""" prep_input.py This script reads in MERRA2 SLV,LND data in combination with flux station data together with HLS chips to produce a CSV with aggregate data values that can be used to train for GPP flux prediction. Author: Besart Mujeci, Srija Chakraborty, Christopher Phillips Usage: python prep_input.py """ import rclone from pathlib import Path import shutil import os import pandas as pd import netCDF4 as nc import numpy as np import pandas as pd # --- --- --- def convert_HLS_date(chip_name): """ Extracts date string from HLS tile name and returns date object Args: chip_name (string): name of hls file Returns: datetime: datetime object of time string """ hls_date = chip_name.split('.')[3][:7] year = int(hls_date[:4]) day = int(hls_date[4:]) date = datetime(year, 1, 1)+timedelta(days=day-1) return date # --- --- --- # --- --- --- Set up rclone and get chips and merra files rawdir = '' merradir = '' cfg = "" result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{rawdir}/"]) output_lines = result['out'].decode('utf-8').splitlines() file_list = [line.split(maxsplit=1)[1] for line in output_lines if line] result = rclone.with_config(cfg).run_cmd("ls", extra_args=[f"{merradir}/"]) output_lines = result['out'].decode('utf-8').splitlines() merras = [line.split(maxsplit=1)[1] for line in output_lines if line] # --- --- --- # --- --- --- Set up paths # Location of station tile list station_file = './TILED_filtered_flux_sites_2018_2021.csv' # Location to save the input file spath = './all_inputs.csv' odir = '' # --- --- --- # --- --- --- Get station information stations = {} fn = open(station_file, 'r') for line in list(fn)[1:]: dummy = line.split(',') stations[dummy[1].strip()] = (dummy[1], float(dummy[9]), float(dummy[8]), dummy[3], dummy[4]) fn.close() flux_nets = os.listdir("./fluxnets/flux_sites_2018_2021/") # --- --- --- # Locate all HLS chips chips = sorted(file_list) skipped = [] # Make the input file to which to save the data out_fn = open(spath, 'w') out_fn.write(f'Chip,Station,T2MIN,T2MAX,T2MEAN,TSMDEWMEAN,GWETROOT,LHLAND,SHLAND,SWLAND,PARDFLAND,PRECTOTLAND,GPP') # And loop over them for chip in chips: rclone.with_config(cfg).copy(f"{rawdir}/{chip}", f"./{chip}") # Match to an Ameriflux station chip_name = chip.split('/')[-1] tile = chip_name.split('.')[2][1:] station_name = chip_name.split('.')[6].split("_")[0] try: # Skip tiles for which no station exists station = stations[station_name] except: print(f"exception - {('station dict indexing', station_name, tile)}") continue date = helpers.convert_HLS_date(chip_name) # Locate station from tile and pull in the daily reference value try: # Skip tiles for which no station data is available station_file = [fluxnet for fluxnet in flux_nets if station[0] in fluxnet][0] flux_df = pd.read_csv(f"genai-usra-east/impact/fluxnets/flux_sites_2018_2021/{station_file}") except: print(f"exception - {('station exception', station_name, tile)}") continue flux_times = np.array(flux_df.TIMESTAMP, dtype='str') flux_gpp = np.array(flux_df.GPP_NT_VUT_REF) try: # Skip if cannot find CO2 data quality_flag = np.array(flux_df.NEE_VUT_REF_QC) if quality_flag[flux_times==date.strftime("%Y%m%d")][0] >= 0.6: co2 = flux_gpp[flux_times==date.strftime("%Y%m%d")][0] else: # Quality not met, skip print(f"co2 quality not met for - {('co2', station_name, tile)}") continue except: print(f"co2 quality not met for - {('co2 exception', station_name, tile)}") skipped.append(('co2 exception', station_name, tile)) continue # Pull MERRA-2 data for temperature and dew merra_file = [file for file in merras if "slv" in file and str(date.strftime("%Y%m%d")) in file][0] rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/") merra_fn = nc.Dataset(f'./merra/{merra_file}') # Pull in the MERRA-2 grid and find closest point mlons = merra_fn.variables['lon'][:] mlats = merra_fn.variables['lat'][:] xind = np.argmin((mlons-station[1])**2) yind = np.argmin((mlats-station[2])**2) # Read the variables and collect stats based on time dimension tmax = np.max(merra_fn.variables['T2M'], keepdims=True, axis=0) tmin = np.min(merra_fn.variables['T2M'], keepdims=True, axis=0) tmean = np.nanmean(merra_fn.variables['T2M'][:,yind, xind]) tmax = tmax[0,yind,xind] tmin = tmin[0,yind,xind] tdewmean = np.nanmean(merra_fn.variables['T2MDEW'][:,yind, xind]) shutil.rmtree(Path(f"./merra")) # Pull MERRA-2 data for surface data merra_file = [file for file in merras if "lnd" in file and str(date.strftime("%Y%m%d")) in file][0] rclone.with_config(cfg).copy(f"{merradir}/{merra_file}", f"./merra/") merra_fn = nc.Dataset(f'./merra/{merra_file}') # Pull in the MERRA-2 grid and find closest point mlons = merra_fn.variables['lon'][:] mlats = merra_fn.variables['lat'][:] xind = np.argmin((mlons-station[1])**2) yind = np.argmin((mlats-station[2])**2) # Read the variables and collect stats based on time dimension GWETROOT = np.nanmean(merra_fn.variables['GWETROOT'][:,yind,xind]) LHLAND = np.nanmean(merra_fn.variables['LHLAND'][:,yind,xind]) SHLAND = np.nanmean(merra_fn.variables['SHLAND'][:,yind,xind]) PARDFLAND = np.nanmean(merra_fn.variables['PARDFLAND'][:,yind,xind]) PRECTOTLAND = np.nanmean(merra_fn.variables['PRECTOTLAND'][:,yind,xind]) SWLAND = np.nanmean(merra_fn.variables['SWLAND'][:,yind,xind]) shutil.rmtree(Path(f"./merra")) shutil.rmtree(Path(f"./{tile}")) # Save chip name, MERRA-2 values, and Ameriflux measurement to data file out_fn.write(f'\n{chip_name},{station[0]},{tmin:.2f},{tmax:.2f},{tmean:.2f},{tdewmean:.2f},{GWETROOT:.2f},{LHLAND:.2f},{SHLAND:.2f},{SWLAND:.2f},{PARDFLAND:2f},{PRECTOTLAND:2f},{co2}') # Close the file out_fn.close() rclone.with_config(cfg).copy(f"{spath}", f"{odir}") print("DONE")