import datasets import json _NAME = 'NEREL' _CITATION = ''' @article{loukachevitch2021nerel, title={NEREL: A Russian Dataset with Nested Named Entities, Relations and Events}, author={Loukachevitch, Natalia and Artemova, Ekaterina and Batura, Tatiana and Braslavski, Pavel and Denisov, Ilia and Ivanov, Vladimir and Manandhar, Suresh and Pugachev, Alexander and Tutubalina, Elena}, journal={arXiv preprint arXiv:2108.13112}, year={2021} } '''.strip() _DESCRIPTION = 'A Russian Dataset with Nested Named Entities, Relations and Events' _HOMEPAGE = 'https://doi.org/10.48550/arXiv.2108.13112' _VERSION = '1.1.0' class NERELBuilder(datasets.GeneratorBasedBuilder): _DATA_URLS = { 'train': 'data/train.jsonl', 'test': f'data/test.jsonl', 'dev': f'data/dev.jsonl', } _ENT_TYPES_URLS = { 'ent_types': 'ent_types.jsonl' } _REL_TYPES_URLS = { 'rel_types': 'rel_types.jsonl' } VERSION = datasets.Version(_VERSION) BUILDER_CONFIGS = [ datasets.BuilderConfig('data', version=VERSION, description='Data'), datasets.BuilderConfig('ent_types', version=VERSION, description='Entity types list'), datasets.BuilderConfig('rel_types', version=VERSION, description='Relation types list') ] DEFAULT_CONFIG_NAME = 'data' def _info(self) -> datasets.DatasetInfo: if self.config.name == 'data': features = datasets.Features({ 'id': datasets.Value('int32'), 'text': datasets.Value('string'), 'entities': datasets.Sequence(datasets.Value('string')), 'relations': datasets.Sequence(datasets.Value('string')), 'links': datasets.Sequence(datasets.Value('string')) }) elif self.config.name == 'ent_types': features = datasets.Features({ 'type': datasets.Value('string'), 'link': datasets.Value('string') }) else: features = datasets.Features({ 'type': datasets.Value('string'), 'arg1': datasets.Sequence(datasets.Value('string')), 'arg2': datasets.Sequence(datasets.Value('string')), }) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION ) def _split_generators(self, dl_manager: datasets.DownloadManager): if self.config.name == 'data': files = dl_manager.download(self._DATA_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={'filepath': files['train']}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={'filepath': files['test']}, ), datasets.SplitGenerator( name='dev', gen_kwargs={'filepath': files['dev']}, ), ] elif self.config.name == 'ent_types': files = dl_manager.download(self._ENT_TYPES_URLS) return [ datasets.SplitGenerator( name='ent_types', gen_kwargs={'filepath': files['ent_types']}, ) ] else: files = dl_manager.download(self._REL_TYPES_URLS) return [ datasets.SplitGenerator( name='rel_types', gen_kwargs={'filepath': files['rel_types']}, ) ] def _generate_examples(self, filepath): with open(filepath, encoding='utf-8') as f: for i, line in enumerate(f): yield i, json.loads(line)