 0,
849
+ that is d ≥ 3g+12
850
+ 4
851
+ . By Lemma 4.3(i) we get that 3(g−1)
852
+ k−1
853
+ ≥ 3g+12
854
+ 4
855
+ , that gives k ≤ 4. This proves the last
856
+ assertion of the theorem.
857
+ Turning to the first assertion, let X ⊆ PN be a smooth irreducible curve of genus g ≥ 2 such that
858
+ TX(k) is an Ulrich line bundle and assume that
859
+ k ≥
860
+ √8g + 1 − 1
861
+ 2
862
+ .
863
+ Using Lemma 4.3(i), the above inequality can be rephrased as
864
+ (5.3)
865
+ g ≥ 2
866
+ 9d2 − d + 1.
867
+ Consider a general projection X′ of X to P3. Note that X′ ∼= X, hence TX′(k) is Ulrich. We first observe
868
+ that X′ cannot be a complete intersection (hence, in particular, X′ is nondegenerate), for otherwise
869
+ TX′(k) = lH for some l ∈ Z. Now TX′(k), being Ulrich, is globally generated by Lemma 3.2(vi), hence
870
+ l ≥ 0. Also 0 = H0(TX′(k − 1)) = H0((l − 1)H) and therefore l = 0. Hence Lemma 3.2(vii) gives that
871
+ d = h0(TX′(k)) = 1, a contradiction.
872
+ Using Lemma 4.3(i) and Castelnuovo’s bound, we get that either (d, g, k) = (6, 3, 2) or d ≥ 7.
873
+ Suppose that d ≥ 7.
874
+ We aim to show that X′ must lie on a smooth quadric.
875
+ To this end, observe that (5.3) and Lemma 4.3(i) imply that
876
+ (5.4)
877
+ g >
878
+
879
+ 1
880
+ 6d(d − 3) + 1
881
+ if d ≡ 0 (mod 3)
882
+ 1
883
+ 6d(d − 3) + 1
884
+ 3
885
+ if d ≡ 1, 2 (mod 3)
886
+ unless d = 9 and g = 10. But in the latter case it is easy to show that if X′ does not lie on a quadric,
887
+ then it is a complete intersection of two cubics, a contradiction. Therefore (5.4) and [Ha2, Thm. 3.2]
888
+ give that X′ lies on a quadric Q. Moreover Q is smooth, for otherwise it must be a cone, d = 2b + 1 is
889
+
890
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
891
+ 13
892
+ odd and g = b2 − b by [Ha1, Ex. V.2.9]. But then Lemma 4.3(i) gives that 4(k − 1) = 6b − 9 −
893
+ 3
894
+ 2b+1,
895
+ and therefore b = 1, a contradiction.
896
+ Thus X′ is a curve of type (a, b) on Q, with 2 ≤ a ≤ b. In particular X′ is linearly normal, hence
897
+ X = X′. In the exact sequence
898
+ 0 → OQ(k + 1 − 2a, k + 1 − 2b) → OQ(k + 1 − a, k + 1 − b) → TX(k − 1) → 0
899
+ since H0(TX(k − 1)) = 0, we get that
900
+ H0(OQ(k + 1 − 2a, k + 1 − 2b)) = H0(OQ(k + 1 − a, k + 1 − b))
901
+ hence k + 1 − b ≤ −1, for otherwise k + 1 − a ≥ k + 1 − b ≥ 0, but then X is a base-component of
902
+ |OQ(k + 1 − a, k + 1 − b)|, contradicting the fact that this linear system is base-point-free. Therefore
903
+ b ≥ k + 2. Moreover Lemma 4.3(i) can be rewritten now as
904
+ (a + b)(k − 1) = 3((a − 1)(b − 1) − 1)
905
+ that is
906
+ a =
907
+ b(k + 2)
908
+ 3b − k − 2
909
+ and it is readily seen that b ≥ k + 2 is equivalent to a ≤ k
910
+ 2 + 1. Therefore b ≥ 2a. But the maximum
911
+ genus of a curve of type (a, b) with b ≥ 2a and degree d is attained when b = 2
912
+ 3d. Therefore
913
+ g ≤ (1
914
+ 3d − 1)(2
915
+ 3d − 1) = 2
916
+ 9d2 − d + 1.
917
+ This shows that the inequality in (5.3) cannot be strict, and therefore g ≤ 2
918
+ 9d2−d+1, which is equivalent
919
+ to (1.1). Moreover, if equality holds in (1.1), then it holds in (5.3) and therefore X is a curve of type
920
+ (a, b) with b = 2
921
+ 3d, hence b = 2a and 2a = b ≥ k + 2 ≥ 2a, so that k is even, a = k
922
+ 2 + 1 and b = k + 2.
923
+ Next consider the only remaining case, (d, g, k) = (6, 3, 2).
924
+ Again X′ is linearly normal, hence X = X′. Also we have equality in (5.3) and if X lies on a quadric,
925
+ then it must be of type (2, 4) and we are done in this case. Suppose therefore that X does not lie on
926
+ a quadric. Then it is easily seen that JX/P3(3) is 0-regular, hence globally generated, and we get that
927
+ X is contained in a smooth cubic. Therefore X is one of the curves (5.1) by Lemma 5.5 and TX(2) is
928
+ Ulrich.
929
+ Finally, to show that the bound (1.1) is sharp for every even k ≥ 0, let X be a curve of type
930
+ (k
931
+ 2 + 1, k + 2) on a smooth quadric Q ⊂ P3, so that k =
932
+ √8g+1−1
933
+ 2
934
+ . It remains to show that TX(k) is
935
+ Ulrich. Set k = 2c. We have
936
+ TX(k − 1) = −KX + (k − 1)H = OQ(c, −1)|X
937
+ and the exact sequence
938
+ 0 → OQ(−1, −2c − 3) → OQ(c, −1) → OQ(c, −1)|X → 0
939
+ shows that Hi(OQ(c, −1)|X) = 0 for i ≥ 0, since Hi(OQ(c, −1)) = Hi(OQ(−1, −2c − 3)) = 0 for i ≥ 0.
940
+ Hence TX(k) is Ulrich.
941
+
942
+ 6. Surfaces
943
+ Throughout this section we will have that X ⊆ PN is a smooth irreducible surface.
944
+ We start by a characterization.
945
+ Lemma 6.1. Let X ⊆ PN be a smooth irreducible surface. Then TX(k) is an Ulrich vector bundle if
946
+ and only if
947
+ (i) d = 4(g−1)
948
+ 2k−1
949
+ (ii) HKX = (2k−3)d
950
+ 2
951
+ .
952
+ (iii) K2
953
+ X = 5χ(OX) + (k−1)(k−2)d
954
+ 2
955
+ .
956
+ (iv) H0(TX(k − 1)) = 0.
957
+ (v) H2(TX(k − 2)) = 0.
958
+ Proof. Note that (i) and (ii) are equivalent, since HKX = 2(g − 1) − d. Now (ii) and (iii) are the
959
+ conditions (2.2) in [C1, Prop. 2.1]. Hence the lemma follows by loc. cit.
960
+
961
+
962
+ 14
963
+ A.F. LOPEZ, D. RAYCHAUDHURY
964
+ Now we show the possible cases.
965
+ Proposition 6.2. Let X ⊆ PN be a smooth irreducible surface. If TX(k) is an Ulrich vector bundle,
966
+ the following hold:
967
+ (i) 0 ≤ k ≤ 3.
968
+ Moreover, either
969
+ (ii) k = 0 and (X, H) = (P2, OP2(2)), or
970
+ (iii) k = 1 and X is a Del Pezzo surface of degree 5, or
971
+ (iv) k = 2, q = 0 and X is a minimal surface of general type, or
972
+ (v) k = 3, X is a minimal surface of general type with 2KX ≡ 3H, K2
973
+ X = 9d
974
+ 4 , χ(OX) = d
975
+ 4. Moreover
976
+ X is a ball quotient.
977
+ Proof. We have that k ≥ 0 by Lemma 4.2(i).
978
+ Now H1(TX) = 0 by Lemma 4.2(iv), that is X is
979
+ infinitesimally rigid and [BC, Thm. 1.3] implies that either X is a minimal surface of general type or
980
+ X is a Del Pezzo surface of degree j ≥ 5. In the latter case we have that HKX < 0 hence either k = 0
981
+ and we get (ii) by Theorem 4.9, or k = 1 and K2
982
+ X = 5 by Lemma 6.1(ii),(iii). This gives (iii). On the
983
+ other hand, if X is a minimal surface of general type then HKX > 0, hence k ≥ 2 by Lemma 6.1(ii).
984
+ Next, the Hodge index theorem H2K2
985
+ X ≤ (HKX)2 can be rewritten, using Lemma 6.1(ii),(iii) as
986
+ χ(OX) ≤ (2k2 − 6k + 5)d
987
+ 20
988
+ .
989
+ Similarly, the Bogomolov-Miyaoka-Yau inequality K2
990
+ X ≤ 9χ(OX) can be rewritten as
991
+ χ(OX) ≥ (k2 − 3k + 2)d
992
+ 8
993
+ .
994
+ Combining we get that
995
+ (k2 − 3k + 2)d
996
+ 8
997
+ ≤ (2k2 − 6k + 5)d
998
+ 20
999
+ and this gives that k ≤ 3 and moreover that, if k = 3, then equality holds in both inequalities. Hence,
1000
+ when k = 3 we have, as is well known, that X is a ball quotient and that H2KX ≡ (HKX)H, that is
1001
+ 2KX ≡ 3H. Then K2
1002
+ X = 9d
1003
+ 4 and χ(OX) = d
1004
+ 4. Thus (i) and (v) are proved. Alternatively (i) follows
1005
+ by Theorem 2. To see (iv) observe that since k = 2 we have by the above that X is a minimal surface
1006
+ of general type. Now if pg = 0 then q = 0 by [Be2, Lemma VI.1 and Prop. X.1]. If pg ̸= 0 we have
1007
+ an inclusion H0(Ω1
1008
+ X) ⊆ H0(Ω1
1009
+ X(KX)) hence q = h0(Ω1
1010
+ X) ≤ h0(Ω1
1011
+ X(KX)) = h2(TX) = 0 since TX(2) is
1012
+ Ulrich. This proves (iv).
1013
+
1014
+ We now characterize the case k = 1 for surfaces.
1015
+ Theorem 6.3. Let X ⊆ PN be a smooth irreducible surface. Then TX(1) is an Ulrich vector bundle if
1016
+ and only if X is a Del Pezzo surface of degree 5 and H = −2KX. Moreover in the latter case TX(1) is
1017
+ very ample.
1018
+ Proof. If TX(1) is an Ulrich vector bundle, then Proposition 6.2 implies that X is a Del Pezzo surface
1019
+ of degree 5 and H2 + 2HKX = 0. Let ε : X → P2 be the blow-up map, with exceptional divisors Ei
1020
+ over the points Pi ∈ P2, 1 ≤ i ≤ 4 and let L be a line in P2. Then we can write
1021
+ H ∼ aε∗L −
1022
+ 4
1023
+
1024
+ i=1
1025
+ biEi
1026
+ and, as H is very ample, we have, without loss of generality,
1027
+ b1 ≥ b2 ≥ b3 ≥ b4 ≥ 1, a ≥ b1 + b2 + 1
1028
+ and H2 + 2HKX = 0 is
1029
+ a2 − 6a + 4 =
1030
+ 4
1031
+
1032
+ i=1
1033
+ (bi − 1)2.
1034
+ Setting ci = bi − 1, we get by Lemma A.1 the following possibilities:
1035
+ (a; b1, b2, b3, b4) ∈ {(6; 3, 1, 1, 1), (6; 2, 2, 2, 2), (7; 4, 2, 2, 1), (9; 4, 4, 4, 3)}.
1036
+
1037
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1038
+ 15
1039
+ In the case (6; 2, 2, 2, 2) we have that H = −2KX. We now exclude the other cases.
1040
+ Let H = 6ε∗L − 3E1 − E2 − E3 − E4. We will prove that h2(TX(−1)) = h0(Ω1
1041
+ X(H + KX)) ̸= 0, so
1042
+ that TX(1) cannot be an Ulrich vector bundle. To this end observe that, since ε∗Ω1
1043
+ P2 ⊂ Ω1
1044
+ X, we will be
1045
+ done in this case if we prove that
1046
+ H0(ε∗Ω1
1047
+ P2(H + KX)) ̸= 0.
1048
+ Now H + KX = 3ε∗L − 2E1, hence
1049
+ H0(ε∗Ω1
1050
+ P2(H + KX)) ∼= H0(IZ ⊗ Ω1
1051
+ P2(3))
1052
+ where Z ⊂ P2 is the 0-dimensional subscheme of length 2 supported on P1. Finally
1053
+ h0(IZ ⊗ Ω1
1054
+ P2(3)) ≥ h0(Ω1
1055
+ P2(3)) − 6 = 2 > 0
1056
+ and we are done in this case.
1057
+ Consider now the exact sequences, for any 1 ≤ i ≤ 4,
1058
+ 0 → OEi(−Ei) → Ω1
1059
+ X|Ei → Ω1
1060
+ Ei → 0
1061
+ that is
1062
+ 0 → OP1(1) → Ω1
1063
+ X|Ei → OP1(−2) → 0
1064
+ from which we get, for any 1 ≤ i ≤ 4, that
1065
+ (6.1)
1066
+ h1(Ω1
1067
+ X|Ei) = 1
1068
+ and
1069
+ (6.2)
1070
+ H1(Ω1
1071
+ X |Ei ⊗ OP1(2)) = 0.
1072
+ In the two remaining cases we will prove that h1(TX(−1)) = h1(Ω1
1073
+ X(H + KX)) ̸= 0.
1074
+ Let H = 7ε∗L − 4E1 − 2E2 − 2E3 − E4.
1075
+ Note that H + KX − E4 + E1 = 4ε∗L − 2E1 − E2 − E3 − E4 is very ample by [DR, Cor. 4.6], hence
1076
+ H2(Ω1
1077
+ X(H + KX − E4 + E1)) = 0
1078
+ by Bott vanishing [T, Thm. 2.1]. Then the exact sequence
1079
+ 0 → Ω1
1080
+ X(H + KX − E4) → Ω1
1081
+ X(H + KX − E4 + E1) → Ω1
1082
+ X|E1(H + KX − E4 + E1) → 0
1083
+ and (6.2) imply that H2(Ω1
1084
+ X(H + KX − E4)) = 0. Now the exact sequence
1085
+ 0 → Ω1
1086
+ X(H + KX − E4) → Ω1
1087
+ X(H + KX) → Ω1
1088
+ X|E4(H + KX) → 0
1089
+ and (6.1) imply that
1090
+ h1(Ω1
1091
+ X(H + KX)) ≥ h1(Ω1
1092
+ X |E4(H + KX)) = h1(Ω1
1093
+ X|E4) = 1.
1094
+ Let H = 9ε∗L − 4E1 − 4E2 − 4E3 − 3E4.
1095
+ Let C ∈ |ε∗L − E2 − E3| be the strict transform of a line through P2 and P3. Note that H + KX −
1096
+ C + E1 = 5ε∗L − 2E1 − 2E2 − 2E3 − 2E4 is very ample by [DR, Cor. 4.6], hence
1097
+ H2(Ω1
1098
+ X(H + KX − C + E1)) = 0
1099
+ by Bott vanishing [T, Thm. 2.1]. Then the exact sequence
1100
+ 0 → Ω1
1101
+ X(H + KX − C) → Ω1
1102
+ X(H + KX − C + E1) → Ω1
1103
+ X|E1(H + KX − C + E1) → 0
1104
+ and (6.2) imply that H2(Ω1
1105
+ X(H + KX − C)) = 0. Now the exact sequence
1106
+ 0 → OC(−C) → Ω1
1107
+ X|C → Ω1
1108
+ C → 0
1109
+ that is
1110
+ 0 → OP1(1) → Ω1
1111
+ X|C → OP1(−2) → 0
1112
+ gives that h1(Ω1
1113
+ X |C) = 1. Finally, from the exact sequence
1114
+ 0 → Ω1
1115
+ X(H + KX − C) → Ω1
1116
+ X(H + KX) → Ω1
1117
+ X|C(H + KX) → 0
1118
+ using that (H + KX)C = 0, we get that
1119
+ h1(Ω1
1120
+ X(H + KX)) ≥ h1(Ω1
1121
+ X|C(H + KX)) = h1(Ω1
1122
+ X|C) = 1.
1123
+
1124
+ 16
1125
+ A.F. LOPEZ, D. RAYCHAUDHURY
1126
+ This completes the proof under the assumption that TX(1) is an Ulrich vector bundle.
1127
+ Suppose now that X is a Del Pezzo surface of degree 5 and H = −2KX. Setting k = 1 in Lemma
1128
+ 6.1, we have that d = 4(g − 1) and, in order to verify that TX(1) is an Ulrich vector bundle, we need to
1129
+ check that H0(TX) = H2(TX(−1)) = 0. The first vanishing is well known. As for the second, we first
1130
+ observe that for i < 2 we have
1131
+ hi(TX(−1)) = h2−i(Ω1
1132
+ X(H + KX)) = h2−i(Ω1
1133
+ X(−KX)) = 0
1134
+ by Bott vanishing [T, Thm. 2.1]. Therefore h2(TX(−1)) = χ(TX(−1)) = d − 4(g − 1) = 0. Finally, as
1135
+ X does not contain lines in the embedding given by H = −2KX, we have that TX(1) is very ample by
1136
+ [LS, Thm. 1]
1137
+
1138
+ 7. Properties of complete intersections
1139
+ We collect some properties inherited by the complete intersections Xi of X (as in Notation 2.1),
1140
+ when TX(k) is an Ulrich vector bundle.
1141
+ Lemma 7.1. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Then q(X) = q(Xi) for
1142
+ 2 ≤ i ≤ n.
1143
+ Proof. By Kodaira vanishing we have that H1(OXi+1(−1)) = H2(OXi+1(−1)) = 0 as long as 2 ≤ i ≤
1144
+ n − 1. Then the exact sequences
1145
+ 0 → OXi+1(−1) → OXi+1 → OXi → 0
1146
+ imply that h1(OXi+1) = h1(OXi) for every 2 ≤ i ≤ n − 1, hence q(X) = q(Xi) for 2 ≤ i ≤ n.
1147
+
1148
+ Lemma 7.2. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Suppose that k ≤ n − 2
1149
+ and that TX(k) is Ulrich. Then Hi(OXi) = 0 for all i such that max{1, k + 1} ≤ i ≤ n − 1.
1150
+ Proof. Assume that max{1, k + 1} ≤ i ≤ n − 1. Since TX|Xi(k) is Ulrich, it follows by Lemma 3.2(iv)
1151
+ that Hi(TX |Xi(k + m)) = 0 for all m ≥ −i, hence Hi(TX |Xi(−1)) = 0. Now the exact sequence
1152
+ 0 → TXi(−1) → TX|Xi(−1) → O⊕(n−i)
1153
+ Xi
1154
+ → 0
1155
+ implies that Hi(OXi) = 0.
1156
+
1157
+ Lemma 7.3. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Suppose that k ≤ n − 1
1158
+ and that TX(k) is Ulrich. Assume that Hi(OX) = 0 for all i ≥ 1. Then Hi(OXj) = 0 for all i ≥ 1 and
1159
+ for all j such that max{1, k + 1} ≤ j ≤ n.
1160
+ Proof. Assume that i ≥ 1 and max{1, k + 1} ≤ j ≤ n. We prove the lemma by induction on n − j ≥ 0.
1161
+ If n − j = 0 then Xj = Xn = X and Hi(OX) = 0 for all i ≥ 1 just by our assumption.
1162
+ Next suppose that n − j ≥ 1, so that max{1, k + 1} ≤ j ≤ n − 1, hence, in particular k ≤ n − 2.
1163
+ Consider the exact sequence
1164
+ 0 → OXj+1(−1) → OXj+1 → OXj → 0.
1165
+ If j = i, we have that Hj(OXj) = 0 by Lemma 7.2. Also, we have by induction that Hi(OXj+1) = 0.
1166
+ Now Hi+1(OXj+1(−1)) = 0 by Kodaira vanishing if i+1 < j+1 and by dimension reasons if i+1 > j+1.
1167
+ Thus Hi(OXj) = 0 if i ̸= j and we are done.
1168
+
1169
+ We now collect some properties of the Xi’s that hold when TX(1) is Ulrich.
1170
+ Lemma 7.4. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Suppose that n ≥ 2 and
1171
+ that TX(1) is an Ulrich vector bundle. Then:
1172
+ (i) H1(OXi) = 0 for 2 ≤ i ≤ n.
1173
+ (ii) H2(OXi) = 0 for 1 ≤ i ≤ n.
1174
+ (iii) H1(OXi(1)) = 0 for 1 ≤ i ≤ n.
1175
+ (iv) H2(OXi(1)) = 0 for 1 ≤ i ≤ n.
1176
+ (v) h0(OXi(1)) = d − g + i for 1 ≤ i ≤ n.
1177
+ (vi) d ≥ n + 3.
1178
+
1179
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1180
+ 17
1181
+ Proof. We have Hi(OX) = 0 for i ≥ 1 by Lemma 4.3(iii). Now (i) follows by Lemma 7.1 and (ii) follows
1182
+ by Lemma 7.3. To see (iii) observe that, if i = 1 we have that X1 = C and TX(1)|C is an Ulrich vector
1183
+ bundle on C by Lemma 3.2(ix), hence H1(TX |C) = 0. Then the exact sequence
1184
+ 0 → TC → TX|C → OC(1)⊕(n−1) → 0
1185
+ shows that H1(OC(1)) = 0. If i ≥ 2, since H1(OXi) = 0 by (i), the exact sequences
1186
+ (7.1)
1187
+ 0 → OXi → OXi(1) → OXi−1(1) → 0
1188
+ imply by induction that H1(OXi(1)) = 0 and we get (iii). Now (iv) is obvious for i = 1, while, for
1189
+ i ≥ 2, the exact sequences (7.1) and (ii) show by induction that H2(OXi(1)) = 0. This proves (iv).
1190
+ Note that (v) follows for i = 1 by Riemann-Roch and (iii). For i ≥ 2, the exact sequences (7.1) and
1191
+ (i) show by induction that h0(OXi(1)) = 1 + h0(OXi−1(1)) = d − g + i, that is (v). Finally, to see (vi),
1192
+ observe that g − 1 = n−1
1193
+ n+2d by Lemma 4.3(i), hence g ≥ 2 and (v) gives that
1194
+ 3d
1195
+ n+2 = h0(OC(1)) ≥ 3, so
1196
+ that d ≥ n + 2. Moreover, if equality holds, we get that g = n and h0(OX(1)) = n + 2 by (v), hence
1197
+ X ⊂ PH0(H) = Pn+1 is a hypersurface of degree n + 2, so that KX = 0, contradicting Lemma 4.3(ii).
1198
+ Hence (vi) is proved.
1199
+
1200
+ 8. TX(k) Ulrich and special varieties in adjunction theory
1201
+ In this section we exclude some special varieties frequently arising in adjunction theory, under the
1202
+ hypothesis that TX(k) is an Ulrich vector bundle. The cases (X, H) = (Pn, OPn(1)), (Qn, OQn(1)) have
1203
+ been already treated in Lemmas 4.1 and 4.5.
1204
+ We start by recalling the following (see [BS, I]).
1205
+ Definition 8.1. Let E be an effective divisor on (X, H). The divisor E is called exceptional
1206
+ (i) of type 1 if (E, H|E) ∼= (Pn−1, OPn−1(1)) and NE/X ∼= OPn−1(−1),
1207
+ (ii) of type 2 if (E, H|E) ∼= (Pn−1, OPn−1(1)) and NE/X ∼= OPn−1(−2),
1208
+ (iii) of type 3 if (E, H|E) ∼= (Qn−1, OQn−1(1)) and NE/X ∼= OQn−1(−1),
1209
+ (iv) of type 4 if (E, H|E) is a linear Pn−2-bundle over a smooth curve B and (NE/X)|F ∼= OPn−2(−1),
1210
+ where F is a fiber of the structure morphism E → B.
1211
+ Often these exceptional divisors will not be present under the condition that TX(k) is Ulrich. To see
1212
+ this we first prove
1213
+ Lemma 8.2. Let W be a variety of dimension s ≥ 1 and let OW (1) be a very ample line bundle. Then
1214
+ Ω1
1215
+ W(1) is not globally generated if:
1216
+ (i) (W, OW (1)) ∼= (Ps, OPs(1)).
1217
+ (ii) (W, OW (1)) is a (possibly singular) quadric hypersurface in Ps+1 and s ≥ 2.
1218
+ (iii) (W, OW (1)) is a smooth Del Pezzo variety, s ≥ 2 and (W, OW (1)) ̸∈ {(P2, OP2(3)), (Q2, OQ2(2)),
1219
+ (P3, OP3(2))}.
1220
+ Proof. (i) follows from det(Ω1
1221
+ Ps(1)) = OPs(−1). To see (ii), observe that the restricted Euler sequence
1222
+ 0 → Ω1
1223
+ Ps+1|W (1) → H0(OW (1)) ⊗ OW → OW (1) → 0
1224
+ implies that H0(Ω1
1225
+ Ps+1|W(1)) = 0. Now the exact sequence
1226
+ 0 → OPs+1(−3) → OPs+1(−1) → OW (−1) → 0
1227
+ implies that H1(OW (−1)) = 0 and the dual normal bundle sequence
1228
+ 0 → OW (−1) → Ω1
1229
+ Ps+1|W(1) → Ω1
1230
+ W(1) → 0
1231
+ gives that H0(Ω1
1232
+ W (1)) = 0, hence Ω1
1233
+ W(1) is not globally generated. Next, to see (iii), observe that,
1234
+ from the classification of Del Pezzo varieties [IP, Thm. 3.3.1] it follows, for the surface section W2, that
1235
+ (W2, OW2(1)) ̸∈ {(P2, OP2(3)), (Q2, OQ2(2)). Hence, as is well known, W2, and hence W, contains a line
1236
+ L. But now the surjection Ω1
1237
+ W(1) → Ω1
1238
+ L(1) = OP1(−1) gives that Ω1
1239
+ W(1) is not globally generated.
1240
+
1241
+ Now
1242
+
1243
+ 18
1244
+ A.F. LOPEZ, D. RAYCHAUDHURY
1245
+ Lemma 8.3. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Assume that TX(k) is
1246
+ an Ulrich vector bundle. We have:
1247
+ (i) If k ≥ 1 and n ≥ 2, then (X, H) does not contain any exceptional divisor of type 1.
1248
+ (ii) If k ≥ 2 and n ≥ 2, then (X, H) does not contain any exceptional divisor of type 2.
1249
+ (iii) If k ≥ 2 and n ≥ 3, then (X, H) does not contain any exceptional divisors of types 3 or 4.
1250
+ Proof. Let E be an exceptional divisor. It follows from Lemma 4.6 that Ω1
1251
+ E(KX |E + (n + 1 − k)H|E) is
1252
+ globally generated. Now
1253
+ Ω1
1254
+ E(KX |E + (n + 1 − k)H|E) ∼=
1255
+
1256
+
1257
+
1258
+
1259
+
1260
+ Ω1
1261
+ Pn−1(2 − k)
1262
+ if E is of type 1;
1263
+ Ω1
1264
+ Pn−1(3 − k)
1265
+ if E is of type 2;
1266
+ Ω1
1267
+ Qn−1(3 − k)
1268
+ if E is of type 3.
1269
+ Further, when E is of type 4, let F be a fiber of the structure morphism of E. Again it follows from
1270
+ Lemma 4.6 that Ω1
1271
+ F (KX |F + (n + 1 − k)H|F ) ∼= Ω1
1272
+ Pn−2(3 − k) is globally generated. Consequently, we
1273
+ draw the conclusions from Lemma 8.2.
1274
+
1275
+ We now recall
1276
+ Definition 8.4. We say that (X, H) is a linear Pk-bundle over a smooth variety B if (X, H) ∼=
1277
+ (P(F), OP(F)(1)), where F is a very ample vector bundle on B of rank k + 1.
1278
+ We say that (X, H) as above is a scroll (respectively a quadric fibration; respectively a Del Pezzo
1279
+ fibration) over a normal variety Y of dimension m if there exists a surjective morphism with connected
1280
+ fibers φ : X → Y such that KX +(n−m+1)H = φ∗L (respectively KX +(n−m)H = φ∗L; respectively
1281
+ KX + (n − m − 1)H = φ∗L), with L ample on Y .
1282
+ We now use the fibration to exclude several varieties as above, when TX(k) is an Ulrich vector bundle.
1283
+ Lemma 8.5. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 1. Assume that TX(k) is
1284
+ an Ulrich vector bundle. Let f : X → B be a fibration onto a normal variety B of dimension m ≥ 1,
1285
+ with general fiber F. Then:
1286
+ (i) If m ≤ min{n − 1, k + 1}, then (F, H|F ) ̸= (Pn−m, OPn−m(1)).
1287
+ (ii) If m ≤ min{n − 2, k}, then (F, H|F) ̸= (Qn−m, OQn−m(1)).
1288
+ (iii) if m ≤ min{n − 2, k − 1}, then (F, H|F) is not a Del Pezzo variety, unless (F, H|F) ∈
1289
+ {(P2, OP2(3)), (Q2, OQ2(2)), (P3, OP3(2))}.
1290
+ Proof. We have that
1291
+ Ω1
1292
+ F(KF + (n + 1 − k)H|F) ∼=
1293
+
1294
+
1295
+
1296
+
1297
+
1298
+ Ω1
1299
+ Pn−m(m − k)
1300
+ if (F, H|F) = (Pn−m, OPn−m(1));
1301
+ Ω1
1302
+ Qn���m(m − k + 1)
1303
+ if (F, H|F) = (Qn−m, OQn−m(1));
1304
+ Ω1
1305
+ F(m − k + 2)
1306
+ if (F, H|F) is a Del Pezzo variety.
1307
+ Now Ω1
1308
+ F(KF + (n + 1 − k)H|F ) is globally generated by Lemma 4.6. Hence, Lemma 8.2 gives that, in
1309
+ each of the three cases, the inequality in m, n, k is not satisfied.
1310
+
1311
+ We get a very useful consequence.
1312
+ Lemma 8.6. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 2. If TX(k) is an Ulrich
1313
+ vector bundle, then KX +(n−1)H is nef and H0(KX +(n−1)H) ̸= 0, unless (X, H, k) = (P2, OP2(2), 0)
1314
+ (the latter case actually occurs, see Theorem 4.9).
1315
+ Proof. Recall that H0(KX + (n − 1)H) ̸= 0 if and only if KX + (n − 1)H is nef by [BS, Cor. 7.2.8].
1316
+ Now if KX + (n − 1)H is not nef, it follows by [BS, Prop.’s 7.2.2, 7.2.3 and 7.2.4] that (X, H) is either
1317
+ (Pn, OPn(1)), (Qn, OQn(1)), a linear Pn−1-bundle over a smooth curve or (P2, OP2(2)). The first three
1318
+ cases are excluded by Lemmas 4.1, 4.5 and 8.5(i), while in the fourth case we have g = 0, hence k = 0
1319
+ by Lemma 4.3(i).
1320
+
1321
+ We can now prove Theorem 4.9.
1322
+
1323
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1324
+ 19
1325
+ Proof of Theorem 4.9. The assert is clear if either (X, H) = (P1, OP1(3)) or (P2, OP2(2)). Vice versa
1326
+ assume that TX is Ulrich for H. If n = 1, since TX = −KX is globally generated by Lemma 3.2(vi),
1327
+ we have that X is either P1 or an elliptic curve. Now the latter is excluded by Lemma 4.3(i), while in
1328
+ the former case TX = OP1(2) Ulrich implies that H = OP1(3). Now assume that n ≥ 2. Then Lemma
1329
+ 8.6 gives that either (X, H) = (P2, OP2(2)), or KX + (n − 1)H is nef, leading, by Lemma 4.3(ii), to the
1330
+ contradiction
1331
+ 0 ≤ (KX + (n − 1)H)Hn−1 = − 2d
1332
+ n + 2.
1333
+
1334
+ The following result will also be useful.
1335
+ Lemma 8.7. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 2. Suppose that k ≥ 1 and
1336
+ that TX(k) is an Ulrich vector bundle. Assume that X ∼= P(F) is a projective bundle over a normal
1337
+ projective variety B of dimension 1 ≤ m ≤ n − 1. Then B is smooth and F is simple. In particular, if
1338
+ m = 1, then q(X) ̸= 0.
1339
+ Proof. Let π : X ∼= P(F) → B be the structure morphism and let ξ be the tautological bundle of
1340
+ P(F). By twisting F with a sufficiently ample line bundle we can assume that ξ is ample. Then [BS,
1341
+ Prop. 3.2.1] implies that B is smooth. Since H0(TX) = 0, the cohomology of the exact sequence
1342
+ 0 → TX/B → TX → π∗TB → 0
1343
+ gives that H0(TX/B) = 0. Now the cohomology of the exact sequence
1344
+ 0 → OX → π∗F∗ ⊗ ξ → TX/B → 0
1345
+ implies that
1346
+ h0(F ⊗ F∗) = h0(π∗F∗ ⊗ ξ) = h0(OX) = 1.
1347
+ Now if m = 1 and q(X) = 0 we have that B ∼= P1, hence F cannot be simple since rk F = n ≥ 2.
1348
+
1349
+ Next we prove three results for k = 2.
1350
+ For the first one, in order to apply the results of T. Fujita in [F1], we give the following definition,
1351
+ that coincides with the one in [F1] when B is smooth.
1352
+ Definition 8.8. Let f : X → B be a fibration over a curve, L an ample line bundle on X such that on
1353
+ the general fiber F we have that KF = −(n − 2)L|F . We say that f is minimal if there is a line bundle
1354
+ L on B such that KX + (n − 2)L = f ∗L.
1355
+ Then we have
1356
+ Lemma 8.9. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 4. Suppose that k ≥ 2 and
1357
+ that k = 2 if n = 4. Moreover assume that TX(k) is an Ulrich vector bundle. Then:
1358
+ (i) (X, H) is not a Del Pezzo fibration over a smooth curve.
1359
+ (ii) If n = 4 and KX + 2H is ample, then (X, KX + 2H) is not a minimal (P3, OP3(2))-fibration
1360
+ over a smooth curve.
1361
+ Proof. For the sake of contradiction, let L be H in case (i) and KX + 2H in case (ii). Assume that we
1362
+ have a fibration f : X → B over a smooth curve B such that (X, L) is a Del Pezzo fibration in case (i)
1363
+ (see Definition 8.4) and (X, L) is a minimal (P3, OP3(2))-fibration in case (ii). Note that f is minimal
1364
+ also in case (i) by Definition 8.4.
1365
+ Let F be a general fiber of f. In case (i) we have that F is a smooth variety of dimension n − 1 and
1366
+ KF = KX|F = −(n − 2)L|F, hence F is a Del Pezzo variety. Since L = H, Lemma 8.5 implies that
1367
+ (F, H|F) = (P3, OP3(2)), hence n = 4. Thus (F, L|F ) is the same in both cases.
1368
+ We now claim that every fiber of f is irreducible. Indeed, if not, let F0 be a reducible fiber. Since
1369
+ F0 is connected, it must be singular, hence we can apply [F1, Table (2.20)]. It follows that we are in
1370
+ case (2.17) of [F1, Table (2.20)], the degree of F0 is 8 and, if D is an irreducible component of F0, then
1371
+ (D, L|D) is a scroll over P1 and KX |D = −2L|D. Denoting a fiber of the structure morphism D → P1
1372
+ by F ′ ∼= P2, we obtain L|F ′ = OP2(1) and KX|F ′ = −2L|F ′ = OP2(−2). Set H|F ′ = OP2(a). In case (ii)
1373
+ we have that
1374
+ OP2(1) = L|F ′ = (KX + 2H)|F ′ = OP2(−2 + 2a)
1375
+
1376
+ 20
1377
+ A.F. LOPEZ, D. RAYCHAUDHURY
1378
+ a contradiction. In case (i) we have that L = H and a = 1. But now Lemma 4.6 gives that Ω1
1379
+ P2(KX |F ′ +
1380
+ 3H|F ′) ∼= Ω1
1381
+ P2(1) is globally generated, contradicting Lemma 8.2(i). Thus every fiber of f is irreducible.
1382
+ Now [F1, (4.8)] implies that every fiber of f is P3. Since B is a smooth curve, it follows, as is well
1383
+ known, that X is a projective bundle over B. On the other hand, since n = 4, we have that k = 2 and
1384
+ q(X) = 0 by Lemma 4.3(iii), contradicting Lemma 8.7.
1385
+
1386
+ Lemma 8.10. Let X ⊆ PN be a smooth irreducible variety of dimension 4. Suppose that KX + 2H is
1387
+ ample and that TX(2) is an Ulrich vector bundle. Then (X, KX + 2H) is not a quadric fibration over
1388
+ a smooth curve.
1389
+ Proof. Suppose that (X, KX + 2H) is a quadric fibration π : X → B over a smooth curve. Since
1390
+ χ(OX) = 1 by Lemma 4.3(iii), it follows from [Lan, Sect. 1.1, eq. (8)] that B ∼= P1. Moreover, [Lan,
1391
+ Sect. 0.1] gives that if π∗(KX + 2H) ∼=
1392
+ 4�
1393
+ i=0
1394
+ OP1(ai) and e = �4
1395
+ i=0 ai, then there is b ∈ Z such that
1396
+ (KX + 2H)4 = 2e − b
1397
+ by [Lan, Sect. 1.1, eq. (3)] and
1398
+ Ki
1399
+ X(KX + 2H)4−i = (−3)i2e + (−3)i−1(−4i + 2ie + (3 − 2i)b) for 1 ≤ i ≤ 4
1400
+ by [Lan, Sect. 1.1, eq. (4)]. Solving these five equations we obtain
1401
+ KXH3 = 4e − 28b − 104 and d = H4 = 16b + 64
1402
+ and therefore Lemma 4.3(iii) gives
1403
+ (8.1)
1404
+ 13d = 48(2 + e).
1405
+ Since TX(2) is Ulrich we have that H4(TX(−2)) = 0 and the exact sequence
1406
+ 0 → TX/P1(−2) → TX(−2) → (π∗TP1)(−2) → 0
1407
+ implies that H4((π∗TP1)(−2)) = 0. Hence, by Serre duality
1408
+ 0 = h4((π∗TP1)(−2)) = h0((π∗OP1(−2))(KX+2H)) = h0(π∗(KX+2H)⊗OP1(−2)) =
1409
+ 4
1410
+
1411
+ i=0
1412
+ h0(OP1(ai−2))
1413
+ and therefore ai ≤ 1 for 0 ≤ i ≤ 4. But then e ≤ 5 and (8.1) gives that 1 ≤ e + 2 ≤ 7 is divisible by 13,
1414
+ a contradiction.
1415
+
1416
+ Lemma 8.11. Let X ⊆ PN be a smooth irreducible variety of dimension 4. Suppose that KX + 2H is
1417
+ ample and that TX(2) is an Ulrich vector bundle. Then (X, KX + 2H) is not a linear P2-bundle over
1418
+ a smooth surface.
1419
+ Proof. Assume by contradiction that we have a P2-bundle structure π : X ∼= P(F) → B onto a smooth
1420
+ surface B, with KX + 2H = ξ, the tautological bundle, where F is a rank 3 vector bundle on B. Then
1421
+ H = aξ − π∗M for some a ∈ Z and M ∈ Pic(B), so that
1422
+ ξ = KX + 2H = (2a − 3)ξ + π∗(KB + c1(F) − 2M)
1423
+ giving a = 2 and 2M = KB + c1(F), thus
1424
+ (8.2)
1425
+ H ≡ 2ξ − 1
1426
+ 2π∗(KB + c1(F)).
1427
+ We will also use Grothendieck’s relation
1428
+ 3�
1429
+ j=0
1430
+ (−1)jξ3−jπ∗cj(F) = 0, that is
1431
+ (8.3)
1432
+ ξ3 = ξ2π∗c1(F) − ξπ∗c2(F).
1433
+ Since ξ2f = 1 for every fiber f of π, we get from (8.3) that
1434
+ (8.4)
1435
+ ξ3π∗c1(F) = c1(F)2, ξ3π∗KB = KBc1(F) and ξ4 = c1(F)2 − c2(F).
1436
+ We first collect some invariants of X and B.
1437
+ Claim 8.12. We have:
1438
+
1439
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1440
+ 21
1441
+ (i) KXH3 = − 2
1442
+ 3d.
1443
+ (ii) χ(OX) = 1.
1444
+ (iii) χ(OX(H)) = 2 + χ(OS) − d
1445
+ 6.
1446
+ (iv) h0(KX + 2H) = χ(OS) − 1.
1447
+ (v) χ(OB) = 1.
1448
+ Proof. (i) is obtained by Lemma 4.3(ii). Now Lemma 4.3(iii) gives that Hi(OX) = 0 for i ≥ 1, hence
1449
+ Hi(OB) = 0 for i ≥ 1, giving (ii) and (v). Next, to see (iii), consider the exact sequences
1450
+ 0 → OXi → OXi(H) → OXi−1(H) → 0
1451
+ for i = 4, 3. They give χ(OX(H)) = 1+χ(OX3(H)) = 2+χ(OS(H)) and (iii) follows by Riemann-Roch
1452
+ since H2
1453
+ |S = d and H|SKS = (KX + 2H)H3 = 4
1454
+ 3d by (i). To see (iv), observe that, since Rjπ∗(−ξ) = 0
1455
+ for every j ≥ 0, we have that Hi(KX + H) = Hi(−ξ + π∗(KB + c1(F) − M)) = 0 for every i. Hence
1456
+ the exact sequence
1457
+ 0 → KX + H → KX + 2H → KX3 + H|X3 → 0
1458
+ implies that
1459
+ (8.5)
1460
+ h0(KX + 2H) = h0(KX3 + H|X3).
1461
+ Now we have q(S) = 0 by Lemma 7.1 and Hi(KX3) = 0 for i = 0, 1 by Serre duality and Lemma 7.3.
1462
+ Hence the exact sequence
1463
+ 0 → KX3 → KX3 + H|X3 → KS → 0
1464
+ shows that
1465
+ χ(OS) − 1 = pg(S) = h0(KS) = h0(KX3 + H|X3)
1466
+ and we get (iv) by (8.5).
1467
+
1468
+ We continue the proof of the lemma.
1469
+ Next, we collect some relations among the invariants related to ξ, KB and the Chern classes of F.
1470
+ Claim 8.13. The following identities hold:
1471
+ (i) d − 6c1(F)2 + 16c2(F) − 6K2
1472
+ B + 4KBc1(F) = 0.
1473
+ (ii) KBc1(F) − 8 + 2χ(OS) − c1(F)2 + 2c2(F) = 0.
1474
+ (iii) K2
1475
+ B − 1 + c1(F)2 − 3c2(F) = 0.
1476
+ (iv) 3K2
1477
+ B + c1(F)2 − 2c2(F) − 30 = 0.
1478
+ (v) 4 − KBc1(F) + 9
1479
+ 4K2
1480
+ B + 7
1481
+ 4c1(F)2 − 5c2(F) − χ(OS) + 1
1482
+ 6d = 0.
1483
+ Proof. We have by (8.2) and (8.4) that
1484
+ d = H4 = (2ξ − 1
1485
+ 2π∗(KB + c1(F)))4 = 16(c1(F)2 − c2(F)) + 6K2
1486
+ B − 4KBc1(F) − 10c1(F)2
1487
+ that is (i). To see (ii) observe that, since π∗ξ = F and Rjπ∗ξ = 0 for j > 0 we have Hi(F) = Hi(ξ) =
1488
+ Hi(KX + 2H) = 0 for i > 0 by Kodaira vanishing. Also, by Claim 8.12(iv), (v) and Riemann-Roch we
1489
+ get
1490
+ χ(OS) − 1 = h0(KX + 2H) = h0(ξ) = h0(F) = χ(F) = 3 − 1
1491
+ 2KBc1(F) + 1
1492
+ 2c1(F)2 − c2(F)
1493
+ that is (ii). Next, consider the exact sequences
1494
+ (8.6)
1495
+ 0 → TX/B → TX → π∗TB → 0
1496
+ and
1497
+ 0 → OX → π∗F∗(ξ) → TX/B → 0.
1498
+ Since TX(2H) is Ulrich, we have that χ(TX) = 0, hence, using Claim 8.12(ii) we get
1499
+ (8.7)
1500
+ χ(TB) = χ(π∗TB) = −χ(TX/B) = −χ(π∗F∗(ξ)) + 1 = −χ(F ⊗ F∗) + 1.
1501
+ On the other hand, by Riemann-Roch and Claim 8.12(v), χ(TB) = 2K2
1502
+ B − 10 and χ(F ⊗ F∗) =
1503
+ 9 + 2c1(F)2 − 6c2(F). Replacing in (8.7) gives (iii).
1504
+
1505
+ 22
1506
+ A.F. LOPEZ, D. RAYCHAUDHURY
1507
+ Finally, to see (iv), we first compute c1(S2(F)) = 4c1(F) and c2(S2(F)) = 5c1(F)2 + 5c2(F), so that
1508
+ c1(S2(F)(−M)) = −3KB + c1(F), c2(S2(F)(−M)) = 15
1509
+ 4 K2
1510
+ B − 5
1511
+ 2KBc1(F) − 5
1512
+ 4c1(F)2 + 5c2(F).
1513
+ Now Riemann-Roch gives
1514
+ (8.8)
1515
+ χ(S2(F)(−M)) = 6 − KBc1(F) + 9
1516
+ 4K2
1517
+ B + 7
1518
+ 4c1(F)2 − 5c2(F).
1519
+ On the other hand, χ(S2(F)(−M)) = χ(2ξ − π∗M) = χ(OX(H)) = 2 + χ(OS) − d
1520
+ 6 by Claim 8.12(iii).
1521
+ Using (8.8) we get (v).
1522
+
1523
+ We now conclude the proof of the lemma.
1524
+ Solving the five equations in Claim 8.13 we get
1525
+ (8.9)
1526
+ K2
1527
+ B = − 7
1528
+ 48d + 7 and KBc1(F) = − 5
1529
+ 48d + 9.
1530
+ In particular d ≥ 48. On the other hand, using Claim 8.12(i), we get
1531
+ µ(TX) = −KXH3
1532
+ 4
1533
+ = 1
1534
+ 6d
1535
+ and, using (8.2)
1536
+ µ(π∗TB) = c1(π∗TB)H3
1537
+ 2
1538
+ = −π∗KB
1539
+
1540
+ 2ξ − 1
1541
+ 2π∗(KB + c1(F))
1542
+ �3
1543
+ 2
1544
+ = −8ξ3π∗KB − 6ξ2π∗(K2
1545
+ B + KBc1(F))
1546
+ 2
1547
+ .
1548
+ Now (8.4) and (8.9) give
1549
+ µ(π∗TB) = −KBc1(F) + 3K2
1550
+ B = −1
1551
+ 3d + 12.
1552
+ Since TX is semistable by Lemma 4.3(v), we deduce by (8.6) that
1553
+ 1
1554
+ 6d ≤ −1
1555
+ 3d + 12
1556
+ that is d ≤ 24, a contradiction.
1557
+
1558
+ 9. TX(1) Ulrich in any dimension
1559
+ We study the case k = 1 in any dimension. We start analyzing the properties of the curve section C
1560
+ and of the surface section S.
1561
+ Lemma 9.1. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 3. If TX(1) is an Ulrich
1562
+ vector bundle, then d ≥ 9 except, possibly, when d = 8, g = 5, n = 4 and h0(OC(1)) = 4.
1563
+ Proof. By Lemma 4.3(i) we know that g ≥ 2 and that
1564
+ (9.1)
1565
+ (n − 1)d = (n + 2)(g − 1).
1566
+ By Lemma 7.4(v) we have d − g + 1 = h0(OC(1)) ≥ 3, hence g ≤ d − 2.
1567
+ Also, if equality holds,
1568
+ then h0(OC(1)) = 3, so that d − 2 = g =
1569
+ �d−1
1570
+ 2
1571
+
1572
+ , thus d = 3 and g = 1, a contradiction. Therefore
1573
+ 2 ≤ g ≤ d − 3, hence d ≥ 5. But if d ≤ 8 the only possibility given by (9.1) is d = 8, g = 5, n = 4 and
1574
+ h0(OC(1)) = 4.
1575
+
1576
+ Lemma 9.2. Let X ⊆ PN be a smooth irreducible variety of dimension n ≥ 3. If TX(1) is an Ulrich
1577
+ vector bundle we have:
1578
+ (i) KSH|S = n−4
1579
+ n+2d.
1580
+ (ii) q(S) = pg(S) = 0.
1581
+ (iii) K2
1582
+ S = − 3(n−2)
1583
+ 2(n+2)d − n−12
1584
+ 2
1585
+ .
1586
+ (iv) S is rational.
1587
+
1588
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1589
+ 23
1590
+ Proof. (i) follows by Lemma 4.3(ii), while (ii) follows by Lemma 4.3(iii), Lemma 7.1 and Lemma 7.4(ii).
1591
+ Note now that the equation in Lemma 4.3(vii) can be rewritten as
1592
+ 3(n − 2)d + 2(n + 2)K2
1593
+ S + (n + 2)(n − 12) = 0
1594
+ giving (iii).
1595
+ Finally assume that S is not ruled, so that κ(S) ≥ 0.
1596
+ Then Lemma 8.6 gives that
1597
+ KS + H|S = (KX + (n − 1)H)|S is nef, hence KS(KS + H|S) ≥ 0, that is K2
1598
+ S ≥ −KSH|S = − n−4
1599
+ n+2d by
1600
+ (i). Then (iii) gives
1601
+ −3(n − 2)
1602
+ 2(n + 2)d − n − 12
1603
+ 2
1604
+ = K2
1605
+ S ≥ −n − 4
1606
+ n + 2d
1607
+ so that
1608
+ (n + 2)(d + n − 12) ≤ 0.
1609
+ Since n ≥ 3 it follows that d ≤ 9, and using Lemma 9.1 we deduce that either d = 9, n = 3 or
1610
+ d = 8, g = 5, n = 4 and h0(OC(1)) = 4. In the first case we get a contraction by Lemma 4.3(i), while in
1611
+ the second case d + n − 12 = 0, hence K2
1612
+ S = 0. As C ⊂ P3 we deduce that S ⊂ P4. But this contradicts
1613
+ the well-known formula for the invariants of a surface in P4. Therefore S is ruled, hence rational by (ii)
1614
+ and (iv) is proved.
1615
+
1616
+ We are now ready to prove Theorem 3.
1617
+ Proof of Theorem 3. If n = 1 we know by Lemma 4.3(i) that TX(1) is not an Ulrich vector bundle. If
1618
+ n = 2 this is Theorem 6.3. Suppose next that n ≥ 3. Note that H0(TX) = 0 by Lemma 4.2(iii), hence
1619
+ X is neither Pn nor Qn. Also q(X) = 0 by Lemma 4.3(iii). We have that (X, H) is not:
1620
+ (1) A projective bundle over a smooth curve by Lemma 8.7.
1621
+ (2) A Del Pezzo manifold by Lemma 4.3(i), since otherwise g = 1.
1622
+ (3) A hyperquadric fibration over a smooth curve (in the sense of [I]), by Lemma 8.5(ii).
1623
+ (4) A linear Pn−2-bundle over a smooth surface, by Lemma 8.5(i).
1624
+ Also observe that X does not contain any exceptional divisor of type 1 by Lemma 8.3(i). Hence (X, H)
1625
+ is isomorphic to its reduction (X′, H′) (see [I, (0.11)]). It follows by [I, Thm. (1.7)] that KX +(n−2)H
1626
+ is nef. Hence S is minimal and rational by Lemma 9.2(iv), a contradiction since a minimal rational
1627
+ surface does not have nef canonical bundle. Thus the case n ≥ 3 does not occur and the theorem is
1628
+ proved.
1629
+
1630
+ 10. TX(2) Ulrich in any dimension
1631
+ We prove Theorem 4.
1632
+ Proof Theorem 4. It follows by Lemma 4.2(iii) that H0(TX) = 0, hence X is neither Pn nor Qn. Note
1633
+ that Hi(OX) = 0 for i ≥ 1 by Lemma 4.3(iii) and KX is not nef, since Lemma 4.3(ii) gives that
1634
+ KXHn−1 = n(3−n)
1635
+ n+2 d < 0.
1636
+ We divide the proof according to the value of τ(X, H) (see (4.3)). We will also use the notions of
1637
+ first and second reduction of (X, H), as defined in [BS, Defs. 7.3.3 and 7.5.7].
1638
+ Case A: τ(X, H) ≥ n − 1.
1639
+ This case does not occur since Lemma 4.6(iii) implies that τ(X, H) ≤ n −
1640
+ 2n
1641
+ n+1 < n − 1.
1642
+ Case B: n − 2 ≤ τ(X, H) < n − 1.
1643
+ Then KX +(n−1)H is ample, hence the first reduction exists and is isomorphic to (X, H). Therefore
1644
+ [BS, Thm. 7.3.4] implies that τ(X, H) = n − 2 and then [BS, Thm. 7.5.3] gives that (X, H) is one of
1645
+ the following:
1646
+ (B.1) a Mukai variety,
1647
+ (B.2) a Del Pezzo fibration over a smooth curve,
1648
+ (B.3) a quadric fibration over a normal surface,
1649
+ (B.4) a scroll over a normal threefold,
1650
+ (B.5) (X, H) contains an exceptional divisor of type 2, 3, or 4.
1651
+
1652
+ 24
1653
+ A.F. LOPEZ, D. RAYCHAUDHURY
1654
+ Now, the case (B.1) is ruled out by Corollary 4.11. Case (B.2) is excluded for n = 4 by Lemma 8.9(i)
1655
+ and for n ≥ 5 by Lemma 8.5(iii). Also the cases (B.3) and (B.4) are ruled out by Lemma 8.5(ii) and
1656
+ (i). Finally the case (B.5) is excluded by Lemma 8.3(ii) and (iii).
1657
+ Thus also Case B does not occur.
1658
+ Case C: τ(X, H) < n − 2.
1659
+ Then the first and second reductions exist and are both isomorphic to (X, H), since KX + (n − 2)H
1660
+ is ample.
1661
+ We first claim that KX3 is not nef. In fact, assume that KX3 is nef. On the one hand, χ(OX3) = 1
1662
+ by Lemma 7.3. On the other hand, 3c2(X3) − c1(X3)2 is pseff by [M, Thm. 1.1], hence 3c2(X3)KX3 ≥
1663
+ K3
1664
+ X3 ≥ 0. But then Riemann-Roch gives χ(OX3) = − 1
1665
+ 24c2(X3)KX3 ≤ 0, a contradiction.
1666
+ Hence KX3 is not nef and [BS, Prop. 7.9.1] gives the following cases:
1667
+ (C.1) n = 5 and (X, KX + 3H) is a linear P4-bundle over a smooth curve.
1668
+ (C.2) n = 4 and (X, KX + 2H) is a Del Pezzo.
1669
+ (C.3) n = 4 and (X, KX + 2H) is a quadric fibration over a smooth curve.
1670
+ (C.4) n = 4 and (X, KX + 2H) is a scroll over a normal surface.
1671
+ (C.5) n = 4 and (X, H) contains an exceptional divisor of type 2.
1672
+ (C.6) n = 4 and (X, KX + 2H) is a (P3, OP3(2))-fibration over a curve.
1673
+ In case (C.1) we have a contradiction by Lemma 8.7. In case (C.2) we have 4KX + 6H = 0, hence
1674
+ 4KXH3+6H4 = 0 and Lemma 4.3(ii) gives the contradiction d = 0. Cases (C.3) and (C.5) do not occur
1675
+ by Lemmas 8.10 and 8.3(ii). In Case (C.6) we observe that the fibration is obtained in [F2, (4.6.1)] by
1676
+ contracting an extremal ray, hence it is minimal (see Definition 8.8) and the image is a normal, hence
1677
+ smooth, curve. Thus this case is excluded by Lemma 8.9(ii).
1678
+ Hence we are left with case (C.4). We have a surjective morphism π : X → B and denoting by F a
1679
+ general fiber, we have (F, (KX + 2H)|F ) ∼= (P2, OP2(1)). Now all fibers of π are 2-dimensional by [BS,
1680
+ Thm. 14.1.1], hence we get by [BS, Prop. 3.2.1] that B is a smooth surface and (X, KX + 2H) is a
1681
+ linear P2-bundle over B. But this case is excluded by Lemma 8.11.
1682
+ This concludes the proof of the theorem.
1683
+
1684
+ References
1685
+ [A]
1686
+ F. Ambro. Ladders on Fano varieties. Algebraic geometry, 9. J. Math. Sci. (New York) 94 (1999), no. 1,
1687
+ 1126-1135. 7
1688
+ [Be1]
1689
+ A. Beauville. An introduction to Ulrich bundles. Eur. J. Math. 4 (2018), no. 1, 26-36. 1, 3
1690
+ [Be2]
1691
+ A. Beauville. Complex algebraic surfaces. London Mathematical Society Lecture Note Series, 68. Cambridge
1692
+ University Press, Cambridge, 1983. iv+132 pp. 14
1693
+ [BC]
1694
+ I. Bauer, F. Catanese. On rigid compact complex surfaces and manifolds. Adv. Math. 333 (2018), 620-669. 14
1695
+ [BMQ]
1696
+ F. Bogomolov, M. McQuillan. Rational curves on foliated varieties. Foliation theory in algebraic geometry,
1697
+ 21–51, Simons Symp., Springer, Cham, 2016. 5
1698
+ [BMPT]
1699
+ V. Benedetti, P. Montero, Y. Prieto Monta˜nez, S. Troncoso. Projective manifolds whose tangent bundle is
1700
+ Ulrich. Preprint 2021, arXiv:2108.13944. 1, 6
1701
+ [Bo]
1702
+ F. A. Bogomolov. Unstable vector bundles and curves on surfaces. Proceedings of the International Congress
1703
+ of Mathematicians (Helsinki, 1978), pp. 517-524, Acad. Sci. Fennica, Helsinki, 1980. 4
1704
+ [BS]
1705
+ M. C. Beltrametti, A. J. Sommese. The adjunction theory of complex projective varieties. De Gruyter Exposi-
1706
+ tions in Mathematics, 16. Walter de Gruyter & Co., Berlin, 1995. 5, 17, 18, 19, 23, 24
1707
+ [C1]
1708
+ G. Casnati. Special Ulrich bundles on non-special surfaces with pg = q = 0. Internat. J. Math. 28 (2017), no.
1709
+ 8, 1750061, 18 pp. 3, 13
1710
+ [C2]
1711
+ G. Casnati. Tangent, cotangent, normal and conormal bundles are almost never instanton bundles. Preprint
1712
+ 2022, in preparation. 1
1713
+ [CH]
1714
+ M. Casanellas, R. Hartshorne. Stable Ulrich bundles. With an appendix by F. Geiss, F.-O. Schreyer. Internat.
1715
+ J. Math. 23 (2012), no. 8, 1250083, 50 pp. 3, 5
1716
+ [CMRPL] L. Costa, R. M. Mir´o-Roig, J. Pons-Llopis. Ulrich bundles. De Gruyter Studies in Mathematics, 77, De Gruyter
1717
+ 2021. 1
1718
+ [CP]
1719
+ F. Campana, M. P˘aun. Foliations with positive slopes and birational stability of orbifold cotangent bundles.
1720
+ Publ. Math. Inst. Hautes ´Etudes Sci. 129 (2019), 1-49. 5
1721
+ [DR]
1722
+ S. Di Rocco. k-very ample line bundles on del Pezzo surfaces. Math. Nachr. 179 (1996), 47-56. 15
1723
+ [ES]
1724
+ D. Eisenbud, F.-O. Schreyer. Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc. 16 (2003),
1725
+ no. 3, 537-579. 1, 3
1726
+ [F1]
1727
+ T. Fujita. On del Pezzo fibrations over curves. Osaka J. Math. 27 (1990), no. 2, 229-245. 19, 20
1728
+
1729
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1730
+ 25
1731
+ [F2]
1732
+ T. Fujita. On Kodaira energy and adjoint reduction of polarized manifolds. Manuscripta Math. 76 (1992), no.
1733
+ 1, 59?84. 24
1734
+ [FL1]
1735
+ M. Fulger, B. Lehmann. Morphisms and faces of pseudo-effective cones. Proc. Lond. Math. Soc. 112 (2016),
1736
+ no. 4, 651-676. 5
1737
+ [FL2]
1738
+ M. Fulger, B. Lehmann. Positive cones of dual cycle classes. Algebr. Geom. 4 (2017), no. 1, 1-28. 5
1739
+ [GL]
1740
+ L. Ghidelli, J. Lacini. Logarithmic bounds on Fujita’s conjecture. Preprint 2021, arXiv:2107.11705. 8
1741
+ [Ha1]
1742
+ R. Hartshorne. Algebraic geometry. Graduate Texts in Mathematics 52. Springer-Verlag, New York-Heidelberg,
1743
+ 1977. 13
1744
+ [Ha2]
1745
+ R. Hartshorne. On the classification of algebraic space curves. Vector bundles and differential equations (Proc.
1746
+ Conf., Nice, 1979), pp. 83-112, Progr. Math., 7, Birkh¨auser, Boston, Mass., 1980 12
1747
+ [Ho]
1748
+ A. H¨oring. On a conjecture of Beltrametti and Sommese. J. Algebraic Geom. 21 (2012), no. 4, 721-751. 7
1749
+ [I]
1750
+ P. Ionescu. Generalized adjunction and applications. Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 3,
1751
+ 457-472. 17, 23
1752
+ [IP]
1753
+ V. A. Iskovskikh, Yu. Prokhorov. Fano varieties. In: Algebraic geometry, V, 1-247, Encyclopaedia Math. Sci.
1754
+ 47, Springer-Verlag, Berlin, 1999. 17
1755
+ [K]
1756
+ Y. Kawamata. On effective non-vanishing and base-point-freeness. Kodaira’s issue. Asian J. Math. 4 (2000),
1757
+ no. 1, 173-181. 7
1758
+ [Lan]
1759
+ A. Lanteri. Hilbert curves of quadric fibrations. Internat. J. Math. 29 (2018), no. 10, 1850067, 20 pp. 20
1760
+ [Lop]
1761
+ A. F. Lopez. On varieties with Ulrich twisted normal bundles. Preprint 2022, arXiv:2205:06602. 1, 9
1762
+ [Laz]
1763
+ R. Lazarsfeld. Positivity in algebraic geometry, I. Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge
1764
+ 48, Springer-Verlag, Berlin, 2004. 3
1765
+ [LS]
1766
+ A. F. Lopez, J. C. Sierra. A geometrical view of Ulrich vector bundles. Preprint 2021, arXiv:2105.05979. To
1767
+ appear on Int. Math. Res. Not. IMRN. 5, 16
1768
+ [M]
1769
+ Y. Miyaoka. The Chern classes and Kodaira dimension of a minimal variety. In: Algebraic geometry, Sendai,
1770
+ 1985, 449-476, Adv. Stud. Pure Math., 10, North-Holland, Amsterdam, 1987. 24
1771
+ [MS]
1772
+ S. Mori, H. Sumihiro. On Hartshorne’s conjecture. J. Math. Kyoto Univ. 18 (1978), no. 3, 523-533. 4
1773
+ [T]
1774
+ B. Totaro. Bott vanishing for algebraic surfaces. Trans. Amer. Math. Soc. 373 (2020), no. 5, 3609-3626. 15, 16
1775
+ [W]
1776
+ J. M. Wahl. A cohomological characterization of Pn. Invent. Math. 72 (1983), no. 2, 315-322. 4
1777
+ Appendix A. Some numerical lemmas
1778
+ Lemma A.1. Let (a; c1, c2, c3, c4) ∈ Z5 be such that c1 ≥ c2 ≥ c3 ≥ c4 ≥ 0, a ≥ c1 + c2 + 3 and
1779
+ (A.1)
1780
+ a2 − 6a + 4 = c2
1781
+ 1 + c2
1782
+ 2 + c2
1783
+ 3 + c2
1784
+ 4.
1785
+ Then (a; c1, c2, c3, c4) ∈ {(6; 2, 0, 0, 0), (6; 1, 1, 1, 1), (7; 3, 1, 1, 0), (9; 3, 3, 3, 2)}.
1786
+ Proof. We have
1787
+ (A.2)
1788
+ a − 3 ≥ c1 + c2.
1789
+ Now, (A.1) and (A.2) imply that (a − 3)2 − 5 = c2
1790
+ 1 + c2
1791
+ 2 + c2
1792
+ 3 + c2
1793
+ 4 ≥ (c1 + c2)2 − 5, that is
1794
+ (A.3)
1795
+ c2
1796
+ 3 + c2
1797
+ 4 ≥ 2c1c2 − 5.
1798
+ But 2c2
1799
+ 3 ≥ c2
1800
+ 3 + c2
1801
+ 4 and 2c1c2 ≥ 2c2
1802
+ 2. Consequently, we get
1803
+ (A.4)
1804
+ 5 ≥ 2(c2 − c3)(c2 + c3).
1805
+ Thus, one of the following should happen:
1806
+ (α) c2 = c3.
1807
+ (β) c2 = c3 + 1.
1808
+ First assume that case (β) holds.
1809
+ Then (A.4) yields 2c3 ≤ 1 which gives c3 = 0, c2 = 2 and hence c4 = o. The (A.1) gives
1810
+ (a + c1 − 3)(a − c1 − 3) = 6.
1811
+ Thus we have one of the following possibilities
1812
+ a + c1 = 4, a − c1 = 9, or a + c1 = 5, a − c1 = 6, or a + c1 = 6, a − c1 = 5, or a + c1 = 9, a − c1 = 4
1813
+ but none of them have integer solutions.
1814
+ Assume now that case (α) holds.
1815
+ Set c2 = c3 = c. From (A.3), we obtain c2 + c2
1816
+ 4 ≥ 2c1c − 5. Since c ≥ c4, we get
1817
+ (A.5)
1818
+ 5 ≥ 2c(c1 − c).
1819
+ The above implies one of the following happens:
1820
+
1821
+ 26
1822
+ A.F. LOPEZ, D. RAYCHAUDHURY
1823
+ (α1) c2 = c3 = c4 = 0.
1824
+ (α2) c1 = c2 = c3.
1825
+ (α3) c2 = c3 = 1. This case has two sub-cases, namely c1 = 2, 3.
1826
+ (α4) c2 = c3 = 1, c1 = 3.
1827
+ Suppose we are in case (α1).
1828
+ Then (A.1) gives (a − 3)2 − 5 = c2
1829
+ 1, so that (a + c1 − 3)(a − c1 − 3) = 5.
1830
+ In this case, either
1831
+ a + c1 = 4, a − c1 = 8, giving the contradiction c1 = −2, or a + c1 = 8, a − c1 = 4, giving a = 6, c1 = 2
1832
+ and the solution (6; 2, 0, 0, 0).
1833
+ Suppose we are in case (α2).
1834
+ Using (A.3) we conclude
1835
+ (A.6)
1836
+ 5 ≥ (c − c4)(c + c4).
1837
+ As before, we obtain the following cases:
1838
+ (α21) c = c1 = c2 = c3 = c4.
1839
+ (α22) c = c4 + 1.
1840
+ (α23) c = c4 + 2.
1841
+ We first deal with (α21). In this case, from (A.1), we obtain
1842
+ (a + 2c − 3)(a − 2c − 3) = 5.
1843
+ Thus, we have either a + 2c = 4, a − 2c = 8, giving the contradiction c = −1, or a + 2c = 8, a − 2c = 4,
1844
+ giving the solution (6; 1, 1, 1, 1).
1845
+ We now deal with (α22).
1846
+ From (A.6) we obtain c + c4 − 2 ≤ 5, hence c4 ≤ 2.
1847
+ Thus (c, c4) ∈
1848
+ {(3, 2), (2, 1), (1, 0)} and using (A.1) we see that it has no integer solutions except in the first case,
1849
+ giving the solution (9; 3, 3, 3, 2).
1850
+ We now deal with (α23). As before, in this case we have c4 ≤ 0. This implies c = 2, c4 = 0. But
1851
+ then (A.1) does not have any integer solution.
1852
+ This concludes case (α2).
1853
+ Suppose we are in case (α3).
1854
+ We know that (c1, c2, c3, c4) ∈ {(1, 1, 1, 1), (2, 1, 1, 0), (3, 1, 1, 1), (3, 1, 1, 0)}. Using (A.1) we see that
1855
+ we have no integer solutions except in the last case, giving (7; 3, 1, 1, 0).
1856
+ Suppose we are in case (α4).
1857
+ Then (c1, c2, c3, c4) ∈ {(3, 2, 2, 2), (3; 2, 2, 1), (3; 2, 2, 0)} and (A.1) has no integer solutions.
1858
+ This concludes case (α) and the proof.
1859
+
1860
+ Lemma A.2. Let z = (a; b1, b2, b3, b4, b5, b6) ∈ Z7 with b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 ≥ b6 satisfying the
1861
+ following
1862
+ (A.7)
1863
+ a2 −
1864
+ 6
1865
+
1866
+ i=1
1867
+ b2
1868
+ i = 10,
1869
+ 3a −
1870
+ 6
1871
+
1872
+ i=1
1873
+ bi = 6.
1874
+ Then z ∈ {(4; 1, 1, 1, 1, 1, 1), (5; 2, 2, 2, 1, 1, 1), (6; 3, 2, 2, 2, 2, 1), (7; 3, 3, 3, 2, 2, 2), (8; 3, 3, 3, 3, 3, 3)}.
1875
+ Proof. We first use the Cauchy-Scwartz’s inequality (�6
1876
+ i=1 bi)2 ≤ 6(�6
1877
+ i=1 b2
1878
+ i ) to obtain (a2−12a+32) ≤
1879
+ 0 whence 4 ≤ a ≤ 8. We further observe that
1880
+ (A.8)
1881
+ 6
1882
+
1883
+ i=1
1884
+ (b2
1885
+ i − bi) = a2 − 3a − 4.
1886
+ Also, (b2
1887
+ i − bi) ≥ 0 for all i ≥ 1, and b1 > 0 as 3a − 6 > 0 for a ≥ 4.
1888
+ Case 1: a = 4. We have �6
1889
+ i=1(b2
1890
+ i − bi) = 0 whence |bi| ≤ 1 for all i. Since �6
1891
+ i=1 bi = 6, we have bi = 1
1892
+ for all i.
1893
+ Case 2: a = 5. We have �6
1894
+ i=1(b2
1895
+ i − bi) = 6 whence |bi| ≤ 3. Also, �6
1896
+ i=1 b2
1897
+ i = 15 and �6
1898
+ i=1 bi = 9.
1899
+ Subcase 2.1) b1 = 3. In this case �6
1900
+ i=2(b2
1901
+ i − bi) = 0 whence |bi| ≤ 1 for all i ≥ 2. Consequently
1902
+ �6
1903
+ i=1 bi ≤ 8 which is a contradiction.
1904
+ Subcase 2.2) b1 ≤ 2. In this case we must have b1 = b2 = b3 = 2. Consequently �6
1905
+ i=4(b2
1906
+ i − bi) = 0
1907
+ whence |bi| ≤ 1 for all i ≥ 4 whence the only solution is z = (5; 2, 2, 2, 1, 1, 1).
1908
+
1909
+ ON VARIETIES WITH ULRICH TWISTED TANGENT BUNDLE
1910
+ 27
1911
+ Case 3: a = 6. We have �6
1912
+ i=1(b2
1913
+ i − bi) = 14 whence |bi| ≤ 4. Also �6
1914
+ i=1 b2
1915
+ i = 26 and �6
1916
+ i=1 bi = 12.
1917
+ Subcase 3.1) b1 = 4. Then �6
1918
+ i=2(b2
1919
+ i − bi) = 2 whence |bi| ≤ 2 for i ≥ 2. Consequently b2 = b3 = b4 = 2.
1920
+ But then �6
1921
+ i=1 b2
1922
+ i ≥ 28 which is a contradiction.
1923
+ Subcase 3.2) b1 = 3.
1924
+ 3.2.1) b2 = 3. In this case �6
1925
+ i=3(b2
1926
+ i − bi) = 2 whence |bi| ≤ 2 for i ≥ 3. Consequently, b3 = b4 = 2.
1927
+ Thus b5 + b6 = 2 and b2
1928
+ 5 + b2
1929
+ 6 which is a contradiction.
1930
+ 3.2.2) b2 ≤ 2. In this case we have the only solution z = (6; 3, 2, 2, 2, 2, 1).
1931
+ Subcase 3.3) b1 ≤ 2. In this case bi = 2 for all i whence �6
1932
+ i=1 b2
1933
+ i = 24 which is a contradiction.
1934
+ Case 4: a = 7. We have �6
1935
+ i=1(b2
1936
+ i − bi) = 24 whence |bi| ≤ 5. Also, �6
1937
+ i=1 b2
1938
+ i = 39 and �6
1939
+ i=1 bi = 15.
1940
+ Subcase 4.1) b1 = 5. Then �6
1941
+ i=2(b2
1942
+ i − bi) = 4 whence |bi| ≤ 2 for all i ≥ 2. Consequently bi = 2 for all
1943
+ i, thus �6
1944
+ i=1 b2
1945
+ i = 45 which is a contradiction.
1946
+ Subcase 4.2) b1 = 4.
1947
+ 4.2.1) b2 = 4. Then �6
1948
+ i=3(b2
1949
+ i − bi) = 0 whence |bi| ≤ 1 for all i ≥ 3. Consequently �6
1950
+ i=1 bi ≤ 12
1951
+ which is a contradiction.
1952
+ 4.2.2) b2 = 3.
1953
+ 4.2.2.1) b3 = 3. Then �6
1954
+ i=4(b2
1955
+ i − bi) = 0 whence |bi| ≤ 1 for i ≥ 4. Consequently �6
1956
+ i=1 bi ≤ 13
1957
+ which is a contradiction.
1958
+ 4.2.2.2) b3 ≤ 2. Then bi = 2 for all i ≥ 3 whence �6
1959
+ i=1 b2
1960
+ i = 41 which is a contradiction.
1961
+ 4.2.3) b2 ≤ 2. Then �6
1962
+ i=1 bi ≤ 14 which is a contradiction.
1963
+ Subcase 4.3) b1 = 3. Then b2 = b3 = 3.
1964
+ 4.3.1) b4 = 3. Then �6
1965
+ i=5(b2
1966
+ i − bi) = 0 whence |bi| ≤ 1 for i ≥ 5. Consequently �6
1967
+ i=1 bi ≤ 14 which
1968
+ is a contradiction.
1969
+ 4.3.2) b4 ≤ 2. Then b4 = b5 = b6 = 2. We get only one solution z = (7; 3, 3, 3, 2, 2, 2).
1970
+ Subcase 4.4) b1 ≤ 2. Then �6
1971
+ i=1 bi ≤ 12 which is a contradiction.
1972
+ Case 5: a = 8. We have �6
1973
+ i=1(b2
1974
+ i − bi) = 36 whence |bi| ≤ 6. Also, �6
1975
+ i=1 b2
1976
+ i = 54 and �6
1977
+ i=1 bi = 18.
1978
+ Subcase 5.1) b1 = 6. Then �6
1979
+ i=2(b2
1980
+ i − bi) = 6 whence |bi| ≤ 3 for i ≥ 2.
1981
+ 5.1.1) b2 = 3. In this case �6
1982
+ i=3(b2
1983
+ i − bi) = 0 whence |bi| ≤ 1 for i ≥ 3. Consequently �6
1984
+ i=1 bi ≤ 13
1985
+ which is a contradiction.
