# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The WikiTableQuestions dataset is a large-scale dataset for the task of question answering on semi-structured tables.""" import os import datasets import json _HOMEPAGE = "https://finqasite.github.io/index.html" _GIT_ARCHIVE_URL = ( "https://github.com/czyssrs/FinQA/archive/refs/heads/main.zip" ) class FinQA(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { # "filename": datasets.Value("string"), "id": datasets.Value("string"), "post_text": datasets.features.Sequence(datasets.Value("string")), "pre_text": datasets.features.Sequence(datasets.Value("string")), "question": datasets.Value("string"), "answer": datasets.Value("string"), "gold_evidence": datasets.features.Sequence(datasets.Value("string")), "table": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("string"))), } ) return datasets.DatasetInfo( features=features, ) def _split_generators(self, dl_manager): extracted_path = dl_manager.download_and_extract(_GIT_ARCHIVE_URL) print(extracted_path) train_file = os.path.join(extracted_path, "FinQA-main", "dataset", "train.json") dev_file = os.path.join(extracted_path, "FinQA-main", "dataset", "dev.json") test_file = os.path.join(extracted_path, "FinQA-main", "dataset", "test.json") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"main_filepath": train_file}, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"main_filepath": dev_file}, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"main_filepath": test_file}, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, main_filepath): # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(main_filepath, encoding="utf-8") as f: # skip the first line since it is the tsv header lines = json.load(f) for idx, example in enumerate(lines): yield idx, { "id": example['id'], "post_text": example['post_text'], "pre_text": example['pre_text'], "question": example['qa']['question'], "answer": example['qa']['answer'], "table": example['table'], "gold_evidence": list(example['qa']['gold_inds'].values()) }