## Adapted from https://github.com/maxwbuckley/r2ltokenizing/blob/main/llmarithmetic.py; with modifications import random from datasets import ( BuilderConfig, SplitGenerator, GeneratorBasedBuilder, DatasetInfo, Value, Features, ) from decimal import Decimal import yaml SEED = 42 TEST_SIZE = 0.2 DIVISION_RESULT_MULTIPLIER = 4 FLOAT_FLOAT_PROBLEM_PROPORTION = 0.3 _CITATION = """\ @misc{lee2024arithmeticproblemsdataset, title = {Arithmetic Problems}, author={Garreth Lee}, year={2024} } """ class Operator: ADD = "+" SUBTRACT = "-" MULTIPLY = "*" DIVIDE = "/" OPERATORS = [ADD, SUBTRACT, MULTIPLY, DIVIDE] @classmethod def is_operator(cls, value): return value in cls.OPERATORS @classmethod def operator_to_name(cls, value): if value == cls.ADD: return "add" elif value == cls.SUBTRACT: return "subtract" elif value == cls.MULTIPLY: return "multiply" elif value == cls.DIVIDE: return "divide" else: raise ValueError(f"Invalid operator: {value}") class OperationType: INT_INT = [False, False] INT_FLOAT = [True, False] FLOAT_FLOAT = [True, True] class ArithmeticProblemsConfig(BuilderConfig): def __init__( self, name: str, num_problems: int, min_exponent: int, max_exponent: int, max_rounding_precision: int, with_carry: bool, use_commas: bool = False, **kwargs, ): super().__init__(name=name) self.num_problems = num_problems self.min_exponent = min_exponent self.max_exponent = max_exponent self.max_rounding_precision = max_rounding_precision self.use_commas = use_commas self.with_carry = with_carry self.kwargs = kwargs class ArithmeticProblemsDataset(GeneratorBasedBuilder): BUILDER_CONFIG_CLASS = ArithmeticProblemsConfig FLOAT_ANSWER_ROUNDING_PRECISION = 4 BUILDER_CONFIGS = [ ArithmeticProblemsConfig( name=f"{i}-digit{'-with-carry' if with_carry else ''}", num_problems=5000, min_exponent=i-1, max_exponent=i, max_rounding_precision=max(i-1, 10), with_carry=with_carry, ) for i in range(1, 21) for with_carry in [False, True] ] VERSION = "1.0.0" def _info(self): return DatasetInfo( description="Generate arithmetic problems for use in math tokenization", features=Features( { "question": Value("string"), "answer": Value("string"), "operator": Value("string"), } ), citation=_CITATION, ) def _generate_number( self, min_val: int, max_val: int, is_float: bool, max_rounding_precision: int ) -> float | int: """ Generates a random number within a specified range, either as an integer or float. Args: min_val: The minimum value of the range. max_val: The maximum value of the range. is_float: If true, generates a float max_rounding_precision: The maximum precision to use when rounding the number. Returns: A random number within the specified range, either as an int or a float. """ if is_float: # Round to a random precision between 0 and max_rounding_precision return round( random.uniform(min_val, max_val), random.choice(range(1, max_rounding_precision + 1)), ) else: return random.randint(min_val, max_val) def _format_number(self, number: int | float, use_commas: bool = False) -> str: """ Rounds a number to a specified precision, and then formats it as a string. Args: number: The number to be formatted. use_commas: Whether to include commas as thousand separators. Returns: A string representation of the input number, rounded to the specified precision. """ if use_commas: return "{:,}".format(number) else: return str(number) def _construct_equation( self, operand1: int | float, operand2: int | float, operator: str, use_commas: bool = False, ) -> str: """Helper function for constructing the string equations.""" return "%s %s %s = " % ( self._format_number(operand1, use_commas), operator, self._format_number(operand2, use_commas), ) def create_question_answer_pair( self, min_value: int, max_value: int, operator: str, use_commas: bool, operation_type: list[bool], with_carry: bool, max_rounding_precision: int | None, ) -> dict[str, str]: """Creates a random question and correct answer pair. Args: min_value: The lowest possible random value. max_value: The highest possible random value. include_decimals: Whether to include float numbers in the generated problems. operator: The mathematical operator to use. use_commas: Whether to use commas to separate numbers right-to-left. Returns: A dictionary containing the equation string and the expected answer. """ if not Operator.is_operator(operator): raise ValueError(f"Invalid operator: {operator}") is_float1, is_float2 = operation_type operand1 = self._generate_number( min_val=min_value, max_val=max_value, is_float=is_float1, max_rounding_precision=max_rounding_precision, ) if