1986
+ 5.1.2) b2 ≤ 2. In this case �6
1987
+ i=1 bi ≤ 16 which is a contradiction.
1988
+ Subcase 5.2) b1 = 5. Then �6
1989
+ i=2(b2
1990
+ i − bi) = 16 whence |bi| ≤ 4.
1991
+ 5.2.1) b2 = 4. Then �6
1992
+ i=3(b2
1993
+ i − bi) = 4 whence |bi| ≤ 2 for i ≥ 3. Thus �6
1994
+ i=1 bi ≤ 17 which is a
1995
+ contradiction.
1996
+ 5.2.2) b2 = 3 which implies b3 = 3. Then �6
1997
+ i=4(b2
1998
+ i − bi) = 4 whence |bi| ≤ 2 for i ≥ 4. Consequently
1999
+ �6
2000
+ i=1 bi ≤ 17 which is a contradiction.
2001
+ 5.2.3) b2 ≤ 2. Then �6
2002
+ i=1 bi ≤ 15 which is a contradiction.
2003
+ Subcase 5.3) b1 = 4.
2004
+ 5.3.1) b2 = 4.
2005
+ 5.3.1.1) b3 = 4. Then �6
2006
+ i=4(b2
2007
+ i − bi) = 0 whence |bi| ≤ 1 for i ≥ 4. Consequently �6
2008
+ i=1 bi ≤ 15
2009
+ which is a contradiction.
2010
+ 5.3.1.2) b3 = 3 which implies b4 = 3. Thus �6
2011
+ i=5(b2
2012
+ i −bi) = 0 whence |bi| ≤ 1 for i ≥ 5. Consequently
2013
+ �6
2014
+ i=1 bi ≤ 16 which is a contradiction.
2015
+ 5.3.1.3) b3 ≤ 2. Then �6
2016
+ i=1 bi ≤ 16 which is a contradiction.
2017
+ 5.3.2) b2 = 3. Then b3 = b4 = b5 = 3 and b6 = 2. Consequently �6
2018
+ i=1 b2
2019
+ i = 56 which is a contradiction.
2020
+ 5.3.3) b2 ≤ 2. Then �6
2021
+ i=1 bi ≤ 14 which is a contradiction.
2022
+ Subcase 5.4) b1 ≤ 3. In this case we have the only solution z = (8; 3, 3, 3, 3, 3, 3).
2023
+
2024
+ Angelo Felice Lopez, Dipartimento di Matematica e Fisica, Universit`a di Roma Tre, Largo San Leonardo
2025
+ Murialdo 1, 00146, Roma, Italy. e-mail [email protected]
2026
+ Debaditya Raychaudhury, Department of Mathematics, University of Toronto, Bahen Centre, 40 St.
2027
+ George St., Room 6290, Toronto, ON M5S 2E4, Canada. email: [email protected]
2028
+
BdE1T4oBgHgl3EQfVgTd/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BdE3T4oBgHgl3EQfUAoU/content/tmp_files/2301.04446v1.pdf.txt ADDED
@@ -0,0 +1,1117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ An Efficient Approach to the Online Multi-Agent Path Finding Problem
2
+ by Using Sustainable Information
3
+ 1, 3Mingkai TANG, 1, 6Boyi LIU, 1, 4Yuanhang LI, 1, 2, 5Hongji LIU, 1, 2, 7Ming LIU, 1, 8Lujia WANG
4
+ 1The Hong Kong University of Science and Technology
5
+ 2The Hong Kong University of Science and Technology (Guangzhou)
6
+ {3mtangag, 4yliog, 5hliucq}@connect.ust.hk, [email protected], {7eelium, 8eewanglj}@ust.hk
7
+ Abstract
8
+ Multi-agent path finding (MAPF) is the problem of mov-
9
+ ing agents to the goal vertex without collision. In the on-
10
+ line MAPF problem, new agents may be added to the envi-
11
+ ronment at any time, and the current agents have no infor-
12
+ mation about future agents. The inability of existing online
13
+ methods to reuse previous planning contexts results in redun-
14
+ dant computation and reduces algorithm efficiency. Hence,
15
+ we propose a three-level approach to solve online MAPF uti-
16
+ lizing sustainable information, which can decrease its redun-
17
+ dant calculations. The high-level solver, the Sustainable Re-
18
+ plan algorithm (SR), manages the planning context and sim-
19
+ ulates the environment. The middle-level solver, the Sustain-
20
+ able Conflict-Based Search algorithm (SCBS), builds a con-
21
+ flict tree and maintains the planning context. The low-level
22
+ solver, the Sustainable Reverse Safe Interval Path Planning
23
+ algorithm (SRSIPP), is an efficient single-agent solver that
24
+ uses previous planning context to reduce duplicate calcula-
25
+ tions. Experiments show that our proposed method has sig-
26
+ nificant improvement in terms of computational efficiency. In
27
+ one of the test scenarios, our algorithm can be 1.48 times
28
+ faster than SOTA on average under different agent number
29
+ settings.
30
+ 1
31
+ Introduction
32
+ The multi-agent path finding problem (MAPF) is finding
33
+ paths for a set of agents to move from their starting ver-
34
+ tex to the goal vertex without collision. MAPF has a wide
35
+ practical application, such as aircraft towing vehicles (Mor-
36
+ ris et al. 2016), warehouse robots (Wurman, D’Andrea, and
37
+ Mountz 2008), video games (Ma et al. 2017b) and urban
38
+ road networks (Choudhury et al. 2022).
39
+ For MAPF, most works assume that the environment can
40
+ be fully captured before the system runs (Salzman and Stern
41
+ 2020; Stern 2019; Ma et al. 2017a). Under this assumption,
42
+ the solution can be calculated in advance, and the agent only
43
+ needs to take actions along the pre-calculated plan at run-
44
+ time. These path finding problems are referred to as offline
45
+ MAPF. However, in practice, the assumption is not always
46
+ guaranteed. During the running of a system, new agents
47
+ might appear in the system suddenly, and agents need to
48
+ do replanning to fit the new situation. Recently, the online
49
+ MAPF problem (ˇSvancara et al. 2019) was proposed. It is
50
+ assumed that new agents may be added to the environment
51
+ at any time, and the current agents have no information about
52
+ Figure 1: An example of two online MAPF instances. In
53
+ both instances, a1 appears A4 at time point 0 and needs to
54
+ travel to D1. P1 and P2 are two paths with equal costs for
55
+ a1. In the first instance, a2 appears in C1 at time point 1,
56
+ and its goal is A2. In the second instance, a′
57
+ 2 appears in D2
58
+ at time point 1, and its goal is C4.
59
+ future agents. All agents in the environment need to do re-
60
+ planning to fit the new situation.
61
+ Online MAPF is a problem of great practical importance.
62
+ For example, in a real-world warehouse system, the robot
63
+ frequently enters and exits the work area due to factors
64
+ such as charging or malfunction. Moreover, the time point
65
+ at which the robot re-enters the work area is unpredictable.
66
+ The agents in the warehouse need to adjust their path due to
67
+ the appearance of a new agent.
68
+ Optimally solving the offline MAPF problem is NP-hard
69
+ (Yu and LaValle 2013; Ma et al. 2016). Compared with the
70
+ offline MAPF, which can calculate the paths before the sys-
71
+ tem runs, the online MAPF further needs to calculate high-
72
+ quality paths for all agents in real-time when new agents
73
+ appear. ˇSvancara et al. proposed several methods to solve
74
+ the online MAPF problem. The Replan Single algorithm
75
+ searches an optimal path for each new agent when they
76
+ appear, while all paths of the old agents remain the same.
77
+ The Replan Single Group algorithm jointly plans for all new
78
+ agents appearing at the same time, and the new agents’ path
79
+ plan cannot affect the old agents’ path plan. These two al-
80
+ arXiv:2301.04446v1 [cs.MA] 11 Jan 2023
81
+
82
+ P1
83
+ α1
84
+ α2
85
+ P2
86
+ α2
87
+ α2
88
+ α2
89
+ α1gorithms can execute fast, but the solutions are not optimal.
90
+ The Replan All algorithm replan for all agents without con-
91
+ sidering existing path plans when new agents appear, and
92
+ it can get high-quality solutions. However, each iteration of
93
+ planning in the Replan All algorithm has a high computa-
94
+ tional complexity when the number of agents becomes large.
95
+ Considering reusing the information in previous planning
96
+ iterations to reduce the running time, we propose an efficient
97
+ algorithm. In this paper, we refer to this kind of information
98
+ as sustainable information or planning context. Our method
99
+ consists of three levels of algorithms. We name the high-
100
+ level algorithm as the Sustainable Replan algorithm(SR). It
101
+ simulates the environment and maintains the whole plan-
102
+ ning context. The middle-level algorithm, the Sustainable
103
+ Conflict-Based Search Algorithm (SCBS), is called by SR
104
+ for searching the multi-agent path planning solution based
105
+ on current information. SCBS uses the Sustainable Reverse
106
+ Safe Interval Path Planning algorithm (SRSIPP), which is
107
+ the low-level solver, for single-agent planning. Given that
108
+ each planning iteration for a single agent has the same goal
109
+ point, but different starting points, SRSIPP searches the path
110
+ in the backward direction (from goal point to starting point)
111
+ to reuse the previous planning information.
112
+ The main contributions of this paper are as follows.
113
+ 1. We propose a three-level approach for reusing previous
114
+ planning context to reduce the running time for the online
115
+ MAPF.
116
+ 2. We prove the completeness and the snapshot optimality
117
+ of our approaches.
118
+ 3. We performed detailed algorithm performance compar-
119
+ ison experiments with SOTA. The average acceleration
120
+ rate relative to the SOTA can reach up to 1.48.
121
+ 2
122
+ Problem Definition
123
+ The definition of the online multi-agent path finding prob-
124
+ lem is that given a directed graph G(V, E), and a set of k
125
+ agents a1, a2, a3 ... ak, find a collision-free path for each
126
+ agent. The agent ai is described by the triplet (ts
127
+ i, vs
128
+ i , vg
129
+ i ),
130
+ meaning agent ai appears in the starting vertex vs
131
+ i ∈ V in
132
+ time point ts
133
+ i and its goal is the vertex vg
134
+ i ∈ V . In this paper,
135
+ we call agent i starts at ts
136
+ i. Without loss of generality, we
137
+ assume 0 ≤ ts
138
+ 1 ≤ ts
139
+ 2 ≤ ... ≤ ts
140
+ k. Specially, agents whose
141
+ start time point is 0 can be seen as agents already in the
142
+ scene before the environment starts to run, and we refer to
143
+ the planning for these agents as the offline part of the on-
144
+ line MAPF problem. In contrast, we refer to the planning
145
+ after the system starts as the online part. In the beginning,
146
+ all agents plan their path from their own start vertex to the
147
+ goal vertex, while they do not know any information about
148
+ the agents that will start in the future. After that, agents fol-
149
+ low their own plan at each time. When it comes to the time
150
+ point when new agents start, all agents need to replan their
151
+ paths considering the new input of the online MAPF prob-
152
+ lem. Let m be the number of time points when new agents
153
+ start, and tnew
154
+ 1
155
+ , tnew
156
+ 2
157
+ ... tnew
158
+ m
159
+ be the corresponding time point
160
+ sequence. m might be smaller than k because there may be
161
+ more than one agent starting at the same time point. The so-
162
+ lution to an online MAPF problem is defined as a sequence
163
+ of valid plans Π =
164
+
165
+ π0, π1, π2...πm�
166
+ , where πj is a col-
167
+ lection of all path plans at tnew
168
+ j
169
+ . Let pj
170
+ i be the path plan of
171
+ agent i in πj, and pj
172
+ i[t] be the vertex of agent i in time point
173
+ t in πj. We define pj
174
+ i[tl : tr] as the concatenation of the
175
+ path plan of agent i from time point tl to time point tr, i.e.
176
+ pj
177
+ i[u : v] = pj
178
+ i[u]◦pj
179
+ i[u+1]◦...◦pj
180
+ i[v−1], where ◦ is the con-
181
+ catenation operator. The execute plan of agent i is defined as
182
+ Exi[Π] = p1
183
+ i [tnew
184
+ 1
185
+ : tnew
186
+ 2
187
+ ]◦p2
188
+ i [tnew
189
+ 2
190
+ : tnew
191
+ 3
192
+ ]◦...◦pm−1
193
+ j
194
+ [tnew
195
+ n−1 :
196
+ tnew
197
+ n
198
+ ] ◦ pn
199
+ j [tnew
200
+ n
201
+ : ∞], showing the actual path of agent i.
202
+ In this paper, we focus on the variant:
203
+ • We assume that the agent starts in the garage, which
204
+ means that the new agent can choose to enter the start ver-
205
+ tex at the start time or later. Before they enter, they wait
206
+ in the garage and do not conflict with other agents. In ad-
207
+ dition, we use the setting of disappearing at the goal ver-
208
+ tex. Under these two assumptions, the problem is always
209
+ solvable if the offline part is solvable and each agent has a
210
+ path from its initial location to its goal location, as proved
211
+ in Proposition 2 in (ˇSvancara et al. 2019). Although we
212
+ use these two assumptions, our proposed method can be
213
+ easily extended to other assumptions at the start and goal.
214
+ • We only consider vertex conflict and edge conflict. Two
215
+ agents collide iff they occupy the same vertex or cross
216
+ the same edge in opposite directions at the same time.
217
+ Two objectives are commonly used for offline MAPF prob-
218
+ lems, minimizing makespan and minimizing sum-of-cost
219
+ (SOC). Makespan is the maximum complete time above all
220
+ agents. However, minimizing makespan is improper for the
221
+ online MAPF problem because new agents will continu-
222
+ ously be added to the environment, and the later added agent
223
+ will more likely affect the objective. SOC is the summation
224
+ of the cost of all agents’ path plans. However, two online
225
+ MAPF solvers are not comparable in SOC directly because
226
+ SOC cannot measure the exact quality of the two solvers.
227
+ For example, two solvers s1 and s2 are used to solve the
228
+ instances in Figure 1. At time point 0, a1 starts in A4. It
229
+ has two paths with the same cost to its goal D1. Assume
230
+ s1 choose P1 and s2 choose P2. Now considering for s1, a1
231
+ goes to B4 at time point 1. In the first instance, a2 appears,
232
+ the path of a1 will not be affected, and it will continuously
233
+ follow the path [B4, C4, D4, D3, D2, D1] with length 6.
234
+ However, in another instance, a′
235
+ 2 appears, the path of a1 will
236
+ make a detour [B4, A4, A3, A2, A1, B1, C1, D1] with
237
+ length 8. The symmetrical situation will appear on s2. We
238
+ cannot say s1 is better than s2 or not because the actual cost
239
+ depends on the future agents, which is unpredictable at early
240
+ time points. Using SOC directly can not judge the quality of
241
+ the solver. We define a solver as a snapshot optimal solver if
242
+ the solver can get optimal paths in terms of SOC, assuming
243
+ no new agent will appear in the future. A snapshot optimal
244
+ solver is better than a non-optimal solver in solution quality.
245
+ 3
246
+ Methodology
247
+ Our approach is a three-level method. Figure 2 shows the
248
+ architecture of the method. The high-level solver is the Sus-
249
+ tainable Replan algorithm (SR), which simulates the envi-
250
+ ronment and maintains the planning context of all agents.
251
+
252
+ Figure 2: The architecture of the three-level approach. The SR algorithm is the high-level solver, simulating the environment
253
+ and managing the planning context. The SCBS algorithm is the middle-level solver, which builds a conflict tree and extracts the
254
+ individual planning context. The low-level solver, the SRSIPP algorithm, uses backward search on the TIS state for single-agent
255
+ path planning.
256
+ The Sustainable Conflict-Based Search algorithm (SCBS),
257
+ the middle-level solver, plans the optimal path for multi-
258
+ agents and manages the planning context. The low-level
259
+ solver, Sustainable Reverse Safe Interval Path Planning (SR-
260
+ SIPP), solves a single-agent problem under a set of con-
261
+ straints.
262
+ 3.1
263
+ Sustainable Replan Algorithm
264
+ SR algorithm is the highest solver. It can simulate the scene
265
+ and maintain the planning context sustainably. When one or
266
+ more agents appear, the algorithm will do replanning for all
267
+ agents. Figure 2 shows an example for the SR algorithm. The
268
+ ’W’ in the figure means the action is waiting in the garage.
269
+ We define pc as the planning context, a two-level hash
270
+ table, to save all the planning context. Its keys are the agent’s
271
+ id and all constraints on this agent, while its values can be
272
+ determined by its lower-level solvers. We will describe the
273
+ specific planning context in the later subsections.
274
+ The pseudo-code is shown in Algorithm 1. Let tc be the
275
+ current time point, vc be the current vertex of the agent lo-
276
+ cated, A be the agent set that has started, A+ be the new
277
+ agent set appearing in time point tc, and Ex be the execu-
278
+ tion plan. In lines 1-8, the environment is simulated to time
279
+ point tc. If an agent a reaches its goal before time point tc,
280
+ all related elements in A and pc will be removed. Otherwise,
281
+ the current vertex vc of the agent a will be obtained from the
282
+ previous execute plan Ex. In line 10, the SCBS algorithm
283
+ calculates the optimal path plan p. In line 11, the execution
284
+ plan is updated by the p, deleting the path from time point tc
285
+ and concatenating the new path plan to the execution plan.
286
+ Algorithm 1: Sustainable Replanning
287
+ Input: original agent set A, new agent set A+, execute plan
288
+ Ex, current time point tc, planning context pc
289
+ 1: for agent a in A do
290
+ 2:
291
+ if a reach goal before time tc then
292
+ 3:
293
+ A ← A \ {a}
294
+ 4:
295
+ Remove all planning context of a in pc.
296
+ 5:
297
+ else
298
+ 6:
299
+ Update a.vc by Ex.
300
+ 7:
301
+ end if
302
+ 8: end for
303
+ 9: A ← A ∪ A+.
304
+ 10: p, pc ← SCBS(A, tc, pc) // Algorithm 2
305
+ 11: Update Ex by p.
306
+ 12: return A, Ex, pc
307
+ 3.2
308
+ Sustainable Conflict-Based Search Algorithm
309
+ The Sustainable Conflict-Based Search algorithm (SCBS)
310
+ calculates the multi-agent path plan and maintains the plan-
311
+ ning context sustainably. It is extended from the Conflict-
312
+ Based Search algorithm (CBS) (Sharon et al. 2015). The
313
+ main difference between SCBS and CBS is the processing
314
+ of the planning context.
315
+ An example of using the SCBS algorithm is shown in Fig-
316
+ ure 2. Before each low-level search, the planning context
317
+ directly related to the low-level search will be extracted ac-
318
+ cording to the agent and its related constraints. We name
319
+ this part of the planning context as individual planning con-
320
+ text and use ipc to represent it. During the low-level search,
321
+
322
+ SR
323
+ Planning Context
324
+ ai
325
+ con1
326
+ con2
327
+ a2
328
+ a2
329
+ CLOSED, OPEN
330
+ CLOSED, OPEN
331
+ a3
332
+ a2
333
+ ......
334
+ a2
335
+ ...
336
+ con2
337
+ con1
338
+ Time Point 1
339
+ Time Point 3
340
+ CLOSED, OPEN
341
+ CLOSED, OPEN
342
+ SCBS
343
+ Paths: .....
344
+ Cons: @
345
+ a3
346
+ Icon1
347
+ i con2
348
+ Individual Planning Context
349
+ Paths: ..
350
+ Paths: ....
351
+ i CLOSED, OPEN
352
+ CLOSED, OPEN
353
+ Cost:
354
+ Cost: ..
355
+ CLOSED, OPEN
356
+ Cons: ((t4, a1, V4))
357
+ Cons: [(t4, a4, V4))
358
+ ··
359
+ a4
360
+ Icon1
361
+ con2
362
+ SRSIPP
363
+ CLOSED, OPEN
364
+ CLOSED, OPEN
365
+ .....
366
+ Path Building
367
+ Backward Search on TIS State(a) Forward search on TS states.
368
+ (b) Backward search on TS states.
369
+ (c) Backward search on TIS states. The number
370
+ in the block is the cost to vg.
371
+ (d) Path building on TIS states.
372
+ Figure 3: (a)-(c) are three different search methods on the same graph and constraints. (d) is based on (c). The number near the
373
+ block shows the time point or the time interval.
374
+ ipc is modified to fit the new instance. After the low-level
375
+ search, the new ipc will be put back into pc for usage in
376
+ later iterations.
377
+ Algorithm 2 shows the pseudo-code. In lines 5-7 and 25-
378
+ 27, ipc is filtered from pc by the function GetIPC. After
379
+ using the low-level solver, the new ipc is placed back to pc.
380
+ 3.3
381
+ Sustainable Reverse Safe Interval Path
382
+ Planning Algorithm
383
+ We now introduce the Sustainable Reverse Safe Interval
384
+ Path Planning algorithm (SRSIPP). The SRSIPP is a single-
385
+ agent solver based on A* (Hart, Nilsson, and Raphael
386
+ 1968) and SIPP (Phillips and Likhachev 2011), designed for
387
+ reusing the previous individual planning context to minimize
388
+ the complexity of searching. We omit the agent index i and
389
+ the current number of the planning iteration j in all sym-
390
+ bols when discussing the SRSIPP algorithm, e.g. ts
391
+ i,j, tg
392
+ i,j,
393
+ vs
394
+ i , vg
395
+ i to ts, tg. Let vc be the agent’s current vertex, and
396
+ sc = (tc, vc) be the agent’s current state.
397
+ In the online MAPF, agents may replan while executing
398
+ their plan. Although the starting vertex of each planning is
399
+ different, the ending vertex is invariant. SRSIPP uses this
400
+ property to achieve the target of reusing the previous plan-
401
+ ning context. For some single-agent solvers, the agent is
402
+ planned from its current state to its goal through the edges.
403
+ These search methods are called forward search. The plan-
404
+ ning can also search from the goal to its current state through
405
+ the reverse edges. These search methods are called backward
406
+ search. The SRSIPP is a backward search algorithm.
407
+ In the MAPF problem, most single-agent search methods
408
+ are forward search on the time-space (TS) state. An example
409
+ is shown in Figure 3(a). However, since the entire search tree
410
+ is rooted at the start vertex, which changes with each search,
411
+ the forward search cannot reuse previous planning informa-
412
+ tion. Observing that the goal vertex is invariant for the same
413
+ agent, we can set the goal vertex as the root of the search
414
+ tree to reuse this tree in the following search. However, we
415
+ cannot predict the arrival time before the search starts. For
416
+ the optimality of the algorithm, all states that reach the goal
417
+ earlier must be fully searched before states that arrive later,
418
+ resulting in a large amount of additional computation. Fig-
419
+ ure 3(b) shows an example.
420
+ To speed up the calculation, we propose to search on the
421
+ time-interval-space (TIS) state. Figure 3(c) shows an exam-
422
+ ple. Let ([tl, tr], v) be the TIS state where [tl, tr] is a time
423
+ interval and v is the vertex, and (t, v) be a TS state where t
424
+ is a time point. The TIS state ([tl, tr], v) contains a collection
425
+ of TS states {(t, v)|t ∈ [tl, tr]}. Let gT S(s) and gT IS(s) be
426
+ the cost from a TS and TIS state to vg. All TS states in the
427
+ same TIS state can use the same vertices sequence as the
428
+ shortest path to the goal. Formally, we have
429
+ ∀t ∈ [tl, tr], gT IS(([tl, tr], v)) = gT S((t, v)).
430
+ (1)
431
+ We refer to the function value of gT S(s) and gT IS(s) as the
432
+ g value of the TS state and the TIS state, respectively. A TIS
433
+ state is valid if and only if it does not cover any constrained
434
+
435
+ 22
436
+ V1
437
+ 2522
438
+ 21
439
+ V51
440
+ 2
441
+ 0
442
+ V2
443
+ 3
444
+ V5
445
+ 2
446
+ 1
447
+ V3
448
+ V4Algorithm 2: SCBS
449
+ Input: agents A, current time point tc, planning context pc
450
+ 1: OPEN ← ∅
451
+ 2: R ← new node
452
+ 3: R.cons ← ∅
453
+ 4: for each agent ai do
454
+ 5:
455
+ ipc ← GetIPC(pc,ai,R.cons[ai])
456
+ 6:
457
+ R.path[ai], ipc ←
458
+ SRSIPP(ai, NULL, tc, ipc) // Algorithm 3
459
+ 7:
460
+ Update pc by ipc.
461
+ 8: end for
462
+ 9: R.cost ← calculate the SOC of P.paths
463
+ 10: OPEN ← OPEN ∪ {R}
464
+ 11: while OPEN ̸= ∅ do
465
+ 12:
466
+ N ← minimum cost node from OPEN.
467
+ 13:
468
+ OPEN ← OPEN\{N}
469
+ 14:
470
+ L ← the earliest collision in N
471
+ 15:
472
+ if L is None then
473
+ 16:
474
+ return N.paths, pc
475
+ 17:
476
+ end if
477
+ 18:
478
+ C ← Get constraints from L
479
+ 19:
480
+ for constraint c in C do
481
+ 20:
482
+ P ← new node
483
+ 21:
484
+ P.cons ← N.cons
485
+ 22:
486
+ P.paths ← N.paths
487
+ 23:
488
+ a ← c.agent
489
+ 24:
490
+ Insert c in P.cons[a].
491
+ 25:
492
+ ipc ← GetIPC(pc, a, P.cons[a])
493
+ 26:
494
+ P.paths[a], ipc ←
495
+ SRSIPP(a, P.cons[a], tc, ipc) // Algorithm 3
496
+ 27:
497
+ Update pc by ipc.
498
+ 28:
499
+ if P.path[a] is not NULL then
500
+ 29:
501
+ P.cost ← calculate the SOC of P.paths
502
+ 30:
503
+ OPEN ← OPEN ∪ {P}
504
+ 31:
505
+ end if
506
+ 32:
507
+ end for
508
+ 33: end while
509
+ TS states or cover TS states with a time point less than ts. A
510
+ maximum TIS state is a valid TIS state whose time interval
511
+ is not a subset of other valid TIS states on the same vertex.
512
+ Before searching a vertex, all the maximum TIS states in
513
+ the vertex will be created. Their g values are set to infinity,
514
+ except that the g values of TIS states on vg are set to 0.
515
+ The procedure of expanding a state for backward search
516
+ is described as follows. The actions of the search include
517
+ moving to a neighbor vertex through reverse edges and stay-
518
+ ing in the same vertex. We use ([tl, tr], v) to represent the
519
+ TIS state that needs to expand. We define a TIS state s′
520
+ as a dummy son of another TIS s iff all TS states in s′
521
+ can take one action to one of TS states in s in the for-
522
+ ward direction. The cost of the dummy son will be one
523
+ more than the original state, i.e., gT IS(s′) = gT IS(s) + 1.
524
+ Let N(v) = {v′|((v′, v) ∈ E) ∨ (v′ = v)} be the neighbor-
525
+ hood of v, and ds(([tl, tr], v)) = {([t′
526
+ l, t′
527
+ r], v′)|v′ ∈ N(v)}
528
+ be the dummy son set of ([tl, tr], v). For the dummy son
529
+ state ([t′
530
+ l, t′
531
+ r], v′) ∈ ds(([tl, tr], v)). We set
532
+ t′
533
+ l = max(ts, tl − 1)
534
+ t′
535
+ r = tr − 1
536
+ (2)
537
+ The dummy son is used to update all current TIS states
538
+ on the same vertex. If the entire TIS state can be improved,
539
+ the cost of the TIS state can be modified directly. Suppose
540
+ only part of the TIS state can be improved due to the time
541
+ interval coverage. In that case, the TIS state will be split into
542
+ several TIS states according to the time interval coverage,
543
+ and only the state completely covered by the dummy son’s
544
+ time interval will be updated. Figure 4 shows an example.
545
+ We use A* for the backward search. Let hT IS(s) be the
546
+ heuristic function of the cost estimation from the TIS state s
547
+ to sc, and hv(v) be the heuristic function of the path length
548
+ estimation from vertex v and vc. We define hT IS(s) as
549
+ hT IS(([tl, tr], v)) = max(max(tl − tc, 0), hv(v))
550
+ (3)
551
+ where tl ≥ ts. The states, where tr < ts, will not be
552
+ searched, and the heuristic function for these states is un-
553
+ defined. In the 4-neighbor grid, hv(v) is usually defined by
554
+ the Manhattan distance to the goal point, i.e.,
555
+ hv(v) = |vx − vg
556
+ x| + |vy − vg
557
+ y|
558
+ (4)
559
+ where (vx, vy) is the coordination of v and (vg
560
+ x, vg
561
+ y) is the
562
+ coordination of vg. The evaluation function of a TIS state is
563
+ defined as follows.
564
+ fT IS(s) = gT IS(s) + hT IS(s)
565
+ (5)
566
+ Let the function value of hT IS(s) and fT IS(s) be the h
567
+ value and the f value of a TIS state s, respectively.
568
+ In the SRSIPP, the individual planning context includes
569
+ the open list and the closed list. We use OPEN and
570
+ CLOSED to represent them. At the beginning of the new
571
+ search, we adjust the individual planning context to fit the
572
+ new planning. Specifically, we recalculate the h value and
573
+ the f value of all states in the OPEN, according to the new
574
+ current state and Equations (3, 5). The CLOSED can be
575
+ used directly without modification. After the adjustment, the
576
+ new search can reuse the OPEN and the CLOSED of the
577
+ previous search.
578
+ The pseudo-code is shown in Algorithm 3. In the code,
579
+ a.vc and a.vg are the current vertex and the goal vertex of
580
+ the agent a. In addition, s.tl and s.tr are the endpoints of the
581
+ time interval in s. The g value, h value and f value of state
582
+ s are saved in s.g, s.h and s.f, respectively. A state is termi-
583
+ nal state if the state is the optimal final state for the search.
584
+ We use ts to save the terminal state and cts to save all can-
585
+ didate terminal states. More specifically, cts saves all closed
586
+ states in the vertex a.vc, which is reachable for the agent,
587
+ i.e., tc ≤ s.tr. In line 1, the individual planning context is
588
+ extracted. If the current state is invalid, return directly (lines
589
+ 2-4). In line 5, we update all states’ h value and f value in
590
+ OPEN. In line 6, if the TIS states on a.vg have not been
591
+ created, create all maximum TIS states and put them into
592
+ the OPEN. In lines 7-12, the function StopCheck is used
593
+ to check whether the search can stop. If yes, build the path
594
+
595
+ Figure 4: An example to show the process of updating the cost of TIS states. The blocks indicate the time interval of the state,
596
+ and the number in the block shows the cost to vg. The first row and the second row show the TIS state ([t0, t1], v) and its dummy
597
+ son state ([t′
598
+ 0, t′
599
+ 1], v). The third row indicates all valid TIS states in v before being updated. The fourth line shows the updated
600
+ TIS states. The first state cannot be improved, while for the second state, the whole state can be improved. For the third state,
601
+ only part of the time interval is covered by [t′
602
+ 0, t′
603
+ 1]. The state is split into two states, and only the cost of the covered state is
604
+ updated. The time interval of the fourth state is not covered, so it is not affected. The grey block shows the improved TIS states.
605
+ by the function BuildPath and return directly (We will dis-
606
+ cuss the detail of StopCheck and BuildPath later). Oth-
607
+ erwise, the search starts. In each iteration, get the state with
608
+ minimum f value in the OPEN (line 14). If the time inter-
609
+ val cannot cover any time point after tc, the state is useless
610
+ for the current and later searches. We ignore it and go to the
611
+ next iteration of the while loop (lines 15-17). In lines 18-27,
612
+ dummy sons are generated to update the states. In line 29,
613
+ we update the OPEN, the CLOSED, and the cts. Finally,
614
+ we check whether the search can stop (lines 30-32). If no,
615
+ go to the next iteration.
616
+ The StopCheck algorithm checks whether the search can
617
+ stop and finds the best terminal state. When finding a better
618
+ goal state out of cps is impossible, we stop searching. There
619
+ are two different scenarios for the stop. If the agent is in
620
+ the scene, the search stops when a state in cps covers tc.
621
+ Otherwise, the agent can choose a time point to enter the
622
+ scene. Supposed a state ([tl, tr], v) is selected as the terminal
623
+ state, the best enter time point is max(tl, tc), and the total
624
+ cost from agents’ current TS state (tc, vc) to vertex vg is
625
+ max(tl − tc, 0) + gT IS(([tl, tr], v)). If the minimum total
626
+ cost of choosing a state in cps is less than or equal to the f
627
+ value of the current expanded state, no better solution can be
628
+ found, and the search can stop.
629
+ The pseudo-code of the StopCheck algorithm is shown
630
+ in Algorithm 4. In lines 1-3, if there is no element in cts,
631
+ the search can not stop. In lines 4-10, if the agent is in the
632
+ scene, the search can stop only when a state in cts covers tc.
633
+ In lines 12-18, if the agent is not in the scene, find the state
634
+ with minimum total cost. If the cost is not higher than the
635
+ minimum f value of all nodes in the OPEN, the search can
636
+ stop and return the best terminal state.
637
+ The BuildPath function in Algorithm 3 builds the final
638
+ TS state path. After getting to the terminal state, we back-
639
+ track to get a TIS path. Based on it, we build the TS path as
640
+ the solution. Specially, if the agent is not in the scene and the
641
+ current time point is earlier than any time point in the termi-
642
+ nal state’s time interval, the agent will wait until it reaches
643
+ the earliest time point of the target TIS state and then enter
644
+ the scene. Figure 3(d) shows an example of the path build-
645
+ ing, selecting ([3, ∞], v1) as the terminal state.
646
+ 4
647
+ Theoretical Analysis
648
+ Theorem 1. If hv(v) is admissible and satisfies the con-
649
+ sistency assumption, when the first return value of the
650
+ StopCheck function is true, it is impossible to have a better
651
+ terminal state out of cts.
652
+ Proof. The proof is given in the appendix.
653
+ Theorem 2. If hv(v) is admissible and satisfies the con-
654
+ sistency assumption, the SRISPP algorithm is complete and
655
+ optimal.
656
+ Proof. If hv(v) is admissible and satisfies the consistency
657
+ assumption, then hT IS(s) is also admissible and satisfies the
658
+ consistency assumption. It is proved in the appendix.
659
+ If it is the first planning for the configuration of a and
660
+ cons, the OPEN and CLOSED are empty initially. It is a
661
+ standard A*, and the search’s completeness and optimality
662
+ are satisfied.
663
+ If the OPEN and CLOSED are not empty at the be-
664
+ ginning of the search, the state in the CLOSED will not be
665
+ reopened, and the g value of the state is already the smallest
666
+ cost to the goal vertex. For the state in the OPEN, we up-
667
+ date their h value and f value to fit the new situation. The
668
+ scenario can be seen starting from a snapshot in the standard
669
+ A*, except that some states are closed in advance. However,
670
+ the early closed nodes will not affect the completeness and
671
+ optimality of the algorithm because all their unclosed neigh-
672
+ bors are in the OPEN.
673
+ Combining theorem 1 and the above discussions, the the-
674
+ orem is proved.
675
+ Corollary 1. If hv(v) is admissible and satisfies the consis-
676
+ tency assumption, SCBS is complete and optimal.
677
+ Corollary 2. If hv(v) is admissible and satisfies the consis-
678
+ tency assumption, SR is complete and snapshot optimal.
679
+ These two corollaries can be proved according to the
680
+ property of CBS, and RA algorithm (Sharon et al. 2015;
681
+ ˇSvancara et al. 2019). Because Theorem 2 is proved and the
682
+ operations on planning context in SCBS and SR will not af-
683
+ fect completeness and optimality, the corollaries are proved.
684
+
685
+ 3
686
+ 4
687
+ 4-1
688
+ 5
689
+ 61
690
+ 5
691
+ :6
692
+ 4
693
+ 4
694
+ 5Algorithm 3: SRSIPP
695
+ Input:agent a, constraints cons, current time point tc, indi-
696
+ vidual planning context ipc
697
+ 1: OPEN, CLOSED ← ipc
698
+ 2: if a is in the scene and (tc, a.vc) ∈ cons then
699
+ 3:
700
+ return false, ipc
701
+ 4: end if
702
+ 5: Update h value and f value of states in OPEN.
703
+ 6: Create maximum TIS states in v′ by cons if the states
704
+ are uncreated, and put them into OPEN.
705
+ 7: fmin ← the smallest f value in OPEN
706
+ 8: cps ← {([tl, tr], v) ∈ CLOSED|a.vc = v∧
707
+ a.ts ≤ tr)}
708
+ 9: stop, ts ← StopCheck(cps, fmin, a) // Algorithm 4
709
+ 10: if stop then
710
+ 11:
711
+ return BuildPath(ts, a), {OPEN, CLOSED}
712
+ 12: end if
713
+ 13: while OPEN is not empty do
714
+ 14:
715
+ s ← the TIS state with minimum f value in OPEN
716
+ 15:
717
+ if s.tr < tc then
718
+ 16:
719
+ continue
720
+ 17:
721
+ end if
722
+ 18:
723
+ for each vertex v′ in N(s.v) do
724
+ 19:
725
+ ds ← the dummy son of s in v′
726
+ 20:
727
+ Create maximum TIS states in v′ by cons if the
728
+ states are uncreated, and put them into OPEN.
729
+ 21:
730
+ for each TIS state s′ in v′ do
731
+ 22:
732
+ if s′ can be improved by ds then
733
+ 23:
734
+ S′
735
+ new ← New states after improving s′
736
+ 24:
737
+ OPEN ← OPEN\{s′} ∪ S′
738
+ new
739
+ 25:
740
+ end if
741
+ 26:
742
+ end for
743
+ 27:
744
+ end for
745
+ 28:
746
+ stop, ts ← StopCheck(cps, s.f, a) // Algorithm 4
747
+ 29:
748
+ Update OPEN, CLOSED and cps by s.
749
+ 30:
750
+ if stop then
751
+ 31:
752
+ return BuildPath(ts, a), {OPEN, CLOSED}
753
+ 32:
754
+ end if
755
+ 33: end while
756
+ 5
757
+ Experiment
758
+ The purpose of our experiments is to evaluate the computa-
759
+ tional efficiency of the proposed approach. Two 4-neighbor
760
+ grid map datasets are used with settings similar to (ˇSvancara
761
+ et al. 2019), which is a small grid map dataset and a large
762
+ grid map dataset, respectively. We perform online MAPF in
763
+ these grid maps. Specifically, we move each of the agents
764
+ from one cell to another. During this period, there will be
765
+ new agents starting at any time.
766
+ We use success rate and average running time as the met-
767
+ rics. The running time limit is 30 seconds. If the algorithm
768
+ run exceeds the time limit, the experimental instance is un-
769
+ successful and uses the time limit as the running time. We
770
+ make statistics based on the number of agents. For each
771
+ number of agents, it has 100 instances in both datasets.
772
+ The experiments assume no agents are in the scene at the
773
+ beginning. On the one hand, the offline parts of algorithms
774
+ Algorithm 4: StopCheck
775
+ Input: candidate terminal state set cts, the minimum esti-
776
+ mated function value in the open list fmin, the agent a
777
+ 1: if cts is empty then
778
+ 2:
779
+ return false, NULL
780
+ 3: end if
781
+ 4: if a is in the scene then
782
+ 5:
783
+ s ← the state which covers tc
784
+ 6:
785
+ if s is NULL then
786
+ 7:
787
+ return false, NULL
788
+ 8:
789
+ else
790
+ 9:
791
+ return true, s
792
+ 10:
793
+ end if
794
+ 11: else
795
+ 12:
796
+ smin ← argmins∈cts(max(s.tl − tc, 0) + s.g)
797
+ 13:
798
+ cmin ← mins∈cts(max(s.tl − tc, 0) + s.g)
799
+ 14:
800
+ if cmin ≤ fmin then
801
+ 15:
802
+ return true, smin
803
+ 16:
804
+ else
805
+ 17:
806
+ return false, NULL
807
+ 18:
808
+ end if
809
+ 19: end if
810
+ (a) Small grid maps.
811
+ (b) Large grid map.
812
+ Figure 5: Grids for experiments from (ˇSvancara et al. 2019).
813
+ are the same. If some instances fail in the offline part, the
814
+ online algorithm is not executed. These test cases are use-
815
+ less for comparison. All randomly generated instances are
816
+ always solvable if there are no agents in the scene in the be-
817
+ ginning. On the other hand, all compared methods use iden-
818
+ tical offline MAPF solvers. Ignoring it does not affect the
819
+ comparison.
820
+ We run the algorithms on an AMD R7-5800X CPU with
821
+ 4.40 GHz and 16GB RAM. Four baselines are selected for
822
+ comparison:
823
+ • RA+CBS+A*(A1): This algorithm uses the Replan All
824
+ algorithm to solve the online MAPF problem. When new
825
+ agents start, it uses the CBS algorithm to calculate the
826
+ multi-agent path plan, whose low-level solver is A*.
827
+ • RA+CBS+RSIPP(A2): This algorithm removes all sus-
828
+ tainable operations from our proposed approach, i.e., all
829
+ solvers do not maintain or use the planning context.
830
+ • SR+SCBS+RSIPP(A3): For this algorithm, the low-
831
+ level solver can not reuse the planning context. In the
832
+ middle-level solver, if the agent strictly follows the pre-
833
+ vious path in the node of the conflict tree, the low-level
834
+
835
+ k
836
+ A1
837
+ A2
838
+ A3
839
+ A4
840
+ 10
841
+ 96%
842
+ 96%
843
+ 96%
844
+ 96%
845
+ 12
846
+ 87%
847
+ 84%
848
+ 86%
849
+ 87%
850
+ 15
851
+ 78%
852
+ 74%
853
+ 79%
854
+ 80%
855
+ 17
856
+ 65%
857
+ 63%
858
+ 63%
859
+ 64%
860
+ 20
861
+ 49%
862
+ 47%
863
+ 47%
864
+ 49%
865
+ 22
866
+ 36%
867
+ 35%
868
+ 37%
869
+ 37%
870
+ 25
871
+ 27%
872
+ 26%
873
+ 28%
874
+ 29%
875
+ Table 1: Table of the success rate in small grids. k is the
876
+ agent number.
877
+ k
878
+ A1
879
+ A2
880
+ A3
881
+ A4
882
+ 10
883
+ 1.68(-)
884
+ 2.2(0.77)
885
+ 1.72(0.98)
886
+ 1.58(1.06)
887
+ 12
888
+ 5.65(-)
889
+ 5.96(0.95)
890
+ 5.35(1.06)
891
+ 4.77(1.18)
892
+ 15
893
+ 8.05(-)
894
+ 8.67(0.93)
895
+ 7.96(1.01)
896
+ 7.27(1.11)
897
+ 17
898
+ 12.26(-)
899
+ 12.61(0.97)
900
+ 11.96(1.03)
901
+ 11.54(1.06)
902
+ 20
903
+ 17.01(-)
904
+ 17.18(0.99)
905
+ 16.6(1.02)
906
+ 16.23(1.05)
907
+ 22
908
+ 21.08(-)
909
+ 22.02(0.96)
910
+ 20.83(1.01)
911
+ 20.15(1.05)
912
+ 25
913
+ 22.53(-)
914
+ 22.39(1.01)
915
+ 22.15(1.02)
916
+ 21.9(1.03)
917
+ Table 2: Table of the running time and the speedup ratio
918
+ in small grids. The first number in the cell shows the run-
919
+ ning time(sec), and the number in parentheses indicates the
920
+ speedup relative to A1. k is the agent number.
921
+ solver won’t be called, and a suffix from the results of the
922
+ previous planning is used as the results of this planning.
923
+ • SR+SCBS+SRSIPP(A4): The proposed method.
924
+ 5.1
925
+ Small Grid Map
926
+ In the first dataset, 4 small grid maps are used, as shown
927
+ in Figure 5(a). The start and goal points are randomly
928
+ sampled in two cells of the opposing sides of the grids,
929
+ and the start time point is uniformly sampled from [1, 30].
930
+ Let k be the number of agents, which is in the range
931
+ {10, 12, 15, 17, 20, 22, 25}. In each grid map, we generate
932
+ 25 experimental instances for each setting of the agent num-
933
+ ber. For each number of agents, it has 25∗4 = 100 instances.
934
+ Table 1 shows the result of success rate. Except when the
935
+ agent number is 17, the success rate of A4 is larger than or
936
+ equal to A1. Table 2 shows the running time of all baselines
937
+ and the speedup ratio relative to A1 of other baselines. In
938
+ the result, A2 did not obtain significant improvement, while
939
+ A3 can speed up in most cases. The best performance comes
940
+ from A4. It shows an improvement in average runtime rela-
941
+ tive to A1 under all agent number settings and achieves the
942
+ maximum speedup ratio in all baselines.
943
+ 5.2
944
+ Large Grid Map
945
+ In the second dataset, we use the large grid map shown
946
+ in Figure 5(b). We generate 100 experimental instances for
947
+ each setting of the agent number k in the range of [90, 100].
948
+ The start time points are randomly sampled from [1, 100].
949
+ An agent’s start point and goal point are sampled from two
950
+ different sides.
951
+ Table 3 and Table 4 show the result of the success rate,
952
+ the average running time, and the speedup ratio relative to
953
+ A1 of different baselines. A2 and A3 perform better than A1
954
+ k
955
+ A1
956
+ A2
957
+ A3
958
+ A4
959
+ 90
960
+ 84%
961
+ 85%
962
+ 88%
963
+ 91%
964
+ 92
965
+ 82%
966
+ 84%
967
+ 86%
968
+ 89%
969
+ 94
970
+ 90%
971
+ 89%
972
+ 91%
973
+ 92%
974
+ 96
975
+ 75%
976
+ 77%
977
+ 81%
978
+ 84%
979
+ 98
980
+ 72%
981
+ 76%
982
+ 82%
983
+ 83%
984
+ 100
985
+ 54%
986
+ 69%
987
+ 72%
988
+ 77%
989
+ Table 3: Table of the success rate in large grids. k is the agent
990
+ number.
991
+ k
992
+ A1
993
+ A2
994
+ A3
995
+ A4
996
+ 90
997
+ 10.09(-)
998
+ 8.98(1.12)
999
+ 7.48(1.35)
1000
+ 6.06(1.67)
1001
+ 92
1002
+ 9.69(-)
1003
+ 9.61(1.01)
1004
+ 8.13(1.19)
1005
+ 6.8(1.43)
1006
+ 94
1007
+ 8.04(-)
1008
+ 8.27(0.97)
1009
+ 6.59(1.22)
1010
+ 5.52(1.46)
1011
+ 96
1012
+ 13.05(-)
1013
+ 13.35(0.98)
1014
+ 11.25(1.16)
1015
+ 9.84(1.33)
1016
+ 98
1017
+ 13.37(-)
1018
+ 12.4(1.08)
1019
+ 10.5(1.27)
1020
+ 9.21(1.45)
1021
+ 100
1022
+ 18.06(-)
1023
+ 14.78(1.22)
1024
+ 13.02(1.39)
1025
+ 11.58(1.56)
1026
+ Table 4: Table of the running time and the speedup ratio
1027
+ in large grids. The first number in the cell shows the run-
1028
+ ning time(sec), and the number in parentheses indicates the
1029
+ speedup relative to A1. k is the agent number.
1030
+ in most cases, while A4 runs the fastest among all methods.
1031
+ In all instances, the average speedup ratio of A4 relative to
1032
+ A1 reaches 1.48.
1033
+ The running time of 92 and 94 agents are shorter than
1034
+ 90 agents. It is because when the number of agents is large,
1035
+ the running time is not significantly influenced by the small
1036
+ increment of the agent number but is dominated by some
1037
+ hard-to-solve cases.
1038
+ 5.3
1039
+ Discussion
1040
+ The improvement in the large grids is more obvious than in
1041
+ the small grids. We believe it is because of the path length.
1042
+ In the small grid maps, the path of agents is short. Sustain-
1043
+ able information can only be used a few times. In the large
1044
+ map, the path is much longer. Sustainable information is
1045
+ used more frequently, making A4 get a higher speedup ratio.
1046
+ 6
1047
+ Conclusion
1048
+ We proposed a three-level algorithm to solve the online
1049
+ MAPF problem. Three levels are responsible for simulating
1050
+ the multi-agent online environment, solving the multi-agent
1051
+ path planning, and using the historical planning informa-
1052
+ tion to assist in solving the single-agent path planning. We
1053
+ proved the completeness and the snapshot optimality of our
1054
+ approach. The experiment shows that our proposed method
1055
+ runs faster than the SOTA algorithm. During the experiment,
1056
+ we also found that the performance in large grids is much
1057
+ better than in small grids. This is because the agent has a
1058
+ longer path in a larger grid so that the planning context can
1059
+ be reused more times. It shows that the longer the path, the
1060
+ better the acceleration effect of our method.
1061
+ In the future, more aspects of using sustainable informa-
1062
+ tion, such as building the conflict tree, will be explored to
1063
+ improve the efficiency of the algorithm further.
1064
+
1065
+ References
1066
+ Choudhury, S.; Solovey, K.; Kochenderfer, M.; and Pavone,
1067
+ M. 2022. Coordinated Multi-Agent Pathfinding for Drones
1068
+ and Trucks over Road Networks. In Proceedings of the 21st
1069
+ International Conference on Autonomous Agents and Multi-
1070
+ agent Systems, 272–280.
1071
+ Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A for-
1072
+ mal basis for the heuristic determination of minimum cost
1073
+ paths. IEEE transactions on Systems Science and Cybernet-
1074
+ ics, 4(2): 100–107.
1075
+ Ma, H.; Koenig, S.; Ayanian, N.; Cohen, L.; H¨onig, W.; Ku-
1076
+ mar, T.; Uras, T.; Xu, H.; Tovey, C.; and Sharon, G. 2017a.
1077
+ Overview: Generalizations of multi-agent path finding to
1078
+ real-world scenarios. arXiv preprint arXiv:1702.05515.
1079
+ Ma, H.; Tovey, C.; Sharon, G.; Kumar, T.; and Koenig, S.
1080
+ 2016. Multi-agent path finding with payload transfers and
1081
+ the package-exchange robot-routing problem. In Proceed-
1082
+ ings of the AAAI Conference on Artificial Intelligence, vol-
1083
+ ume 30.
1084
+ Ma, H.; Yang, J.; Cohen, L.; Kumar, T. S.; and Koenig, S.
1085
+ 2017b. Feasibility study: Moving non-homogeneous teams
1086
+ in congested video game environments. In Thirteenth Artifi-
1087
+ cial Intelligence and Interactive Digital Entertainment Con-
1088
+ ference.
1089
+ Morris, R.; Pasareanu, C. S.; Luckow, K.; Malik, W.; Ma, H.;
1090
+ Kumar, T. S.; and Koenig, S. 2016. Planning, scheduling and
1091
+ monitoring for airport surface operations. In Workshops at
1092
+ the Thirtieth AAAI Conference on Artificial Intelligence.
1093
+ Phillips, M.; and Likhachev, M. 2011. Sipp: Safe interval
1094
+ path planning for dynamic environments. In 2011 IEEE In-
1095
+ ternational Conference on Robotics and Automation, 5628–
1096
+ 5635. IEEE.
1097
+ Salzman, O.; and Stern, R. 2020. Research challenges and
1098
+ opportunities in multi-agent path finding and multi-agent
1099
+ pickup and delivery problems. In Proceedings of the 19th
1100
+ International Conference on Autonomous Agents and Multi-
1101
+ Agent Systems, 1711–1715.
1102
+ Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
1103
+ Conflict-based search for optimal multi-agent pathfinding.
1104
+ Artificial Intelligence, 219: 40–66.
1105
+ Stern, R. 2019. Multi-agent path finding–an overview. Arti-
1106
+ ficial Intelligence, 96–115.
1107
+ ˇSvancara, J.; Vlk, M.; Stern, R.; Atzmon, D.; and Bart´ak,
1108
+ R. 2019. Online multi-agent pathfinding. In Proceedings
1109
+ of the AAAI conference on artificial intelligence, volume 33,
1110
+ 7732–7739.
1111
+ Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Co-
1112
+ ordinating hundreds of cooperative, autonomous vehicles in
1113
+ warehouses. AI magazine, 29(1): 9–9.
1114
+ Yu, J.; and LaValle, S. M. 2013. Structure and intractability
1115
+ of optimal multi-robot path planning on graphs. In Twenty-
1116
+ Seventh AAAI Conference on Artificial Intelligence.
1117
+
BdE3T4oBgHgl3EQfUAoU/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
BtE1T4oBgHgl3EQfpgUG/content/2301.03331v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb5adf65f9209e6861f9b34a35ce7359c9211a6f0638a4dea5401a9fa6a4619c
3
+ size 3167479
BtE1T4oBgHgl3EQfpgUG/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddf6302b5de2373ebf0ba07a106e71d6153723d4019d59b30b2df4e37d3dae38
3
+ size 91187
CNE1T4oBgHgl3EQf9wYh/content/tmp_files/2301.03559v1.pdf.txt ADDED
@@ -0,0 +1,1544 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Color Me Intrigued: Quantifying Usage of Colors in Fiction
2
+ Siyan Li
3
+ Stanford University
4
5
+ Abstract
6
+ We present preliminary results in quantitative analyses of
7
+ color usage in selected authors’ works from LitBank. Using
8
+ Glasgow Norms, human ratings on 5000+ words, we measure
9
+ attributes of nouns dependent on color terms. Early results
10
+ demonstrate a significant increase in noun concreteness over
11
+ time. We also propose future research directions for compu-
12
+ tational literary color analytics. 1
13
+ 1
14
+ Introduction
15
+ All great writers are great colourists, Virginia Woolf once
16
+ stated (Woolf 1934). Analyzing colors in literary work
17
+ across time and authors has fascinated the field of literature,
18
+ philosophy, and psychology (Skard 1946).
19
+ Most literary analyses of colors focus on only one author,
20
+ one work, or one historical era. There has been very few
21
+ large-scale analyses of color usage shifts. Recently, natural
22
+ language processing (NLP) has progressed in fields poten-
23
+ tially relevant to literary color analyses, such as dependency
24
+ parsing (Qi et al. 2020) and named entity recognition (Li
25
+ et al. 2020). Leveraging these tools expedites localization of
26
+ spans of interest, increasing efficiency and ease of larger-
27
+ scale literary analyses.
28
+ What makes literary color analyses interesting for nat-
29
+ ural language processing? Authors utilize colors in nu-
30
+ merous ways, and NLP tools should capture this variety.
31
+ While Goethe uses colors as a backdrop of his narratives,
32
+ only using them to emphasize the plastic shapes of objects
33
+ (Bruns 1928), Dante’s coloring in his Divine Comedy dis-
34
+ plays more symbolic undertones. The colors on the three
35
+ faces of Dante’s Lucifer can be related to the three horses
36
+ of the Apocalypse (Skard 1946). The sudden absence of
37
+ green in Heavenly Paradise may stem from green’s associ-
38
+ ation with hope, and Dante’s Paradise eliminates the need
39
+ for hope since it fulfills all wishes (Austin 1933). In con-
40
+ trast, James Joyce’s green can be interpreted to symbolize
41
+ absinthe (Earle 2003) and the author’s frustration with the
42
+ Irish Catholic Church (Xie 2015). For more contemporary
43
+ Copyright © 2023, Association for the Advancement of Artificial
44
+ Intelligence (www.aaai.org). All rights reserved.
45
+ 1All code and data used are available at https://github.com/
46
+ siyan-sylvia-li/ColorLit.
47
+ writers, Virginia Woolf’s blue in To the Lighthouse accom-
48
+ panies Mrs. Ramsay for her Madonna role and her mix-
49
+ ture of radiance and somberness (Stewart 1985). The same
50
+ blue manifests cholera and illness in Edgar Allan Poe’s The
51
+ Masque of the Red Death (Yoon 2021). Despite some sub-
52
+ jectivity in these interpretations, the existence of differences
53
+ in color usages are absolute. We want to examine whether
54
+ current NLP tools “understand” these differences.
55
+ We propose a novel line of research using word embed-
56
+ dings and pre-trained language models to quantify color us-
57
+ ages in literature. Specifically, we measure the attributes of
58
+ nouns dependent on color adjectives according to the Glas-
59
+ gow Norms (Scott et al. 2019). Preliminary results demon-
60
+ strate statistically significant trends over time for certain col-
61
+ ors’ Glasgow Norm attributes. We present future research
62
+ directions and plausible experiments.
63
+ Our proposed framework can supplement literary color
64
+ analyses research and provide additional insight for color
65
+ usages comparisons. Looking at literature and creativity
66
+ through the lens of colors is informative because of the
67
+ prevalence of color terms in literature. Color terms can serve
68
+ as anchoring points of comparison between authors, and po-
69
+ tentially between humans and language models.
70
+ 2
71
+ Related Work
72
+ The most similar work to ours would be Rabinovich and
73
+ Carmeli (2022), a study of color term usage by both non-
74
+ color-blind and color-blind individuals on Reddit. The au-
75
+ thors discover significant differences in certain color terms.
76
+ They then concentrate on the nouns that are modified by
77
+ color words, using dependency parsing to obtain NOUN
78
+ words in an AMOD dependency pair with an ADJ color
79
+ term. The authors identify significant discrepancies between
80
+ the two populations in imageability (Scott et al. 2019) values
81
+ of color-modified nouns. Our preliminary work is method-
82
+ ologically similar, but we study literature instead. Addition-
83
+ ally, our work more extensively leverages labels from the
84
+ Glasgow Norms by using three dimensions instead of one.
85
+ Word embeddings play a crucial role in computational
86
+ social science. Garg et al. (2018) leverages Word2vec
87
+ (Mikolov et al. 2013) to reflect changes in relationships be-
88
+ tween the embedding representing women and different ad-
89
+ jectives as potentially a result of the feminist movement. A
90
+ similar work, Bailey, Williams, and Cimpian (2022), show-
91
+ arXiv:2301.03559v1 [cs.CL] 9 Jan 2023
92
+
93
+ cases that people = man by comparing distances be-
94
+ tween word embeddings of trait words of people, men, and
95
+ women respectively. We are interested in similar techniques
96
+ in a literary color analysis context.
97
+ 3
98
+ Dataset
99
+ We use LitBank (Bamman, Popat, and Shen 2019), a Euro-
100
+ centric collection of 100 English fictions from 75 authors.
101
+ We conduct a scrape of Project Gutenberg using LitBank’s
102
+ Gutenberg ID’s to obtain the full text of each work. The gen-
103
+ res consist primarily of realistic novels, with few exceptions
104
+ of science fiction (H.G. Wells, Mary Shelley), fantasy (Bram
105
+ Stoker, Oscar Wilde), and horror (Edgar Allan Poe).
106
+ 4
107
+ Methodology
108
+ 4.1
109
+ Extracting Modified Nouns
110
+ Colors and Synonyms
111
+ We select common colors and cu-
112
+ rate a list of their synonyms. The colors include “red”,
113
+ “green”, “black”, “white”, “blue”, “brown”, “gray”, “yel-
114
+ low”, “pink”, and “purple”. All color terms and their syn-
115
+ onyms are in Appendix A. Each set of sentences from a
116
+ Project Gutenberg E-book are split into lemmatized words.
117
+ We choose sentences containing either our specified color
118
+ adjectives or their synonyms for dependency parsing.
119
+ Dependency Parsing
120
+ Although Rabinovich and Carmeli
121
+ (2022) strictly studies nouns modified by color terms
122
+ through the AMOD dependency, this would be limiting in
123
+ lyrical writing. For instance, “she has eyes of sapphire” de-
124
+ scribes blue eyes and should be included in our analysis, but
125
+ dependency parsing would categorize “eyes” and “saphire”
126
+ to linked by NMOD instead of AMOD. Therefore, we ex-
127
+ pand upon our pool of nouns by including all nouns with
128
+ a dependency link to our color terms. We employ Stanza’s
129
+ Dependency Parser (Qi et al. 2020). Upon obtaining depen-
130
+ dencies on a sentence, we perform a filtering process to re-
131
+ tain the relevant head-dependent pairs. The specific filter-
132
+ ing process is as follows. For each head-dependent pair:
133
+ (1) Lemmatize both the head and the dependent. (2) Iter-
134
+ ate through all color words and their synonyms; if none of
135
+ them is present in either the head or the dependent, prune
136
+ out this pair. (3) If the other word in the dependency pair is
137
+ not a noun or a proper noun, prune out this pair.
138
+ 4.2
139
+ Glasgow Norm Models
140
+ The Glasgow Norms are a list of 5,553 words with corre-
141
+ sponding normative human ratings on different psycholin-
142
+ guistic dimensions. Our ongoing work concentrates on: (1)
143
+ Imageability (IMAG), the ease of summoning a mental im-
144
+ age from a word; (2) Concreteness (CNC), the extent to
145
+ which words can be experienced to our senses; and (3) Va-
146
+ lence (VAL), how positive or negative a word’s value is. We
147
+ hypothesize that different authors differ on the imageabili-
148
+ ty/concreteness/valence values of color-dependent nouns.
149
+ Although the Glasgow Norms vocabulary is extensive,
150
+ we still hope to handle unseen words. FastText embeddings
151
+ (Joulin et al. 2016) reduced to 100 dimensions are used to
152
+ train separate 1-layer Multi-Layer Perceptron (MLP) models
153
+ Color
154
+ # of Occurrences
155
+ Color
156
+ # of Occurrences
157
+ red
158
+ 2888
159
+ green
160
+ 1839
161
+ black
162
+ 3325
163
+ white
164
+ 4990
165
+ blue
166
+ 1622
167
+ brown
168
+ 1206
169
+ gray
170
+ 1575
171
+ yellow
172
+ 848
173
+ pink
174
+ 648
175
+ purple
176
+ 545
177
+ Table 1: The total numbers of occurrences of our selected
178
+ color terms in the 100 LitBank novels. These are instances
179
+ where the color terms act as either a dependent or a depen-
180
+ dency head.
181
+ to predict these values. We choose FastText for its adaptabil-
182
+ ity for unseen words. Prior to training, all scores are normal-
183
+ ized to the 0 to 1 range for better interpretability, consistent
184
+ with Rabinovich and Carmeli (2022). Three neural networks
185
+ with sigmoid activations are trained on these data, and eval-
186
+ uated on a held-out test set with an 8:1:1 split. We use Pear-
187
+ son’s correlation between predictions and ground truths as
188
+ our metric. Rabinovich and Carmeli (2022) reports a Pear-
189
+ son’s correlation of 0.76 for their IMAG model on a random
190
+ held-out set, while ours achieves 0.79 on the test set. We un-
191
+ derstand that the held-out test set may be different, but this
192
+ indicates that our IMAG model should as potent as the prior
193
+ model. Our CNC model and VAL model achieve correlation
194
+ scores of 0.83 and 0.76, respectively.
195
+ To prevent repeated occurrences of a word affecting the
196
+ average Glasgow Norm values, the dependent nouns are
197
+ deduplicated when computing the averages.
198
+ 5
199
+ Preliminary Results
200
+ Despite our analyses on LitBank yield statistically signifi-
201
+ cant results when analyzed across time, this could stem from
202
+ an imbalance in the distribution of publication time in Lit-
203
+ Bank. This paper aims to establish a preliminary framework
204
+ for studying color usages in literature, and current results
205
+ would need corroboration from additional texts from differ-
206
+ ent eras and genres.
207
+ 5.1
208
+ Color-dependent Nouns
209
+ We conduct both quantitative and qualitative analyses on
210
+ color-dependent nouns in LitBank through both comput-
211
+ ing average Glasgow Norm values and through inspection
212
+ of most frequently associated nouns. Additional analyses of
213
+ color term frequencies are in Appendix B.
214
+ Out of all unique nouns, 1299 are within the Glas-
215
+ gow Norm vocabulary, and 1924 are OOV. We use our
216
+ trained MLPs to infer Glasgow Norm scales of the out-
217
+ of-vocabulary nouns. After recognizing an upward trend in
218
+ IMAG and CNC, we compute Pearson’s correlations be-
219
+ tween publication year and average IMAG and CNC val-
220
+ ues for all color terms in novels where the color is present
221
+ (Table 2, Figure 1). The IMG and CNC values increase sig-
222
+ nificantly over time for black, white, yellow, and pink. This
223
+ indicates that the nouns associated with these color terms
224
+
225
+ Figure 1: Imageability plots for the color terms with signif-
226
+ icant results. We omit the concreteness plots here because
227
+ IMAG and CNC are highly correlated, but we provide the
228
+ full set of plots in Appendix C.
229
+ become increasingly concrete easier to conjure mental im-
230
+ ages of. This is consistent with some conclusions from Skard
231
+ (1946) that early color usages are obscure and abstract.
232
+ Nouns in Individual Works
233
+ We observe interesting data
234
+ points in our plots (the full sets of figures are available in
235
+ Appendix C). For instance, we notice a significantly lower
236
+ valence for red in Edgar Allan Poe’s The Masque of the
237
+ Red Death, because the only nouns associated with red are
238
+ “death”, “stain”, and “horror”. Similarly, an abnormally low
239
+ green valence arises in Henry Fielding’s History of Tom
240
+ Jones, a Foundling, because green is attached to “slut”,
241
+ “witch”, and “monster”.
242
+ Nouns over Publication Time
243
+ We divide our fictions into
244
+ pre-1800’s, 1800 - 1900, and post-1900 based on patterns
245
+ in our data. We then deduplicate dependent nouns in each
246
+ work so that we can measure most frequent nouns in each
247
+ era without thematic motifs biasing our analyses. A list of
248
+ selected color terms and their most dependent nouns in each
249
+ of the eras are in Table 3.
250
+ From the table we observe a significant shift in frequently
251
+ used nouns across time. Pre-1800 dependent nouns are more
252
+ abstract and complex compared to post-1800 nouns depen-
253
+ dent on the same colors, while there is no significant differ-
254
+ ence between 1800 - 1900 and post-1900. This is a possible
255
+ explanation for the increase in imageability and concrete-
256
+ ness over time among LitBank works.
257
+ 5.2
258
+ Inter-Author Differences
259
+ We plot the Word2vec embeddings of nouns dependent on
260
+ the same colors from different authors to decipher how
261
+ the color terms are used. Out-of-vocabulary nouns are dis-
262
+ carded. This serves as a crude visualization of different top-
263
+ ics associated with these color terms. For instance, when
264
+ comparing nouns modified by yellow in works of Fitzger-
265
+ ald and Joyce in LitBank, the topic of facial hair (hair, beard,
266
+ IMAG Results
267
+ Color
268
+ Pearson’s r
269
+ Color
270
+ Pearson’s r
271
+ red
272
+ -0.095*
273
+ green
274
+ 0.059
275
+ black
276
+ 0.257**
277
+ white
278
+ 0.303***
279
+ pink
280
+ 0.534***
281
+ yellow
282
+ 0.340**
283
+ CNC Results
284
+ Color
285
+ Pearson’s r
286
+ Color
287
+ Pearson’s r
288
+ black
289
+ 0.237**
290
+ white
291
+ 0.239**
292
+ pink
293
+ 0.517***
294
+ yellow
295
+ 0.318***
296
+ VAL Results
297
+ Color
298
+ Pearson’s r
299
+ Color
300
+ Pearson’s r
301
+ green
302
+ 0.273***
303
+ purple
304
+ 0.210*
305
+ Table 2: Pearson’s correlations between published years and
306
+ Glasgow Norm values of the 100 fictions for color terms
307
+ with sig. results. *** p < 0.001, ** p < 0.05, and * p < 0.1.
308
+ Full results are in Appendix C.
309
+ Color
310
+ Era
311
+ Frequent Nouns
312
+ pink
313
+ Pre-1800
314
+ shame, guilt, folly,
315
+ ribbon, indignation
316
+ 1800 - 1900
317
+ cheek, face, ribbon, rose, lip
318
+ Post-1900
319
+ cheek, face, rose, paper, bud
320
+ black
321
+ Pre-1800
322
+ color, eye, grain, hair, wave
323
+ 1800 - 1900
324
+ hair, eye, shadow, dress, face
325
+ Post-1900
326
+ hair, eye, dress, figure, man
327
+ white
328
+ Pre-1800
329
+ face, cheek, countenance,
330
+ cliff, cave
331
+ 1800 - 1900
332
+ face, cheek, hand, hair, man
333
+ Post-1900
334
+ face, hand, eye, hair, man
335
+ yellow
336
+ Pre-1800
337
+ appearance, complexion,
338
+ blossom, lustre, mist
339
+ 1800 - 1900
340
+ hair, light, face, glove, skin
341
+ Post-1900
342
+ hair, light, eye, flower, house
343
+ Table 3: Most frequently color-modified nouns from each
344
+ era for selected color terms. Example sentences are in Ap-
345
+ pendix D
346
+ pompadour) only manifests in Fitzgerald’s, while food items
347
+ (soup, cheese) appear in Joyce’s. Additional examples are in
348
+ Appendix D.
349
+ 6
350
+ Proposal of Future Work
351
+ 6.1
352
+ Further Analyses
353
+ Fine-grained Timeline Analyses
354
+ Similar to Garg et al.
355
+ (2018), we can train separate Word2vec models on each
356
+ decade of literature in our collection for fine-grained anal-
357
+ yses. Preliminary results indicate that certain colors become
358
+
359
+ black
360
+ 0.9
361
+ IMAG
362
+ 0.8
363
+ 0.7
364
+ 0.6
365
+ 1750
366
+ 1800
367
+ 1850
368
+ 1900
369
+ Yearwhite
370
+ 0.9
371
+ 0.8
372
+ IMAG
373
+ 0.7
374
+ 0.6
375
+ 1750
376
+ 1800
377
+ 1850
378
+ 1900
379
+ Yearyellow
380
+ 1.0
381
+ 0.8
382
+ IMAG
383
+ 0.6
384
+ 0.4
385
+ 1750
386
+ 1800
387
+ 1850
388
+ 1900
389
+ Yearpink
390
+ 0.8
391
+ IMAG
392
+ 0.6
393
+ 0.4
394
+ 0.2
395
+ 1750
396
+ 1800
397
+ 1850
398
+ 1900
399
+ YearFigure 2: Word2vec embeddings of nouns modified by yel-
400
+ low in novels by F. Scott Fitzgerald (red points) and James
401
+ Joyce (blue points).
402
+ increasingly associated with concrete descriptions (pink as-
403
+ sociated with cheeks and face). We can compute cosine sim-
404
+ ilarities between Word2vec embeddings of certain colors
405
+ with words such as “face” and “lips”; this should increase
406
+ over time as we observe increasing presence of colors in
407
+ character descriptions. A similar metric can further quantize
408
+ inter-author differences as well.
409
+ Additional Clustering
410
+ We demonstrate the prowess of
411
+ Word2vec for visualizing color-related topics in this pro-
412
+ posal, but word embeddings fail to account for contexts.
413
+ Further clustering analyses can include embeddings from
414
+ context-dependent pre-trained language models such as Sen-
415
+ tenceBERT (Reimers and Gurevych 2019) and BERT (De-
416
+ vlin et al. 2018).
417
+ 6.2
418
+ RQs: From a Literature Perspective
419
+ How do colors differ across genres?
420
+ We chose LitBank
421
+ for its ease of access and thorough documentations, but one
422
+ emerging issue is that LitBank skews heavily towards re-
423
+ alistic fictions. Due to this imbalance, we cannot compare
424
+ color usages meaningfully across genres. We will include
425
+ more books in future analyses. If we observe significant dif-
426
+ ferences in frequencies of different color words or in the
427
+ concepts and objects associated with the colors, we can con-
428
+ clude that there exists cross-genre differences in color usage.
429
+ We already observe such differences. Bram Stoker’s
430
+ Dracula (Stoker 1897), a pioneering work in vampire liter-
431
+ ature, features numerous descriptions of pale maidens with
432
+ their red lips, as well as of scarlet blood and crimson eyes.
433
+ Therefore, we notice much more frequent usage of the color
434
+ red in this work, compared to H. G. Wells’s The War of the
435
+ Worlds (Wells 1897), where red most commonly modifies
436
+ weeds. We want to inspect whether the same general pattern
437
+ would persist on larger-scale analyses.
438
+ How do colors differ across literary forms?
439
+ Literary
440
+ color analyses often separate novelists and poets. Compar-
441
+ isons are often drawn only between two poets or two nov-
442
+ elists, but rarely both. Our hypothesis is that colors usage
443
+ in poetry differs significantly from color usage in prose and
444
+ novels. Such differences can manifest as a discrepancy in
445
+ concreteness (e.g. in poetry, colors can more often associate
446
+ with a concept instead of a concrete object). Expanding our
447
+ research to include poets, preferably those contemporary to
448
+ our novelists, should enable us to address this systematically.
449
+ 6.3
450
+ RQs: From a Social Science Perspective
451
+ How do colors differ across cultures and classes?
452
+ Dif-
453
+ ferent cultures can have different associations with the same
454
+ color; for instance, white is often a symbol of purity and a
455
+ staple at Western weddings, whereas the same color is used
456
+ more traditionally in Chinese funerals. These associations
457
+ may reflect socio-economic classes as well (e.g. white-collar
458
+ and blue-collar jobs) through colors frequently co-occurring
459
+ with characters from different cultures and societal classes.
460
+ To analyze this, we will utilize named entity recognition to
461
+ link colors to characters, operating with more context. Pur-
462
+ suing this research direction would involve translated work,
463
+ instead of using only Euro-centric collections of literature.
464
+ The social class of a character can either be looked up on-
465
+ line or inferred by a model to automate the process. We can
466
+ then cluster character colors by cultures and classes.
467
+ How do colors affect biases and stereotypes?
468
+ Current-
469
+ day color associations, such as pink with girls and blue with
470
+ boys, can fuel biases. For instance, boys who enjoy wearing
471
+ pink may be regarded as “girly” and overly feminine. Cer-
472
+ tain colors also contain associations with LGBTQ+ commu-
473
+ nities. We are interested in identifying how these color-based
474
+ biases (going beyond race) manifest in literature and online
475
+ communities. We can study this by finding colors associated
476
+ with characters of a demographic group of interest. Tracing
477
+ through past literature may also shed light upon the evolu-
478
+ tion of color associations.
479
+ 7
480
+ Discussion
481
+ Our work serves as a step towards more systematic analy-
482
+ ses of color usages in literature using natural language pro-
483
+ cessing tools. Following prior work, we propose using The
484
+ Glasgow Norms and word embeddings as tools for quan-
485
+ tifying color usage differences. We demonstrate significant
486
+ increasing trends in imageability and concreteness in color-
487
+ dependent nouns over time.
488
+ One limitation is the range of language we are capable of
489
+ handling is constrained by the language models we employ.
490
+ Our current collection does not have many pre-1800 pieces.
491
+ While it is possible to increase the representation of pre-
492
+ 1800s literature, the domain shift in English style and word
493
+ conventions may require different word embedding and pre-
494
+ trained models to embed narratives (e.g. Chaucer often uses
495
+ “red” in place of “read”, standard of his time, but causes am-
496
+ biguity when processing texts on a large scale). Given such
497
+ shifts in vocabulary and sentence structures, we may fail to
498
+ provide meaningful insights into earlier literature, since the
499
+ word embeddings may have disjoint vocabularies, and mod-
500
+ els such as SentenceBERT are trained on more modern texts.
