| import inspect |
| from typing import List, Optional, Tuple, Union |
|
|
| import torch |
| from torch.nn import functional as F |
| from transformers import CLIPTextModelWithProjection, CLIPTokenizer |
| from transformers.models.clip.modeling_clip import CLIPTextModelOutput |
|
|
| from diffusers import ( |
| DiffusionPipeline, |
| ImagePipelineOutput, |
| PriorTransformer, |
| UnCLIPScheduler, |
| UNet2DConditionModel, |
| UNet2DModel, |
| ) |
| from diffusers.pipelines.unclip import UnCLIPTextProjModel |
| from diffusers.utils import is_accelerate_available, logging |
| from diffusers.utils.torch_utils import randn_tensor |
|
|
|
|
| logger = logging.get_logger(__name__) |
|
|
|
|
| def slerp(val, low, high): |
| """ |
| Find the interpolation point between the 'low' and 'high' values for the given 'val'. See https://en.wikipedia.org/wiki/Slerp for more details on the topic. |
| """ |
| low_norm = low / torch.norm(low) |
| high_norm = high / torch.norm(high) |
| omega = torch.acos((low_norm * high_norm)) |
| so = torch.sin(omega) |
| res = (torch.sin((1.0 - val) * omega) / so) * low + (torch.sin(val * omega) / so) * high |
| return res |
|
|
|
|
| class UnCLIPTextInterpolationPipeline(DiffusionPipeline): |
|
|
| """ |
| Pipeline for prompt-to-prompt interpolation on CLIP text embeddings and using the UnCLIP / Dall-E to decode them to images. |
| |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) |
| |
| Args: |
| text_encoder ([`CLIPTextModelWithProjection`]): |
| Frozen text-encoder. |
| tokenizer (`CLIPTokenizer`): |
| Tokenizer of class |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). |
| prior ([`PriorTransformer`]): |
| The canonincal unCLIP prior to approximate the image embedding from the text embedding. |
| text_proj ([`UnCLIPTextProjModel`]): |
| Utility class to prepare and combine the embeddings before they are passed to the decoder. |
| decoder ([`UNet2DConditionModel`]): |
| The decoder to invert the image embedding into an image. |
| super_res_first ([`UNet2DModel`]): |
| Super resolution unet. Used in all but the last step of the super resolution diffusion process. |
| super_res_last ([`UNet2DModel`]): |
| Super resolution unet. Used in the last step of the super resolution diffusion process. |
| prior_scheduler ([`UnCLIPScheduler`]): |
| Scheduler used in the prior denoising process. Just a modified DDPMScheduler. |
| decoder_scheduler ([`UnCLIPScheduler`]): |
| Scheduler used in the decoder denoising process. Just a modified DDPMScheduler. |
| super_res_scheduler ([`UnCLIPScheduler`]): |
| Scheduler used in the super resolution denoising process. Just a modified DDPMScheduler. |
| |
| """ |
|
|
| prior: PriorTransformer |
| decoder: UNet2DConditionModel |
| text_proj: UnCLIPTextProjModel |
| text_encoder: CLIPTextModelWithProjection |
| tokenizer: CLIPTokenizer |
| super_res_first: UNet2DModel |
| super_res_last: UNet2DModel |
|
|
| prior_scheduler: UnCLIPScheduler |
| decoder_scheduler: UnCLIPScheduler |
| super_res_scheduler: UnCLIPScheduler |
|
|
| |
| def __init__( |
| self, |
| prior: PriorTransformer, |
| decoder: UNet2DConditionModel, |
| text_encoder: CLIPTextModelWithProjection, |
| tokenizer: CLIPTokenizer, |
| text_proj: UnCLIPTextProjModel, |
| super_res_first: UNet2DModel, |
| super_res_last: UNet2DModel, |
| prior_scheduler: UnCLIPScheduler, |
| decoder_scheduler: UnCLIPScheduler, |
| super_res_scheduler: UnCLIPScheduler, |
| ): |
| super().__init__() |
|
|
| self.register_modules( |
| prior=prior, |
| decoder=decoder, |
| text_encoder=text_encoder, |
| tokenizer=tokenizer, |
| text_proj=text_proj, |
| super_res_first=super_res_first, |
| super_res_last=super_res_last, |
| prior_scheduler=prior_scheduler, |
| decoder_scheduler=decoder_scheduler, |
| super_res_scheduler=super_res_scheduler, |
| ) |
|
|
| |
| def prepare_latents(self, shape, dtype, device, generator, latents, scheduler): |
