import json import datasets from datasets.tasks import QuestionAnsweringExtractive logger = datasets.logging.get_logger(__name__) _URL = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/pixel_values.tar.gz" _URL2 = "https://huggingface.co/datasets/jaradat/pidray-semantics/resolve/main/label.tar.gz" class pidraySemantics(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { #"text": datasets.Value("string"), "pixel_values": datasets.Image(), "label": datasets.Image(), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://huggingface.co/datasets/jaradat/pidray-semantics", ) def _split_generators(self, dl_manager): path = dl_manager.download(_URL) image_iters = dl_manager.iter_archive(path) path2 = dl_manager.download(_URL2) label_iters = dl_manager.iter_archive(path2) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters, "label": label_iters } ), ] def _generate_examples(self, images, label): idx = 0 # iterate through images for (filepath, image), (filepath2, image2) in zip(images, label): yield idx, { "pixel_values": {"path": filepath, "bytes": image.read()}, "label": {"path": filepath2, "bytes": image2.read()}, } idx += 1