501
+
502
+ yellow
503
+ bhaird
504
+ pompadour
505
+ 4
506
+ 2
507
+ wax
508
+ 0
509
+ sheet
510
+ square
511
+ tiewh
512
+ streak
513
+ journal
514
+ knee
515
+ gingry
516
+ boot
517
+ sol
518
+ dadchild
519
+ -2
520
+ dwaistebtnd
521
+ cap
522
+ itaivgri
523
+ reflestiartle
524
+ -4
525
+ sobbing
526
+ twilight
527
+ Jight
528
+ sun
529
+ gw
530
+ jnsoence
531
+ paese
532
+ Mkeen
533
+ melon
534
+ -6
535
+ flower
536
+ 2
537
+ 3
538
+ 5
539
+ 6
540
+ 7
541
+ 8
542
+ 9
543
+ 4References
544
+ Austin, H. D. 1933. Heavenly Gold; A Study of the Use of
545
+ Color in Dante. Philological Quarterly, 12: 44.
546
+ Bailey, A. H.; Williams, A.; and Cimpian, A. 2022. Based
547
+ on billions of words on the internet, people= men. Science
548
+ Advances, 8(13): eabm2463.
549
+ Bamman, D.; Popat, S.; and Shen, S. 2019. An annotated
550
+ dataset of literary entities. In Proceedings of the 2019 Con-
551
+ ference of the North American Chapter of the Association
552
+ for Computational Linguistics: Human Language Technolo-
553
+ gies, Volume 1 (Long and Short Papers), 2138–2144.
554
+ Bruns, F. 1928. Auge und Ohr in Goethes Lyrik. The Journal
555
+ of English and Germanic Philology, 27(3): 325–360.
556
+ Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
557
+ Bert: Pre-training of deep bidirectional transformers for lan-
558
+ guage understanding. arXiv preprint arXiv:1810.04805.
559
+ Earle, D. M. 2003. ”Green Eyes, I See You. Fang, I Feel”:
560
+ The Symbol of Absinthe in ”Ulysses”. James Joyce Quar-
561
+ terly, 40(4): 691–709.
562
+ Garg, N.; Schiebinger, L.; Jurafsky, D.; and Zou, J. 2018.
563
+ Word embeddings quantify 100 years of gender and ethnic
564
+ stereotypes. Proceedings of the National Academy of Sci-
565
+ ences, 115(16): E3635–E3644.
566
+ Joulin, A.; Grave, E.; Bojanowski, P.; Douze, M.; J´egou, H.;
567
+ and Mikolov, T. 2016. FastText.zip: Compressing text clas-
568
+ sification models. arXiv preprint arXiv:1612.03651.
569
+ Li, J.; Sun, A.; Han, J.; and Li, C. 2020. A survey on deep
570
+ learning for named entity recognition. IEEE Transactions
571
+ on Knowledge and Data Engineering, 34(1): 50–70.
572
+ Mikolov, T.; Chen, K.; Corrado, G.; and Dean, J. 2013. Ef-
573
+ ficient estimation of word representations in vector space.
574
+ arXiv preprint arXiv:1301.3781.
575
+ Qi, P.; Zhang, Y.; Zhang, Y.; Bolton, J.; and Manning,
576
+ C. D. 2020.
577
+ Stanza: A Python natural language process-
578
+ ing toolkit for many human languages.
579
+ arXiv preprint
580
+ arXiv:2003.07082.
581
+ Rabinovich, E.; and Carmeli, B. 2022. Exploration of the
582
+ Usage of Color Terms by Color-blind Participants in Online
583
+ Discussion Platforms. arXiv preprint arXiv:2210.11905.
584
+ Reimers, N.; and Gurevych, I. 2019. Sentence-bert: Sen-
585
+ tence embeddings using siamese bert-networks.
586
+ arXiv
587
+ preprint arXiv:1908.10084.
588
+ Scott, G. G.; Keitel, A.; Becirspahic, M.; Yao, B.; and
589
+ Sereno, S. C. 2019. The Glasgow Norms: Ratings of 5,500
590
+ words on nine scales. Behavior research methods, 51(3):
591
+ 1258–1270.
592
+ Skard, S. 1946. The Use of Color in Literature: A Survey
593
+ of Research.
594
+ Proceedings of the American Philosophical
595
+ Society, 90(3): 163–249.
596
+ Stewart, J. F. 1985. Color in To the Lighthouse. Twentieth
597
+ Century Literature, 31(4): 438–458. Publisher: [Duke Uni-
598
+ versity Press, Hofstra University].
599
+ Stoker, B. 1897. Dracula: 1897.
600
+ Wells, H. G. 1897. The war of the worlds. Broadview Press.
601
+ Color Word
602
+ Synonyms
603
+ red
604
+ cardinal, coral, crimson, maroon,
605
+ burgundy, flaming, scarlet, fuchsia
606
+ green
607
+ emerald, olive, aquamarine, beryl,
608
+ jade, lime
609
+ black
610
+ ebony, jet, obsidian, onyx, inky
611
+ white
612
+ alabaster, ashen, blanched, bleached,
613
+ cadaverous, doughy, pale, pallid,
614
+ pasty, ivory, pearly, beige
615
+ blue
616
+ azure, indigo, sapphire, cerulean,
617
+ cobalt, turquoise, teal
618
+ brown
619
+ amber, khaki, tan, umber, hazel
620
+ gray
621
+ grey
622
+ yellow
623
+ N/A
624
+ pink
625
+ rosy, blush, magenta
626
+ purple
627
+ lavender, lilac, mauve, periwinkle,
628
+ plum, violet, amethyst
629
+ Table 4: List of color words used and their synonyms
630
+ Woolf, V. 1934. Walter Sickert: A Conversation. L. and
631
+ Virginia Woolf at the Hogarth Press.
632
+ Xie, Y. 2015. Color as Metaphor-A Study of Joyce’s Use of”
633
+ Black” and” Green” in Dubliners and A Portrait of the Artist
634
+ as a Young Man. English Language and Literature Studies,
635
+ 5(4): 61.
636
+ Yoon, S. 2021. Color Symbolisms of Diseases: Edgar Al-
637
+ lan Poe’s “The Masque of the Red Death”. The Explicator,
638
+ 79(1-2): 21–24.
639
+ A
640
+ Color terms and their synonyms used
641
+ We list the color terms used in this work, along with their
642
+ corresponding synonyms obtained through manual inspec-
643
+ tion on Thesaurus.com entries, in Table 4.
644
+ B
645
+ Normalized Frequencies Over Time
646
+ After filtering through sentences in LitBank for relevant de-
647
+ pendence pairs, the absolute frequencies of each color term
648
+ are listed in Table 1. We also calculate the normalized fre-
649
+ quencies (absolute frequency divided by the total number of
650
+ words) for the 100 fictions. We notice an increasing trend in
651
+ the normalized frequencies over time for LitBank, and com-
652
+ pute Pearson’s correlations between normalized frequencies
653
+ of color terms and time to verify this trend (Table 5).
654
+ We present the scatter plots of normalized frequencies in
655
+ Figure 3.
656
+ C
657
+ Glasgow Norm Plots of Modified Nouns
658
+ Over Time
659
+ The plots corresponding to how color-modified nouns
660
+ change over time with respect to their Glasgow Norm
661
+
662
+ Color
663
+ Pearson’s r
664
+ Color
665
+ Pearson’s r
666
+ red
667
+ 0.173*
668
+ green
669
+ 0.134
670
+ black
671
+ 0.139
672
+ white
673
+ 0.168*
674
+ blue
675
+ 0.148
676
+ brown
677
+ 0.202**
678
+ gray
679
+ 0.162
680
+ yellow
681
+ 0.184*
682
+ pink
683
+ 0.173*
684
+ purple
685
+ 0.150
686
+ Table 5: Pearson’s correlations between published years and
687
+ normalized frequencies of the 100 fictions for each color
688
+ term. ** indicates p < 0.05, and * p < 0.1.
689
+ IMAG, CNC, and VAL values are presented here in Fig-
690
+ ures 4, 5, and 6. We also include the full list of Pearson
691
+ correlation results for all color terms in Table 6.
692
+ IMAG Results
693
+ Color
694
+ Pearson’s r
695
+ Color
696
+ Pearson’s r
697
+ red
698
+ -0.095*
699
+ green
700
+ 0.059
701
+ black
702
+ 0.257**
703
+ white
704
+ 0.303***
705
+ blue
706
+ -0.163
707
+ brown
708
+ 0.129
709
+ gray
710
+ -0.081
711
+ yellow
712
+ 0.340**
713
+ pink
714
+ 0.534***
715
+ purple
716
+ 0.162
717
+ CNC Results
718
+ Color
719
+ Pearson’s r
720
+ Color
721
+ Pearson’s r
722
+ red
723
+ -0.054
724
+ green
725
+ 0.160
726
+ black
727
+ 0.237**
728
+ white
729
+ 0.239**
730
+ blue
731
+ -0.133
732
+ brown
733
+ 0.175
734
+ gray
735
+ -0.044
736
+ yellow
737
+ 0.318***
738
+ pink
739
+ 0.517***
740
+ purple
741
+ 0.055
742
+ VAL Results
743
+ Color
744
+ Pearson’s r
745
+ Color
746
+ Pearson’s r
747
+ red
748
+ -0.025
749
+ green
750
+ 0.273***
751
+ black
752
+ 0.059
753
+ white
754
+ 0.161
755
+ blue
756
+ -0.104
757
+ brown
758
+ -0.148
759
+ gray
760
+ 0.072
761
+ yellow
762
+ -0.01
763
+ pink
764
+ 0.081
765
+ purple
766
+ 0.210*
767
+ Table 6: Full list of Pearson’s correlations between published
768
+ years and Glasgow Norm values of the 100 fictions for each
769
+ color term. *** p < 0.001, ** p < 0.05, and * p < 0.1.
770
+ D
771
+ Example of Color Term Usages
772
+ In the following usage examples, the color terms are un-
773
+ derlined, bolded and colored, while the dependent noun is
774
+ bolded.
775
+ D.1
776
+ Pink
777
+ HENRY FIELDING, 1749
778
+ Adorned with all the charms in which nature can array
779
+ her; bedecked with beauty, youth, sprightliness, innocence,
780
+ modesty, and tenderness, breathing sweetness from her rosy
781
+ lips, and darting brightness from her sparkling eyes, the
782
+ lovely Sophia comes!
783
+ FANNY BURNEY, 1778
784
+ We were sitting in this manner, he conversing with all
785
+ gaiety, I looking down with all foolishness, when that fop
786
+ who had first asked me to dance, [...] I interrupted him I
787
+ blush for my folly, with laughing; yet I could not help it;
788
+ for, added to the man’s stately foppishness, [...] that I could
789
+ not for my life preserve my gravity.
790
+ ANN WARD RADCLIFFE, 1794
791
+ As they descended, they saw at a distance, on the right,
792
+ one of the grand passes of the Pyrenees into Spain, gleaming
793
+ with its battlements and towers to the splendour of the set-
794
+ ting rays, yellow tops of woods colouring the steeps below,
795
+ while far above aspired the snowy points of the mountains,
796
+ still reflecting a rosy hue.
797
+ Conscious innocence could not prevent a blush from
798
+ stealing over Emily’s cheek; she trembled, and looked con-
799
+ fusedly under the bold eye of Madame Cheron, who blushed
800
+ also; but hers was the blush of triumph, such as sometimes
801
+ stains the countenance of a person, congratulating himself
802
+ on the penetration which had taught him to suspect another,
803
+ and who loses both pity for the supposed criminal, and
804
+ indignation of his guilt, in the gratification of his own vanity
805
+ CHARLOTTE BRONTE, 1847
806
+ Her beauty, her pink cheeks and golden curls, seemed to
807
+ give delight to all who looked at her, and to purchase indem-
808
+ nity for every fault.
809
+ Its garden, too, glowed with flowers: hollyhocks had
810
+ sprung up tall as trees, lilies had opened, tulips and roses
811
+ were in bloom; the borders of the little beds were gay with
812
+ pink thrift and crimson double daisies; the sweetbriars gave
813
+ out, morning and evening, their scent of spice and apples;
814
+ and these fragrant treasures were all useless for most of the
815
+ inmates of Lowood, except to furnish now and then a hand-
816
+ ful of herbs and blossoms to put in a coffin.
817
+ She pulled out of her box, about ten minutes ago, a
818
+ little pink silk frock; rapture lit her face as she unfolded
819
+ it; coquetry runs in her blood, blends with her brains, and
820
+ seasons the marrow of her bones.
821
+ ARTHUR CONAN DOYLE, 1892
822
+ That trick of staining the fishes’ scales of a delicate pink
823
+ is quite peculiar to China.
824
+ Her violet eyes shining, her lips parted, a pink flush upon
825
+ her cheeks, all thought of her natural reserve lost in her over-
826
+ powering excitement and concern.
827
+ As we approached, the door flew open, and a little blonde
828
+ woman stood in the opening, clad in some sort of light
829
+
830
+ Figure 3: Log-scale scatter plots of normalized color term frequencies for each publication in LitBank.
831
+
832
+ blue
833
+ 103
834
+ Frequency (x 1E-5)
835
+ 102
836
+ 101
837
+ 100
838
+ 1750
839
+ 1800
840
+ 1850
841
+ 1900
842
+ Yearbrown
843
+ Frequency (x 1E-5)
844
+ 102
845
+ 101
846
+ 100
847
+ 1750
848
+ 1800
849
+ 1850
850
+ 1900
851
+ Yeargray
852
+ 103
853
+ Frequency (x 1E-5)
854
+ 102
855
+ 101
856
+ 100
857
+ 1750
858
+ 1800
859
+ 1850
860
+ 1900
861
+ Yearyellow
862
+ Frequency (x 1E-5)
863
+ 102
864
+ 101
865
+ 100
866
+ 1750
867
+ 1800
868
+ 1850
869
+ 1900
870
+ Yearpink
871
+ 102
872
+ Frequency (x 1E-5)
873
+ 101
874
+ 100
875
+ 1750
876
+ 1800
877
+ 1850
878
+ 1900
879
+ Yearpurple
880
+ 102
881
+ Frequency (x 1E-5)
882
+ 101
883
+ 100
884
+ 1750
885
+ 1800
886
+ 1850
887
+ 1900
888
+ Yearred
889
+ Frequency (x 1E-5)
890
+ 102
891
+ 101
892
+ 100
893
+ 1750
894
+ 1800
895
+ 1850
896
+ 1900
897
+ Yeargreen
898
+ Frequency (x 1E-5)
899
+ 102
900
+ 101
901
+ 100
902
+ 1750
903
+ 1800
904
+ 1850
905
+ 1900
906
+ Yearblack
907
+ 103
908
+ LE-5)
909
+ 1
910
+ X
911
+ 102
912
+ Fregquency
913
+ 101
914
+ 1750
915
+ 1800
916
+ 1850
917
+ 1900
918
+ Yearwhite
919
+ 103
920
+ 1E-5)
921
+ Frequency (x 1
922
+ 102
923
+ 101
924
+ 1750
925
+ 1800
926
+ 1850
927
+ 1900
928
+ YearFigure 4: IMAG scatter plots of nouns modified by color terms for each publication in LitBank.
929
+
930
+ black
931
+ 0.9
932
+ IMAG
933
+ 0.8
934
+ 0.7
935
+ 0.6
936
+ 1750
937
+ 1800
938
+ 1850
939
+ 1900
940
+ Yearred
941
+ 0.9
942
+ IMAG
943
+ 0.8
944
+ 0.7
945
+ 0.6
946
+ 1750
947
+ 1850
948
+ 1800
949
+ 1900
950
+ Yeargreen
951
+ 0.9
952
+ 0.8
953
+ IMAG
954
+ 0.7
955
+ 0.6
956
+ 0.5
957
+ 1750
958
+ 1800
959
+ 1850
960
+ 1900
961
+ Yearblue
962
+ 1.0
963
+ 0.9
964
+ IMAG
965
+ 0.8
966
+ 0.7
967
+ 0.6
968
+ 1750
969
+ 1800
970
+ 1850
971
+ 1900
972
+ Yearbrown
973
+ 0.9
974
+ 0.8
975
+ IMAG
976
+ 0.7
977
+ 0.6
978
+ 0.5
979
+ 1750
980
+ 1800
981
+ 1850
982
+ 1900
983
+ Yearwhite
984
+ 0.9
985
+ 0.8
986
+ IMAG
987
+ 0.7
988
+ 0.6
989
+ 1750
990
+ 1800
991
+ 1850
992
+ 1900
993
+ Yeargray
994
+ 0.9
995
+ IMAG
996
+ 0.8
997
+ 0.7
998
+ 0.6
999
+ 1750
1000
+ 1800
1001
+ 1850
1002
+ 1900
1003
+ Yearpurple
1004
+ 1.0
1005
+ 0.8
1006
+ IMAG
1007
+ 0.6
1008
+ 0.4
1009
+ 1750
1010
+ 1800
1011
+ 1850
1012
+ 1900
1013
+ Yearyellow
1014
+ 1.0
1015
+ 0.8
1016
+ IMAG
1017
+ 0.6
1018
+ 0.4
1019
+ 1750
1020
+ 1800
1021
+ 1850
1022
+ 1900
1023
+ Yearpink
1024
+ 0.8
1025
+ IMAG
1026
+ 0.6
1027
+ 0.4
1028
+ 0.2
1029
+ 1750
1030
+ 1800
1031
+ 1850
1032
+ 1900
1033
+ YearFigure 5: CNC scatter plots of nouns modified by color terms for each publication in LitBank.
1034
+
1035
+ red
1036
+ 0.9
1037
+ 0.8
1038
+ CNC
1039
+ 0.7
1040
+ 0.6
1041
+ 0.5
1042
+ 1750
1043
+ 1800
1044
+ 1850
1045
+ 1900
1046
+ Yeargreen
1047
+ 0.9
1048
+ 0.8
1049
+ CNC
1050
+ 0.7
1051
+ 0.6
1052
+ 0.5
1053
+ 1750
1054
+ 1800
1055
+ 1850
1056
+ 1900
1057
+ Yearblack
1058
+ 1.0
1059
+ 0.9
1060
+ CNC
1061
+ 0.8
1062
+ 0.7
1063
+ 0.6
1064
+ 1750
1065
+ 1800
1066
+ 1850
1067
+ 1900
1068
+ Yearwhite
1069
+ 0.8
1070
+ CNC
1071
+ 0.7
1072
+ 0.6
1073
+ 1750
1074
+ 1800
1075
+ 1850
1076
+ 1900
1077
+ Yearblue
1078
+ 0.9
1079
+ 0.8
1080
+ CNC
1081
+ 0.7
1082
+ 0.6
1083
+ 0.5
1084
+ 1750
1085
+ 1800
1086
+ 1850
1087
+ 1900
1088
+ Yearbrown
1089
+ 0.9
1090
+ 0.8
1091
+ CNC
1092
+ 0.7
1093
+ 0.6
1094
+ 0.5
1095
+ 1750
1096
+ 1800
1097
+ 1850
1098
+ 1900
1099
+ Yeargray
1100
+ 0.9
1101
+ 0.8
1102
+ CNC
1103
+ 0.7
1104
+ 0.6
1105
+ 1750
1106
+ 1800
1107
+ 1850
1108
+ 1900
1109
+ Yearyellow
1110
+ 1.0
1111
+ 0.8
1112
+ CNC
1113
+ 0.6
1114
+ 0.4
1115
+ 0.2
1116
+ 1750
1117
+ 1800
1118
+ 1850
1119
+ 1900
1120
+ Yearpink
1121
+ 0.8
1122
+ 0.4
1123
+ 1750
1124
+ 1800
1125
+ 1850
1126
+ 1900
1127
+ Yearpurple
1128
+ 0.9
1129
+ 0.8
1130
+ CNC
1131
+ 0.7
1132
+ 0.6
1133
+ 0.5
1134
+ 1750
1135
+ 1800
1136
+ 1850
1137
+ 1900
1138
+ YearFigure 6: VAL scatter plots of nouns modified by color terms for each publication in LitBank.
1139
+
1140
+ red
1141
+ 0.7
1142
+ 0.6
1143
+ 0.5
1144
+ VAL
1145
+ 0.4
1146
+ 0.3
1147
+ 0.2-
1148
+ 1750
1149
+ 1800
1150
+ 1850
1151
+ 1900
1152
+ Yeargreen
1153
+ 0.8
1154
+ 0.7
1155
+ 0.6
1156
+ VAL
1157
+ 0.5
1158
+ 0.4
1159
+ 0.3
1160
+ 1750
1161
+ 1800
1162
+ 1850
1163
+ 1900
1164
+ Yearblack
1165
+ 0.8
1166
+ 0.7
1167
+ ≤0.6
1168
+ 0.5
1169
+ 1750 1800
1170
+ 1850
1171
+ 1900
1172
+ Yearwhite
1173
+ 0.7.
1174
+ M0.6
1175
+ 0.5
1176
+ 1750
1177
+ 1800
1178
+ 1850
1179
+ 1900
1180
+ Yearblue
1181
+ 0.7
1182
+ M0.6
1183
+ 0.5
1184
+ 1750
1185
+ 1800
1186
+ 1850
1187
+ 1900
1188
+ Yearbrown
1189
+ 0.7
1190
+ 0.5
1191
+ 1750
1192
+ 1800
1193
+ 1850
1194
+ 1900
1195
+ Yeargray
1196
+ 0.70
1197
+ 0.65
1198
+ 0.55
1199
+ 0.50
1200
+ 1750
1201
+ 1800
1202
+ 1850
1203
+ 1900
1204
+ Yearyellow
1205
+ 0.7
1206
+ 0.6
1207
+ 0.5
1208
+ VAL
1209
+ 0.4
1210
+ 0.3
1211
+ 0.2
1212
+ 1750
1213
+ 1800
1214
+ 1850
1215
+ 1900
1216
+ Yearpink
1217
+ 0.8
1218
+ 0.7
1219
+ ≤0.6
1220
+ 0.5
1221
+ 0.4
1222
+ 1750
1223
+ 1800
1224
+ 1850
1225
+ 1900
1226
+ Yearpurple
1227
+ 0.8
1228
+ 0.6
1229
+ VAL
1230
+ 0.4
1231
+ 0.2
1232
+ 1750
1233
+ 1800
1234
+ 1850
1235
+ 1900
1236
+ Yearmousseline de soie, with a touch of fluffy pink chiffon at
1237
+ her neck and wrists.
1238
+ H.G. WELLS, 1897
1239
+ It was the fact that all his forehead above his blue glasses
1240
+ was covered by a white bandage, and that another covered
1241
+ his ears, leaving not a scrap of his face exposed excepting
1242
+ only his pink, peaked nose.
1243
+ P. G. WODEHOUSE, 1919
1244
+ Jimmy turned into that drug store at the top of the Hay-
1245
+ market at which so many Londoners have found healing and
1246
+ comfort on the morning after, and bought the pink drink for
1247
+ which his system had been craving since he rose from bed.
1248
+ The clerk had finished writing the ticket, and was pressing
1249
+ labels and a pink paper on him.
1250
+ F. SCOTT FITZGERALD, 1920:
1251
+ Myra sprang up, her cheeks pink with bruised vanity, the
1252
+ great bow on the back of her head trembling sympathetically.
1253
+ D.2
1254
+ White
1255
+ FANNY BURNEY, 1778
1256
+ She told her niece, that she had been indulging in fanciful
1257
+ sorrows, and begged she would have more regard for deco-
1258
+ rum, than to let the world see that she could not renounce an
1259
+ improper attachment; at which Emily’s pale cheek became
1260
+ flushed with crimson, but it was the blush of pride, and she
1261
+ made no answer.
1262
+ MARY WOLLSTONECRAFT, 1788
1263
+ Henry started at the sight of her altered appearance; the
1264
+ day before her complexion had been of the most pallid hue;
1265
+ but now her cheeks were flushed, and her eyes enlivened
1266
+ with a false vivacity, an unusual fire.
1267
+ JANE AUSTEN, 1813
1268
+ Her pale face and impetuous manner made him start, and
1269
+ before he could recover himself to speak, she, in whose mind
1270
+ every idea was superseded by Lydia’s situation, hastily ex-
1271
+ claimed, “I beg your pardon, but I must leave you.
1272
+ From his garden, Mr. Collins would have led them round
1273
+ his two meadows; but the ladies, not having shoes to en-
1274
+ counter the remains of a white frost, turned back
1275
+ ELIZABETH CLEGHORN GASKELL, 1855
1276
+ She lay curled up on the sofa in the back drawing room in
1277
+ Harley Street looking very lovely in her white muslin and
1278
+ blue ribbons.
1279
+ She found out that the water in the urn was cold, and or-
1280
+ dered up the great kitchen tea kettle; the only consequence
1281
+ of which was that when she met it at the door, and tried to
1282
+ carry it in, it was too heavy for her, and she came in pouting,
1283
+ with a black mark on her muslin gown, and a little round
1284
+ white hand indented by the handle, which she took to show
1285
+ to Captain Lennox, just like a hurt child, and, of course, the
1286
+ remedy was the same in both cases.
1287
+ But he had the same large, soft eyes as his daughter, eyes
1288
+ which moved slowly and almost grandly round in their or-
1289
+ bits, and were well veiled by their transparent white eyelids.
1290
+ CHARLES DICKENS, 1861
1291
+ I lighted my fire, which burnt with a raw pale flare at that
1292
+ time of the morning, and fell into a doze before it.
1293
+ She’s all in white,’ he says, ‘wi’ white flowers in her hair,
1294
+ and she’s awful mad, and she’s got a shroud hanging over her
1295
+ arm, and she says she’ll put it on me at five in the morning.’
1296
+ When we was put in the dock, I noticed first of all what
1297
+ a gentleman Compeyson looked, wi’ his curly hair and his
1298
+ black clothes and his white pocket handkercher, and what
1299
+ a common sort of a wretch I looked.
1300
+ ELIZABETH VON ARNIM, 1898
1301
+ There are so many bird cherries round me, great trees with
1302
+ branches sweeping the grass, and they are so wreathed just
1303
+ now with white blossoms and tenderest green that the gar-
1304
+ den looks like a wedding.
1305
+ When that time came, and when, before it was over, the
1306
+ acacias all blossomed too, and four great clumps of pale, sil-
1307
+ very pink peonies flowered under the south windows, I felt
1308
+ so absolutely happy, and blest, and thankful, and grateful,
1309
+ that I really cannot describe it.
1310
+ D.3
1311
+ Black
1312
+ JONATHAN SWIFT, 1726
1313
+ In his right waistcoat pocket we found a prodigious bun-
1314
+ dle of white thin substances, folded one over another, about
1315
+ the bigness of three men, tied with a strong cable, and
1316
+ marked with black figures; which we humbly conceive to
1317
+ be writings, every letter almost half as large as the palm of
1318
+ our hands.
1319
+ In the left pocket were two black pillars irregularly
1320
+ shaped: we could not, without difficulty, reach the top of
1321
+ them, as we stood at the bottom of his pocket.
1322
+ In one of these cells were several globes, or balls, of a
1323
+ most ponderous metal, about the bigness of our heads, and
1324
+ requiring a strong hand to lift them: the other cell contained a
1325
+ heap of certain black grains, but of no great bulk or weight,
1326
+ for we could hold above fifty of them in the palms of our
1327
+ hands.
1328
+ About two or three days before I was set at liberty, as
1329
+ I was entertaining the court with this kind of feat, there
1330
+ arrived an express to inform his majesty, that some of his
1331
+ subjects, riding near the place where I was first taken up,
1332
+ had seen a great black substance lying on the ground, [...]
1333
+ they would undertake to bring it with only five horses.
1334
+ FANNY BURNEY, 1778
1335
+ You can’t think how oddly my head feels; full of powder
1336
+ and black pins, and a great cushion on the top of it.
1337
+ if you’ll say that, you’ll say anything: however, if you
1338
+ swear till you’re black in the face, I sha’n’t believe you;
1339
+ for nobody sha’n’t persuade me out of my senses, that I’m
1340
+ resolved.
1341
+ Ridiculous, I told him, was a term which he would find
1342
+ no one else do him the favour to make use of, in speaking of
1343
+ the horrible actions belonging to the old story he made so
1344
+ light of; ’actions’ continued I, ’which would dye still deeper
1345
+ the black annals of Nero or Caligula.
1346
+
1347
+ JANE AUSTEN, 1813
1348
+ The ladies were somewhat more fortunate, for they had
1349
+ the advantage of ascertaining from an upper window, that
1350
+ he wore a blue coat and rode a black horse.
1351
+ CHARLOTTE BRONTE, 1847
1352
+ And then she had such a fine head of hair; raven black
1353
+ and so becomingly arranged: a crown of thick plaits behind,
1354
+ and in front the longest, the glossiest curls I ever saw.
1355
+ Afternoon arrived: Mrs. Fairfax assumed her best black
1356
+ satin gown, her gloves, and her gold watch; for it was her
1357
+ part to receive the company,- to conduct the ladies to their
1358
+ rooms, Adele, too, would be dressed: though I thought she
1359
+ had little chance of being introduced to the party that day at
1360
+ least.
1361
+ Fluttering veils and waving plumes filled the vehicles; two
1362
+ of the cavaliers were young, dashing looking gentlemen; the
1363
+ third was Mr. Rochester, on his black horse, Mesrour, Pilot
1364
+ bounding before him; at his side rode a lady, and he and she
1365
+ were the first of the party.
1366
+ The noble bust, the sloping shoulders, the graceful neck,
1367
+ the dark eyes and black ringlets were all there; - but her
1368
+ face?
1369
+ Mrs. Fairfax was summoned to give information respect-
1370
+ ing the resources of the house in shawls, dresses, draperies
1371
+ of any kind; and certain wardrobes of the third storey were
1372
+ ransacked, and their contents, in the shape of brocaded
1373
+ and hooped petticoats, satin sacques, black modes, lace
1374
+ lappets, etc, were brought down in armfuls by the abi-
1375
+ gails; then a selection was made, and such things as were
1376
+ chosen were carried to the boudoir within the drawing room.
1377
+ NATHANIEL HAWTHORNE, 1850
1378
+ Doubtless, however, either of these stern and black
1379
+ browed Puritans would have thought it quite a sufficient ret-
1380
+ ribution for his sins that, after so long a lapse of years, the
1381
+ old trunk of the family tree, with so much venerable moss
1382
+ upon it, should have borne, as its topmost bough, an idler
1383
+ like myself.
1384
+ The Custom House marker imprinted it, with a stencil and
1385
+ black paint, on pepper bags, and baskets of anatto, and cigar
1386
+ boxes, and bales of all kinds of dutiable merchandise, in
1387
+ testimony that these commodities had paid the impost, and
1388
+ gone regularly through the office.
1389
+ Before this ugly edifice, and between it and the wheel
1390
+ track of the street, was a grass plot, much overgrown
1391
+ with burdock, pig weed, apple pern, and such unsightly
1392
+ vegetation, which evidently found something congenial in
1393
+ the soil that had so early borne the black flower of civilised
1394
+ society, a prison.
1395
+ CHARLES DICKENS, 1861
1396
+ I still held her forcibly down with all my strength, like a
1397
+ prisoner who might escape; and I doubt if I even knew who
1398
+ she was, or why we had struggled, or that she had been in
1399
+ flames, or that the flames were out, until I saw the patches of
1400
+ tinder that had been her garments no longer alight but falling
1401
+ in a black shower around us.
1402
+ The sudden exclusion of the night, and the substitution of
1403
+ black darkness in its place, warned me that the man had
1404
+ closed a shutter.
1405
+ He had a boat cloak with him, and a black canvas bag;
1406
+ and he looked as like a river pilot as my heart could have
1407
+ wished.
1408
+ The marshes were just a long black horizontal line then,
1409
+ as I stopped to look after him; and the river was just another
1410
+ horizontal line, not nearly so broad nor yet so black; and the
1411
+ sky was just a row of long angry red lines and dense black
1412
+ lines intermixed.
1413
+ G.K. CHESTERTON, 1908
1414
+ The tall hat and long frock coat were black; the face, in
1415
+ an abrupt shadow, was almost as dark.
1416
+ He wore an old fashioned black chimney pot hat; he
1417
+ was wrapped in a yet more old fashioned cloak, black and
1418
+ ragged; and the combination gave him the look of the early
1419
+ villains in Dickens and Bulwer Lytton.
1420
+ A long, lean, black cigar, bought in Soho for twopence,
1421
+ stood out from between his tightened teeth, and altogether he
1422
+ looked a very satisfactory specimen of the anarchists upon
1423
+ whom he had vowed a holy war.
1424
+ He had a black French beard cut square and a black
1425
+ English frock coat cut even squarer.
1426
+ SOMERSET W. MAUGHAM, 1915
1427
+ She wore a black dress, and her only ornament was a gold
1428
+ chain, from which hung a cross.
1429
+ It was a large black stove that stood in the hall and was
1430
+ only lighted if the weather was very bad and the Vicar had a
1431
+ cold.
1432
+ And the poor lady, so small in her black satin, shrivelled
1433
+ up and sallow, with her funny corkscrew curls, took the little
1434
+ boy on her lap and put her arms around him and wept as
1435
+ though her heart would break.
1436
+ D.4
1437
+ Yellow
1438
+ DANIEL DEFOE, 1719
1439
+ The colour of his skin was not quite black, but very tawny;
1440
+ and yet not an ugly, yellow, nauseous tawny, as the Brazil-
1441
+ ians and Virginians, and other natives of America are, but of
1442
+ a bright kind of a dun olive colour, that had in it something
1443
+ very agreeable, though not very easy to describe.
1444
+ JONATHAN SWIFT, 1726
1445
+ The projector of this cell was the most ancient student of
1446
+ the academy; his face and beard were of a pale yellow; his
1447
+ hands and clothes daubed over with filth.
1448
+ The hair of both sexes was of several colours, brown, red,
1449
+ black, and yellow.
1450
+ I forgot another circumstance (and perhaps I might
1451
+ have the reader’s pardon if it were wholly omitted), that
1452
+ while I held the odious vermin in my hands, it voided its
1453
+ filthy excrements of a yellow liquid substance all over my
1454
+ clothes; but by good fortune there was a small brook hard
1455
+ by, where I washed myself as clean as I could; although
1456
+ I durst not come into my master’s presence until I were
1457
+ sufficiently aired.
1458
+
1459
+ WILLIAM MAKEPEACE THACKERAY, 1848
1460
+ Joseph still continued a huge clattering at the poker and
1461
+ tongs, puffing and blowing the while, and turning as red as
1462
+ his yellow face would allow him.
1463
+ Why, he had the yellow fever three times; twice at Nas-
1464
+ sau, and once at St.
1465
+ At one end of the hall is the great staircase all in black oak,
1466
+ as dismal as may be, and on either side are tall doors with
1467
+ stags’ heads over them, leading to the billiard room and the
1468
+ library, and the great yellow saloon and the morning rooms.
1469
+ He’s never content unless he gets my yellow sealed wine,
1470
+ which costs me ten shillings a bottle, hang him!
1471
+ JAMES JOYCE, 1914
1472
+ I liked the last best because its leaves were yellow.
1473
+ Breakfast was over in the boarding house and the table
1474
+ of the breakfast room was covered with plates on which lay
1475
+ yellow streaks of eggs with morsels of bacon fat and bacon
1476
+ rind.
1477
+ An immense scarf of peacock blue muslin was wound
1478
+ round her hat and knotted in a great bow under her chin;
1479
+ and she wore bright yellow gloves, reaching to the elbow.
1480
+ His face, shining with raindrops, had the appearance of
1481
+ damp yellow cheese save where two rosy spots indicated
1482
+ the cheekbones.
1483
+ While the point was being debated a tall agile gentleman
1484
+ of fair complexion, wearing a long yellow ulster, came from
1485
+ the far end of the bar.
1486
+ I saw that he had great gaps in his mouth between his
1487
+ yellow teeth.
1488
+ On the closed square piano a pudding in a huge yellow
1489
+ dish lay in waiting and behind it were three squads of bot-
1490
+ tles of stout and ale and minerals, drawn up according to
1491
+ the colours of their uniforms, the first two black, with brown
1492
+ and red labels, the third and smallest squad white, with trans-
1493
+ verse green sashes.
1494
+ A dull yellow light brooded over the houses and the river;
1495
+ and the sky seemed to be descending.
1496
+ F. SCOTT FITZGERALD, 1920
1497
+ The Gothic halls and cloisters were infinitely more myste-
1498
+ rious as they loomed suddenly out of the darkness, outlined
1499
+ each by myriad faint squares of yellow light.
1500
+ His face was cast in the same yellow wax as in the cafe,
1501
+ neither the dull, pasty color of a dead man—rather a sort of
1502
+ virile pallor—nor unhealthy, you’d have called it; but like a
1503
+ strong man who’d worked in a mine or done night shifts in a
1504
+ damp climate.
1505
+ The two hours’ ride were like days, and he nearly cried
1506
+ aloud with joy when the towers of Princeton loomed up be-
1507
+ side him and the yellow squares of light filtered through the
1508
+ blue rain.
1509
+ Browsing in her library, Amory found a tattered gray book
1510
+ out of which fell a yellow sheet that he impudently opened.
1511
+ There was that shade of glorious yellow hair, the desire
1512
+ to imitate which supports the dye industry.
1513
+ F. SCOTT FITZGERALD, 1922
1514
+ That this feeble, unintelligent old man was possessed of
1515
+ such power that, yellow journals to the contrary, the men in
1516
+ the republic whose souls he could not have bought directly
1517
+ or indirectly would scarcely have populated White Plains,
1518
+ seemed as impossible to believe as that he had once been a
1519
+ pink and white baby.
1520
+ He bulges in other places his paunch bulges, propheti-
1521
+ cally, his words have an air of bulging from his mouth, even
1522
+ his dinner coat pockets bulge, as though from contamination,
1523
+ with a dog eared collection of time tables, programmes, and
1524
+ miscellaneous scraps on these he takes his notes with great
1525
+ screwings up of his unmatched yellow eyes and motions of
1526
+ silence with his disengaged left hand.
1527
+ It was a crackling dusk when they turned in under the
1528
+ white fac¸ade of the Plaza and tasted slowly the foam and
1529
+ yellow thickness of an egg nog.
1530
+ He had fixed his aunt with the bright yellow eye, giving
1531
+ her that acute and exaggerated attention that young males
1532
+ are accustomed to render to all females who are of no further
1533
+ value.
1534
+ On the appointed Wednesday in February Anthony had
1535
+ gone to the imposing offices of Wilson, Hiemer and Hardy
1536
+ and listened to many vague instructions delivered by an en-
1537
+ ergetic young man of about his own age, named Kahler, who
1538
+ wore a defiant yellow pompadour, and in announcing him-
1539
+ self as an assistant secretary gave the impression that it was
1540
+ a tribute to exceptional ability.
1541
+ Joe Hull had a yellow beard continually fighting through
1542
+ his skin and a low voice which varied between basso pro-
1543
+ fundo and a husky whisper.
1544
+
CNE1T4oBgHgl3EQf9wYh/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
CNE5T4oBgHgl3EQfTg-d/content/tmp_files/2301.05537v1.pdf.txt ADDED
@@ -0,0 +1,2268 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Almost Surely
2
+
3
+ T Regret Bound for Adaptive LQR
4
+ Yiwen Lu and Yilin Mo
5
+ Abstract—The Linear-Quadratic Regulation (LQR) problem
6
+ with unknown system parameters has been widely studied, but it
7
+ has remained unclear whether ˜O(
8
+
9
+ T) regret, which is the best
10
+ known dependence on time, can be achieved almost surely. In
11
+ this paper, we propose an adaptive LQR controller with almost
12
+ surely
13
+ ˜O(
14
+
15
+ T) regret upper bound. The controller features a
16
+ circuit-breaking mechanism, which circumvents potential safety
17
+ breach and guarantees the convergence of the system parameter
18
+ estimate, but is shown to be triggered only finitely often and
19
+ hence has negligible effect on the asymptotic performance of
20
+ the controller. The proposed controller is also validated via
21
+ simulation on Tennessee Eastman Process (TEP), a commonly
22
+ used industrial process example.
23
+ I. INTRODUCTION
24
+ Adaptive control, the study of decision-making under the
25
+ parametric uncertainty of dynamical systems, has been pur-
26
+ sued for decades [1]–[4]. Although early research mainly
27
+ focused on the the aspect of convergence and stability, recent
28
+ years have witnessed significant advances in the quantitative
29
+ performance analysis of adaptive controllers, especially for
30
+ multivariate systems. In particular, in the adaptive Linear-
31
+ Quadratic Regulation (LQR) setting considered in this paper,
32
+ the controller attempts to solve the stochastic LQR problem
33
+ without access to the true system parameters, and its perfor-
34
+ mance is evaluated via regret, the cumulative deviation from
35
+ the optimal cost over time. This adaptive LQR setting has
36
+ been widely studied in the past decade [5]–[11], but it has
37
+ remained unclear whether adaptive controllers for LQR can
38
+ achieve ˜O(
39
+
40
+ T) regret, whose asymptotic dependence on the
41
+ time T is the best known (up to poly-logarithmic factors) 1,
42
+ almost surely.
43
+ Existing regret upper bounds on adaptive LQR, summarized
44
+ in Table I, are either weaker than almost-sure in terms of
45
+ the type of probabilistic guarantee, or suboptimal in terms of
46
+ asymptotic dependence on time. By means of optimism-in-
47
+ face-of-uncertainty [7], Thompson sampling [6], or ϵ-greedy
48
+ algorithm [9], an ˜O(
49
+
50
+ T) regret can be achieved with proba-
51
+ bility at least 1 − δ. In other words, these algorithms may not
52
+ converge to the optimal one or could even be destablizing
53
+ with a non-zero probability δ. In practice, such a failure
54
+ probability may hinder the application of these algorithms in
55
+ safety-critical scenarios. From a theoretical perspective, we
56
+ argue that it is highly difficult to extend these algorithms
57
+ to provide stronger performance guarantees. To be specific,
58
+ The
59
+ authors
60
+ are
61
+ with
62
+ the
63
+ Department
64
+ of
65
+ Automa-
66
+ tion
67
+ and
68
+ BNRist,
69
+ Tsinghua
70
+ University,
71
+ Beijing,
72
+ P.R.China.
73
+ Emails:
74
75
76
+ 1It is known that
77
+
78
+ T is the optimal L1 rate of regret [9], and we suspect
79
+ that it is also the optimal almost sure rate.
80
+ despite different exploration strategies, the aforementioned
81
+ methods all compute the control input using a linear feedback
82
+ gain synthesized from a least-squares estimate of system
83
+ parameters. Due to Gaussian process noise, the derived linear
84
+ feedback gain may be destabilizing, regardless of the amount
85
+ of data collected. For these algorithms, the probability of such
86
+ catastrophic event is bounded by a positive δ > 0, which is a
87
+ predetermined design parameter and cannot be changed during
88
+ online operation.
89
+ Alternative methods that may preclude the above de-
90
+ scribed failure probability include introducing additional sta-
91
+ bility assumptions, using parameter estimation algorithms with
92
+ stronger convergence guarantees, and adding a layer of safe-
93
+ guard around the linear feedback gain. Faradonbeh et al. [10]
94
+ achieves ˜O(
95
+
96
+ T) regret almost surely under the assumption
97
+ that the closed-loop system remains stable all the time, based
98
+ on a stabilization set obtained from adaptive stabilization [12].
99
+ Since the stabilization set is estimated from finite data and
100
+ violates the desired property with a nonzero probability, this
101
+ method essentially has a nonzero failure probability as well.
102
+ Guo [13] achieves sub-linear regret almost surely by adopting
103
+ a variant of ordinary least squares with annealing weight
104
+ assigned to recent data, a parameter estimation algorithm
105
+ convergent even with unstable trajectory data. However, the
106
+ stronger convergence guarantee may come at the cost of less
107
+ sharp asymptotic rate, and it is unclear whether the regret
108
+ of this method can achieve
109
+ ˜O(
110
+
111
+ T) dependence on time.
112
+ Wang et al. [11] achieves ˜O(
113
+
114
+ T) regret with a convergence-
115
+ in-probability guarantee, via the use of a switched, rather
116
+ than linear feedback controller, which falls back to a known
117
+ stabilizing gain on the detection of large states. However,
118
+ the controller design of this work does not rule out the
119
+ frequent switching between the learned and fallback gains,
120
+ a typical source of instability in switched linear systems [14],
121
+ which restricts the correctness of their results to the case
122
+ of commutative closed-loop system matrices. Moreover, the
123
+ regret analysis in this work is not sufficiently refined to lead
124
+ to almost sure guarantees.
125
+ TABLE I: Comparison with selected existing
126
+ works on adaptive LQR
127
+ Work
128
+ Rate
129
+ Type of guarantee
130
+ [13]
131
+ Not provided
132
+ Almost sure
133
+ [6], [7], [9]
134
+ ˜
135
+ O(
136
+
137
+ T)
138
+ Probability 1 − δ
139
+ [10]
140
+ ˜
141
+ O(
142
+
143
+ T)
144
+ Almost sure*
145
+ [11]
146
+ ˜
147
+ O(
148
+
149
+ T)
150
+ Convergence in probability*
151
+ This work
152
+ ˜
153
+ O(
154
+
155
+ T)
156
+ Almost sure
157
+ * Requires non-standard assumptions; please refer to the
158
+ main text for details.
159
+ arXiv:2301.05537v1 [math.OC] 13 Jan 2023
160
+
161
+ In this paper, we present an adaptive LQR controller with
162
+ ˜O(
163
+
164
+ T) regret almost surely, only assuming the availability
165
+ of a known stabilizing feedback gain, which is a common
166
+ assumption in the literature. This is achieved by a “circuit-
167
+ breaking” mechanism motivated similarly as [11], which cir-
168
+ cumvents safety breach by supervising the norm of the state
169
+ and deploying the feedback gain when necessary. In contrast
170
+ to [11], however, by enforcing a properly chosen dwell time on
171
+ the fallback mode, the stability of the closed-loop system under
172
+ our proposed controller is unaffected by switching. Another
173
+ insight underlying our analysis is that the above mentioned
174
+ circuit-breaking mechanism is triggered only finitely often.
175
+ This fact implies that the conservativeness of the proposed
176
+ controller, which prevents the system from being destabilized
177
+ in the early stage and hence ensures the convergence of the
178
+ system parameter estimates, may have negligible effect on
179
+ the asymptotic performance of the system. Although similar
180
+ phenomena have also been observed in [11], [15], we derive
181
+ an upper bound on the time of the last trigger (Theorem 3,
182
+ item 7)), a property missing from pervious works that paves
183
+ the way to our almost sure regret guarantee.
184
+ Outline
185
+ The remainder of this manuscript is organized as follows:
186
+ Section II introduces the problem setting. Section III describes
187
+ the proposed controller. Section IV states and proves the
188
+ theoretical properties of the closed-loop system under the pro-
189
+ posed controller, and establishes the main regret upper bound.
190
+ Section V validates the theoretical results using a numerical
191
+ example. Finally, Section VI summarizes the manuscript and
192
+ discusses directions for future work.
193
+ Notations
194
+ The set of nonnegative integers is denoted by N, and the
195
+ set of positive integers is denoted by N∗. The n-dimensional
196
+ Euclidean space is denoted by Rn, and the n-dimensional
197
+ unit sphere is denoted by Sn. The n × n identity matrix is
198
+ denoted by In. For a square matrix M, ρ(M) denotes the
199
+ spectral radius of M, and tr(M) denotes the trace of M. For
200
+ a real symmetric matrix M, M ≻ 0 denotes that M is positive
201
+ definite. For any matrix M, M † denotes the Moore-Penrose
202
+ inverse of M. For two vectors u, v ∈ Rn, ⟨u, v⟩ denotes
203
+ their inner product. For a vector v, ∥v∥ denotes its 2-norm,
204
+ and ∥v∥P = ∥P 1/2v∥ for P ≻ 0. For a matrix M, ∥M∥
205
+ denotes its induced 2-norm, and ∥M∥F denotes its Frobenius
206
+ norm. For a random vector x, x ∼ N(µ, Σ) denotes x is
207
+ Gaussian distributed with mean µ and covariance Σ. For a
208
+ random variable X, X ∼ χ2(n) denotes X has a chi-squared
209
+ distribution with n degrees of freedom. P(·) denotes the
210
+ probability operator, and E[·] denotes the expectation operator.
211
+ For non-negative quantities f, g, which can be deterministic
212
+ or random, we say f ≲ g to denote that f ≤ C1g+C2 for some
213
+ universal constants C1 > 0 and C2 > 0, and f ≳ g to denote
214
+ that g ≲ f. For a random function f(T) and a deterministic
215
+ function g(T), we say f(T) = O(g(T)) to denote that
216
+ lim supT →∞ f(T)/g(T) < ∞, and f(T) =
217
+ ˜O(g(T)) to
218
+ denote that f(T) = O(g(T)(log(T))α) for some α > 0.
219
+ II. PROBLEM FORMULATION
220
+ This paper considers a fully observed discrete-time linear
221
+ system with Gaussian process noise specified as follows:
222
+ xk+1 = Axk + Buk + wk,
223
+ k ∈ N∗,
224
+ x1 = 0,
225
+ (1)
226
+ where xk ∈ Rn is the state, uk ∈ Rm is the control input,
227
+ and wk
228
+ i.i.d.
229
+
230
+ N(0, W) is the process noise, where W ≻ 0.
231
+ It is assumed without loss of generality that W = In, but all
232
+ the conclusions apply to general positive definite W up to the
233
+ scaling of constants. It is also assumed that the system and
234
+ input matrices A, B are unknown to the controller, but (A, B)
235
+ is controllable, and that the system is open-loop stable, i.e.,
236
+ ρ(A) < 1. Consequently, there exists P0 ≻ 0 that satisfies the
237
+ discrete Lyapunov equation
238
+ A⊤P0A − P0 + Q = 0,
239
+ (2)
240
+ and there exists a scalar 0 < ρ0 < 1 such that
241
+ A⊤P0A ≺ ρ0P0.
242
+ (3)
243
+ Remark 1. It has been commonly assumed in the liter-
244
+ ature [9], [11] that (A, B) being stabilizable by a known
245
+ feedback gain K0, i.e., ρ(A + BK0) < 1. In such case, the
246
+ system can be rewritten as
247
+ xk+1 = A′xk + Bu′
248
+ k + wk,
249
+ (4)
250
+ where A′ = A + BK0, u′
251
+ k = uk − K0xk, which reduces the
252
+ problem to the case of open-loop stable systems. Therefore,
253
+ we may assume without loss of generality that the system is
254
+ open-loop stable, i.e., K0 = 0, for the simplicity of notations.
255
+ The following average infinite-horizon quadratic cost is
256
+ considered:
257
+ J = lim sup
258
+ T →∞
259
+ 1
260
+ T E
261
+ � T
262
+
263
+ k=1
264
+ x⊤
265
+ k Qxk + u⊤
266
+ k Ruk
267
+
268
+ ,
269
+ (5)
270
+ where Q ≻ 0, R ≻ 0 are fixed weight matrices specified by the
271
+ system operator. It is well known that the optimal control law
272
+ is the linear feedback control law of the form u(x) = K∗x,
273
+ where the optimal feedback gain K∗ can be specified as:
274
+ K∗ = −
275
+
276
+ R + B⊤P ∗B
277
+ �−1 B⊤P ∗A,
278
+ (6)
279
+ and P ∗ is the unique positive definite solution to the discrete
280
+ algebraic Riccati equation
281
+ P ∗ = A⊤P ∗A − A⊤P ∗B
282
+
283
+ R + B⊤P ∗B
284
+ �−1 B⊤P ∗A + Q.
285
+ (7)
286
+ The corresponding optimal cost is
287
+ J∗ = tr
288
+
289
+ E
290
+
291
+ wkw⊤
292
+ k
293
+
294
+ P ∗�
295
+ = tr(WP ∗) = tr(P ∗).
296
+ (8)
297
+ The matrix P ∗ also satisfies the discrete Lyapunov equation
298
+ (A + BK∗)⊤P ∗(A + BK∗) − P ∗ + Q + K⊤RK = 0, (9)
299
+ which implies that there exists a scalar 0 < ρ∗ < 1 such that
300
+ (A + BK∗)⊤P ∗(A + BK∗) ≺ ρ∗P ∗.
301
+ (10)
302
+ Since A, B are unknown to the controller in the considered
303
+ setting, it is not possible to directly compute the optimal
304
+
305
+ control law from (6) and (7). Instead, the controller learns the
306
+ optimal control law online, whose performance is measured
307
+ via the regret defined as follows:
308
+ R(T) =
309
+ T
310
+
311
+ k=1
312
+ (x⊤
313
+ k Qxk + u⊤
314
+ k Ruk) − TJ∗.
315
+ (11)
316
+ The goal of the controller is to minimize the asymptotic growth
317
+ of R(T).
318
+ III. CONTROLLER DESIGN
319
+ The logic of the proposed controller is presented in Algo-
320
+ rithm 1. It can also be illustrated by the block diagram in
321
+ Fig. 1. The remainder of this section would be devoted to
322
+ explaining the components of the controller:
323
+ Algorithm 1 Proposed controller
324
+ 1: ˆK0 ← 0
325
+ 2: ξ ← 0
326
+ 3: for k = 1, 2, . . . do
327
+ 4:
328
+ Update parameter estimates ˆAk, ˆBk using (12)
329
+ 5:
330
+ if ( ˆAk, ˆBk) is controllable then
331
+ 6:
332
+ Update ˆKk from (6)-(7), replacing (A, B) with
333
+ ( ˆAk, ˆBk).
334
+ 7:
335
+ else
336
+ 8:
337
+ ˆKk ← 0
338
+ 9:
339
+ uce
340
+ k ← ˆKkxk
341
+ 10:
342
+ if ξ = 0 then
343
+ 11:
344
+ if ∥uce
345
+ k ∥ > Mk := log(k) then
346
+ 12:
347
+ ξ ← tk := ⌊log(k)⌋
348
+ 13:
349
+ ucb
350
+ k ← 0
351
+ 14:
352
+ else
353
+ 15:
354
+ ucb
355
+ k ← uce
356
+ k
357
+ 16:
358
+ else
359
+ 17:
360
+ ucb
361
+ k ← 0
362
+ 18:
363
+ ξ ← ξ − 1
364
+ 19:
365
+ upr
366
+ k ← k−1/4vk, where vk ∼ N(0, Im)
367
+ 20:
368
+ Apply uk ← ucb
369
+ k + upr
370
+ k
371
+ The proposed controller is a variant of the certainty equiv-
372
+ alent controller [16], where the latter applies the input uce
373
+ k =
374
+ ˆKkxk, where the feedback gain ˆKk is calculated from (6)-
375
+ (7) by treating the current estimates of the system parameters
376
+ ˆAk, ˆBk as the true values. The differences of the proposed
377
+ controller compared to the standard certainty equivalent con-
378
+ troller is that i) it includes a “circuit-breaking” mechanism,
379
+ which replace uce
380
+ k
381
+ with zero in certain circumstances; ii) it
382
+ superposes the control input at each step with a probing noise
383
+ upr
384
+ k .
385
+ The circuit-breaking mechanism replaces uce
386
+ k
387
+ with zero
388
+ for the subsequent tk steps when the norm of the certainty
389
+ equivalent control input ∥uce
390
+ k ∥ exceeds a threshold Mk. The
391
+ intuition behind this design is that a large certainty equivalent
392
+ control input is indicative of having applied a destabilizing
393
+ feedback gain recently, and circuit-breaking may prevent the
394
+ state from exploding by leveraging the innate stability of the
395
+ system, and hence help with the convergence of the parameter
396
+ Circuit-
397
+ breaking
398
+ logic
399
+ ξ > 0
400
+ 0
401
+ ˆK
402
+ uce
403
+ ucb
404
+ +
405
+ Plant
406
+ (eq. (1))
407
+ Estimator
408
+ (eq. (7))
409
+ ξ
410
+ w
411
+ upr
412
+ u
413
+ x
414
+ ξ = 0
415
+ Fig. 1: Block diagram of the closed-loop system under the
416
+ proposed controller. The control input is the superposition of
417
+ a deterministic input ucb and a random probing input upr. The
418
+ deterministic part ucb is normally the same as the certainty
419
+ equivalent input uce, but takes the value zero when circuit-
420
+ breaking is triggered, where ξ is a counter for circuit-breaking.
421
+ The certainty equivalent gain is updated using the parameter
422
+ estimator in the meantime.
423
+ estimator and the asymptotic performance of the controller.
424
+ The threshold Mk is increased with the time index k, so
425
+ that the “false alarm rate” of circuit-breaking, caused by the
426
+ occasional occurrence of large noise vectors, decays to zero.
427
+ The dwell time tk is also increased with time, in order to
428
+ circumvent the potential oscillation of the system caused by
429
+ the frequent switching between ˆK and 0 (c.f. [17]). Both Mk
430
+ and tk are chosen to grow logarithmically with k, which would
431
+ support our technical guarantees.
432
+ Similarly to [9], [11], a probing noise upr
433
+ k is superposed to
434
+ the control input at each step to provide sufficient excitation
435
+ to the system, which is required for the estimation of system
436
+ parameters. Specifically, the probing noise is chosen to be
437
+ upr
438
+ k
439
+ = k−1/4vk, where vk
440
+ i.i.d.
441
+
442
+ N(0, Im), which would
443
+ correspond to the optimal rate of regret.
444
+ The estimates of the system parameters ˆAk, ˆBk are up-
445
+ dated using an ordinary least squares estimator. Denote Θ =
446
+ [A
447
+ B], ˆΘk
448
+ = [ ˆAk
449
+ ˆBk], and zk
450
+ = [x⊤
451
+ k
452
+ u⊤
453
+ k ]⊤, then
454
+ according to xk+1 = Θzk, the ordinary least squares estimator
455
+ can be specified as
456
+ ˆΘk =
457
+ �k−1
458
+
459
+ t=1
460
+ xtz⊤
461
+ t
462
+ � �k−1
463
+
464
+ t=1
465
+ ztz⊤
466
+ t
467
+ �†
468
+ .
469
+ (12)
470
+ Remark 2. In the presented algorithm, the certainty equivalent
471
+ gain is updated at every step k (see line 6 of Algorithm 1), but
472
+ it may also be updated “logarithmically often” [11] (e.g., at
473
+ steps k = 2i, i ∈ N∗), which is more computationally efficient
474
+ in practice. It can be verified that all our theoretical results
475
+ also apply to the case of logarithmically often updates.
476
+ IV. MAIN RESULTS
477
+ Underlying our analysis of the closed-loop system under the
478
+ proposed controller are two random times, defined below:
479
+
480
+ Tstab := inf
481
+
482
+ T
483
+ ���
484
+
485
+ Atk�⊤ P ∗Atk < ρP ∗,
486
+
487
+ A + B ˆKk
488
+ �⊤
489
+ P ∗ �
490
+ A + B ˆKk
491
+
492
+ < ρP ∗, ∀k ≥ T
493
+
494
+ ,
495
+ (13)
496
+ where ρ = (1 + ρ∗)/2, and tk is the dwell time defined in
497
+ line 12 of Algorithm 1. And
498
+ Tnocb := inf
499
+
500
+ T | ucb
501
+ k ≡ uce
502
+ k , ∀k ≥ T
503
+
504
+ .
505
+ (14)
506
+ With the above two random times, the evolution of the system
507
+ can be divided into three stages:
508
+ 1) From the beginning to Tstab, the adaptive controller grad-
509
+ ually refines its estimate of system parameters, and hence
510
+ improves the performance of the certainty equivalent
511
+ feedback gain, until the system becomes stabilized in the
512
+ sense that there is a common Lyapunov function between
513
+ the two modes under circuit-breaking as indicated in (13).
514
+ 2) From Tstab to Tnocb, the closed-loop system is stable as is
515
+ ensured by the aforementioned common Lyapunov func-
516
+ tion, and under mild regularity conditions on the noise,
517
+ an upper bound on the magnitude certainty equivalent
518
+ control input ∥uce
519
+ k ∥ eventually drops below the circuit-
520
+ breaking threshold Mk.
521
+ 3) From Tnocb on, circuit-breaking is not triggered any more,
522
+ and the system behaves similarly as the closed-loop
523
+ system under the optimal controller, with only small
524
+ perturbations on the feedback gain which stem from the
525
+ parameter estimation error and converge to zero.
526
+ In the following theorem, we state several properties of the
527
+ closed-loop system, based on which the above two random
528
+ times are quantified:
529
+ Theorem 3. Let n, m be the dimensions of the state and input
530
+ vectors respectively, and P0, ρ0, P ∗, ρ∗ be defined in (2), (3),
531
+ (7), (10) respectively. Then the following properties hold:
532
+ 1) For 0 < δ ≤ 1/2, the event
533
+ Enoise(δ) :=
534
+
535
+ max{∥wk∥, ∥vk∥} ≤
536
+ 2
537
+
538
+ n + 1
539
+
540
+ log(k/δ), ∀k ∈ N∗�
541
+ (15)
542
+ occurs with probability at least 1 − 2δ.
543
+ 2) For 0 < δ ≤ 1/(8n2), the event
544
+ Ecov(δ) :=
545
+ ������
546
+ k
547
+
548
+ i=1
549
+ (wiw⊤
550
+ i − In)
551
+ ����� ≤
552
+ 7n
553
+
554
+ k log(8n2k/δ), ∀k ∈ N∗
555
+
556
+ (16)
557
+ occurs with probability at least 1 − δ.
558
+ 3) On the event Enoise(δ), it holds
559
+ ∥xk∥ ≤ Cx log(k/δ), ∀k ∈ N∗,
560
+ (17)
561
+ where
562
+ Cx = (∥B∥ + 1)(2√n + 1 + 1)∥P0∥∥P −1
563
+ 0
564
+
565
+ 1 − ρ1/2
566
+ 0
567
+ .
568
+ (18)
569
+ 4) For 0 < δ ≤ 1/6, the event
570
+ Ecross(δ) :=
571
+ ������
572
+ k
573
+
574
+ i=1
575
+ w⊤
576
+ i P ∗(Axi + Bucb
577
+ i )
578
+ ����� ≤
579
+ Ccross
580
+
581
+ k(log(k/δ))2, ∀k ∈ N∗
582
+
583
+ (19)
584
+ occurs with probability at least 1 − 6δ, where
585
+ Ccross = 4
586
+
587
+ n + 1∥P ∗∥(∥A∥Cx + ∥B∥).
588
+ (20)
589
+ 5) For δ satisfying
590
+ 0 < δ < min
591
+
592
+ (800CV )−1, exp
593
+
594
+ 24(m + n)1/3��
595
+ ,
596
+ (21)
597
+ the event
598
+ Eest(δ) :=
599
+ ����ˆΘk − Θ
600
+ ���
601
+ 2
602
+ ≤ CΘk−1/2 log(k/δ),
603
+ ∀k ≥ k0
604
+
605
+ ,
606
+ (22)
607
+ occurs with probability at least 1 − 6δ, where
608
+ k0 = ⌈600(m + n) log(1/δ) + 5400⌉,
609
+ (23)
610
+ CV = Cx + 2
611
+
612
+ n + 1 + 1,
613
+ (24)
614
+ CΘ = (3200n/9)(5n/2 + 2).
615
+ (25)
616
+ 6) On the event Eest(δ), it holds
617
+ Tstab ≲ (log(1/δ))2.
618
+ (26)
619
+ 7) On the event Enoise(δ) ∩ Eest(δ), for any α > 0, it holds
620
+ Tnocb ≲ (1/δ)α.
621
+ (27)
622
+ Remark 4. The conclusions of Theorem 3 can be explained
623
+ as follows:
624
+ Items 1) and 2) defines two high-probability events on the
625
+ regularity of noise. Item 3) bounds the state norm under regular
626
+ noise, based on which item 4) bounds the growth of a cross
627
+ term between noise and state that would be useful in regret
628
+ analysis. Item 5) bounds the parameter estimation error, based
629
+ on which item 6) bounds Tstab. Finally, item 7) states that
630
+ the circuit-breaking mechanism is triggered only finitely, and
631
+ bounds Tnocb, the time after which the circuit-breaking is not
632
+ triggered any more.
633
+ The following corollary characterizes the tail probabilities
634
+ of Tstab and Tnocb, which follows directly from items 6) and
635
+ 7) of Theorem 3:
636
+ Corollary 5. For Tstab defined in (13) and Tnocb defined
637
+ in (14), as T → ∞, it holds
638
+ 1)
639
+ P(Tstab ≥ T) = O(exp(−c
640
+
641
+ T)),
642
+ (28)
643
+ where c > 0 is a system-dependent constant.
644
+
645
+ 2) For any α > 0,
646
+ P(Tnocb ≥ T) = O(T −α).
647
+ (29)
648
+ Building upon the properties stated in Theorem 3, a high-
649
+ probability bound on the regret under the proposed controller
650
+ can be ensured:
651
+ Theorem 6. Given a failure probability δ, there exists a
652
+ constant T0 ≲ (1/δ)1/4, such that for any fixed T > T0,
653
+ it holds with probability at least 1 − δ that the regret defined
654
+ in (11) satisfies
655
+ R(T) ≲ (1/δ)1/4 +
656
+
657
+ T(log(T/δ))3.
658
+ (30)
659
+ As corollaries of Theorem 6, one can obtain a bound on the
660
+ tail probability of R(T) (Theorem 7), and the main conclusion
661
+ of this work, i.e., an almost sure bound on R(T) (Theorem 8):
662
+ Theorem 7. For sufficiently large T, it holds
663
+ P
664
+
665
+ R(T) ≥ CR
666
+
667
+ T(log(T))3�
668
+ ≤ 1
669
+ T 2 ,
670
+ (31)
671
+ where CR is a system-dependent constant.
672
+ Proof. The conclusion follows from invoking Theorem 6 with
673
+ δ = 1/T 2.
674
+ Theorem 8. It holds almost surely that
675
+ R(T) = ˜O
676
+ �√
677
+ T
678
+
679
+ .
680
+ (32)
681
+ Proof. By Theorem 7, we have
682
+
683
+
684
+ T =1
685
+ P
686
+
687
+ R(T) ≥ CR
688
+
689
+ T(log(T))3�
690
+ < +∞.
691
+ (33)
692
+ By Borel-Cantelli lemma, it holds almost surely that the event
693
+
694
+ R(T) ≥ CR
695
+
696
+ T(log(T))3�
697
+ (34)
698
+ occurs finitely often, i.e.,
699
+ R(T) = ˜O
700
+ �√
701
+ T
702
+
703
+ ,
704
+ a.s.
705
+ (35)
706
+ The remainder of this section is dedicated to proving
707
+ Theorems 3 and 6.
708
+ A. Proof of Theorem 3, item 1)
709
+ Proof. Since wk ∼ N(0, In), it holds ∥wk∥ ∼ χ2(n). Apply-
710
+ ing the Chernoff bound, for any a > 0, and any 0 < t < 1/2,
711
+ it holds
712
+ P(X ≥ a) ≤ E
713
+
714
+ etX/eta�
715
+ = (1 − 2t)−n/2 exp(−ta).
716
+ (36)
717
+ Choosing t = 1/4, we have
718
+ P(∥wk∥ ≥ a) ≤ 2n/2 exp(−a2/4)
719
+ (37)
720
+ for any k ∈ N∗ and a > 0. Invoking (37) with ak =
721
+ 2(log(ck2/δ))1/2, where c = 2n/2π2/6, we have
722
+
723
+
724
+ k=1
725
+ P(∥wk∥ ≥ ak) ≤
726
+
727
+
728
+ k=1
729
+ 2n/2c−1δ/k2 = δ,
730
+ (38)
731
+ i.e., it holds with probability at least 1 − δ that
732
+ ∥wk∥ ≤ 2(log(ck2/δ))1/2 ≤ 2
733
+
734
+ n + 1
735
+
736
+ log(k/δ), ∀k ∈ N∗.
737
+ (39)
738
+ Similarly, it also holds with probability at least 1 − δ that
739
+ ∥vk∥ ≤ 2
740
+
741
+ n + 1
742
+
743
+ log(k/δ), ∀k ∈ N∗.
744
+ (40)
745
+ Combining (39) and (40) leads to the conclusion.
746
+ B. Proof of Theorem 3, item 2)
747
+ We start with a concentration bound on the sum of product
748
+ of Gaussian random variables:
749
+ Lemma 9. Let Xi
750
+ i.i.d.
751
+
752
+ N(0, 1), Yi
753
+ i.i.d.
754
+
755
+ N(0, 1), and
756
+ {Xi}, {Yi} be mutually independent, then
757
+ 1) With probability at least 1 − 4δ,
758
+ �����
759
+ k
760
+
761
+ i=1
762
+ X2
763
+ i − k
764
+ ����� ≤ 7
765
+
766
+ k log(k/δ), ∀k ∈ N∗.
767
+ (41)
768
+ 2) With probability at least 1 − 8δ,
769
+ �����
770
+ k
771
+
772
+ i=1
773
+ XiYi
774
+ ����� ≤ 5
775
+
776
+ k log(k/δ), ∀k ∈ N∗.
777
+ (42)
778
+ Proof. Since �k
779
+ i=1 X2
780
+ i ∼ χ2(k), according to [18, Lemma 1],
781
+ for any a > 0 and any k ∈ N∗, it holds
782
+ P
783
+ ������
784
+ k
785
+
786
+ i=1
787
+ X2
788
+ i − k
789
+ ����� ≥ 2√na + 2a
790
+
791
+ ≤ 2 exp(−a).
792
+ (43)
793
+ Fix k and choose a = log(k2/δ), and it follows that with
794
+ probability at least 1 − 2δ/k2,
795
+ �����
796
+ k
797
+
798
+ i=1
799
+ X2
800
+ i − k
801
+ ����� ≤ 2
802
+
803
+ k log(k2/δ) + 2 log(k2/δ)
804
+ ≤ 7
805
+
806
+ k log(k/δ).
807
+ (44)
808
+ Taking the union bound over k ∈ N∗, one can show that (41)
809
+ holds with probability at least 1 − 2δ �∞
810
+ k=1(1/k2) > 1 − 4δ,
811
+ and hence claim 1) is proved.
812
+ Since XiYi = (Xi+Yi)2/4+(Xi−Yi)2/4, and Xi+Yi
813
+ i.i.d.
814
+
815
+ N(0, 2), Xi−Yi
816
+ i.i.d.
817
+ ∼ N(0, 2), claim 2) follows from applying
818
+ claim 1) to {(Xi +Yi)/
819
+
820
+ 2} and {(Xi −Yi)/
821
+
822
+ 2} respectively
823
+ and taking the union bound.
824
+ Theorem 3, item 2) follows from the above lemma:
825
+ Proof. Applying Lemma 9, item 1) to the diagonal elements,
826
+ and Lemma 9, item 2) to the off-diagonal elements of
827
+ �k
828
+ i=1(wiw⊤
829
+ i − I), and taking the union bound, one can show
830
+ that with probability at least 1 − 8n2δ,
831
+ k
832
+
833
+ i=1
834
+ (wiw⊤
835
+ i − In) ≤ 7
836
+
837
+ k log(k/δ),
838
+ (45)
839
+
840
+ where the inequality holds component-wise. Hence, with prob-
841
+ ability at least 1 − 8n2δ,
842
+ �����
843
+ k
844
+
845
+ i=1
846
+ (wiw⊤
847
+ i − In)
848
+ �����
849
+ 2
850
+
851
+ �����
852
+ k
853
+
854
+ i=1
855
+ (wiw⊤
856
+ i − In)
857
+ �����
858
+ 2
859
+ F
860
+ ≤ n2(7
861
+
862
+ k log(k/δ)),
863
+ (46)
864
+ and scaling the failure probability leads to the conclusion.
865
+ C. Proof of Theorem 3, item 3)
866
+ Proof. Notice
867
+ xk = Ak−2d1 + Ak−3d2 + · · · + dk−1,
868
+ (47)
869
+ where dk = B(ucb
870
+ k + upr
871
+ k ) + wk. On Enoise(δ), it holds
872
+ ∥dk∥ ≤ ∥B∥ log(k) + 2(∥B∥ + 1)
873
+
874
+ n + 1
875
+
876
+ log(k/δ)
877
+ ≤ (∥B∥ + 1)(2
878
+
879
+ n + 1 + 1) log(k/δ).
880
+ (48)
881
+ Furthermore, from (2) and (47), it holds
882
+ ∥xk∥P ≤ ρ(k−2)/2
883
+ 0
884
+ ∥d1∥P + ρ(k−3)/2
885
+ 0
886
+ ∥d2∥P + · · · + ∥dk−1∥P
887
+
888
+ 1
889
+ 1 − ρ1/2
890
+ 0
891
+ ∥dk∥P ,
892
+ (49)
893
+ from which the conclusion follows.
894
+ D. Proof of Theorem 3, item 4)
895
+ This result is a corollary of a time-uniform version of
896
+ Azuma-Hoeffding inequality [19], stated below:
897
+ Lemma 10. Let {φk}k≥1 be a martingale difference sequence
898
+ adapted to the filtration {Fk} satisfying |φk| ≤ dk a.s., then
899
+ with probability at least 1 − 4δ, it holds
900
+ �����
901
+ k
902
+
903
+ i=1
904
+ φi
905
+ ����� ≤ 2
906
+
907
+
908
+
909
+
910
+ k
911
+
912
+ i=1
913
+ d2
914
+ i log(k/δ), ∀k.
915
+ (50)
916
+ Proof. By Azuma-Hoeffding inequality [19], for a fixed k, it
917
+ holds with probability at least 1 − 2δ/k2 that
918
+ �����
919
+ k
920
+
921
+ i=1
922
+ φi
923
+ ����� ≤
924
+
925
+
926
+
927
+ �2
928
+ k
929
+
930
+ i=1
931
+ d2
932
+ i log(k2/δ) ≤ 2
933
+
934
+
935
+
936
+
937
+ k
938
+
939
+ i=1
940
+ d2
941
+ i log(k/δ).
942
+ (51)
943
+ Taking the union bound over k ∈ N∗, one can prove that (50)
944
+ holds with probability at least 1 − 2δ �∞
945
+ k=1(1/k2) > 1 −
946
+ 4δ.
947
+ Theorem 3, item 4) follows from the above lemma:
948
+ Proof. According to Theorem 3, item 1), we only need to
949
+ prove
950
+ P(Ecross(δ) | Enoise(δ)) ≥ 1 − 4δ.
951
+ (52)
952
+ Therefore, we condition the remainder of the proof upon the
953
+ event Enoise(δ). Let Fk be the σ-algebra generated by v1, w1,
954
+ v2, w2, . . . , vk−1, wk−1, vk. Since xk ∈ Fk−1, ucb
955
+ k ∈ Fk−1,
956
+ E[wk | Fk−1] = 0 due to symmetry, it holds
957
+ E
958
+
959
+ w⊤
960
+ k P ∗ �
961
+ Axk + Bucb
962
+ k
963
+ � ��Fk
964
+
965
+ =E [wk | Fk−1]⊤ P ∗ �
966
+ Axk + Bucb
967
+ k
968
+
969
+ = 0,
970
+ (53)
971
+ i.e., {w⊤
972
+ k P ∗(Axk+Bucb
973
+ k )} is a martingale difference sequence
974
+ adapted to the filtration {Fk}. Furthermore, by Theorem 3,
975
+ item 3, we have
976
+ ��w⊤
977
+ k P ∗ �
978
+ Axk + Bucb
979
+ k
980
+ ���
981
+ ≤∥wk∥∥P ∗∥
982
+
983
+ ∥A∥∥xk∥ + ∥B∥
984
+ ��ucb
985
+ k
986
+ ���
987
+ ≤1
988
+ 2Ccross log(k/δ).
989
+ (54)
990
+ Hence, the conclusion follows from applying Lemma 10.
991
+ E. Proof of Theorem 3, item 5)
992
+ This subsection is devoted to deriving the time-uniform
993
+ upper bound on estimation error stated in Theorem 3, item 5).
