from __future__ import annotations from pathlib import Path from typing import Callable, Iterable, TypeVar import pyarrow as pa import pyarrow.parquet as pq def stream_to_parquet(path: Path, tables: Iterable[pa.Table]) -> None: try: first = next(tables) except StopIteration: return schema = first.schema with pq.ParquetWriter(path, schema) as writer: writer.write_table(first) for table in tables: table = table.cast(schema) # enforce schema writer.write_table(table) def stream_from_parquet(path: Path) -> Iterable[pa.Table]: reader = pq.ParquetFile(path) for batch in reader.iter_batches(): yield pa.Table.from_batches([batch]) def stream_from_parquets(paths: Iterable[Path]) -> Iterable[pa.Table]: for path in paths: yield from stream_from_parquet(path) T = TypeVar("T") def coalesce(items: Iterable[T], max_size: int, sizer: Callable[[T], int] = len) -> Iterable[list[T]]: batch = [] current_size = 0 for item in items: this_size = sizer(item) if current_size + this_size > max_size: yield batch batch = [] current_size = 0 batch.append(item) current_size += this_size if batch: yield batch def coalesce_parquets(paths: Iterable[Path], outpath: Path, max_size: int = 2**20) -> None: tables = stream_from_parquets(paths) # Instead of coalescing using number of rows as your metric, you could # use pa.Table.nbytes or something. # table_groups = coalesce(tables, max_size, sizer=lambda t: t.nbytes) table_groups = coalesce(tables, max_size) coalesced_tables = (pa.concat_tables(group) for group in table_groups) stream_to_parquet(outpath, coalesced_tables) def merge_parquet_dir(path: str, outpath: Path) -> None: paths = Path(path).glob("*.parquet") coalesce_parquets(paths, outpath)