--- license: apache-2.0 configs: - config_name: places data_files: release/dt=2025-01-10/places/parquet/*.parquet default: true - config_name: categories data_files: release/dt=2025-01-10/categories/parquet/*.parquet --- # Access FSQ OS Places With Foursquare’s Open Source Places, you can access free data to accelerate geospatial innovation and insights. View the [Places OS Data Schemas](https://docs.foursquare.com/data-products/docs/places-os-data-schema) for a full list of available attributes. ## Prerequisites In order to access Foursquare's Open Source Places data, it is recommended to use Spark. Here is how to load the Places data in Spark from Hugging Face. - For Spark 3, you can use the `read_parquet` helper function from the [HF Spark documentation](https://huggingface.co/docs/hub/datasets-spark). It provides an easy API to load a Spark Dataframe from Hugging Face, without having to download the full dataset locally: ```python places = read_parquet("hf://datasets/foursquare/fsq-os-places/release/dt=2025-01-10/places/parquet/*.parquet") ``` - For Spark 4, there will be an official Hugging Face Spark data source available. Alternatively you can download the following files to your local disk or cluster: - Parquet Files: - **Places** - [release/dt=2025-01-10/places/parquet](https://huggingface.co/datasets/foursquare/fsq-os-places/tree/main/release/dt%3D2025-01-10/places/parquet) - **Categories** - [release/dt=2025-01-10/categories/parquet](https://huggingface.co/datasets/foursquare/fsq-os-places/tree/main/release/dt%3D2025-01-10/categories/parquet) Hugging Face provides the following [download options](https://huggingface.co/docs/hub/datasets-downloading). ## Example Queries The following are examples on how to query FSQ Open Source Places using Athena and Spark: - Filter [Categories](https://docs.foursquare.com/data-products/docs/categories#places-open-source--propremium-flat-file) by the parent level - Filter out [non-commercial venues](#non-commercial-categories-table) - Find open and recently active POI ### Filter by Parent Level Category **SparkSQL** ```sql SparkSQL WITH places_exploded_categories AS ( -- Unnest categories array SELECT fsq_place_id, name, explode(fsq_category_ids) as fsq_category_id FROM places ), distinct_places AS ( SELECT DISTINCT(fsq_place_id) -- Get distinct ids to reduce duplicates from explode function FROM places_exploded_categories p JOIN categories c -- Join to categories to filter on Level 2 Category ON p.fsq_category_id = c.category_id WHERE c.level2_category_id = '4d4b7105d754a06374d81259' -- Restaurants ) SELECT * FROM places WHERE fsq_place_id IN (SELECT fsq_place_id FROM distinct_places) ``` ### Filter out Non-Commercial Categories **SparkSQL** ```sql SparkSQL SELECT * FROM places WHERE arrays_overlap(fsq_category_ids, array('4bf58dd8d48988d1f0931735', -- Airport Gate '62d587aeda6648532de2b88c', -- Beer Festival '4bf58dd8d48988d12b951735', -- Bus Line '52f2ab2ebcbc57f1066b8b3b', -- Christmas Market '50aa9e094b90af0d42d5de0d', -- City '5267e4d9e4b0ec79466e48c6', -- Conference '5267e4d9e4b0ec79466e48c9', -- Convention '530e33ccbcbc57f1066bbff7', -- Country '5345731ebcbc57f1066c39b2', -- County '63be6904847c3692a84b9bb7', -- Entertainment Event '4d4b7105d754a06373d81259', -- Event '5267e4d9e4b0ec79466e48c7', -- Festival '4bf58dd8d48988d132951735', -- Hotel Pool '52f2ab2ebcbc57f1066b8b4c', -- Intersection '50aaa4314b90af0d42d5de10', -- Island '58daa1558bbb0b01f18ec1fa', -- Line '63be6904847c3692a84b9bb8', -- Marketplace '4f2a23984b9023bd5841ed2c', -- Moving Target '5267e4d9e4b0ec79466e48d1', -- Music Festival '4f2a25ac4b909258e854f55f', -- Neighborhood '5267e4d9e4b0ec79466e48c8', -- Other Event '52741d85e4b0d5d1e3c6a6d9', -- Parade '4bf58dd8d48988d1f7931735', -- Plane '4f4531504b9074f6e4fb0102', -- Platform '4cae28ecbf23941eb1190695', -- Polling Place '4bf58dd8d48988d1f9931735', -- Road '5bae9231bedf3950379f89c5', -- Sporting Event '530e33ccbcbc57f1066bbff8', -- State '530e33ccbcbc57f1066bbfe4', -- States and Municipalities '52f2ab2ebcbc57f1066b8b54', -- Stoop Sale '5267e4d8e4b0ec79466e48c5', -- Street Fair '53e0feef498e5aac066fd8a9', -- Street Food Gathering '4bf58dd8d48988d130951735', -- Taxi '530e33ccbcbc57f1066bbff3', -- Town '5bae9231bedf3950379f89c3', -- Trade Fair '4bf58dd8d48988d12a951735', -- Train '52e81612bcbc57f1066b7a24', -- Tree '530e33ccbcbc57f1066bbff9', -- Village )) = false ``` ### Find Open and Recently Active POI **SparkSQL** ```sql SparkSQL SELECT * FROM places p WHERE p.date_closed IS NULL AND p.date_refreshed >= DATE_SUB(current_date(), 365); ``` ## Appendix ### Non-Commercial Categories Table | Category Name | Category ID | | :------------------------ | :----------------------- | | Airport Gate | 4bf58dd8d48988d1f0931735 | | Beer Festival | 62d587aeda6648532de2b88c | | Bus Line | 4bf58dd8d48988d12b951735 | | Christmas Market | 52f2ab2ebcbc57f1066b8b3b | | City | 50aa9e094b90af0d42d5de0d | | Conference | 5267e4d9e4b0ec79466e48c6 | | Convention | 5267e4d9e4b0ec79466e48c9 | | Country | 530e33ccbcbc57f1066bbff7 | | County | 5345731ebcbc57f1066c39b2 | | Entertainment Event | 63be6904847c3692a84b9bb7 | | Event | 4d4b7105d754a06373d81259 | | Festival | 5267e4d9e4b0ec79466e48c7 | | Hotel Pool | 4bf58dd8d48988d132951735 | | Intersection | 52f2ab2ebcbc57f1066b8b4c | | Island | 50aaa4314b90af0d42d5de10 | | Line | 58daa1558bbb0b01f18ec1fa | | Marketplace | 63be6904847c3692a84b9bb8 | | Moving Target | 4f2a23984b9023bd5841ed2c | | Music Festival | 5267e4d9e4b0ec79466e48d1 | | Neighborhood | 4f2a25ac4b909258e854f55f | | Other Event | 5267e4d9e4b0ec79466e48c8 | | Parade | 52741d85e4b0d5d1e3c6a6d9 | | Plane | 4bf58dd8d48988d1f7931735 | | Platform | 4f4531504b9074f6e4fb0102 | | Polling Place | 4cae28ecbf23941eb1190695 | | Road | 4bf58dd8d48988d1f9931735 | | State | 530e33ccbcbc57f1066bbff8 | | States and Municipalities | 530e33ccbcbc57f1066bbfe4 | | Stopp Sale | 52f2ab2ebcbc57f1066b8b54 | | Street Fair | 5267e4d8e4b0ec79466e48c5 | | Street Food Gathering | 53e0feef498e5aac066fd8a9 | | Taxi | 4bf58dd8d48988d130951735 | | Town | 530e33ccbcbc57f1066bbff3 | | Trade Fair | 5bae9231bedf3950379f89c3 | | Train | 4bf58dd8d48988d12a951735 | | Tree | 52e81612bcbc57f1066b7a24 | | Village | 530e33ccbcbc57f1066bbff9 |