Update scripts/download_dataset.py
Browse files- scripts/download_dataset.py +43 -31
scripts/download_dataset.py
CHANGED
@@ -1,41 +1,53 @@
|
|
|
|
1 |
import argparse
|
2 |
-
import requests
|
3 |
from pathlib import Path
|
|
|
4 |
|
5 |
-
classlist = ["Blends", "Ceramic", "Concrete", "Fabric", "Leather", "Marble", "Metal", "Misc", "Plaster", "Plastic", "Stone", "Terracotta", "Wood"]
|
6 |
|
7 |
-
def
|
8 |
-
|
9 |
-
r.raise_for_status()
|
10 |
-
with open(dest_file, "wb") as f:
|
11 |
-
for chunk in r.iter_content(chunk_size=8192):
|
12 |
-
f.write(chunk)
|
13 |
|
14 |
-
def download_dataset(base_dir, class_names=None):
|
15 |
-
dset_url = "https://huggingface.co/datasets/gvecchio/MatSynth/resolve/main/maps"
|
16 |
|
17 |
-
classes = class_names.split(",") if class_names else classlist
|
18 |
-
if classes:
|
19 |
-
for split in ["train", "test"]:
|
20 |
-
dest_dir = base_dir/split
|
21 |
-
dest_dir.mkdir(parents=True, exist_ok=True)
|
22 |
-
|
23 |
-
for class_name in classes:
|
24 |
-
req = f"{dset_url}/{split}/{class_name}.zip"
|
25 |
-
download_stream(req, dest_dir/(class_name + ".zip"))
|
26 |
-
|
27 |
-
if class_name in ["Ground", "Wood"] and split == "train":
|
28 |
-
req = f"{dset_url}/{split}/{class_name}.z01"
|
29 |
-
download_stream(req, dest_dir/(class_name + ".z01"))
|
30 |
-
|
31 |
if __name__ == "__main__":
|
32 |
# Create argument parser
|
33 |
-
parser = argparse.ArgumentParser(description="Download dataset
|
34 |
-
parser.add_argument("--base_dir", required=True, help="
|
35 |
-
parser.add_argument("--class_names", help="Specify the class name to download a specific category.")
|
36 |
args = parser.parse_args()
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
import argparse
|
|
|
3 |
from pathlib import Path
|
4 |
+
import json
|
5 |
|
|
|
6 |
|
7 |
+
def process_batch(examples):
|
8 |
+
return examples
|
|
|
|
|
|
|
|
|
9 |
|
|
|
|
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
if __name__ == "__main__":
|
12 |
# Create argument parser
|
13 |
+
parser = argparse.ArgumentParser(description="Download dataset.")
|
14 |
+
parser.add_argument("--base_dir", required=True, help="Directory to save the downloaded files.")
|
|
|
15 |
args = parser.parse_args()
|
16 |
|
17 |
+
base_dir = Path(args.base_dir)
|
18 |
+
base_dir.mkdir(exist_ok=True, parents=True)
|
19 |
+
|
20 |
+
# Load dataset
|
21 |
+
ds = load_dataset(
|
22 |
+
"gvecchio/MatSynth",
|
23 |
+
streaming=True,
|
24 |
+
)
|
25 |
+
|
26 |
+
# Setup dummy processing
|
27 |
+
ds = ds.map(process_batch, batched=False, batch_size=1)
|
28 |
+
|
29 |
+
for split in ds:
|
30 |
+
for item in ds[split]:
|
31 |
+
name = item["name"]
|
32 |
+
dest_dir = base_dir / split / item["metadata"]["category"] / name
|
33 |
+
dest_dir.mkdir(exist_ok=True, parents=True)
|
34 |
+
|
35 |
+
# Save metadata
|
36 |
+
with open(dest_dir / "metadata.json", "w") as f:
|
37 |
+
item["metadata"]["physical_size"] = str(
|
38 |
+
item["metadata"]["physical_size"]
|
39 |
+
)
|
40 |
+
json.dump(item["metadata"], f, indent=4)
|
41 |
+
|
42 |
+
# Save images
|
43 |
+
item["basecolor"].save(dest_dir / "basecolor.png")
|
44 |
+
item["diffuse"].save(dest_dir / "diffuse.png")
|
45 |
+
item["displacement"].save(dest_dir / "displacement.png")
|
46 |
+
item["specular"].save(dest_dir / "specular.png")
|
47 |
+
item["height"].save(dest_dir / "height.png")
|
48 |
+
item["metallic"].save(dest_dir / "metallic.png")
|
49 |
+
item["normal"].save(dest_dir / "normal.png")
|
50 |
+
item["opacity"].save(dest_dir / "opacity.png")
|
51 |
+
item["roughness"].save(dest_dir / "roughness.png")
|
52 |
+
if item["blend_mask"] is not None:
|
53 |
+
item["blend_mask"].save(dest_dir / "blend_mask.png")
|