--- language: - eng - afr - nbl - xho - zul - sot - nso - tsn - ssw - ven - tso license: cc-by-4.0 task_categories: - sentence-similarity - translation pretty_name: The Vuk'uzenzele South African Multilingual Corpus tags: - multilingual - government arxiv: 2303.0375 configs: - config_name: afr-tsn data_files: - split: train path: afr-tsn/train-* - split: test path: afr-tsn/test-* - config_name: afr-tso data_files: - split: train path: afr-tso/train-* - split: test path: afr-tso/test-* - config_name: afr-xho data_files: - split: train path: afr-xho/train-* - split: test path: afr-xho/test-* - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* - config_name: eng-sot data_files: - split: train path: eng-sot/train-* - split: test path: eng-sot/test-* - config_name: eng-ssw data_files: - split: train path: eng-ssw/train-* - split: test path: eng-ssw/test-* - config_name: nbl-nso data_files: - split: train path: nbl-nso/train-* - split: test path: nbl-nso/test-* - config_name: nbl-sot data_files: - split: train path: nbl-sot/train-* - split: test path: nbl-sot/test-* - config_name: nbl-zul data_files: - split: train path: nbl-zul/train-* - split: test path: nbl-zul/test-* - config_name: nso-tso data_files: - split: train path: nso-tso/train-* - split: test path: nso-tso/test-* - config_name: nso-ven data_files: - split: train path: nso-ven/train-* - split: test path: nso-ven/test-* - config_name: sot-tsn data_files: - split: train path: sot-tsn/train-* - split: test path: sot-tsn/test-* - config_name: sot-xho data_files: - split: train path: sot-xho/train-* - split: test path: sot-xho/test-* - config_name: tsn-xho data_files: - split: train path: tsn-xho/train-* - split: test path: tsn-xho/test-* - config_name: tso-ven data_files: - split: train path: tso-ven/train-* - split: test path: tso-ven/test-* - config_name: ven-zul data_files: - split: train path: ven-zul/train-* - split: test path: ven-zul/test-* dataset_info: - config_name: afr-tsn features: - name: afr dtype: string - name: tsn dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1153686 num_examples: 3235 - name: test num_bytes: 289346 num_examples: 809 download_size: 912706 dataset_size: 1443032 - config_name: afr-tso features: - name: afr dtype: string - name: tso dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1123041 num_examples: 3374 - name: test num_bytes: 281981 num_examples: 844 download_size: 899676 dataset_size: 1405022 - config_name: afr-xho features: - name: afr dtype: string - name: xho dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1124390 num_examples: 3541 - name: test num_bytes: 277280 num_examples: 886 download_size: 937590 dataset_size: 1401670 - config_name: default features: - name: nbl dtype: string - name: nso dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 128131 num_examples: 315 - name: test num_bytes: 31826 num_examples: 79 download_size: 113394 dataset_size: 159957 - config_name: eng-sot features: - name: eng dtype: string - name: sot dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 970215 num_examples: 3053 - name: test num_bytes: 235269 num_examples: 764 download_size: 772503 dataset_size: 1205484 - config_name: eng-ssw features: - name: eng dtype: string - name: ssw dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 945394 num_examples: 3043 - name: test num_bytes: 237382 num_examples: 761 download_size: 774113 dataset_size: 1182776 - config_name: nbl-nso features: - name: nbl dtype: string - name: nso dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 128131 num_examples: 315 - name: test num_bytes: 31826 num_examples: 79 download_size: 113394 dataset_size: 159957 - config_name: nbl-sot features: - name: nbl dtype: string - name: sot dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 171112 num_examples: 417 - name: test num_bytes: 41348 num_examples: 105 download_size: 148051 dataset_size: 212460 - config_name: nbl-zul features: - name: nbl dtype: string - name: zul dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 130284 num_examples: 331 - name: test num_bytes: 30080 num_examples: 83 download_size: 116611 dataset_size: 160364 - config_name: nso-tso features: - name: nso dtype: string - name: tso dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1194161 num_examples: 3379 - name: test num_bytes: 307101 num_examples: 845 download_size: 923078 dataset_size: 1501262 - config_name: nso-ven features: - name: nso dtype: string - name: ven dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 176023 num_examples: 392 - name: test num_bytes: 46433 num_examples: 98 download_size: 146858 dataset_size: 222456 - config_name: sot-tsn features: - name: sot dtype: string - name: tsn dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1272351 num_examples: 3450 - name: test num_bytes: 319100 num_examples: 863 download_size: 976754 dataset_size: 1591451 - config_name: sot-xho features: - name: sot dtype: string - name: xho dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1186991 num_examples: 3541 - name: test num_bytes: 296579 num_examples: 886 download_size: 961117 dataset_size: 1483570 - config_name: