;;; Guile Emacs Lisp ;; Copyright (C) 2009-2011, 2013, 2018 Free Software Foundation, Inc. ;; This program is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program; see the file COPYING. If not, write to ;; the Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;; Code: (define-module (language elisp compile-tree-il) #:use-module (language elisp bindings) #:use-module (language elisp runtime) #:use-module (language tree-il) #:use-module (system base pmatch) #:use-module (system base compile) #:use-module (system base target) #:use-module (srfi srfi-1) #:use-module (srfi srfi-8) #:use-module (srfi srfi-11) #:use-module (srfi srfi-26) #:export (compile-tree-il compile-progn compile-eval-when-compile compile-if compile-defconst compile-defvar compile-setq compile-let compile-flet compile-labels compile-let* compile-guile-ref compile-guile-primitive compile-function compile-defmacro compile-defun #{compile-`}# compile-quote compile-%funcall compile-%set-lexical-binding-mode)) ;;; Certain common parameters (like the bindings data structure or ;;; compiler options) are not always passed around but accessed using ;;; fluids to simulate dynamic binding (hey, this is about elisp). ;;; The bindings data structure to keep track of symbol binding related ;;; data. (define bindings-data (make-fluid)) (define lexical-binding (make-fluid)) ;;; Find the source properties of some parsed expression if there are ;;; any associated with it. (define (location x) (and (pair? x) (let ((props (source-properties x))) (and (not (null? props)) props)))) ;;; Values to use for Elisp's nil and t. (define (nil-value loc) (make-const loc (@ (language elisp runtime) nil-value))) (define (t-value loc) (make-const loc (@ (language elisp runtime) t-value))) ;;; Modules that contain the value and function slot bindings. (define runtime '(language elisp runtime)) (define value-slot (@ (language elisp runtime) value-slot-module)) (define function-slot (@ (language elisp runtime) function-slot-module)) ;;; The backquoting works the same as quasiquotes in Scheme, but the ;;; forms are named differently; to make easy adaptions, we define these ;;; predicates checking for a symbol being the car of an ;;; unquote/unquote-splicing/backquote form. (define (unquote? sym) (and (symbol? sym) (eq? sym '#{,}#))) (define (unquote-splicing? sym) (and (symbol? sym) (eq? sym '#{,@}#))) ;;; Build a call to a primitive procedure nicely. (define (call-primitive loc sym . args) (make-primcall loc sym args)) ;;; Error reporting routine for syntax/compilation problems or build ;;; code for a runtime-error output. (define (report-error loc . args) (apply error args)) (define (access-variable loc symbol handle-lexical handle-dynamic) (cond ((get-lexical-binding (fluid-ref bindings-data) symbol) => handle-lexical) (else (handle-dynamic)))) (define (reference-variable loc symbol) (access-variable loc symbol (lambda (lexical) (make-lexical-ref loc lexical lexical)) (lambda () (call-primitive loc 'fluid-ref (make-module-ref loc value-slot symbol #t))))) (define (global? module symbol) (module-variable module symbol)) (define (ensure-globals! loc names body) (if (and (every (cut global? (resolve-module value-slot) <>) names) (every symbol-interned? names)) body (list->seq loc `(,@(map (lambda (name) (ensure-fluid! value-slot name) (make-call loc (make-module-ref loc runtime 'ensure-fluid! #t) (list (make-const loc value-slot) (make-const loc name)))) names) ,body)))) (define (set-variable! loc symbol value) (access-variable loc symbol (lambda (lexical) (make-lexical-set loc lexical lexical value)) (lambda () (ensure-globals! loc (list symbol) (call-primitive loc 'fluid-set! (make-module-ref loc value-slot symbol #t) value))))) (define (access-function loc symbol handle-lexical handle-global) (cond ((get-function-binding (fluid-ref bindings-data) symbol) => handle-lexical) (else (handle-global)))) (define (reference-function loc symbol) (access-function loc symbol (lambda (gensym) (make-lexical-ref loc symbol gensym)) (lambda () (make-module-ref loc function-slot symbol #t)))) (define (set-function! loc symbol value) (access-function loc symbol (lambda (gensym) (make-lexical-set loc symbol gensym value)) (lambda () (make-call loc (make-module-ref loc runtime 'set-symbol-function! #t) (list (make-const loc symbol) value))))) (define (bind-lexically? sym module decls) (or (eq? module function-slot) (let ((decl (assq-ref decls sym))) (and (equal? module value-slot) (or (eq? decl 'lexical) (and (fluid-ref lexical-binding) (not (global? (resolve-module module) sym)))))))) (define (parse-let-binding loc binding) (pmatch binding ((unquote var) (guard (symbol? var)) (cons var #nil)) ((,var) (guard (symbol? var)) (cons var #nil)) ((,var ,val) (guard (symbol? var)) (cons var val)) (else (report-error loc "malformed variable binding" binding)))) (define (parse-flet-binding loc binding) (pmatch binding ((,var ,args . ,body) (guard (symbol? var)) (cons var `(function (lambda ,args ,@body)))) (else (report-error loc "malformed function binding" binding)))) (define (parse-declaration expr) (pmatch expr ((lexical . ,vars) (map (cut cons <> 'lexical) vars)) (else '()))) (define (parse-body-1 body lambda?) (let loop ((lst body) (decls '()) (intspec #f) (doc #f)) (pmatch lst (((declare . ,x) . ,tail) (loop tail (append-reverse x decls) intspec doc)) (((interactive . ,x) . ,tail) (guard lambda? (not intspec)) (loop tail decls x doc)) ((,x . ,tail) (guard lambda? (string? x) (not doc) (not (null? tail))) (loop tail decls intspec x)) (else (values (append-map parse-declaration decls) intspec doc lst))))) (define (parse-lambda-body body) (parse-body-1 body #t)) (define (parse-body body) (receive (decls intspec doc body) (parse-body-1 body #f) (values decls body))) ;;; Partition the argument list of a lambda expression into required, ;;; optional and rest arguments. (define (parse-lambda-list lst) (define (%match lst null optional rest symbol) (pmatch lst (() (null)) (nil (null)) ((&optional . ,tail) (optional tail)) ((&rest . ,tail) (rest tail)) ((,arg . ,tail) (guard (symbol? arg)) (symbol arg tail)) (else (fail)))) (define (return rreq ropt rest) (values #t (reverse rreq) (reverse ropt) rest)) (define (fail) (values #f #f #f #f)) (define (parse-req lst rreq) (%match lst (lambda () (return rreq '() #f)) (lambda (tail) (parse-opt tail rreq '())) (lambda (tail) (parse-rest tail rreq '())) (lambda (arg tail) (parse-req tail (cons arg rreq))))) (define (parse-opt lst rreq ropt) (%match lst (lambda () (return rreq ropt #f)) (lambda (tail) (fail)) (lambda (tail) (parse-rest tail rreq ropt)) (lambda (arg tail) (parse-opt tail rreq (cons arg ropt))))) (define (parse-rest lst rreq ropt) (%match lst (lambda () (fail)) (lambda (tail) (fail)) (lambda (tail) (fail)) (lambda (arg tail) (parse-post-rest tail rreq ropt arg)))) (define (parse-post-rest lst rreq ropt rest) (%match lst (lambda () (return rreq ropt rest)) (lambda () (fail)) (lambda () (fail)) (lambda (arg tail) (fail)))) (parse-req lst '())) (define (make-simple-lambda loc meta req opt init rest vars body) (make-lambda loc meta (make-lambda-case #f req opt rest #f init vars body #f))) (define (make-dynlet src fluids vals body) (let ((f (map (lambda (x) (gensym "fluid ")) fluids)) (v (map (lambda (x) (gensym "valud ")) vals))) (make-let src (map (lambda (_) 'fluid) fluids) f fluids (make-let src (map (lambda (_) 'val) vals) v vals (let lp ((f f) (v v)) (if (null? f) body (make-primcall src 'with-fluid* (list (make-lexical-ref #f 'fluid (car f)) (make-lexical-ref #f 'val (car v)) (make-lambda src '() (make-lambda-case