test / test.py
frtna's picture
modify
1b223f6
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""TODO: Add a description here."""
import csv
import json
import os
import sys
import datasets
import yaml
with open("config.yml", "r") as ymlfile:
cfg = yaml.safe_load(ymlfile)
print('description : ', cfg['citation'])
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = cfg['citation']
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = cfg['desc']
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = cfg['homepage']
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = cfg['licence']
# TODO: Add link to the official dataset URLs here
# The HuggingFace dataset library don't host the datasets but only point to the original files
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
# url = "https://drive.google.com/drive/folders/1Jvvddj0abp9rMAGhqXqpPbE8-Y28iyM3?usp=sharing"
_URLs = {
"train": cfg['data']['train'],#"train_.json",#"https://drive.google.com/uc?export=download&id=1-0r83eGwRfmfVAEtdyiregvneJ81ev1N",
"validation": cfg['data']['validation'],#"validation_.json",#"https://drive.google.com/uc?export=download&id=1-0zTW12OKIPrH3Zmad6tvSte7bA8O4RR",
"test": cfg['data']['test']#"test_.json"#"https://drive.google.com/uc?export=download&id=1-2U6BeDluJxIieMA6JTjLoij_KcMhl4Y"
}
# print(cfg['translation_fesat'])
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
class NewDataset(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version(cfg['version'])
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(name=cfg['dataset_name'], version=VERSION, description=cfg['desc'])
]
# DEFAULT_CONFIG_NAME = "opus_books_es_it" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
# if self.config.name == "opus_books_es_it": # This is the name of the configuration selected in BUILDER_CONFIGS above
features=datasets.Features({"translation": datasets.features.Translation(languages=("Spanish", "Italian"))})
# features=datasets.Features({cfg["title"]: datasets.features.Translation(languages=(cfg["col1"], cfg{"col2"}))})
# features = datasets.Features(
# {
# "Spanish": datasets.Value("string"),
# "Italian": datasets.Value("string")
# # These are the features of your dataset like images, labels ...
# }
# )
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
dl_path = dl_manager.download_and_extract(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": dl_path['train'],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": dl_path['test'],
"split": "test"
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": dl_path['validation'],
"split": "validation",
},
),
]
def _generate_examples(
self, filepath, split # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
):
""" Yields examples as (key, example) tuples. """
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is here for legacy reason (tfds) and is not important in itself.
with open(filepath, encoding="utf-8") as f:
for id_, line in enumerate(f):
data = json.loads(line)
yield id_, {
"translation":{"Spanish": data["Spanish"],
"Italian": data["Italian"]#"" if split == "test" else data["Italian"],
}
}
# '''