| if latents is None: |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) |
| else: |
| if latents.shape != shape: |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}") |
| latents = latents.to(device) |
|
|
| latents = latents * scheduler.init_noise_sigma |
| return latents |
|
|
| |
| def _encode_prompt( |
| self, |
| prompt, |
| device, |
| num_images_per_prompt, |
| do_classifier_free_guidance, |
| text_model_output: Optional[Union[CLIPTextModelOutput, Tuple]] = None, |
| text_attention_mask: Optional[torch.Tensor] = None, |
| ): |
| if text_model_output is None: |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 |
| |
| text_inputs = self.tokenizer( |
| prompt, |
| padding="max_length", |
| max_length=self.tokenizer.model_max_length, |
| truncation=True, |
| return_tensors="pt", |
| ) |
| text_input_ids = text_inputs.input_ids |
| text_mask = text_inputs.attention_mask.bool().to(device) |
|
|
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids |
|
|
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( |
| text_input_ids, untruncated_ids |
| ): |
| removed_text = self.tokenizer.batch_decode( |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] |
| ) |
| logger.warning( |
| "The following part of your input was truncated because CLIP can only handle sequences up to" |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" |
| ) |
| text_input_ids = text_input_ids[:, : self.tokenizer.model_max_length] |
|
|
| text_encoder_output = self.text_encoder(text_input_ids.to(device)) |
|
|
| prompt_embeds = text_encoder_output.text_embeds |
| text_encoder_hidden_states = text_encoder_output.last_hidden_state |
|
|
| else: |
| batch_size = text_model_output[0].shape[0] |
| prompt_embeds, text_encoder_hidden_states = text_model_output[0], text_model_output[1] |
| text_mask = text_attention_mask |
|
|
| prompt_embeds = prompt_embeds.repeat_interleave(num_images_per_prompt, dim=0) |
| text_encoder_hidden_states = text_encoder_hidden_states.repeat_interleave(num_images_per_prompt, dim=0) |
| text_mask = text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
| if do_classifier_free_guidance: |
| uncond_tokens = [""] * batch_size |
|
|
| uncond_input = self.tokenizer( |
| uncond_tokens, |
| padding="max_length", |
| max_length=self.tokenizer.model_max_length, |
| truncation=True, |
| return_tensors="pt", |
| ) |
| uncond_text_mask = uncond_input.attention_mask.bool().to(device) |
| negative_prompt_embeds_text_encoder_output = self.text_encoder(uncond_input.input_ids.to(device)) |
|
|
| negative_prompt_embeds = negative_prompt_embeds_text_encoder_output.text_embeds |
| uncond_text_encoder_hidden_states = negative_prompt_embeds_text_encoder_output.last_hidden_state |
|
|
| |
|
|
| seq_len = negative_prompt_embeds.shape[1] |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt) |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len) |
|
|
| seq_len = uncond_text_encoder_hidden_states.shape[1] |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.repeat(1, num_images_per_prompt, 1) |
| uncond_text_encoder_hidden_states = uncond_text_encoder_hidden_states.view( |
| batch_size * num_images_per_prompt, seq_len, -1 |
| ) |
| uncond_text_mask = uncond_text_mask.repeat_interleave(num_images_per_prompt, dim=0) |
|
|
| |
|
|
| |
| |
| |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) |
| text_encoder_hidden_states = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) |
|
|
| text_mask = torch.cat([uncond_text_mask, text_mask]) |
|
|
| return prompt_embeds, text_encoder_hidden_states, text_mask |
|
|
| |
| def enable_sequential_cpu_offload(self, gpu_id=0): |
| r""" |
| Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
| models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
| when their specific submodule has its `forward` method called. |
| """ |
| if is_accelerate_available(): |
| from accelerate import cpu_offload |
| else: |
| raise ImportError("Please install accelerate via `pip install accelerate`") |