with_carry: # for testing addition operand2 = self._generate_number( min_val=min_value, max_val=max_value - operand1 - 1, is_float=is_float2, max_rounding_precision=max_rounding_precision, ) if operator == Operator.SUBTRACT: result = operand1 - operand2 elif operator == Operator.ADD: result = operand1 + operand2 elif operator == Operator.MULTIPLY: result = operand1 * operand2 else: # this prevents a lot of "0" answers from being generated if operand1 < operand2 or random.random() < 0.01: operand1, operand2 = operand2, operand1 if operation_type == OperationType.INT_INT: tmp = operand1 / operand2 # we scale the temp result up to prevent a lot of "small divisions" if tmp < 10: tmp *= DIVISION_RESULT_MULTIPLIER if max_value > 999: tmp *= random.randint(2, 4) # prevents zero division operand1 = int(round(tmp)) * operand2 result = int(operand1 / operand2) elif operation_type == OperationType.INT_FLOAT: operand2 = int(operand2) tmp = round( operand1 / operand2, random.randint(1, max_rounding_precision), ) # we scale the temp result up to prevent a lot of "small divisions" if tmp < 10: tmp = float( Decimal(str(tmp)) * Decimal(str(DIVISION_RESULT_MULTIPLIER)) ) # deals with Python's decimal multiplication precision issue operand1 = float(Decimal(str(tmp)) * Decimal(str(operand2))) result = tmp else: tmp = round( operand1 / operand2, random.randint(1, max_rounding_precision) ) # we scale the temp result up to prevent a lot of "small divisions" if tmp < 10: tmp = float( Decimal(str(tmp)) * Decimal(str(DIVISION_RESULT_MULTIPLIER)) ) # deals with Python's decimal multiplication precision issue operand1 = float(Decimal(str(tmp)) * Decimal(str(operand2))) result = tmp result = round(result, self.FLOAT_ANSWER_ROUNDING_PRECISION) question = self._construct_equation( operand1=operand1, operand2=operand2, operator=operator, use_commas=use_commas, ) answer = self._format_number(result, use_commas) return {"question": question, "answer": answer, "operator": operator} def _split_generators(self, dl_manager, **kwargs) -> list[SplitGenerator]: generators = [] for operator in Operator.OPERATORS: # Create separate splits for each type of number for type in ("int", "float"): split_name = f"{type}_{Operator.operator_to_name(operator)}" train_generator = SplitGenerator( name=split_name + "_train", gen_kwargs={ "num_problems": int(self.config.num_problems * (1 - TEST_SIZE)), "min_value": 10**self.config.min_exponent, "max_value": 10**self.config.max_exponent, "max_rounding_precision": self.config.max_rounding_precision if type == "float" else None, "use_commas": self.config.use_commas, "operator": operator, "with_carry": self.config.with_carry, }, ) test_generator = SplitGenerator( name=split_name + "_test", gen_kwargs={ "num_problems": int(self.config.num_problems * TEST_SIZE), "min_value": 10**self.config.min_exponent, "max_value": 10**self.config.max_exponent, "max_rounding_precision": self.config.max_rounding_precision if type == "float" else None, "use_commas": self.config.use_commas, "operator": operator, "with_carry": self.config.with_carry, }, ) generators.append(train_generator) generators.append(test_generator) return generators def _generate_examples( self, num_problems, min_value, max_value, max_rounding_precision, use_commas, operator, with_carry, ): def _get_operation_type(current_idx: int): # If max_rounding_precision is None, generate only integer problems """ Determines the type of operation (integer-integer, float-float, or integer-float) to generate based on the current index and the proportion of float problems. Args: current_idx: The current index of the problem being generated. num_problems: The total number of problems to generate. max_rounding_precision: The maximum rounding precision to use when generating float problems. Returns: An OperationType indicating the type of operation to generate. """ if max_rounding_precision is None: return OperationType.INT_INT # Otherwise, if the current index is less than the float problem proportion, elif current_idx < num_problems * FLOAT_FLOAT_PROBLEM_PROPORTION: return OperationType.FLOAT_FLOAT else: return OperationType.INT_FLOAT random.seed(SEED) for i in range(num_problems): yield ( str(i), self.create_question_answer_pair( min_value=min_value, max_value=max_value, operator=operator, use_commas=use_commas, operation_type=_get_operation_type(i), with_carry=with_carry, max_rounding_precision=max_rounding_precision, ), )