# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """TODO: Add a description here.""" import os import datasets logger = datasets.logging.get_logger(__name__) # TODO: Add BibTeX citation # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings@article{DBLP:journals/corr/SahinTYES17, author = {H. Bahadir Sahin and Caglar Tirkaz and Eray Yildiz and Mustafa Tolga Eren and Omer Ozan Sonmez}, title = {Automatically Annotated Turkish Corpus for Named Entity Recognition and Text Categorization using Large-Scale Gazetteers}, journal = {CoRR}, volume = {abs/1702.02363}, year = {2017}, url = {http://arxiv.org/abs/1702.02363}, archivePrefix = {arXiv}, eprint = {1702.02363}, timestamp = {Mon, 13 Aug 2018 16:46:36 +0200}, biburl = {https://dblp.org/rec/journals/corr/SahinTYES17.bib}, bibsource = {dblp computer science bibliography, https://dblp.org} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ Turkish Wikipedia Named-Entity Recognition and Text Categorization (TWNERTC) dataset is a collection of automatically categorized and annotated sentences obtained from Wikipedia. The authors constructed large-scale gazetteers by using a graph crawler algorithm to extract relevant entity and domain information from a semantic knowledge base, Freebase. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 77 different domains. """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://data.mendeley.com/datasets/cdcztymf4k/1" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "Creative Commons Attribution 4.0 International" _URL = "https://data.mendeley.com/public-files/datasets/cdcztymf4k/files/5557ef78-7d53-4a01-8241-3173c47bbe10/file_downloaded" _FILE_NAME_ZIP = "TWNERTC_TC_Coarse Grained NER_DomainIndependent_NoiseReduction.zip" _FILE_NAME = "TWNERTC_TC_Coarse Grained NER_DomainIndependent_NoiseReduction.DUMP" class TurkishNER(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "tokens": datasets.Sequence(datasets.Value("string")), "domain": datasets.ClassLabel( names=[ "architecture", "basketball", "book", "business", "education", "fictional_universe", "film", "food", "geography", "government", "law", "location", "military", "music", "opera", "organization", "people", "religion", "royalty", "soccer", "sports", "theater", "time", "travel", "tv", ] ), "ner_tags": datasets.Sequence( datasets.features.ClassLabel( names=[ "O", "B-PERSON", "I-PERSON", "B-ORGANIZATION", "I-ORGANIZATION", "B-LOCATION", "I-LOCATION", "B-MISC", "I-MISC", ] ) ), } ), supervised_keys=None, # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" data_dir = dl_manager.extract(os.path.join(dl_manager.download_and_extract(_URL), _FILE_NAME_ZIP)) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": (os.path.join(data_dir, _FILE_NAME)), "split": "train", }, ), ] def _generate_examples(self, filepath, split): """ Yields examples. """ logger.info("⏳ Generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: id_ = -1 for line in f: if line == "" or line == "\n": continue else: splits = line.split("\t") id_ += 1 yield id_, { "id": str(id_), "domain": splits[0], "tokens": splits[2].split(" "), "ner_tags": splits[1].split(" "), }