|
|
| device = torch.device(f"cuda:{gpu_id}") |
|
|
| |
| models = [ |
| self.decoder, |
| self.text_proj, |
| self.text_encoder, |
| self.super_res_first, |
| self.super_res_last, |
| ] |
| for cpu_offloaded_model in models: |
| if cpu_offloaded_model is not None: |
| cpu_offload(cpu_offloaded_model, device) |
|
|
| @property |
| |
| def _execution_device(self): |
| r""" |
| Returns the device on which the pipeline's models will be executed. After calling |
| `pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module |
| hooks. |
| """ |
| if self.device != torch.device("meta") or not hasattr(self.decoder, "_hf_hook"): |
| return self.device |
| for module in self.decoder.modules(): |
| if ( |
| hasattr(module, "_hf_hook") |
| and hasattr(module._hf_hook, "execution_device") |
| and module._hf_hook.execution_device is not None |
| ): |
| return torch.device(module._hf_hook.execution_device) |
| return self.device |
|
|
| @torch.no_grad() |
| def __call__( |
| self, |
| start_prompt: str, |
| end_prompt: str, |
| steps: int = 5, |
| prior_num_inference_steps: int = 25, |
| decoder_num_inference_steps: int = 25, |
| super_res_num_inference_steps: int = 7, |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
| prior_guidance_scale: float = 4.0, |
| decoder_guidance_scale: float = 8.0, |
| enable_sequential_cpu_offload=True, |
| gpu_id=0, |
| output_type: Optional[str] = "pil", |
| return_dict: bool = True, |
| ): |
| """ |
| Function invoked when calling the pipeline for generation. |
| |
| Args: |
| start_prompt (`str`): |
| The prompt to start the image generation interpolation from. |
| end_prompt (`str`): |
| The prompt to end the image generation interpolation at. |
| steps (`int`, *optional*, defaults to 5): |
| The number of steps over which to interpolate from start_prompt to end_prompt. The pipeline returns |
| the same number of images as this value. |
| prior_num_inference_steps (`int`, *optional*, defaults to 25): |
| The number of denoising steps for the prior. More denoising steps usually lead to a higher quality |
| image at the expense of slower inference. |
| decoder_num_inference_steps (`int`, *optional*, defaults to 25): |
| The number of denoising steps for the decoder. More denoising steps usually lead to a higher quality |
| image at the expense of slower inference. |
| super_res_num_inference_steps (`int`, *optional*, defaults to 7): |
| The number of denoising steps for super resolution. More denoising steps usually lead to a higher |
| quality image at the expense of slower inference. |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
| to make generation deterministic. |
| prior_guidance_scale (`float`, *optional*, defaults to 4.0): |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
| usually at the expense of lower image quality. |
| decoder_guidance_scale (`float`, *optional*, defaults to 4.0): |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
| usually at the expense of lower image quality. |
| output_type (`str`, *optional*, defaults to `"pil"`): |
| The output format of the generated image. Choose between |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
| enable_sequential_cpu_offload (`bool`, *optional*, defaults to `True`): |
| If True, offloads all models to CPU using accelerate, significantly reducing memory usage. When called, the pipeline's |
| models have their state dicts saved to CPU and then are moved to a `torch.device('meta') and loaded to GPU only |
| when their specific submodule has its `forward` method called. |
| gpu_id (`int`, *optional*, defaults to `0`): |
| The gpu_id to be passed to enable_sequential_cpu_offload. Only works when enable_sequential_cpu_offload is set to True. |
| return_dict (`bool`, *optional*, defaults to `True`): |
| Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple. |
| """ |
|
|
| if not isinstance(start_prompt, str) or not isinstance(end_prompt, str): |