994
+ Throughout this subsection, we denote Θ = [A
995
+ B], ˆΘk =
996
+ [ ˆAk
997
+ ˆBk], zk = [x⊤
998
+ k
999
+ u⊤
1000
+ k ]⊤, and Vk = �k−1
1001
+ i=1 ziz⊤
1002
+ i .
1003
+ The proof can be split into three parts: firstly, we character-
1004
+ ize the estimation error ∥ˆΘk − Θ∥ in terms of the maximum
1005
+ and minimum eigenvalues of the regressor covariance matrix
1006
+ Vk, using a result in martingale least squares [5]. Secondly,
1007
+ an upper bound on the ∥Vk∥, which is a consequence of the
1008
+ non-explosiveness of states, can be derived as an corollary
1009
+ of Theorem 3, item 3). Finally, an upper bound on ∥V −1
1010
+ k
1011
+ ∥,
1012
+ or equivalently a lower bound on the minimum eigenvalue
1013
+ of Vk, which is a consequence of sufficient excitation of the
1014
+ system, can be proved using an anti-concentration bound on
1015
+ block martingale small-ball (BMSB) processes [20]. The three
1016
+ parts would be discussed respectively below.
1017
+ 1) Upper bound on least squares error, in terms of Vk:
1018
+ Lemma 11 ( [5, Corollary 1 of Theorem 3]). Let
1019
+ Sk =
1020
+ k
1021
+
1022
+ i=1
1023
+ ηimi−1, Uk =
1024
+ k
1025
+
1026
+ i=1
1027
+ mi−1m⊤
1028
+ i−1,
1029
+ (55)
1030
+ where {Fk}k∈N∗ is a filtration, {ηk}k∈N∗ is a random scalar
1031
+ sequence with ηk | Fk being conditionally σ2-sub-Gaussian,
1032
+ and {mk}k∈N∗ is a random vector sequence with mk ∈ Fk.
1033
+ Then with probability at least 1 − δ,
1034
+ ∥Sk∥(U0+Uk)−1 ≤ 2σ2·
1035
+ log
1036
+
1037
+ det(U0)−1/2 det(U0 + Uk)1/2/δ
1038
+
1039
+ ,
1040
+ ∀k ∈ N∗, (56)
1041
+ where U0 ≻ 0 is an arbitrarily chosen constant positive semi-
1042
+ definite matrix.
1043
+ Proposition 12. With probability at least 1 − δ,
1044
+ ���ˆΘk − Θ
1045
+ ���
1046
+ 2
1047
+ ≤ 2n
1048
+ ��V −1
1049
+ k
1050
+ ��
1051
+
1052
+ log
1053
+ �n
1054
+ δ
1055
+
1056
+ + n
1057
+ 2 log(1 + ∥Vk∥)
1058
+
1059
+ ,
1060
+ ∀k ≥ m + n + 1.
1061
+ (57)
1062
+
1063
+ Proof. Let Fk be the σ-algebra generated by v1, w1, v2, w2,
1064
+ . . . , vk−1, wk−1, vk. From xk+1 = Θzk + wk, we have
1065
+ ˆΘk − Θ =
1066
+ �k−1
1067
+
1068
+ i=1
1069
+ wiz⊤
1070
+ i
1071
+ � �k−1
1072
+
1073
+ i=1
1074
+ ziz⊤
1075
+ i
1076
+ �†
1077
+ ,
1078
+ (58)
1079
+ where wk|Fk ∼ N(0, In), zk ∈ Fk. With Vk = �k−1
1080
+ i=1 ziz⊤
1081
+ i ,
1082
+ we have Vi ≻ 0 a.s. for k ≥ m + n + 1. Now we can apply
1083
+ Lemma 11 to each row of ˆΘk − Θ: for each of j = 1, . . . , n,
1084
+ let Sj,k = �k−1
1085
+ i=1 (e⊤
1086
+ j wi)zi, where ej is the j-th standard unit
1087
+ vector. By invoking Lemma 11 with Uk = Vk and U0 = Im+n,
1088
+ we have: with probability at least 1 − δ,
1089
+ ���e⊤
1090
+ j (ˆΘk − Θ)
1091
+ ���
1092
+ 2
1093
+ =
1094
+ ��V −1
1095
+ k
1096
+ Sj,k
1097
+ �� ≤
1098
+ ��V −1
1099
+ k
1100
+ �� ∥Sj,k∥(I+Vk)−1
1101
+ ≤ 2
1102
+ ��V −1
1103
+ k
1104
+ �� log
1105
+
1106
+ det(I + Vk)1/2/δ
1107
+
1108
+ ≤ 2
1109
+ ��V −1
1110
+ k
1111
+ ��
1112
+
1113
+ log
1114
+ �1
1115
+ δ
1116
+
1117
+ + n
1118
+ 2 log(1 + ∥Vk∥)
1119
+
1120
+ .
1121
+ (59)
1122
+ Taking the union bound over j = 1, . . . , n, we have: with
1123
+ probability at least 1 − nδ,
1124
+ ���ˆΘk − Θ
1125
+ ���
1126
+ 2
1127
+
1128
+ ���ˆΘk − Θ
1129
+ ���
1130
+ 2
1131
+ F
1132
+
1133
+ n
1134
+
1135
+ j=1
1136
+ ���e⊤
1137
+ j (ˆΘk − Θ)
1138
+ ���
1139
+ 2
1140
+ ≤2n
1141
+ ��V −1
1142
+ k
1143
+ ��
1144
+
1145
+ log
1146
+ �1
1147
+ δ
1148
+
1149
+ + n
1150
+ 2 log(1 + ∥Vk∥)
1151
+
1152
+ .
1153
+ (60)
1154
+ Scaling the failure probability results in the conclusion.
1155
+ 2) Upper bound on ∥Vk∥:
1156
+ Proposition 13. On the event Enoise(δ) defined in (15), it holds
1157
+ ∥Vk∥ ≤ CV k(log(k/δ))2,
1158
+ (61)
1159
+ where CV is defined in (24).
1160
+ Proof. On Enoise(δ), we have
1161
+ ∥uk∥ ≤ log(k) + 2
1162
+
1163
+ n + 1
1164
+
1165
+ log(k/δ),
1166
+ (62)
1167
+ and by Theorem 3, item 3), we have
1168
+ ∥xk∥ ≤ Cx log(k/δ).
1169
+ (63)
1170
+ Hence,
1171
+ ∥zk∥ ≤ ∥xk∥ + ∥uk∥ ≤
1172
+
1173
+ CV log(k/δ),
1174
+ (64)
1175
+ which implies
1176
+ ∥Vk∥ ≤
1177
+ k−1
1178
+
1179
+ i=1
1180
+ ∥zk∥2 ≤ CV k(log(k/δ))2.
1181
+ (65)
1182
+ 3) Upper bound on ∥V −1
1183
+ k
1184
+ ∥: We shall borrow the techniques
1185
+ of analyzing BMSB processes from Simchowitz et al. [20] to
1186
+ bound ∥V −1
1187
+ k
1188
+ ∥. The BMSB process is defined as follows:
1189
+ Definition 14 ( [20, Definition 2.1]). Suppose that {φk}k∈N∗ is
1190
+ a real-valued stochastic process adapted to the filtration {Fk}.
1191
+ We say the process {φk} satisfies the (l, ν, p) block martingale
1192
+ small-ball (BMSB) condition if:
1193
+ 1
1194
+ l
1195
+ l
1196
+
1197
+ i=1
1198
+ P (|φk+i| ≥ ν | Ft) ≥ p, ∀k ∈ N∗.
1199
+ (66)
1200
+ The following lemma verifies that {zk}, projected along an
1201
+ arbitrary direction, is BMSB:
1202
+ Lemma 15. For any µ ∈ Sm+n, the process {⟨zi, µ⟩}k−1
1203
+ i=1
1204
+ satisfies the (1, k−1/4, 3/10) BMSB condition.
1205
+ Proof. Let Fk be the σ-algebra generated by v1, w1, v2, w2,
1206
+ . . . , vk−1, wk−1, vk. Since
1207
+ zi =
1208
+ �xi
1209
+ ui
1210
+
1211
+ =
1212
+
1213
+ xi
1214
+ ucb
1215
+ i + upr
1216
+ i
1217
+
1218
+ ,
1219
+ (67)
1220
+ and xi+1 = Aixt + Bupr
1221
+ i
1222
+ + wi, where Ai takes value from
1223
+ {A, A + B ˆKi} and belongs to Fi, we have
1224
+ |⟨zi+1, µ⟩| = |⟨xi+1, µ1⟩ + ⟨ucb
1225
+ i+1, µ2⟩ + ⟨upr
1226
+ i+1, µ2⟩|
1227
+ ≥ |⟨Aixi + Bupr
1228
+ i + wi, µ1⟩ + ⟨upr
1229
+ i+1, µ2⟩|
1230
+ =
1231
+ ����
1232
+ � �Aixi + Bupr
1233
+ i + wi
1234
+ upr
1235
+ i+1
1236
+
1237
+ , µ
1238
+ ����� ,
1239
+ (68)
1240
+ where µ1 = [In
1241
+ 0]µ, µ2 = [0
1242
+ Im]µ. Therefore, we only
1243
+ need to verify
1244
+ P
1245
+ �����
1246
+ � �Aixi + Bupr
1247
+ i + wi
1248
+ upr
1249
+ i+1
1250
+
1251
+ , µ
1252
+ ����� ≥ k−1/4���Fi
1253
+
1254
+ ≥ 3
1255
+ 10. (69)
1256
+ Since Aixi ∈ Fi, and upr
1257
+ i
1258
+ | Fi, wi | Fi, upr
1259
+ i+1 | Fi are all
1260
+ Gaussian,
1261
+ � �Aixi + Bupr
1262
+ i + wi
1263
+ upr
1264
+ i+1
1265
+
1266
+ , µ
1267
+
1268
+ ,
1269
+ (70)
1270
+ as an affine function of the above terms, is also Fi-
1271
+ conditionally Gaussian, whose mean and variance are:
1272
+ E
1273
+ �� �Aixi + Bupr
1274
+ i + wi
1275
+ upr
1276
+ i+1
1277
+
1278
+ , µ
1279
+ ����� Fi
1280
+
1281
+ = ⟨Aixi, µ1⟩,
1282
+ E
1283
+ ��� �Aixi + Bupr
1284
+ i + wi
1285
+ upr
1286
+ i+1
1287
+
1288
+ , µ
1289
+
1290
+ − ⟨Aixi, µ1⟩
1291
+ �2����� Fi
1292
+
1293
+ = E
1294
+ �� �Bupr
1295
+ i + wi
1296
+ upr
1297
+ i+1
1298
+
1299
+ , µ
1300
+ �2���� Fi
1301
+
1302
+ = µT
1303
+
1304
+ i−1/2BB⊤ + I
1305
+ 0
1306
+ 0
1307
+ (i + 1)−1/2
1308
+
1309
+ µ
1310
+ ≥ µT
1311
+ �I
1312
+ 0
1313
+ 0
1314
+ k−1/2
1315
+
1316
+ µ ≥ k−1/2.
1317
+ (71)
1318
+ The conclusion (69) then follows from the fact that for any
1319
+ X ∼ N(µ, σ2), it holds P(|X| ≥ σ) ≥ P(|X − µ| ≥ σ) ≥
1320
+ 3/10.
1321
+ An upper bound on ∥V −1
1322
+ k
1323
+ ∥ can be obtained by applying an
1324
+ anti-concentration property of BMSB, along with a covering
1325
+ argument in [20]:
1326
+
1327
+ Lemma 16. For any fixed k ≥ 2 and 0 < δk ≤ 1/2, it holds
1328
+ P
1329
+ ���V −1
1330
+ k
1331
+ �� ≥ 1600
1332
+ 9
1333
+ k−1/2
1334
+
1335
+
1336
+ δk + e−
1337
+ 9
1338
+ 800 k+(m+n) log(800CV k1/2(log(k/δk))2),
1339
+ (72)
1340
+ where CV is defined in Theorem 3, item 5).
1341
+ Proof. Firstly, for any fixed µ ∈ Sm+n, applying [20, Prop.
1342
+ 2.5] to the process {⟨zi, µ⟩}k−1
1343
+ i=1 , which is (1, k−1/4, 3/10)-
1344
+ BMSB by Lemma 15, we have
1345
+ P
1346
+ �k−1
1347
+
1348
+ i=1
1349
+ ⟨zi, µ⟩2 ≤ k−1/2(3/10)2
1350
+ 8
1351
+ k
1352
+
1353
+ ≤ e− (3/10)2k
1354
+ 8
1355
+ ,
1356
+ (73)
1357
+ i.e.,
1358
+ P
1359
+
1360
+ µ⊤Vkµ ≤
1361
+ 9
1362
+ 800k1/2
1363
+
1364
+ ≤ e−
1365
+ 9
1366
+ 800 k.
1367
+ (74)
1368
+ Next, we shall choose multiple µ’s and using a covering
1369
+ argument to lower bound the minimum eigenvalue of Vk, and
1370
+ hence to upper bound ∥V −1
1371
+ k
1372
+ ∥: let Γ = CV k(log(k/δk))2Im+n,
1373
+ and Γ = (9/800)k1/2Im+n. Let T be a minimal 1/4-net of
1374
+ SΓ in the norm ∥ · ∥Γ, then by [20, Lemma D.1], we have
1375
+ log |T | ≤ (m + n) log(9) + log det(ΓΓ−1)
1376
+ ≤ (m + n) log(800CV k1/2(log(k/δk))2).
1377
+ (75)
1378
+ According to (74) and (75), we have
1379
+ P
1380
+
1381
+ µ⊤Vkµ ≤
1382
+ 9
1383
+ 800k1/2, ∀µ ∈ T
1384
+
1385
+ ≤ |T |e−
1386
+ 9
1387
+ 800 k
1388
+ ≤ e−
1389
+ 9
1390
+ 800 k+(m+n) log(800CV k1/2(log(k/δk))2).
1391
+ (76)
1392
+ On the other hand, according to Proposition 13 and Theorem 3,
1393
+ item 1), we have
1394
+ P
1395
+
1396
+ ∥Vk∥ ≤ CV k(log(k/δk))2�
1397
+ ≤ δk,
1398
+ (77)
1399
+ From (76), (77) and [20, Lemma D.1], it follows that
1400
+ P (Vk ≻ Γ/2) is no greater than the RHS of (72), which is
1401
+ equivalent to the conclusion.
1402
+ The next proposition converts Lemma 16 into a time-
1403
+ uniform bound:
1404
+ Proposition 17. For δ satisfying (21) and k0 defined in (23),
1405
+ it holds
1406
+ P
1407
+ ���V −1
1408
+ k
1409
+ �� ≤ 1600
1410
+ 9
1411
+ k−1/2, ∀k ≥ k0
1412
+
1413
+ ≤ 3δ.
1414
+ (78)
1415
+ Proof. For k ≥ k0, with δk = δ/k2, it holds
1416
+ k ≥ (1300(m + n))4/3 ,
1417
+ (79)
1418
+ and hence,
1419
+ (m + n) log(800CV k1/2(log(k/δk))2)
1420
+ ≤(m + n)
1421
+
1422
+ 3 log(1/δ) + 13
1423
+ 2 log(k)
1424
+
1425
+ ≤ 1
1426
+ 200k + 13
1427
+ 2 (m + n)k1/4 ≤
1428
+ 1
1429
+ 100k.
1430
+ (80)
1431
+ Substituting (80) into (72), we have
1432
+ P
1433
+ ���V −1
1434
+ k
1435
+ �� ≥ 1600
1436
+ 9
1437
+ k−1/2
1438
+
1439
+ ≤ δ
1440
+ k2 + e−
1441
+ 1
1442
+ 800 k.
1443
+ (81)
1444
+ Taking the union bound over k = k0, k0 + 1, . . ., we have
1445
+ P
1446
+ ���V −1
1447
+ k
1448
+ �� ≥ 1600
1449
+ 9
1450
+ k−1/2, ∀k ≥ k0
1451
+
1452
+ ≤π2
1453
+ 6 δ + 801e−
1454
+ 1
1455
+ 800 k0 ≤ 3δ.
1456
+ (82)
1457
+ Theorem 3, item 5) follows from Propositions 12, 13 and
1458
+ 17.
1459
+ F. Proof of Theorem 3, item 6)
1460
+ Proof. Let
1461
+ T1 = inf
1462
+
1463
+ T
1464
+ ���
1465
+
1466
+ Atk�⊤ P ∗Atk < ρP ∗, ∀k ≥ T
1467
+
1468
+ ,
1469
+ (83)
1470
+ T2 = inf
1471
+
1472
+ T
1473
+ ����
1474
+
1475
+ A + B ˆKk
1476
+ �⊤
1477
+ P ∗ �
1478
+ A + B ˆKk
1479
+
1480
+ < ρP ∗,
1481
+ ∀k ≥ T
1482
+
1483
+ .
1484
+ (84)
1485
+ We shall bound T1 and T2 respectively:
1486
+ 1) From the assumption ρ(A) < 1, it holds
1487
+ lim
1488
+ k→∞
1489
+
1490
+ Ak�⊤ PAk = 0,
1491
+ (85)
1492
+ which, together with tk = ⌊log(k)⌋, implies T1 is a finite
1493
+ constant independent of δ, i.e., T1 ≲ 1.
1494
+ 2) Since (A + BK)⊤P ∗(A + BK) is a continuous function
1495
+ of K, from (10), there exists a system-dependent con-
1496
+ stant ϵK, such that (A + BK)⊤P ∗(A + BK) < ρP ∗
1497
+ whenever ∥K − K∗∥ < ϵK. On the other hand, since
1498
+ ˆKk is a continuous function of ˆΘk [9, Proposition 6],
1499
+ there exists a system-dependent constant ϵΘ, such that
1500
+ ∥ ˆK − K∗∥ < ϵK as long as ∥ˆΘk − Θ∥ < ϵΘ. It follows
1501
+ from Theorem 3, item 5) that ∥ˆΘk − Θ∥ < ϵΘ whenever
1502
+ k ≥ (9C2
1503
+ Θ/ϵ2
1504
+ Θ)(log(1/δ))2, and hence T2 ≲ (log(1/δ))2.
1505
+ In summary, it holds Tstab = max{T1, T2} ≲ (log(1/δ))2.
1506
+ G. Proof of Theorem 3, item 7)
1507
+ This subsection is dedicated to bounding the time after
1508
+ which the circuit-breaking is not triggered any more. The
1509
+ outline of the proof is stated as follows: firstly, we define
1510
+ a subsequence notation to deal with the dwell time tk of
1511
+ circuit breaking. Secondly, an upper bound on the state and
1512
+ the certainty equivalent input after Tstab is derived, which is
1513
+ shown to be asymptotically smaller than the circuit-breaking
1514
+ threshold Mk = log(k). Based on the above upper bound on
1515
+ the certainty equivalent input, we can finally bound Tnocb, i.e.,
1516
+ the time it takes for the certainty equivalent input to stay below
1517
+ the threshold Mk, which leads to the desired conclusion.
1518
+
1519
+ 1) A subsequence notation: Consider the subsequence of
1520
+ states and inputs, where steps within the circuit-breaking
1521
+ period are skipped, defined below:
1522
+ i(1) = 1, i(k + 1) =
1523
+
1524
+ i(k) + 1
1525
+ ucb
1526
+ i(k) ̸= 0
1527
+ i(k) + ti(k)
1528
+ ucb
1529
+ i(k) = 0 ,
1530
+ (86)
1531
+ ˜xk = xi(k), ˜uce
1532
+ k = uce
1533
+ i(k), ˜ucb
1534
+ k = ucb
1535
+ i(k).
1536
+ (87)
1537
+ Consider Tstab defined in (13). We can define ˜Tstab as the
1538
+ first index in the above subsequence for which the stabilization
1539
+ condition is satisfied, i.e.,
1540
+ ˜Tstab = inf{T | i(T) ≥ Tstab}.
1541
+ (88)
1542
+ 2) Upper bound on state and certainty equivalent input
1543
+ after Tstab:
1544
+ Proposition 18. On the event Enoise(δ) ∩ Eest(δ), it holds
1545
+ ��˜x ˜Tstab+k
1546
+ �� ≲ ρk/2 log(1/δ) +
1547
+
1548
+ log(k/δ),
1549
+ (89)
1550
+ ���˜uce
1551
+ ˜Tstab+k
1552
+ ��� ≲ ρk/2 log(1/δ) +
1553
+
1554
+ log(k/δ),
1555
+ (90)
1556
+ where ρ = (1 + ρ∗)/2.
1557
+ Proof. We can expand ˜x ˜Tstab+k as:
1558
+ ˜x ˜Tstab+k = ˜A ˜Tstab+k−1 ˜A ˜Tstab+k−2 · · · ˜A ˜Tstab ˜x ˜Tstab+
1559
+ ˜A ˜Tstab+k−1 ˜A ˜Tstab+k−2 · · · ˜A ˜Tstab+1 ˜w ˜Tstab+
1560
+ · · · +
1561
+ ˜w ˜Tstab+k−1,
1562
+ (91)
1563
+ where:
1564
+ • ˜Aj ∈ {A + B ˆKi(j), Ati(j)}, and must satisfy ˜A⊤
1565
+ j P ˜Aj <
1566
+ ρP for j ≥ ˜Tstab, by definition of ˜Tstab in (13);
1567
+ • ˜wj ∈ {wi(j), �ti(j)−1
1568
+ τ=0
1569
+ Aτwi(j−1)+τ}, and on the event
1570
+ Enoise(δ), it must satisfy ∥ ˜wj∥
1571
+
1572
+ A
1573
+
1574
+ log(j/δ)
1575
+
1576
+
1577
+ log(j/δ) for any j, where A = �∞
1578
+ τ=0 ∥Aτ∥.
1579
+ Combining the above two items, we have
1580
+ ��˜x ˜Tstab+k
1581
+ �� ≲ ρk/2 ��˜x ˜Tstab
1582
+ �� +
1583
+
1584
+ log
1585
+
1586
+ i
1587
+
1588
+ ˜Tstab + k
1589
+
1590
+
1591
+
1592
+ . (92)
1593
+ We shall next bound
1594
+ ��˜x ˜Tstab
1595
+ �� and i( ˜Tstab + k) respectively:
1596
+ 1) According to the definition of ˜Tstab and i(·) in (86)
1597
+ and (88), we have
1598
+ i
1599
+
1600
+ ˜Tstab
1601
+
1602
+ ≤ Tstab + log(Tstab).
1603
+ (93)
1604
+ On Eest(δ), according to Theorem 3, item 6, we have
1605
+ Tstab ≲ (log(1/δ))2, and hence
1606
+ i
1607
+
1608
+ ˜Tstab
1609
+
1610
+ ≲ (log(1/δ))2 + log((log(1/δ))2)
1611
+ ≲ (log(1/δ))2.
1612
+ (94)
1613
+ Furthermore, according to Theorem 3, item 3, on
1614
+ Enoise(δ), we have ∥xk∥ ≲ log(k/δ) for any k, and hence
1615
+ ��˜x ˜Tstab
1616
+ �� =
1617
+ ���xi( ˜Tstab)
1618
+ ��� ≲ log
1619
+ �(log(1/δ))2
1620
+ δ
1621
+
1622
+ = log(1/δ) + log((log(1/δ))2) ≲ log(1/δ).
1623
+ (95)
1624
+ 2) By definition of i(·) in (86), we have
1625
+ i
1626
+
1627
+ ˜Tstab + k + 1
1628
+
1629
+ ≤ ˜Tstab +k+log
1630
+
1631
+ ˜Tstab + k
1632
+
1633
+ , ∀k ∈ N∗.
1634
+ (96)
1635
+ Applying induction to (93) and (96), we can obtain
1636
+ i
1637
+
1638
+ ˜Tstab + k
1639
+
1640
+ ≲ k log(Tstabk) + Tstab.
1641
+ (97)
1642
+ Substituting Tstab ≲ (log(k/δ))2, which holds on Eest(δ)
1643
+ according to Theorem 3, item 6), into (97), we have
1644
+ i
1645
+
1646
+ ˜Tstab + k
1647
+
1648
+ ≲ k(log(k/δ))2.
1649
+ (98)
1650
+ Hence, inequality (89) follows from substituting (95) and
1651
+ (98) into (92). Moreover, since
1652
+ ��� ˆKi( ˜Tstab+k)
1653
+ ��� is uniformly
1654
+ bounded by definition of Tstab in (13), we have
1655
+ ���˜uce
1656
+ ˜Tstab+k
1657
+ ��� ≤
1658
+ ��� ˆKi( ˜Tstab+k)
1659
+ ���
1660
+ ��˜x ˜Tstab+k
1661
+ �� ≲
1662
+ ��˜x ˜Tstab+k
1663
+ �� ,
1664
+ (99)
1665
+ which implies (90).
1666
+ 3) Upper bound on Tnocb: Now we are ready to prove
1667
+ Theorem 3, item 7):
1668
+ Proof. For any ϵ > 0, according to (98), we have i( ˜Tstab+k) ≲
1669
+ (1/δ)α+ϵ as long as k ≲ (1/δ)α−ϵ. Hence, we only need to
1670
+ prove
1671
+ ucb
1672
+ k ≡ uce
1673
+ k ,
1674
+ ∀k ≥ i
1675
+
1676
+ ˜Tstab + k0
1677
+
1678
+ ,
1679
+ (100)
1680
+ for some k0 ≲ (1/δ)α−ϵ.
1681
+ Notice that (100) is equivalent to
1682
+ ˜ucb
1683
+ ˜Tstab+k ≡ ˜uce
1684
+ ˜Tstab+k,
1685
+ ∀k ≥ k0,
1686
+ (101)
1687
+ which is then equivalent to
1688
+ ���˜uce
1689
+ ˜Tstab+k
1690
+ ��� ≤ Mk = log(k),
1691
+ ∀k ≥ k0.
1692
+ (102)
1693
+ According to Proposition 18, we only need to verify
1694
+ ρk/2 log(1/δ) +
1695
+
1696
+ log(k/δ) ≲ log(k),
1697
+ (103)
1698
+ whenever k ≳ (1/δ)α−ϵ. In such case, we have
1699
+ ρk/2 log(1/δ) +
1700
+
1701
+ log(k/δ)
1702
+ ≲ log(1/δ) +
1703
+
1704
+ log(k) + log(1/δ)
1705
+ ≲ log(k) +
1706
+
1707
+ log(k) ≲ log(k),
1708
+ (104)
1709
+ from which the conclusion follows.
1710
+ H. Proof of Theorem 6
1711
+ In this subsection, we first decompose the regret of the
1712
+ proposed controller into multiple terms, then derive upper
1713
+ bounds on the terms respectively to obtain the high-probability
1714
+ regret bound stated in Theorem 6.
1715
+
1716
+ 1) Regret decomposition:
1717
+ We first state a supporting
1718
+ lemma:
1719
+ Lemma 19. Let K∗, P ∗ be defined in (6), (7) respectively,
1720
+ and K = K∗ + ∆K, then
1721
+ Q + K⊤RK + (A + BK)⊤ P ∗ (A + BK) − P ∗
1722
+ =∆K⊤(R + B⊤P ∗B)∆K.
1723
+ (105)
1724
+ Proof. Substituting the Lyapunov equation (9) into the LHS
1725
+ of (105), we have
1726
+ Q + K⊤RK + (A + BK)⊤P ∗(A + BK) − P ∗
1727
+ =K⊤RK − (K∗)⊤ RK∗ + (A + BK)⊤P ∗(A + BK)−
1728
+ (A + BK∗)⊤ P ∗ (A + BK∗)
1729
+ =∆K⊤ �
1730
+ R + B⊤P ∗B
1731
+
1732
+ ∆K + G + G⊤,
1733
+ (106)
1734
+ where
1735
+ G = ∆K⊤ �
1736
+ (R + B⊤P ∗B)K∗ + B⊤P ∗A
1737
+
1738
+ .
1739
+ (107)
1740
+ By definition of K∗ in (6), we have G = 0, and hence the
1741
+ conclusion holds.
1742
+ Now we are ready to state the decomposition of regret:
1743
+ Proposition 20. The regret of the proposed controller defined
1744
+ in (11) can be decomposed as
1745
+ R(T) =
1746
+ 7
1747
+
1748
+ i=1
1749
+ Ri(T),
1750
+ (108)
1751
+ with the terms Ri(T) defined as:
1752
+ R1(T) =
1753
+ T
1754
+
1755
+ k=1
1756
+ x⊤
1757
+ k (Kk − K∗)⊤(R + BT P ∗B)(Kk − K∗)xk,
1758
+ (109)
1759
+ R2(T) = 2
1760
+ T
1761
+
1762
+ k=1
1763
+ (upr
1764
+ k )⊤ B⊤P ∗(A + BKk)xk,
1765
+ (110)
1766
+ R3(T) = 2
1767
+ T
1768
+
1769
+ k=1
1770
+ w⊤
1771
+ k P ∗(A + BKk)xk,
1772
+ (111)
1773
+ R4(T) =
1774
+ T
1775
+
1776
+ k=1
1777
+ (s⊤
1778
+ k P ∗sk − w⊤
1779
+ k P ∗wk),
1780
+ (112)
1781
+ R5(T) =
1782
+ T
1783
+
1784
+ k=1
1785
+ w⊤
1786
+ k P ∗wk − TJ∗,
1787
+ (113)
1788
+ R6(T) = x⊤
1789
+ 1 P ∗x1 − x⊤
1790
+ T +1P ∗xT +1,
1791
+ (114)
1792
+ R7(T) =
1793
+ T
1794
+
1795
+ k=1
1796
+ 2 (upr
1797
+ k )⊤ Rucb
1798
+ k + (upr
1799
+ k )⊤ Rupr
1800
+ k ,
1801
+ (115)
1802
+ where Kk, sk are defined as:
1803
+ Kk =
1804
+ � ˆKk
1805
+ ucb
1806
+ k = uce
1807
+ k
1808
+ 0
1809
+ otherwise , sk = Bupr
1810
+ k + wk.
1811
+ (116)
1812
+ Proof. From uk = ucb
1813
+ k + upr
1814
+ k = Kkxk + upr
1815
+ k , it holds
1816
+ R(T) =
1817
+ T
1818
+
1819
+ k=1
1820
+
1821
+ x⊤
1822
+ k Qxk + u⊤
1823
+ k Ruk
1824
+
1825
+ − TJ∗
1826
+ =
1827
+ T
1828
+
1829
+ k=1
1830
+
1831
+ x⊤
1832
+ k
1833
+
1834
+ Q + K⊤
1835
+ k RKk
1836
+
1837
+ xk + 2 (upr
1838
+ k )⊤ Rucb
1839
+ k +
1840
+ (upr
1841
+ k )⊤ Rupr
1842
+ k
1843
+
1844
+ − TJ∗
1845
+ =
1846
+ T
1847
+
1848
+ k=1
1849
+
1850
+ x⊤
1851
+ k
1852
+
1853
+ Q + K⊤
1854
+ k RKk
1855
+
1856
+ xk + x⊤
1857
+ k+1P ∗xk+1−
1858
+ x⊤
1859
+ k P ∗xk
1860
+
1861
+ − TJ∗ + R6(T) + R7(T).
1862
+ (117)
1863
+ We can further expand the summands in the RHS of the above
1864
+ inequality: from xk+1 = (A + BKk)xk + sk, we have
1865
+ x⊤
1866
+ k
1867
+
1868
+ Q + K⊤
1869
+ k RKk
1870
+
1871
+ xk + x⊤
1872
+ k+1P ∗xk+1 − x⊤
1873
+ k P ∗xk
1874
+ =x⊤
1875
+ k
1876
+
1877
+ Q + K⊤
1878
+ k RKk + (A + BKk)⊤P ∗(A + BKk) − P ∗�
1879
+ xk
1880
+ + 2s⊤
1881
+ k P ∗(A + BKk)xk + s⊤
1882
+ k P ∗sk
1883
+ =x⊤
1884
+ k (Kk − K∗)⊤(R + B⊤P ∗B)(Kk − K∗)xk+
1885
+ 2s⊤
1886
+ k P ∗(A + BKk)xk + s⊤
1887
+ k P ∗sk,
1888
+ (118)
1889
+ where the last equality follows from Lemma 19. It follows
1890
+ from simple algebra that
1891
+ T
1892
+
1893
+ k=1
1894
+
1895
+ x⊤
1896
+ k
1897
+
1898
+ Q + K⊤
1899
+ k RKk
1900
+
1901
+ xk + x⊤
1902
+ k+1P ∗xk+1 − x⊤
1903
+ k P ∗xk
1904
+
1905
+ − TJ∗
1906
+ =
1907
+ 5
1908
+
1909
+ i=1
1910
+ Ri(T),
1911
+ (119)
1912
+ and hence the conclusion follows.
1913
+ 2) Upper bound on regret terms: Next we shall bound the
1914
+ terms Ri(T) (i = 1, . . . , 8) respectively:
1915
+ Proposition 21. The regret terms defined in (109)-(115) can
1916
+ be bounded as follows:
1917
+ 1) On the event Enoise(δ) ∩ Eest(δ), for T > Tnocb, it holds
1918
+ R1(T) ≲ (1/δ)1/4(log(1/δ))4+
1919
+
1920
+ T(log(T/δ))3. (120)
1921
+ 2) On the event Enoise(δ), it holds
1922
+ |R2(T)| ≲
1923
+
1924
+ T(log(T/δ))3/2.
1925
+ (121)
1926
+ 3) On the event Ecross(δ), it holds
1927
+ |R3(T)| ≲
1928
+
1929
+ T(log(T/δ))2.
1930
+ (122)
1931
+ 4) On the event Enoise(δ), it holds
1932
+ |R4(T)| ≤
1933
+
1934
+ T log(T/δ).
1935
+ (123)
1936
+ 5) On the event Ecov(δ), it holds
1937
+ |R5(T)| ≲
1938
+
1939
+ T log(1/δ).
1940
+ (124)
1941
+ 6) On the event Enoise(δ), it holds
1942
+ |R6(T)| ≲ (log(T/δ))2.
1943
+ (125)
1944
+ 7) On the event Enoise(δ), it holds
1945
+ |R7(T)| ≲
1946
+
1947
+ T log(T/δ).
1948
+ (126)
1949
+
1950
+ Proof.
1951
+ 1) Let
1952
+ r1k = x⊤
1953
+ k (Kk − K∗)⊤ �
1954
+ R + B⊤P ∗B
1955
+
1956
+ (Kk − K∗)xk.
1957
+ (127)
1958
+ We shall next bound �Tnocb
1959
+ k=1 r1k and �T
1960
+ k=Tnocb+1 r1k re-
1961
+ spectively:
1962
+ a) For k ≤ Tnocb, we have ∥xk∥ ≲ log(k/δ) by The-
1963
+ orem 3, item 3), and ∥Kkxk∥ = ∥ucb
1964
+ k ∥ ≤ log(k).
1965
+ Therefore, it holds
1966
+ r1k ≲ (log(k/δ))2,
1967
+ (128)
1968
+ and hence,
1969
+ Tnocb
1970
+
1971
+ k=1
1972
+ r1k ≲ Tnocb(log(Tnocb/δ))2.
1973
+ (129)
1974
+ Invoking Theorem 3, item 7 with α = 1/4, we get
1975
+ Tnocb
1976
+
1977
+ k=1
1978
+ r1k ≲ (1/δ)1/4(log(1/δ))4.
1979
+ (130)
1980
+ b) For k ≤ Tnocb, by definition of Tnocb, we have Kk =
1981
+ ˆKk. Hence, by definition of Eest and the fact that ˆKk
1982
+ is a continuous function of ˆΘk [9, Proposition 6], we
1983
+ have
1984
+ ∥Kk − K∗∥ =
1985
+ ��� ˆKk − K∗���
1986
+
1987
+ ���ˆΘk − Θ
1988
+ ��� ≲ k−1/4(log(k/δ))1/2.
1989
+ (131)
1990
+ Furthermore, by Theorem 3, item 3, we have ∥xk∥ ≲
1991
+ log(k/δ), and hence,
1992
+ r1k ≲ ∥Kk−K∗∥2∥xk∥2 ≲ k−1/2(log(k/δ))3. (132)
1993
+ Therefore,
1994
+ T
1995
+
1996
+ k=Tnocb+1
1997
+ r1k ≲
1998
+
1999
+ T(log(T/δ))3.
2000
+ (133)
2001
+ Summing up (130) and (133) leads to (120).
2002
+ 2) Let
2003
+ r2k = (upr
2004
+ k )⊤ B⊤P ∗(A + BKk)xk,
2005
+ (134)
2006
+ whose factors can be bounded as follows:
2007
+ • ∥upr
2008
+ k ∥ = k1/2∥vk∥ ≲ k−1/2(log(k/δ))1/2 by defini-
2009
+ tion of Enoise;
2010
+ • ∥xk∥ ≲ log(k/δ) by Theorem 3, item 3);
2011
+ • ∥Kkxk∥ =
2012
+ ��ucb
2013
+ k
2014
+ �� ≤ Mk = log(k) according to the
2015
+ proposed controller.
2016
+ Hence,
2017
+ |r2k| ≲ k−1/2(log(k/δ))3/2,
2018
+ (135)
2019
+ and summing up (135) from k = 1 to T leads to (121).
2020
+ 3) The inequality (122) follows directly from the definition
2021
+ of Ecross(δ) in (19).
2022
+ 4) Let
2023
+ r4k = s⊤
2024
+ k P ∗sk − w⊤
2025
+ k P ∗wk.
2026
+ (136)
2027
+ From sk = wk + Bupr
2028
+ k = wk + k−1/2Bvk, we have
2029
+ r4k = 2k−1/2w⊤
2030
+ k P ∗Bvk + k−1v⊤
2031
+ k B⊤P ∗Bvk.
2032
+ (137)
2033
+ Hence, by definition of Enoise(δ), we have
2034
+ |r4k| ≲ k−1/2 log(k/δ).
2035
+ (138)
2036
+ Summing up (138) from k = 1 to T leas to (123).
2037
+ 5) Since J∗ = tr(P ∗) (see (8)), we have
2038
+ |R5(T)| =
2039
+ �����
2040
+ T
2041
+
2042
+ k=1
2043
+ tr(wkw⊤
2044
+ k P) − T tr(P)
2045
+ �����
2046
+ =
2047
+ �����tr
2048
+ �� T
2049
+
2050
+ k=1
2051
+ (wkw⊤
2052
+ k − In)
2053
+
2054
+ P
2055
+ ������
2056
+
2057
+ �����
2058
+ T
2059
+
2060
+ k=1
2061
+ (wkw⊤
2062
+ k − In)
2063
+ ����� ≲
2064
+
2065
+ T log(1/δ), (139)
2066
+ where the last inequality follows from the definition of
2067
+ Ecov(δ), which proves (124).
2068
+ 6) The inequality (125) is a direct corollary of Theorem 3,
2069
+ item 3).
2070
+ 7) Let
2071
+ r7k = 2 (upr
2072
+ k )⊤ Rucb
2073
+ k + (upr
2074
+ k )⊤ Rupr
2075
+ k ,
2076
+ (140)
2077
+ where upr
2078
+ k and ucb
2079
+ k satisfy:
2080
+ • ∥upr
2081
+ k ∥ = k−1/2∥vk∥ ≲ k−1/2(log(k/δ))1/2 by defini-
2082
+ tion of Enoise(δ);
2083
+
2084
+ ��ucb
2085
+ k
2086
+ �� ≤ Mk = log(k) according to the proposed
2087
+ controller.
2088
+ Hence,
2089
+ |r7k| ≲ k−1/2 log(k/δ),
2090
+ (141)
2091
+ and summing up (141) from k = 1 to T leads to (126).
2092
+ Theorem 6 follows from combining Propositions 20 and 21.
2093
+ V. SIMULATION
2094
+ In this section, the proposed controller is validated on
2095
+ the Tennessee Eastman Process (TEP) [21]. In particular, we
2096
+ consider a simplified version of TEP similar to the one in [22],
2097
+ with full state feedback. The system is open-loop stable, and
2098
+ has state dimension n = 8 and input dimension m = 4. The
2099
+ process noise distribution is chosen to be wk
2100
+ i.i.d.
2101
+
2102
+ N(0, In).
2103
+ The weight matrices of LQR are chosen to be Q = In and
2104
+ R = Im. The plant under the proposed controller is simulated
2105
+ for 10000 independent trials, each with T = 3 × 108 steps.
2106
+ As mentioned in Remark 2, the certainty equivalent gain ˆKk
2107
+ is updated only at steps k = 2i, i ∈ N∗ for the sake of fast
2108
+ computation.
2109
+ The evolution of regret against time is plotted in Fig. 2.
2110
+ For the ease of observation, we plot the relative average
2111
+ regret R(T)/(TJ∗) against the total time step T, where J∗
2112
+ is the optimal cost. Fig. 2 shows 5 among the 10000 trials,
2113
+ from which one can observe a 1/
2114
+
2115
+ T convergence rate of the
2116
+ relative average regret (i.e., a 1 order-of-magnitude increase
2117
+ in T corresponds to a 0.5 order-of-magnitude decrease in
2118
+ R(T)/(TJ∗)), which matches the
2119
+
2120
+ T theoretical growth rate
2121
+ of regret. To inspect the statistical properties of all the trials,
2122
+ we sort them by the average regret at the last step, and plot
2123
+
2124
+ the worst, median and mean cases in Fig. 2b. One can observe
2125
+ that the average regret converge to zero even in the worst case,
2126
+ which validates the almost-sure guarantee in Theorem 8.
2127
+ 102
2128
+ 103
2129
+ 104
2130
+ 105
2131
+ 106
2132
+ 107
2133
+ 108 3 × 108
2134
+ 10−2.5
2135
+ 10−2.0
2136
+ 10−1.5
2137
+ 10−1.0
2138
+ 10−0.5
2139
+ 100.0
2140
+ 100.5
2141
+ Total time step T
2142
+ R(T)/(TJ∗)
2143
+ (a) Five random sample paths
2144
+ 102
2145
+ 103
2146
+ 104
2147
+ 105
2148
+ 106
2149
+ 107
2150
+ 108 3 × 108
2151
+ 10−5
2152
+ 10−4
2153
+ 10−3
2154
+ 10−2
2155
+ 10−1
2156
+ 100
2157
+ Total time step T
2158
+ R(T)/(TJ∗)
2159
+ Worst
2160
+ Median
2161
+ Best
2162
+ (b) Worst, median and best cases among all sample paths
2163
+ Fig. 2: Double-log plot of average regret against time step
2164
+ An insight to behold on the performance of the proposed
2165
+ controller is that the circuit-breaking mechanism is triggered
2166
+ only finitely, and the time of the last trigger Tnocb, as stated
2167
+ in Corollary 5, has a super-polynomial tail. This insight is
2168
+ also empirically validated: among all the 10000 trials, circuit-
2169
+ breaking is never triggered after step 1.4×106, and a histogram
2170
+ of Tnocb is shown in Fig. 3, from which one can observe that
2171
+ the empirical distribution of Tnocb has a fast decaying tail.
2172
+ 2
2173
+ 4
2174
+ 6
2175
+ 8
2176
+ 10
2177
+ 12
2178
+ 14
2179
+ 0
2180
+ 200
2181
+ 400
2182
+ 600
2183
+ 800
2184
+ 1000
2185
+ 1200
2186
+ Tnocb(×105)
2187
+ Frequency
2188
+ Fig. 3: Histogram of Tnocb among all sample paths
2189
+ VI. CONCLUSION
2190
+ In this paper, we propose an adaptive LQR controller that
2191
+ can achieve ˜O(
2192
+
2193
+ T) regret almost surely. A key underlying
2194
+ the controller design is a circuit-breaking mechanism, which
2195
+ ensures the convergence of the parameter estimate, but is
2196
+ triggered only finitely often and hence has negligible effect
2197
+ on the asymptotic performance. A future direction would be
2198
+ extending such circuit-breaking mechanism to the partially
2199
+ observed LQG setting.
2200
+ REFERENCES
2201
+ [1] K. J. Astrom, “Adaptive control around 1960,” IEEE Control Systems
2202
+ Magazine, vol. 16, no. 3, pp. 44–49, 1996.
2203
+ [2] K. J. ˚Astr¨om and B. Wittenmark, “On self tuning regulators,” Automat-
2204
+ ica, vol. 9, no. 2, pp. 185–199, 1973.
2205
+ [3] A. Morse, “Global stability of parameter-adaptive control systems,”
2206
+ IEEE Transactions on Automatic Control, vol. 25, no. 3, pp. 433–439,
2207
+ 1980.
2208
+ [4] T. Lai and C.-Z. Wei, “Extended least squares and their applications to
2209
+ adaptive control and prediction in linear systems,” IEEE Transactions
2210
+ on Automatic Control, vol. 31, no. 10, pp. 898–906, 1986.
2211
+ [5] Y. Abbasi-Yadkori, D. P´al, and C. Szepesv´ari, “Online least squares
2212
+ estimation with self-normalized processes: An application to bandit
2213
+ problems,” arXiv preprint arXiv:1102.2670, 2011.
2214
+ [6] M. Abeille and A. Lazaric, “Improved regret bounds for thompson sam-
2215
+ pling in linear quadratic control problems,” in International Conference
2216
+ on Machine Learning.
2217
+ PMLR, 2018, pp. 1–9.
2218
+ [7] A. Cohen, T. Koren, and Y. Mansour, “Learning linear-quadratic regu-
2219
+ lators efficiently with only
2220
+
2221
+ t regret,” in International Conference on
2222
+ Machine Learning.
2223
+ PMLR, 2019, pp. 1300–1309.
2224
+ [8] S. Dean, H. Mania, N. Matni, B. Recht, and S. Tu, “Regret bounds for
2225
+ robust adaptive control of the linear quadratic regulator,” Advances in
2226
+ Neural Information Processing Systems, vol. 31, 2018.
2227
+ [9] M. Simchowitz and D. Foster, “Naive exploration is optimal for online
2228
+ lqr,” in International Conference on Machine Learning.
2229
+ PMLR, 2020,
2230
+ pp. 8937–8948.
2231
+ [10] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “On adaptive
2232
+ linear–quadratic regulators,” Automatica, vol. 117, p. 108982, 2020.
2233
+ [11] F. Wang and L. Janson, “Exact asymptotics for linear quadratic adaptive
2234
+ control.” J. Mach. Learn. Res., vol. 22, pp. 265–1, 2021.
2235
+ [12] M. K. S. Faradonbeh, A. Tewari, and G. Michailidis, “Finite-time adap-
2236
+ tive stabilization of linear systems,” IEEE Transactions on Automatic
2237
+ Control, vol. 64, no. 8, pp. 3498–3505, 2018.
2238
+ [13] L. Guo, “Self-convergence of weighted least-squares with applications
2239
+ to stochastic adaptive control,” IEEE transactions on automatic control,
2240
+ vol. 41, no. 1, pp. 79–89, 1996.
2241
+ [14] H. Lin and P. J. Antsaklis, “Stability and stabilizability of switched linear
2242
+ systems: a survey of recent results,” IEEE Transactions on Automatic
2243
+ control, vol. 54, no. 2, pp. 308–322, 2009.
2244
+ [15] L. Guo and H. Chen, “Convergence rate of an els-based adaptive
2245
+ tracker,” System Sciece and Mathematical Sciences, vol. 1, no. 2, p.
2246
+ 131, 1988.
2247
+ [16] H. Mania, S. Tu, and B. Recht, “Certainty equivalence is efficient for
2248
+ linear quadratic control,” Advances in Neural Information Processing
2249
+ Systems, vol. 32, 2019.
2250
+ [17] Y. Lu and Y. Mo, “Ensuring the safety of uncertified linear state-
2251
+ feedback controllers via switching,” arXiv preprint arXiv:2205.08817,
2252
+ 2022.
2253
+ [18] B. Laurent and P. Massart, “Adaptive estimation of a quadratic functional
2254
+ by model selection,” Annals of Statistics, pp. 1302–1338, 2000.
2255
+ [19] K. Azuma, “Weighted sums of certain dependent random variables,”
2256
+ Tohoku Mathematical Journal, Second Series, vol. 19, no. 3, pp. 357–
2257
+ 367, 1967.
2258
+ [20] M. Simchowitz, H. Mania, S. Tu, M. I. Jordan, and B. Recht, “Learning
2259
+ without mixing: Towards a sharp analysis of linear system identifica-
2260
+ tion,” in Conference On Learning Theory.
2261
+ PMLR, 2018, pp. 439–473.
2262
+ [21] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control
2263
+ problem,” Computers & chemical engineering, vol. 17, no. 3, pp. 245–
2264
+ 255, 1993.
2265
+ [22] H. Liu, Y. Mo, J. Yan, L. Xie, and K. H. Johansson, “An online approach
2266
+ to physical watermark design,” IEEE Transactions on Automatic Control,
2267
+ vol. 65, no. 9, pp. 3895–3902, 2020.
2268
+
CNE5T4oBgHgl3EQfTg-d/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
D9E0T4oBgHgl3EQfQgCE/content/tmp_files/2301.02194v1.pdf.txt ADDED
@@ -0,0 +1,1419 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.02194v1 [cs.PL] 5 Jan 2023
2
+ Builtin Types viewed as Inductive Families
3
+ Guillaume Allais
4
+ January 6, 2023
5
+ Abstract
6
+ State of the art optimisation passes for dependently typed languages
7
+ can help erase the redundant information typical of invariant-rich data
8
+ structures and programs. These automated processes do not dramatically
9
+ change the structure of the data, even though more efficient representa-
10
+ tions could be available.
11
+ Using Quantitative Type Theory, we demonstrate how to define an
12
+ invariant-rich, typechecking time data structure packing an efficient run-
13
+ time representation together with runtime irrelevant invariants. The com-
14
+ piler can then aggressively erase all such invariants during compilation.
15
+ Unlike other approaches, the complexity of the resulting representation
16
+ is entirely predictable, we do not require both representations to have the
17
+ same structure, and yet we are able to seamlessly program as if we were
18
+ using the high-level structure.
19
+ 1
20
+ Introduction
21
+ Dependently typed languages have empowered users to precisely describe their
22
+ domain of discourse by using inductive families [Dyb94]. Programmers can bake
23
+ crucial invariants directly into their definitions thus refining both their func-
24
+ tions’ inputs and outputs. The constrained inputs allow them to only consider
25
+ the relevant cases during pattern matching, while the refined outputs guaran-
26
+ tee that client code can safely rely on the invariants being maintained. This
27
+ programming style is dubbed ‘correct by construction’.
28
+ However, relying on inductive families can have a non-negligible runtime
29
+ cost if the host language is compiling them na¨ıvely. And even state of the art
30
+ optimisation passes for dependently typed languages cannot make miracles: if
31
+ the source code is not efficient, the executable will not be either.
32
+ A state of the art compiler will for instance successfully compile length-
33
+ indexed lists to mere lists thus reducing the space complexity from quadratic
34
+ to linear in the size of the list. But, confronted with a list of booleans whose
35
+ length is statically known to be less than 64, it will fail to pack it into a single
36
+ machine word thus spending linear space when constant would have sufficed.
37
+ In section 2, we will look at an optimisation example that highlights both
38
+ the strengths and the limitations of the current state of the art when it comes to
39
+ removing the runtime overheads potentially incurred by using inductive families.
40
+ 1
41
+
42
+ In section 3 we will give a quick introduction to Quantitative Type Theory,
43
+ the expressive language that grants programmers the ability to have both strong
44
+ invariants and, reliably, a very efficient runtime representation.
45
+ In section 4 we will look at an inductive family that we use in a performance-
46
+ critical way in the TypOS project [AAM+22] and whose compilation suffers
47
+ from the limitations highlighted in section 2. Our current and unsatisfactory
48
+ approach is to rely on the safe and convenient inductive family when experi-
49
+ menting in Agda and then replace it with an unsafe but vastly more efficient
50
+ representation in our actual Haskell implementation.
51
+ Finally in section 5, we will study the actual implementation of our efficient
52
+ and invariant-rich solution implemented in Idris 2. We will also demonstrate
53
+ that we can recover almost all the conveniences of programming with inductive
54
+ families thanks to smart constructors and views.
55
+ 2
56
+ An Optimisation Example
57
+ The prototypical examples of the na¨ıve compilation of inductive families being
58
+ inefficient are probably the types of vectors (Vect) and finite numbers (Fin).
59
+ Their interplay is demonstrated by the lookup function.
60
+ Let us study this
61
+ example and how successive optimisation passes can, in this instance, get rid of
62
+ the overhead introduced by using indexed families over plain data.
63
+ A vector is a length-indexed list. The type Vect is parameterised by the
64
+ type of values it stores and indexed over a natural number corresponding to its
65
+ length. More concretely, its Nil constructor builds an empty vector of size Z
66
+ (i.e. zero), and its (::) (pronounced ‘cons’) constructor combines a value of
67
+ type a (the head) and a subvector of size n (the tail) to build a vector of size (S
68
+ n) (i.e. successor of n).
69
+ data Vect : Nat -> Type -> Type where
70
+ Nil : Vect Z a
71
+ (::) : a -> Vect n a -> Vect (S n) a
72
+ The size n is not explicitly bound in the type of (::). In Idris 2, this means
73
+ that it is automatically generalised over in a prenex manner reminiscent of the
74
+ handling of free type variables in languages in the ML family. This makes it
75
+ an implicit argument of the constructor.
76
+ Consequently, given that Nat is a
77
+ type of unary natural numbers, a na¨ıve runtime representation of a (Vect n a)
78
+ would have a size quadratic in n. A smarter representation with perfect sharing
79
+ would still represent quite an overhead as observed by Brady, McBride, and
80
+ McKinna [BMM03].
81
+ A finite number is a number known to be strictly smaller than a given natural
82
+ number. The type Fin is indexed by said bound. Its Z constructor models 0 and
83
+ is bound by any non-zero bound, and its S constructor takes a number bound
84
+ by n and returns its successor, bound by (1 + n). A na¨ıve compilation would
85
+ here also lead to a runtime representation suffering from a quadratic blowup.
86
+ 2
87
+
88
+ data Fin : Nat -> Type where
89
+ Z : Fin (S n)
90
+ S : Fin n -> Fin (S n)
91
+ This leads us to the definition of the lookup function. Provided a vector of
92
+ size n and a finite number k bound by this same n, we can define a total function
93
+ looking up the value stored at position k in the vector. It is guaranteed to return
94
+ a value. Note that we do not need to consider the case of the empty vector in the
95
+ pattern matching clauses as all of the return types of the Fin constructors force
96
+ the index to be non-zero and, because the vector and the finite number talk
97
+ about the same n, having an empty vector would automatically imply having a
98
+ value of type (Fin 0) which is self-evidently impossible.
99
+ lookup : Vect n a -> Fin n -> a
100
+ lookup (x :: _) Z = x
101
+ lookup (_ :: xs) (S k) = lookup xs k
102
+ Thanks to our indexed family, we have gained the ability to define a function
103
+ that cannot possibly fail, as well as the ability to only talk about the pattern
104
+ matching clauses that make sense. This seemed to be at the cost of efficiency but
105
+ luckily for us there has already been extensive work on erasure to automatically
106
+ detect redundant data [BMM03] or data that will not be used at runtime [Tej20].
107
+ 2.1
108
+ Optimising Vect, Fin, and lookup
109
+ An analysis in the style of Brady, McBride, and McKinna’s [BMM03] can solve
110
+ the quadratic blowup highlighted above by observing that the natural number
111
+ a vector is indexed by is entirely determined by the spine of the vector. In
112
+ particular, the length of the tail does not need to be stored as part of the
113
+ constructor: it can be reconstructed as the predecessor of the length of the
114
+ overall vector. As a consequence, a vector can be adequately represented at
115
+ runtime by a pair of a natural number and a list. Similarly a bounded number
116
+ can be adequately represented by a pair of natural numbers. Putting all of this
117
+ together and remembering that the vector and the finite number share the same
118
+ n, lookup can be compiled to a function taking two natural numbers and a list.
119
+ In Idris 2 we would write the optimised lookup as follows (we use the partial
120
+ keyword because this transformed version is not total at that type).
121
+ partial
122
+ lookup : (n : Nat) -> List a -> Nat -> a
123
+ lookup (S n) (x :: _) Z = x
124
+ lookup (S n) (_ :: xs) (S k) = lookup n xs k
125
+ We can see in the second clause that the recursive call is performed on the tail
126
+ of the list (formerly vector) and so the first argument to lookup corresponding
127
+ to the vector’s size is decreased by one. The invariant, despite not being explicit
128
+ anymore, is maintained.
129
+ 3
130
+
131
+ A Tejiˇsˇc´ak-style analysis [Tej20] can additionally notice that the lookup func-
132
+ tion never makes use of the bound’s value and drop it entirely. This leads to
133
+ the lookup function on vectors being compiled to its partial-looking counterpart
134
+ acting on lists.
135
+ partial
136
+ lookup : List a -> Nat -> a
137
+ lookup (x :: _) Z = x
138
+ lookup (_ :: xs) (S k) = lookup xs k
139
+ Even though this is in our opinion a pretty compelling example of erasing
140
+ away the apparent complexity introduced by inductive families, this approach
141
+ has two drawbacks.
142
+ Firstly, it relies on the fact that the compiler can and will automatically
143
+ perform these optimisations. But nothing in the type system prevents users from
144
+ inadvertently using a value they thought would get erased, thus preventing the
145
+ Tejiˇsˇc´ak-style optimisation from firing. In performance-critical settings, users
146
+ may rather want to state their intent explicitly and be kept to their word by
147
+ the compiler in exchange for predictable and guaranteed optimisations.
148
+ Secondly, this approach is intrinsically limited to transformations that pre-
149
+ serve the type’s overall structure: the runtime data structures are simpler but
150
+ very similar still. We cannot expect much better than that. It is so far unre-
151
+ alistic to expect e.g. a change of representation to use a balanced binary tree
152
+ instead of a list in order to get logarithmic lookups rather than linear ones.
153
+ 2.2
154
+ No Magic Solution
155
+ Even if we are able to obtain a more compact representation of the inductive
156
+ family at runtime through enough erasure, this does not guarantee runtime
157
+ efficiency. As the Coq manual [CDT22] reminds its users, extraction does not
158
+ magically optimise away a user-defined quadratic multiplication algorithm when
159
+ extracting unary natural numbers to an efficient machine representation. In
160
+ a pragmatic move, Coq, Agda, and Idris 2 all have ad-hoc rules to replace
161
+ convenient but inefficiently implemented numeric functions with asymptotically
162
+ faster counterparts in the target language.
163
+ However this approach is not scalable: if we may be willing to extend our
164
+ trusted core to a high quality library for unbounded integers, we do not want to
165
+ replace our code only proven correct thanks to complex invariants with a wildly
166
+ different untrusted counterpart purely for efficiency reasons.
167
+ In this paper we use Quantitative Type Theory [McB16, Atk18] as imple-
168
+ mented in Idris 2 [Bra21] to bridge the gap between an invariant-rich but in-
169
+ efficient representation based on an inductive family and an unsafe but effi-
170
+ cient implementation using low-level primitives. Inductive families allow us to
171
+ view [Wad87, MM04] the runtime relevant information encoded in the low-level
172
+ and efficient representation as an information-rich compile time data structure.
173
+ Moreover the quantity annotations guarantee that this additional information
174
+ 4
175
+
176
+ will be erased away during compilation.
177
+ 3
178
+ Some Key Features of Idris 2
179
+ Idris 2 implements Quantitative Type Theory, a Martin-L¨of type theory enriched
180
+ with a semiring of quantities classifying the ways in which values may be used.
181
+ In a type, each binder is annotated with the quantity by which its argument
182
+ must abide.
183
+ 3.1
184
+ Quantities
185
+ A value may be runtime irrelevant, linear, or unrestricted.
186
+ Runtime irrelevant values (0 quantity) cannot possibly influence control flow
187
+ as they will be erased entirely during compilation. This forces the language
188
+ to impose strong restrictions on pattern-matching over these values. Typical
189
+ examples are types like the a parameter in (List a), or indices like the natural
190
+ number n in (Vect n a). These are guaranteed to be erased at compile time.
191
+ The advantage over a Tejiˇsˇc´ak-style analysis is that users can state their intent
192
+ that an argument ought to be runtime irrelevant and the language will insist
193
+ that it needs to be convinced it indeed is.
194
+ Linear values (1 quantity) have to be used exactly once. Typical examples
195
+ include the %World token used by Idris 2 to implement the IO monad `a la Haskell,
196
+ or file handles that cannot be discarded without first explicitly closing the file.
197
+ At runtime these values can be updated destructively. We will not use linearity
198
+ in this paper.
199
+ Last, unrestricted values (denoted by no quantity annotation) can flow into
200
+ any position, be duplicated or thrown away. They are the usual immutable
201
+ values of functional programming.
202
+ The most basic of examples mobilising both the runtime irrelevance and
203
+ unrestricted quantities is the identity function.
204
+ id : {0 a : Type} -> (x : a) -> a
205
+ id x = x
206
+ Its type starts with a binder using curly braces. This means it introduces
207
+ an implicit variable that does not need to be filled in by the user at call sites
208
+ and will be reconstructed by unification. The variable it introduces is named
209
+ a and has type Type. It has the 0 quantity annotation which means that this
210
+ argument is runtime irrelevant and so will be erased during compilation.
211
+ The second binder uses parentheses. It introduces an explicit variable whose
212
+ name is x and whose type is the type a that was just bound. It has no quantity
213
+ annotation which means it will be an unrestricted variable.
214
+ Finally the return type is the type a bound earlier. This is, as expected, a
215
+ polymorphic function from a to a. It is implemented using a single clause that
216
+ binds x on the left-hand side and immediately returns it on the right-hand side.
217
+ 5
218
+
219
+ If we were to try to annotate the binder for x with a 0 quantity to make
220
+ it runtime irrelevant then Idris 2 would rightfully reject the definition.
221
+ The
222
+ following failing block shows part of the error message complaining that x
223
+ cannot be used at an unrestricted quantity on the right-hand side.
224
+ failing "x is not accessible in this context."
225
+ id : {0 a : Type} -> (0 x : a) -> a
226
+ id x = x
227
+ 3.2
228
+ Proof Search
229
+ In Idris 2, Haskell-style ad-hoc polymorphism [WB89] is superseded by a more
230
+ general proof search mechanism.
231
+ Instead of having blessed notions of type
232
+ classes, instances and constraints, the domain of any dependent function type
233
+ can be marked as auto. This signals to the compiler that the corresponding
234
+ argument will be an implicit argument and that it should not be reconstructed
235
+ by unification alone but rather by proof search. The search algorithm will use
236
+ the appropriate user-declared hints as well as the local variables in scope.
237
+ By default, a datatype’s constructors are always added to the database of
238
+ hints. And so the following declaration brings into scope both an indexed family
239
+ So of proofs that a given boolean is True, and a unique constructor Oh that is
240
+ automatically added as a hint.
241
+ data So : Bool -> Type where
242
+ Oh : So True
243
+ As a consequence, we can for instance define a record type specifying what
244
+ it means for n to be an even number by storing its half together with a proof
245
+ that is both runtime irrelevant and filled in by proof search. Because (2 * 3 ==
246
+ 6) computes to True, Idris 2 is able to fill-in the missing proof in the definition
247
+ of even6 using the Oh hint.
248
+ record Even (n : Nat) where
249
+ constructor MkEven
250
+ half : Nat
251
+ {auto 0 prf : So (2 * half == n)}
252
+ even6 : Even 6
253
+ even6 = MkEven { half = 3 }
254
+ We will use both So and the auto mechanism in section 5.3.
255
+ 3.3
256
+ Application: Vect, as List
257
+ We can use the features of Quantitative Type Theory to give an implementa-
258
+ tion of Vect that is guaranteed to erase to a List at runtime independently of
259
+ the optimisation passes implemented by the compiler. The advantage over the
260
+ optimisation passes described in section 2 is that the user has control over the
261
+ 6
262
+
263
+ runtime representation and does not need to rely on these optimisations being
264
+ deployed by the compiler.
265
+ The core idea is to make the slogan ‘a vector is a length-indexed list’ a
266
+ reality by defining a record packing together the encoding as a list and a proof
267
+ its length is equal to the expected Nat index. This proof is marked as runtime
268
+ irrelevant to ensure that the list is the only thing remaining after compilation.
269
+ record Vect (n : Nat) (a : Type) where
270
+ constructor MkVect
271
+ encoding : List a
272
+ 0 valid : length encoding === n
273
+ Smart constructors
274
+ Now that we have defined vectors, we can recover the
275
+ usual building blocks for vectors by defining smart constructors, that is to say
276
+ functions Nil and (::) that act as replacements for the inductive family’s data
277
+ constructors.
278
+ Nil : Vect Z a
279
+ Nil = MkVect [] Refl
280
+ The smart constructor Nil returns an empty vector. It is, unsurprisingly,
281
+ encoded as the empty list ([]). Because (length []) statically computes to Z,
282
+ the proof that the encoding is valid can be discharged by reflexivity.
283
+ (::) : a -> Vect n a -> Vect (S n) a
284
+ x :: MkVect xs eq = MkVect (x :: xs) (cong S eq)
285
+ Using (::) we can combine a head and a tail of size n to obtain a vector of
286
+ size (S n). The encoding is obtained by consing the head in front of the tail’s
287
+ encoding and the proof this is valid (cong S eq) uses the fact that propositional
288
+ equality is a congruence and that (length (x :: xs)) computes to (S (length
289
+ xs)).
290
+ View
291
+ Now that we know how to build vectors, we demonstrate that we can
292
+ also take them apart using a view.
293
+ A view for a type T , in the sense of Wadler [Wad87], and as refined by
294
+ McBride and McKinna [MM04], is an inductive family V indexed by T together
295
+ with a total function mapping every element t of T to a value of type (V t). This
296
+ simple gadget provides a powerful, user-extensible, generalisation of pattern-
297
+ matching. Patterns are defined inductively as either a pattern variable, a forced
298
+ term (i.e. an arbitrary expression that is determined by a constraint arising
299
+ from another pattern), or a data constructor fully applied to subpatterns. In
300
+ contrast, the return indices of an inductive family’s constructors can be arbitrary
301
+ expressions.
302
+ In the case that interests us, the view allows us to emulate ‘matching’ on
303
+ which of the two smart constructors Nil or (::) was used to build the vector
304
+ being taken apart.
305
+ 7
306
+
307
+ data View : Vect n a -> Type where
308
+ Nil : View Nil
309
+ (::) : (x : a) -> (xs : Vect n a) -> View (x :: xs)
310
+ The inductive family View is indexed by a vector and has two constructors
311
+ corresponding to the two smart constructors. We use Idris 2’s overloading capa-
312
+ bilities to give each of the View’s constructors the name of the smart constructor
313
+ it corresponds to. By pattern-matching on a value of type (View xs), we will be
314
+ able to break xs into its constitutive parts and either observe it is equal to Nil
315
+ or recover its head and its tail.
316
+ view : (xs : Vect n a) -> View xs
317
+ view (MkVect [] Refl) = Nil
318
+ view (MkVect (x :: xs) Refl) = x :: MkVect xs Refl
319
+ The function view demonstrates that we can always tell which constructor
320
+ was used by inspecting the encoding list. If it is empty, the vector was built
321
+ using the Nil smart constructor. If it is not then we got our hands on the
322
+ head and the tail of the encoding and (modulo some re-wrapping of the tail)
323
+ they are effectively the head and the tail that were combined using the smart
324
+ constructor.
325
+ 3.3.1
326
+ Application: map
327
+ We can then use these constructs to implement the function map on vectors
328
+ without ever having to explicitly manipulate the encoding.
329
+ The maximally
330
+ sugared version of map is as follows:
331
+ map : (a -> b) -> Vect n a -> Vect n b
332
+ map f xs@_ with (view xs)
333
+ _ | [] = []
334
+ _ | hd :: tl = f hd :: map f tl
335
+ On the left-hand side the view lets us seamlessly pattern-match on the input
336
+ vector. Using the with keyword we have locally modified the function defini-
337
+ tion so that it takes an extra argument, here the result of the intermediate
338
+ computation (view xs). Correspondingly, we have two clauses matching on this
339
+ extra argument; the symbol | separates the original left-hand side (here elided
340
+ using _ because it is exactly the same as in the parent clause) from the addi-
341
+ tional pattern. This pattern can either have the shape [] or (hd :: tl) and,
342
+ correspondingly, we learn that xs is either [] or (hd :: tl).
343
+ On the right-hand side the smart constructors let us build the output vec-
344
+ tor. Mapping a function over the empty vector yields the empty vector while
345
+ mapping over a cons node yields a cons node whose head and tail have been
346
+ appropriately modified.
347
+ This sugared version of map is equivalent to the following more explicit one:
348
+ 8
349
+
350
+ map : (a -> b) -> Vect n a -> Vect n b
351
+ map f xs with (view xs)
352
+ map f .([]) | [] = []
353
+ map f .(hd :: tl) | hd :: tl = f hd :: map f tl
354
+ In the parent clause we have explicitly bound xs instead of merely introduc-
355
+ ing an alias for it by writing (xs@ ) and so we will need to be explicit about the
356
+ ways in which this pattern is refined in the two with-clauses.
357
+ In the with-clauses, we have explicitly repeated the refined version of the
358
+ parent clause’s left-hand side. In particular we have used dotted patterns to
359
+ insist that xs is now entirely forced by the match on the result of (view xs).
360
+ We have seen that by matching on the result of the (view xs) call, we get to
361
+ ‘match’ on xs as if Vect were an inductive type. This is the power of views.
362
+ 3.3.2
363
+ Application: lookup
364
+ The type (Fin n) can similarly be represented by a single natural number and
365
+ a runtime irrelevant proof that it is bound by n. We leave these definitions
366
+ out, and invite the curious reader to either attempt to implement them for
367
+ themselves or look at the accompanying code.
368
+ Bringing these definitions together, we can define a lookup function which
369
+ is similar to the one defined in section 2.
370
+ lookup : Vect n a -> Fin n -> a
371
+ lookup xs@_ k@_ with (view xs) | (view k)
372
+ _ | hd :: _ | Z = hd
373
+ _ | _ :: tl | S k’ = lookup tl k’
374
+ We are seemingly using view at two different types (Vect and Fin respec-
375
+ tively) but both occurrences actually refer to separate functions: Idris 2 lets us
376
+ overload functions and performs type-directed disambiguation.
377
+ For pedagogical purposes, this sugared version of lookup can also be ex-
378
+ panded to a more explicit one that demonstrates the views’ power.
379
+ lookup : Vect n a -> Fin n -> a
380
+ lookup xs k with (view xs) | (view k)
381
+ lookup .(hd :: tl) .(Z) | hd :: tl | Z = hd
382
+ lookup .(hd :: tl) .(S k’) | hd :: tl | S k’ = lookup tl k’
383
+ The main advantage of this definition is that, based on its type alone, we
384
+ know that this function is guaranteed to be processing a list and a single natural
385
+ number at runtime. This efficient runtime representation does not rely on the
386
+ assumption that state of the art optimisation passes will be deployed.
387
+ We have seen some of Idris 2’s powerful features and how they can be lever-
388
+ aged to empower users to control the runtime representation of the inductive
389
+ families they manipulate. This simple example only allowed us to reproduce
390
+ the performance that could already be achieved by compilers deploying state of
391
+ the art optimisation passes. In the following sections, we are going to see how
392
+ 9
393
+
394
+ we can use the same core ideas to compile an inductive family to a drastically
395
+ different runtime representation while keeping good high-level ergonomics.
396
+ 4
397
+ Thinnings, cooked two ways
398
+ We experienced a major limitation of compilation of inductive families during
399
+ our ongoing development of TypOS [AAM+22], a domain specific language to
400
+ define concurrent typecheckers and elaborators.
401
+ Core to this project is the defi-
402
+ nition of actors manipulating a generic notion of syntax with binding. Internally
403
+ the terms of this syntax with binding are based on a co-de Bruijn representa-
404
+ tion (an encoding we will explain below) which relies heavily on thinnings. A
405
+ thinning (also known as an Order Preserving Embedding [Cha09]) between a
406
+ source and a target scope is an order preserving injection of the smaller scope
407
+ into the larger one. They are usually represented using an inductive family.
408
+ The omnipresence of thinnings in the co-de Bruijn representation makes their
409
+ runtime representation a performance critical matter.
410
+ Let us first remind the reader of the structure of abstract syntax trees in a
411
+ named, a de Bruijn, and a co-de Bruijn representation. We will then discuss two
412
+ representations of thinnings: a safe and convenient one as an inductive family,
413
+ and an unsafe but efficient encoding as a pair of arbitrary precision integers.
414
+ 4.1
415
+ Named, de Bruijn, and co-de Bruijn syntaxes
416
+ In this section we will use the S combinator (λg.λf.λx.gx(fx)) as a running
417
+ example and represent terms using a syntax tree whose constructor nodes are
418
+ circles and variable nodes are squares.
419
+ To depict the S combinator we will
420
+ only need λ-abstraction and application (rendered $) nodes. A constructor’s
421
+ arguments become its children in the tree. The tree is laid out left-to-right and
422
+ a constructor’s arguments are displayed top-to-bottom.
423
+ Named syntax
424
+ The first representation is using explicit names. Each binder
425
+ has an associated name and each variable node carries a name. A variable refers
426
+ to the closest enclosing binder which happens to be using the same name.
427
+ λg.
428
+ λf.
429
+ λx.
430
+ $
431
+ $
432
+ g
433
+ x
434
+ $
435
+ f
436
+ x
437
+ To check whether two terms are structurally equivalent (α-equivalence) po-
438
+ tentially requires renaming bound names. In order to have a simple and cheap
439
+ α-equivalence check we can instead opt for a nameless representation.
440
+ 10
441
+
442
+ De Bruijn syntax
443
+ An abstract syntax tree based on de Bruijn indices [dB72]
444
+ replaces names with natural numbers counting the number of binders separating
445
+ a variable from its binding site. The S combinator is now written (λ λ λ 2 0 (1 0)).
446
+ You can see in the following graphical depiction that λ-abstractions do not
447
+ carry a name anymore and that variables are simply pointing to the binder
448
+ that introduced them.
449
+ We have left the squares empty but in practice the
450
+ various coloured arrows would be represented by a natural number. For instance
451
+ the dashed magenta one corresponds to 1 because you need to ignore one λ-
452
+ abstraction (the orange one) on your way towards the root of the tree before
453
+ you reach the corresponding magenta binder.
454
+ λ.
455
+ λ.
456
+ λ.
457
+ $
458
+ $
459
+ $
460
+ To check whether a subterm does not mention a given set of variables (a
461
+ thickening test, the opposite of a thinning which extends the current scope with
462
+ unused variables), you need to traverse the whole term.
463
+ In order to have a
464
+ simple cheap thickening test we can ensure that each subterms knows precisely
465
+ what its support is and how it embeds in its parent’s.
466
+ Co-de Bruijn syntax
467
+ In a co-de Bruijn representation [McB18] each subterm
468
+ selects exactly the variables that stay in scope for that term, and so a variable
469
+ constructor ultimately refers to the only variable still in scope by the time it is
470
+ reached. This representation ensures that we know precisely what the scope of
471
+ a given term currently is.
472
+ In the following graphical rendering, we represent thinnings as lists of full
473
+ (•) or empty (◦) discs depending on whether the corresponding variable is either
474
+ kept or discarded. For instance the thinning represented by ◦•• throws the blue
475
+ variable away, and keeps both the magenta and orange ones.
476
+ λ.
477
+ λ.
478
+ λ.
