File size: 3,382 Bytes
3dcad1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
;;; installed-scm-file
;;;; Copyright (C) 1996, 2001, 2006, 2011 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
(define-module (ice-9 poe)
:use-module (ice-9 hcons)
:export (pure-funcq perfect-funcq))
;;; {Pure Functions}
;;;
;;; A pure function (of some sort) is characterized by two equality
;;; relations: one on argument lists and one on return values.
;;; A pure function is one that when applied to equal arguments lists
;;; yields equal results.
;;;
;;; If the equality relationship on return values can be eq?, it may make
;;; sense to cache values returned by the function. Choosing the right
;;; equality relation on arguments is tricky.
;;;
;;; {pure-funcq}
;;;
;;; The simplest case of pure functions are those in which results
;;; are only certainly eq? if all of the arguments are. These functions
;;; are called "pure-funcq", for obvious reasons.
;;;
(define funcq-memo (make-weak-key-hash-table 523)) ; !!! randomly selected values
(define funcq-buffer (make-gc-buffer 256))
(define (funcq-hash arg-list n)
(let ((it (let loop ((x 0)
(arg-list arg-list))
(if (null? arg-list)
(modulo x n)
(loop (logior x (hashq (car arg-list) 4194303))
(cdr arg-list))))))
it))
;; return true if lists X and Y are the same length and each element is `eq?'
(define (eq?-list x y)
(if (null? x)
(null? y)
(and (not (null? y))
(eq? (car x) (car y))
(eq?-list (cdr x) (cdr y)))))
(define (funcq-assoc arg-list alist)
(if (null? alist)
#f
(if (eq?-list arg-list (caar alist))
(car alist)
(funcq-assoc arg-list (cdr alist)))))
(define not-found (list 'not-found))
(define (pure-funcq base-func)
(lambda args
(let* ((key (cons base-func args))
(cached (hashx-ref funcq-hash funcq-assoc funcq-memo key not-found)))
(if (not (eq? cached not-found))
(begin
(funcq-buffer key)
cached)
(let ((val (apply base-func args)))
(funcq-buffer key)
(hashx-set! funcq-hash funcq-assoc funcq-memo key val)
val)))))
;;; {Perfect funq}
;;;
;;; A pure funq may sometimes forget its past but a perfect
;;; funcq never does.
;;;
(define (perfect-funcq size base-func)
(define funcq-memo (make-hash-table size))
(lambda args
(let* ((key (cons base-func args))
(cached (hashx-ref funcq-hash funcq-assoc funcq-memo key not-found)))
(if (not (eq? cached not-found))
(begin
(funcq-buffer key)
cached)
(let ((val (apply base-func args)))
(funcq-buffer key)
(hashx-set! funcq-hash funcq-assoc funcq-memo key val)
val)))))
|