| raise ValueError( |
| f"`start_prompt` and `end_prompt` should be of type `str` but got {type(start_prompt)} and" |
| f" {type(end_prompt)} instead" |
| ) |
|
|
| if enable_sequential_cpu_offload: |
| self.enable_sequential_cpu_offload(gpu_id=gpu_id) |
|
|
| device = self._execution_device |
|
|
| |
| inputs = self.tokenizer( |
| [start_prompt, end_prompt], |
| padding="max_length", |
| truncation=True, |
| max_length=self.tokenizer.model_max_length, |
| return_tensors="pt", |
| ) |
| inputs.to(device) |
| text_model_output = self.text_encoder(**inputs) |
|
|
| text_attention_mask = torch.max(inputs.attention_mask[0], inputs.attention_mask[1]) |
| text_attention_mask = torch.cat([text_attention_mask.unsqueeze(0)] * steps).to(device) |
|
|
| |
| batch_text_embeds = [] |
| batch_last_hidden_state = [] |
|
|
| for interp_val in torch.linspace(0, 1, steps): |
| text_embeds = slerp(interp_val, text_model_output.text_embeds[0], text_model_output.text_embeds[1]) |
| last_hidden_state = slerp( |
| interp_val, text_model_output.last_hidden_state[0], text_model_output.last_hidden_state[1] |
| ) |
| batch_text_embeds.append(text_embeds.unsqueeze(0)) |
| batch_last_hidden_state.append(last_hidden_state.unsqueeze(0)) |
|
|
| batch_text_embeds = torch.cat(batch_text_embeds) |
| batch_last_hidden_state = torch.cat(batch_last_hidden_state) |
|
|
| text_model_output = CLIPTextModelOutput( |
| text_embeds=batch_text_embeds, last_hidden_state=batch_last_hidden_state |
| ) |
|
|
| batch_size = text_model_output[0].shape[0] |
|
|
| do_classifier_free_guidance = prior_guidance_scale > 1.0 or decoder_guidance_scale > 1.0 |
|
|
| prompt_embeds, text_encoder_hidden_states, text_mask = self._encode_prompt( |
| prompt=None, |
| device=device, |
| num_images_per_prompt=1, |
| do_classifier_free_guidance=do_classifier_free_guidance, |
| text_model_output=text_model_output, |
| text_attention_mask=text_attention_mask, |
| ) |
|
|
| |
|
|
| self.prior_scheduler.set_timesteps(prior_num_inference_steps, device=device) |
| prior_timesteps_tensor = self.prior_scheduler.timesteps |
|
|
| embedding_dim = self.prior.config.embedding_dim |
|
|
| prior_latents = self.prepare_latents( |
| (batch_size, embedding_dim), |
| prompt_embeds.dtype, |
| device, |
| generator, |
| None, |
| self.prior_scheduler, |
| ) |
|
|
| for i, t in enumerate(self.progress_bar(prior_timesteps_tensor)): |
| |
| latent_model_input = torch.cat([prior_latents] * 2) if do_classifier_free_guidance else prior_latents |
|
|
| predicted_image_embedding = self.prior( |
| latent_model_input, |
| timestep=t, |
| proj_embedding=prompt_embeds, |
| encoder_hidden_states=text_encoder_hidden_states, |
| attention_mask=text_mask, |
| ).predicted_image_embedding |
|
|
| if do_classifier_free_guidance: |
| predicted_image_embedding_uncond, predicted_image_embedding_text = predicted_image_embedding.chunk(2) |
| predicted_image_embedding = predicted_image_embedding_uncond + prior_guidance_scale * ( |
| predicted_image_embedding_text - predicted_image_embedding_uncond |
| ) |
|
|
| if i + 1 == prior_timesteps_tensor.shape[0]: |
| prev_timestep = None |
| else: |
| prev_timestep = prior_timesteps_tensor[i + 1] |
|
|
| prior_latents = self.prior_scheduler.step( |
| predicted_image_embedding, |
| timestep=t, |
| sample=prior_latents, |
| generator=generator, |
| prev_timestep=prev_timestep, |
| ).prev_sample |
|
|
| prior_latents = self.prior.post_process_latents(prior_latents) |
|
|
| image_embeddings = prior_latents |
|
|
| |
|
|
| |
|
|
| text_encoder_hidden_states, additive_clip_time_embeddings = self.text_proj( |
| image_embeddings=image_embeddings, |
| prompt_embeds=prompt_embeds, |
| text_encoder_hidden_states=text_encoder_hidden_states, |
| do_classifier_free_guidance=do_classifier_free_guidance, |
| ) |
|
|
| if device.type == "mps": |
| |
| |
| text_mask = text_mask.type(torch.int) |
| decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=1) |