479
+ $
480
+ $
481
+ $
482
+
483
+ ••
484
+ •••
485
+ ◦••
486
+ •◦•
487
+ •◦
488
+ ◦•
489
+ •◦
490
+ ◦•
491
+ 11
492
+
493
+ We can see that in such a representation, each node in the tree stores one
494
+ thinning per subterm. This will not be tractable unless we have an efficient
495
+ representation of thinnings.
496
+ 4.2
497
+ The Performance Challenges of co-de Bruijn
498
+ Using the co-de Bruijn approach, a term in an arbitrary context is repre-
499
+ sented by the pairing of a term in co-de Bruijn syntax with a thinning from
500
+ its support into the wider scope. Having such a precise handle on each term’s
501
+ support allows us to make operations such as thinning, substitution, unification,
502
+ or common sub-expression elimination more efficient.
503
+ Thinning a term does not require us to traverse it anymore. Indeed, embed-
504
+ ding a term in a wider context will not change its support and so we can simply
505
+ compose the two thinnings while keeping the term the same.
506
+ Substitution can avoid traversing subterms that will not be changed. Indeed,
507
+ it can now easily detect when the substitution’s domain does not intersect with
508
+ the subterm’s support.
509
+ Unification requires performing thickening tests when we want to solve a
510
+ metavariable declared in a given context with a terms seemingly living in a
511
+ wider one. We once more do not need to traverse the term to perform this test,
512
+ and can simply check whether the outer thinning can be thickened.
513
+ Common sub-expression elimination requires us to identify alpha-equivalent
514
+ terms potentially living in different contexts. Using a de Bruijn representation,
515
+ these can be syntactically different: a variable represented by the natural num-
516
+ ber v in Γ would be (1+v) in Γ, σ but (2+v) in Γ, τ, ν. A co-de Bruijn represen-
517
+ tation, by discarding all the variables not in the support, guarantees that we can
518
+ once more use syntactic equality to detect alpha-equivalence. This encoding is
519
+ used for instance (albeit unknowingly) by Maziarz, Ellis, Lawrence, Fitzgibbon,
520
+ and Peyton-Jones in their ‘Hashing modulo alpha-equivalence’ work [MEL+21].
521
+ For all of these reasons we have, as we mentioned earlier, opted for a co-de
522
+ Bruijn representation in the implementation of TypOS [AAM+22].
523
+ And so it
524
+ is crucial for performance that we have a compact representation of thinnings.
525
+ 4.2.1
526
+ Thinnings in TypOS
527
+ We first carefully worked out the trickier parts of the implementation in Agda
528
+ before porting the resulting code to Haskell. This process highlighted a glaring
529
+ gap between on the one hand the experiments done using a strongly typed
530
+ inductive representation of thinnings and on the other hand their more efficient
531
+ but unsafe encoding in Haskell.
532
+ Agda
533
+ The Agda-based experiments use inductive families that make the key
534
+ invariants explicit which helps tracking complex constraints and catches design
535
+ flaws at typechecking time. The indices guarantee that we always transform the
536
+ 12
537
+
538
+ thinnings appropriately when we add or remove bound variables. In Idris 2, the
539
+ inductive family representation of thinnings would be written:
540
+ data Thinning : (sx, sy : SnocList a) -> Type where
541
+ Done : Thinning [<] [<]
542
+ Keep : Thinning sx sy -> (0 x : a) -> Thinning (sx :< x) (sy :< x)
543
+ Drop : Thinning sx sy -> (0 x : a) -> Thinning sx (sy :< x)
544
+ The Thinning family is indexed by two scopes (represented as snoclists i.e. lists
545
+ that are extended from the right, just like contexts in inference rules): sx the
546
+ tighter scope and sy the wider one.
547
+ The Done constructor corresponds to a
548
+ thinning from the empty scope to itself ([<] is Idris 2 syntactic sugar for the
549
+ empty snoclist), and Keep and Drop respectively extend a given thinning by
550
+ keeping or dropping the most local variable (:< is the ‘snoc’ constructor, a sort
551
+ of flipped ‘cons’). The ‘name’ (x of type a) is marked with the quantity 0 to
552
+ ensure it is erased at compile time (cf. section 3).
553
+ During compilation, Idris 2 would erase the families’ indices as they are
554
+ forced (in the sense of Brady, McBride, and McKinna [BMM03]), and drop the
555
+ constructor arguments marked as runtime irrelevant. The resulting inductive
556
+ type would be the following simple data type.
557
+ data Thinning = Done | Keep Thinning | Drop Thinning
558
+ At runtime this representation is therefore essentially a linked list of booleans
559
+ (Done being Nil, and Keep and Drop respectively (True ::) and (False ::)).
560
+ Haskell
561
+ The Haskell implementation uses this observation and picks a packed
562
+ encoding of this list of booleans as a pair of integers. One integer represents the
563
+ length n of the list, and the other integer’s n least significant bits encode the
564
+ list as a bit pattern where 1 is Keep and 0 is Drop.
565
+ Basic operations on thinnings are implemented by explicitly manipulating
566
+ individual bits. It is not indexed and thus all the invariant tracking has to be
567
+ done by hand. This has led to numerous and hard to diagnose bugs.
568
+ 4.2.2
569
+ Thinnings in Idris 2
570
+ Idris 2 is a self-hosting language whose core datatype is currently based on a
571
+ well-scoped de Bruijn representation. This precise indexing of terms by their
572
+ scope helped entirely eliminate a whole class of bugs that plagued Idris 1’s
573
+ unification machinery.
574
+ If we were to switch to a co-de Bruijn representation for our core language
575
+ we would want, and should be able, to have the best of both worlds: a safe and
576
+ efficient representation!
577
+ Thankfully Idris 2 implements Quantitative Type Theory (QTT) which gives
578
+ us a lot of control over what is to be runtime relevant and what is to be erased
579
+ during compilation. This should allow us to insist on having a high-level in-
580
+ terface that resembles an inductive family while ensuring that everything but
581
+ 13
582
+
583
+ a pair of integers is erased at compile time. We will exploit the key features of
584
+ QTT presented in section 3 to have our cake and eat it.
585
+ 5
586
+ An Efficient Invariant-Rich Representation
587
+ We can combine both approaches highlighted in section 4.2 by defining a record
588
+ parameterised by a source (sx) and target (sy) scopes corresponding to the two
589
+ ends of the thinnings, just like we would for the inductive family. This record
590
+ packs two numbers and a runtime irrelevant proof.
591
+ Firstly, we have a natural number called bigEnd corresponding to the size of
592
+ the big end of the thinning (sy). We are happy to use a (unary) natural number
593
+ here because we know that Idris 2 will compile it to an unbounded integer.
594
+ Secondly, we have an integer called encoding corresponding to the thinning
595
+ represented as a bit vector stating, for each variable, whether it is kept or
596
+ dropped.
597
+ We only care about the integer’s bigEnd least significant bits and
598
+ assume the rest is set to 0.
599
+ Thirdly, we have a runtime irrelevant proof invariant that encoding is in-
600
+ deed a valid encoding of size bigEnd of a thinning from sx to sy. We will explore
601
+ the definition of the relation Invariant later on in section 5.3.
602
+ record Th {a : Type} (sx, sy : SnocList a) where
603
+ constructor MkTh
604
+ bigEnd : Nat
605
+ encoding : Integer
606
+ 0 invariant : Invariant bigEnd encoding sx sy
607
+ The first sign that this definition is adequate is our ability to construct any
608
+ valid thinning. We demonstrate it is the case by introducing functions that act
609
+ as smart constructor analogues for the inductive family’s data constructors.
610
+ 5.1
611
+ Smart Constructors for Th
612
+ The first and simplest one is done, a function that packs a pair of 0 (the size of
613
+ the big end, and the empty encoding) together with a proof that it is an adequate
614
+ encoding of the thinning from the empty scope to itself. In this instance, the
615
+ proof is simply the Done constructor.
616
+ done : Th [<] [<]
617
+ done = MkTh { bigEnd = 0, encoding = 0, invariant = Done }
618
+ To implement both keep and drop, we are going to need to perform bit-level
619
+ manipulations. These are made easy by Idris 2’s Bits interface which provides us
620
+ with functions to shift the bit patterns left or right (shiftl, shiftr), set or clear
621
+ bits at specified positions (setBit, clearBit), take bitwise logical operations like
622
+ disjunction (.|.) or conjunction (.&.), etc.
623
+ 14
624
+
625
+ In both keep and drop, we need to extend the encoding with an additional
626
+ bit. For this purpose we introduce the cons function which takes a bit b and an
627
+ existing encoding bs and returns the new encoding bs·b.
628
+ cons : Bool -> Integer -> Integer
629
+ cons b bs = let bs0 = bs ‘shiftL‘ 1 in
630
+ if b then (bs0 ‘setBit‘ 0) else bs0
631
+ No matter what the value of the new bit is, we start by shifting the encoding
632
+ to the left to make space for it; this gives us bs0 which contains the bit pattern
633
+ bs·0. If the bit is True then we need to additionally set the bit at position 0
634
+ to obtain bs·1. Otherwise if the bit is False, we can readily return the bs·0
635
+ encoding obtained by left shifting. The correctness of this function is backed by
636
+ two lemma: testing the bit at index 0 after consing amounts to returning the
637
+ cons’d bit, and shifting the cons’d encoding to the right takes us back to the
638
+ unextended encoding.
639
+ testBit0Cons : (b : Bool) -> (bs : Integer) ->
640
+ testBit (cons b bs) 0 === b
641
+ consShiftR : (b : Bool) -> (bs : Integer) ->
642
+ (cons b bs) ‘shiftR‘ 1 === bs
643
+ The keep smart constructor demonstrates that from a thinning from sx to
644
+ sy and a runtime irrelevant variable x we can compute a thinning from the
645
+ extended source scope (sx :< x) to the target scope (sy :< x) where x was kept.
646
+ keep : Th sx sy -> (0 x : a) -> Th (sx :< x) (sy :< x)
647
+ keep th x = MkTh
648
+ { bigEnd = S (th .bigEnd)
649
+ , encoding = cons True (th .encoding)
650
+ , invariant =
651
+ let 0 b = eqToSo $ testBit0Cons True (th .encoding) in
652
+ Keep (rewrite consShiftR True (th .encoding) in th.invariant) x
653
+ }
654
+ The outer scope has grown by one variable and so we increment bigEnd. The
655
+ encoding is obtained by cons-ing the boolean True to record the fact that this
656
+ new variable is kept. Finally, we use the two lemmas shown above to convince
657
+ Idris 2 the invariant has been maintained.
658
+ Similarly the drop function demonstrates that we can compute a thinning
659
+ getting rid of the variable x freshly added to the target scope.
660
+ 15
661
+
662
+ drop : Th sx sy -> (0 x : a) -> Th sx (sy :< x)
663
+ drop th x = MkTh
664
+ { bigEnd = S (th .bigEnd)
665
+ , encoding = cons False (th .encoding)
666
+ , invariant =
667
+ let 0 prf = testBit0Cons False (th .encoding)
668
+ 0 nb = eqToSo $ cong not prf in
669
+ Drop (rewrite consShiftR False (th .encoding) in th .invariant) x
670
+ }
671
+ We once again increment the bigEnd, use cons to record that the variable is
672
+ being discarded and use the lemmas ensuring its correctness to convince Idris 2
673
+ the invariant is maintained.
674
+ We can already deploy these smart constructors to implement functions pro-
675
+ ducing thinnings. We use which as our example. It is a filter-like function that
676
+ returns a dependent pair containing the elements that satisfy a boolean predi-
677
+ cate together with a proof that there is a thinning embedding them back into
678
+ the input snoclist.
679
+ which : (a -> Bool) -> (sy : SnocList a) ->
680
+ (sx : SnocList a ** Th sx sy)
681
+ which p [<] = ([<] ** done)
682
+ which p (sy :< y) =
683
+ let (sx ** th) = which p sy in
684
+ if p y then (sx :< y ** keep th y)
685
+ else (sx ** drop th y)
686
+ If the input snoclist is empty then the output shall also be, and done builds
687
+ a thinning from [<] to itself. If it is not empty we can perform a recursive call
688
+ on the tail of the snoclist and then depending on whether the predicates holds
689
+ true of the head we can either keep or drop it.
690
+ We are now equipped with these smart constructors that allow us to seam-
691
+ lessly build thinnings.
692
+ To recover the full expressive power of the inductive
693
+ family, we also need to be able to take these thinnings apart. We are now going
694
+ to tackle this issue.
695
+ 5.2
696
+ Pattern Matching on Th
697
+ The View family is a sum type indexed by a thinning. It has one data constructor
698
+ associated to each smart constructor and storing its arguments.
699
+ data View : Th sx sy -> Type where
700
+ Done : View done
701
+ Keep : (th : Th sx sy) -> (0 x : a) -> View (keep th x)
702
+ Drop : (th : Th sx sy) -> (0 x : a) -> View (drop th x)
703
+ The accompanying view function witnesses the fact that any thinning arises
704
+ as one of these three cases.
705
+ 16
706
+
707
+ view : (th : Th sx sy) -> View th
708
+ We show the implementation of view in its entirety but leave out the tech-
709
+ nical auxiliary lemma it invokes. The interested reader can find them in the
710
+ accompanying material. We will however inspect the code view compiles to af-
711
+ ter erasure in section 5.5 to confirm that these auxiliary definitions do not incur
712
+ any additional runtime cost.
713
+ We first start by pattern matching on the bigEnd of the thinning. If it is 0
714
+ then we know the thinning has to be the empty thinning. Thanks to an inversion
715
+ lemma called isDone, we can collect a lot of equality proofs: the encoding bs has
716
+ to be 0, the source and target scopes sx and sy have to be the empty snoclists,
717
+ and the proof prf of the invariant has to be of a specific shape. Rewriting by
718
+ these equalities changes the goal type enough for the typechecker to ultimately
719
+ see that the thinning was constructed using the done smart constructor and so
720
+ we can use the view’s Done constructor.
721
+ view (MkTh 0 bs prf) =
722
+ let 0 eqs = isDone prf in
723
+ rewrite bsIsZero eqs in
724
+ rewrite fstIndexIsLin eqs in
725
+ rewrite sndIndexIsLin eqs in
726
+ rewrite invariantIsDone eqs in
727
+ Done
728
+ In case the thinning is non-empty, we need to inspect the 0-th bit of the
729
+ encoding to know whether it keeps or discards its most local variable. This is
730
+ done by calling the choose function which takes a boolean b and returns a value
731
+ of type (Either (So b) (So (not b)) i.e. we not only inspect the boolean but also
732
+ record which value we got in a proof using the So family introduced in section 3.
733
+ view (MkTh (S i) bs prf) = case choose (testBit bs Z) of
734
+ If the bit is set then we know the variable is kept. And so we can invoke an
735
+ inversion lemma that will once again provide us with a lot of equalities that we
736
+ immediately deploy to reshape the goal’s type. This ultimately lets us assemble
737
+ a sub-thinning and use the view’s Keep constructor.
738
+ Left so =>
739
+ let 0 eqs = isKeep prf so in
740
+ rewrite fstIndexIsSnoc eqs in
741
+ rewrite sndIndexIsSnoc eqs in
742
+ rewrite invariantIsKeep eqs in
743
+ rewrite isKeepInteger bs so in
744
+ let th : Th eqs.fstIndexTail eqs.sndIndexTail
745
+ th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
746
+ cast $ Keep th eqs.keptHead
747
+ If the bit is not set then we learn that the thinning was constructed using
748
+ 17
749
+
750
+ drop. We can once again use an inversion lemma to rearrange the goal and
751
+ finally invoke the view’s Drop constructor.
752
+ Right soNot =>
753
+ let 0 eqs = isDrop prf soNot in
754
+ rewrite sndIndexIsSnoc eqs in
755
+ rewrite invariantIsDrop eqs in
756
+ rewrite isDropInteger bs soNot in
757
+ let th : Th sx eqs.sndIndexTail
758
+ th = MkTh i (bs ‘shiftR‘ 1) eqs.subInvariant in
759
+ cast $ Drop th eqs.keptHead
760
+ We can readily use this function to implement pattern matching functions
761
+ taking a thinning apart. We can for instance define kept, the function that
762
+ counts the number of keep smart constructors used when manufacturing the
763
+ input thinning and returns a proof that this is exactly the length of the source
764
+ scope sx.
765
+ kept : Th sx sy -> (n : Nat ** length sx === n)
766
+ kept th = case view th of
767
+ Done
768
+ => (0 ** Refl)
769
+ Keep th x => let (n ** eq) = kept th in
770
+ (S n ** cong S eq)
771
+ Drop th x => kept th
772
+ We proceed by calling the view function on the input thinning which im-
773
+ mediately tells us that we only have three cases to consider. The Done case is
774
+ easily handled because the branch’s refined types inform us that both sx and
775
+ sy are the empty snoclist [<] whose length is evidently 0. In the Keep branch
776
+ we learn that sx has the shape (_ :< x) and so we must return the successor of
777
+ whatever the result of the recursive call gives us. Finally in the Drop case, sx
778
+ is untouched and so a simple recursive call suffices. Note that the function is
779
+ correctly detected as total because the target scope sy is indeed getting struc-
780
+ turally smaller at every single recursive call. It is runtime irrelevant but it can
781
+ still be successfully used as a termination measure by the compiler.
782
+ 5.3
783
+ The Invariant Relation
784
+ We have shown the user-facing Th and have claimed that it is possible to define
785
+ smart constructors done, keep, and drop, as well as a view function. This should
786
+ become apparent once we show the actual definition of Invariant.
787
+ 5.3.1
788
+ Definition of Invariant
789
+ The relation maintains the invariant between the record’s fields bigEnd (a Nat)
790
+ and encoding (an Integer) and the index scopes sx and sy. Its definition can
791
+ favour ease-of-use of runtime efficiency because we statically know that all of
792
+ 18
793
+
794
+ the Invariant proofs will be erased during compilation.
795
+ data Invariant : (i : Nat) -> (bs : Integer) ->
796
+ (sx, sy : SnocList a) -> Type where
797
+ Done : Invariant Z 0 [<] [<]
798
+ Keep : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->
799
+ {auto 0 b
800
+ : So (testBit bs Z)} ->
801
+ Invariant (S i) bs (sx :< x) (sy :< x)
802
+ Drop : Invariant i (bs ‘shiftR‘ 1) sx sy -> (0 x : a) ->
803
+ {auto 0 nb : So (not (testBit bs Z))} ->
804
+ Invariant (S i) bs sx (sy :< x)
805
+ As always, the Done constructor is the simplest. It states that the thinning
806
+ of size Z and encoded as the bit pattern 0 is the empty thinning.
807
+ The Keep constructor guarantees that the thinning of size (S i) and encoding
808
+ bs represents an injection from (sx :< x) to (sy :< x) provided that the bit at
809
+ position Z of bs is set, and that the rest of the bit pattern (obtained by a right
810
+ shift on bs) is a valid thinning of size i from sx to sy.
811
+ The Drop constructor is structured the same way, except that it insists the
812
+ bit at position Z should not be set.
813
+ We can readily use this relation to prove that some basic encoding are valid
814
+ representations of useful thinnings.
815
+ 5.3.2
816
+ Examples of Invariant proofs
817
+ For instance, we can always define a thinning from the empty scope to an
818
+ arbitrary scope sy.
819
+ none : (sy : SnocList a) -> Th [<] sy
820
+ none sy = MkTh (length sy) 0 (none sy)
821
+ The encoding of this thinning is 0 because every variable is being discarded
822
+ and its bigEnd is the length of the outer scope sy. The proof that this encoding
823
+ is valid is provided by the none lemma proven below. We once again use Idris 2’s
824
+ overloading to give the same to functions that play similar roles but at different
825
+ types.
826
+ none : (sy : SnocList a) -> Invariant (length sy) 0 [<] sy
827
+ none [<] = Done
828
+ none (sy :< y) = Drop (none sy) y
829
+ The proof proceeds by induction over the outer scope sy. If it is empty,
830
+ we can simply use the constructor for the empty thinning. Otherwise we can
831
+ invoke Drop on the induction hypothesis. This all typechecks because (testBit
832
+ 0 Z) computes to False and so the nb proof can be constructed automatically
833
+ by Idris 2’s proof search (cf. section 3.2), and (0 ‘shiftR‘ 1) evaluates to 0
834
+ which means the induction hypothesis has exactly the right type.
835
+ 19
836
+
837
+ The definition of the identity thinning is a bit more involved. For a scope of
838
+ size n, we are going to need to generate a bit pattern consisting of n ones. We
839
+ define it in two steps. First, cofull defines a bit pattern of k zeros followed by
840
+ infinitely many ones by shifting k places to the left a bit pattern of ones only.
841
+ Then, we obtain full by taking the complement of cofull.
842
+ cofull : Nat -> Integer
843
+ cofull n = oneBits ‘shiftL‘ n
844
+ full : Nat -> Integer
845
+ full n = complement (cofull n)
846
+ We can then define the identity thinning for a scope of size n by pairing
847
+ (full n) as the encoding and n as the bigEnd.
848
+ ones : (sx : SnocList a) -> Th sx sx
849
+ ones sx = let n : Nat; n = length sx in MkTh n (full n) (ones sx)
850
+ The bulk of the work is once again in the eponymous lemma proving that
851
+ this encoding is valid.
852
+ ones : (sx : SnocList a) ->
853
+ let n = length sx in Invariant n (full n) sx sx
854
+ ones [<] = Done
855
+ ones (sx :< x) =
856
+ let 0 nb = eqToSo (testBitFull (S (length sx)) Z) in
857
+ Keep (rewrite shiftRFull (length sx) in ones sx) x
858
+ This proof proceeds once more by induction on the scope. If the scope is
859
+ empty then once again the constructor for the empty thinning will do. In the
860
+ non-empty case, we first appeal to an auxiliary lemma (not shown here) to con-
861
+ struct a proof nb that the bit at position Z for a non-zero full integer is known
862
+ to be True. We then need to use another lemma to cast the induction hypothesis
863
+ which mentions (full (length sx)) so that it may be used in a position where
864
+ we expect a proof talking about (full (length (sx :< x)) ‘shiftR‘ 1).
865
+ 5.3.3
866
+ Properties of the Invariant relation
867
+ This relation has a lot of convenient properties.
868
+ First, it is proof irrelevant: any two proofs that the same i, bs, sx, and sy
869
+ are related are provably equal. Consequently, equality on Th values amounts to
870
+ equality of the bigEnd and encoding values. In particular it is cheap to test
871
+ whether a given thinning is the empty or the identity thinning.
872
+ Second, it can be inverted [CT95] knowing only two bits: whether the natural
873
+ number is empty and what the value of the bit at position Z of the encoding
874
+ is. This is what allowed us to efficiently implement the view function by using
875
+ these two checks and then inverting the Invariant proof to gain access to the
876
+ proof that the remainder of the thinning’s encoding is valid. We will see in
877
+ section 5.5 that this leads to efficient runtime code for the view.
878
+ 20
879
+
880
+ 5.4
881
+ Choose Your Own Abstraction Level
882
+ Access to both the high-level View and the internal Invariant relation means
883
+ that programmers can pick the level of abstraction at which they want to work.
884
+ They may need to explicitly manipulate bits to implement key operators that
885
+ are used in performance-critical paths but can also stay at the highest level for
886
+ more negligible operations, or when proving runtime irrelevant properties.
887
+ In the previous section we saw simple examples of these bit manipulations
888
+ when defining none (using the constant 0 bit pattern) and ones using bit shifting
889
+ and complement to form an initial segment of 1s followed by 0s.
890
+ Other natural examples include the meet and join of two thinnings sharing
891
+ the same wider scope.
892
+ The join can for instance be thought of either as a
893
+ function defined by induction on the first thinning and case analysis on the
894
+ second, emitting a Keep constructor whenever either of the inputs does. Or we
895
+ can observe that the bit pattern in the join is exactly the disjunction of the
896
+ inputs’ respective bit patterns and prove a lemma about the Invariant relation
897
+ instead. This can be visualised as follows. In each column, the meet is a •
898
+ whenever either of the inputs is.
899
+ ◦◦••◦
900
+ ∨ •◦◦••
901
+ •◦•••
902
+ The join is of particular importance because it appears when we convert
903
+ an ‘opened’ view of a term into its co-de Bruijn counterpart. As we mentioned
904
+ earlier, co-de Bruijn terms in an arbitrary scope are represented by the pairing of
905
+ a term indexed by its precise support with a thinning embedding this support
906
+ back into the wider scope.
907
+ When working with such a representation, it is
908
+ convenient to have access to an ‘opened’ view where the outer thinning has
909
+ been pushed inside therefore exposing the term’s top-level constructor, ready
910
+ for case-analysis.
911
+ The following diagram shows the correspondence between an ‘opened’ ap-
912
+ plication node using the view (the diamond ‘$’ node) with two subterms both
913
+ living in the outer scope and its co-de Bruijn form (the circular ‘$’ node) with
914
+ an outer thinning selecting the term support.
915
+ $
916
+ t1
917
+ t2
918
+ ◦◦••◦
919
+ •◦◦••
920
+ $
921
+ t1
922
+ t2
923
+ •◦•••
924
+ ◦••◦
925
+ •◦••
926
+ The outer thinning of the co-de Bruijn term is obtained precisely by com-
927
+ puting the join of the respective outer thinnings of the ‘opened’ application’s
928
+ function and argument.
929
+ These explicit bit manipulations will be preserved during compilation and
930
+ thus deliver more efficient code.
931
+ 21
932
+
933
+ 5.5
934
+ Compiled Code
935
+ The following code block shows the JavaScript code that is produced when
936
+ compiling the view function. We chose to use the JavaScript backend rather
937
+ than e.g. the ChezScheme one because it produces fairly readable code. We
938
+ have modified the backend to also write comments reminding the reader of the
939
+ type of the function being defined and the data constructors the natural number
940
+ tags correspond to. These changes are now available to all in Idris 2’s current
941
+ development version.
942
+ The only manual modifications we have performed are the inlining of a func-
943
+ tion corresponding to a case block, renaming variables and property names to
944
+ make them human-readable, introducing the $tail definitions to make lines
945
+ shorter, and slightly changing the layout.
946
+ /* Thin.Smart.view : (th : Th sx sy) -> View th */
947
+ function Thin_Smart_view($th) {
948
+ switch($th.bigEnd) {
949
+ case 0n: return {h: 0 /* Done */};
950
+ default: {
951
+ const $predBE = ($th.bigEnd-1n);
952
+ const $test = choose(notEq(($th.encoding&1n), 0n)));
953
+ switch($test.tag) {
954
+ case 0: /* Left */ {
955
+ const $tail = $th.encoding>>1n;
956
+ return { tag: 1 /* Keep */
957
+ , val: {bigEnd: $predBE, encoding: $tail}}; }
958
+ case 1: /* Right */ {
959
+ const $tail = $th.encoding>>1n;
960
+ return { tag: 2 /* Drop */
961
+ , val: {bigEnd: $predBE, encoding: $tail}}; }
962
+ }}}}
963
+ Readers can see that the compilation process has erased all of the indices
964
+ and the proofs showing that the invariant tying the efficient runtime represen-
965
+ tation to the high-level specification is maintained. A thinning is represented
966
+ at runtime by a JavaScript object with two properties corresponding to Th’s
967
+ runtime relevant fields: bigEnd and encoding. Both are storing a JavaScript
968
+ bigInt (one corresponding to the Nat, the other to the Integer). For instance
969
+ the thinning [01101] would be at runtime { bigEnd: 5n, encoding: 13n }.
970
+ The view proceeds in two steps. First if the bigEnd is 0n then we know the
971
+ thinning is empty and can immediately return the Done constructor. Otherwise
972
+ we know the thinning to be non-empty and so we can compute the big end of its
973
+ tail ($predBE) by subtracting one to the non-zero bigEnd. We can then inspect
974
+ the bit at position 0 to decide whether to return a Keep or a Drop constructor.
975
+ This is performed by using a bit mask to 0-out all the other bits ($th.bigEnd&1n)
976
+ and checking whether the result is zero. If it is not equal to 0 then we emit
977
+ 22
978
+
979
+ Keep and compute the $tail of the thinning by shifting the original encoding
980
+ to drop the 0th bit. Otherwise we emit Drop and compute the same tail.
981
+ By running view on this [01101] thinning, we would get back (Keep [0110]),
982
+ that is to say { tag: 1, val: { bigEnd: 4n, encoding: 6n } }.
983
+ Thanks to Idris 2’s implementation of Quantitative Type Theory we have
984
+ managed to manufacture a high level representation that can be manipulated
985
+ like a classic inductive family using smart constructors and views without giving
986
+ up an inch of control on its runtime representation.
987
+ The remaining issues such as the fact that we form the view’s constructors
988
+ only to immediately take them apart thus creating needless allocations can be
989
+ tackled by reusing Wadler’s analysis (section 12 of [Wad87]).
990
+ 6
991
+ Conclusion
992
+ We have seen that inductive families provide programmers with ways to root out
993
+ bugs by enforcing strong invariants. Unfortunately these families can get in the
994
+ way of producing performant code despite existing optimisation passes erasing
995
+ redundant or runtime irrelevant data. This tension has led us to take advantage
996
+ of Quantitative Type Theory in order to design a library combining the best of
997
+ both worlds: the strong invariants and ease of use of inductive families together
998
+ with the runtime performance of explicit bit manipulations.
999
+ 6.1
1000
+ Related Work
1001
+ For historical and ergonomic reasons, idiomatic code in Coq tends to center
1002
+ programs written in a subset of the language quite close to OCaml and then
1003
+ prove properties about these programs in the runtime irrelevant Prop fragment.
1004
+ This can lead to awkward encodings when the unrefined inputs force the user
1005
+ to consider cases which ought to be impossible. Common coping strategies in-
1006
+ volve relaxing the types to insert a modicum of partiality e.g. returning an
1007
+ option type or taking an additional input to be used as the default return value.
1008
+ This approach completely misses the point of type-driven development.
1009
+ We
1010
+ benefit a lot from having as much information as possible available during in-
1011
+ teractive editing.
1012
+ This information not only helps tremendously getting the
1013
+ definitions right by ensuring we always maintain vital invariants thus making
1014
+ invalid states unrepresentable, it also gives programmers access to type-driven
1015
+ tools and automation. Thankfully libraries such as Equations [Soz10, SM19]
1016
+ can help users write more dependently typed programs, by taking care of the
1017
+ complex encoding required in Coq. A view-based approach similar to ours but
1018
+ using Prop instead of the zero quantity ought to be possible. We expect that
1019
+ the views encoded this way in Coq will have an even worse computational be-
1020
+ haviour given that Equations uses a sophisticated elaboration process to encode
1021
+ dependent pattern-matching into Gallina. However Coq does benefit from good
1022
+ automation support for unfolding lemmas, inversion principles, and rewriting
1023
+ 23
1024
+
1025
+ by equalities which may compensate for the awkwardness introduced by the
1026
+ encoding.
1027
+ Prior work on erasure [Tej20] has the advantage of offering a fully automated
1028
+ analysis of the code. The main inconvenience is that users cannot state explic-
1029
+ itly that a piece of data ought to be runtime irrelevant and so they may end
1030
+ up inadvertently using it which would prevent its erasure. Quantitative Type
1031
+ Theory allows us users to explicitly choose what is and is not runtime relevant,
1032
+ with the quantity checker keeping us true to our word. This should ensure that
1033
+ the resulting program has a much more predictable complexity.
1034
+ A somewhat related idea was explored by Brady, McKinna, and Hammond
1035
+ in the context of circuit design [BMH07]. In their verification work they index
1036
+ an efficient representation (natural numbers as a list of bits) by its meaning
1037
+ as a unary natural number. All the operations are correct by construction as
1038
+ witnessed by the use of their unary counterparts acting as type-level specifica-
1039
+ tions. In the end their algorithms still process the inductive family instead of
1040
+ working directly with binary numbers. This makes sense in their setting where
1041
+ they construct circuits and so are explicitly manipulating wires carrying bits.
1042
+ By contrast, in our motivating example we really want to get down to actual
1043
+ (unbounded) integers rather than linked lists of bits.
1044
+ 6.2
1045
+ Limitations and Future Work
1046
+ Overall we found this case study using Idris 2, a state of the art language based
1047
+ on Quantitative Type Theory, very encouraging. The language implementation
1048
+ is still experimental (see for instance appendix B for some of the bugs we found)
1049
+ but none of the issues are intrinsic limitations. We hope to be able to push
1050
+ this line of work further, tackling the following limitations and exploring more
1051
+ advanced use cases.
1052
+ 6.2.1
1053
+ Limitations
1054
+ Unfortunately it is only propositionally true that (view (keep th x)) computes
1055
+ to (Keep th x) (and similarly for done/Done and drop/Drop). This means that
1056
+ users may need to manually deploy these lemmas when proving the properties
1057
+ of functions defined by pattern matching on the result of calling the view func-
1058
+ tion. This annoyance would disappear if we had the ability to extend Idris 2’s
1059
+ reduction rules with user-proven equations as implemented in Agda and formally
1060
+ studied by Cockx, Tabareau, and Winterhalter [CTW21].
1061
+ In this paper’s case study, we were able to design the core Invariant relation
1062
+ making the invariants explicit in such a way that it would be provably proof
1063
+ irrelevant. This may not always be possible given the type theory currently im-
1064
+ plemented by Idris 2. Adding support for a proof-irrelevant sort of propositions
1065
+ (see e.g. Altenkirch, McBride, and Swierstra’s work [AMS07]) could solve this
1066
+ issue once and for all.
1067
+ The Idris 2 standard library thankfully gave us access to a polished pure
1068
+ interface to explicitly manipulate an integer’s bits. However these built-in oper-
1069
+ 24
1070
+
1071
+ ations came with no built-in properties whatsoever. And so we had to postulate
1072
+ a (minimal) set of axioms (see appendix A) and prove a lot of useful corollar-
1073
+ ies ourselves. There is even less support for other low-level operations such as
1074
+ reading from a read-only array, or manipulating pointers.
1075
+ We also found the use of runtime irrelevance (the 0 quantity) sometimes
1076
+ somewhat frustrating.
1077
+ Pattern-matching on a runtime irrelevant value in a
1078
+ runtime relevant context is currently only possible if it is manifest for the
1079
+ compiler that the value could only arise using one of the family’s construc-
1080
+ tors.
1081
+ In non-trivial cases this is unfortunately only merely provable rather
1082
+ than self-evident. Consequently we are forced to jump through hoops to ap-
1083
+ pease the quantity checker, and end up defining complex inversion lemmas to
1084
+ bypass these limitations. This could be solved by a mix of improvements to
1085
+ the typechecker and meta-programming using prior ideas on automating inver-
1086
+ sion [CT95, McB96, Mon10].
1087
+ 6.2.2
1088
+ Future work
1089
+ We are planning to explore more memory-mapped representations equipped
1090
+ with a high level interface.
1091
+ We already have experimental results demonstrating that we can use a read-
1092
+ only array as a runtime representation of a binary search tree. Search can be
1093
+ implemented as a proven-correct high level decision procedure that is seem-
1094
+ ingly recursively exploring the ”tree”. At runtime however, this will effectively
1095
+ execute like a classic search by dichotomy over the array.
1096
+ More generally, we expect that a lot of the work on programming on serialised
1097
+ data done in LoCal [VKR+19] thanks to specific support from the compiler can
1098
+ be done as-is in a QTT-based programming language.
1099
+ Indeed, QTT’s type
1100
+ system is powerful enough that tracking these invariants can be done purely in
1101
+ library code.
1102
+ In the short term, we would like to design a small embedded domain specific
1103
+ language giving users the ability to more easily build and take apart products
1104
+ and sums efficiently represented in the style we presented here. Staging would
1105
+ help here to ensure that the use of the eDSL comes at no runtime cost. There
1106
+ are plans to add type-enforced staging to Idris 2, thus really making it the ideal
1107
+ host language for our project.
1108
+ Our long term plan is to go beyond read-only data and look at imperative
1109
+ programs proven correct using separation logic and see how much of this after-
1110
+ the-facts reasoning can be brought back into the types to enable a high-level
1111
+ correct-by-construction programming style that behaves the same at runtime.
1112
+ Acknowledgements
1113
+ We are grateful to Conor McBride for discussions per-
1114
+ taining to the fine details of the unsafe encoding used in TypOS, as well as James
1115
+ McKinna, Fredrik Nordvall Forsberg, Ohad Kammar, and Jacques Carette for
1116
+ providing helpful comments and suggestions on early versions of this paper.
1117
+ 25
1118
+
1119
+ References
1120
+ [AAM+22] Guillaume Allais, Malin Altenm¨uller,
1121
+ Conor McBride, Georgi
1122
+ Nakov, Fredrik Nordvall Forsberg, and Craig Roy. TypOS: An oper-
1123
+ ating system for typechecking actors. In 28th International Confer-
1124
+ ence on Types for Proofs and Programs, TYPES 2022, June 20-25,
1125
+ 2022, Nantes, France, 2022.
1126
+ [AMS07]
1127
+ Thorsten Altenkirch, Conor McBride, and Wouter Swierstra. Ob-
1128
+ servational equality, now! In Aaron Stump and Hongwei Xi, editors,
1129
+ Proceedings of the ACM Workshop Programming Languages meets
1130
+ Program Verification, PLPV 2007, Freiburg, Germany, October 5,
1131
+ 2007, pages 57–68. ACM, 2007.
1132
+ [Atk18]
1133
+ Robert Atkey. Syntax and semantics of quantitative type theory. In
1134
+ Anuj Dawar and Erich Gr¨adel, editors, Proceedings of the 33rd An-
1135
+ nual ACM/IEEE Symposium on Logic in Computer Science, LICS
1136
+ 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM, 2018.
1137
+ [BMH07]
1138
+ Edwin C. Brady, James McKinna, and Kevin Hammond. Construct-
1139
+ ing correct circuits: Verification of functional aspects of hardware
1140
+ specifications with dependent types.
1141
+ In Marco T. Moraz´an, edi-
1142
+ tor, Proceedings of the Eighth Symposium on Trends in Functional
1143
+ Programming, TFP 2007, New York City, New York, USA, April
1144
+ 2-4. 2007, volume 8 of Trends in Functional Programming, pages
1145
+ 159–176. Intellect, 2007.
1146
+ [BMM03]
1147
+ Edwin C. Brady, Conor McBride, and James McKinna. Inductive
1148
+ families need not store their indices.
1149
+ In Stefano Berardi, Mario
1150
+ Coppo, and Ferruccio Damiani, editors, Types for Proofs and Pro-
1151
+ grams, International Workshop, TYPES 2003, Torino, Italy, April
1152
+ 30 - May 4, 2003, Revised Selected Papers, volume 3085 of Lecture
1153
+ Notes in Computer Science, pages 115–129. Springer, 2003.
1154
+ [Bra21]
1155
+ Edwin C. Brady. Idris 2: Quantitative type theory in practice. In
1156
+ Anders Møller and Manu Sridharan, editors, 35th European Confer-
1157
+ ence on Object-Oriented Programming, ECOOP 2021, July 11-17,
1158
+ 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs,
1159
+ pages 9:1–9:26. Schloss Dagstuhl - Leibniz-Zentrum f¨ur Informatik,
1160
+ 2021.
1161
+ [CA20]
1162
+ Jesper Cockx and Andreas Abel. Elaborating dependent (co)pattern
1163
+ matching: No pattern left behind. J. Funct. Program., 30:e2, 2020.
1164
+ [CDT22]
1165
+ The Coq Development Team. The Coq Proof Assistant Reference
1166
+ Manual, version 8.15.2, May 2022.
1167
+ [Cha09]
1168
+ James Maitland Chapman. Type checking and normalisation. PhD
1169
+ thesis, University of Nottingham, July 2009.
1170
+ 26
1171
+
1172
+ [CT95]
1173
+ Cristina Cornes and Delphine Terrasse. Automating inversion of in-
1174
+ ductive predicates in coq. In Stefano Berardi and Mario Coppo,
1175
+ editors, Types for Proofs and Programs, International Workshop
1176
+ TYPES’95, Torino, Italy, June 5-8, 1995, Selected Papers, volume
1177
+ 1158 of Lecture Notes in Computer Science, pages 85–104. Springer,
1178
+ 1995.
1179
+ [CTW21]
1180
+ Jesper Cockx, Nicolas Tabareau, and Th´eo Winterhalter. The tam-
1181
+ ing of the rew: a type theory with computational assumptions. Proc.
1182
+ ACM Program. Lang., 5(POPL):1–29, 2021.
1183
+ [dB72]
1184
+ Nicolaas Govert de Bruijn. Lambda calculus notation with nameless
1185
+ dummies, a tool for automatic formula manipulation, with appli-
1186
+ cation to the Church-Rosser theorem. Indagationes Mathematicae
1187
+ (Proceedings), 75(5):381–392, 1972.
1188
+ [Dyb94]
1189
+ Peter Dybjer.
1190
+ Inductive families.
1191
+ Formal Aspects Comput.,
1192
+ 6(4):440–465, 1994.
1193
+ [McB96]
1194
+ Conor McBride. Inverting inductively defined relations in LEGO.
1195
+ In Eduardo Gim´enez and Christine Paulin-Mohring, editors, Types
1196
+ for Proofs and Programs, International Workshop TYPES’96, Aus-
1197
+ sois, France, December 15-19, 1996, Selected Papers, volume 1512 of
1198
+ Lecture Notes in Computer Science, pages 236–253. Springer, 1996.
1199
+ [McB16]
1200
+ Conor McBride.
1201
+ I got plenty o’ nuttin’.
1202
+ In Sam Lindley, Conor
1203
+ McBride, Philip W. Trinder, and Donald Sannella, editors, A List of
1204
+ Successes That Can Change the World - Essays Dedicated to Philip
1205
+ Wadler on the Occasion of His 60th Birthday, volume 9600 of Lec-
1206
+ ture Notes in Computer Science, pages 207–233. Springer, 2016.
1207
+ [McB18]
1208
+ Conor McBride.
1209
+ Everybody’s got to be somewhere.
1210
+ In Robert
1211
+ Atkey and Sam Lindley, editors, Proceedings of the 7th Workshop on
1212
+ Mathematically Structured Functional Programming, MSFP@FSCD
1213
+ 2018, Oxford, UK, 8th July 2018, volume 275 of EPTCS, pages 53–
1214
+ 69, 2018.
1215
+ [MEL+21] Krzysztof Maziarz, Tom Ellis, Alan Lawrence, Andrew W. Fitzgib-
1216
+ bon, and Simon Peyton Jones. Hashing modulo alpha-equivalence.
1217
+ In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd
1218
+ ACM SIGPLAN International Conference on Programming Lan-
1219
+ guage Design and Implementation, Virtual Event, Canada, June
1220
+ 20-25, 2021, pages 960–973. ACM, 2021.
1221
+ [MM04]
1222
+ Conor McBride and James McKinna. The view from the left. J.
1223
+ Funct. Program., 14(1):69–111, 2004.
1224
+ [Mon10]
1225
+ Jean-Fran¸cois Monin. Proof Trick: Small Inversions. In Yves Bertot,
1226
+ editor, Second Coq Workshop, Edinburgh, United Kingdom, July
1227
+ 2010. Yves Bertot.
1228
+ 27
1229
+
1230
+ [SM19]
1231
+ Matthieu Sozeau and Cyprien Mangin. Equations reloaded: high-
1232
+ level dependently-typed functional programming and proving in coq.
1233
+ Proc. ACM Program. Lang., 3(ICFP):86:1–86:29, 2019.
1234
+ [Soz10]
1235
+ Matthieu Sozeau. Equations: A dependent pattern-matching com-
1236
+ piler. In Matt Kaufmann and Lawrence C. Paulson, editors, Inter-
1237
+ active Theorem Proving, First International Conference, ITP 2010,
1238
+ Edinburgh, UK, July 11-14, 2010. Proceedings, volume 6172 of Lec-
1239
+ ture Notes in Computer Science, pages 419–434. Springer, 2010.
1240
+ [Tej20]
1241
+ Mat´uˇs Tejiˇsˇc´ak.
1242
+ A dependently typed calculus with pattern
1243
+ matching and erasure inference.
1244
+ Proc. ACM Program. Lang.,
1245
+ 4(ICFP):91:1–91:29, 2020.
1246
+ [VKR+19] Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka,
1247
+ Milind Kulkarni, and Ryan R. Newton. Local: a language for pro-
1248
+ grams operating on serialized data. In Kathryn S. McKinley and
1249
+ Kathleen Fisher, editors, Proceedings of the 40th ACM SIGPLAN
1250
+ Conference on Programming Language Design and Implementation,
1251
+ PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages 48–62.
1252
+ ACM, 2019.
1253
+ [Wad87]
1254
+ Philip Wadler. Views: A way for pattern matching to cohabit with
1255
+ data abstraction. In Conference Record of the Fourteenth Annual
1256
+ ACM Symposium on Principles of Programming Languages, Mu-
1257
+ nich, Germany, January 21-23, 1987, pages 307–313. ACM Press,
1258
+ 1987.
1259
+ [WB89]
1260
+ Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
1261
+ phism less ad-hoc. In Conference Record of the Sixteenth Annual
1262
+ ACM Symposium on Principles of Programming Languages, Austin,
1263
+ Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989.
1264
+ A
1265
+ Postulated lemmas for the Bits interface
1266
+ It is often more convenient to reason about integers in terms of their bits. We
1267
+ define the notion of bitwise equality as the pointwise equality according to the
1268
+ testBit.
1269
+ (˜˜˜) : Integer -> Integer -> Type
1270
+ bs ˜˜˜ cs = (i : Nat) -> testBit bs i === testBit cs i
1271
+ Our first postulate is a sort of extensionality principle stating that bitwise
1272
+ equality implies propositional equality.
1273
+ extensionally : {bs, cs : Integer} -> bs ˜˜˜ cs -> bs === cs
1274
+ 28
1275
+
1276
+ This gives us a powerful reasoning principle once combined with axioms
1277
+ explaining the behaviour of various primitives at the bit level.
1278
+ This is why
1279
+ almost all of the remaining axioms are expressed in terms of testBit calls.
1280
+ A.1
1281
+ Logical operations
1282
+ Our first batch of axioms relates logical operations on integers to their boolean
1283
+ counterparts. This is essentially stating that these operations are bitwise.
1284
+ testBitAnd : (bs, cs : Integer) -> (i : Nat) ->
1285
+ testBit (bs .&. cs) i === (testBit bs i && testBit cs i)
1286
+ testBitOr : (bs, cs : Integer) -> (i : Nat) ->
1287
+ testBit (bs .|. cs) i === (testBit bs i || testBit cs i)
1288
+ testBitComplement : (bs : Integer) -> (i : Nat) ->
1289
+ testBit (complement bs) i === not (testBit bs i)
1290
+ Together with the extensionality principle mentioned above this already al-
1291
+ lows us to prove for instance that the binary operators are commutative and
1292
+ associative, that the de Morgan laws hold, or that conjunction distributes over
1293
+ disjunction.
1294
+ A.2
1295
+ Bit Shifting
1296
+ The second set of axiom describes the action of left and right shifting on bit
1297
+ patterns.
1298
+ A right shift of size k will drop the k least significant bits; consequently
1299
+ testing the bit i on the right-shifted integer amounts to testing the bit (k + i)
1300
+ on the original integer.
1301
+ testBitShiftR : (bs : Integer) -> (k : Nat) ->
1302
+ (i : Nat) -> testBit (bs ‘shiftR‘ k) i === testBit bs (k + i)
1303
+ A left shift will add k new least significant bits initialised at 0; consequently
1304
+ testing a bit i on the left-shifted integer will either return False if i is strictly
1305
+ less than k, or the bit at position (i - k) in the original integer.
1306
+ For simplicity we state these results without mentioning the ‘strictly less
1307
+ than’ relation, by considering on the one hand the effect of a non-zero left shift,
1308
+ and on the other the fact that a left-shift by 0 bits is the identity function.
1309
+ testBit0ShiftL : (bs : Integer) -> (k : Nat) ->
1310
+ testBit (bs ‘shiftL‘ S k) Z === False
1311
+ testBitSShiftL : (bs : Integer) -> (k : Nat) -> (i : Nat) ->
1312
+ testBit (bs ‘shiftL‘ S k) (S i) === testBit (bs ‘shiftL‘ k) i
1313
+ 29
1314
+
1315
+ shiftL0 : (bs : Integer) -> (bs ‘shiftL‘ 0) === bs
1316
+ A.3
1317
+ Bit testing
1318
+ The last set of axioms specifies what happens when a bit is set.
1319
+ Testing a bit other than the one that was set amounts to testing it on the
1320
+ original integer.
1321
+ testSetBitOther : (bs : Integer) -> (i, j : Nat) -> Not (i === j) ->
1322
+ testBit (setBit bs i) j === testBit bs j
1323
+ Finally, we have an axiom stating that the integer (bit i) (i.e. 2i) is non-
1324
+ zero.
1325
+ bitNonZero : (i : Nat) -> (bit i == 0) === False
1326
+ B
1327
+ Current Limitations of Idris 2
1328
+ This challenge, suggested by Jacques Carette, highlights some of the current
1329
+ limitations of Idris 2.
1330
+ B.1
1331
+ Problem statement
1332
+ The goal is to use the Vect type defined in section 3.3 and define a view that
1333
+ un-does vector-append. This is a classic exercise in dependently-typed program-
1334
+ ming, the interesting question being whether we can implement the function just
1335
+ as seamlessly with our encoding.
1336
+ Vector append can easily be defined by induction over the first vector.
1337
+ (++) : Vect m a -> Vect n a -> Vect (m + n) a
1338
+ xs@_ ++ ys with (view xs)
1339
+ _ | [] = ys
1340
+ _ | hd :: tl = hd :: (tl ++ ys)
1341
+ If the first vector is empty we can readily return the second vector. If it
1342
+ is cons-headed, we can return the head and compute the tail by performing a
1343
+ recursive call.
1344
+ Equipped with this definition, we can declare the view type which we call
1345
+ SplitAt by analogy with its weakly typed equivalent processing lists. It states
1346
+ that a vector xs of length p can be split at m if p happens to be (m + n) and xs
1347
+ happens to be (pref ++ suff) where pref and suff’s respective lengths are m
1348
+ and n.
1349
+ 30
1350
+
1351
+ data SplitAt : (m : Nat) -> (xs : Vect p a) -> Type where
1352
+ MkSplitAt : (pref : Vect m a) -> (suff : Vect n a) ->
1353
+ SplitAt m (pref ++ suff)
1354
+ The challenge is to define the function proving that a vector of size (m + n)
1355
+ can be split at m.
1356
+ B.2
1357
+ Failing attempts
1358
+ The proof will necessarily go by induction on m, followed by a case analysis on
1359
+ the input vector and a recursive call in the non-zero case.
1360
+ Our first failing attempt successfully splits the natural number, calls the view
1361
+ on the vector xs to take it apart but then fails when performing the recursive
1362
+ call to splitAt.
1363
+ failing "tl is not accessible in this context"
1364
+ splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
1365
+ splitAt 0 xs = MkSplitAt [] xs
1366
+ splitAt (S m) xs@_ with (view xs)
1367
+ _ | hd :: tl@_ with (splitAt m tl)
1368
+ _ | res = ?a
1369
+ This reveals an issue in Idris 2’s handling of the interplay between @-patterns
1370
+ and quantities: the compiler arbitrarily decided to make the alias tl runtime
1371
+ irrelevant only to then complain that tl is not accessible when we want to
1372
+ perform the recursive call (splitAt m tl)!
1373
+ In order to work around this limitation, we decided to let go of @-patterns
1374
+ and write the fully explicit clause ourselves, using dotted patterns to mark the
1375
+ forced expressions.
1376
+ failing "Can’t match on ?postpone [no locals in scope] (User dotted)"
1377
+ splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
1378
+ splitAt 0 xs = MkSplitAt [] xs
1379
+ splitAt (S m) xs@_ with (view xs)
1380
+ _ | hd :: tl with (splitAt m tl)
1381
+ splitAt (S m) .(hd :: (pref ++ suff))
1382
+ | hd :: .(pref ++ suff)
1383
+ | MkSplitAt pref suff = ?a
1384
+ The left-hand side now typechecks but the case tree builder fails with a
1385
+ perplexing error. This reveals a bug in Idris 2’s implementation of elaboration of
1386
+ pattern-matching functions to case trees. Instead of ignoring dotted expressions
1387
+ when building the case tree (these expressions are forced and so the variables
1388
+ they mention will have necessarily been bound in another pattern), it attempts
1389
+ to use them to drive the case-splitting strategy. This is a well-studied problem
1390
+ and should be fixable by referring to Cockx and Abel’s work [CA20].
1391
+ 31
1392
+
1393
+ B.3
1394
+ Working Around Idris 2’s Limitations
1395
+ This leads us to our working solution. Somewhat paradoxically, working around
1396
+ these Idris 2 bugs led us to a more principled solution whereby the pattern-
1397
+ matching step needed to adjust the result returned by the recursive call is ab-
1398
+ stracted away in an auxiliary function whose type clarifies what is happening.
1399
+ From an m split on xs, we can easily compute an (S m) split on (x :: xs) by
1400
+ cons-ing x on the prefix.
1401
+ (::) : (x : a) -> SplitAt m xs -> SplitAt (S m) (x :: xs)
1402
+ x :: MkSplitAt pref@(MkVect _ Refl) suff
1403
+ = MkSplitAt (x :: pref) suff
1404
+ In this auxiliary function, xs is clearly runtime irrelevant and so the case-
1405
+ splitter will not attempt to inspect it, thus generating the correct case tree.
1406
+ We are forced to match further on pref (in particular by making the equality
1407
+ proof Refl) so that just enough computation happens at the type level for the
1408
+ typechecker to see that things do line up. A proof irrelevant type of propositional
1409
+ equality would have helped us here.
1410
+ We can put all of these pieces together and finally get our splitAt view.
1411
+ splitAt : (m : Nat) -> (xs : Vect (m + n) a) -> SplitAt m xs
1412
+ splitAt 0 xs = MkSplitAt [] xs
1413
+ splitAt (S m) xs@_ with (view xs)
1414
+ _ | hd :: tl = hd :: splitAt m tl
1415
+ We do want to reiterate that these limitations are not intrinsic limitations of
1416
+ the approach, there are just flaws in the current experimental implementation
1417
+ of the Idris 2 language and can and should be remedied.
1418
+ 32
1419
+
D9E0T4oBgHgl3EQfQgCE/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DNE2T4oBgHgl3EQf9Qm6/content/tmp_files/2301.04227v1.pdf.txt ADDED
@@ -0,0 +1,3169 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ arXiv:2301.04227v1 [hep-th] 10 Jan 2023
2
+ Induced energy-momentum tensor in de Sitter scalar QED and its implication for
3
+ induced current
4
+ Omid Gholizadeh Meimanat and Ehsan Bavarsad∗
5
+ Department of Physics, University of Kashan, 8731753153 Kashan, Iran
6
+ The aim of this research is to investigate the vacuum energy-momentum tensor of a quantized,
7
+ massive, nonminimally coupled scalar field induced by a uniform electric field background in a four-
8
+ dimensional de Sitter spacetime (dS4). We compute the expectation value of the energy-momentum
9
+ tensor in the in-vacuum state and then regularize it using the adiabatic subtraction procedure.
10
+ The correct trace anomaly of the induced energy-momentum tensor that confirmed our results is
11
+ significant. The nonconservation equation for the induced energy-momentum tensor imposes the
12
+ renormalization condition for the induced electric current of the scalar field. The findings of this
13
+ research indicate that there are significant differences between the two induced currents which are
14
+ regularized by this renormalization condition and the minimal subtraction condition.
15
+ I.
16
+ INTRODUCTION
17
+ In the past several decades quantum field theory in curved spacetime has played a major role in the study of
18
+ the effects of gravity on quantum fields; for an pedagogical introduction see [1–3]. A precise understanding of the
19
+ quantum effects in curved spacetime was acquired by the late 1960s by Parker [4–6] and followed by investigations of
20
+ others. Indeed, these early investigations focused primarily on the physical consequences of particle creation in the
21
+ cosmological spacetimes. It has been illustrated that a time-varying gravitational field creates elementary particles
22
+ from the vacuum. Parker discovered that this particle creation process can be analyzed by using the Bogoliubov
23
+ transformations method [5]. Formulating a general framework of quantum field theory in curved spacetime involves
24
+ nontrivial questions.
25
+ The problem of particle concept is a deep one, and it is associated with one of the most
26
+ fundamental difficulties of quantum field theory in curved spacetime, that there is no an unambiguous or unique
27
+ vacuum state; a detailed discussion can be found in [1, 2]. This ambiguity is reflected in the theory by the absence of
28
+ an unambiguous or unique preferred mode solutions of the field equation, which is in turn a consequence of symmetry
29
+ group of the spacetime. Since in a general nonstatic curved spacetime there is generically no any timelike Killing
30
+ vector field, it is not possible to classify modes as positive-frequency or negative-frequency. Indeed, it is possible to
31
+ construct a compleat set of modes, however the problem is that there are many of such sets and we will not have
32
+ any criterion available to select a unique privileged choice of the modes. One of the key lessens learned from the
33
+ development of this subject is that the notion of particle number does not generally have universal significant. Hence,
34
+ the expectation value of the energy-momentum tensor in a suitable vacuum state is perhaps more physically relevant
35
+ object to probe the structure of quantum fields in curved spacetime rather than particle number quantity [1]. Part of
36
+ reason is that the expectation value of the energy-momentum tensor in a fixed vacuum state transforms according to
37
+ the usual tensor transformation law. In particular, if the vacuum expectation value of the energy-momentum tensor
38
+ vanishes for an observer, it will vanish for all observers. On the contrary, the expectation of particle number is an
39
+ essential observer-dependent quantity. The energy-momentum tensor is also important, because it is directly relevant
40
+ to explore the consequences of the quantum field dynamics for the geometry of the spacetime through the Einstein
41
+ equation. Hence, it is interesting to investigate the expectation value of the energy-momentum tensor in a suitable
42
+ vacuum state.
43
+ Since the mid-seventies, significant advances have been made in the computation of the energy-momentum tensor of
44
+ the quantum fields as well as its applications in the cosmological context. An essential feature of these computations
45
+ is that they all involve the ultraviolet divergencies.
46
+ In fact, such divergencies occur naturally in quantum field
47
+ theory calculations. Various prescriptions have been developed for rendering the energy-momentum tensor finite.
48
+ Among these prescriptions, Pauli-Villars regularization [7, 8], dimensional regularization [9–11], and zeta-function
49
+ regularization [11–14] were originally developed for use in Minkowski spacetime. Several sets of fictitious fields may
50
+ be necessary to remove all of the divergences, making Pauli-Villars regularization rather complicated. In [13], it was
51
+ pointed out that dimensional regularization procedure is ambiguous in curved spacetime due to the fact that in some
52
+ classes of spacetimes, there is no natural way to generalize the dimensionality of the spacetime and the answer would
53
+ be different in different extensions to D dimensions. This method also suffers from limitation that one needs, in
54
55
+
56
+ 2
57
+ principle, to solve the field equations exactly. Another often used regularization procedure is point-splitting technique
58
+ [15–18] which is intrinsically designed to be used in the position-space representation of the composite operators.
59
+ This regularization is implemented by placing the two quantum fields at distant points separated by an infinitesimal
60
+ distance in a nonnull direction and then the divergencies that arise in the coincidence limit are absorbed into the
61
+ renormalized parameters. Although point-splitting technique is the most applicable regularization scheme, it involves
62
+ considerable technical complication. An alternative regularization prescription is adiabatic subtraction [19–23] which
63
+ was originally invented by Parker [5] to obtain the average density of the scalar particles created in a spatially flat
64
+ Friedmann-Lemaitre-Robertson-Walker (FLRW) universe. This approach is only applicable in spacetimes with slowly
65
+ varying curvature, and in fact an adiabatic expansion is an expansion in number derivatives of the spacetime metric.
66
+ Hence, it is especially useful for studies that involve numerical techniques and problems of cosmological interest
67
+ [22]. In order to arrive a sensible semiclassical backreaction theory of quantum fields in curved spacetime, Wald has
68
+ propounded [24] a minimal set of properties that the renormalized energy-momentum tensor should satisfy. These
69
+ properties which are often called the Wald axioms, in the weaker set of axioms, can be expressed as follows [1, 3]:
70
+ (1) The expectation value of the energy-momentum tensor in any state at a point p in spacetime is covariant under
71
+ general coordinate transformations (diffeomorphisms) and is independent of spacetime geometry at any point q ̸= p.
72
+ (2) The off-diagonal matrix element of energy-momentum tensor between any orthogonal pairs of states is finite and
73
+ unambiguous. (3) For all states, the expectation value of the energy-momentum tensor is covariantly conserved.
74
+ (4) The expectation value of the energy-momentum tensor vanishes in the relevant vacuum state in the Minkowski
75
+ spacetime. It was shown in [18] that the fifth axiom of Ref. [24] cannot be satisfied. Wald then proved a remarkable
76
+ result, i.e., the uniqueness theorem, which states that if the expectation value of the energy-momentum tensor satisfies
77
+ the Wald axioms (1)-(3), then it is unique up to the addition of a local conserved tensor [24]. Hence, the final results
78
+ for the renormalized energy-momentum tensor do not depend on the employed regularization method [1, 3]. Using
79
+ these regularization techniques, the regularized and renormalized energy-momentum tensor of a neutral scalar field
80
+ has been widely investigated in FLRW universes [19–22, 25–33] and its physical implications for cosmological issues
81
+ have been explored [34–36].
82
+ It is thought that the very early universe can be approximately described by de Sitter spacetime (dS) [2], which
83
+ motivates us to study the quantum field theory in this spacetime. Gibbons and Hawking [37] originally discovered
84
+ that an inertial observer with a particle detector at rest perceives the de Sitter invariant vacuum state as a bath of
85
+ thermal radiation which apparently comes from the cosmological event horizon. In this context, a relatively simple
86
+ model problem is that of a neutral scalar field with no self-interactions whose regularized and renormalized energy-
87
+ momentum tensor has been analyzed [11, 38–45]. In [39–41], it was subsequently shown that the vacuum state of the
88
+ quantum field in dS is unstable to particle creation. Furthermore, the study of semiclassical backreaction effect of
89
+ the quantum corrections onto the Hubble rate in [42] indicated that these contributions can potentially result in a
90
+ superacceleration phase, i.e., a phase when the Hubble rate increases as the dS expands. The spontaneous creation
91
+ of pairs of charged particles from the vacuum by a strong electric field background in Minkowski spacetime is a
92
+ well-known nonperturbative feature of quantum field theory [46–48]. Since the clearest version of this effect was
93
+ worked out by Schwinger, it is named the Schwinger effect; reviews of this subject can be found in, e.g., [49, 50]. The
94
+ phenomenon of particle creation has revealed the close analogy between quantum field theory in dS and a constant,
95
+ uniform electric field in Minkowski spacetime [40, 41, 51, 52]. This analogy motivates us to explore the combined
96
+ implications of the dS Gibbons-Hawking effect and the Schwinger effect. Aside from this analogy, there are arguments
97
+ and evidences that require the existence of strong electromagnetic fields in the early universe [53, 54]. This logical
98
+ possibility provides a further reason for studying quantum field theory in the presence of an electric field in dS.
99
+ There has been numerous studies to investigate the Schwinger pair creation by a uniform electric field background
100
+ with the constant energy density in a dS. Seminal contributions have been made by [55, 56].
101
+ The Bogoliubov
102
+ transformation method has been used to analyze the Schwinger effect for the charged scalar field in two- [55–60],
103
+ four- [61], and arbitrary-dimensional [62] de Sitter spacetimes. The Bogoliubov transformation method has been
104
+ used to investigate the Schwinger effect for the Dirac field in dS [63–67], in a manner similar to that used for the
105
+ corresponding charged scalar field. In this method of analysis, which bring its own insights, the expectation value for
106
+ the number of particles is related to the Bogoliubov coefficients which, in turn, can be determined by specifying the
107
+ in-vacuum and out-vacuum states. A reasonable definition of the out-vacuum state requires that the parameters mass
108
+ of the quantum field and the electric field strength to satisfy the semiclassical condition. For a created semiclassical
109
+ particle, this condition implies that either or both the mass and the magnitude of its electric potential energy acroses
110
+ one Hubble radius must be much greater than the energy scale determined by the spacetime curvature [60, 61]. An
111
+ immediate consequence of the semiclassical condition is that the entire physical ranges of the parameters mass and
112
+ electric field strength cannot be probed by this method. A useful alternative approach for studying the Schwinger
113
+ effect in dS was introduced in Ref. [60]. In this approach the expectation values of the objects such as the electric
114
+ current and the energy-momentum tensor of the quantum field in the in-vacuum state are investigated. The choose
115
+ of the in-state as the vacuum is justified form various viewpoints; see [55]. Regarding the regularity properties, it is a
116
+
117
+ 3
118
+ Hadamard and adiabatic state [56, 60]. The regularized expectation value of the electric current (also called induced
119
+ current) in the in-vacuum state of the charged scalar field coupled to a constant, uniform electric field background
120
+ has been evaluated in two- [60], three- [62], and four-dimensional [61, 68] de Sitter spacetimes. In those analyses the
121
+ behavior of the induced current can be probed in the infrared regime for which the quantum field mass is smaller than
122
+ the magnitude of the electric potential energy acroses one Hubble radius which in turn is smaller than the energy scale
123
+ determined by the spacetime curvature. The authors found that, although the induced current has been computed
124
+ using different regularization method, in the infrared regime the induced current increases with deceasing electric field
125
+ strength [60–62, 68]. This peculiar behavior was first observed in [60] and is called the infrared hyperconductivity. In
126
+ [69], the authors gave an alternative derivation of the infrared hyperconductivity phenomenon in dS4 using the uniform
127
+ asymptotic approximation method. For a charged scalar field coupled to a uniform electromagnetic field background
128
+ with a constant energy density electric field parallel to a conserved flux magnetic field in dS4, the Schwinger effect
129
+ using Bogoliubov transformation method [70–72] and the induced current [70, 71] in the in-vacuum state have been
130
+ investigated; and a period of infrared hyperconductivity was found. The in-vacuum induced current of the Dirac field
131
+ coupled to a constant, uniform electric field background in two- [65] and four-dimensional [73] de Sitter spacetimes
132
+ has been analyzed in a manner similar to that used for the corresponding scalar field. It was subsequently found that,
133
+ in contrast to the case of corresponding scalar field, the infrared hyperconductivity phenomenon does not occur in the
134
+ induced current of the Dirac field. Another peculiar behavior of the induced current occurs when the direction of the
135
+ induced current is opposite the direction of applied electric field background. This phenomenon which is called the
136
+ negative current, has been reported for both the scalar field [61, 68] with essentially small mass and the Dirac field
137
+ [73] with any mass in the four-dimensional de Sitter spacetime. For the scalar field case the negative current occurs in
138
+ a finite interval of the electric field strength, and for the Dirac field case it occurs below a certain value of the electric
139
+ field strength which depends on the mass. In Refs. [74, 75], some notable attempts have been made to explain and
140
+ remedy these peculiarities of the induced current. Beside the induced current, the regularized expectation value of the
141
+ energy-momentum tensor (also called the induced energy-momentum tensor) in the in-vacuum state of the charged
142
+ scalar [76–78] and Dirac [79] quantum fields coupled to a constant, uniform electric field background has been analyzed
143
+ in different dimensions of dS. In two-dimensional dS, the induced energy-momentum tensor of the charged scalar field
144
+ has been analyzed in [76], and subsequently the nonperturbative, regularized, one-loop effective Lagrangian of scalar
145
+ QED has been constructed; the induced energy-momentum tensor of the corresponding Dirac field has been derived
146
+ in [79], and then applied to study of the gravitational backreaction effect. The trace of the induced energy-momentum
147
+ tensor of the charged, massive scalar field conformally coupled to the Ricci scalar curvature of three- [77] and four-
148
+ dimensional [78] de Sitter spacetimes has been computed; and to examine the evolution of the Hubble constant, the
149
+ induced energy-momentum tensor has been obtained from the trace, along with the assumption that the created pairs
150
+ act like a perfect fluid with a vacuum equation of state. By applying the Bogoliubov transformation method, the
151
+ energy-momentum tensor of the Schwinger scalar pairs created by a constant, uniform electric field background in an
152
+ arbitrary dimensional dS has been computed under the two limiting conditions, i.e., the heavy scalar field [62] and
153
+ the strong electric field [80]. In both these cases, it was found that the Hubble constant decays as a consequence
154
+ of the Schwinger pair creation. Before closing the present section, it is worthwhile to mention that the Schwinger
155
+ effect has been studied in FLRW spacetimes [81] and in the framework of cosmological models [69, 82–92]. The role
156
+ of strong electromagnetic fields in astrophysics and cosmology was reviewed in [93]. The objectives of this article
157
+ are to investigate the induced energy-momentum tensor of the charged scalar field coupled to a uniform electric field
158
+ background in dS4, and to analyze its nonconservation equation. The importance and originality of this study are that
159
+ it calculates the induced energy-momentum tensor and explores a relation between the induced energy-momentum
160
+ tensor and the induced current which leads to new insights into the regularization and behavior of the induced current.
161
+ The remaining part of the article proceeds as follows: In Sec. II, we define and construct the basic elements of
162
+ the formalism that will be necessary in our subsequent discussions. We then carry out explicit computation of the
163
+ induced energy-momentum tensor in Sec. III. The properties of the induced energy-momentum tensor are explored
164
+ in detail in Sec. IV. In Sec. V, we analyze the nonconservation equation of the induced energy-momentum tensor,
165
+ this investigation yields a relation between the induced energy-momentum tensor and the induced current. Then the
166
+ properties of the resulting induced current are discussed in detail. In Sec. VI, we present the findings of the research.
167
+ In the Appendix we present further supplementary data associated with the calculation of the expectation values of
168
+ the components of the energy-momentum tensor.
169
+ II.
170
+ BASIC DEFINITIONS AND CONSTRUCTIONS
171
+ In this section we shall define and construct the basic elements of the formalism that will be necessary in our
172
+ subsequent discussions.
173
+
174
+ 4
175
+ A.
176
+ Specification of the model
177
+ We have already mentioned that we consider a massive complex scalar field ϕ(x), coupled to the electromagnetic
178
+ vector potential Aµ(x), which describes a uniform electric field background with a constant energy density in the
179
+ conformal Poincar´e patch of dS4. To represent this region of dS4 which is conformally related to a region of Minkowski
180
+ spacetime, we choose the coordinates xµ = (τ, x) that the ranges of the conformal time τ, and the comoving spatial
181
+ coordinates x are given by
182
+ τ ∈
183
+
184
+ − ∞, 0
185
+
186
+ ,
187
+ x ∈ R3.
188
+ (1)
189
+ In terms of these coordinates the metric of the spacetime takes the form
190
+ gµνdxµdxν = Ω2(τ)
191
+
192
+ dτ 2 − dx · dx
193
+
194
+ ,
195
+ (2)
196
+ with the conformal scale factor
197
+ Ω(τ) = − 1
198
+ Hτ ,
199
+ (3)
200
+ where H is the Hubble constant. The nonzero Christoffel symbols for the metric (2) are given by
201
+ Γ0
202
+ 00 =
203
+ ˙Ω
204
+ Ω,
205
+ Γ0
206
+ ij =
207
+ ˙Ω
208
+ Ωδij,
209
+ Γi
210
+ 0j =
211
+ ˙Ω
212
+ Ωδi
213
+ j,
214
+ (4)
215
+ where the roman indices i, j denote only three spatial components and run from 1 to 3. We use the overdot to denote
216
+ differentiation with respect to the conformal time τ. From Eq. (4) the Ricci tensor and hence the Ricci scalar can be
217
+ calculated
218
+ Rµν = 3H2gµν,
219
+ R = 12H2.
220
+ (5)
221
+ We put a uniform electric field background with a constant energy density on the Poincar´e patch represented in
222
+ Eq. (2). Without loss of generality, we choose our coordinates so that this electric field to point in the x1 direction.
223
+ Thus the nonzero components of the electromagnetic field tensor are
224
+ F01 = −F10 = Ω2(τ)E,
225
+ (6)
226
+ where E is a constant. It is convenient to express this electromagnetic field tensor in terms of a vector potential in
227
+ the Coulomb gauge [60–62] as
228
+ Aµ(τ) = − E
229
+ H2τ δ1
230
+ µ.
231
+ (7)
232
+ The compleat action Stot of this theory can be represented as sum of a pure gravitational piece, an electromagnetic
233
+ piece, and a scalar field piece
234
+ Stot = Sgr + Sem + S.
235
+ (8)
236
+ Here Sgr is the Einstein-Hilbert action that only includes the gravitation piece of the compleat action, and is given by
237
+ Sgr =
238
+ 1
239
+ 16πG
240
+
241
+ d4x√−g
242
+
243
+ R − 2Λc
244
+
245
+ ,
246
+ (9)
247
+ where G is Newton’s gravitational constant, g is the determinant of the metric, R is the Ricci scalar of the spacetime,
248
+ and Λc is the cosmological constant. The electromagnetic piece of the compleat action is expressed in terms of the
249
+ electromagnetic field tensor as
250
+ Sem = −1
251
+ 4
252
+
253
+ d4x√−gFµνF µν.
254
+ (10)
255
+ The dynamics of the complex scalar field ϕ(x) of mass m coupled to the electromagnetic vector potential (7) with
256
+ coupling e is governed by the last piece of the compleat action which can be written as
257
+ S =
258
+
259
+ d4x√−g
260
+
261
+ gµν�
262
+ ∂µ + ieAµ
263
+
264
+ ϕ
265
+
266
+ ∂ν − ieAν
267
+
268
+ ϕ∗ − (m2 + ξR)ϕϕ∗�
269
+ ,
270
+ (11)
271
+
272
+ 5
273
+ where ξ is a dimensionless nonminimal coupling constant which describes the strength of the coupling ϕ to the Ricci
274
+ scalar (5). The Euler-Lagrange equations of motion give the Klein-Gordon equation for the scalar field
275
+ 1
276
+ √−g ∂µ
277
+ �√−ggµν∂νϕ
278
+
279
+ + 2iegµνAµ∂νϕ − e2gµνAµAνϕ + (m2 + ξR)ϕ = 0,
280
+ (12)
281
+ and the Maxwell equation for the electromagnetic field
282
+ ∇νF νµ = jµ,
283
+ (13)
284
+ where ∇ denotes the covariant derivative operator, and jµ is the electric current of the scalar field caused by the
285
+ electric field background (6) which is defined by
286
+ jµ(x) = iegµν��
287
+ ∂νϕ + ieAνϕ
288
+
289
+ ϕ∗ − ϕ
290
+
291
+ ∂νϕ∗ − ieAνϕ∗��
292
+ .
293
+ (14)
294
+ It is straightforward to verify that ∇µjµ = 0, i.e., the electric current is conserved.
295
+ B.
296
+ Preliminary definition of the energy-momentum tensor
297
+ The classical Einstein equation can be derived from the compleat action (8) by demanding the invariance of Stot
298
+ under infinitesimal variation of the metric δgµν, or equivalently, infinitesimal variation of the inverse metric δgµν.
299
+ This condition requires that
300
+ 2
301
+ √−g
302
+ δStot
303
+ δgµν =
304
+ 2
305
+ √−g
306
+ � δSgr
307
+ δgµν + δSem
308
+ δgµν + δS
309
+ δgµν
310
+
311
+ = 0.
312
+ (15)
313
+ The Variation of expression (9) with respect to δgµν leads to
314
+ 2
315
+ √−g
316
+ δSgr
317
+ δgµν =
318
+ 1
319
+ 8πG
320
+
321
+ Rµν − 1
322
+ 2Rgµν + Λcgµν
323
+
324
+ .
