fMRI-openneuro / fMRI-openneuro.py
dingliyu's picture
Upload fMRI-openneuro.py
3641763
raw
history blame
6.94 kB
import nibabel as nib
import os
import numpy as np
import datasets
import boto3
_DESCRIPTION = """\
fMIR dataset from openneuro.org
"""
class fMRIConfig(datasets.BuilderConfig):
"""Builder Config for fMRI"""
def __init__(self, data_url, num_datasets=[10, 1, 1], num_frames=8, sampling_rate=1, **kwargs):
"""BuilderConfig for fMRI.
Args:
data_url: `string`, url to download the zip file from.
**kwargs: keyword arguments forwarded to super.
"""
super(fMRIConfig, self).__init__(**kwargs)
self.data_url = data_url
self.num_datasets = num_datasets
self.num_frames = num_frames
self.sampling_rate = sampling_rate
class fMRITest(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
fMRIConfig(name="test1", data_url="openneuro.org", version=VERSION, description="fMRI test dataset 1", ),
]
DEFAULT_CONFIG_NAME = "test1" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "test1": # This is the name of the configuration selected in BUILDER_CONFIGS above
# features = datasets.Features(
# {
# # "func": np.ndarray(shape=(65,77,65,self.config.duration)),
# "func": datasets.Array4D(shape=(None,None,None,self.config.duration), dtype='float32'),
# }
# )
features = None
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
)
def _split_generators(self, dl_manager):
# Connect to S3
s3 = boto3.client('s3')
bucket_name = self.config.data_url
response = s3.list_objects_v2(Bucket=bucket_name, Prefix='', Delimiter='/')
folder_names = [x['Prefix'].split('/')[-2] for x in response.get('CommonPrefixes', [])]
print(len(folder_names))
ndatasets = self.config.num_datasets
if isinstance(ndatasets, int):
ndatasets = [ndatasets, 10, 10]
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"bucket_name": bucket_name,
"folder_names": folder_names[:ndatasets[0]],
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"bucket_name": bucket_name,
"folder_names": folder_names[ndatasets[0]:ndatasets[0] + ndatasets[1]],
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"bucket_name": bucket_name,
"folder_names": folder_names[ndatasets[0] + ndatasets[1]:ndatasets[0] + ndatasets[1] + ndatasets[2]],
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, bucket_name, folder_names):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
s3 = boto3.client('s3')
tmp_dir = os.path.join('tmp', folder_names[0]) if len(folder_names) > 0 else 'tmp'
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
anat_file = os.path.join(tmp_dir, 'T1w.nii.gz')
func_file = os.path.join(tmp_dir, 'bold.nii.gz')
duration = self.config.num_frames * self.config.sampling_rate
for folder_name in folder_names:
response = s3.list_objects_v2(Bucket=bucket_name, Prefix=folder_name)
for obj in response.get('Contents', []):
obj_key = obj['Key']
if '_T1w.nii.gz' in obj_key: # Anatomical
# Store subject number to verify anat/func match
anat_subj = obj_key.split('/')[1]
# Download the object to tmp location
s3.download_file(bucket_name, obj_key, anat_file)
# store the head of anat_subj
anat_header = nib.load(anat_file).header
elif '_bold.nii.gz' in obj_key: # Functional
func_subj = obj_key.split('/')[1]
if func_subj == anat_subj:
s3.download_file(bucket_name, obj_key, func_file)
func = nib.load(func_file).get_fdata().astype('float16')
func = np.transpose(func, (3, 0, 1, 2)) # T, X, Y, Z
shape = func.shape
# print(f"{obj_key}", shape)
for i in range(0, shape[0] - duration + self.config.sampling_rate, duration):
func_slice = func[i:i+duration:self.config.sampling_rate, :, :, :]
# print(f"{obj_key}-{i}", func_slice.shape)
yield f"{obj_key}-{i}", {
"func": func_slice,
}