# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """SQUAD: The Stanford Question Answering Dataset.""" import json import datasets from datasets.tasks import QuestionAnsweringExtractive import pandas as pd logger = datasets.logging.get_logger(__name__) _CITATION = """\ @article{2016arXiv160605250R, author = {{Rajpurkar}, Pranav and {Zhang}, Jian and {Lopyrev}, Konstantin and {Liang}, Percy}, title = "{SQuAD: 100,000+ Questions for Machine Comprehension of Text}", journal = {arXiv e-prints}, year = 2016, eid = {arXiv:1606.05250}, pages = {arXiv:1606.05250}, archivePrefix = {arXiv}, eprint = {1606.05250}, } """ _DESCRIPTION = """\ Visual questions for data science """ _URL = "https://huggingface.co/datasets/eduvedras/VQG/resolve/main/images.tar.gz" class VQGBalancedTargz(datasets.GeneratorBasedBuilder): """SQUAD: The Stanford Question Answering Dataset. Version 1.1.""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "Id": datasets.Value("string"), "Question": datasets.Value("string"), "Chart": datasets.Image(), "Chart_name": datasets.Value("string"), } ), # No default supervised_keys (as we have to pass both question # and context as input). supervised_keys=None, homepage="https://huggingface.co/datasets/eduvedras/VQG-Balanced", citation=_CITATION, task_templates=[ QuestionAnsweringExtractive( question_column="question", context_column="context", answers_column="answers" ) ], ) def _split_generators(self, dl_manager): path = dl_manager.download(_URL) image_iters = dl_manager.iter_archive(path) #split_metadata_path = dl_manager.download(_METADATA_URLS) metadata_train_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_train.csv" metadata_validation_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_validation.csv" metadata_test_path = "https://huggingface.co/datasets/eduvedras/VQG-Balanced/resolve/main/metadata_test.csv" return [ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"images": image_iters, "metadata_path": metadata_train_path}), datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"images": image_iters, "metadata_path": metadata_validation_path}), datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"images": image_iters, "metadata_path": metadata_test_path}), ] def _generate_examples(self, images, metadata_path): """This function returns the examples in the raw (text) form.""" metadata = pd.read_csv(metadata_path) idx = 0 for index, row in metadata.iterrows(): for filepath, image in images: filepath = filepath.split('/')[-1] if row['Chart'] in filepath: yield idx, { "Chart": {"path": filepath, "bytes": image.read()}, "Question": row['Question'], "Id": row['Id'], "Chart_name": row['Chart'], } break idx += 1