--- dataset_info: features: - name: answer dtype: string - name: question dtype: string - name: context dtype: string - name: input_ids sequence: int32 - name: labels sequence: int64 splits: - name: train num_bytes: 788165403 num_examples: 118695 - name: test num_bytes: 98388509 num_examples: 14835 - name: validation num_bytes: 98339161 num_examples: 14838 download_size: 45704542 dataset_size: 984893073 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - split: validation path: data/validation-* --- Dataset used for training text to sql. I've pre-tokenized this for faster loading. Here is the prompt formation for the tokenizer code: ``` def tokenize_function(example): start_prompt = "Tables:\n" middle_prompt = "\n\nQuestion:\n" end_prompt = "\n\nAnswer:\n" data_zip = zip(example['context'], example['question']) prompt = [start_prompt + context + middle_prompt + question + end_prompt for context, question in data_zip] example['input_ids'] = tokenizer(prompt, padding="max_length", truncation=True, return_tensors="pt").input_ids example['labels'] = tokenizer(example['answer'], padding="max_length", truncation=True, return_tensors="pt").input_ids # print(prompt[0]) # print() return example ```