from datasets import load_dataset import argparse from pathlib import Path import json def process_batch(examples): return examples if __name__ == "__main__": # Create argument parser parser = argparse.ArgumentParser(description="Download dataset.") parser.add_argument("--base_dir", required=True, help="Directory to save the downloaded files.") args = parser.parse_args() base_dir = Path(args.base_dir) base_dir.mkdir(exist_ok=True, parents=True) # Load dataset ds = load_dataset( "gvecchio/MatSynth", streaming=True, ) # Setup dummy processing ds = ds.map(process_batch, batched=False, batch_size=1) for split in ds: for item in ds[split]: name = item["name"] dest_dir = base_dir / split / item["metadata"]["category"] / name dest_dir.mkdir(exist_ok=True, parents=True) # Save metadata with open(dest_dir / "metadata.json", "w") as f: item["metadata"]["physical_size"] = str( item["metadata"]["physical_size"] ) json.dump(item["metadata"], f, indent=4) # Save images item["basecolor"].save(dest_dir / "basecolor.png") item["diffuse"].save(dest_dir / "diffuse.png") item["displacement"].save(dest_dir / "displacement.png") item["specular"].save(dest_dir / "specular.png") item["height"].save(dest_dir / "height.png") item["metallic"].save(dest_dir / "metallic.png") item["normal"].save(dest_dir / "normal.png") item["opacity"].save(dest_dir / "opacity.png") item["roughness"].save(dest_dir / "roughness.png") if item["blend_mask"] is not None: item["blend_mask"].save(dest_dir / "blend_mask.png")