src '() #f #f #f '() '() (lp (cdr f) (cdr v)) #f)))))))))) (define (compile-lambda loc meta args body) (receive (valid? req-ids opt-ids rest-id) (parse-lambda-list args) (if valid? (let* ((all-ids (append req-ids opt-ids (or (and=> rest-id list) '()))) (all-vars (map (lambda (ignore) (gensym)) all-ids))) (let*-values (((decls intspec doc forms) (parse-lambda-body body)) ((lexical dynamic) (partition (compose (cut bind-lexically? <> value-slot decls) car) (map list all-ids all-vars))) ((lexical-ids lexical-vars) (unzip2 lexical)) ((dynamic-ids dynamic-vars) (unzip2 dynamic))) (with-dynamic-bindings (fluid-ref bindings-data) dynamic-ids (lambda () (with-lexical-bindings (fluid-ref bindings-data) lexical-ids lexical-vars (lambda () (ensure-globals! loc dynamic-ids (let* ((tree-il (compile-expr (if rest-id `(let ((,rest-id (if ,rest-id ,rest-id nil))) ,@forms) `(progn ,@forms)))) (full-body (if (null? dynamic) tree-il (make-dynlet loc (map (cut make-module-ref loc value-slot <> #t) dynamic-ids) (map (cut make-lexical-ref loc <> <>) dynamic-ids dynamic-vars) tree-il)))) (make-simple-lambda loc meta req-ids opt-ids (map (const (nil-value loc)) opt-ids) rest-id all-vars full-body))))))))) (report-error "invalid function" `(lambda ,args ,@body))))) ;;; Handle the common part of defconst and defvar, that is, checking for ;;; a correct doc string and arguments as well as maybe in the future ;;; handling the docstring somehow. (define (handle-var-def loc sym doc) (cond ((not (symbol? sym)) (report-error loc "expected symbol, got" sym)) ((> (length doc) 1) (report-error loc "too many arguments to defvar")) ((and (not (null? doc)) (not (string? (car doc)))) (report-error loc "expected string as third argument of defvar, got" (car doc))) ;; TODO: Handle doc string if present. (else #t))) ;;; Handle macro and special operator bindings. (define (find-operator name type) (and (symbol? name) (module-defined? (resolve-interface function-slot) name) (let ((op (module-ref (resolve-module function-slot) name))) (if (and (pair? op) (eq? (car op) type)) (cdr op) #f)))) ;;; See if a (backquoted) expression contains any unquotes. (define (contains-unquotes? expr) (if (pair? expr) (if (or (unquote? (car expr)) (unquote-splicing? (car expr))) #t (or (contains-unquotes? (car expr)) (contains-unquotes? (cdr expr)))) #f)) ;;; Process a backquoted expression by building up the needed ;;; cons/append calls. For splicing, it is assumed that the expression ;;; spliced in evaluates to a list. The emacs manual does not really ;;; state either it has to or what to do if it does not, but Scheme ;;; explicitly forbids it and this seems reasonable also for elisp. (define (unquote-cell? expr) (and (list? expr) (= (length expr) 2) (unquote? (car expr)))) (define (unquote-splicing-cell? expr) (and (list? expr) (= (length expr) 2) (unquote-splicing? (car expr)))) (define (process-backquote loc expr) (if (contains-unquotes? expr) (if (pair? expr) (if (or (unquote-cell? expr) (unquote-splicing-cell? expr)) (compile-expr (cadr expr)) (let* ((head (car expr)) (processed-tail (process-backquote loc (cdr expr))) (head-is-list-2 (and (list? head) (= (length head) 2))) (head-unquote (and head-is-list-2 (unquote? (car head)))) (head-unquote-splicing (and head-is-list-2 (unquote-splicing? (car head))))) (if head-unquote-splicing (call-primitive loc 'append (compile-expr (cadr head)) processed-tail) (call-primitive loc 'cons (if head-unquote (compile-expr (cadr head)) (process-backquote loc head)) processed-tail)))) (report-error loc "non-pair expression contains unquotes" expr)) (make-const loc expr))) ;;; Special operators (defspecial progn (loc args) (list->seq loc (if (null? args) (list (nil-value loc)) (map compile-expr args)))) (defspecial eval-when-compile (loc args) (make-const loc (with-native-target (lambda () (compile `(progn ,@args) #:from 'elisp #:to 'value))))) (defspecial if (loc args) (pmatch args ((,cond ,then . ,else) (make-conditional loc (call-primitive loc 'not (call-primitive loc 'nil? (compile-expr cond))) (compile-expr then) (compile-expr `(progn ,@else)))))) (defspecial defconst (loc args) (pmatch args ((,sym ,value . ,doc) (if (handle-var-def loc sym doc) (make-seq loc (set-variable! loc sym (compile-expr value)) (make-const loc sym)))))) (defspecial defvar (loc args) (pmatch args ((,sym) (make-const loc sym)) ((,sym ,value . ,doc) (if (handle-var-def loc sym doc) (make-seq loc (make-conditional loc (make-conditional loc (call-primitive loc 'module-bound? (call-primitive loc 'resolve-interface (make-const loc value-slot)) (make-const loc sym)) (call-primitive loc 'fluid-bound? (make-module-ref loc value-slot sym #t)) (make-const loc #f)) (make-void loc) (set-variable! loc sym (compile-expr value))) (make-const loc sym)))))) (defspecial setq (loc args) (define (car* x) (if (null? x) '() (car x))) (define (cdr* x) (if (null? x) '() (cdr x))) (define (cadr* x) (car* (cdr* x))) (define (cddr* x) (cdr* (cdr* x))) (list->seq loc (let loop ((args args) (last (nil-value loc))) (if (null? args) (list last) (let ((sym (car args)) (val (compile-expr (cadr* args)))) (if (not (symbol? sym)) (report-error loc "expected symbol in setq") (cons (set-variable! loc sym val) (loop (cddr* args) (reference-variable loc sym))))))))) (defspecial let (loc args) (pmatch args ((,varlist . ,body) (let ((bindings (map (cut parse-let-binding loc <>) varlist))) (receive (decls forms) (parse-body body) (receive (lexical dynamic) (partition (compose (cut bind-lexically? <> value-slot decls) car) bindings) (let ((make-values (lambda (for) (map (lambda (el) (compile-expr (cdr el))) for))) (make-body (lambda () (compile-expr `(progn ,@forms))))) (ensure-globals! loc (map car dynamic) (if (null? lexical) (make-dynlet loc (map (compose (cut make-module-ref loc value-slot <> #t) car) dynamic) (map (compose compile-expr cdr) dynamic) (make-body)) (let* ((lexical-syms (map (lambda (el) (gensym)) lexical)) (dynamic-syms (map (lambda (el) (gensym)) dynamic)) (all-syms (append lexical-syms dynamic-syms)) (vals (append (make-values lexical) (make-values dynamic)))) (make-let loc all-syms all-syms vals (with-lexical-bindings (fluid-ref bindings-data) (map car lexical) lexical-syms (lambda () (if (null? dynamic) (make-body) (make-dynlet loc (map (compose (cut make-module-ref loc value-slot <> #t) car) dynamic) (map (lambda (sym) (make-lexical-ref loc sym sym)) dynamic-syms) (make-body)))))))))))))))) (defspecial let* (loc args) (pmatch args ((,varlist . ,body) (let ((bindings (map (cut parse-let-binding loc <>) varlist))) (receive (decls forms) (parse-body body) (let iterate ((tail bindings)) (if (null? tail) (compile-expr `(progn ,@forms)) (let ((sym (caar tail)) (value (compile-expr (cdar tail)))) (if (bind-lexically? sym value-slot decls) (let ((target (gensym))) (make-let loc `(,target) `(,target) `(,value) (with-lexical-bindings (fluid-ref bindings-data) `(,sym) `(,target) (lambda () (iterate (cdr tail)))))) (ensure-globals! loc (list sym) (make-dynlet loc (list (make-module-ref loc value-slot sym #t)) (list value) (iterate (cdr tail))))))))))))) (defspecial flet (loc args) (pmatch args ((,bindings . ,body) (let ((names+vals (map (cut parse-flet-binding loc <>) bindings))) (receive (decls forms) (parse-body body) (let ((names (map car names+vals)) (vals (map cdr names+vals)) (gensyms (map (lambda (x) (gensym)) names+vals))) (with-function-bindings (fluid-ref bindings-data) names gensyms (lambda () (make-let loc names gensyms (map compile-expr vals) (compile-expr `(progn ,@forms))))))))))) (defspecial labels (loc args) (pmatch args ((,bindings . ,body) (let ((names+vals (map (cut parse-flet-binding loc <>) bindings))) (receive (decls forms) (parse-body body) (let ((names (map car names+vals)) (vals (map cdr names+vals)) (gensyms (map (lambda (x) (gensym)) names+vals))) (with-function-bindings (fluid-ref bindings-data) names gensyms (lambda () (make-letrec #f loc names gensyms (map compile-expr vals) (compile-expr `(progn ,@forms))))))))))) ;;; guile-ref allows building TreeIL's module references from within ;;; elisp as a way to access data within the Guile universe. The module ;;; and symbol referenced are static values, just like (@ module symbol) ;;; does! (defspecial guile-ref (loc args) (pmatch args ((,module ,sym) (guard (and (list? module) (symbol? sym))) (make-module-ref loc module sym #t)))) ;;; guile-primitive allows to create primitive references, which are ;;; still a little faster. (defspecial guile-primitive (loc args) (pmatch args ((,sym) (make-primitive-ref loc sym)))) (defspecial function (loc args) (pmatch args (((lambda ,args . ,body)) (compile-lambda loc '() args body)) ((,sym) (guard (symbol? sym)) (reference-function loc sym)))) (defspecial defmacro (loc args) (pmatch args ((,name ,args . ,body) (if (not (symbol? name)) (report-error loc "expected symbol as macro name" name) (let* ((tree-il (make-seq loc (set-function! loc name (make-call loc (make-module-ref loc '(guile) 'cons #t) (list (make-const loc 'macro) (compile-lambda loc `((name . ,name)) args body)))) (make-const loc name)))) (with-native-target (lambda () (compile tree-il #:from 'tree-il #:to 'value))) tree-il))))) (defspecial defun (loc args) (pmatch args ((,name ,args . ,body) (if (not (symbol? name)) (report-error loc "expected symbol as function name" name) (make-seq loc (set-function! loc name (compile-lambda loc `((name . ,name)) args body)) (make-const loc name)))))) (defspecial #{`}# (loc args) (pmatch args ((,val) (process-backquote loc val)))) (defspecial quote (loc args) (pmatch args ((,val) (make-const loc val)))) (defspecial %funcall (loc args) (pmatch args ((,function . ,arguments) (make-call loc (compile-expr function) (map compile-expr arguments))))) (defspecial %set-lexical-binding-mode (loc args) (pmatch args ((,val) (fluid-set! lexical-binding val) (make-void loc)))) ;;; Compile a compound expression to Tree-IL. (define (compile-pair loc expr) (let ((operator (car expr)) (arguments (cdr expr))) (cond ((find-operator operator 'special-operator) => (lambda (special-operator-function) (special-operator-function loc arguments))) ((find-operator operator 'macro) => (lambda (macro-function) (compile-expr (apply macro-function arguments)))) (else (compile-expr `(%funcall (function ,operator) ,@arguments)))))) ;;; Compile a symbol expression. This is a variable reference or maybe ;;; some special value like nil. (define (compile-symbol loc sym) (case sym ((nil) (nil-value loc)) ((t) (t-value loc)) (else (reference-variable loc sym)))) ;;; Compile a single expression to TreeIL. (define (compile-expr expr) (let ((loc (location expr))) (cond ((symbol? expr) (compile-symbol loc expr)) ((pair? expr) (compile-pair loc expr)) (else (make-const loc expr))))) ;;; Process the compiler options. ;;; FIXME: Why is '(()) passed as options by the REPL? (define (valid-symbol-list-arg? value) (or (eq? value 'all) (and (list? value) (and-map symbol? value)))) (define (process-options! opt) (if (and (not (null? opt)) (not (equal? opt '(())))) (if (null? (cdr opt)) (report-error #f "Invalid compiler options" opt) (let ((key (car opt)) (value (cadr opt))) (case key ((#:warnings #:to-file?) ; ignore #f) (else (report-error #f "Invalid compiler option" key))))))) (define (compile-tree-il expr env opts) (values (with-fluids ((bindings-data (make-bindings))) (process-options! opts) (compile-expr expr)) env env))