tsn-xho features: - name: tsn dtype: string - name: xho dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1248717 num_examples: 3416 - name: test num_bytes: 306197 num_examples: 854 download_size: 983260 dataset_size: 1554914 - config_name: tso-ven features: - name: tso dtype: string - name: ven dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 197128 num_examples: 428 - name: test num_bytes: 45408 num_examples: 108 download_size: 158793 dataset_size: 242536 - config_name: ven-zul features: - name: ven dtype: string - name: zul dtype: string - name: score dtype: float64 - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 159504 num_examples: 384 - name: test num_bytes: 42320 num_examples: 96 download_size: 139982 dataset_size: 201824 --- # The Vuk'uzenzele South African Multilingual Corpus Github: [https://github.com/dsfsi/vukuzenzele-nlp/](https://github.com/dsfsi/vukuzenzele-nlp/) Zenodo: [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.7598539.svg)](https://doi.org/10.5281/zenodo.7598539) Arxiv Preprint: [![arXiv](https://img.shields.io/badge/arXiv-2303.03750-b31b1b.svg)](https://arxiv.org/abs/2303.03750) Give Feedback 📑: [DSFSI Resource Feedback Form](https://docs.google.com/forms/d/e/1FAIpQLSf7S36dyAUPx2egmXbFpnTBuzoRulhL5Elu-N1eoMhaO7v10w/formResponse) # About The dataset was obtained from the South African government magazine Vuk'uzenzele, created by the [Government Communication and Information System (GCIS)](https://www.gcis.gov.za/). The original raw PDFS were obtatined from the [Vuk'uzenzele website](https://www.vukuzenzele.gov.za/). The datasets contain government magazine editions in 11 languages, namely: | Language | Code | Language | Code | |------------|-------|------------|-------| | English | (eng) | Sepedi | (sep) | | Afrikaans | (afr) | Setswana | (tsn) | | isiNdebele | (nbl) | Siswati | (ssw) | | isiXhosa | (xho) | Tshivenda | (ven) | | isiZulu | (zul) | Xitstonga | (tso) | | Sesotho | (nso) | ## Available pairings The alignment direction is bidrectional, i.e. xho-zul is zul-xho afr-eng; afr-nbl; afr-nso; afr-sot; afr-ssw; afr-tsn; afr-tso; afr-ven; afr-xho; afr-zul eng-nbl; eng-nso; eng-sot ;eng-ssw; eng-tsn; eng-tso; eng-ven; eng-xho; eng-zul nbl-nso; nbl-sot; nbl-ssw; nbl-tsn; nbl-tso; nbl-ven; nbl-xho; nbl-zul nso-sot; nso-ssw; nso-tsn; nso-tso; nso-ven; nso-xho; nso-zul sot-ssw; sot-tsn; sot-tso; sot-ven; sot-xho; sot-zul ssw-tsn; ssw-tso; ssw-ven; ssw-xho; ssw-zul tsn-tso; tsn-ven; tsn-xho; tsn-zul tso-ven; tso-xho; tso-zul ven-xho; ven-zul xho-zul # Disclaimer This dataset contains machine-readable data extracted from PDF documents, from https://www.vukuzenzele.gov.za/, provided by the Government Communication Information System (GCIS). While efforts were made to ensure the accuracy and completeness of this data, there may be errors or discrepancies between the original publications and this dataset. No warranties, guarantees or representations are given in relation to the information contained in the dataset. The members of the Data Science for Societal Impact Research Group bear no responsibility and/or liability for any such errors or discrepancies in this dataset. The Government Communication Information System (GCIS) bears no responsibility and/or liability for any such errors or discrepancies in this dataset. It is recommended that users verify all information contained herein before making decisions based upon this information. # Datasets The datasets consist of pairwise sentence aligned data. There are 55 distinct datasets of paired sentences. The data is obtained by comparing [LASER](https://github.com/facebookresearch/LASER) embeddings of sentence tokens between 2 languages. If the similarity is high, the sentences are deemed semantic equivalents of one another and the observation is outputted. Naming convention: The naming structure of the pairwise_sentence_aligned folder is `aligned-{src_lang_code}-{tgt_lang_code}.csv`. For example, `aligned-afr-zul.csv` is the aligned sentences between Afrikaans and isiZulu. The data is in .csv format and the columns are `src_text`,`tgt_text`,`cosine_score` where: - `src_text` is the source sentence - `tgt_text` is the target sentence - `cosine_score` is the cosine similarity score obtained by comparing the sentence embeddings, it ranges from 0 to 1 **Note:** The notion of source (src) and target (tgt) are only necessary for distinction between the languages used in the aligned pair, as the sentence semantics should be bidirectional. (hallo <-> sawubona) # Citation Vukosi Marivate, Andani Madodonga, Daniel Njini, Richard Lastrucci, Isheanesu Dzingirai, Jenalea Rajab. **The Vuk'uzenzele South African Multilingual Corpus**, 2023 > @dataset{marivate_vukosi_2023_7598540, author = {Marivate, Vukosi and Njini, Daniel and Madodonga, Andani and Lastrucci, Richard and Dzingirai, Isheanesu Rajab, Jenalea}, title = {The Vuk'uzenzele South African Multilingual Corpus}, month = feb, year = 2023, publisher = {Zenodo}, doi = {10.5281/zenodo.7598539}, url = {https://doi.org/10.5281/zenodo.7598539} } ### Licence * Licence for Data - [CC 4.0 BY](LICENSE.md)