import os import datasets import numpy as np _DESCRIPTION = """\ GTEA is composed of 50 recorded videos of 25 participants making two different mixed salads. The videos are captured by a camera with a top-down view onto the work-surface. The participants are provided with recipe steps which are randomly sampled from a statistical recipe model. """ _CITATION = """\ @inproceedings{stein2013combining, title={Combining embedded accelerometers with computer vision for recognizing food preparation activities}, author={Stein, Sebastian and McKenna, Stephen J}, booktitle={Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing}, pages={729--738}, year={2013} } """ _HOMEPAGE = "" _LICENSE = "xxx" _URLS = {"full": "https://huggingface.co/datasets/dinggd/gtea/resolve/main/gtea.zip"} class GTEA(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="split1", version=VERSION, description="Cross Validation Split1" ), datasets.BuilderConfig( name="split2", version=VERSION, description="Cross Validation Split2" ), datasets.BuilderConfig( name="split3", version=VERSION, description="Cross Validation Split3" ), datasets.BuilderConfig( name="split4", version=VERSION, description="Cross Validation Split4" ), ] DEFAULT_CONFIG_NAME = "1" def _info(self): features = datasets.Features( { "video_id": datasets.Value("string"), "video_feature": datasets.Array2D(shape=(None, 2048), dtype="float32"), "video_label": datasets.Sequence(datasets.Value(dtype="int32")), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): urls_to_download = _URLS data_dir = dl_manager.download_and_extract(urls_to_download)["full"] return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join( data_dir, f"gtea/splits/train.{self.config.name}.bundle" ), "featurefolder": os.path.join(data_dir, "gtea/features"), "gtfolder": os.path.join(data_dir, "gtea/groundTruth"), "mappingpath": os.path.join(data_dir, "gtea/mapping.txt"), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join( data_dir, f"gtea/splits/test.{self.config.name}.bundle" ), "featurefolder": os.path.join(data_dir, "gtea/features"), "gtfolder": os.path.join(data_dir, "gtea/groundTruth"), "mappingpath": os.path.join(data_dir, "gtea/mapping.txt"), }, ), ] def _generate_examples(self, filepath, featurefolder, gtfolder, mappingpath): with open(mappingpath, "r") as f: actions = f.read().splitlines() actions_dict = {} for a in actions: actions_dict[a.split()[1]] = int(a.split()[0]) with open(filepath, "r") as f: lines = f.read().splitlines() for key, line in enumerate(lines): vid = line[:-4] featurepath = os.path.join(featurefolder, f"{vid}.npy") gtpath = os.path.join(gtfolder, line) feature = np.load(featurepath).T # T x D with open(gtpath, "r") as f: content = f.read().splitlines() label = np.zeros(min(np.shape(feature)[1], len(content))) for i in range(len(label)): label[i] = actions_dict[content[i]] yield key, { "video_id": vid, "video_feature": feature, "video_label": label, }