# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # TODO: Address all TODOs and remove all explanatory comments import csv import json import os import datasets _CITATION = """""" _DESCRIPTION = """This new dataset is designed to measure Language Models abstractness and inclusiveness understanding in Italian.""" _HOMEPAGE = "" _LICENSE = "CC BY 4.0" _URLS = { "abs": "https://raw.githubusercontent.com/aramelior/ABRICOT-ABstRactness-and-Inclusiveness-in-COntexT/main/dataset_it.csv" } class abricot(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("0.1.0") BUILDER_CONFIGS = [ datasets.BuilderConfig(name="abs", version=VERSION, description="Abstraction assessment"), # datasets.BuilderConfig(name="ita", version=VERSION, description="Italian Understanding"), ] DEFAULT_CONFIG_NAME = "abs" def _info(self): if self.config.name == "abs": features = datasets.Features( # TODO: add after the image col is there "immagine": datasets.Value("string"), { "ID": datasets.Value("string"), "domain": datasets.Value("string"), "begin": datasets.Value("int64"), "end": datasets.Value("int64"), "text": datasets.Value("string"), "target_token": datasets.Value("string"), "target_lemma": datasets.Value("string"), "inc_mean": datasets.Value("float"), "inc_std": datasets.Value("float"), "abs_mean": datasets.Value("float"), "abs_std": datasets.Value("float"), "target_number": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls = _URLS[self.config.name] # data_dir = dl_manager.extract(urls) # if self.config.name == "abs": # data_file = "dataset_it.csv" data_file = dl_manager.download(urls) return [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepath": data_file, "split": "val", }, ), ] def _generate_examples(self, filepath, split): ds = datasets.load_dataset("csv", data_files=filepath)["train"] for key, row in enumerate(ds): # data = json.loads(row) if self.config.name == "abs": # Yields examples as (key, example) tuples out = { "ID": row["ID"], "domain": row["domain"], "begin": row["begin"], "end": row["end"], "text": row["text"], "target_token": row["target_token"], "target_lemma": row["target_lemma"], "inc_mean": row["inc_mean"], "inc_std": row["inc_std"], "abs_mean": row["abs_mean"], "abs_std": row["abs_std"], "target_number": row["target_number"], } yield key, out