import argparse from pathlib import Path import torchvision.transforms.functional as TF from PIL import Image from tqdm import tqdm if __name__ == "__main__": # Create argument parser parser = argparse.ArgumentParser(description="Assemble renders.") parser.add_argument("--source_dir", required=True, help="Directory where the dataset is stored.") args = parser.parse_args() source_dir = Path(args.source_dir) # Find all materials for render_dir in tqdm([x for x in source_dir.glob("**/renders/")]): passes_dir = render_dir/"passes" num_renders = len(list(passes_dir.glob("*diffuse.png"))) for i in range(num_renders): diff_path = passes_dir/f"render_{i:02d}_diffuse.png" glossy_path = passes_dir/f"render_{i:02d}_glossy.png" full_path = render_dir/f"render_{i:02d}.png" diffuse = TF.to_tensor(Image.open(diff_path)) glossy = TF.to_tensor(Image.open(glossy_path)) diffuse = TF.adjust_gamma(diffuse, 2.2) glossy = TF.adjust_gamma(glossy, 2.2) render = diffuse + glossy render = TF.adjust_gamma(render, 1/2.2) render = TF.to_pil_image(render) render.save(full_path)