325
+ (16)
326
+ The variations of the electromagnetic action Sem, and the scalar field action S, with respect to δgµν define the
327
+ energy-momentum tensor of the electromagnetic field T (em)
328
+ µν
329
+ , and the energy-momentum tensor of the scalar field Tµν,
330
+ respectively, as
331
+ 2
332
+ √−g
333
+ δSem
334
+ δgµν = T (em)
335
+ µν
336
+ ,
337
+ (17)
338
+ 2
339
+ √−g
340
+ δS
341
+ δgµν = Tµν.
342
+ (18)
343
+ Plugging expressions (10) and (11) into Eqs. (17) and (18), respectively, and following the standard calculus of
344
+ variations procedure yields the energy-momentum tensor of the electromagnetic field
345
+ T (em)
346
+ µν
347
+ = 1
348
+ 4gµνFρσF ρσ + gρσFµρFσν,
349
+ (19)
350
+ and a preliminary expression for the energy-momentum tensor of the scalar field
351
+ Tµν =
352
+ ��
353
+ 4ξ − 1
354
+
355
+ gρσ�
356
+ ∂ρ + ieAρ
357
+
358
+ ϕ
359
+
360
+ ∂σ − ieAσ
361
+
362
+ ϕ∗ +
363
+
364
+ 1 − 4ξ
365
+
366
+ m2ϕϕ∗ +
367
+ �1
368
+ 2 − 4ξ
369
+
370
+ ξRϕϕ∗�
371
+ gµν
372
+ +
373
+
374
+ 1 − 2ξ
375
+ ��
376
+ ∂µϕ∂νϕ∗ + ∂νϕ∂µϕ∗�
377
+ + ieAµ
378
+
379
+ ϕ∂νϕ∗ − ∂νϕϕ∗�
380
+ + ieAν
381
+
382
+ ϕ∂µϕ∗ − ∂µϕϕ∗�
383
+ + 2e2AµAνϕϕ∗ + 2ξΓρ
384
+ µν
385
+
386
+ ϕ∂ρϕ∗ + ∂ρϕϕ∗�
387
+ − 2ξ
388
+
389
+ ∂µ∂νϕϕ∗ + ϕ∂µ∂νϕ∗�
390
+ .
391
+ (20)
392
+ Plugging three expressions (16)-(18) into Eq. (15) gives the Einstein equation
393
+ Rµν − 1
394
+ 2Rgµν + Λcgµν = −8πG
395
+
396
+ T (em)
397
+ µν
398
+ + Tµν
399
+
400
+ .
401
+ (21)
402
+
403
+ 6
404
+ An important property of the Einstein equation is that both sides of Eq. (21) have identically vanishing covariant
405
+ divergences, which implies
406
+ ∇µT µν = −∇µT (em)µν.
407
+ (22)
408
+ Using the Klein-Gordon Eq. (12), it is straightforward to show that the covariant divergence of expression (20) is
409
+ given by
410
+ ∇µT µν = −jµF µν,
411
+ (23)
412
+ Apparently, the energy-momentum tensor of the scalar field is not covariantly conserved in the presence of the
413
+ electromagnetic field, as the consequence of the electromagnetic interactions. We show that the nonconservation of
414
+ Tµν is compatible with the nonconservation of T (em)
415
+ µν
416
+ so that the relation (22) is satisfied, and hence the total energy
417
+ momentum tensor is covariantly conserved. By taking the covariant divergence of the expression (19) and using the
418
+ Maxwell equation (13), it is seen that
419
+ ∇µT (em)µν = jµF µν.
420
+ (24)
421
+ As a result of Eqs. (23) and (24), it is evident that the relation (22) is satisfied. Hence, the total energy-momentum
422
+ tensor Tµν + T (em)
423
+ µν
424
+ is manifestly conserved.
425
+ It will be important to state that we will treat the classical gravitational field (2) and the classical electromagnetic
426
+ field (7) as fixed field configurations which they are unaffected by the dynamics of the quantum complex scalar field
427
+ ϕ(x) in response to these backgrounds. In fact, the Einstein equation (21) describes the backreaction effects on the
428
+ gravitational field, and the Maxwell equation (13) and Eq. (24) describe the backreaction effects on the electromagnetic
429
+ field. Indeed, due to the conceptual importance of Eq. (23) in our subsequent discussions, we have presented Eqs. (13),
430
+ (21), and (24) to provide a fairly detailed discussion of its derivation. It is then clear that we do not discuss these
431
+ equations further in this article.
432
+ C.
433
+ Quantizing the complex scalar field
434
+ Quantizing the complex scalar field ϕ(x), in the classical gravitational (2) and electromagnetic (7) field backgrounds
435
+ is completely straightforward and follows exactly the same route as that of a complex scalar field in Minkowski
436
+ spacetime. We will solve the Kline-Gordon Eq. (12), and then adopting canonical quantization method, we can define
437
+ the in-vacuum state to obtain the expectation value of the energy-momentum tensor operator.
438
+ Taking account of the fact that the gravitational (2) and electromagnetic (7) backgrounds are invariant under
439
+ spatial translations, it is convenient to write the mode solution of Eq. (12) as
440
+ Uk(x) = Ω−1(τ)eik·xf(τ),
441
+ (25)
442
+ where k is the comoving momentum. Plugging Eqs. (2), (7), and (25) into Eq. (12), we can put the differential
443
+ equation in a standard form by the change of variable z = 2ikτ so that k = |k|. Then it becomes
444
+ d2f
445
+ dz2 +
446
+
447
+ − 1
448
+ 4 + κ
449
+ z + 1/4 − γ2
450
+ z2
451
+
452
+ f(z) = 0,
453
+ (26)
454
+ where the dimensionless parameters are defined through
455
+ µ = m
456
+ H ,
457
+ λ = − eE
458
+ H2 ,
459
+ ¯ξ = ξ − 1
460
+ 6,
461
+ r = kx
462
+ k ,
463
+ κ = −iλr,
464
+ γ =
465
+
466
+ 1
467
+ 4 − λ2 − µ2 − 12¯ξ.
468
+ (27)
469
+ Two values of ξ are of particular interest that are the minimally coupled case ξ = 0, and conformally coupled
470
+ case ξ = 1/6 which implies ¯ξ = 0. The variable kx which appears in the definition of the parameter r, denotes
471
+ the component of the comoving momentum k along the electric field background. Equation (26) is the Whittaker
472
+ equation, and the solutions are called Whittaker functions; see, e.g., [94]. We define the in-vacuum state |in⟩ so
473
+ that in the remote past (τ → −∞) where the spacetime is asymptotically Minkowskian, an inertial observer there
474
+ would identify this state with a physical vacuum. This vacuum state may be represented by a mode solution of the
475
+ Whittaker Eq. (26) which behaves like a mode function in Minkowski spacetime in the limit of τ → −∞. Hence, the
476
+
477
+ 7
478
+ solution of Eq. (26) with the desired asymptotic form in the limit of |z| → ∞ which can be represented in terms of a
479
+ Mellin-Barnes integral [94] is
480
+ Wκ,γ(z) =
481
+ e− z
482
+ 2
483
+ Γ
484
+ � 1
485
+ 2 + γ − κ
486
+
487
+ Γ
488
+ � 1
489
+ 2 − γ − κ
490
+
491
+ � +i∞
492
+ −i∞
493
+ ds
494
+ 2πiΓ
495
+ �1
496
+ 2 + γ + s
497
+
498
+ Γ
499
+ �1
500
+ 2 − γ + s
501
+
502
+ Γ
503
+
504
+ − κ − s
505
+
506
+ z−s,
507
+ (28)
508
+ with the condition that the phase of the variable z and the values of the parameters γ and κ must satisfy the following
509
+ inequalities
510
+ ��ph(z)
511
+ �� < 3π
512
+ 2 ,
513
+ 1
514
+ 2 ± γ − κ ̸= 0, −1, −2, · · · .
515
+ (29)
516
+ In expression (28), the factors denoted by Γ are the gamma functions. The contour of the Mellin-Barnes integral (28)
517
+ consists of a straight vertical line from minus infinity to infinity, parallel to imaginary axis in the complex plane, and
518
+ of a semicircle at infinity with indentations if necessary to avoid poles of the integrand in a way that separates the
519
+ poles of Γ
520
+ � 1
521
+ 2 + γ + s
522
+
523
+ and Γ
524
+ � 1
525
+ 2 − γ + s
526
+
527
+ from the poles of Γ
528
+
529
+ − κ − s
530
+
531
+ . The normalized mode functions which behave
532
+ like the positive frequency Minkowski mode functions in the remote past are given by [61, 62],
533
+ Uk(x) =
534
+ 1
535
+
536
+ 2k
537
+ e
538
+ iπκ
539
+ 2 Ω−1(τ)eik·xWκ,γ
540
+
541
+ 2ikτ
542
+
543
+ .
544
+ (30)
545
+ Besides, the normalized mode functions which behave like the negative frequency Minkowski mode functions in the
546
+ remote past are found to be [61, 62],
547
+ Vk(x) =
548
+ 1
549
+
550
+ 2k
551
+ e− iπκ
552
+ 2 Ω−1(τ)e−ik·xWκ,γ
553
+
554
+ − 2ikτ
555
+
556
+ .
557
+ (31)
558
+ We have conventionally normalized the mode functions (30) and (31) such that their Wronskian to be
559
+ Uk ˙U ∗
560
+ k − U ∗
561
+ k ˙Uk = V ∗
562
+ k ˙Vk − Vk ˙V ∗
563
+ k = iΩ−2(τ).
564
+ (32)
565
+ These mode functions will be orthonormal with respect to the conserved scalar product integrated over the constant
566
+ τ hypersurface [62]. The usual canonical quantization will proceed by introducing the creation a†
567
+ k, and annihilation
568
+ ak operators for each of mode functions Uk, and similarly the creation b†
569
+ k, and annihilation bk operators for each of
570
+ mode functions Vk. The creation and annihilation operators satisfy the commutation rules
571
+
572
+ ak, a†
573
+ k′
574
+
575
+ =
576
+
577
+ bk, b†
578
+ k′
579
+
580
+ = (2π)3δ
581
+
582
+ k − k′�
583
+ ,
584
+ (33)
585
+ with all other commutators vanishing. Then, the complex scalar field operator can be expanded in terms of the
586
+ creation and annihilation operators in the standard manner as
587
+ ϕ(x) =
588
+
589
+ d3k
590
+ (2π)3
591
+
592
+ akUk(x) + b†
593
+ kVk(x)
594
+
595
+ .
596
+ (34)
597
+ The in-vacuum state |in⟩ is characterized by the fact that it is annihilated by each of ak and bk operators
598
+ ak
599
+ ��in
600
+
601
+ = bk
602
+ ��in
603
+
604
+ = 0,
605
+ ∀k.
606
+ (35)
607
+ III.
608
+ CONSTRUCTION OF THE INDUCED ENERGY-MOMENTUM TENSOR
609
+ Having built a foundation for our discussion and presented the definition for the energy-momentum tensor of the
610
+ scalar field in Eq. (20), we will proceed to present the regularized in-vacuum expectation value of the energy-momentum
611
+ tensor of the scalar field.
612
+ A.
613
+ Unregularized expectation values in the in-vacuum state
614
+ Integral representations for the in-vacuum expectation values of the components of the energy-momentum tensor
615
+ can be obtained by substituting the mode expansion (34) for the quantum scalar field ϕ(x) into the definition (20),
616
+
617
+ 8
618
+ and then calculating the expectation values in the in-vacuum state using relations (33) and (35). By using Eq. (12)
619
+ and some algebra, we have the following integral expressions in terms of the positive frequency mode function (30)
620
+ for the expectation values of the components. The integral expression of the timelike component is given by
621
+
622
+ in
623
+ ��T00
624
+ ��in
625
+
626
+ =
627
+
628
+ d3k
629
+ (2π)3
630
+
631
+ ˙Uk ˙U ∗
632
+ k − 6ξτ −1�
633
+ Uk ˙U ∗
634
+ k + ˙UkU ∗
635
+ k
636
+
637
+ + τ −2�
638
+ k2τ 2 + 2λrkτ + λ2 + µ2 + 6ξ
639
+
640
+ UkU ∗
641
+ k
642
+
643
+ .
644
+ (36)
645
+ For the diagonal spacelike components we get
646
+
647
+ in
648
+ ��T11
649
+ ��in
650
+
651
+ =
652
+
653
+ d3k
654
+ (2π)3
655
+ ��
656
+ 1 − 4ξ
657
+ � ˙Uk ˙U ∗
658
+ k − 2ξτ −1�
659
+ Uk ˙U ∗
660
+ k + ˙UkU ∗
661
+ k
662
+
663
+ + τ −2��
664
+ 4ξ − 1 + 2r2�
665
+ k2τ 2 + 2
666
+
667
+ 4ξ + 1
668
+
669
+ λrkτ
670
+ +
671
+
672
+ 4ξ + 1
673
+
674
+ λ2 +
675
+
676
+ 4ξ − 1
677
+
678
+ µ2 + 6ξ
679
+
680
+ 8ξ − 1
681
+ ��
682
+ UkU ∗
683
+ k
684
+
685
+ ,
686
+ (37)
687
+ and
688
+
689
+ in
690
+ ��T22
691
+ ��in
692
+
693
+ =
694
+
695
+ in
696
+ ��T33
697
+ ��in
698
+
699
+ =
700
+
701
+ d3k
702
+ (2π)3
703
+ ��
704
+ 1 − 4ξ
705
+ � ˙Uk ˙U ∗
706
+ k − 2ξτ −1�
707
+ Uk ˙U ∗
708
+ k + ˙UkU ∗
709
+ k
710
+
711
+ + τ−2��
712
+ 4ξ − 1
713
+
714
+ k2τ 2
715
+ + 2k2
716
+ zτ 2 + 2
717
+
718
+ 4ξ − 1
719
+
720
+ λrkτ +
721
+
722
+ 4ξ − 1
723
+
724
+ λ2 +
725
+
726
+ 4ξ − 1
727
+
728
+ µ2 + 6ξ
729
+
730
+ 8ξ − 1
731
+ ��
732
+ UkU ∗
733
+ k
734
+
735
+ .
736
+ (38)
737
+ The only nonvanishing in-vacuum expectation values of the off-diagonal components can be expressed as
738
+
739
+ in
740
+ ��T01
741
+ ��in
742
+
743
+ =
744
+
745
+ in
746
+ ��T10
747
+ ��in
748
+
749
+ = iτ −1
750
+
751
+ d3k
752
+ (2π)3
753
+
754
+ rkτ + λ
755
+ ��
756
+ Uk ˙U ∗
757
+ k − ˙UkU ∗
758
+ k
759
+
760
+ .
761
+ (39)
762
+ Using the asymptotic expansion of the Whittaker function (28) for large values of its argument [94], it can be shown
763
+ that the mode function (30) is proportional to k− 1
764
+ 2 −iλr in the limit of k → ∞. Then, inspection of integrals in
765
+ Eqs. (36)-(39) shows that these expressions are ultraviolet divergent. Thus, we first regulate them by cutting them
766
+ of at a large momentum K. Further description of the calculation of the expressions (36)-(38) is available in the
767
+ Appendix. We find the final expression for the unregularized in-vacuum expectation value of the timelike component
768
+
769
+ in
770
+ ��T00
771
+ ��in
772
+
773
+ = Ω2(τ) H4
774
+ 8π2
775
+
776
+ Λ4 +
777
+
778
+ µ2 − 6¯ξ + 2λ2
779
+ 3
780
+
781
+ Λ2 −
782
+ �µ4
783
+ 2 + 6¯ξµ2 − λ2
784
+ 6
785
+
786
+ log
787
+
788
+
789
+
790
+ + 54¯ξ2 − 2λ4
791
+ 15 + µ2
792
+ 4 + 6¯ξµ2 + µ4
793
+ 8
794
+ − 19λ2
795
+ 72
796
+ − 2λ2¯ξ − λ2µ2
797
+ 2
798
+ +
799
+ γ
800
+ 24π
801
+ �45
802
+ π2 − 6 − 96¯ξ + 4λ2 − 26µ2
803
+ �cosh
804
+
805
+ 2πλ
806
+
807
+ sin
808
+
809
+ 2πγ
810
+ � −
811
+ γ
812
+ 48π2λ
813
+ � 45
814
+ π2 − 6 − 96¯ξ + 64λ2 − 26µ2
815
+
816
+ × sinh
817
+
818
+ 2πλ
819
+
820
+ sin
821
+
822
+ 2πγ
823
+ � + i csc
824
+
825
+ 2πγ
826
+ � � +1
827
+ −1
828
+ C0r
829
+ ��
830
+ e2πλr + e2iπγ�
831
+ ψ
832
+ �1
833
+ 2 + γ + iλr
834
+
835
+
836
+
837
+ e2πλr + e−2iπγ�
838
+ ψ
839
+ �1
840
+ 2 − γ + iλr
841
+ ��
842
+ dr
843
+ + iπ
844
+ 12
845
+
846
+ 3µ4 + 36¯ξµ2 − λ2��
847
+ ,
848
+ (40)
849
+ where the coefficient C0r is given by
850
+ C0r = −5
851
+ 8λ4r4 + 1
852
+ 8
853
+
854
+ 6µ2 + 6λ2 + 36¯ξ + 1
855
+
856
+ λ2r2 − 1
857
+ 8
858
+
859
+ µ2 + λ2��
860
+ µ2 + λ2 + 12¯ξ
861
+
862
+ .
863
+ (41)
864
+ The final results of our evaluation of the unregularized in-vacuum expectation values of the diagonal spacelike com-
865
+ ponents are
866
+
867
+ in
868
+ ��T11
869
+ ��in
870
+
871
+ = Ω2(τ) H4
872
+ 8π2
873
+ �Λ4
874
+ 3 +
875
+
876
+ 2¯ξ − µ2
877
+ 3 + 14λ2
878
+ 15
879
+
880
+ Λ2 +
881
+ �µ4
882
+ 2 + 6¯ξµ2 − λ2
883
+ 6
884
+
885
+ log
886
+
887
+
888
+
889
+ − 54¯ξ2 − 26λ4
890
+ 105 − 7µ4
891
+ 24 − 8¯ξµ2
892
+ − 18¯ξ
893
+ 5 λ2 − µ2
894
+ 4 + 19λ2
895
+ 72
896
+ + λ2µ2
897
+ 30
898
+
899
+ γ
900
+ 24πλ2
901
+ �15
902
+ π2
903
+
904
+ 105π−2 − 15 − 132¯ξ + 35λ2 − 11µ2�
905
+ − 66λ2 − 336¯ξλ2 − 4λ4
906
+ − 46λ2µ2
907
+ �cosh
908
+
909
+ 2πλ
910
+
911
+ sin
912
+
913
+ 2πγ
914
+ � +
915
+ γ
916
+ 48π2λ3
917
+ �15
918
+ π2
919
+
920
+ 105π−2 − 15 − 132¯ξ + 175λ2 − 11µ2�
921
+ − 366λ2 − 2976¯ξλ2 + 136λ4
922
+ − 266λ2µ2
923
+ �sinh
924
+
925
+ 2πλ
926
+
927
+ sin
928
+
929
+ 2πγ
930
+ � + i csc
931
+
932
+ 2πγ
933
+ � � +1
934
+ −1
935
+ C1r
936
+ ��
937
+ e2πλr + e2iπγ�
938
+ ψ
939
+ �1
940
+ 2 + γ + iλr
941
+
942
+
943
+
944
+ e2πλr + e−2iπγ�
945
+ ψ
946
+ �1
947
+ 2 − γ + iλr
948
+ ��
949
+ dr − iπ
950
+ 12
951
+
952
+ 3µ4 + 36¯ξµ2 − λ2��
953
+ ,
954
+ (42)
955
+
956
+ 9
957
+ where the coefficient C1r is given by
958
+ C1r = 35
959
+ 8 λ4r6 − 1
960
+ 8
961
+
962
+ 70λ4 + 30λ2µ2 + 360¯ξλ2 + 25λ2�
963
+ r4 + 1
964
+ 8
965
+
966
+ 39λ4 + 3µ4 + 30λ2µ2 + 396¯ξλ2 + 72¯ξµ2 + 20λ2
967
+ + 6µ2 + 432¯ξ2 + 72¯ξ
968
+
969
+ r2 − 1
970
+ 8
971
+
972
+ 4λ4 + 4λ2µ2 + 60¯ξλ2 + 12¯ξµ2 + 2λ2 + 2µ2 + 144¯ξ2 + 24¯ξ
973
+
974
+ ,
975
+ (43)
976
+ we also have
977
+
978
+ in
979
+ ��T22
980
+ ��in
981
+
982
+ =
983
+
984
+ in
985
+ ��T33
986
+ ��in
987
+
988
+ = Ω2(τ) H4
989
+ 8π2
990
+ �Λ4
991
+ 3 +
992
+
993
+ 2¯ξ − µ2
994
+ 3 − 2λ2
995
+ 15
996
+
997
+ Λ2 +
998
+ �µ4
999
+ 2 + 6¯ξµ2 + λ2
1000
+ 6
1001
+
1002
+ log
1003
+
1004
+
1005
+
1006
+ − 54¯ξ2 + 2λ4
1007
+ 35
1008
+ − 7µ4
1009
+ 24 − 8¯ξµ2 + 4¯ξ
1010
+ 5 λ2 − µ2
1011
+ 4 − 19λ2
1012
+ 72
1013
+ + 2
1014
+ 5λ2µ2 +
1015
+ γ
1016
+ 16πλ2
1017
+ � 5
1018
+ π2
1019
+
1020
+ 105π−2 − 15 − 132¯ξ + 38λ2 − 11µ2�
1021
+ − 24λ2
1022
+ − 144¯ξλ2
1023
+ �cosh
1024
+
1025
+ 2πλ
1026
+
1027
+ sin
1028
+
1029
+ 2πγ
1030
+ � −
1031
+ γ
1032
+ 32π2λ3
1033
+ � 5
1034
+ π2
1035
+
1036
+ 105π−2 − 15 − 132¯ξ + 178λ2 − 11µ2�
1037
+ − 124λ2 − 1024¯ξλ2 + 200λ4
1038
+ 3
1039
+ − 220
1040
+ 3 λ2µ2
1041
+ �sinh
1042
+
1043
+ 2πλ
1044
+
1045
+ sin
1046
+
1047
+ 2πγ
1048
+ � + i csc
1049
+
1050
+ 2πγ
1051
+ � � +1
1052
+ −1
1053
+ C2r
1054
+ ��
1055
+ e2πλr + e2iπγ�
1056
+ ψ
1057
+ �1
1058
+ 2 + γ + iλr
1059
+
1060
+
1061
+
1062
+ e2πλr + e−2iπγ�
1063
+ ψ
1064
+ �1
1065
+ 2 − γ + iλr
1066
+ ��
1067
+ dr − iπ
1068
+ 12
1069
+
1070
+ 3µ4 + 36¯ξµ2 + λ2��
1071
+ ,
1072
+ (44)
1073
+ where the coefficient C2r is given by
1074
+ C2r = −C1r
1075
+ 2
1076
+ − 5
1077
+ 16λ4r4 + 1
1078
+ 16
1079
+
1080
+ 6λ2 − 6µ2 + 36¯ξ + 1
1081
+
1082
+ λ2r2 + 1
1083
+ 16
1084
+
1085
+ 3µ4 + 2λ2µ2 + 12¯ξλ2 + 36¯ξµ2 − λ2�
1086
+ .
1087
+ (45)
1088
+ Plugging the resulting expression given in Eq. (32) for the Wronskian of the mode functions Uk into Eq. (39) and
1089
+ integrating over momentum phase space, we obtain the unregularized expression for the only nonvanishing off-diagonal
1090
+ components
1091
+
1092
+ in
1093
+ ��T01
1094
+ ��in
1095
+
1096
+ =
1097
+
1098
+ in
1099
+ ��T10
1100
+ ��in
1101
+
1102
+ = Ω2(τ)H4λ
1103
+ 6π2 Λ3.
1104
+ (46)
1105
+ The expressions (40), (42), (44), and (46) clearly have ultraviolet divergences when Λ → ∞. This was expected,
1106
+ because the expectation values in the Hadamard in-vacuum state suffer from the same ultraviolet divergence properties
1107
+ as Minkowski spacetime.
1108
+ B.
1109
+ Construction of the counterterms and adiabatic subtractions
1110
+ To render the in-vacuum expectation values given by Eqs. (40), (42), (44), and (46) finite, we provide a set of
1111
+ needed adiabatic counterterms. The adiabatic regularization method consists of subtracting the appropriate adiabatic
1112
+ counterterms from the corresponding unregularized expressions. To adjust the set of appropriate counterterms, we will
1113
+ treat the conformal scale factor Ω(τ), and the electromagnetic vector potential Aµ(τ) as quantities of zero adiabatic
1114
+ order. As pointed out by Wald [18], in four dimensions, to obtain a renormalized energy-momentum tensor which
1115
+ is consistent with the Wald axioms, the subtraction counterterms should be expanded up to fourth adiabatic order;
1116
+ see also [1, 2]. Thus, to construct the expectation value of the energy-momentum tensor with the desired physical
1117
+ properties, we expand the subtraction counterterms up to fourth adiabatic order.
1118
+ To construct the appropriate
1119
+ counterterms, we need an expansion for the mode functions up to fourth adiabatic order. We use the definition
1120
+ z = 2ikτ to turn the Klein-Gordon Eq. (26) into the convenient form
1121
+ d2FA
1122
+ dτ 2
1123
+ +
1124
+
1125
+ ω2
1126
+ 0(τ) + ∆(τ)
1127
+
1128
+ FA = 0,
1129
+ (47)
1130
+ where FA is the positive frequency adiabatic solution and the conformal time dependent frequencies read
1131
+ ω0(τ) =
1132
+
1133
+ k2 + 2eA1kr + e2A2
1134
+ 1 + m2Ω2� 1
1135
+ 2 ,
1136
+ (48)
1137
+ ∆(τ) = 12¯ξ
1138
+ � ˙Ω
1139
+
1140
+ �2
1141
+ .
1142
+ (49)
1143
+
1144
+ 10
1145
+ It is then obvious that ω0 is of zero adiabatic order and ∆ is of second adiabatic order. The adiabatic form of FA is
1146
+ the Wentzel-Kramers-Brillouin (WKB) solution of Eq. (47). This WKB solution can be written as
1147
+ FA(τ) =
1148
+ 1
1149
+
1150
+ 2W(τ)
1151
+ exp
1152
+
1153
+ − i
1154
+ � τ
1155
+ W(τ ′)dτ ′�
1156
+ ,
1157
+ (50)
1158
+ where W satisfies the exact equation
1159
+ W2 = ω2
1160
+ 0 + ∆ −
1161
+ ¨
1162
+ W
1163
+ 2W + 3 ˙W2
1164
+ 4W2 .
1165
+ (51)
1166
+ To put the solution into the desired form, it is convenient to write W as
1167
+ W = W(0) + W(2) + W(4),
1168
+ (52)
1169
+ where the superscript numbers in parentheses denote the adiabatic order approximation to W.
1170
+ Substituting the
1171
+ expansion (52) into Eq. (51), we find the zero adiabatic order approximation
1172
+ W(0) = ω0.
1173
+ (53)
1174
+ The next iteration gives the second adiabatic order approximation
1175
+ W(2) = ∆
1176
+ 2ω0
1177
+ − ¨ω0
1178
+ 4ω2
1179
+ 0
1180
+ + 3 ˙ω2
1181
+ 0
1182
+ 8ω3
1183
+ 0
1184
+ .
1185
+ (54)
1186
+ Repeated iteration yields the fourth adiabatic order approximation
1187
+ W(4) = −W(2)2
1188
+ 2ω0
1189
+
1190
+ ¨
1191
+ W(2)
1192
+ 4ω2
1193
+ 0
1194
+ + ¨ω0W(2)
1195
+ 4ω3
1196
+ 0
1197
+ + 3 ˙ω0 ˙W(2)
1198
+ 4ω3
1199
+ 0
1200
+ − 3 ˙ω2
1201
+ 0W(2)
1202
+ 4ω4
1203
+ 0
1204
+ .
1205
+ (55)
1206
+ It should be remarked that all terms in the adiabatic expansion of W of odd adiabatic order vanish. Assembling the
1207
+ pieces given in Eqs. (25), (50), and (52)-(55), we find the positive frequency adiabatic solution to fourth adiabatic
1208
+ order approximation
1209
+ U [4]
1210
+ k (x) = Ω−1(τ)
1211
+ 1
1212
+ √2ω0
1213
+
1214
+ 1 − W(2)
1215
+ 2ω0
1216
+ − W(4)
1217
+ 2ω0
1218
+ + W(2)2
1219
+ 2ω2
1220
+ 0
1221
+
1222
+ exp
1223
+
1224
+ ik · x − i
1225
+ � τ
1226
+ W(τ ′)dτ ′�
1227
+ .
1228
+ (56)
1229
+ We use the superscript symbol [4] to indicate that the cross terms from the field expansion products that are of
1230
+ adiabatic order greater than 4 are to be discarded. To obtain expansions of the required counterterms to adiabatic
1231
+ order four, it is only necessary to calculate (36)-(39) with Uk replaced by U [4]
1232
+ k . Doing this, we find the counterterm
1233
+ to adiabatic order four for the timelike component
1234
+ T [4]
1235
+ 00 = Ω2(τ) H4
1236
+ 8π2
1237
+
1238
+ Λ4 +
1239
+
1240
+ µ2 − 6¯ξ + 2λ2
1241
+ 3
1242
+
1243
+ Λ2 −
1244
+ �µ4
1245
+ 2 + 6¯ξµ2 − λ2
1246
+ 6
1247
+
1248
+ log
1249
+ �2Λ
1250
+ µ
1251
+
1252
+ + 72¯ξ2 − λ4
1253
+ 15 + µ2
1254
+ 6 + 9¯ξµ2 + µ4
1255
+ 8
1256
+ − 2λ2
1257
+ 9
1258
+ − 2λ2 ¯ξ − λ2µ2
1259
+ 3
1260
+ − 1
1261
+ 60 +
1262
+ 7λ4
1263
+ 240µ4 +
1264
+ λ2
1265
+ 30µ2 − 3¯ξλ2
1266
+ 2µ2
1267
+
1268
+ .
1269
+ (57)
1270
+ We find the counterterms to adiabatic order four for the diagonal spacelike components
1271
+ T [4]
1272
+ 11 = Ω2(τ) H4
1273
+ 8π2
1274
+ �Λ4
1275
+ 3 +
1276
+
1277
+ 2¯ξ − µ2
1278
+ 3 + 14λ2
1279
+ 15
1280
+
1281
+ Λ2 +
1282
+ �µ4
1283
+ 2 + 6¯ξµ2 − λ2
1284
+ 6
1285
+
1286
+ log
1287
+ �2Λ
1288
+ µ
1289
+
1290
+ − 72¯ξ2 − 13λ4
1291
+ 105 − 7µ4
1292
+ 24 − 11¯ξµ2
1293
+ − 14¯ξ
1294
+ 5 λ2 − µ2
1295
+ 6 + 7λ2
1296
+ 18 − λ2µ2
1297
+ 15
1298
+ + 1
1299
+ 60 −
1300
+ 7λ4
1301
+ 240µ4 +
1302
+ λ2
1303
+ 18µ2 + 3¯ξλ2
1304
+ 2µ2
1305
+
1306
+ ,
1307
+ (58)
1308
+ and
1309
+ T [4]
1310
+ 22 = T [4]
1311
+ 33 = Ω2(τ) H4
1312
+ 8π2
1313
+ �Λ4
1314
+ 3 +
1315
+
1316
+ 2¯ξ − µ2
1317
+ 3 − 2λ2
1318
+ 15
1319
+
1320
+ Λ2 +
1321
+ �µ4
1322
+ 2 + 6¯ξµ2 + λ2
1323
+ 6
1324
+
1325
+ log
1326
+ �2Λ
1327
+ µ
1328
+
1329
+ − 72¯ξ2 + λ4
1330
+ 35
1331
+ − 7µ4
1332
+ 24 − 11¯ξµ2 + 2¯ξ
1333
+ 5 λ2 − µ2
1334
+ 6 − 7λ2
1335
+ 18 + λ2µ2
1336
+ 5
1337
+ + 1
1338
+ 60 +
1339
+ 7λ4
1340
+ 720µ4 −
1341
+ λ2
1342
+ 45µ2 −
1343
+ ¯ξλ2
1344
+ 2µ2
1345
+
1346
+ .
1347
+ (59)
1348
+
1349
+ 11
1350
+ We obtain the counterterms to adiabatic order four for the only nonvanishing off-diagonal components
1351
+ T [4]
1352
+ 01 = T [4]
1353
+ 10 = Ω2(τ)H4λ
1354
+ 6π2 Λ3.
1355
+ (60)
1356
+ Then, the adiabatic regularization procedure is carried out by subtracting the counterterms (57)-(60) from the corre-
1357
+ sponding unregularized in-vacuum expectation values (40), (42), (44), and (46). Thus we obtain our final expression
1358
+ for the timelike component of the regularized energy-momentum tensor
1359
+ T00 =
1360
+
1361
+ in
1362
+ ��T00
1363
+ ��in
1364
+
1365
+ − T [4]
1366
+ 00
1367
+ = Ω2(τ) H4
1368
+ 8π2
1369
+ � 1
1370
+ 60 −
1371
+ 7λ4
1372
+ 240µ4 −
1373
+ λ2
1374
+ 30µ2 + 3¯ξλ2
1375
+ 2µ2 − 18¯ξ2 − λ4
1376
+ 15 + µ2
1377
+ 12 − 3¯ξµ2 − λ2
1378
+ 24 − λ2µ2
1379
+ 6
1380
+ +
1381
+ γ
1382
+ 24π
1383
+ �45
1384
+ π2 − 6 − 96¯ξ + 4λ2 − 26µ2
1385
+ �cosh
1386
+
1387
+ 2πλ
1388
+
1389
+ sin
1390
+
1391
+ 2πγ
1392
+ � −
1393
+ γ
1394
+ 48π2λ
1395
+ �45
1396
+ π2 − 6 − 96¯ξ + 64λ2 − 26µ2
1397
+ �sinh
1398
+
1399
+ 2πλ
1400
+
1401
+ sin
1402
+
1403
+ 2πγ
1404
+
1405
+ + i csc
1406
+
1407
+ 2πγ
1408
+ � � +1
1409
+ −1
1410
+ C0r
1411
+ ��
1412
+ e2πλr + e2iπγ�
1413
+ ψ
1414
+ �1
1415
+ 2 + γ + iλr
1416
+
1417
+
1418
+
1419
+ e2πλr + e−2iπγ�
1420
+ ψ
1421
+ �1
1422
+ 2 − γ + iλr
1423
+ ��
1424
+ dr
1425
+
1426
+ �µ4
1427
+ 2 + 6¯ξµ2 − λ2
1428
+ 6
1429
+
1430
+ log
1431
+
1432
+ µ
1433
+
1434
+ + iπ
1435
+ 12
1436
+
1437
+ 3µ4 + 36¯ξµ2 − λ2��
1438
+ .
1439
+ (61)
1440
+ We obtain our final expressions for the diagonal spacelike components of the regularized energy-momentum tensor
1441
+ T11 =
1442
+
1443
+ in
1444
+ ��T11
1445
+ ��in
1446
+
1447
+ − T [4]
1448
+ 11
1449
+ = Ω2(τ) H4
1450
+ 8π2
1451
+
1452
+ − 1
1453
+ 60 +
1454
+ 7λ4
1455
+ 240µ4 −
1456
+ λ2
1457
+ 18µ2 − 3¯ξλ2
1458
+ 2µ2 + 18¯ξ2 − 13λ4
1459
+ 105 + 3¯ξµ2 − 4¯ξλ2
1460
+ 5
1461
+ − µ2
1462
+ 12 − λ2
1463
+ 8 + λ2µ2
1464
+ 10
1465
+
1466
+ γ
1467
+ 24πλ2
1468
+ �15
1469
+ π2
1470
+
1471
+ 105π−2 − 15 − 132¯ξ + 35λ2 − 11µ2�
1472
+ − 66λ2 − 336¯ξλ2 − 4λ4 − 46λ2µ2
1473
+ �cosh
1474
+
1475
+ 2πλ
1476
+
1477
+ sin
1478
+
1479
+ 2πγ
1480
+
1481
+ +
1482
+ γ
1483
+ 48π2λ3
1484
+ � 15
1485
+ π2
1486
+
1487
+ 105π−2 − 15 − 132¯ξ + 175λ2 − 11µ2�
1488
+ − 366λ2 − 2976¯ξλ2 + 136λ4 − 266λ2µ2
1489
+ �sinh
1490
+
1491
+ 2πλ
1492
+
1493
+ sin
1494
+
1495
+ 2πγ
1496
+
1497
+ + i csc
1498
+
1499
+ 2πγ
1500
+ � � +1
1501
+ −1
1502
+ C1r
1503
+ ��
1504
+ e2πλr + e2iπγ�
1505
+ ψ
1506
+ �1
1507
+ 2 + γ + iλr
1508
+
1509
+
1510
+
1511
+ e2πλr + e−2iπγ�
1512
+ ψ
1513
+ �1
1514
+ 2 − γ + iλr
1515
+ ��
1516
+ dr
1517
+ +
1518
+ �µ4
1519
+ 2 + 6¯ξµ2 − λ2
1520
+ 6
1521
+
1522
+ log
1523
+
1524
+ µ
1525
+
1526
+ − iπ
1527
+ 12
1528
+
1529
+ 3µ4 + 36¯ξµ2 − λ2��
1530
+ ,
1531
+ (62)
1532
+ and
1533
+ T22 = T33 =
1534
+
1535
+ in
1536
+ ��T33
1537
+ ��in
1538
+
1539
+ − T [4]
1540
+ 33
1541
+ = Ω2(τ) H4
1542
+ 8π2
1543
+
1544
+ − 1
1545
+ 60 −
1546
+ 7λ4
1547
+ 720µ4 +
1548
+ λ2
1549
+ 45µ2 +
1550
+ ¯ξλ2
1551
+ 2µ2 + 18¯ξ2 + λ4
1552
+ 35 + 3¯ξµ2 + 2¯ξλ2
1553
+ 5
1554
+ − µ2
1555
+ 12 + λ2
1556
+ 8 + λ2µ2
1557
+ 5
1558
+ +
1559
+ γ
1560
+ 16πλ2
1561
+ � 5
1562
+ π2
1563
+
1564
+ 105π−2 − 15 − 132¯ξ + 38λ2 − 11µ2�
1565
+ − 24λ2 − 144¯ξλ2
1566
+ �cosh
1567
+
1568
+ 2πλ
1569
+
1570
+ sin
1571
+
1572
+ 2πγ
1573
+
1574
+
1575
+ γ
1576
+ 32π2λ3
1577
+ � 5
1578
+ π2
1579
+
1580
+ 105π−2 − 15 − 132¯ξ + 178λ2 − 11µ2�
1581
+ − 124λ2 − 1024¯ξλ2 + 200λ4
1582
+ 3
1583
+ − 220
1584
+ 3 λ2µ2
1585
+ �sinh
1586
+
1587
+ 2πλ
1588
+
1589
+ sin
1590
+
1591
+ 2πγ
1592
+
1593
+ + i csc
1594
+
1595
+ 2πγ
1596
+ � � +1
1597
+ −1
1598
+ C2r
1599
+ ��
1600
+ e2πλr + e2iπγ�
1601
+ ψ
1602
+ �1
1603
+ 2 + γ + iλr
1604
+
1605
+
1606
+
1607
+ e2πλr + e−2iπγ�
1608
+ ψ
1609
+ �1
1610
+ 2 − γ + iλr
1611
+ ��
1612
+ dr
1613
+ +
1614
+ �µ4
1615
+ 2 + 6¯ξµ2 + λ2
1616
+ 6
1617
+
1618
+ log
1619
+
1620
+ µ
1621
+
1622
+ − iπ
1623
+ 12
1624
+
1625
+ 3µ4 + 36¯ξµ2 + λ2��
1626
+ .
1627
+ (63)
1628
+ We see that the nonvanishing unregularized expectation values of the off-diagonal components, given by Eq. (46), are
1629
+ exactly cancelled by their counterterms (60),
1630
+ T01 = T10 =
1631
+
1632
+ in
1633
+ ��T10
1634
+ ��in
1635
+
1636
+ − T [4]
1637
+ 10 = 0.
1638
+ (64)
1639
+ Thus we have arrived at the desired expressions for the regularized in-vacuum expectation values of all the components
1640
+ of the energy-momentum tensor, also called the induced energy-momentum tensor.
1641
+
1642
+ 12
1643
+ 0.01
1644
+ 10
1645
+ 104
1646
+ 107
1647
+ 10-8
1648
+ 100
1649
+ 1012
1650
+ 1022
1651
+ 1032
1652
+ 1042
1653
+
1654
+ |T0
1655
+ 0|/H4
1656
+ �=0.01
1657
+ �=0.1
1658
+ �=1
1659
+ �=10
1660
+ �=100
1661
+ ξ=0
1662
+ ξ=
1663
+ 1
1664
+ 6
1665
+ FIG. 1. The absolute value of T 0
1666
+ 0 component of the induced energy-momentum tensor is plotted in unit of H4 as a function of
1667
+ the electric field parameter λ = −eE/H2. The graphs correspond to different values of the mass parameter µ = m/H, and the
1668
+ coupling constant ξ as indicated. Both axes have logarithmic scales.
1669
+ IV.
1670
+ PROBING THE INDUCED ENERGY-MOMENTUM TENSOR
1671
+ The nonvanishing components of the induced energy-momentum tensor are given by Eqs. (61)-(63). Observe that
1672
+ all the off-diagonal components of the induced energy-momentum tensor are zero, and the components T22 and T33 are
1673
+ equal as consequences of the underlying symmetries of the backgrounds (2) and (6). Furthermore, since the electric
1674
+ field background (6) is not invariant under full symmetries of de Sitter spacetime, indeed violates the time reversal
1675
+ symmetry [51], and causes an electric current along its direction, we observe that T00, T11, and T22 are not equal
1676
+ to one another. Thus we expect that in the limit of vanishing electric field background that the in-vacuum state
1677
+ possesses the full set of de Sitter invariances, the induced energy-momentum tensor takes the maximally invariant
1678
+ form under the transformations of de Sitter group, i.e., must be proportional to the de Sitter metric. By setting λ = 0
1679
+ in Eqs. (61)-(63), which corresponds to vanishing electric field background, the induced energy-momentum tensor
1680
+ reduced to the form
1681
+ Tµν = H4
1682
+ 32π2
1683
+ � 1
1684
+ 15 − 72¯ξ2 − 12¯ξµ2 − 2µ2
1685
+ 3
1686
+ + µ2�
1687
+ 12¯ξ + µ2��
1688
+ ψ
1689
+ �3
1690
+ 2 + γ0
1691
+
1692
+ + ψ
1693
+ �3
1694
+ 2 − γ0
1695
+
1696
+ − log
1697
+
1698
+ µ2���
1699
+ gµν,
1700
+ (65)
1701
+ where γ0 =
1702
+
1703
+ (1/4) − µ2 − 12¯ξ is obtained by setting λ = 0 in the definition of γ. The expression (65) accords with
1704
+ the result of computing the renormalized vacuum energy-momentum tensor of a real scalar field in dS4 obtained in
1705
+ Refs. [11, 38], except for the overall factor of 2 in Eq. (65). This factor 2 is consistent with the complex scalar field
1706
+ as being made of two real scalar fields with the number of degrees of freedom doubling up.
1707
+ A.
1708
+ Behavior of the induced energy-momentum tensor
1709
+ Figures 1-3 provide some useful insight into the general behavior of the induced energy-momentum tensor. The
1710
+ absolute values of the expressions (61)-(63) as functions of the electric field parameter λ, for various values of the scalar
1711
+ field mass parameter µ, and two values of the coupling constant ξ are shown on the graphs in Figs. 1-3, respectively.
1712
+ Note especially that the scales are logarithmic on both axes, hence on the graphs zero values of the expressions, where
1713
+ the signs of the plots change, are displayed as singularities. Therefore, these figures signal that the induced energy-
1714
+ momentum tensor is analytic and varies continuously with the parameters λ, µ, and ξ, this statement consistent with
1715
+ the requirements discussed in [95]. Figures 1-3 also illustrate the outstanding qualitative features of the induced
1716
+ energy-momentum tensor. For fixed values of µ and ξ, the absolute values of the nonvanishing components of induced
1717
+ energy-momentum tensor are increasing functions of λ, but by excluding a neighbourhood of the zero value points this
1718
+
1719
+ 13
1720
+ 0.01
1721
+ 10
1722
+ 104
1723
+ 107
1724
+ 10-11
1725
+ 0.1
1726
+ 109
1727
+ 1019
1728
+ 1029
1729
+ 1039
1730
+
1731
+ |T1
1732
+ 1|/H4
1733
+ μ=0.01
1734
+ μ=0.1
1735
+ μ=1
1736
+ μ=10
1737
+ μ=100
1738
+ ξ=0
1739
+ ξ=
1740
+ 1
1741
+ 6
1742
+ FIG. 2. The absolute value of T 1
1743
+ 1 component of the induced energy-momentum tensor is plotted in unit of H4 as a function of
1744
+ the electric field parameter λ = −eE/H2. The graphs correspond to different values of the mass parameter µ = m/H, and the
1745
+ coupling constant ξ as indicated. Both axes have logarithmic scales.
1746
+ behavior is assured. For fixed values of λ and ξ, the absolute values of the nonvanishing components are decreasing
1747
+ functions of µ. For fixed values of λ and µ, the nonvanishing components do not vary significantly with the parameter
1748
+ ξ in the range 0 ≤ ξ ≪ λ, µ. The qualitative behaviors shown in Figs. 1-3 can be given quantitative treatments by
1749
+ inspection of expressions (61)-(63) in the limiting regimes. We concentrate our attention on three regimes of interest:
1750
+ (1) The strong electric field regime with the criterion λ ≫ max(1, µ, ξ). (2) The heavy scalar field regime with the
1751
+ criterion µ ≫ max(1, λ, ξ). (3) The infrared regime with the criteria µ ≪ 1, λ ≪ 1, and ξ = 0.
1752
+ 1.
1753
+ Strong electric field regime
1754
+ In the strong electric field regime λ ≫ max(1, µ, ξ), it is appropriate to find approximate behavior of the induced
1755
+ energy-momentum tensor in the limit λ → ∞. By expanding expressions (61)-(63) around λ = ∞ with µ and ξ fixed,
1756
+ we find the dominant terms in the components of the induced energy-momentum tensor
1757
+ T00 = −T11 = 3T22 = 3T33 = −Ω2 H4
1758
+ 8π2
1759
+ � 7λ4
1760
+ 240µ4
1761
+
1762
+ .
1763
+ (66)
1764
+ Thus, in this regime the absolute value of the nonvanishing components of induced energy-momentum tensor increase
1765
+ monotonically with increasing λ but decrease monotonically with increasing µ, as we see on the right end of any
1766
+ graphs in Figs. 1-3.
1767
+ 2.
1768
+ Heavy scalar field regime
1769
+ In the heavy scalar field regime µ ≫ max(1, λ, ξ), it is appropriate to find approximate behavior of the induced
1770
+ energy-momentum tensor in the limit µ → ∞. By expanding expressions (61)-(63) around µ = ∞ with λ and ξ fixed,
1771
+ we find the dominant terms in the components of the induced energy-momentum tensor
1772
+ T00 = Ω2 H4
1773
+ 8π2
1774
+ � a
1775
+ µ2 + b
1776
+ µ4 + c0λ2
1777
+ µ4
1778
+ + O(µ−6)
1779
+
1780
+ ,
1781
+ T11 = −Ω2 H4
1782
+ 8π2
1783
+ � a
1784
+ µ2 + b
1785
+ µ4 + c1λ2
1786
+ µ4
1787
+ + O(µ−6)
1788
+
1789
+ ,
1790
+ T22 = T33 = −Ω2 H4
1791
+ 8π2
1792
+ � a
1793
+ µ2 + b
1794
+ µ4 + c2λ2
1795
+ µ4
1796
+ + O(µ−6)
1797
+
1798
+ ,
1799
+ (67)
1800
+
1801
+ 14
1802
+ 0.01
1803
+ 10
1804
+ 104
1805
+ 107
1806
+ 10-9
1807
+ 10
1808
+ 1011
1809
+ 1021
1810
+ 1031
1811
+ 1041
1812
+ λ
1813
+ |T2
1814
+ 2|/H4
1815
+ μ=0.01
1816
+ μ=0.1
1817
+ μ=1
1818
+ μ=10
1819
+ μ=100
1820
+ ξ=0
1821
+ ξ=
1822
+ 1
1823
+ 6
1824
+ FIG. 3. The absolute value of T 2
1825
+ 2 component of the induced energy-momentum tensor is plotted in unit of H4 as a function of
1826
+ the electric field parameter λ = −eE/H2. The graphs correspond to different values of the mass parameter µ = m/H, and the
1827
+ coupling constant ξ as indicated. Both axes have logarithmic scales. Recall that T 2
1828
+ 2 = T 3
1829
+ 3 .
1830
+ where the coefficients a, b, c0, c1 and c2 are given by
1831
+ a = − 2
1832
+ 315 +
1833
+ ¯ξ
1834
+ 5 − 72¯ξ3,
1835
+ b = − 1
1836
+ 210
1837
+
1838
+ 1 − 32¯ξ + 504¯ξ2 − 90720¯ξ4�
1839
+ ,
1840
+ c0 = − 1
1841
+ 315 − 7¯ξ
1842
+ 15 + 12¯ξ2,
1843
+ c1 = − 22
1844
+ 315 + 3¯ξ
1845
+ 5 + 12¯ξ2,
1846
+ c2 =
1847
+ 2
1848
+ 105 −
1849
+ ¯ξ
1850
+ 3.
1851
+ (68)
1852
+ The asymptotic forms in Eq. (67) reveal that the induced energy-momentum tensor falls off as H2/m2 in the limit
1853
+ (m/H) → ∞. Thus, the behavior of the induced energy-momentum tensor is inconsistent with the behavior of the
1854
+ semiclassical energy-momentum tensor [39, 62] that falls of as exp(−2πm/H) in the heavy scalar field regime where
1855
+ m ≫ H. A similar feature arises for the induced electric current of both scalar [61] and Dirac [73] fields in dS4.
1856
+ Studies [74, 75] have proposed explanations in physical terms for this feature of the induced electric current.
1857
+ 3.
1858
+ Infrared regime
1859
+ To find approximate behavior of the induced energy-momentum tensor in the infrared regime, where µ ≪ 1, λ ≪ 1
1860
+ and ξ = 0, it is appropriate to make Taylor series expansions of the expressions (61)-(63) around µ = 0 and λ = 0,
1861
+ and set ξ = 0. We find that the dominant terms in the expansions of (61) and (63) are given by
1862
+ T00 = Ω2 H4
1863
+ 8π2
1864
+ �61
1865
+ 60 − 17λ2
1866
+ 60µ2 −
1867
+ 7λ4
1868
+ 240µ4 + O
1869
+
1870
+ λ2, µ2��
1871
+ ,
1872
+ (69)
1873
+ T22 = T33 = −Ω2 H4
1874
+ 8π2
1875
+ �61
1876
+ 60 + 11λ2
1877
+ 180µ2 +
1878
+ 7λ4
1879
+ 720µ4 + O
1880
+
1881
+ λ2, µ2��
1882
+ ,
1883
+ (70)
1884
+ which are valid for µ ≪ λ ≪ 1 as well as λ ≪ µ ≪ 1. The expansion of expression (62) for µ ≪ λ ≪ 1 takes the form
1885
+ T11 = Ω2 H4
1886
+ 8π2
1887
+ �299
1888
+ 60 + 7λ2
1889
+ 36µ2 +
1890
+ 7λ4
1891
+ 240µ4 + O
1892
+
1893
+ λ2, µ2��
1894
+ ,
1895
+ (71)
1896
+ while for λ ≪ µ ≪ 1 it is approximated by
1897
+ T11 = −Ω2 H4
1898
+ 8π2
1899
+ �61
1900
+ 60 − 223λ2
1901
+ 36µ2 + 1433λ4
1902
+ 240µ4 + O
1903
+
1904
+ λ2, µ2��
1905
+ .
1906
+ (72)
1907
+
1908
+ 15
1909
+ Observe that all the asymptotic expansions (69)-(71) diverge as m−4 in the exactly massless case, i.e., m = 0. We
1910
+ can understand the origin of these infrared-divergent terms by looking at the counterterms (57)-(59). These terms
1911
+ arise from the contribution of the zero modes in the massless case to the counterterms. And therefore signal that
1912
+ for the massless case the method of adiabatic regularization cannot be used because it leads to singularities in the
1913
+ counterterms, as pointed out in [19, 20, 61]. We emphasize that the result (72) is an approximation valid only for
1914
+ λ ≪ µ ≪ 1, and hence we cannot use it in the limit of zero mass for a fixed value of λ.
1915
+ B.
1916
+ Trace anomaly
1917
+ It will be reassuring to do a consistency check, to see that whether the induced energy momentum tensor yields the
1918
+ well-known predicted trace anomaly for a free, massless, conformally invariant scalar field in dS4. Putting the metric
1919
+ (2) and components (61)-(63) together, we obtain the trace of the induced energy-momentum tensor
1920
+ T = gµνTµν = H4
1921
+ 8π2
1922
+ � 1
1923
+ 15 −
1924
+ 7λ4
1925
+ 180µ4 −
1926
+ λ2
1927
+ 45µ2 + 2¯ξλ2
1928
+ µ2
1929
+ − 72¯ξ2 + µ2
1930
+ 3 − 12¯ξµ2 − λ2
1931
+ 6 − 2λ2µ2
1932
+ 3
1933
+
1934
+ 3µ2γ
1935
+ 2π2λ sin
1936
+
1937
+ 2πγ
1938
+
1939
+ ×
1940
+
1941
+ 2πλ cosh
1942
+
1943
+ 2πλ
1944
+
1945
+ − sinh
1946
+
1947
+ 2πλ
1948
+ ��
1949
+ +
1950
+ iµ2
1951
+ 2 sin
1952
+
1953
+ 2πγ
1954
+
1955
+ � +1
1956
+ −1
1957
+
1958
+ 3λ2r2 − λ2 − µ2 − 12¯ξ
1959
+ ���
1960
+ e2πλr + e2iπγ�
1961
+ × ψ
1962
+ �1
1963
+ 2 + γ + iλr
1964
+
1965
+
1966
+
1967
+ e2πλr + e−2iπγ�
1968
+ ψ
1969
+ �1
1970
+ 2 − γ + iλr
1971
+ ��
1972
+ dr − µ2�
1973
+ µ2 + 12¯ξ
1974
+
1975
+ log
1976
+
1977
+ µ2�
1978
+ + iπµ2�
1979
+ µ2 + 12¯ξ
1980
+ ��
1981
+ . (73)
1982
+ We see that the trace anomaly of the free, massless, conformally coupled complex scalar field is given by
1983
+ lim
1984
+ λ→0 lim
1985
+ µ→0 lim
1986
+ ξ→ 1
1987
+ 6
1988
+ T =
1989
+ H4
1990
+ 120π2 =
1991
+ 2
1992
+ 2880π2
1993
+ �1
1994
+ 3R2 − RµνRµν�
1995
+ ,
1996
+ (74)
1997
+ in arriving at the second equality, we have expressed H4 in terms of a combination of the Ricci tensor and the scalar
1998
+ curvature of dS4 which are given by Eq. (5), to put the result into a familiar form. The trace anomaly (74) is in
1999
+ agreement with the result of computing the trace anomaly [96] of a free, massless, conformally coupled real scalar
2000
+ field in dS4, except for the overall factor of 2 in Eq. (74) as explained below Eq. (65).
2001
+ V.
2002
+ IMPLICATIONS FOR THE INDUCED CURRENT
2003
+ The generalization of the nonconservation equation (23) for the classical energy-momentum tensor of the scalar field
2004
+ to the induced energy-momentum tensor Tµν, and the induced current jµ of the scalar field has important implications
2005
+ for the induced current. Recall that the nonvanishing components of Tµν are given by Eqs. (61)-(63), and the nonzero
2006
+ components of Fµν are given by Eq. (6). The only nontrivial relation that arises from Eq. (23) is obtained by setting
2007
+ ν = 0, which leads to
2008
+ ∂0T 00 + HΩ
2009
+
2010
+ 5T 00 + T 11 + T 22 + T 33�
2011
+ = −Ω−2Ej1,
2012
+ (75)
2013
+ where we have used Eqs. (4) and (6). The relation (75), along with the relations
2014
+ ∂0T 00 = −2HΩ(τ)T 00,
2015
+ T = gµνT µν,
2016
+ −Ω−2Ej1 = HΩ−1A.j,
2017
+ (76)
2018
+ suffice to show that the timelike component of the induced energy-momentum tensor can be written in terms of the
2019
+ trace T , and the effective electromagnetic potential energy A.j as
2020
+ T00 = 1
2021
+ 4Ω2�
2022
+ T + A.j
2023
+
2024
+ .
2025
+ (77)
2026
+ The induced current jµ is defined as the regularized expectation value of the scalar field electric current operator (14)
2027
+ in the in-vacuum state specified in Eq. (35). It can be verified that the induced current jµ is conserved and whose
2028
+ only non-vanishing component is j1. Thus, the induced current flows along the electric field background direction.
2029
+ For convenience we write the induced current as
2030
+ jµ = Ω(τ)J[n]δ1
2031
+ µ,
2032
+ (78)
2033
+
2034
+ 16
2035
+ here we use the subscript [n] to indicate the adiabatic order n of the subtracted counterterms to obtain the induced
2036
+ current J[n]. Comparison of Eqs. (61), (73), and (77) allows us to read off the effective electromagnetic potential
2037
+ energy A.j, and then we will use the last relation in Eq. (76) and definition (78) to extract J[4]. This gives
2038
+ J[4] = eH3
2039
+ 8π2
2040
+ �4¯ξλ
2041
+ µ2 −
2042
+ λ
2043
+ 9µ2 − 7λ3
2044
+ 90µ4 + λ
2045
+ 3 log
2046
+
2047
+ µ2�
2048
+ − iπλ
2049
+ 3
2050
+ − 4λ3
2051
+ 15 +
2052
+ γ
2053
+ 6πλ
2054
+ �45
2055
+ π2 − 6 − 96¯ξ + 4λ2 − 8µ2�cosh
2056
+
2057
+ 2πλ
2058
+
2059
+ sin
2060
+
2061
+ 2πγ
2062
+
2063
+
2064
+ γ
2065
+ 12π2λ2
2066
+ �45
2067
+ π2 − 6 − 96¯ξ + 64λ2 − 8µ2�sinh
2068
+
2069
+ 2πλ
2070
+
2071
+ sin
2072
+
2073
+ 2πγ
2074
+ � −
2075
+
2076
+ 2 sin
2077
+
2078
+ 2πγ
2079
+
2080
+ � +1
2081
+ −1
2082
+
2083
+ 5λ2r4 −
2084
+
2085
+ 1 + 36¯ξ + 6λ2 + 3µ2�
2086
+ r2
2087
+ + λ2 + µ2 + 12¯ξ
2088
+ ���
2089
+ e2πλr + e2iπγ�
2090
+ ψ
2091
+ �1
2092
+ 2 + γ + iλr
2093
+
2094
+
2095
+
2096
+ e2πλr + e−2iπγ�
2097
+ ψ
2098
+ �1
2099
+ 2 − γ + iλr
2100
+ ��
2101
+ dr
2102
+
2103
+ ,
2104
+ (79)
2105
+ where the subscript [4] indicates J[4] has been derived from the expressions which have been regularized by the
2106
+ counterterms expanded up to fourth adiabatic order. This should be clear from Eqs. (61), (77), and (78). To verify
2107
+ our result (79), we have evaluated directly the induced current by calculating the expectation value of the current
2108
+ operator (14) in the in-vacuum state and then subtracting the corresponding counterterms expanded up to fourth
2109
+ adiabatic order. The expression for J[4] that follows from this direct analysis reproduces exactly the expression given
2110
+ by Eq. (79).
2111
+ In Ref. [61], the induced current of the massive, minimally coupled ξ = 0, scalar field has been evaluated by
2112
+ calculating the expectation value of the current operator (14) in the in-vacuum state which is represented by the mode
2113
+ functions given in Eqs. (30) and (31) with ξ = 0 for this case. In order to regularize the expectation value, the method
2114
+ of adiabatic subtraction was employed. Those authors expanded the required counterterm up to second adiabatic
2115
+ order that it suffices to remove the divergences and the regularized expression resulting from use of it reduces to the
2116
+ expected results in the Minkowski spacetime limit. We refer to this prescription as minimal subtraction. Furthermore,
2117
+ they argued that including the contribution of fourth adiabatic order in the counterterm spoils the expected behavior
2118
+ in the Minkowski spacetime limit. Following these restrictions and arguments, it was subsequently found in Ref. [61]
2119
+ that the induced current is given in terms of J[2] as in Eq. (78) by
2120
+ J[2] = eH3
2121
+ 8π2
2122
+ �λ
2123
+ 3 log
2124
+
2125
+ µ2�
2126
+ − iπλ
2127
+ 3
2128
+ − 4λ3
2129
+ 15 +
2130
+ ¯γ
2131
+ 6πλ
2132
+ �45
2133
+ π2 + 10 + 4λ2 − 8µ2�cosh
2134
+
2135
+ 2πλ
2136
+
2137
+ sin
2138
+
2139
+ 2π¯γ
2140
+ � −
2141
+ ¯γ
2142
+ 12π2λ2
2143
+ �45
2144
+ π2 + 10 + 64λ2 − 8µ2�
2145
+ × sinh
2146
+
2147
+ 2πλ
2148
+
2149
+ sin
2150
+
2151
+ 2π¯γ
2152
+ � −
2153
+
2154
+ 2 sin
2155
+
2156
+ 2π¯γ
2157
+
2158
+ � +1
2159
+ −1
2160
+
2161
+ 5λ2r4 +
2162
+
2163
+ 5 − 6λ2 − 3µ2�
2164
+ r2 + λ2 + µ2 − 2
2165
+ ���
2166
+ e2πλr + e2iπ¯γ�
2167
+ × ψ
2168
+ �1
2169
+ 2 + ¯γ + iλr
2170
+
2171
+
2172
+
2173
+ e2πλr + e−2iπ¯γ�
2174
+ ψ
2175
+ �1
2176
+ 2 − ¯γ + iλr
2177
+ ��
2178
+ dr
2179
+
2180
+ ,
2181
+ (80)
2182
+ where ¯γ =
2183
+
2184
+ 9/4 − λ2 − µ2 is obtained by setting ξ = 0 in the definition of γ, and the subscript [2] indicates J[2] has
2185
+ been regularized by the counterterms expanded up to second adiabatic order. It is important to note that there are
2186
+ two differences between expressions (79) and (80). First, the coupling constant ξ is treated as arbitrary real value
2187
+ parameter in the expression (79), whereas the expression (80) has been computed for fixed value ξ = 0. Second,
2188
+ expression (79) contains contributions from the fourth adiabatic order expansion of the counterterm. With these two
2189
+ differences, (79) is a generalization of (80). Therefore, the difference J[4]
2190
+
2191
+ ξ = 0
2192
+
2193
+ − J[2] would give only the fourth
2194
+ adiabatic order contribution of the counterterm to J[4], that is
2195
+ J[4]
2196
+
2197
+ ξ = 0
2198
+
2199
+ − J[2] = −eH3
2200
+ 8π2
2201
+ � 7λ
2202
+ 9µ2 + 7λ3
2203
+ 90µ4
2204
+
2205
+ .
2206
+ (81)
2207
+ In our subsequent discussion, we demonstrate that the expected behavior of J[4] in Minkowski spacetime is not spoiled
2208
+ by these fourth adiabatic order contributions. Furthermore, we show that these contributions alter the behavior of
2209
+ the J[4] when compared to J[2], especially in the two regimes of the infrared hyperconductivity and the strong electric
2210
+ field.
2211
+ A.
2212
+ Minkowski spacetime limit
2213
+ Here we explore the behavior of the result (79) in the Minkowski spacetime limit. Note that in the limit where the
2214
+ Hubble constant tends to zero, i.e., H → 0 we recover Minkowski spacetime. As was mentioned in the discussion of
2215
+ Eq. (81), the difference between the expressions (79) and (80) comes from the contribution of fourth adiabatic order
2216
+
2217
+ 17
2218
+ 0.001
2219
+ 1
2220
+ 1000
2221
+ 10-6
2222
+ 104
2223
+ 1014
2224
+ 1024
2225
+ λ
2226
+ μ=10-3
2227
+ μ=10-2
2228
+ μ=10-1
2229
+ μ=1
2230
+ μ=5
2231
+ μ=5
2232
+ J[4]
2233
+ J[2]
2234
+ FIG. 4. Dependence of the absolute values of the normalized induced currents |J[4]|/eH3 (solid curves) and |J[2]|/eH3 (dashed
2235
+ curves) on the electric field parameter λ = −eE/H2, for the case of minimal coupling ξ = 0. The graphs correspond to different
2236
+ values of the scalar field mass parameter µ = m/H as indicated. Both axes have logarithmic scales.
2237
+ in the adiabatic expansion of the counterterm. Comparison of the expressions (79) and (80) shows that these fourth
2238
+ adiabatic order contributions are
2239
+ δJ = eH3
2240
+ 8π2
2241
+ �4¯ξλ
2242
+ µ2 −
2243
+ λ
2244
+ 9µ2 − 7λ3
2245
+ 90µ4
2246
+
2247
+ = − e
2248
+ 8π2
2249
+ �eE
2250
+ m2
2251
+ ��
2252
+ 4¯ξH3 − H3
2253
+ 9 − 7(eE)2
2254
+ 90m2 H
2255
+
2256
+ .
2257
+ (82)
2258
+ where the second equality comes from using the definitions of λ and µ given in Eq. (27). It is clear from the second
2259
+ equality in Eq. (82) that all these terms vanish in the limit H → 0 for fixed and finite values of E and m. This
2260
+ observation will automatically insure the validity of (79) in the Minkowski spacetime limit.
2261
+ If the electric field
2262
+ background E and the scalar field mass m are regarded as fixed and finite, then by taking the limit H → 0 of the
2263
+ expressions (79), we find
2264
+ lim
2265
+ H→0 J[4] =
2266
+ e3
2267
+ 12π3H E2e− πm2
2268
+ |eE| ,
2269
+ (83)
2270
+ which is exactly the same as the result obtained in Ref. [61] for the behavior of J[2], given by Eq. (80), in the
2271
+ Minkowski spacetime limit. It has been argued [61] that in the expanding dS the inverse of the Hubble constant
2272
+ H−1, in fact, is equivalent to the finite time interval between switching on and off the electric field background in
2273
+ Minkowski spacetime. By this argument, we can see that the behavior (83) of the induced current in the Minkowski
2274
+ spacetime limit agrees with the electric current of the charged scalar particles produced by the Schwinger mechanism
2275
+ in Minkowski spacetime [40, 41].
2276
+ A comparison of the result of this article for the induced current J[4] [see Eq. (79)] to the result of Ref. [61] for the
2277
+ induced current J[2] [see Eq. (80)] is shown in Fig. 4. The figure is drawn for ξ = 0, and illustrates that, for the light
2278
+ scalars µ < 1, the induced currents J[4] and J[2] differ considerably in the regime λ ≳ µ. Subsequently, we set ξ = 0
2279
+ and concentrate our attention on the regime λ ≳ µ. We examine the behaviors of J[4] and J[2] in the two regimes:
2280
+ The infrared hyperconductivity with the criterion µ < λ ≲ 1, and the strong electric field λ ≫ max(1, µ, ξ).
2281
+ B.
2282
+ Behaviors in the infrared hyperconductivity regime
2283
+ In Ref. [61], it was pointed out that, in the infrared hyperconductivity regime µ < λ ≲ 1, the absolute value of the
2284
+ induced current J[2] monotonically increases with decreasing the electric field parameter λ, as shown in Fig. 4. In this
2285
+ regime, we can approximate expression (80) by
2286
+ J[2] ≃ eH3
2287
+ 8π2
2288
+
2289
+
2290
+ λ2 + µ2
2291
+
2292
+ .
2293
+ (84)
2294
+
2295
+ 18
2296
+ From Fig. 4 it is obvious that in the infrared hyperconductivity regime, the absolute value of the induced current J[4]
2297
+ reduces to zero at a certain value of the electric field parameter λ∗ which depends on the mass parameter µ. Indeed,
2298
+ the sign of J[4] changes at λ∗. This figure also indicates that the absolute value of J[4] is a decreasing function of λ
2299
+ in the interval µ < λ < λ∗ and is an increasing function for λ > λ∗. In the infrared hyperconductivity regime, we can
2300
+ approximate expression (79) by
2301
+ J[4] ≃ eH3
2302
+ 8π2
2303
+
2304
+ − 7λ3
2305
+ 90µ4 − 7λ
2306
+ 9µ2 +
2307
+
2308
+ λ2 + µ2
2309
+
2310
+ .
2311
+ (85)
2312
+ This expression has a zero at λ∗ ≃ 2.090µ. In the range of λ > 2.090µ, the dominant contribution to J[4] comes from
2313
+ the first two terms in Eq. (85) which its absolute value increases with increasing λ. Thus, in this range, the infrared
2314
+ hyperconductivity phenomenon does not occur. On the other hand, in the interval µ < λ < 2.090µ, the dominant
2315
+ contribution to J[4] comes from the last term in Eq. (85) which increases with decreasing λ. Thus, in the interval
2316
+ µ < λ < 2.090µ, the infrared hyperconductivity phenomenon occurs. We therefore conclude that although there exist
2317
+ a period of the infrared hyperconductivity in our result for the induced current J[4], but now this phenomenon occurs
2318
+ in the more restricted interval µ < λ < 2.090µ.
2319
+ C.
2320
+ Behaviors in the strong electric field regime
2321
+ Figure 4 shows that although the absolute values of the two induced current J[2] and J[4] are increasing functions
2322
+ of λ in the strong electric field regime λ ≫ max(1, µ, ξ), the induced current J[2] does not depend on the scalar field
2323
+ mass, whereas the induced current J[4] is proportional to µ−4. We find that, in the limit λ → ∞ for a fixed µ, the
2324
+ induced current J[4] is given approximately by
2325
+ J[4] ≃ −eH3
2326
+ 8π2
2327
+ � 7λ3
2328
+ 90µ4
2329
+
2330
+ = 7He4
2331
+ 720π2
2332
+ � E3
2333
+ m4
2334
+
2335
+ .
2336
+ (86)
2337
+ We observe that the behavior of the induced current J[4] in the Minkowski spacetime limit [see Eq. (83)] will be
2338
+ different from that in the strong electric field limit, see Eq. (86). Whereas, in [61] it was pointed out that the induced
2339
+ current J[2] has the same behavior in these two limits, indicated on the right side of Eq. (83). We note that in
2340
+ the Minkowski spacetime limit, the electric field strength E, the scalar field mass m, and the coupling constant ξ,
2341
+ are regarded as fixed and the Hubble constant H, tends to zero. Thus, in the Minkowski spacetime limit, although
2342
+ λ = −eE/H2 and µ = m/H tend to infinity, but the ratio λ/µ2 remains finite. We also note that in the strong electric
2343
+ field regime, the Hubble constant H, the scalar field mass m, and the coupling constant ξ, are regarded as fixed and
2344
+ the electric field strength E, tends to infinity. Thus, in this regime, λ goes to infinity while µ is regarded as a fixed
2345
+ and finite value.
2346
+ VI.
2347
+ CONCLUSIONS
2348
+ The aim of the present research was to examine the induced energy-momentum tensor of a massive, complex
2349
+ scalar field coupled to the electromagnetic vector potential (7) which describes a uniform electric field background
2350
+ with a constant energy density in the conformal Poincar´e patch of dS4 where the metric takes the form (2). The
2351
+ dynamics of the complex scalar field is governed by the action (11). The energy-momentum tensor of the scalar field
2352
+ is not covariantly conserved in the presence of the electromagnetic field, as the consequence of the electromagnetic
2353
+ interactions, see Eq. (23). The nonconservation of the scalar field energy-momentum tensor is compatible with the
2354
+ nonconservation of the electromagnetic field energy-momentum tensor [see Eq. (24)], and hence the total energy
2355
+ momentum tensor of the theory is covariantly conserved. We treated the classical gravitational field (2) and the
2356
+ classical electromagnetic field (7) as fixed field configurations which they are unaffected by the dynamics of the
2357
+ quantum complex scalar field in response to these backgrounds. We discussed canonical quantization of the scalar
2358
+ field. The normalized positive and negative frequency mode functions of the scalar field which behave like the positive
2359
+ and negative frequency Minkowski mode functions in the remote past are given by Eqs. (30) and (31). These mode
2360
+ functions determine the in-vacuum state of the scalar field.
2361
+ We calculated the expectation values of all the components of the energy-momentum tensor in the in-vacuum
2362
+ state of the scalar field; the nonzero expectation values have been obtained in Eqs. (40), (42), (44), and (46). It is
2363
+ expected that these expectation values contain ultraviolet divergences, because the expectation values in the Hadamard
2364
+ in-vacuum state suffer from the same ultraviolet divergence properties as Minkowski spacetime. To render these in-
2365
+ vacuum expectation values finite, we employed the adiabatic regularization method. To adjust the set of appropriate
2366
+
2367
+ 19
2368
+ counterterms, we treated the conformal scale factor and the electromagnetic vector potential as quantities of zero
2369
+ adiabatic order. As pointed out by Wald [18], in four dimensions, to obtain a renormalized energy-momentum tensor
2370
+ which is consistent with the Wald axioms, the subtraction counterterms should be expanded up to fourth adiabatic
2371
+ order. Under these assumptions, we then constructed the set of the appropriate adiabatic counterterms, which are
2372
+ given by Eqs. (57)-(60). The adiabatic regularization procedure was carried out by subtracting the counterterms
2373
+ from the corresponding unregularized in-vacuum expectation values. Thus we have arrived at our final expressions for
2374
+ all the nonvanishing components of the induced energy-momentum tensor, which are given by Eqs. (61)-(63). This
2375
+ research has shown that all the off-diagonal components of the induced energy-momentum tensor are zero, and the
2376
+ components T22 and T33 are equal as consequences of the underlying symmetries of the backgrounds (2) and (6).
2377
+ Furthermore, since the electric field background (6) is not invariant under full symmetries of dS, indeed violates the
2378
+ time reversal symmetry [51], and causes an electric current along its direction, we observe that T00, T11, and T22 are
2379
+ not equal to one another. The research has also shown that in the limit of zero electric field, our result for the induced
2380
+ energy momentum tensor reduces to the form (65). The expression (65) accords with the result of computing the
2381
+ renormalized vacuum energy-momentum tensor of a real scalar field in dS4 obtained in Refs. [11, 38], except for the
2382
+ overall factor of 2 in Eq. (65). This factor 2 is consistent with the complex scalar field as being made of two real
2383
+ scalar fields with the number of degrees of freedom doubling up. The absolute values of the expressions (61)-(63) as
2384
+ functions of the electric field parameter λ, for various values of the scalar field mass parameter µ, and two values of the
2385
+ coupling constant ξ are shown on the graphs in Figs. 1-3, respectively. These figures signal that the induced energy-
2386
+ momentum tensor is analytic and varies continuously with the parameters λ, µ, and ξ, this statement consistent with
2387
+ the requirements discussed in [95]. For fixed values of µ and ξ, the absolute values of the nonvanishing components
2388
+ of the induced energy-momentum tensor are increasing functions of λ, but by excluding a neighbourhood of the zero
2389
+ value points this behavior is assured. For fixed values of λ and ξ, the absolute values of the nonvanishing components
2390
+ are decreasing functions of µ.
