import time
import numpy as np
import pyarrow as pa
from dora import DoraStatus

GOAL = np.array([10, 20])

HOME_TO_KITCHEN = np.array([[0.5, 0], [0.5, -5.0], [1.0, 7.0]])
KITCHEN_TO_HOME = np.array([[2.0, 0.0], [0.0, 0.0]])

CAMERA_WIDTH = 960
CAMERA_HEIGHT = 540


def check_clear_road(bboxes, image_width, goal_x):
    """
    Find the x-coordinate of the midpoint of the largest gap along the x-axis where no bounding boxes overlap.

    Parameters:
    - bboxes (np.array): A numpy array where each row represents a bounding box with
                         the format [min_x, min_y, max_x, max_y, confidence, label].
    - image_width (int): The width of the image in pixels.

    Returns:
    - int: The x-coordinate of the midpoint of the largest gap where no bounding boxes overlap.
    """
    if bboxes.size == 0:
        # No bounding boxes, return the midpoint of the image as the largest gap
        return goal_x

    events = []
    for bbox in bboxes:
        min_x, max_x = bbox[0], bbox[2]
        events.append((min_x, "enter"))
        events.append((max_x, "exit"))

    # Include image boundaries as part of the events
    events.append(
        (0, "exit")
    )  # Start of the image, considered an 'exit' point for logic simplicity
    events.append(
        (image_width, "enter")
    )  # End of the image, considered an 'enter' point

    # Sort events, with exits before enters at the same position to ensure gap calculation correctness
    events.sort(key=lambda x: (x[0], x[1] == "enter"))

    # Sweep line algorithm to find the largest gap
    current_boxes = 1
    last_x = 0
    largest_gap = 0
    gap_start_x = None
    largest_gap_mid = None  # Midpoint of the largest gap

    for x, event_type in events:
        if current_boxes == 0 and gap_start_x is not None:
            # Calculate gap
            gap = x - gap_start_x
            gap_end_x = gap_start_x + x
            if goal_x < gap_end_x and goal_x > gap_start_x:
                return True
            elif goal_x < gap_start_x:
                return False
        if event_type == "enter":
            current_boxes += 1
            if current_boxes == 1:
                gap_start_x = None  # No longer in a gap
        elif event_type == "exit":
            current_boxes -= 1
            if current_boxes == 0:
                gap_start_x = x  # Start of a potential gap

    return False


class Operator:
    def __init__(self):
        self.bboxs = None
        self.time = time.time()
        self.position = [0, 0, 0]
        self.waypoints = None
        self.tf = np.array([[1, 0], [0, 1]])
        self.count = 0
        self.completed = True
        self.image = None

    def on_event(
        self,
        dora_event: dict,
        send_output,
    ) -> DoraStatus:
        global POSITION_GOAL, GIMBAL_GOAL
        if dora_event["type"] == "INPUT":
            id = dora_event["id"]
            if id == "tick":
                self.time = time.time()
            elif id == "image":
                value = dora_event["value"].to_numpy()

                self.image = value.reshape((CAMERA_HEIGHT, CAMERA_WIDTH, 3))
            elif id == "control_reply":
                value = dora_event["value"].to_numpy()[0]
                if value == self.count:
                    self.completed = True
            elif id == "set_goal":
                print("got goal:", dora_event["value"], flush=True)

                if len(dora_event["value"]) > 0:
                    self.waypoints = dora_event["value"].to_numpy().reshape((-1, 2))
            elif id == "position":
                ## No bounding box yet
                if self.waypoints is None or len(self.waypoints) == 0:
                    print("no waypoint", flush=True)
                    return DoraStatus.CONTINUE
                if self.completed == False:
                    print("not completed", flush=True)
                    return DoraStatus.CONTINUE
                value = dora_event["value"].to_numpy()
                [x, y, z] = value
                self.position = [x, y, z]

                # Remove waypoints if completed
                if (
                    len(self.waypoints) > 0
                    and np.linalg.norm(self.waypoints[0] - [x, y]) < 0.2
                ):
                    self.waypoints = self.waypoints[1:]
                    print("removing waypoints", flush=True)
                    if len(self.waypoints) == 0:
                        print("no waypoint", flush=True)
                        send_output("goal_reached", pa.array(self.image.ravel()))
                        return DoraStatus.CONTINUE

                z = np.deg2rad(z)
                self.tf = np.array([[np.cos(z), -np.sin(z)], [np.sin(z), np.cos(z)]])
                goal = self.tf.dot(self.waypoints[0])
                goal_camera_x = (
                    CAMERA_WIDTH * np.arctan2(goal[1], goal[0]) / np.pi
                ) + CAMERA_WIDTH / 2
                goal_angle = np.arctan2(goal[1], goal[0]) * 180 / np.pi
                print(
                    "position",
                    [x, y],
                    "goal:",
                    goal,
                    "Goal angle: ",
                    np.arctan2(goal[1], goal[0]) * 180 / np.pi,
                    "z: ",
                    np.rad2deg(z),
                    "x: ",
                    goal_camera_x,
                    "count: ",
                    self.count,
                    flush=True,
                )

                if True:  # check_clear_road(self.bboxs, CAMERA_WIDTH, goal_camera_x):
                    self.count += 1
                    self.completed = False
                    send_output(
                        "control",
                        pa.array(
                            [
                                {
                                    "action": "gimbal",
                                    "value": [0.0, goal_angle],
                                    "count": self.count,
                                },
                                # {
                                # "value": [
                                # 0.0,
                                # 0.0,
                                # -goal_angle,
                                # 0.0,
                                # 50,
                                # ],
                                # "action": "control",
                                # },
                                {
                                    "value": [
                                        goal[0],
                                        goal[1],
                                        0.0,  # -goal_angle,
                                        0.6,
                                        0.0,  # 50,
                                    ],
                                    "action": "control",
                                },
                            ]
                        ),
                        dora_event["metadata"],
                    )

        return DoraStatus.CONTINUE