| decoder_text_mask = decoder_text_mask.type(torch.bool) |
| else: |
| decoder_text_mask = F.pad(text_mask, (self.text_proj.clip_extra_context_tokens, 0), value=True) |
|
|
| self.decoder_scheduler.set_timesteps(decoder_num_inference_steps, device=device) |
| decoder_timesteps_tensor = self.decoder_scheduler.timesteps |
|
|
| num_channels_latents = self.decoder.config.in_channels |
| height = self.decoder.config.sample_size |
| width = self.decoder.config.sample_size |
|
|
| decoder_latents = self.prepare_latents( |
| (batch_size, num_channels_latents, height, width), |
| text_encoder_hidden_states.dtype, |
| device, |
| generator, |
| None, |
| self.decoder_scheduler, |
| ) |
|
|
| for i, t in enumerate(self.progress_bar(decoder_timesteps_tensor)): |
| |
| latent_model_input = torch.cat([decoder_latents] * 2) if do_classifier_free_guidance else decoder_latents |
|
|
| noise_pred = self.decoder( |
| sample=latent_model_input, |
| timestep=t, |
| encoder_hidden_states=text_encoder_hidden_states, |
| class_labels=additive_clip_time_embeddings, |
| attention_mask=decoder_text_mask, |
| ).sample |
|
|
| if do_classifier_free_guidance: |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) |
| noise_pred_uncond, _ = noise_pred_uncond.split(latent_model_input.shape[1], dim=1) |
| noise_pred_text, predicted_variance = noise_pred_text.split(latent_model_input.shape[1], dim=1) |
| noise_pred = noise_pred_uncond + decoder_guidance_scale * (noise_pred_text - noise_pred_uncond) |
| noise_pred = torch.cat([noise_pred, predicted_variance], dim=1) |
|
|
| if i + 1 == decoder_timesteps_tensor.shape[0]: |
| prev_timestep = None |
| else: |
| prev_timestep = decoder_timesteps_tensor[i + 1] |
|
|
| |
| decoder_latents = self.decoder_scheduler.step( |
| noise_pred, t, decoder_latents, prev_timestep=prev_timestep, generator=generator |
| ).prev_sample |
|
|
| decoder_latents = decoder_latents.clamp(-1, 1) |
|
|
| image_small = decoder_latents |
|
|
| |
|
|
| |
|
|
| self.super_res_scheduler.set_timesteps(super_res_num_inference_steps, device=device) |
| super_res_timesteps_tensor = self.super_res_scheduler.timesteps |
|
|
| channels = self.super_res_first.config.in_channels // 2 |
| height = self.super_res_first.config.sample_size |
| width = self.super_res_first.config.sample_size |
|
|
| super_res_latents = self.prepare_latents( |
| (batch_size, channels, height, width), |
| image_small.dtype, |
| device, |
| generator, |
| None, |
| self.super_res_scheduler, |
| ) |
|
|
| if device.type == "mps": |
| |
| image_upscaled = F.interpolate(image_small, size=[height, width]) |
| else: |
| interpolate_antialias = {} |
| if "antialias" in inspect.signature(F.interpolate).parameters: |
| interpolate_antialias["antialias"] = True |
|
|
| image_upscaled = F.interpolate( |
| image_small, size=[height, width], mode="bicubic", align_corners=False, **interpolate_antialias |
| ) |
|
|
| for i, t in enumerate(self.progress_bar(super_res_timesteps_tensor)): |
| |
|
|
| if i == super_res_timesteps_tensor.shape[0] - 1: |
| unet = self.super_res_last |
| else: |
| unet = self.super_res_first |
|
|
| latent_model_input = torch.cat([super_res_latents, image_upscaled], dim=1) |
|
|
| noise_pred = unet( |
| sample=latent_model_input, |
| timestep=t, |
| ).sample |
|
|
| if i + 1 == super_res_timesteps_tensor.shape[0]: |
| prev_timestep = None |
| else: |
| prev_timestep = super_res_timesteps_tensor[i + 1] |
|
|
| |
| super_res_latents = self.super_res_scheduler.step( |
| noise_pred, t, super_res_latents, prev_timestep=prev_timestep, generator=generator |
| ).prev_sample |
|
|
| image = super_res_latents |
| |
|
|
| |
|
|
| image = image * 0.5 + 0.5 |
| image = image.clamp(0, 1) |
| image = image.cpu().permute(0, 2, 3, 1).float().numpy() |
|
|
| if output_type == "pil": |
| image = self.numpy_to_pil(image) |
|
|
| if not return_dict: |
| return (image,) |
|
|
| return ImagePipelineOutput(images=image) |
|
|