2391
+ For a fixed λ and µ, the nonvanishing components do not vary significantly with
2392
+ the parameter ξ in the range 0 ≤ ξ ≪ λ, µ. The qualitative behaviors shown in Figs. 1-3 can be given quantitative
2393
+ treatments by inspection of expressions (61)-(63) in the limiting regimes. The examination of the expressions (61)-(63)
2394
+ has shown that in the strong electric field regime λ ≫ max(1, µ, ξ), the components of the induced energy-momentum
2395
+ tensor can be approximated by Eq. (66). In the heavy scalar field regime µ ≫ max(1, λ, ξ), the components can be
2396
+ approximated according to Eq. (67). We also found that in the infrared regime, where µ ≪ 1, λ ≪ 1, ξ = 0, the
2397
+ components can be approximated by Eqs. (69)-(72). To do a consistency check, we derived the trace anomaly of
2398
+ the induced energy-momentum tensor for the case of a free, massless, conformally invariant scalar field in dS4; see
2399
+ Eq. (74). This investigation shows that our result (74) is in agreement with the earlier result of computing the trace
2400
+ anomaly [96] of a free, massless, conformally coupled real scalar field in dS4, except for the overall factor of 2 in
2401
+ Eq. (74), as explained below Eq. (65).
2402
+ One of the more significant findings to emerge from this research is that the nonconservation equation (23) implies
2403
+ the relation (77) between the induced energy-momentum tensor and the induced current. This relation in turn implies
2404
+ the renormalization condition for the induced current. We derived the expression (79) for the induced current of the
2405
+ scalar field by using the expressions (61), (73), and relation (77). This result for the induced current has been derived
2406
+ from the expressions which have been regularized by the counterterms expanded up to fourth adiabatic order. In
2407
+ Ref. [61], the induced current of the massive, minimally coupled ξ = 0, scalar field has been evaluated by subtracting
2408
+ the counterterm expanded up to second adiabatic order; see Eq. (80). In the discussion of Eq. (83), we remarked that
2409
+ our result for the induced current in the Minkowski spacetime limit agrees with the electric current of the charged
2410
+ scalar particles produced by the Schwinger mechanism in Minkowski spacetime [40, 41]. A comparison of the result
2411
+ of this article for the induced current J[4] [see Eq. (79)] to the result of Ref. [61] for the induced current J[2] [see
2412
+ Eq. (80)] is shown in Fig. 4. The figure is drawn for ξ = 0, and illustrates that, for the light scalars µ < 1, the
2413
+ induced currents J[4] and J[2] differ considerably in the regime λ ≳ µ. From Fig. 4 it is obvious that in the infrared
2414
+ hyperconductivity regime µ < λ ≲ 1, the absolute value of the induced current J[4] reduces to zero at a certain
2415
+ value of the electric field parameter λ∗ which depends on the mass parameter µ. We found that in the infrared
2416
+ hyperconductivity regime, the induced current J[4] can be approximated by Eq. (85) which has a zero at λ∗ ≃ 2.090µ.
2417
+ In the interval µ < λ < 2.090µ, the dominant contribution to J[4] comes from the last term in Eq. (85) which increases
2418
+ with decreasing λ. Thus, the infrared hyperconductivity phenomenon occurs in the interval µ < λ < 2.090µ. We
2419
+ therefore conclude that although there exist a period of the infrared hyperconductivity in our result for the induced
2420
+ current J[4], but now this phenomenon occurs in the more restricted interval µ < λ < 2.090µ. Figure 4 also shows
2421
+ that the absolute value of the induced current J[4] is an increasing function of λ in the strong electric field regime
2422
+ λ ≫ max(1, µ, ξ), but decreases as µ−4 with increasing µ. We saw that in the limit λ → ∞ for a fixed µ, the induced
2423
+ current J[4] is given approximately by Eq. (86). The results of this investigation show that the behavior of the induced
2424
+ current J[4] in the Minkowski spacetime limit [see Eq. (83)] will be different from that in the strong electric field limit,
2425
+ see Eq. (86).
2426
+ This would be a fruitful area for further work. A natural progression of this work is to analyse the backreaction of
2427
+
2428
+ 20
2429
+ the induce energy-momentum tensor on the gravitational field of dS4 and the backreaction of the induce current J[4]
2430
+ on the electromagnetic field. This is also an issue for future research to explore the induced energy-momentum tensor
2431
+ of a Dirac field in the context of our discussion.
2432
+ ACKNOWLEDGMENTS
2433
+ E. B. very much appreciate the support by the University of Kashan Grant No. 1143880/1.
2434
+ Appendix: Evaluation of the momentum integrals over the mode functions
2435
+ In the appendix we present further supplementary data associated with the calculation of the expressions (36)-(38).
2436
+ It is convenient at this stage to switch to the three-dimensional spherical momentum space, and then we can perform
2437
+ the entire three-dimensional integrals in three-dimensional spherical coordinates. We introduce a transformation from
2438
+ the Cartesian momentum coordinates (kx, ky, kz) to the spherical momentum coordinates (k, θ, φ) by equations
2439
+ kx = k cosθ,
2440
+ ky = k sin θ cos φ,
2441
+ kz = k sin θ sin φ,
2442
+ (A.1)
2443
+ In this coordinates the variable r = kx/k is given by r = cos θ with range −1 ≤ r ≤ 1. The integration measure is then
2444
+ d3k = k2 sin θdφdθdk. It is useful to covert the variables of integration from the momentum k to the dimensionless
2445
+ physical momentum p = −kτ, and from the angle θ to the variable r. Thus, the previous expression for the integration
2446
+ measure may be rewritten as
2447
+ d3k = −H3Ω3(τ)dφdrp2dp.
2448
+ (A.2)
2449
+ Accordingly, we use a dimensionless physical momentum cutoff Λ, which is related to the momentum cutoff K as
2450
+ Λ = −Kτ. To begin the evaluation of (36)-(38), we change the integration measure according to (A.2) and substitute
2451
+ the expression (30) for Uk(x).
2452
+ After integration over azimuth angle φ and some simplifications, the expressions
2453
+ (36)-(38) reduce to
2454
+
2455
+ in
2456
+ ��T00
2457
+ ��in
2458
+
2459
+ = Ω2 H4
2460
+ 8π2
2461
+ � +1
2462
+ −1
2463
+ dr
2464
+
2465
+ 2I1 − 4λrI2 +
2466
+ �1
2467
+ 4 − γ2 − 18¯ξ + λ2r2�
2468
+ I3 + 2ℑ
2469
+
2470
+ I4
2471
+
2472
+ − 2ℜ
2473
+ ��
2474
+ 6ξ − 1 − iλr
2475
+
2476
+ I5
2477
+
2478
+ + I6
2479
+
2480
+ ,
2481
+ (A.3)
2482
+
2483
+ in
2484
+ ��T11
2485
+ ��in
2486
+
2487
+ = Ω2 H4
2488
+ 8π2
2489
+ � +1
2490
+ −1
2491
+ dr
2492
+
2493
+ 2r2I1 − 4λrI2 +
2494
+ ��
2495
+ 4ξ + 1
2496
+
2497
+ λ2 +
2498
+
2499
+ 4ξ − 1
2500
+
2501
+ µ2 −
2502
+
2503
+ 4ξ − 1
2504
+
2505
+ λ2r2
2506
+ +
2507
+
2508
+ 6ξ − 1
2509
+ ��
2510
+ 8ξ − 1
2511
+ ��
2512
+ I3 − 2ℑ
2513
+ ��
2514
+ 4ξ − 1
2515
+
2516
+ I4
2517
+
2518
+ + 2ℜ
2519
+ ��
2520
+ 1 − 6ξ + iλr − 4iλrξ
2521
+
2522
+ I5
2523
+
2524
+
2525
+
2526
+ 4ξ − 1
2527
+
2528
+ I6
2529
+
2530
+ ,
2531
+ (A.4)
2532
+ and
2533
+
2534
+ in
2535
+ ��T22
2536
+ ��in
2537
+
2538
+ =
2539
+
2540
+ in
2541
+ ��T33
2542
+ ��in
2543
+
2544
+ = Ω2 H4
2545
+ 8π2
2546
+ � +1
2547
+ −1
2548
+ dr
2549
+ ��
2550
+ 1 − r2�
2551
+ I1 +
2552
+ ��
2553
+ 4ξ − 1
2554
+ ��
2555
+ λ2 + µ2 − λ2r2�
2556
+ +
2557
+
2558
+ 6ξ − 1
2559
+ ��
2560
+ 8ξ − 1
2561
+ ��
2562
+ I3 − 2ℑ
2563
+ ��
2564
+ 4ξ − 1
2565
+
2566
+ I4
2567
+
2568
+ + 2ℜ
2569
+ ��
2570
+ 1 − 6ξ + iλr − 4iλrξ
2571
+
2572
+ I5
2573
+
2574
+
2575
+
2576
+ 4ξ − 1
2577
+
2578
+ I6
2579
+
2580
+ ,
2581
+ (A.5)
2582
+ where ℑ and ℜ stand for the imaginary and real parts of any expressions, respectively. In these expressions the
2583
+ momentum integrals over the Whittaker functions have been defined by
2584
+ I1 = eπλr
2585
+ � Λ
2586
+ 0
2587
+ dpp3���Wκ,γ(−2ip)
2588
+ ���
2589
+ 2
2590
+ ,
2591
+ (A.6)
2592
+ I2 = eπλr
2593
+ � Λ
2594
+ 0
2595
+ dpp2���Wκ,γ(−2ip)
2596
+ ���
2597
+ 2
2598
+ ,
2599
+ (A.7)
2600
+
2601
+ 21
2602
+ I3 = eπλr
2603
+ � Λ
2604
+ 0
2605
+ dpp
2606
+ ���Wκ,γ(−2ip)
2607
+ ���
2608
+ 2
2609
+ ,
2610
+ (A.8)
2611
+ I4 =
2612
+ �1
2613
+ 4 − γ2 − λ2r2 + iλr
2614
+
2615
+ eπλr
2616
+ � Λ
2617
+ 0
2618
+ dpp2Wκ−1,γ(−2ip)W−κ,γ(2ip),
2619
+ (A.9)
2620
+ I5 =
2621
+ �1
2622
+ 4 − γ2 − λ2r2 + iλr
2623
+
2624
+ eπλr
2625
+ � Λ
2626
+ 0
2627
+ dppWκ−1,γ(−2ip)W−κ,γ(2ip),
2628
+ (A.10)
2629
+ I6 =
2630
+ ���1
2631
+ 4 − γ2 − λ2r2 + iλr
2632
+ ���
2633
+ 2
2634
+ eπλr
2635
+ � Λ
2636
+ 0
2637
+ dppWκ−1,γ(−2ip)W−κ−1,γ(2ip).
2638
+ (A.11)
2639
+ The integrals in Eqs. (A.6)-(A.11) are of the same kind of those momentum integrals over the Whittaker functions
2640
+ which encountered in the calculation of the induced current of a scalar field in two- [60] and four-dimensional [61]
2641
+ de Sitter spacetimes. The first step in the evaluation of the integrals (A.6)-(A.11) by the method that explained in
2642
+ Ref. [61], is to plug the Mellin-Barnes representation (28) for the Whittaker function W and make use of the theorem
2643
+ of residues. It is rather straightforward, but rather lengthy, to show that our final results are
2644
+ I1 = Λ4
2645
+ 4 + λr
2646
+ 3 Λ3 + 1
2647
+ 16
2648
+
2649
+ 4γ2 + 12λ2r2 − 1
2650
+
2651
+ Λ2 + λr
2652
+ 8
2653
+
2654
+ 12γ2 + 20λ2r2 − 7
2655
+
2656
+ Λ +
2657
+ 1
2658
+ 128
2659
+
2660
+ 27 + 48γ4 + 560λ4r4 − 120γ2
2661
+ + 480γ2λ2r2 − 520λ2r2�
2662
+ log
2663
+
2664
+
2665
+
2666
+ − 7γ4
2667
+ 32 + 83γ2
2668
+ 64
2669
+ − 533
2670
+ 96 λ4r4 + 1607
2671
+ 192 λ2r2 − 59
2672
+ 16γ2λ2r2 − 351
2673
+ 512 −
2674
+ �55γ2
2675
+ 24
2676
+ + 35λ2r2
2677
+ 8
2678
+ − 355
2679
+ 96
2680
+
2681
+ γλr
2682
+ sin
2683
+
2684
+ 2πγ
2685
+
2686
+
2687
+ cos
2688
+
2689
+ 2πγ
2690
+
2691
+ + e2πλr�
2692
+
2693
+ i
2694
+ 256 sin
2695
+
2696
+ 2πγ
2697
+
2698
+
2699
+ 27 + 48γ4 + 560λ4r4 − 120γ2 + 480γ2λ2r2
2700
+ − 520λ2r2
2701
+ ��
2702
+ π sin
2703
+
2704
+ 2πγ
2705
+
2706
+ +
2707
+
2708
+ e2πλr + e−2iπγ�
2709
+ ψ
2710
+ �1
2711
+ 2 − γ + iλr
2712
+
2713
+
2714
+
2715
+ e2πλr + e2iπγ�
2716
+ ψ
2717
+ �1
2718
+ 2 + γ + iλr
2719
+ ��
2720
+ ,
2721
+ (A.12)
2722
+ I2 = Λ3
2723
+ 3 + λr
2724
+ 2 Λ2 + 1
2725
+ 8
2726
+
2727
+ 4γ2 + 12λ2r2 − 1
2728
+
2729
+ Λ + λr
2730
+ 8
2731
+
2732
+ 12γ2 + 20λ2r2 − 7
2733
+
2734
+ log
2735
+
2736
+
2737
+
2738
+ − 37
2739
+ 12λ3r3 + 95
2740
+ 48λr − 5γ2
2741
+ 4 λr
2742
+
2743
+
2744
+ 4γ2 + 15λ2r2 − 4
2745
+
2746
+ γ
2747
+ 6 sin
2748
+
2749
+ 2πγ
2750
+
2751
+
2752
+ cos
2753
+
2754
+ 2πγ
2755
+
2756
+ + e2πλr�
2757
+
2758
+ iλr
2759
+ 16 sin
2760
+
2761
+ 2πγ
2762
+
2763
+
2764
+ 12γ2 + 20λ2r2 − 7
2765
+
2766
+ ×
2767
+
2768
+ π sin
2769
+
2770
+ 2πγ
2771
+
2772
+ +
2773
+
2774
+ e2πλr + e−2iπγ�
2775
+ ψ
2776
+ �1
2777
+ 2 − γ + iλr
2778
+
2779
+
2780
+
2781
+ e2πλr + e2iπγ�
2782
+ ψ
2783
+ �1
2784
+ 2 + γ + iλr
2785
+ ��
2786
+ ,
2787
+ (A.13)
2788
+ I3 = Λ2
2789
+ 2 + λrΛ + 1
2790
+ 8
2791
+
2792
+ 4γ2 + 12λ2r2 − 1
2793
+
2794
+ log
2795
+
2796
+
2797
+
2798
+ − γ2
2799
+ 4 − 7λ2r2
2800
+ 4
2801
+ + 5
2802
+ 16 −
2803
+ 3γλr
2804
+ 2 sin
2805
+
2806
+ 2πγ
2807
+
2808
+
2809
+ cos
2810
+
2811
+ 2πγ
2812
+
2813
+ + e2πλr���
2814
+
2815
+ i
2816
+ 16 sin
2817
+
2818
+ 2πγ
2819
+
2820
+
2821
+ 4γ2 + 12λ2r2 − 1
2822
+ ��
2823
+ π sin
2824
+
2825
+ 2πγ
2826
+
2827
+ +
2828
+
2829
+ e2πλr + e−2iπγ�
2830
+ ψ
2831
+ �1
2832
+ 2 − γ + iλr
2833
+
2834
+
2835
+
2836
+ e2πλr + e2iπγ�
2837
+ ψ
2838
+ �1
2839
+ 2 + γ + iλr
2840
+ ��
2841
+ ,
2842
+ (A.14)
2843
+ I4 = − i
2844
+ 16
2845
+
2846
+ 4γ2 + 4λ2r2 − 4iλr − 1
2847
+
2848
+ Λ2 − 1
2849
+ 8
2850
+
2851
+ 4γ2 + 4λ2r2 − 4iλr − 1
2852
+ ��
2853
+ 1 + 2iλr
2854
+
2855
+ Λ − 3i
2856
+ 128
2857
+
2858
+ 4γ2 + 4λ2r2 − 4iλr
2859
+ − 1
2860
+ ��
2861
+ 4γ2 + 20λ2r2 − 20iλr − 9
2862
+
2863
+ log
2864
+
2865
+
2866
+
2867
+ + 79
2868
+ 32iλ4r4 + 47
2869
+ 8 λ3r3 − 409
2870
+ 64 iλ2r2 + 39γ2
2871
+ 16 iλ2r2 − 109
2872
+ 32 λr + 21γ2
2873
+ 8
2874
+ λr
2875
+ + 7i
2876
+ 32γ4 − 83i
2877
+ 64 γ2 + 351i
2878
+ 512 +
2879
+ γ
2880
+ 4 sin
2881
+
2882
+ 2πγ
2883
+
2884
+
2885
+ 4γ2 + 15
2886
+ 2 iλ3r3 + 15λ2r2 + 13
2887
+ 2 iγ2λr − 97
2888
+ 8 iλr − 4
2889
+ ��
2890
+ cos
2891
+
2892
+ 2πγ
2893
+
2894
+ + e2πλr�
2895
+
2896
+ 3
2897
+ 256 sin
2898
+
2899
+ 2πγ
2900
+
2901
+
2902
+ 4γ2 + 4λ2r2 − 4iλr − 1
2903
+ ��
2904
+ 4γ2 + 20λ2r2 − 20iλr − 9
2905
+ ��
2906
+ π sin
2907
+
2908
+ 2πγ
2909
+
2910
+ +
2911
+
2912
+ e2πλr + e−2iπγ�
2913
+ ψ
2914
+ �1
2915
+ 2 − γ + iλr
2916
+
2917
+
2918
+
2919
+ e2πλr + e2iπγ�
2920
+ ψ
2921
+ �1
2922
+ 2 + γ + iλr
2923
+ ��
2924
+ ,
2925
+ (A.15)
2926
+
2927
+ 22
2928
+ I5 = − i
2929
+ 8
2930
+
2931
+ 4γ2 + 4λ2r2 − 4iλr − 1
2932
+
2933
+ Λ − 1
2934
+ 8
2935
+
2936
+ 4γ2 + 4λ2r2 − 4iλr − 1
2937
+ ��
2938
+ 1 + 2iλr
2939
+
2940
+ log
2941
+
2942
+
2943
+
2944
+ − 2γ2 − 10λ2r2
2945
+ − 16
2946
+ 3 iλ3r3 − 4iγ2λr + 20
2947
+ 3 iλr + 3
2948
+ 2 −
2949
+
2950
+ 3 sin
2951
+
2952
+ 2πγ
2953
+
2954
+
2955
+ 8γ2 + 12λ2r2 − 18iλr − 8
2956
+ ��
2957
+ cos
2958
+
2959
+ 2πγ
2960
+
2961
+ + e2πλr�
2962
+ +
2963
+ i
2964
+ 16 sin
2965
+
2966
+ 2πγ
2967
+
2968
+
2969
+ 4γ2 + 4λ2r2 − 4iλr − 1
2970
+ ��
2971
+ 1 + 2iλr
2972
+ ��
2973
+ π sin
2974
+
2975
+ 2πγ
2976
+
2977
+ +
2978
+
2979
+ e2πλr + e−2iπγ�
2980
+ ψ
2981
+ �1
2982
+ 2 − γ + iλr
2983
+
2984
+
2985
+
2986
+ e2πλr + e2iπγ�
2987
+ ψ
2988
+ �1
2989
+ 2 + γ + iλr
2990
+ ��
2991
+ ,
2992
+ (A.16)
2993
+ I6 = 1
2994
+ 64
2995
+
2996
+ 16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
2997
+
2998
+ log
2999
+
3000
+
3001
+
3002
+ − 3γ4
3003
+ 16 + 7γ2
3004
+ 32 − 25
3005
+ 48λ4r4 − 7
3006
+ 8γ2λ2r2 − 29
3007
+ 96λ2r2
3008
+ − 11
3009
+ 256 −
3010
+ γ
3011
+ 48 sin
3012
+
3013
+ 2πγ
3014
+
3015
+
3016
+ 16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
3017
+ ��
3018
+ 12λ3r3 + 20γ2λr + 7λr
3019
+ ��
3020
+ cos
3021
+
3022
+ 2πγ
3023
+
3024
+ + e2πλr�
3025
+
3026
+ i
3027
+ 128 sin
3028
+
3029
+ 2πγ
3030
+
3031
+
3032
+ 16γ4 − 8γ2 + 16λ4r4 + 32γ2λ2r2 + 8λ2r2 + 1
3033
+ ��
3034
+ π sin
3035
+
3036
+ 2πγ
3037
+
3038
+ +
3039
+
3040
+ e2πλr + e−2iπγ�
3041
+ ψ
3042
+ �1
3043
+ 2 − γ + iλr
3044
+
3045
+
3046
+
3047
+ e2πλr + e2iπγ�
3048
+ ψ
3049
+ �1
3050
+ 2 + γ + iλr
3051
+ ��
3052
+ ,
3053
+ (A.17)
3054
+ where we use log(z) to denote the natural logarithm function, and ψ(z) to denote the digamma function. By substi-
3055
+ tuting Eqs. (A.12)-(A.17) into expressions (A.3)-(A.5) and performing the integrals over r, we obtain the results (40),
3056
+ (42), and (44), respectively.
3057
+ [1] N. D. Birrell and P. C. W. Davies, Quantum Fields in Curved Space (Cambridge University Press, Cambridge, England,
3058
+ 1982).
3059
+ [2] L. E. Parker and D. J. Toms, Quantum Field Theory in Curved Spacetime: Quantized Fields and Gravity (Cambridge
3060
+ University Press, Cambridge, England, 2009).
3061
+ [3] R. M. Wald, Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics (The University of Chicago
3062
+ Press, Chicago, 1994).
3063
+ [4] L. Parker, Phys. Rev. Lett. 21, 562-564 (1968).
3064
+ [5] L. Parker, Phys. Rev. 183, 1057-1068 (1969).
3065
+ [6] L. Parker, Phys. Rev. D 3, 346-356 (1971) [erratum: Phys. Rev. D 3, 2546-2546 (1971)].
3066
+ [7] C. Bernard and A. Duncan, Annals Phys. 107, 201 (1977).
3067
+ [8] A. Vilenkin, Nuovo Cim. A 44, 441-450 (1978).
3068
+ [9] Lowell S. Brown, Phys. Rev. D 15, 1469 (1977).
3069
+ [10] P. Candelas and D. J. Raine, Phys. Rev. D 12, 965-974 (1975).
3070
+ [11] J. S. Dowker and R. Critchley, Phys. Rev. D 13, 3224 (1976).
3071
+ [12] J. S. Dowker and R. Critchley, Phys. Rev. D 16, 3390 (1977).
3072
+ [13] S. W. Hawking, Commun. Math. Phys. 55, 133 (1977).
3073
+ [14] V. Moretti, Phys. Rev. D 56, 7797-7819 (1997) [arXiv:hep-th/9705060 [hep-th]].
3074
+ [15] S. M. Christensen, Phys. Rev. D 14, 2490-2501 (1976).
3075
+ [16] S. L. Adler, J. Lieberman and Y. J. Ng, Annals Phys. 106, 279 (1977).
3076
+ [17] S. M. Christensen, Phys. Rev. D 17, 946-963 (1978).
3077
+ [18] R. M. Wald, Phys. Rev. D 17, 1477-1484 (1978).
3078
+ [19] L. Parker and S. A. Fulling, Phys. Rev. D 9, 341-354 (1974).
3079
+ [20] S. A. Fulling and L. Parker, Annals Phys. 87, 176-204 (1974).
3080
+ [21] S. A. Fulling, L. Parker, and B. L. Hu, Phys. Rev. D 10, 3905-3924 (1974); 11, 1714(E) (1975).
3081
+ [22] N. D. Birrell, Proc. Roy. Soc. Lond. A 361, 513-526 (1978).
3082
+ [23] B. L. Hu, Phys. Rev. D 18, 4460-4470 (1978).
3083
+ [24] R. M. Wald, Commun. Math. Phys. 54, 1-19 (1977).
3084
+ [25] T. S. Bunch, S. M. Christensen, and S. A. Fulling, Phys. Rev. D 18, 4435-4459 (1978).
3085
+ [26] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 357, 381-394 (1977).
3086
+ [27] T. S. Bunch and P. C. W. Davies, J. Phys. A 11, 1315-1328 (1978).
3087
+ [28] P. C. W. Davies, S. A. Fulling, S. M. Christensen and T. S. Bunch, Annals Phys. 109, 108-142 (1977).
3088
+ [29] T. S. Bunch, J. Phys. A 11, 603-607 (1978).
3089
+ [30] T. S. Bunch, J. Phys. A 13, 1297-1310 (1980).
3090
+ [31] P. R. Anderson and L. Parker, Phys. Rev. D 36, 2963 (1987).
3091
+
3092
+ 23
3093
+ [32] S. Habib, C. Molina-Par´ıs and E. Mottola, Phys. Rev. D 61, 024010 (1999) [arXiv:gr-qc/9906120 [gr-qc]].
3094
+ [33] Y. Zhang, B. Wang and X. Ye, Chin. Phys. C 44, no.9, 095104 (2020) [arXiv:1909.13010 [gr-qc]].
3095
+ [34] T. Markkanen, J. Cosmol. Astropart. Phys. 05 (2018) 001 [arXiv:1712.02372 [hep-th]].
3096
+ [35] J. Sol`a Peracaula, Phil. Trans. Roy. Soc. Lond. A 380, 20210182 (2022) [arXiv:2203.13757 [gr-qc]].
3097
+ [36] C. Moreno-Pulido and J. Sol`a Peracaula, Eur. Phys. J. C 82, no.6, 551 (2022) [arXiv:2201.05827 [gr-qc]].
3098
+ [37] G. W. Gibbons and S. W. Hawking, Phys. Rev. D 15, 2738-2751 (1977).
3099
+ [38] T. S. Bunch and P. C. W. Davies, Proc. Roy. Soc. Lond. A 360, 117-134 (1978).
3100
+ [39] E. Mottola, Phys. Rev. D 31, 754 (1985).
3101
+ [40] P. R. Anderson and E. Mottola, Phys. Rev. D 89, 104038 (2014) [arXiv:1310.0030 [gr-qc]].
3102
+ [41] P. R. Anderson and E. Mottola, Phys. Rev. D 89, 104039 (2014) [arXiv:1310.1963 [gr-qc]].
3103
+ [42] T. Markkanen and A. Rajantie, J. High Energy Phys. 01 (2017) 133 [arXiv:1607.00334 [gr-qc]].
3104
+ [43] P. R. Anderson, W. Eaker, S. Habib, C. Molina-Par´ıs and E. Mottola, Phys. Rev. D 62, 124019 (2000) [arXiv:gr-qc/0005102
3105
+ [gr-qc]].
3106
+ [44] Y. Zhang, X. Ye and B. Wang, Sci. China Phys. Mech. Astron. 63, no.5, 250411 (2020) [arXiv: 1903.10115 [gr-qc]].
3107
+ [45] X. Ye, Y. Zhang and B. Wang, J. Cosmol. Astropart. Phys. 09 (2022) 020 [arXiv:2205.04761 [gr-qc]].
3108
+ [46] J. Schwinger, Phys. Rev. 82, 664-679 (1951).
3109
+ [47] W. Heisenberg and H. Euler Z. Phys. 98, 714-732 (1936) [arXiv:physics/0605038 [physics.hist-ph]].
3110
+ [48] F. Sauter, Z. Phys. 69, 742-764 (1931).
3111
+ [49] F. Gelis and N. Tanji, Prog. Part. Nucl. Phys. 87, 1-49 (2016) [arXiv:1510.05451 [hep-ph]].
3112
+ [50] G. V. Dunne, “Heisenberg-Euler effective Lagrangians: Basics and extensions,” edited by M. Shifman et al., From Fields
3113
+ to Strings (World Scientific Publishing, Singapore, 2005), Vol. 1, pp. 445–522. [arXiv:hep-th/0406216 [hep-th]].
3114
+ [51] I. Antoniadis, P. O. Mazur and E. Mottola, New J. Phys. 9, 11 (2007) [arXiv:gr-qc/0612068 [gr-qc]].
3115
+ [52] J. Martin, Lect. Notes Phys. 738, 193-241 (2008) [arXiv:0704.3540 [hep-th]].
3116
+ [53] A. Maleknejad, M. M. Sheikh-Jabbari and J. Soda, Phys. Rept. 528, 161-261 (2013) [arXiv:1212.2921 [hep-th]].
3117
+ [54] R. Durrer and A. Neronov, Astron. Astrophys. Rev. 21, 62 (2013) [arXiv:1303.7121 [astro-ph.CO]].
3118
+ [55] J. Garriga, Phys. Rev. D 49, 6327-6342 (1994) [arXiv:hep-ph/9308280 [hep-ph]].
3119
+ [56] J. Garriga, Phys. Rev. D 49, 6343-6346 (1994).
3120
+ [57] S. P. Kim and D. N. Page, Phys. Rev. D 78, 103517 (2008) [arXiv:0803.2555 [hep-th]].
3121
+ [58] R. G. Cai and S. P. Kim, J. High Energy Phys. 09 (2014) 072 [arXiv:1407.4569 [hep-th]].
3122
+ [59] B. Hamil and M. Merad, Int. J. Mod. Phys. A 33, no.30, 1850177 (2018).
3123
+ [60] M. B. Fr¨ob, J. Garriga, S. Kanno, M. Sasaki, J. Soda, T. Tanaka and A. Vilenkin, J. Cosmol. Astropart. Phys. 04 (2014)
3124
+ 009 [arXiv:1401.4137 [hep-th]].
3125
+ [61] T. Kobayashi and N. Afshordi, J. High Energy Phys. 10 (2014) 166 [arXiv:1408.4141 [hep-th]].
3126
+ [62] E. Bavarsad, C. Stahl and S. S. Xue, Phys. Rev. D 94, no.10, 104011 (2016) [arXiv:1602.06556 [hep-th]].
3127
+ [63] V. M. Villalba, Phys. Rev. D 52, 3742-3745 (1995) [arXiv:hep-th/9507021 [hep-th]].
3128
+ [64] S. Haouat and R. Chekireb, Phys. Rev. D 87, no.8, 088501 (2013) [arXiv:1207.4342 [hep-th]].
3129
+ [65] C. Stahl, E. Strobel and S. S. Xue, Phys. Rev. D 93, no.2, 025004 (2016) [arXiv:1507.01686 [gr-qc]].
3130
+ [66] S. Haouat and R. Chekireb, [arXiv:1504.08201 [gr-qc]].
3131
+ [67] C. Stahl and S. Eckhard, AIP Conf. Proc. 1693, no.1, 050005 (2015) [arXiv:1507.01401 [hep-th]].
3132
+ [68] T. Hayashinaka and J. Yokoyama, J. Cosmol. Astropart. Phys. 07 (2016) 012 [arXiv:1603.06172 [hep-th]].
3133
+ [69] J. J. Geng, B. F. Li, J. Soda, A. Wang, Q. Wu and T. Zhu, J. Cosmol. Astropart. Phys. 02 (2018) 018 [arXiv:1706.02833
3134
+ [gr-qc]].
3135
+ [70] E. Bavarsad, S. P. Kim, C. Stahl and S. S. Xue, Phys. Rev. D 97, no.2, 025017 (2018) [arXiv:1707.03975 [hep-th]].
3136
+ [71] E. Bavarsad, S. P. Kim, C. Stahl and S. S. Xue, Eur. Phys. J. Web Conf. 168, 03002 (2018).
3137
+ [72] S. Moradi, Mod. Phys. Lett. A 24, 1129-1136 (2009).
3138
+ [73] T. Hayashinaka, T. Fujita and J. Yokoyama, J. Cosmol. Astropart. Phys. 07 (2016) 010 [arXiv:1603.04165 [hep-th]].
3139
+ [74] M. Banyeres, G. Dom`enech and J. Garriga, J. Cosmol. Astropart. Phys. 10 (2018) 023 [arXiv:1809.08977 [hep-th]].
3140
+ [75] T. Hayashinaka and S. S. Xue, Phys. Rev. D 97, no.10, 105010 (2018) [arXiv:1802.03686 [gr-qc]].
3141
+ [76] M. Akbari Ahmadmahmoudi and E. Bavarsad, Phys. Rev. D 103, no.10, 105009 (2021) [arXiv:2102.03407 [hep-th]].
3142
+ [77] E. Bavarsad and M. Mortezazadeh, Iran. J. Phys. Res. 18, 91 (2018).
3143
+ [78] E. Bavarsad, S. P. Kim, C. Stahl and S. S. Xue, Effect of Schwinger pair production on the evolution of the Hubble constant
3144
+ in de Sitter spacetime, edited by E. Battistelli et al., the Fifteenth Marcel Grossmann Meeting (World Scientific Publishing,
3145
+ Singapore, 2022), pp. 2041-2046, DOI:10.1142/9789811258251 0306 [arXiv:1909.09319 [hep-th]].
3146
+ [79] M. Botshekananfard and E. Bavarsad, Phys. Rev. D 101, no.8, 085011 (2020) [arXiv:1911.10588 [hep-th]].
3147
+ [80] E. Bavarsad and N. Margosian, J. Res. Many-Body Syst. 8, 1 (2018), DOI: 10.22055/jrmbs.2018.13879.
3148
+ [81] S. Haouat and R. Chekireb, Eur. Phys. J. C 72, 2034 (2012) [arXiv:1201.5738 [hep-th]].
3149
+ [82] S. Shakeri, M. A. Gorji and H. Firouzjahi, Phys. Rev. D 99, no.10, 103525 (2019) [arXiv:1903.05310 [hep-th]].
3150
+ [83] C. Stahl, Nucl. Phys. B 939, 95-104 (2019) [arXiv:1806.06692 [hep-th]].
3151
+ [84] M. Giovannini, Phys. Rev. D 97, no.6, 061301(R) (2018) [arXiv:1801.09995 [hep-th]].
3152
+ [85] R. Sharma and S. Singh, Phys. Rev. D 96, no.2, 025012 (2017) [arXiv:1704.05076 [gr-qc]].
3153
+ [86] V. Domcke, Y. Ema and K. Mukaida, J. High Energy Phys. 02 (2020) 055 [arXiv:1910.01205 [hep-ph]].
3154
+ [87] W. Tangarife, K. Tobioka, L. Ubaldi and T. Volansky, J. High Energy Phys. 02 (2018) 084 [arXiv:1706.03072 [hep-ph]].
3155
+ [88] H. Kitamoto, Phys. Rev. D 98, no.10, 103512 (2018) [arXiv:1807.03753 [hep-th]].
3156
+ [89] W. Z. Chua, Q. Ding, Y. Wang and S. Zhou, J. High Energy Phys. 04 (2019) 066 [arXiv:1810.09815 [hep-th]].
3157
+
3158
+ 24
3159
+ [90] E. V. Gorbar, A. I. Momot, O. O. Sobol and S. I. Vilchinskii, Phys. Rev. D 100, no.12, 123502 (2019) [arXiv:1909.10332
3160
+ [gr-qc]].
3161
+ [91] O. O. Sobol, E. V. Gorbar and S. I. Vilchinskii, Phys. Rev. D 100, no.6, 063523 (2019) [arXiv:1907.10443 [astro-ph.CO]].
3162
+ [92] O. O. Sobol, E. V. Gorbar, M. Kamarpour and S. I. Vilchinskii, Phys. Rev. D 98, no.6, 063534 (2018) [arXiv:1807.09851
3163
+ [hep-ph]].
3164
+ [93] S. P. Kim, [arXiv: 1905.13439 [gr-qc]].
3165
+ [94] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, NIST Handbook of Mathematical Functions (Cambridge
3166
+ University Press, Cambridge, England, 2010).
3167
+ [95] S. Hollands and R. M. Wald, Commun. Math. Phys. 223, 289-326 (2001) [arXiv:gr-qc/0103074 [gr-qc]].
3168
+ [96] M. J. Duff, Nucl. Phys. B 125, 334-348 (1977).
3169
+
DNE2T4oBgHgl3EQf9Qm6/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
DtAzT4oBgHgl3EQfwv4v/content/tmp_files/2301.01726v1.pdf.txt ADDED
The diff for this file is too large to render. See raw diff
 
DtAzT4oBgHgl3EQfwv4v/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
GNE3T4oBgHgl3EQftgtb/content/tmp_files/2301.04676v1.pdf.txt ADDED
@@ -0,0 +1,1889 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ CFTP/23-001
2
+ A viable A4 3HDM theory of quark mass matrices
3
+ Iris Brée∗, Sérgio Carrôlo †, Jorge C. Romão ‡, João P. Silva §,
4
+ CFTP, Departamento de Física,
5
+ Instituto Superior Técnico, Universidade de Lisboa,
6
+ Avenida Rovisco Pais 1, 1049 Lisboa, Portugal
7
+ January 13, 2023
8
+ Abstract
9
+ It is known that a three Higgs doublet model (3HDM) symmetric under an exact A4 sym-
10
+ metry is not compatible with nonzero quark masses and/or non-block-diagonal CKM matrix.
11
+ We show that a 3HDM with softly broken A4 terms in the scalar potential does allow for a
12
+ fit of quark mass matrices. Moreover, the result is consistent with mh = 125GeV and the
13
+ h → WW, ZZ signal. We also checked numerically that, for each point that passes all the
14
+ constraints, the minimum is a global minimum of the potential.
15
+ 1
16
+ Introduction
17
+ The observation in 2012 of a scalar particle with 125GeV by the ATLAS and CMS collaborations
18
+ [1, 2] has incentivized experimental searches for beyond the Standard Model (SM) particles at the
19
+ LHC. On par with these experimental endeavors, theoretical efforts in the search for extra scalar
20
+ particles have been strengthened since this discovery. A promising framework is found in N-Higgs
21
+ doublet models (NHDM).
22
+ Such models have many free parameters, which are often curtailed by imposing some discrete
23
+ family symmetry. Here, we focus on the implementation of A4 in a three Higgs doublet model
24
+ (3HDM). The A4 group is the group of even permutations on 4 elements.
25
+ It is the smallest
26
+ discrete group to contain a three-dimensional irreducible representation (irrep), which is ideal for
27
+ describing the three families of quarks with a minimal number of independent Yukawa couplings.
28
+ Thus, NHDM supplemented by the A4 discrete symmetry has long been of interest in flavour
29
+ physics research.
30
+ A number of early articles include: [3], mainly devoted to the leptonic sector and where the
31
+ solution to the quark sector is briefly mentioned to include a fourth Higgs doublet and all quark
32
+ fields in singlets (which is effectively the same as the Standard Model quark sector); [4], where A4
33
+ is broken by dimension four Yukawa couplings, thus rendering the theory non-renormalizable or,
34
+ alternatively, the low energy limit of a broader complete theory; [5], which requires three Higgs
35
+ doublets in the down-type quark sector and a further two in the up-type quark sector, consisting
36
37
38
39
40
+ 1
41
+ arXiv:2301.04676v1 [hep-ph] 11 Jan 2023
42
+
43
+ of a 5HDM; and [6], which is devoted to the leptonic sector, but has the interesting side query
44
+ that it might be possible to recover a realistic CKM matrix through soft-breaking of A4.
45
+ Quark mass matrices in the context of a 3HDM with Higgs doublets in the triplet representation
46
+ of A4 were studied in [7] and [8], with the vacuum expectation value (vev) structure (eiα, e−iα, r),
47
+ where α and r are real constants. Unfortunately, Degee, Ivanov and Keus [9] proved in 2013 that
48
+ such a vacuum can never be the global minimum of the A4 symmetric 3HDM. In this beautiful
49
+ paper, geometric techniques were used in order to identify all possible global minima (thus, all
50
+ possible viable vacua) of the A4 symmetric 3HDM. Immediately thereafter, those minima were
51
+ used to show that all assignments of the quark fields into irreps of A4, when combined with the
52
+ possible vevs for the exact A4 potential, yield vanishing quark masses and/or a CP conserving
53
+ CKM matrix, both of which are forbidden by experiment. This is in fact a consequence of a much
54
+ broader theorem, proved in [10, 11]: given any flavour symmetry group, one can obtain a physical
55
+ CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses only if the
56
+ vevs of the Higgs fields break completely the full flavour group. The idea is that a symmetry will
57
+ reduce the number of redundant Yukawa couplings present in the SM, and it might even predict
58
+ relations among observables which turn out to be consistent with experiment.
59
+ When studying in detail the extensions of A4 to the quark sector found by Ref. [12], we noticed
60
+ that, in some of them, if it weren’t for the particular form of the vevs allowed by the exact A4
61
+ 3HDM potential, the Yukawa matrices could allow for massive quarks, and for a realistic CKM
62
+ matrix. Since the A4 symmetric potential doesn’t allow for minima other than those shown in [9],
63
+ here we consider the case where the A4 symmetry is softly broken by the addition of quadratic
64
+ terms to the potential. Such terms do not spoil the theory’s renormalizability, but break the A4
65
+ symmetry.
66
+ Our article is organized as follows. We define the notation for the scalar potential in Sec. 2.1,
67
+ discuss the Yukawa Lagrangian and the form of the possible mass matrices in Sec. 2.2, giving all
68
+ the expressions needed for the fit in Sec. 2.3. In Sec. 3 we present our fit to the quarks mass
69
+ matrices, while in Sec. 4 we discuss the viability of the vacuum found in the fit in terms of the
70
+ scalar potential.
71
+ Sec. 5 is devoted to the implementation of the theoretical constraints to be
72
+ imposed, and in Sec. 6 we briefly discuss the constraints coming from the LHC. The results and
73
+ conclusions are presented in Sec. 7 and 8, respectively. The Appendices contain some additional
74
+ expressions that are needed for the fits.
75
+ 2
76
+ Parameterization for the softly-broken A4 3HDM
77
+ 2.1
78
+ Potential and candidates for local minimum
79
+ The softly-broken potential of the 3HDM with an A4 symmetry is given by
80
+ VH = V4, A4 + M2
81
+ ij
82
+
83
+ φ†
84
+ iφj
85
+
86
+ ,
87
+ (1)
88
+ where V4, A4 is the quartic potential for the A4 symmetric three Higgs doublet model (3HDM),
89
+ which is, in the notation of [9],
90
+ 2
91
+
92
+ V4, A4 =Λ0
93
+ 3
94
+
95
+ φ†
96
+ 1φ1 + φ†
97
+ 2φ2 + φ†
98
+ 3φ3
99
+ �2
100
+ + Λ1
101
+ ��
102
+ Re
103
+
104
+ φ†
105
+ 1φ2
106
+ ��2 +
107
+
108
+ Re
109
+
110
+ φ†
111
+ 2φ3
112
+ ��2 +
113
+
114
+ Re
115
+
116
+ φ†
117
+ 3φ1
118
+ ��2�
119
+ + Λ2
120
+ ��
121
+ Im
122
+
123
+ φ†
124
+ 1φ2
125
+ ��2 +
126
+
127
+ Im
128
+
129
+ φ†
130
+ 2φ3
131
+ ��2 +
132
+
133
+ Im
134
+
135
+ φ†
136
+ 3φ1
137
+ ��2�
138
+ + Λ3
139
+ 3
140
+
141
+ (φ†
142
+ 1φ1)2 + (φ†
143
+ 2φ2)2 + (φ†
144
+ 3φ3)2 − (φ†
145
+ 1φ1)(φ†
146
+ 2φ2) − (φ†
147
+ 2φ2)(φ†
148
+ 3φ3) − (φ†
149
+ 3φ3)(φ†
150
+ 1φ1)
151
+
152
+ + Λ4
153
+
154
+ Re
155
+
156
+ φ†
157
+ 1φ2
158
+
159
+ Im
160
+
161
+ φ†
162
+ 1φ2
163
+
164
+ + Re
165
+
166
+ φ†
167
+ 2φ3
168
+
169
+ Im
170
+
171
+ φ†
172
+ 2φ3
173
+
174
+ + Re
175
+
176
+ φ†
177
+ 3φ1
178
+
179
+ Im
180
+
181
+ φ†
182
+ 3φ1
183
+ ��
184
+ .
185
+ (2)
186
+ The matrix M2
187
+ ij is a general hermitian matrix, which can be parameterized by
188
+ (M2
189
+ ij) =
190
+
191
+
192
+
193
+ m2
194
+ 11
195
+ m2
196
+ 12eiθ12
197
+ m2
198
+ 13eiθ13
199
+ m2
200
+ 12e−iθ12
201
+ m2
202
+ 22
203
+ m2
204
+ 23eiθ23
205
+ m2
206
+ 13e−iθ13
207
+ m2
208
+ 23e−iθ23
209
+ m2
210
+ 33
211
+
212
+
213
+ � ,
214
+ (3)
215
+ where m2
216
+ ij are real parameters with the dimension of mass squared.1
217
+ Additionally, in the notation of [13], the exact A4 potential can be written as
218
+ VA4 =r1 + 2r4
219
+ 3
220
+
221
+ (φ†
222
+ 1φ1) + (φ†
223
+ 2φ2) + (φ†
224
+ 3φ3)
225
+ �2 + 2(r1 − r4)
226
+ 3
227
+
228
+ (φ†
229
+ 1φ1)2 + (φ†
230
+ 2φ2)2
231
+ +(φ†
232
+ 3φ3)2 − (φ†
233
+ 1φ1)(φ†
234
+ 2φ2) − (φ†
235
+ 2φ2)(φ†
236
+ 3φ3) − (φ†
237
+ 3φ3)(φ†
238
+ 1φ1)
239
+
240
+ + 2r7
241
+
242
+ |φ†
243
+ 1φ2|2 + |φ†
244
+ 2φ3|2 + |φ†
245
+ 3φ1|2�
246
+ +
247
+
248
+ c3
249
+
250
+ (φ†
251
+ 1φ2)2 + (φ†
252
+ 2φ3)2 + (φ†
253
+ 3φ1)2�
254
+ + h.c.
255
+
256
+ .
257
+ (4)
258
+ The relation between the two notations is
259
+ r1 = 1
260
+ 3(Λ0 + Λ3) ,
261
+ r4 = 1
262
+ 6(2Λ0 − Λ3) ,
263
+ r7 = 1
264
+ 4(Λ1 + Λ2) ,
265
+ Re(c3) = 1
266
+ 4(Λ1 − Λ2) ,
267
+ Im(c3) = −1
268
+ 4Λ4 .
269
+ (5)
270
+ We consider that the scalar fields can take complex vacuum expectation values (vevs), to be
271
+ determined later. Thus, we write,
272
+ φi =
273
+
274
+ ϕ+
275
+ i
276
+ |vi|eiρi
277
+
278
+ 2
279
+ +
280
+ 1
281
+
282
+ 2 (xi + ixi+3)
283
+
284
+ .
285
+ (6)
286
+ Because CP is spontaneously violated, the unrotated neutral fields have no definite CP, and for
287
+ convenience we label them xi, i = 1, . . . , 6. We can also use the gauge freedom to absorb one of
288
+ the phases in the vevs, that we choose to be ρ1. Therefore we have the vector of vevs defined as
289
+ ⃗v = (|v1|, |v2|eiρ2, |v3|eiρ3) .
290
+ (7)
291
+ 1In the quadratic terms, the combination − M0
292
+
293
+ 3
294
+
295
+ φ†
296
+ 1φ1 + φ†
297
+ 2φ2 + φ†
298
+ 3φ3
299
+
300
+ is also invariant under A4. But, since we
301
+ are keeping all soft-breaking terms, we find the notation in (3) more convenient.
302
+ 3
303
+
304
+ This vev contributes with four free parameters to our model, because one of the parameters is
305
+ constrained by the mass of the gauge bosons to match the observed SM values,
306
+ |v1|2 + |v2|2 + |v3|2 ≡ v2 ≃ (246GeV)2.
307
+ (8)
308
+ The vev can also be parameterised as
309
+ ⃗v = v
310
+
311
+ cos(β1) cos(β2), cos(β2) sin(β1)eip2, sin(β2)eip3�
312
+ .
313
+ (9)
314
+ Of the quantities arising out of the scalar potential, the vevs are the only relevant to the quark
315
+ mass matrices. This leads many authors to just proclaim some vevs, without checking whether
316
+ they can indeed be the global minima of a realistic Higgs potential. We will perform this crucial
317
+ verification below, in Section 4.
318
+ 2.2
319
+ Yukawa Lagrangian
320
+ As in Refs. [7, 12], we consider that the Higgs doublets are in the 3 of A4 as well as the three
321
+ left-handed SU(2) doublets QLj of hypercharge 1/6. There are three right-handed SU(2) singlets
322
+ nR,j of hypercharge −1/3 and three right-handed SU(2) singlets pR,j of hypercharge 2/3. Our
323
+ assignments for the singlets are as follows
324
+ nR1, pR1 → 1,
325
+ nR2, pR2 → 1′,
326
+ nR3, pR3 → 1′′ of A4 .
327
+ (10)
328
+ Then, the A4 transformations on the fields are generated by [7, 12]
329
+ T :
330
+
331
+
332
+
333
+
334
+
335
+
336
+
337
+
338
+
339
+
340
+
341
+ φ1 → φ2 → φ3 → φ1,
342
+ QL1 → QL2 → QL3 → QL1,
343
+ nR1 → nR1, nR2 → ωnR2, nR3 → ω2nR3,
344
+ pR1 → nR1, pR2 → ωpR2, pR3 → ω2pR3,
345
+ (11)
346
+ and
347
+ S :
348
+ �φ1 → φ1, φ2 → −φ2, φ3 → −φ3,
349
+ QL1 → QL1, QL2 → −QL2, QL3 → −QL3.
350
+ (12)
351
+ One can easily verify that the scalar potential in Eq. (4) is invariant under the previous transfor-
352
+ mations. Now we write the A4 invariant Yukawa Lagrangian for quarks. We have
353
+ −LYukawa =
354
+
355
+ 2 ˆa
356
+
357
+ QL1φ1 + QL2φ2 + QL3φ3
358
+
359
+ nR1
360
+ +
361
+
362
+ 2ˆb
363
+
364
+ QL1φ1 + ω QL2φ2 + ω2 QL3φ3
365
+
366
+ nR2
367
+ +
368
+
369
+ 2 ˆc
370
+
371
+ QL1φ1 + ω2 QL2φ2 + ω QL3φ3
372
+
373
+ nR3
374
+ +
375
+
376
+ 2 ˆa′ �
377
+ QL1 ˜φ1 + QL2 ˜φ2 + QL3 ˜φ3
378
+
379
+ pR1
380
+ +
381
+
382
+ 2ˆb′ �
383
+ QL1 ˜φ1 + ω QL2 ˜φ2 + ω2 QL3 ˜φ3
384
+
385
+ pR2
386
+ +
387
+
388
+ 2 ˆc′ �
389
+ QL1 ˜φ1 + ω2 QL2 ˜φ2 + ω QL3 ˜φ3
390
+
391
+ pR3 + h.c.,
392
+ (13)
393
+ 4
394
+
395
+ where, as usual,
396
+ ˜φj ≡ i σ2φ∗
397
+ j ,
398
+ (14)
399
+ and we define
400
+ ˆa = aei α, ˆb = bei β, ˆc = cei γ, ˆa′ = a′ei α′, ˆb′ = b′ei β′, ˆc′ = c′ei γ′ ,
401
+ (15)
402
+ where a, b, c, a′, b′, c′ are real and positive. This choice of invariant Lagrangian corresponds to the
403
+ case I identified in Ref. [12] (see the next section).
404
+ 2.3
405
+ Yukawa matrices, masses and CKM
406
+ We aim to fit six quark masses and four CKM matrix elements to the currently accepted SM
407
+ values for these observables. Therefore, we’re interested in softly-broken A4 symmetric models
408
+ with up to ten parameters. Ref. [12] has studied all of the possible extensions of A4 to the fermion
409
+ sector. Using their results, we can check which of them can accommodate non-vanishing quark
410
+ masses, CKM mixing angles and CP violation by considering a general vev ⃗v. We take the Jarlskog
411
+ invariant as a measure of CP violation [14]. Out of all possibilities, we are left with five of them,
412
+ which we list in Table 1. There, A are real constants, Ω are constants in the [0, 2π[ interval,
413
+ ω = ei 2π
414
+ 3 (ω3 = 1) and T is the transpose of the matrix.
415
+ Case
416
+ Md
417
+ Mu
418
+ I
419
+
420
+
421
+
422
+ aeiαv1
423
+ beiβv1
424
+ ceiγv1
425
+ aeiαv2
426
+ ωbeiβv2
427
+ ω2ceiγv2
428
+ aeiαv3
429
+ ω2beiβv3
430
+ ωceiγv3
431
+
432
+
433
+
434
+
435
+
436
+
437
+ A → A′,
438
+ A ∈ {a, b, c}
439
+ Ω → Ω′,
440
+ Ω ∈ {α, β, γ}
441
+ vi → v∗
442
+ i ,
443
+ i ∈ {1, 2, 3}
444
+
445
+
446
+
447
+ II
448
+ IT
449
+ d
450
+ IT
451
+ u
452
+ III
453
+
454
+
455
+
456
+ 0
457
+ (aeiα − beiβ)v3
458
+ (aeiα + beiβ)v2
459
+ (aeiα + beiβ)v3
460
+ 0
461
+ (aeiα − beiβ)v1
462
+ (aeiα − beiβ)v2
463
+ (aeiα + beiβ)v1
464
+ 0
465
+
466
+
467
+
468
+
469
+
470
+
471
+ A → A′,
472
+ A ∈ {a, b}
473
+ Ω → Ω′,
474
+ Ω ∈ {α, β}
475
+ vi → v∗
476
+ i ,
477
+ i ∈ {1, 2, 3}
478
+
479
+
480
+
481
+ IV
482
+ Id
483
+ IIIu
484
+ V
485
+ IIId
486
+ Iu
487
+ Table 1: Extensions of A4 to the Yukawa sector with non-vanishing determinant, and non-zero J
488
+ for general, complex valued, vevs (v1, v2, v3). In the Table, Id stands for the matrix Md for case I
489
+ and similarly for the other entries.
490
+ In the Yukawa sector, there are ten observables, six masses, three mixing angles and one
491
+ Jarlskog invariant, therefore, we would prefer to look for a case with ten parameters, or less. All
492
+ possible neutral vevs of the 3HDM are consistent with the parameterization in Eq. (9), which
493
+ consists of four free parameters that we can fit; two angles, and two phases. Looking at the cases
494
+ in Table 1, we will see that it is possible to reduce the number of free parameters by performing
495
+ both basis transformations to right-handed quarks and global U(1)Y rephasings, both of which
496
+ have no effect on the physical predictions of the theory.
497
+ For case I, the down quark mass matrices read
498
+ 5
499
+
500
+ Md =
501
+
502
+
503
+
504
+ aeiαv1
505
+ beiβv1
506
+ ceiγv1
507
+ aeiαv2
508
+ ωbeiβv2
509
+ ω2ceiγv2
510
+ aeiαv3
511
+ ω2beiβv3
512
+ ωceiγv3
513
+
514
+
515
+ � = DvWDaDα,
516
+ (16)
517
+ where (remember that the vi are complex)
518
+ Dv = diag(v1, v2, v3) , Da = diag(a, b, c) , Dα = diag(eiα, eiβ, eiγ) , W =
519
+
520
+
521
+
522
+ 1
523
+ 1
524
+ 1
525
+ 1
526
+ ω
527
+ ω2
528
+ 1
529
+ ω2
530
+ ω
531
+
532
+
533
+ � .
534
+ (17)
535
+ We see that we can perform a unitary transformation to the right-handed quarks that removes all
536
+ three phases α, β, γ. The same holds for Mu, by performing the substitution A → A′, Ω → Ω′
537
+ and vi → v∗
538
+ i .
539
+ For case II, the quark mass matrices have the form
540
+ Md = DaDαWDv and Mu = Da′Dα′WDv∗ .
541
+ (18)
542
+ Thus, we can remove the phases of the vev through an appropriate transformation of the right-
543
+ handed quarks, but we can only remove α through a global rephasing QL → Q′
544
+ L = eiαQL of
545
+ the left-handed quarks. This rephasing, however, doesn’t remove the phase α′ in the matrix Mu,
546
+ because, in general, it will be different from α. Now, for case III, we can only remove α and
547
+ α′ 2 by performing the corresponding rephasings of the right-handed quarks. Finally, for the case
548
+ IV (V), we can remove, as we did for case I, all the phases from the Yukawa couplings α, β, γ
549
+ (corresponding primes), and only one phase α′ (corresponding unprimed). To summarise, we can
550
+ classify the cases above according to their number of free-parameters, which we show in the Table
551
+ below.
552
+ case
553
+
554
+ #p
555
+ #A
556
+
557
+ #A′
558
+ α′
559
+ Total
560
+ I
561
+ 2
562
+ 2
563
+ 3
564
+ 3 − 3 = 0
565
+ 3
566
+ 3 − 3 = 0
567
+ 10
568
+ II
569
+ 2
570
+ 2 − 2 = 0
571
+ 3
572
+ 3 − 1 = 2
573
+ 3
574
+ 3
575
+ 13
576
+ III
577
+ 2
578
+ 2
579
+ 2
580
+ 2 − 1 = 1
581
+ 2
582
+ 2 − 1 = 1
583
+ 10
584
+ IV
585
+ 2
586
+ 2
587
+ 3
588
+ 3 − 3 = 0
589
+ 2
590
+ 2 − 1 = 1
591
+ 10
592
+ V
593
+ 2
594
+ 2
595
+ 2
596
+ 2 − 1 = 1
597
+ 3
598
+ 3 − 3 = 0
599
+ 10
600
+ Table 2: Number of parameters for each case of Table 1. θ and p are the angles and phases of the
601
+ vev, A(A′) are the Yukawa couplings of the down (up) quarks, and α(α′) are the Yukawa phases
602
+ of the down (up) quarks. The minus signs correspond to the parameters that we can remove by
603
+ a basis transformation of the quark sector.
604
+ In this work, we study case I, that corresponds to the Lagrangian in Eq. (13). Then, given
605
+ that DαD†
606
+ α = 1 and DaD†
607
+ a = Da2 = diag(a2, b2, c2), we find
608
+ Hd
609
+
610
+ MdM†
611
+ d = DvSdD†
612
+ v ,
613
+ Hu
614
+
615
+ MuM†
616
+ u = D†
617
+ vSuDv ,
618
+ (19)
619
+ 2We could have chosen to remove β and β′ instead, this is just one possible choice.
620
+ 6
621
+
622
+ where Sd = WDa2W † and a2 → a′2 for the up quark case. This matrix can now be explicitly
623
+ written out using appropriate parameters as
624
+ Sd =
625
+
626
+
627
+
628
+ Σd
629
+ Zdeiφd
630
+ Zde−iφd
631
+ Zde−iφd
632
+ Σd
633
+ Zdeiφd
634
+ Zdeiφd
635
+ Zde−iφd
636
+ Σd
637
+
638
+
639
+ � ,
640
+ (20)
641
+ where Σd and Zd are real, and
642
+ Σd
643
+
644
+ a2 + b2 + c2 ,
645
+ Zd eiφd
646
+
647
+ a2 + ω2b2 + ωc2 ,
648
+ (21)
649
+ with corresponding primes for the up case.
650
+ For completeness, the specific forms for Hd and
651
+ Hu found after using the parameterizations in Eqs. (9) and (21) are written in Appendix A.
652
+ The eigenvalues of the matrices Hd and Hu will be fitted for the (square of the) quark masses,
653
+ (m2
654
+ d, m2
655
+ s, m2
656
+ b) and (m2
657
+ u, m2
658
+ c, m2
659
+ t ), respectively
660
+ We now turn to the Cabibbo-Kobayashi-Maskawa (CKM) matrix. As found by Branco and
661
+ Lavoura [15], the absolute values of the CKM matrix can be obtained through calculating the
662
+ traces of appropriate powers of the matrices Hu and Hd. They observe that
663
+ Tr
664
+
665
+ Ha
666
+ uHb
667
+ d
668
+
669
+ ≡ Lab =
670
+
671
+ k,i
672
+ Uki(Da
673
+ u)kk(Db
674
+ d)ii ,
675
+ (22)
676
+ where Uki = |Vki|2 and V is the CKM matrix. The CKM matrix is unitary and therefore U only
677
+ has four independent entries. Consequently, in order to compute U, it is only necessary to resort
678
+ to
679
+ L11 =Uki(Du)kk(Dd)ii ,
680
+ L12 =Uki(Du)kk(D2
681
+ d)ii ,
682
+ L21 =Uki(D2
683
+ u)kk(Dd)ii ,
684
+ L22 =Uki(D2
685
+ u)kk(D2
686
+ d)ii .
687
+ (23)
688
+ These equations are linear in Uik and are, therefore, invertible for this variable. Thus, by picking
689
+ U11, U21, U13, and U23 (respectively, Uud, Ucd, Uub, and Ucb), we are able to obtain a unique
690
+ solution for the magnitudes of the CKM elements as a function of Lab and the quark masses.
691
+ Namely,
692
+ U11
693
+ =
694
+
695
+ mb2 − ms2� �
696
+ mc2 − mt2� a11
697
+ det ,
698
+ U21
699
+ =
700
+
701
+ mb2 − ms2� �
702
+ mu2 − mt2� a21
703
+ det ,
704
+ U13
705
+ =
706
+
707
+ md2 − ms2� �
708
+ mc2 − mt2� a13
709
+ det ,
710
+ U23
711
+ =
712
+
713
+ md2 − ms2� �
714
+ mu2 − mt2� a23
715
+ det ,
716
+ (24)
717
+ where
718
+ a11
719
+ =
720
+ L11
721
+
722
+ mb2 + ms2� �
723
+ mc2 + mt2�
724
+ − L12
725
+
726
+ mc2 + mt2�
727
+ − L21
728
+
729
+ mb2 + ms2�
730
+ + L22
731
+ 7
732
+
733
+ +m2
734
+ b
735
+
736
+ −m2
737
+ cm2
738
+ t
739
+
740
+ m2
741
+ d + m2
742
+ s
743
+
744
+ − m2
745
+ sm2
746
+ u
747
+
748
+ m2
749
+ c + m2
750
+ t
751
+
752
+ + m2
753
+ sm4
754
+ u
755
+
756
+ + m2
757
+ cm2
758
+ dm2
759
+ t
760
+
761
+ m2
762
+ d − m2
763
+ s
764
+
765
+ ,(25)
766
+ a21
767
+ =
768
+ −L11
769
+
770
+ mb2 + ms2� �
771
+ mt2 + mu2�
772
+ + L12
773
+
774
+ mu2 + mt2�
775
+ + L21
776
+
777
+ mb2 + ms2�
778
+ − L22
779
+ +m2
780
+ b
781
+
782
+ m2
783
+ cm2
784
+ s
785
+
786
+ m2
787
+ t + m2
788
+ u − m2
789
+ c
790
+
791
+ + m2
792
+ t m2
793
+ u
794
+
795
+ m2
796
+ d + m2
797
+ s
798
+ ��
799
+ + m2
800
+ dm2
801
+ t m2
802
+ u
803
+
804
+ m2
805
+ s − m2
806
+ d
807
+
808
+ ,
809
+ (26)
810
+ a13
811
+ =
812
+ −L11
813
+
814
+ md2 + ms2� �
815
+ mt2 + mc2�
816
+ + L12
817
+
818
+ mc2 + mt2�
819
+ + L21
820
+
821
+ md2 + ms2�
822
+ − L22
823
+ +m2
824
+ bm2
825
+ cm2
826
+ t
827
+
828
+ m2
829
+ d + m2
830
+ s − m2
831
+ b
832
+
833
+ + m2
834
+ dm2
835
+ s
836
+
837
+ m2
838
+ c
839
+
840
+ m2
841
+ t + m2
842
+ u
843
+
844
+ + m2
845
+ u
846
+
847
+ m2
848
+ t − mu2��
849
+ ,
850
+ (27)
851
+ a23
852
+ =
853
+ L11
854
+
855
+ md2 + ms2� �
856
+ mt2 + mu2�
857
+ − L12
858
+
859
+ mu2 + mt2�
860
+ − L21
861
+
862
+ md2 + ms2�
863
+ + L22
864
+ +m2
865
+ t m2
866
+ u
867
+
868
+ m4
869
+ b − m2
870
+ b
871
+
872
+ m2
873
+ d + m2
874
+ s
875
+
876
+ − m2
877
+ dm2
878
+ s
879
+
880
+ + m4
881
+ cm2
882
+ dm2
883
+ s − m2
884
+ cm2
885
+ dm2
886
+ s
887
+
888
+ m2
889
+ t + m2
890
+ u
891
+
892
+ ,
893
+ (28)
894
+ and
895
+ det =
896
+
897
+ mb2 − md2� �
898
+ mc2 − mu2� �
899
+ md2 − ms2� �
900
+ mu2 − mt2� �
901
+ mb2 − ms2� �
902
+ mc2 − mt2�
903
+ .
904
+ (29)
905
+ In these equations, the Lij are obtained by evaluating the left hand side of Eq. (22). Finally, we
906
+ note that knowing these four CKM magnitudes, we can determine the Jarslkog invariant [14], up
907
+ to its sign. Thus, given some phase convention, we are also able to determine the phases of all
908
+ CKM matrix elements.
909
+ 3
910
+ The fit to the quark mass matrices
911
+ 3.1
912
+ The fitting procedure
913
+ We have implemented a χ2 analysis of the model, through a minimization performed using the
914
+ CERN Minuit library [16]. The observables employed in this analysis, labeled by i = 1, ..., 11 are
915
+ specified in Table 3, where Xi represents the experimental mean value of the observable Xi and
916
+ σi is the experimental error, which, when both left and right bounds are stated, is assumed to be
917
+ the largest of the two. The data on the quark masses as well as for the CKM matrix elements and
918
+ Observable
919
+ Experimental value
920
+ Model prediction
921
+ mu [MeV]
922
+ 2.16 ± 0.50
923
+ 2.15
924
+ mc [MeV]
925
+ 1270 ± 20
926
+ 1271.9
927
+ mt [GeV]
928
+ 172.69 ± 0.30
929
+ 172.69
930
+ md [MeV]
931
+ 4.67 ± 0.50
932
+ 4.66
933
+ ms [MeV]
934
+ 93.4 ± 8.6
935
+ 92.08
936
+ mb [MeV]
937
+ 4180 ± 30
938
+ 4179.74
939
+ |V11|
940
+ 0.97435 ± 0.00016
941
+ 0.97434
942
+ |V21|
943
+ 0.22486 ± 0.00067
944
+ 0.22479
945
+ |V13|
946
+ 0.00369 ± 0.00011
947
+ 0.00369
948
+ |V23|
949
+ 0.04182 ± 0.00085
950
+ 0.04175
951
+ J
952
+ (3.08 ± 0.15) × 10−5
953
+ 3.09 × 10−5
954
+ Table 3: Experimental values and fit results.
955
+ the Jarlskog invariant experimental values were obtained from [17]. As mentioned, |J| is fixed by
956
+ |V11|, |V21|, |V13|, and |V23|. However, using it in the fit speeds the numerical convergence onto a
957
+ good solution.
958
+ 8
959
+
960
+ The χ2 function depends on the 10 parameters of our model,
961
+ β1, β2, ρ2, ρ3, Σd, Σu, Zd, Zu, φd, φu
962
+ (30)
963
+ and is written as
964
+ χ2(p) =
965
+ 11
966
+
967
+ i=1
968
+
969
+ Pi(p) − Xi
970
+ σi
971
+ �2
972
+ ,
973
+ (31)
974
+ where Pi(p) is our model’s prediction for each of the 11 (10 + J) observables. The fit is complicated
975
+ by the fact that the masses (squared) are obtained from the eigenvalues of Hd, Hu but the elements
976
+ of the CKM also depend on the masses, see Eq. (24). So, we start by calculating the eigenvalues
977
+ of Hd and Hu, which depend only on the parameters in Eq. (30). Then, we evaluate the Lij
978
+ from the left hand side of Eq. (22), and finally the CKM elements are obtained from Eq. (24). In
979
+ Appendix A we give the explicit expressions for the matrices Hd and Hu.
980
+ 3.2
981
+ Results of the fit
982
+ We have found an excellent fit of our model to the data, given in the second column of Table 3.
983
+ This fit results in χ2 = 0.058, for the parameters
984
+ β1 =1.42608 radians ,
985
+ β2 =1.54243 radians ,
986
+ ρ2 =4.27865 radians ,
987
+ ρ3 =5.37039 radians ,
988
+ Σd =0.288824 × 10−3 ,
989
+ Σu =0.492828 ,
990
+ Zd =0.181571 × 10−3 ,
991
+ Zu =0.475911 ,
992
+ φd = − 1.73226 radians ,
993
+ φu =0.206453 × 10−3 radians .
994
+ (32)
995
+ This fit also leads to the data in the third column of Table 3, as well as to the vevs
996
+ |vi| = (1.00625, 6.90462, 245.901) (GeV).
997
+ (33)
998
+ We notice that the vevs obey v1 < v2 << v3. This hierarchy of vevs is related to the hierarchy of
999
+ the quark masses. This was also obtained in Ref. [7], although their model is not consistent, as
1000
+ their vev structure is not that of [9] for the symmetric A4 potential they consider.
1001
+ 4
1002
+ Viability of the vacuum found in the fit
1003
+ We start by defining the three doublets as in Eq. (6). Next we define the physical eigenstates for
1004
+ the charged Higgs as (G+, S+
1005
+ 2 , S2
1006
+ 3)T , and for the neutral states we have (G0, S0
1007
+ 2, S0
1008
+ 3, S0
1009
+ 4, S0
1010
+ 5, S0
1011
+ 6)T ,
1012
+ identifying the would-be Goldstone bosons G+ ≡ S+
1013
+ 1 and G0 ≡ S0
1014
+ 1. With these conventions, and
1015
+ following the definitions in [18], we define the 3 × 3 matrix ˜U by
1016
+ ϕ+
1017
+ i ≡
1018
+ 3
1019
+
1020
+ j=1
1021
+ ˜UijS+
1022
+ j ,
1023
+ (34)
1024
+ 9
1025
+
1026
+ and the 3 × 6 matrix ˜V by
1027
+ xi + ixi+3 =
1028
+ 6
1029
+
1030
+ j=1
1031
+ ˜VijS0
1032
+ j .
1033
+ (35)
1034
+ These matrices3 are then related to the diagonalization matrices of the charged and neutral scalars,
1035
+ to which we now turn.
1036
+ 4.1
1037
+ The minimization of the potential
1038
+ In our procedure we already know the values of the vevs. So, we use the stationarity equations
1039
+ to solve for the soft parameters, and leave the quartic parameters of the potential Λi as free
1040
+ parameters. In this way we can solve for m2
1041
+ 11, m2
1042
+ 22, m2
1043
+ 33 as well as for Im(m2
1044
+ 12), Im(m2
1045
+ 13), leaving
1046
+ as free parameters the Λi and Re(m2
1047
+ 12), Re(m2
1048
+ 13), Re(m2
1049
+ 23), Im(m2
1050
+ 23). When evaluating the scalar
1051
+ mass matrices (see below) the conditions have to be applied to ensure that we are at the minimum.
1052
+ For completeness we write these conditions in Appendix B.
1053
+ 4.2
1054
+ The charged mass matrix
1055
+ The charged mass matrix is obtained from the second derivatives at the minimum,
1056
+ M2
1057
+ C =
1058
+ ∂2VH
1059
+ ∂ϕ+
1060
+ i ∂ϕ−
1061
+ j
1062
+ �����
1063
+ Min
1064
+ .
1065
+ (36)
1066
+ The matrix M2
1067
+ C is an hermitian matrix, with real eigenvalues and satisfying, with our usual
1068
+ conventions,
1069
+ RchM2
1070
+ CR†
1071
+ ch = diag(0, m2
1072
+ S+
1073
+ 2 , m2
1074
+ S+
1075
+ 3 ) ≡ M2
1076
+ Dch ,
1077
+ (37)
1078
+ where Rch is an unitary matrix that satisfies,
1079
+ S+
1080
+ i =
1081
+ 3
1082
+
1083
+ j=1
1084
+ (Rch)ij ϕ+
1085
+ j .
1086
+ (38)
1087
+ This can be seen from
1088
+ Lmass = − ϕ−
1089
+ i
1090
+
1091
+ M2
1092
+ C
1093
+
1094
+ ij ϕ+
1095
+ j = −ϕ−
1096
+ i
1097
+
1098
+ R†
1099
+ chRchM2
1100
+ CR†
1101
+ chRch
1102
+
1103
+ ij ϕ+
1104
+ j = −ϕ−
1105
+ i
1106
+
1107
+ R†
1108
+ chM2
1109
+ DchRch
1110
+
1111
+ ij ϕ+
1112
+ j
1113
+ = − S−
1114
+ i
1115
+
1116
+ M2
1117
+ Dch
1118
+
1119
+ ij S+
1120
+ j ,
1121
+ (39)
1122
+ where we have used Eq. (38).
1123
+ We have checked both algebraically and numerically that we have a zero eigenvalue corre-
1124
+ sponding to G+ and we require that all other masses squared are positive, a condition for a local
1125
+ minimum.
1126
+ 3From the point of view of a simultaneous fit of the Yukawa and scalar sectors, it is a pity that these matrices
1127
+ ˜V and ˜U have in the literature the same notation as the CKM matrix V and Uki = |Vki|2.
1128
+ 10
1129
+
1130
+ 4.3
1131
+ The neutral mass matrix
1132
+ Since in our case CP is not conserved, we denote the unrotated neutral scalars by xi, i = 1, . . . , 6,
1133
+ as in Eq. (6). We therefore obtain the neutral mass matrix as,
1134
+ M2
1135
+ N =
1136
+ ∂2VH
1137
+ ∂xi∂xj
1138
+ �����
1139
+ Min
1140
+ .
1141
+ (40)
1142
+ This is a symmetric real matrix diagonalized by an orthogonal 6 × 6 matrix,
1143
+ RneuM2
1144
+ NRT
1145
+ neu = diag(0, m2
1146
+ S0
1147
+ 2, m2
1148
+ S0
1149
+ 3, m2
1150
+ S0
1151
+ 4, m2
1152
+ S0
1153
+ 5, m2
1154
+ S0
1155
+ 6) ≡ M2
1156
+ Dneu ,
1157
+ (41)
1158
+ with
1159
+ S0
1160
+ i =
1161
+ 6
1162
+
1163
+ j=1
1164
+ (Rneu)ij xj .
1165
+ (42)
1166
+ As for the case of the charged scalars, we have checked both algebraically and numerically that
1167
+ we have a zero eigenvalue corresponding to G0 and we require that all other masses squared are
1168
+ positive, a condition for a local minimum.
