"""FROM SQUAD_V2""" import json import datasets from datasets.tasks import QuestionAnsweringExtractive # TODO(squad_v2): BibTeX citation _CITATION = """\ Tuora, R., Zawadzka-Paluektau, N., Klamra, C., Zwierzchowska, A., Kobyliński, Ł. (2022). Towards a Polish Question Answering Dataset (PoQuAD). In: Tseng, YH., Katsurai, M., Nguyen, H.N. (eds) From Born-Physical to Born-Virtual: Augmenting Intelligence in Digital Libraries. ICADL 2022. Lecture Notes in Computer Science, vol 13636. Springer, Cham. https://doi.org/10.1007/978-3-031-21756-2_16 """ _DESCRIPTION = """\ PoQuaD description """ _URLS = { "train": "poquad-train.json", "dev": "poquad-dev.json", } class SquadV2Config(datasets.BuilderConfig): """BuilderConfig for SQUAD.""" def __init__(self, **kwargs): """BuilderConfig for SQUADV2. Args: **kwargs: keyword arguments forwarded to super. """ super(SquadV2Config, self).__init__(**kwargs) class SquadV2(datasets.GeneratorBasedBuilder): """TODO(squad_v2): Short description of my dataset.""" # TODO(squad_v2): Set up version. BUILDER_CONFIGS = [ SquadV2Config(name="poquad", version=datasets.Version("1.0.0"), description="PoQuaD plaint text"), ] def _info(self): # TODO(squad_v2): Specifies the datasets.DatasetInfo object return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # datasets.features.FeatureConnectors features=datasets.Features( { "idX": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "question": datasets.Value("string"), "answers": datasets.features.Sequence( { "text": datasets.Value("string"), "answer_start": datasets.Value("int32"), } ), # These are the features of your dataset like images, labels ... } ), # If there's a common (input, target) tuple from the features, # specify them here. They'll be used if as_supervised=True in # builder.as_dataset. supervised_keys=None, # Homepage of the dataset for documentation homepage="https://rajpurkar.github.io/SQuAD-explorer/", citation=_CITATION, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" # TODO(squad_v2): Downloads the data and defines the splits # dl_manager is a datasets.download.DownloadManager that can be used to # download and extract URLs urls_to_download = _URLS downloaded_files = dl_manager.download_and_extract(urls_to_download) return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), ] def _generate_examples(self, filepath): """Yields examples.""" # TODO(squad_v2): Yields (key, example) tuples from the dataset with open(filepath, encoding="utf-8") as f: squad = json.load(f) id_ = 0 for example in squad["data"]: title = example.get("title", "") # paragraph_id = example["id"] for paragraph in example["paragraphs"]: context = paragraph["context"] # do not strip leading blank spaces GH-2585 for qa in paragraph["qas"]: question = qa["question"] if "answers" in qa: answers_key="answers" elif "plausible_answers" in qa: answers_key="plausible_answers" else: raise ValueError answer_starts = [answer["answer_start"] for answer in qa[answers_key]] #answer_ends = [answer["answer_end"] for answer in qa["answers"]] answers = [answer["text"] for answer in qa[answers_key]] generative_answers = [answer["generative_answer"] for answer in qa[answers_key]] is_impossible = qa["is_impossible"] # Features currently used are "context", "question", and "answers". # Others are extracted here for the ease of future expansions. id_ += 1 yield str(id_), { "idY": str(id_), "title": title, "context": context, "question": question, "is_impossible" : is_impossible, # "paragraph_id": paragraph_id, "answers": { "answer_start": answer_starts, #"answer_end": answer_ends, "text": answers, "generative_answer": generative_answers }, }