1169
+ 5
1170
+ Theoretical Constraints
1171
+ After having shown that a solution exists for the vevs and parameters in the Yukawa sector that
1172
+ correctly fits the quarks masses and the CKM entries, we have to show that this is compatible
1173
+ with the scalar potential analysis. In particular we have to show that the vevs correspond to a
1174
+ local minimum of the potential and that both the theoretical constraints as well as those coming
1175
+ from LHC are satisfied. In this section we analyze the theoretical constraints.
1176
+ 5.1
1177
+ Perturbative Unitarity
1178
+ This problem was already solved in [13], so we take the potential in the form of Eq. (4). From
1179
+ Ref. [13] we have the following expression for the eigenvalues λi4
1180
+ λ1 =2 (2Re(c3) + r1)
1181
+ (43)
1182
+ λ2 =2
1183
+ �√
1184
+ 3 |Im(c3)| − Re(c3) + r1
1185
+
1186
+ (44)
1187
+ λ3 =2
1188
+
1189
+
1190
+
1191
+ 3 |Im(c3)| − Re(c3) + r1
1192
+
1193
+ (45)
1194
+ λ4 =2(r4 + r7)
1195
+ (46)
1196
+ λ5 =2(r4 − r7)
1197
+ (47)
1198
+ λ6 =2(r1 + 2r7)
1199
+ (48)
1200
+ λ7 =2(r1 − r7)
1201
+ (49)
1202
+ λ8 =2(r4 + |c3|)
1203
+ (50)
1204
+ λ9 =2(r4 − |c3|)
1205
+ (51)
1206
+ λ10 =6r1 + 8r4 + 4r7
1207
+ (52)
1208
+ λ11 =6r1 − 2(2r4 + r7)
1209
+ (53)
1210
+ λ12 =6|c3| + 2r4 + 4r7
1211
+ (54)
1212
+ 4We use λi instead of Λi, in order to not confuse with the notation of Eq. (2).
1213
+ 11
1214
+
1215
+ λ13 = − 6|c3| + 2r4 + 4r7
1216
+ (55)
1217
+ Perturbative unitarity is satisfied if
1218
+ |λi| < 8π,
1219
+ ∀i.
1220
+ (56)
1221
+ 5.2
1222
+ The BFB conditions
1223
+ For the A4 symmetric potential, the conditions for boundedness from below along the neutral
1224
+ directions (BFB-n) have been conjectured in [19], and proved to hold in [20]. These are
1225
+ Λ0 + Λ3 ≥ 0 ,
1226
+ (57)
1227
+ 4
1228
+ 3(Λ0 + Λ3) + 1
1229
+ 2(Λ1 + Λ2) − Λ3 − 1
1230
+ 2
1231
+
1232
+ (Λ1 − Λ2)2 + Λ2
1233
+ 4 ≥ 0 ,
1234
+ (58)
1235
+ Λ0 + 1
1236
+ 2(Λ1 + Λ2) + 1
1237
+ 2(Λ1 − Λ2) cos (2kπ/3) + 1
1238
+ 2Λ4 sin (2kπ/3) ≥ 0
1239
+ (k = 1, 2, 3) .
1240
+ (59)
1241
+ However, as shown in [21, 19], a potential which is BFB-n is not necessarily BFB along the
1242
+ charge breaking directions (BFB-c). Necessary BFB-c conditions have yet to be found for the A4
1243
+ 3HDM, but sufficient conditions have been proposed in [22] following the technique developed in
1244
+ [23]. They are,
1245
+ Ad ≥ 0 ,
1246
+ Ao ≥ −Ad/2 ,
1247
+ (60)
1248
+ where
1249
+ Ad =a = 2
1250
+ 3(Λ0 + Λ3) ,
1251
+ Ao =b + min(0, c) − d
1252
+ =1
1253
+ 3(2Λ0 − Λ3) + 1
1254
+ 2(Λ1 + Λ2) + min(0, −1
1255
+ 2(Λ1 + Λ2)) − 1
1256
+ 2
1257
+
1258
+ (Λ1 − Λ2)2 + Λ2
1259
+ 4 .
1260
+ (61)
1261
+ It is important to remark that, since these are sufficient, but not necessary, conditions, some
1262
+ good points in parameter space may be excluded by this restriction.
1263
+ 5.3
1264
+ The oblique parameters S, T, U
1265
+ For this we use the notation and results from [18], which require the matrices ˜U and ˜V . Comparing
1266
+ Eq. (38) with the definition in Eq. (34), we conclude that
1267
+ ˜U = R†
1268
+ ch ,
1269
+ (62)
1270
+ where the matrix Rch is obtained from the numerical diagonalization of Eq. (37).
1271
+ Similarly,
1272
+ comparing Eq. (42) with the definition of ˜V in Eq. (35), we get,
1273
+ ˜Vij =
1274
+
1275
+ RT
1276
+ neu
1277
+
1278
+ ij + i
1279
+
1280
+ RT
1281
+ neu
1282
+
1283
+ i+3,j .
1284
+ (63)
1285
+ Having ˜U and ˜V , we can construct the needed matrices Im
1286
+ � ˜V † ˜V
1287
+
1288
+ , ˜U† ˜U, ˜V † ˜V and ˜U† ˜V , and
1289
+ implement the procedure of [18].
1290
+ 12
1291
+
1292
+ 5.4
1293
+ Global minimum
1294
+ After finding a set of mi,j and Λi which reproduce the vevs in Eq. (33) necessary for a good fit
1295
+ of the quark mass matrices, and after performing the previous theoretical checks on the scalar
1296
+ potential, we must still ensure that our minimum is indeed the global minimum. This step is
1297
+ almost never taken in studies of quark mass matrices, since there are no exact analytical formulae
1298
+ for it. Moreover, one must check that there are no lower minima both along the neutral directions
1299
+ and along the charge breaking directions. We follow the strategy discussed in Ref. [22]. Take a
1300
+ specific set of m2
1301
+ ij and Λi. Then we parameterize the scalar doublets as [21, 22],
1302
+ ⟨φ1⟩ = √r1
1303
+
1304
+ 0
1305
+ 1
1306
+
1307
+ ,
1308
+ ⟨φ2⟩ = √r2
1309
+
1310
+ sin(α2)
1311
+ cos(α2)eiβ2
1312
+
1313
+ ,
1314
+ ⟨φ3⟩ = √r3eiγ
1315
+
1316
+ sin(α3)
1317
+ cos(α3)eiβ3
1318
+
1319
+ ,
1320
+ (64)
1321
+ where we have already used the gauge freedom. Now we let the vevs run free, for both charge
1322
+ conserving and charge violating directions. We give one seed point and perform a minimization of
1323
+ the potential using the CERN Minuit library [16]. We obtain not only the value of the potential
1324
+ at the minimum, but also the values of ri, α2, β2, α3, β3 and γ. Then, we take one more (randomly
1325
+ generated) seed point and repeat the minimization. Finally, we take the minimum as the global
1326
+ one if it is found as the global minimum in each of 200 searches with randomly generated seed
1327
+ points. We have done this verification for every point that passed all the constraints. In all cases,
1328
+ we found that the local minimum was also a global minimum. In particular we always found that
1329
+ sin(α2) = sin(α3) = 0,
1330
+ (65)
1331
+ showing that we do not have charged breaking directions5 and, comparing with Eq. (6), we verified
1332
+ numerically that,
1333
+ |vi|
1334
+
1335
+ 2 = √ri,
1336
+ ei ρ2 = cos(α2) ei β2,
1337
+ ei ρ3 = cos(α3) ei (β3+γ) .
1338
+ (66)
1339
+ 6
1340
+ Simple LHC Constraints
1341
+ Up to now we have implemented the theoretical constraints on the model. The next step is to
1342
+ implement the LHC constraints. To do this completely one would have to implement all the decays
1343
+ of the neutral and charged Higgs as well as their branching ratios. One would also have to worry
1344
+ about the electric dipole moments (EDM) and the flavour-changing neutral couplings (FCNC), as
1345
+ the model does not have a structure of couplings of the Higgs to the fermions that automatically
1346
+ ensures vanishing FCNC [24, 25, 26]. This lies beyond the scope of the present work. Nonetheless,
1347
+ we can implement easily the constraints that come from h → WW/ZZ in the κ formalism, where
1348
+ the deviation from the coupling of the SM Higgs boson to a pair of W’s (or Z’s) is measured by
1349
+ κV . In our model,
1350
+ κV = Rneu
1351
+ 21 v1 + Rneu
1352
+ 22 v2 cos(ρ2) + Rneu
1353
+ 23 v3 cos(ρ3) + Rneu
1354
+ 25 v2 sin(ρ2) + Rneu
1355
+ 26 v3 sin(ρ3),
1356
+ (67)
1357
+ where Rneu is matrix defined in Eq. (41). We take the experimental constraint from ATLAS [27],
1358
+ κW = 1.0206 +0.05172
1359
+ −0.05087,
1360
+ κZ = 0.99 +0.06136
1361
+ −0.05214 .
1362
+ (68)
1363
+ 5To cross check our numerical procedure we also considered points that violated the BFB conditions. And, indeed
1364
+ for these points, our algorithm showed that the potential was not BFB and could have charge breaking directions
1365
+ as well.
1366
+ 13
1367
+
1368
+ 7
1369
+ Results
1370
+ In this section we present the results of the analysis of the scalar potential after imposing that we
1371
+ have a good solution for the fit of the quarks masses and CKM entries, as explained in Section 3.
1372
+ 7.1
1373
+ Scanning strategy
1374
+ We start by imposing the vevs obtained in the fit.
1375
+ v1 = 1.00625 (GeV),
1376
+ v2 = 6.90462 ei 4.27865 (GeV),
1377
+ v3 = 245.901 ei 5.37039 (GeV).
1378
+ (69)
1379
+ Now we vary the free parameters of the potential in the following ranges,
1380
+ log10 |Λi| ∈ [−3, 1],
1381
+ log10 |Im(m2
1382
+ 23)| ∈ [−1, 7]GeV2,
1383
+ log10 |Re(m2
1384
+ ij)| ∈ [−1, 7]GeV2,
1385
+ (70)
1386
+ where in the last equation we use
1387
+ m2
1388
+ ij ∈
1389
+
1390
+ m2
1391
+ 12, m2
1392
+ 13, m2
1393
+ 23
1394
+
1395
+ .
1396
+ (71)
1397
+ We randomly scan as in Eq. (70), and then:
1398
+ 1. Apply the theoretical constraints that only depend on the Λi, that is BFB and perturbative
1399
+ unitarity.
1400
+ 2. Then obtain the eigenvalues for the charged and neutral scalars. Verify that all the masses
1401
+ squared are positive, and that we have a zero eigenvalue corresponding to the Goldstone
1402
+ bosons, G0 and G+.
1403
+ 3. Verify the S, T and U oblique parameters.
1404
+ 4. Apply the LHC constraint on κV .
1405
+ 5. Check numerically that the vev is indeed a global minimum.
1406
+ 7.2
1407
+ The scalar spectrum
1408
+ We found that there is a strong correlation in the scalar masses.
1409
+ If we denote the masses of
1410
+ the neutral scalars by (mG0 = 0, mS0
1411
+ 2, mS0
1412
+ 3, mS0
1413
+ 4, mS0
1414
+ 5, mS0
1415
+ 6), and (mG+ = 0, mH+
1416
+ 1 , mH+
1417
+ 2 ) for the
1418
+ charged scalars, we find numerically that
1419
+ mS0
1420
+ 3 ≃ mS0
1421
+ 4 ≃ mH+
1422
+ 1 ,
1423
+ mS0
1424
+ 5 ≃ mS0
1425
+ 6 ≃ mH+
1426
+ 2 .
1427
+ (72)
1428
+ This is true even if we do not require mS0
1429
+ 2 = 125 GeV, and specially true after implementing
1430
+ the constraints of perturbative unitarity, BFB and STU. But, as we want to reproduce the LHC
1431
+ results, we also required that [17]
1432
+ mS0
1433
+ 2 = 125.25 ± 0.17
1434
+ GeV.
1435
+ (73)
1436
+ In the following figures we show the correlation among the masses. Included in red are the
1437
+ points generated before the theoretical cuts were applied, and in green the points remaining after
1438
+ the constraints were implemented.
1439
+ 14
1440
+
1441
+ Figure 1: Left panel: Relation between mS0
1442
+ 3 and mS0
1443
+ 4. Right panel: Relation between mS0
1444
+ 3 and
1445
+ mH+
1446
+ 1 . Color conventions: No cuts (red); with cuts (green)
1447
+ Figure 2: Left panel: Relation between mS0
1448
+ 5 and mS0
1449
+ 6. Right panel: Relation between mS0
1450
+ 5 and
1451
+ mH+
1452
+ 2 . Color conventions: No cuts (red); with cuts (green)
1453
+ 15
1454
+
1455
+ 2000
1456
+ 1500
1457
+ 1000
1458
+ 500
1459
+ 0
1460
+ 500
1461
+ 1000
1462
+ 1500
1463
+ 2000
1464
+ ms (GeV)2000
1465
+ 1500
1466
+ mHt (GeV)
1467
+ 1000
1468
+ 500
1469
+ 0
1470
+ 500
1471
+ 1000
1472
+ 1500
1473
+ 2000
1474
+ ms (GeV)2000
1475
+ 1500
1476
+ 1000
1477
+ 500
1478
+ 0
1479
+ 500
1480
+ 1000
1481
+ 1500
1482
+ 2000
1483
+ msg (GeV)2000
1484
+ 1500
1485
+ (GeV)
1486
+ 1000
1487
+ 500
1488
+ 0
1489
+ 500
1490
+ 1000
1491
+ 1500
1492
+ 2000
1493
+ msg (GeV)Figure 3: Left panel: Relation between mS0
1494
+ 3 and mS0
1495
+ 5. Right panel: Relation between mH+
1496
+ 1 and
1497
+ mH+
1498
+ 2 . Color conventions: No cuts (red); with cuts (green)
1499
+ 7.3
1500
+ The κV constraint
1501
+ We can now implement the κV constraint on the model. In the following figures, in red are points
1502
+ without cuts, in green with cuts but no κV constraint, and finally in blue points remaining after
1503
+ this constraint is applied. We took the ATLAS result of Eq. (68) at 2σ. While the theoretical
1504
+ constraints cut around 99% of the points, the κV constraint only cuts 9% of the remaining points.
1505
+ In Fig. 4 we show the relation between κV and Λ0,4 for the three sets of points as discussed above.
1506
+ Figure 4: Left panel: Relation between κV and Λ0. Right panel: Relation between κV and Λ4.
1507
+ Color conventions: No cuts (red), with theoretical cuts (green), and after the κV constraint (blue).
1508
+ In fact it is not obvious from Fig. 4 that the κV constraint only cuts about 9% of the points.
1509
+ This is because there is a very large number of points with |κV | ≲ 1, even without theoretical
1510
+ cuts, and this is even more so after imposing the theoretical cuts. In this figure, we have 157810
1511
+ points in the green region, but from these 145074 are in the blue region. That is, after theoretical
1512
+ 16
1513
+
1514
+ 2000
1515
+ 1500
1516
+ 1000
1517
+ 500
1518
+ 500
1519
+ 1000
1520
+ 1500
1521
+ 2000
1522
+ ms (GeV)2000
1523
+ ..
1524
+ 1500
1525
+ (GeV)
1526
+ 1000
1527
+ H
1528
+ 500
1529
+ 500
1530
+ 1000
1531
+ 1500
1532
+ 2000
1533
+ mHt (GeV)10
1534
+ 5
1535
+ .5
1536
+ -10
1537
+ 0
1538
+ 0.2
1539
+ 0.4
1540
+ 0.6
1541
+ 0.8
1542
+ [Ky]10
1543
+ 4
1544
+ -5
1545
+ -10
1546
+ 0
1547
+ 0.2
1548
+ 0.4
1549
+ 0.6
1550
+ 0.8
1551
+ [Kvlcuts, 91% of the points also satisfy the κV constraint. In Fig. 5 we show the relation between Λ0
1552
+ and Λ3,4 for the same sets of points.
1553
+ Figure 5: Left panel: Relation between Λ0 and Λ4. Right panel: Relation between Λ0 and Λ3
1554
+ Color conventions: No cuts (red), with theoretical cuts (green), and after the κV constraint (blue).
1555
+ We see that, while for (Λ0, Λ4) there is not much difference before and after the κV constraint,
1556
+ the same is not true for (Λ0, Λ3), where the constraints impose a linear relation between those
1557
+ two parameters.
1558
+ 8
1559
+ Conclusions
1560
+ It is known that the 3HDM symmetric under an exact A4 symmetry is not compatible with non-
1561
+ zero quark masses and/or non-block-diagonal CKM matrix [12]. In this work, we studied a 3HDM
1562
+ with A4 softly broken. This allows us to evade the above result, by enlarging the structure of the
1563
+ possible vacua.
1564
+ We obtained an excellent fit of the quarks mass matrices, including the CP-violating Jarlskog
1565
+ invariant. This leads to a unique solution for the vevs. We showed that, with the solution for the
1566
+ vevs obtained from the fit, it is possible to have a local minimum of the potential. We enforce
1567
+ this by imposing that all squared masses are positive. As in our scheme the scalar masses are not
1568
+ input parameters, we have to restrict one of the neutral scalars to have the mass of the known
1569
+ Higgs boson.
1570
+ We have implemented the BFB, perturbative unitarity and the oblique parameters S, T, U
1571
+ theoretical constraints.
1572
+ From LHC, we have considered the observed Higgs mass and the κV
1573
+ constraint.6 After imposing the other constraints, we found that most of the points are close to
1574
+ the alignment required to respect the experimental κV constraint. We have discovered a strong
1575
+ correlation among the masses of the scalars, even before applying the theoretical constraints,
1576
+ especially for moderate to large scalar masses.
1577
+ One important point is that we have numerically checked for all the points that pass our
1578
+ constraints, that for a given set of parameters of the potential, our minimum is the true global
1579
+ minimum.
1580
+ 6The detailed study of other LHC constraints as well as those coming from FCNC and the EDM lies beyond the
1581
+ scope of the present work, and is left for a future publication.
1582
+ 17
1583
+
1584
+ 0.6
1585
+ 0.4
1586
+ 0.2
1587
+ 0
1588
+ 0
1589
+ 0.2
1590
+ 0.4
1591
+ 0.6
1592
+ No0.4
1593
+ 0.2
1594
+ 2
1595
+ 0
1596
+ -0.2
1597
+ -0.4
1598
+ 0
1599
+ 0.1
1600
+ 0.2
1601
+ 0.3
1602
+ 0.4
1603
+ NoAcknowledgments
1604
+ This work is supported in part by FCT (Fundação para a Ciência e Tecnologia) under Contracts
1605
+ CERN/FIS-PAR/0002/2021, CERN/FIS-PAR/0008/2019, UIDB/00777/2020, and UIDP/00777/2020;
1606
+ these projects are partially funded through POCTI (FEDER), COMPETE, QREN, and the EU.
1607
+ The work of I.B. was supported by a CFTP fellowship with reference BL210/2022-IST-ID and the
1608
+ work of S. C. by a CFTP fellowship with reference BL255/2022-IST-ID.
1609
+ A
1610
+ The matrices Hd and Hu
1611
+ Hd(1, 1) =Σdv2 cos2(β1) cos2(β2)
1612
+ (74)
1613
+ Hd(1, 2) =v2Zd cos(β1) cos2(β2) cos(ρ2 − φd) sin(β1)
1614
+ − i v2Zd cos(β1) cos2(β2) sin(β1) sin(ρ2 − φd)
1615
+ (75)
1616
+ Hd(1, 3) =v2Zd cos(β1) cos(β2) cos(ρ3 + φd) sin(β2)
1617
+ − i v2Zd cos(β1) cos(β2) sin(β2) sin(ρ3 + φd)
1618
+ (76)
1619
+ Hd(2, 1) =(Hd(1, 2))∗
1620
+ (77)
1621
+ Hd(2, 2) =Σdv2 cos2(β2) sin2(β1)
1622
+ (78)
1623
+ Hd(2, 3) =v2Zd cos(β2) cos(ρ2 − ρ3 + φd) sin(β1) sin(β2)
1624
+ + i v2Zd cos(β2) sin(β1) sin(β2) sin(ρ2 − ρ3 + φd)
1625
+ (79)
1626
+ Hd(3, 1) =(Hd(1, 3))∗
1627
+ (80)
1628
+ Hd(3, 2) =(Hd(2, 3))∗
1629
+ (81)
1630
+ Hd(3, 3) =Σdv2 sin2(β2)
1631
+ (82)
1632
+ Hu(1, 1) =Σuv2 cos2(β1) cos2(β2)
1633
+ (83)
1634
+ Hu(1, 2) =v2Zu cos(β1) cos2(β2) cos(ρ2 − φu) sin(β1)
1635
+ − i v2Zu cos(β1) cos2(β2) sin(β1) sin(ρ2 − φu)
1636
+ (84)
1637
+ Hu(1, 3) =v2Zu cos(β1) cos(β2) cos(ρ3 + φu) sin(β2)
1638
+ − i v2Zu cos(β1) cos(β2) sin(β2) sin(ρ3 + φu)
1639
+ (85)
1640
+ Hu(2, 1) =(Hu(1, 2))∗
1641
+ (86)
1642
+ Hu(2, 2) =Σuv2 cos2(β2) sin2(β1)
1643
+ (87)
1644
+ Hu(2, 3) =v2Zu cos(β2) cos(ρ2 − ρ3 + φu) sin(β1) sin(β2)
1645
+ + i v2Zu cos(β2) sin(β1) sin(β2) sin(ρ2 − ρ3 + φu)
1646
+ (88)
1647
+ Hu(3, 1) =(Hu(1, 3))∗
1648
+ (89)
1649
+ Hu(3, 2) =(Hu(2, 3))∗
1650
+ (90)
1651
+ Hu(3, 3) =Σuv2 sin2(β2)
1652
+ (91)
1653
+ B
1654
+ The minimization conditions
1655
+ m2
1656
+ 11 = − sec(ρ2) sec(ρ3)
1657
+ 24v2
1658
+ 1
1659
+
1660
+ −12Im(m2
1661
+ 23)v2v3 sin(2(ρ2 − ρ3)) + cos(ρ2 − ρ3)
1662
+
1663
+ 4Λ0v2
1664
+ 1v2
1665
+ 18
1666
+
1667
+ +6Λ1v2
1668
+ 1v2
1669
+ 2 + 6Λ1v2
1670
+ 1v2
1671
+ 3 + 3Λ1v2
1672
+ 2v2
1673
+ 3 − 3Λ2v2
1674
+ 2v2
1675
+ 3 + 2Λ3v2
1676
+ 1
1677
+
1678
+ 2v2
1679
+ 1 − v2
1680
+ 2 − v2
1681
+ 3
1682
+ ��
1683
+ +4Λ0v2
1684
+ 1v2
1685
+ 2 cos(ρ2 + ρ3) + 4Λ0v2
1686
+ 1v2
1687
+ 3 cos(ρ2 + ρ3) + 4Λ0v4
1688
+ 1 cos(ρ2 + ρ3)
1689
+ +6Λ1v2
1690
+ 1v2
1691
+ 2 cos(ρ2 + ρ3) + 6Λ1v2
1692
+ 1v2
1693
+ 3 cos(ρ2 + ρ3) − 3Λ1v2
1694
+ 2v2
1695
+ 3 cos(3(ρ2 − ρ3))
1696
+ +3Λ2v2
1697
+ 2v2
1698
+ 3 cos(3(ρ2 − ρ3)) − 2Λ3v2
1699
+ 1v2
1700
+ 2 cos(ρ2 + ρ3) − 2Λ3v2
1701
+ 1v2
1702
+ 3 cos(ρ2 + ρ3)
1703
+ +4Λ3v4
1704
+ 1 cos(ρ2 + ρ3) + 3Λ4v2
1705
+ 1v2
1706
+ 2 sin(ρ2 − ρ3) + 3Λ4v2
1707
+ 1v2
1708
+ 2 sin(ρ2 + ρ3)
1709
+ +3Λ4v2
1710
+ 1v2
1711
+ 3 sin(ρ2 − ρ3) − 3Λ4v2
1712
+ 1v2
1713
+ 3 sin(ρ2 + ρ3) − 3Λ4v2
1714
+ 2v2
1715
+ 3 sin(ρ2 − ρ3)
1716
+ +3Λ4v2
1717
+ 2v2
1718
+ 3 sin(3(ρ2 − ρ3)) − 12Re(m2
1719
+ 23)v2v3 cos(2(ρ2 − ρ3))
1720
+ +24Re(m2
1721
+ 13)v1v3 cos(ρ2) + 24Re(m2
1722
+ 12)v1v2 cos(ρ3) + 12Re(m2
1723
+ 23)v2v3
1724
+
1725
+ (92)
1726
+ m2
1727
+ 22 = −
1728
+ 1
1729
+ 12v2
1730
+
1731
+ 3 sec(ρ2)
1732
+
1733
+ −4Im(m2
1734
+ 23)v3 sin(ρ3) + v2v2
1735
+ 3(Λ1 − Λ2) cos(ρ2 − 2ρ3) − Λ4v2v2
1736
+ 3 sin(ρ2 − 2ρ3)
1737
+ +4Re(m2
1738
+ 23)v3 cos(ρ3) + 4Re(m2
1739
+ 12)v1
1740
+
1741
+ + v2
1742
+
1743
+ 4Λ0v2 + 6Λ1v2
1744
+ 1 + 3Λ1v2
1745
+ 3 + 3Λ2v2
1746
+ 3
1747
+ −2Λ3v2
1748
+ 1 + 4Λ3v2
1749
+ 2 − 2Λ3v2
1750
+ 3 + 3Λ4v2
1751
+ 1 tan(ρ2)
1752
+ � �
1753
+ (93)
1754
+ m2
1755
+ 33 = −
1756
+ 1
1757
+ 12v3
1758
+
1759
+ 3 sec(ρ3)
1760
+
1761
+ 4Im(m2
1762
+ 23)v2 sin(ρ2) + v2
1763
+ 2v3(Λ1 − Λ2) cos(2ρ2 − ρ3) − Λ4v2
1764
+ 2v3 sin(2ρ2 − ρ3)
1765
+ +4Re(m2
1766
+ 23)v2 cos(ρ2) + 4Re(m2
1767
+ 13)v1
1768
+
1769
+ + v3
1770
+
1771
+ 4Λ0
1772
+
1773
+ v2
1774
+ 1 + v2
1775
+ 2 + v2
1776
+ 3
1777
+
1778
+ + 6Λ1v2
1779
+ 1 + 3Λ1v2
1780
+ 2
1781
+ +3Λ2v2
1782
+ 2 − 2Λ3v2
1783
+ 1 − 2Λ3v2
1784
+ 2 + 4Λ3v2
1785
+ 3 − 3Λ4v2
1786
+ 1 tan(ρ3)
1787
+ � �
1788
+ (94)
1789
+ Im(m2
1790
+ 12) = 1
1791
+ 4v1
1792
+
1793
+ sec(ρ2)
1794
+
1795
+ 4Im(m2
1796
+ 23)v3 cos(ρ2 − ρ3) − Λ1v2v2
1797
+ 3 sin(2(ρ2 − ρ3)) − Λ1v2
1798
+ 1v2 sin(2ρ2)
1799
+ +Λ2v2v2
1800
+ 3 sin(2(ρ2 − ρ3)) + Λ2v2
1801
+ 1v2 sin(2ρ2) − Λ4v2v2
1802
+ 3 cos(2(ρ2 − ρ3))
1803
+ +Λ4v2
1804
+ 1v2 cos(2ρ2) − 4Re(m2
1805
+ 23)v3 sin(ρ2 − ρ3) − 4Re(m2
1806
+ 12)v1 sin(ρ2)
1807
+ � �
1808
+ (95)
1809
+ Im(m2
1810
+ 13) = − 1
1811
+ 4v1
1812
+
1813
+ sec(ρ3)
1814
+
1815
+ 4Im(m2
1816
+ 23)v2 cos(ρ2 − ρ3) − Λ1v2
1817
+ 2v3 sin(2(ρ2 − ρ3)) + Λ1v2
1818
+ 1v3 sin(2ρ3)
1819
+ +Λ2v2
1820
+ 2v3 sin(2(ρ2 − ρ3)) − Λ2v2
1821
+ 1v3 sin(2ρ3) − Λ4v2
1822
+ 2v3 cos(2(ρ2 − ρ3))
1823
+ +Λ4v2
1824
+ 1v3 cos(2ρ3) − 4Re(m2
1825
+ 23)v2 sin(ρ2 − ρ3) + 4Re(m2
1826
+ 13)v1 sin(ρ3)
1827
+ � �
1828
+ (96)
1829
+ References
1830
+ [1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model
1831
+ Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [1207.7214].
1832
+ [2] CMS collaboration, Observation of a New Boson at a Mass of 125 GeV with the CMS
1833
+ Experiment at the LHC, Phys. Lett. B 716 (2012) 30 [1207.7235].
1834
+ 19
1835
+
1836
+ [3] E. Ma and G. Rajasekaran, Softly broken a(4) symmetry for nearly degenerate neutrino
1837
+ masses, Phys. Rev. D64 (2001) 113012 [hep-ph/0106291].
1838
+ [4] E. Ma, Quark mass matrices in the a(4) model, Mod. Phys. Lett. A17 (2002) 627
1839
+ [hep-ph/0203238].
1840
+ [5] E. Ma, H. Sawanaka and M. Tanimoto, Quark Masses and Mixing with A4 Family
1841
+ Symmetry, Phys. Lett. B 641 (2006) 301 [hep-ph/0606103].
1842
+ [6] E. Ma, Suitability of a(4) as a family symmetry in grand unification, Mod. Phys. Lett. A21
1843
+ (2006) 2931 [hep-ph/0607190].
1844
+ [7] L. Lavoura and H. Kuhbock, A(4) model for the quark mass matrices, Eur. Phys. J. C 55
1845
+ (2008) 303 [0711.0670].
1846
+ [8] S. Morisi and E. Peinado, An A4 model for lepton masses and mixings, Phys. Rev. D80
1847
+ (2009) 113011 [0910.4389].
1848
+ [9] A. Degee, I.P. Ivanov and V. Keus, Geometric minimization of highly symmetric potentials,
1849
+ JHEP 02 (2013) 125 [1211.4989].
1850
+ [10] M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319
1851
+ [hep-ph/9212278].
1852
+ [11] R. González Felipe, I.P. Ivanov, C.C. Nishi, H. Serôdio and J.P. Silva, Constraining
1853
+ multi-Higgs flavour models, Eur. Phys. J. C 74 (2014) 2953 [1401.5807].
1854
+ [12] R. González Felipe, H. Serôdio and J.P. Silva, Models with three Higgs doublets in the triplet
1855
+ representations of A4 or S4, Phys. Rev. D 87 (2013) 055010 [1302.0861].
1856
+ [13] M.P. Bento, J.C. Romão and J.P. Silva, Unitarity bounds for all symmetry-constrained
1857
+ 3HDMs, JHEP 08 (2022) 273 [2204.13130].
1858
+ [14] C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model
1859
+ and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett. 55 (1985) 1039.
1860
+ [15] G.C. Branco and L. Lavoura, Rephasing Invariant Parametrization of the Quark Mixing
1861
+ Matrix, Phys. Lett. B 208 (1988) 123.
1862
+ [16] F. James and M. Roos, Minuit: A System for Function Minimization and Analysis of the
1863
+ Parameter Errors and Correlations, Comput. Phys. Commun. 10 (1975) 343.
1864
+ [17] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022)
1865
+ 083C01.
1866
+ [18] W. Grimus, L. Lavoura, O.M. Ogreid and P. Osland, A Precision constraint on
1867
+ multi-Higgs-doublet models, J. Phys. G35 (2008) 075001 [0711.4022].
1868
+ [19] I.P. Ivanov and F. Vazão, Yet another lesson on the stability conditions in multi-Higgs
1869
+ potentials, JHEP 11 (2020) 104 [2006.00036].
1870
+ [20] N. Buskin and I.P. Ivanov, Bounded-from-below conditions for A4-symmetric 3HDM, J.
1871
+ Phys. A 54 (2021) 325401 [2104.11428].
1872
+ 20
1873
+
1874
+ [21] F.S. Faro and I.P. Ivanov, Boundedness from below in the U(1) × U(1) three-Higgs-doublet
1875
+ model, Phys. Rev. D 100 (2019) 035038 [1907.01963].
1876
+ [22] S. Carrôlo, J.C. Romão and J.P. Silva, Conditions for global minimum in the A4 symmetric
1877
+ 3HDM, Eur. Phys. J. C 82 (2022) 749 [2207.02928].
1878
+ [23] R. Boto, J.C. Romão and J.P. Silva, Bounded from below conditions on a class of symmetry
1879
+ constrained 3HDM, Phys. Rev. D 106 (2022) 115010 [2208.01068].
1880
+ [24] S.L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral Currents, Phys. Rev.
1881
+ D 15 (1977) 1958.
1882
+ [25] P.M. Ferreira, L. Lavoura and J.P. Silva, Renormalization-group constraints on Yukawa
1883
+ alignment in multi-Higgs-doublet models, Phys. Lett. B 688 (2010) 341 [1001.2561].
1884
+ [26] K. Yagyu, Higgs boson couplings in multi-doublet models with natural flavour conservation,
1885
+ Phys. Lett. B 763 (2016) 102 [1609.04590].
1886
+ [27] ATLAS collaboration, A detailed map of Higgs boson interactions by the ATLAS
1887
+ experiment ten years after the discovery, Nature 607 (2022) 52 [2207.00092].
1888
+ 21
1889
+
GNE3T4oBgHgl3EQftgtb/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
I9E0T4oBgHgl3EQfiAGs/content/tmp_files/2301.02440v1.pdf.txt ADDED
@@ -0,0 +1,1178 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE
2
+ An Image captioning algorithm based on the Hybrid Deep Learning
3
+ Technique (CNN+GRU)
4
+ Rana Adnan Ahmad
5
+ Department of Computer Science
6
+ Comsats university islamabad, sahiwal
7
+ campus,Sahiwal,Pakistan
8
9
+ Muhammad Azhar
10
+ Department of computer science
11
+ Comsats university islamabad, sahiwal
12
+ campus,Sahiwal,Pakistan
13
14
+ Chosun University, Republic of Korea
15
16
+ Hina Sattar
17
+ Department of computer science
18
+ Comsats university islamabad, sahiwal
19
+ campus, Sahiwal, Pakistann
20
21
+ Abstract—
22
+ Image
23
+ captioning
24
+ by
25
+ the
26
+ encoder-decoder
27
+ framework has shown tremendous advancement in the last
28
+ decade where CNN is mainly used as encoder and LSTM is
29
+ used as a decoder. Despite such an impressive achievement in
30
+ terms of accuracy in simple images, it lacks in terms of time
31
+ complexity and space complexity efficiency. In addition to this,
32
+ in case of complex images with a lot of information and objects,
33
+ the
34
+ performance
35
+ of
36
+ this
37
+ CNN-LSTM
38
+ pair
39
+ downgraded
40
+ exponentially due to the lack of semantic understanding of the
41
+ scenes presented in the images. Thus, to take these issues into
42
+ consideration,
43
+ we
44
+ present
45
+ CNN-GRU
46
+ encoder
47
+ decode
48
+ framework for caption-to-image reconstructor to handle the
49
+ semantic context into consideration as well as the time
50
+ complexity. By taking the hidden states of the decoder into
51
+ consideration, the input image and its similar semantic
52
+ representations is reconstructed and reconstruction scores
53
+ from a semantic reconstructor are used in conjunction with
54
+ likelihood during model training to assess the quality of the
55
+ generated caption. As a result, the decoder receives improved
56
+ semantic
57
+ information,
58
+ enhancing
59
+ the
60
+ caption
61
+ production
62
+ process. During model testing, combining the reconstruction
63
+ score and the log-likelihood is also feasible to choose the most
64
+ appropriate caption. The suggested model outperforms the
65
+ state-of-the-art LSTM-A5 model for picture captioning in
66
+ terms of time complexity and accuracy.
67
+ Index Terms— Deep Learning, Image captioning, CNN, GRU
68
+ 1.
69
+ INTRODUCTION
70
+ Deep Learning has made great strides recently due to rapid
71
+ growth and high utilization [1-4]. Thus, similar to Neural
72
+ Machine Translation (NMT)[5], generating captions of the
73
+ images through neural encoder-decoder framework has
74
+ shown the dominance in recent years. In this process of
75
+ image captioning, encoding of the image is done through
76
+ encoder which is typically from the Convolutional Neural
77
+ Networks (CNN) [6] family (like Vanilla CNN [6], Region
78
+ based CNN [7], Fast R-CNN [8], Faster R-CNN [9] etc.) and
79
+ decoder is from the RNN family [10] (like LSTM [11],
80
+ BLSTM [12] etc.). In this framework of CNN-LSTM pair
81
+ [13-16], the encoder (CNN) learns the visual features by
82
+ making the feature maps and max-pooling during the feature
83
+ learning stage and then detection of objects after flattening
84
+ and applying fully connected layer. Thus it converts the
85
+ image to vector of numbers which is learned form of the
86
+ visual content of the image under consideration. In the
87
+ decoder part, the vector output of the encoder is used as the
88
+ initial input of the decoder to produce caption word by word.
89
+ Even though Long Short Term Memory (LSTM) solves the
90
+ issue of handling long dependency by decreasing the effect
91
+ of
92
+ exploding
93
+ and
94
+ vanishing
95
+ gradients
96
+ [11],
97
+ the
98
+ time
99
+ complexity issue is still a major drawback in this model due
100
+ to
101
+ many
102
+ gates
103
+ residing
104
+ in
105
+ the
106
+ LSTM
107
+ unit
108
+ for
109
+ the
110
+ memorization purpose. Another key issue with these kind of
111
+ encoder-decoder models are the lack of understanding of the
112
+ semantic context as the encoder of these models fail to
113
+ transfer the major key visual information to the decoder.
114
+ Because of the absence of reverse dependency checking
115
+ (Caption-to-Image), these models do not perform well in
116
+ case of complex images.
117
+ Several approaches have been proposed to deal with the
118
+ above-mentioned issues [17-20]. Some researches have
119
+ proposed the attention mechanism to get the information
120
+ from the key regions automatically and tried to encode that
121
+ specific information into the context vector which then used
122
+ by the decoder to generate the caption [17,18]. Some other
123
+ researchers have tried to extract semantic attributes as a
124
+ supplement of the CNN features to embed into encoder by
125
+ various methods [19, 20].
126
+ The major drawback of all the above mentioned methods
127
+ was that those methods only explore the image-to-caption
128
+ dependency but not the reverse way for the validation of the
129
+ extracted information. Even though, Jinsong Su et.el. [21]
130
+ have tried to use the semantic reconstructor of caption-to-
131
+ image but still they could not
132
+ validated the results in
133
+ effective way. In addition to this, the time complexity issue
134
+ was also remained due to the usage of LSTM unit.
135
+ To resolve the above mentioned issues, we have proposed a
136
+ hybrid deep learning technique based on the CNN-GRU
137
+ encoder-decoder gramework with the better hyper-parameter
138
+ tuning and with the caption-to-image validation method by
139
+ taking the motivation from Jinsong Su et.el. [21]. This
140
+ caption-to-image reconstructor helps to handle the semantic
141
+ context into consideration as well as the time complexity. By
142
+ taking the hidden states of the decoder into consideration, the
143
+ input image and its similar semantic representations is
144
+ reconstructed and reconstruction scores from a semantic
145
+ reconstructor are used in conjunction with likelihood during
146
+ model training to assess the quality of the generated caption.
147
+ As a result, the decoder receives improved semantic
148
+ information, enhancing the caption production process.
149
+ During model testing, combining the reconstruction score
150
+ and the log-likelihood is also feasible to choose the most
151
+ appropriate caption.
152
+ To validate our proposed method, we have used the
153
+ benchmark MS COCO dataset [22] and the experimental
154
+ results have proved that our method outperformed the current
155
+ state-of-the-art methods in terms of accuracy and time
156
+ complexity.
157
+ 2.
158
+ RELATED WORK
159
+
160
+ Inspiration for our work comes from the auto encoder [23,24]
161
+ and how well it performs in NMT [25], which employs
162
+ semantic production to hone the learning representation of
163
+ input data. In this activity, we are fine-tuning the idea with
164
+ captions to the image. Basically, related work involves
165
+ taking after two strands. In general, NMT's common hands
166
+ are very much based on the demonstration of source-to-target
167
+ interpretation. Encouraged by questions about the auto
168
+ encoder that makes reproduction more realistic and looking
169
+ at whether the recreated inputs are more reliable than the
170
+ original inputs [26], many analysts are committed to using
171
+ the adaptation of dual-directed NMT conditions [27].
172
+ Compared with NMT, most models of neural image captions
173
+ are based on the neural encoder-decoder system [30].
174
+ However, this engineer cannot guarantee that the image data
175
+ can be completely converted into a decoder. To discuss this
176
+ problem, analysts are currently accepting to take after two
177
+ types of approaches: (1) As in NMT attention [31], a few
178
+ analysts link part of the visual considerations to capture the
179
+ semantic presentations of critical image regions [32,33]. (2)
180
+ In various ways, a number of analysts are committed to
181
+ extract semantic features or high-level concepts into images,
182
+ which can be integrated into an LSTM-based decoder as an
183
+ additional input [28,29]. In this way, the show will be
184
+ directed to settings that are closely related to the theme of the
185
+ image. Besides, You et al. [34] encompassed the two types
186
+ of methods listed above.
187
+ Our proposed representation is based on the CNN-LSTM
188
+ model, in which the proposed semantic reconstructor is
189
+ comparably compared to the LSTM, which is why it benefits
190
+ both to display preparation and testing when the regional
191
+ language indicate and the coding system are modeled
192
+ independently. From Wena et al. [35] Institution devoted to
193
+ improving
194
+ automatically
195
+ generated
196
+ image
197
+ captions
198
+ by
199
+ making inferences about their semantic content. However,
200
+ the visual highlights are generally employed as the decode of
201
+ the decoder in the current model captions, while the semantic
202
+ elements of the image are provided exclusively to the
203
+ decoder. As a result, we agree that visual robustness is more
204
+ crucial than semantic characteristics. Through this research,
205
+ we provide semantic features to neural machine translation
206
+ as
207
+ well
208
+ as
209
+ video
210
+ captions.
211
+ In
212
+ conclusion,
213
+ we
214
+ are
215
+ experimenting
216
+ with
217
+ three
218
+ different
219
+ methods
220
+ for
221
+ reconstructing
222
+ photos
223
+ based
224
+ on
225
+ fabricated
226
+ captions.
227
+ Additionally, our claim may be distinct from earlier studies
228
+ due to K's extensive utilization of visually similar photos.
229
+ 3.
230
+ PROPOSED MODEL
231
+ This section describes the proposed hybrid deep learning
232
+ approach based on CNN-GRU encoder-decoder framework.
233
+ This framework has 3 major parts, 1) Encoder: which is the
234
+ CNN. 2) Decoder: which is the GRU layer and 3) The
235
+ Semantic validator: for validation of the caption-to-image
236
+ information.
237
+ A.
238
+ Model architecture
239
+ The three neural network modules (Encoder, Decoder, and
240
+ Semantic validator) that make up our proposed model are
241
+ depicted in Fig. 1. The details of each module is given below:
242
+
243
+ Encoder
244
+ In encoder, a model similar to [36] has been used where the
245
+ image I is taken as input and the features from the image F is
246
+ extracted by the CNN-based encoder. The feature vector F
247
+ ∈ RDv is used to represent the features extracted from the
248
+ image I. Dv represents the diemnsions of the feature vector.
249
+ As all the sementic information can not be extracted by one
250
+ feature vector, thus additional semantic attributes have been
251
+ extracted by the algorithm proposed by Yao et al. [36]. The
252
+ extracted attribute vector is denoted by A ∈ RDa which
253
+ shows the probabilty of each high level attribute existed in
254
+ the caption dataset which is generated by the MIL (Multiple
255
+ Instance Learning) model presented in [27]. MIL model
256
+ showed the promising results in finding the semantic
257
+ relations between the attributes of the image. Da represents
258
+ the diemnsions of the attribute vector A.
259
+ After extracting both feature map F and attribute vector A,
260
+ the encoder gives these 2 outputs to decoder as an input
261
+ which is used for the caption generation purpose.
262
+
263
+ Decoder
264
+ As we got feature vector F and the attribute vector A as an
265
+ output of the encoder from previous network, this F and A is
266
+ used as the input to the decoder for the caption generation.
267
+ Yao et al. [36] proposes 5 different and diverse variants for
268
+ the LSTM network and it is proved that the fifth one named
269
+ LSTM-A5 works better than others, so we also used the same
270
+ network for getting the better performance. Thus, according
271
+ to LSTM-A5, we used the A and F vectors to calculate the log
272
+ Probability Ɛ as mentioned in Equation (1).
273
+ Ɛ(S|I) = Ɛ(S|F, A) =
274
+ 1
275
+ Ns
276
+ t=
277
+ Ɛ(wt | F, A, w<t)
278
+ (1)
279
+ Where F and A represents the feature vector and attribute
280
+ vector respectively. S is the set of words generated by the
281
+ attribute vector F. S= {w1,w2,…wNs} and Ns is the size of
282
+ the set S. I is the actual image.
283
+ The log probability Ɛ(wt | F, A, w<t) is directly proportional
284
+ to the expection of (
285
+ T
286
+ tw
287
+ E (
288
+ t
289
+ vh + b) as shown in Equation
290
+ (2).
291
+ Ɛ(wt |F, A, w <t) ∝ exp (
292
+ T
293
+ tw
294
+ E (
295
+ t
296
+ vh + b)
297
+ (2)
298
+ Where E represents the matrix of the word embeddings, v
299
+ denotes the corresponding matrix while b shows the bais. ht
300
+ is the hidden state. The hidden state calculation is discussed
301
+ in detail in [7].
302
+
303
+ Semantic validator of caption to image
304
+ As shown in Fig. 1, the semantic redesign of the description
305
+ to picture work to recreate the semantic demonstration of
306
+ every single input image since its comparative captions.
307
+
308
+ Figure 1: Provides an overview of our proposed model's
309
+ architecture, which
310
+ consists
311
+ of
312
+ three neural
313
+ networks
314
+ (Encoder, Decoder, and Semantic Reconstructor).
315
+ Naturally, a complete semantic reconstructor must meet the
316
+ subsequent dual requirements: On the other
317
+ side, its
318
+ reconstructed presentation must be precise and sufficient to
319
+ replicate image data; on the other side, its use is not
320
+ compiled to have the greatest impact on professionalism. In
321
+ this case, we are referring directly to the caption S that has
322
+ the coverings h = {h1, h2,. . ., hNs} play a significant part in
323
+ the description era. At that point, in this framework, we are
324
+ examining
325
+ three
326
+ semantic
327
+ functions
328
+ to
329
+ determine
330
+ the
331
+ semantic demonstration of the created captions, represented
332
+ by hc, which can help to recreate the reconstituted direction
333
+ of the input image, labeled Ir.
334
+ .
335
+
336
+ Model Training
337
+ The training set Dtrain = {(F, A, S)}, is used to generate the
338
+ objective function as follows:
339
+ O(D; θed, θdr) = arg max(θed , θdr)
340
+ (I,S)∈D
341
+ {Ɛ(S|I; θed ) +
342
+
343
+ λ · R({I1, . . . , IK}|S)}
344
+ (3)
345
+ So we have to maximize the reconstruction score based on
346
+ θed, θdr. θed, θdr represents the encoder and decoder model
347
+ parameters. λ is the hyper-parameters.
348
+
349
+ Model Testing
350
+ During testing, semantic reconstruction can be utilized to
351
+ improve selected captions. As is it shown in Fig 2, we use a
352
+ multi-stage system that combines beam search and position
353
+ reset. Inserted image captioning techniques:
354
+ Figure 2: A test image of our model. h, P, and R
355
+ show
356
+ the
357
+ hidden
358
+ sequence,
359
+ log
360
+ likelihood
361
+ probability,
362
+ and
363
+ caption
364
+ reconstruction
365
+ score,
366
+ respectively.
367
+ 1.
368
+ A collection of applicant captions, log possibilities, and
369
+ unobserved state sequences are generated using the
370
+ standard decoder components via an initial application
371
+ beam investigation.
372
+ 2.
373
+ After that, we use the hidden captions of each candidate
374
+ to reconstruct the semantic model of the merged image
375
+ by computing the appropriate reconstructive points.
376
+
377
+ <cand1,h1.p1>
378
+ <cand2,h2,p2>
379
+ INPUT
380
+ Encoding
381
+ Reconstruction
382
+ Decoding
383
+ Image
384
+ <candk,hk.pk>
385
+ <cand1,p1+gR1>
386
+ <cand2,p2+gR2>
387
+ Caption
388
+ Max
389
+ 111
390
+ <candk.pk+gRk>SmallerImage
391
+ DataSet
392
+ Three
393
+ persons
394
+ <aos>
395
+ CNNFeature
396
+ GRU
397
+ GRU
398
+ GRU
399
+ As
400
+ Reconstructed
401
+ Features
402
+ 660
403
+ <bos>
404
+ Three
405
+ during
406
+ Caption (S)
407
+ Image (0)
408
+ Image (1)
409
+ Pr(S/l)
410
+ R(1/s)
411
+ LSTM-A5 Model:
412
+ Threepersons standingtogether
413
+ Our Proposed CNN+GRU : Three person standing together on beach during sunset
414
+ Ground Truth:
415
+ Threeperson standingtogether onbeach holding each other
416
+ hand during sunset3.
417
+ After arranging a log and potential school rebuilding
418
+ sites, we calculate the final outcome of each caption
419
+ and select final captions based on the combination of
420
+ points.
421
+ 4.
422
+ EXPERIMENTS
423
+ The experiments have been conducted on the most popular
424
+ benchmark dataset COCO [30] to compare the performance
425
+ of our image captioning proposed model with other state-of-
426
+ the-art methods.
427
+
428
+ Experimental setup
429
+ COCO data-set was used to check the validity of our
430
+ proposed model which contains 130000 manually annotated
431
+ images. Each image has 4 descriptions which were used for
432
+ the training purpose. In addition to this, 5000 images were
433
+ used as testing dataset.
434
+ Out of the 130000 images of the training set, 80000 images
435
+ were used for the training purpose while 5000 images were
436
+ used for the validation purpose. Based on these settings, the
437
+ vocabolary has been built with 8500 unique words. For
438
+ getting the image features, the following setting was used for
439
+ the hyper-paramter tuning.
440
+ Adam [32] is used as the optimizer. We employed stop-
441
+ reading techniques [33] and pre-stop techniques, and we
442
+ determined
443
+ the
444
+ following
445
+ take-out
446
+ hyper-parameter
447
+ parameters: reading level beginning at 2 4, input rate as 300,
448
+ covering layer size as -1024, mini-batch. A maximum cycle
449
+ count of 30 is used with a scale of 1024. We used
450
+ Word2vec's
451
+ [34]
452
+ pre-trained
453
+ embeddings,
454
+ which
455
+ we
456
+ optimized by setting the tradeoff parameter to 1. The
457
+ threshold was established at 3 in our model testing.
458
+
459
+ Evaluation metrices used:
460
+ The evaluation metrices used are 1) BLEU [40] where we set
461
+ beam size K=3 thus BLEU@1, BLEU@2, BLEU@3 and
462
+ BLEU@4 are calculated. In addition to this, METEOR [46]
463
+ which is shown as M in Table 1, ROUGE-L [37] which is
464
+ shown as R and CIDEr-D [38] which is shown as C in the
465
+ Table1. The values of these metrices were calculated by the
466
+ COCO
467
+ released
468
+ code
469
+ [39].
470
+ BLEU,
471
+ ROUGE-L,
472
+ and
473
+ METEOR were initially developed as benchmarks for
474
+ evaluating the accuracy of machine translation. Image
475
+ caption testing follows the same procedure as machine
476
+ translation testing, where the phrases generated are compared
477
+ to the actual sentences, and metrics are often utilized.
478
+
479
+ Description of the compared state-of-the-art methods
480
+ 1) NIC: The decoder of NIC is based on LSTM which
481
+ directly use features of the images as input to LSTM.
482
+ 2) ME: The distinction of this method is its language model
483
+ that explore the mappings bidirectionally in images and their
484
+ captions. This language model is independently built from
485
+ the encoder-decoder framework.
486
+ 3) ATT: This model uniquely extracts the key information of
487
+ the images by a model based on semantic attention.
488
+ 4) Soft-Attention and Hard Attention (SA and HA) models:
489
+ This model differs from other models in terms of using CNN
490
+ features as input to decoder. The Soft-Attention (SA) is with
491
+ the
492
+ normal
493
+ Back-propagation
494
+ method
495
+ while
496
+ in
497
+ Hard-
498
+ Attention (HA), the stochastic attention is used with re-
499
+ inforcement learning.
500
+ 5) LRCN: It is unique in terms of taking the image feature
501
+ and its previous caption as the input at each time-step.
502
+ 6) Sentence
503
+ Condition
504
+ (SE):
505
+ In
506
+ this
507
+ method,
508
+ a
509
+ text-
510
+ conditional attention model is used which helps decoder to
511
+ learn the semantic information of the text.
512
+ 7) LSTM-A5: This is based on the best variant of LSTM.
513
+ Our propsoed model is inspired by this. We have used the
514
+ same settings of LSTM-A5 for comparison purpose as the
515
+ dataset is also same.
516
+
517
+ Test results on COCO
518
+ The results got from the experiments by using the COCO
519
+ dataset is shown in the Table 1. As it is obvious from the
520
+ results, our method performed better than all other state-of-
521
+ the-art methods. The results of the metreces BLEU@1,
522
+ BLEU@2, BLEU@3 and BLEU@4 are all better than the
523
+ NIC, HA, SA, ATT, ME, and other compared methods. Even
524
+ on the metrics METEOR [37] which is shown as M in Table
525
+ 1, ROUGE-L [38] which is shown as R and CIDEr-D which
526
+ is shown as C in the Table1, which were initially developed
527
+ as benchmarks for evaluating the accuracy of machine
528
+ translation, our resulting indexes are still better on the above
529
+ metrices as compared to NIC, HA, SA, ATT, ME, and other
530
+ compared methods.
531
+ These results proved that the proposed CNN-GRU method
532
+ with semantic validator of caption-to-image is working
533
+ perfectly.
534
+ Table 1: The performance of our proposed model against
535
+ other state-of-the-art methods building VGG framework or
536
+ GoogleNet framework. For clarity, B@K is for BLEU@K
537
+ where K={1,2,3,4}, MET is used for METEOR, ROU is
538
+ represents ROUGE-L, and CID is used for CIDER-D.
539
+ Model
540
+ B@1
541
+ B@2
542
+ B@3
543
+ B@4
544
+ MET
545
+ ROU
546
+ CID
547
+ SA [5]
548
+ 0.700
549
+ 0.490
550
+ 0.322
551
+ 0.242
552
+ 0.238
553
+ -
554
+ -
555
+ ME [26]
556
+ 0.731
557
+ 0.559
558
+ 0.429
559
+ 0.299
560
+ 0.246
561
+ 0.529
562
+ 1.001
563
+ ATT [12]
564
+ 0.699
565
+ 0.527
566
+ 0.399
567
+ 0.299
568
+ 0.232
569
+ -
570
+ -
571
+ SC [15]
572
+ 0.719
573
+ 0.540
574
+ 0.400
575
+ 0.297
576
+ 0.239
577
+ -
578
+ 0.94
579
+ HA[5]
580
+ 0.715
581
+ 0.503
582
+ 0.355
583
+ 0.249
584
+ 0.229
585
+ -
586
+ -
587
+ NIC [6]
588
+ 0.659
589
+ 0.449
590
+ 0.399
591
+ 0.202
592
+ -
593
+ -
594
+ -
595
+ LRCN
596
+ [41]
597
+ 0.690
598
+ 0.514
599
+ 0.379
600
+ 0.270
601
+ 0.230
602
+ 0.500
603
+ 0.830
604
+ LSTM-
605
+ A5
606
+ 0.729
607
+ 0.559
608
+ 0.429
609
+ 0.325
610
+ 0.253
611
+ 0.539
612
+ 1.002
613
+ Proposed
614
+ CNN+G
615
+ RU
616
+ 0.751
617
+ 0.578
618
+ 0.439
619
+ 0.335
620
+ 0.259
621
+ 0.545
622
+ 1.035
623
+
624
+ Test results on COCO's online test server
625
+ Table 2: Performance comparisons on online COCO
626
+ test server (C40). MS Captivator is a photo caption
627
+ model suggested by Fang et al. [27].
628
+ Model
629
+ B@1
630
+ B@2
631
+ B@3
632
+ B@4
633
+ MET
634
+ ROU
635
+ CID
636
+ SA [5]
637
+ 0.721
638
+ 0.494
639
+ 0.333
640
+ 0.251
641
+ 0.242
642
+ 0.511
643
+ 0.98
644
+ ME [26]
645
+ 0.743
646
+ 0.561
647
+ 0.432
648
+ 0.293
649
+ 0.251
650
+ 0.534
651
+ 1.013
652
+ ATT [12]
653
+ 0.691
654
+ 0.532
655
+ 0.393
656
+ 0.287
657
+ 0.242
658
+ -
659
+ -
660
+ SC [15]
661
+ 0.729
662
+ 0.544
663
+ 0.412
664
+ 0.281
665
+ 0.241
666
+ 0.511
667
+ 0.92
668
+ HA[5]
669
+ 0.725
670
+ 0.512
671
+ 0.358
672
+ 0.253
673
+ 0.231
674
+ -
675
+ -
676
+ NIC [6]
677
+ 0.669
678
+ 0.456
679
+ 0.382
680
+ 0.218
681
+ 0.232
682
+ -
683
+ -
684
+ LRCN [41]
685
+ 0.698
686
+ 0.521
687
+ 0.382
688
+ 0.281
689
+ 0.241
690
+ 0.512
691
+ 0.812
692
+ LSTM-A5
693
+ 0.731
694
+ 0.562
695
+ 0.432
696
+ 0.331
697
+ 0.258
698
+ 0.542
699
+ 1.000
700
+ Proposed
701
+ 0.742
702
+ 0.583
703
+ 0.441
704
+ 0.339
705
+ 0.263
706
+ 0.556
707
+ 1.012
708
+
709
+ CNN+GRU
710
+ Table 3: Performance comparisons on online COCO
711
+ test server (C40). MS Captivator is a photo caption
712
+ model suggested by Fang et al. [27].
713
+ Model
714
+ B@1
715
+ B@2
716
+ B@3
717
+ B@4
718
+ MET
719
+ ROU
720
+ CID
721
+ SA [5]
722
+ 0.898
723
+ 0.800
724
+ 0.605
725
+ 0.505
726
+ 0.347
727
+ 0.686
728
+ 0.940
729
+ ME [26]
730
+ 0.900
731
+ 0.781
732
+ 0.701
733
+ 0.575
734
+ 0.340
735
+ 0.685
736
+ 0.864
737
+ ATT [12]
738
+ 0.897
739
+ 0.825
740
+ 0.605
741
+ 0.505
742
+ 0.345
743
+ 0.680
744
+ 0.928
745
+ SC [15]
746
+ 0.900
747
+ 0.808
748
+ 0.705
749
+ 0.505
750
+ 0.343
751
+ 0.685
752
+ 0.919
753
+ HA[5]
754
+ 0.899
755
+ 0.804
756
+ 0.622
757
+ 0.515
758
+ 0.345
759
+ 0.682
760
+ 0.940
761
+ NIC [6]
762
+ 0.901
763
+ 0.809
764
+ 0.711
765
+ 0.510
766
+ 0.337
767
+ 0.680
768
+ 0.952
769
+ LRCN [41]
770
+ 0.902
771
+ 0.814
772
+ 0.710
773
+ 0.512
774
+ 0.339
775
+ 0.680
776
+ 0.947
777
+ LSTM-A5
778
+ 0.903
779
+ 0.816
780
+ 0.702
781
+ 0.602
782
+ 0.338
783
+ 0.686
784
+ 0.964
785
+ Proposed
786
+ CNN+GRU
787
+ 0.904
788
+ 0.818
789
+ 0.712
790
+ 0.603
791
+ 0.343
792
+ 0.687
793
+ 0.967
794
+ To further confirm the validity of our model, the COCO's
795
+ online test server was used to evaluate the performance on
796
+ the test set. In particular, the captions made by proposed
797
+ CNN-GRU
798
+ were
799
+ uploaded
800
+ to
801
+ the
802
+ server
803
+ to
804
+ do
805
+ the
806
+ comparisons with the baseline models. The official test
807
+ images, 5 (c5) reference captions, and 40 (c40) reference
808
+ captions used in Table 2 and Table 3 are shown. It is clearly
809
+ seen again on the results that our method outperformed all
810
+ other state-of-the-art methods. The results of the metreces
811
+ BLEU@1, BLEU@2, BLEU@3 and BLEU@4 are all better
812
+ than the NIC, HA, SA, ATT, ME, and other compared
813
+ methods. Even on the metrics METEOR which is shown as
814
+ M in Table 2 and Table 3, ROUGE-L which is shown as R
815
+ and CIDEr-D which is shown as C in the Table 2 and Table
816
+ 3, which were initially developed as benchmarks for
817
+ evaluating the accuracy of machine translation, our resulting
818
+ indexes are still better on the above metrices as compared to
819
+ NIC, HA, SA, ATT, ME, and other compared methods.
820
+ Fig.3 Model performance with different K.
821
+ 5.
822
+ CONCLUSION AND FUTURE WORK
823
+ In this paper, we have proposed CNN-GRU based hybrid
824
+ deep learning model with better hyper-parameter tuning to
825
+ do image captioning. Our CNN-GRU encoder decode
826
+ framework do caption-to-image reconstruction to handle the
827
+ semantic context into consideration as well as the time
828
+ complexity. By taking the hidden states of the decoder into
829
+ consideration, the input image and its similar semantic
830
+ representations were reconstructed and reconstruction scores
831
+ from a semantic reconstructor were used in conjunction with
832
+ likelihood during model training to assess the quality of the
833
+ generated
834
+ caption. As
835
+ a
836
+ result, the
837
+ decoder
838
+ received
839
+ improved semantic information, enhancing the caption
840
+ production process. During model testing, combining the
841
+ reconstruction score and the log-likelihood was also feasible
842
+ to choose the most appropriate caption. The suggested model
843
+ outperforms the state-of-the-art LSTM-A5 model for picture
844
+ captioning in terms of time complexity and accuracy.
845
+ REFERENCES
846
+ 1.
847
+ Alahmadi, R., & Hahn, J. (2022). Improve Image
848
+ Captioning by Estimating the Gazing Patterns from the
849
+ Caption. In Proceedings of the IEEE/CVF Winter
850
+ Conference on Applications of Computer Vision (pp.
851
+ 1025-1034).
852
+ 2.
853
+ Wei, J., Li, Z., Zhu, J., & Ma, H. (2022). Enhance
854
+ understanding
855
+ and
856
+ reasoning
857
+ ability
858
+ for
859
+ image
860
+ captioning. Applied Intelligence, 1-17.
861
+ 3.
862
+ Zhao, S., Li, L., & Peng, H. (2022). Aligned visual
863
+ semantic
864
+ scene
865
+ graph
866
+ for
867
+ image
868
+ captioning. Displays, 74, 102210.
869
+ 4.
870
+ Singh, A., Krishna Raguru, J., Prasad, G., Chauhan, S.,
871
+ Tiwari, P. K., Zaguia, A., &Ullah, M. A. (2022).
872
+ Medical Image Captioning Using Optimized Deep
873
+ Learning
874
+ Model.
875
+ Computational
876
+ Intelligence
877
+ and
878
+ Neuroscience, 2022.
879
+ 5.
880
+ Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural
881
+ machine translation by jointly learning to align and
882
+ translate. arXiv preprint arXiv:1409.0473.
883
+ 6.
884
+ Fukushima, K., & Miyake, S. (1982). Neocognitron: A
885
+ self-organizing neural network model for a mechanism
886
+ of visual pattern recognition. In Competition and
887
+ cooperation in neural nets (pp. 267-285). Springer,
888
+ Berlin, Heidelberg.
889
+ 7.
890
+ He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017).
891
+ Mask r-cnn. In Proceedings of the IEEE international
892
+ conference on computer vision (pp. 2961-2969).
893
+ 8.
894
+ Girshick, R. (2015). Fast r-cnn. In Proceedings of the
895
+ IEEE international conference on computer vision (pp.
896
+ 1440-1448).
897
+ 9.
898
+ Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-
899
+ cnn: Towards real-time object detection with region
900
+ proposal networks. Advances in neural information
901
+ processing systems, 28.
902
+ 10.
903
+ Ji, J., Huang, X., Sun, X., Zhou, Y., Luo, G., Cao,
904
+ L., ...& Ji, R. (2022). Multi-Branch Distance-Sensitive
905
+ Self-Attention Network for Image Captioning. IEEE
906
+ Transactions on Multimedia.
907
+ 11.
908
+ Wang, X., Wu, J., Chen, J., Li, L., Wang, Y. F., &
909
+ Wang, W. Y. (2019). Vatex: A large-scale, high-quality
910
+ multilingual dataset for video-and-language research.
911
+ In
912
+ Proceedings
913
+ of
914
+ the
915
+ IEEE/CVF
916
+ International
917
+ Conference on Computer Vision (pp. 4581-4591).
918
+ 12.
919
+ Cornia, M., Baraldi, L., & Cucchiara, R. (2019). Show,
920
+ control
921
+ and
922
+ tell:
923
+ A
924
+ framework
925
+ for
926
+ generating
927
+ controllable and grounded captions. In Proceedings of
928
+ the IEEE/CVF Conference on Computer Vision and
929
+
930
+ 0.975
931
+ 0.950
932
+ 0.925
933
+ D
934
+ 0060
935
+ CID
936
+ 0.875
937
+ 0.850
938
+ 0.825
939
+ 0.800
940
+ 2.5
941
+ 5.0
942
+ 7.5
943
+ 10.0
944
+ 12.5
945
+ 15.0
946
+ 17.5
947
+ 20.0
948
+ K0.34
949
+ 0.32
950
+ 0.30
951
+ 0.26
952
+ 0.24
953
+ 0.22
954
+ 0.20
955
+ 2.5
956
+ 5.0
957
+ 7.5
958
+ 10.0
959
+ 12.5
960
+ 15.0
961
+ 17.5
962
+ 20.0
963
+ KPattern Recognition (pp. 8307-8316).
964
+ 13.
965
+ Herdade, S., Kappeler, A., Boakye, K., & Soares, J.
966
+ (2019). Image captioning: Transforming objects into
967
+ words. Advances in Neural Information Processing
968
+ Systems, 32.
969
+ 14.
970
+ Huang, L., Wang, W., Chen, J., & Wei, X. Y. (2019).
971
+ Attention
972
+ on
973
+ attention
974
+ for
975
+ image
976
+ captioning.
977
+ In
978
+ Proceedings
979
+ of
980
+ the
981
+ IEEE/CVF
982
+ International
983
+ Conference on Computer Vision (pp. 4634-4643).
984
+ 15.
985
+ Ke, L., Pei, W., Li, R., Shen, X., & Tai, Y. W. (2019).
986
+ Reflective decoding network for image captioning.
987
+ In
988
+ Proceedings
989
+ of
990
+ the
991
+ IEEE/CVF
992
+ International
993
+ Conference on Computer Vision (pp. 8888-8897).
994
+ 16.
995
+ Li, G., Zhu, L., Liu, P., & Yang, Y. (2019). Entangled
996
+ transformer for image captioning. In Proceedings of the
997
+ IEEE/CVF
998
+ International
999
+ Conference
1000
+ on
1001
+ Computer
1002
+ Vision (pp. 8928-8937).
1003
+ 17.
1004
+ Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2016).
1005
+ Show and tell: Lessons learned from the 2015 mscoco
1006
+ image captioning challenge. IEEE transactions on
1007
+ pattern analysis and machine intelligence, 39(4), 652-
1008
+ 663.
1009
+ 18.
1010
+ Tu, Z., Liu, Y., Shang, L., Liu, X., & Li, H. (2017,
1011
+ February).
1012
+ Neural
1013
+ machine
1014
+ translation
1015
+ with
1016
+ reconstruction. In Thirty-First AAAI Conference on
1017
+ Artificial Intelligence.
1018
+ 19.
1019
+ Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., &
1020
+ Yuille, A. (2014). Deep captioning with multimodal
1021
+ recurrent neural networks (m-rnn). arXiv preprint
1022
+ arXiv:1412.6632..
1023
+ 20.
1024
+ Karpathy, A., & Fei-Fei, L. (2015). Deep visual-
1025
+ semantic alignments for generating image descriptions.
1026
+ In Proceedings of the IEEE conference on computer
1027
+ vision and pattern recognition (pp. 3128-3137)..
1028
+ 21.
1029
+ Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
1030
+ Salakhudinov, R., ...& Bengio, Y. (2015, June). Show,
1031
+ attend and tell: Neural image caption generation with
1032
+ visual attention. In International conference on machine
1033
+ learning (pp. 2048-2057). PMLR.
1034
+ 22.
1035
+ Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015).
1036
+ Show and tell: A neural image caption generator.
1037
+ In Proceedings of the IEEE conference on computer
1038
+ vision and pattern recognition (pp. 3156-3164).
1039
+ 23.
1040
+ Yang, Z., Yuan, Y., Wu, Y., Cohen, W. W., &
1041
+ Salakhutdinov, R. R. (2016). Review networks for
1042
+ caption generation. Advances in neural information
1043
+ processing systems, 29.
1044
+ 24.
1045
+ Liu, C., Mao, J., Sha, F., & Yuille, A. (2017, February).
1046
+ Attention correctness in neural image captioning.
1047
+ In Proceedings of the AAAI Conference on Artificial
1048
+ Intelligence (Vol. 31, No. 1).
1049
+ 25.
1050
+ Anderson, P., He, X., Buehler, C., Teney, D., Johnson,
1051
+ M., Gould, S., & Zhang, L. (2018). Bottom-up and top-
1052
+ down
1053
+ attention
1054
+ for
1055
+ image
1056
+ captioning
1057
+ and
1058
+ visual
1059
+ question answering. In Proceedings of the IEEE
1060
+ conference
1061
+ on
1062
+ computer
1063
+ vision
1064
+ and
1065
+ pattern
1066
+ recognition (pp. 6077-6086).
1067
+ 26.
1068
+ Jia, X., Gavves, E., Fernando, B., & Tuytelaars, T.
1069
+ (2015). Guiding the long-short term memory model for
1070
+ image caption generation. In Proceedings of the IEEE
1071
+ international conference on computer vision (pp. 2407-
1072
+ 2415).
1073
+ 27.
1074
+ Wu, Q., Shen, C., Liu, L., Dick, A., & Van Den Hengel,
1075
+ A. (2016). What value do explicit high level concepts
1076
+ have in vision to language problems? In Proceedings of
1077
+ the IEEE conference on computer vision and pattern
1078
+ recognition (pp. 203-212).
1079
+ 28.
1080
+ Cheng, Y. (2019). Joint Training for Neural Machine
1081
+ Translation. Springer Nature.
1082
+ 29.
1083
+ 19. Gan, Z., Gan, C., He, X., Pu, Y., Tran, K., Gao,
1084
+ J., ...& Deng, L. (2017). Semantic
1085
+ compositional
1086
+ networks for visual captioning. In Proceedings of the
1087
+ IEEE conference on computer vision and pattern
1088
+ recognition (pp. 5630-5639).
1089
+ 30.
1090
+ Yao, T., Pan, Y., Li, Y., Qiu, Z., & Mei, T. (2017).
1091
+ Boosting
1092
+ image
1093
+ captioning
1094
+ with
1095
+ attributes.
1096
+ In Proceedings of the IEEE international conference on
1097
+ computer vision (pp. 4894-4902).
1098
+ 31.
1099
+ Lu, J., Zhou, R., & Luo, S. (2016). Design of Extended
1100
+ ‘Digital
1101
+ Communication
1102
+ Theory’Hardware
1103
+ Implementation Platform. In Computer Science and
1104
+ Engineering
1105
+ Technology
1106
+ (CSET2015)
1107
+ &
1108
+ Medical
1109
+ Science
1110
+ and
1111
+ Biological
1112
+ Engineering
1113
+ (MSBE2015)
1114
+ Proceedings of the 2015 International Conference on
1115
+ CSET & MSBE (pp. 289-297).
1116
+ 32.
1117
+ Karpathy, A., & Fei-Fei, L. (2015). Deep visual-
1118
+ semantic alignments for generating image descriptions.
1119
+ In Proceedings of the IEEE conference on computer
1120
+ vision and pattern recognition (pp. 3128-3137)..
1121
+ 33.
1122
+ Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A.,
1123
+ Salakhudinov, R., ...& Bengio, Y. (2015, June). Show,
1124
+ attend and tell: Neural image caption generation with
1125
+ visual attention. In International conference on machine
1126
+ learning (pp. 2048-2057). PMLR.
1127
+ 34.
1128
+ Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015).
1129
+ Show and tell: A neural image caption generator.
1130
+ In Proceedings of the IEEE conference on computer
1131
+ vision and pattern recognition (pp. 3156-3164).
1132
+ 35.
1133
+ Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002,
1134
+ July). Bleu: a method for automatic evaluation of
1135
+ machine translation. In Proceedings of the 40th annual
1136
+ meeting
1137
+ of
1138
+ the
1139
+ Association
1140
+ for
1141
+ Computational
1142
+ Linguistics (pp. 311-318).
1143
+ 36.
1144
+ Banerjee, S., & Lavie, A. (2005, June). METEOR: An
1145
+ automatic metric for MT evaluation with improved
1146
+ correlation with human judgments. In Proceedings of
1147
+ the acl workshop on intrinsic and extrinsic evaluation
1148
+ measures
1149
+ for
1150
+ machine
1151
+ translation
1152
+ and/or
1153
+ summarization (pp. 65-72).
1154
+ 37.
1155
+ Lin, C. Y. (2004, July). Rouge: A package for
1156
+ automatic
1157
+ evaluation
1158
+ of
1159
+ summaries.
1160
+ In
1161
+ Text
1162
+ summarization branches out (pp. 74-81).
1163
+ 38.
1164
+ Vedantam, R., Lawrence Zitnick, C., & Parikh, D.
1165
+ (2015).
1166
+ Cider:
1167
+ Consensus-based
1168
+ image
1169
+ description
1170
+ evaluation. In Proceedings of the IEEE conference on
1171
+ computer vision and pattern recognition (pp. 4566-
1172
+ 4575).
1173
+ 39.
1174
+ Chen, X., Fang, H., Lin, T. Y., Vedantam, R., Gupta, S.,
1175
+ Dollár, P., & Zitnick, C. L. (2015). Microsoft coco
1176
+ captions: Data collection and evaluation server. arXiv
1177
+ preprint arXiv:1504.00325.
1178
+
I9E0T4oBgHgl3EQfiAGs/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff
 
INAzT4oBgHgl3EQfHvu0/content/2301.01051v1.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58a5da5a96cc54a51d9202c59507dfb09cceca3997434e9c6824a8950b461e56
3
+ size 796984
INAzT4oBgHgl3EQfHvu0/vector_store/index.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c280ee717222f802d778819c72aab3dbe646b58d9ec2d4aa00dc637be4b8c887
3
+ size 73031
JNAzT4oBgHgl3EQfVPyV/vector_store/index.faiss ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0e8a66d310e71448dd8ebf47e85892a042be96afa50efc90107423a61d0d1394
3
+ size 7471149
NNFLT4oBgHgl3EQfNy8i/content/tmp_files/load_file.txt ADDED
The diff for this file is too large to render. See raw diff