| from typing import Optional, Tuple, Union |
|
|
| import torch |
| from einops import rearrange, reduce |
|
|
| from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNet2DConditionModel |
| from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput |
| from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput |
|
|
|
|
| BITS = 8 |
|
|
|
|
| |
| def decimal_to_bits(x, bits=BITS): |
| """expects image tensor ranging from 0 to 1, outputs bit tensor ranging from -1 to 1""" |
| device = x.device |
|
|
| x = (x * 255).int().clamp(0, 255) |
|
|
| mask = 2 ** torch.arange(bits - 1, -1, -1, device=device) |
| mask = rearrange(mask, "d -> d 1 1") |
| x = rearrange(x, "b c h w -> b c 1 h w") |
|
|
| bits = ((x & mask) != 0).float() |
| bits = rearrange(bits, "b c d h w -> b (c d) h w") |
| bits = bits * 2 - 1 |
| return bits |
|
|
|
|
| def bits_to_decimal(x, bits=BITS): |
| """expects bits from -1 to 1, outputs image tensor from 0 to 1""" |
| device = x.device |
|
|
| x = (x > 0).int() |
| mask = 2 ** torch.arange(bits - 1, -1, -1, device=device, dtype=torch.int32) |
|
|
| mask = rearrange(mask, "d -> d 1 1") |
| x = rearrange(x, "b (c d) h w -> b c d h w", d=8) |
| dec = reduce(x * mask, "b c d h w -> b c h w", "sum") |
| return (dec / 255).clamp(0.0, 1.0) |
|
|
|
|
| |
| def ddim_bit_scheduler_step( |
| self, |
| model_output: torch.FloatTensor, |
| timestep: int, |
| sample: torch.FloatTensor, |
| eta: float = 0.0, |
| use_clipped_model_output: bool = True, |
| generator=None, |
| return_dict: bool = True, |
| ) -> Union[DDIMSchedulerOutput, Tuple]: |
| """ |
| Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
| process from the learned model outputs (most often the predicted noise). |
| Args: |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
| timestep (`int`): current discrete timestep in the diffusion chain. |
| sample (`torch.FloatTensor`): |
| current instance of sample being created by diffusion process. |
| eta (`float`): weight of noise for added noise in diffusion step. |
| use_clipped_model_output (`bool`): TODO |
| generator: random number generator. |
| return_dict (`bool`): option for returning tuple rather than DDIMSchedulerOutput class |
| Returns: |
| [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] or `tuple`: |
| [`~schedulers.scheduling_utils.DDIMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
| returning a tuple, the first element is the sample tensor. |
| """ |
| if self.num_inference_steps is None: |
| raise ValueError( |
| "Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler" |
| ) |
|
|
| |
| |
|
|
| |
| |
| |
| |
| |
| |
| |
|
|
| |
| prev_timestep = timestep - self.config.num_train_timesteps // self.num_inference_steps |
|
|
| |
| alpha_prod_t = self.alphas_cumprod[timestep] |
| alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod |
|
|
| beta_prod_t = 1 - alpha_prod_t |
|
|
| |
| |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
|
|
| |
| scale = self.bit_scale |
| if self.config.clip_sample: |
| pred_original_sample = torch.clamp(pred_original_sample, -scale, scale) |
|
|
| |
| |
| variance = self._get_variance(timestep, prev_timestep) |
| std_dev_t = eta * variance ** (0.5) |
|
|
| if use_clipped_model_output: |
| |
| model_output = (sample - alpha_prod_t ** (0.5) * pred_original_sample) / beta_prod_t ** (0.5) |
|
|
| |
| pred_sample_direction = (1 - alpha_prod_t_prev - std_dev_t**2) ** (0.5) * model_output |
|
|
| |
| prev_sample = alpha_prod_t_prev ** (0.5) * pred_original_sample + pred_sample_direction |
|
|
| if eta > 0: |
| |
| device = model_output.device if torch.is_tensor(model_output) else "cpu" |
| noise = torch.randn(model_output.shape, dtype=model_output.dtype, generator=generator).to(device) |
| variance = self._get_variance(timestep, prev_timestep) ** (0.5) * eta * noise |
|
|
| prev_sample = prev_sample + variance |
|
|
| if not return_dict: |
| return (prev_sample,) |
|
|
| return DDIMSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
|
| def ddpm_bit_scheduler_step( |
| self, |
| model_output: torch.FloatTensor, |
| timestep: int, |
| sample: torch.FloatTensor, |
| prediction_type="epsilon", |
| generator=None, |
| return_dict: bool = True, |
| ) -> Union[DDPMSchedulerOutput, Tuple]: |
| """ |
| Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion |
| process from the learned model outputs (most often the predicted noise). |
| Args: |
| model_output (`torch.FloatTensor`): direct output from learned diffusion model. |
| timestep (`int`): current discrete timestep in the diffusion chain. |
| sample (`torch.FloatTensor`): |
| current instance of sample being created by diffusion process. |
| prediction_type (`str`, default `epsilon`): |
| indicates whether the model predicts the noise (epsilon), or the samples (`sample`). |
| generator: random number generator. |
| return_dict (`bool`): option for returning tuple rather than DDPMSchedulerOutput class |
| Returns: |
| [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] or `tuple`: |
| [`~schedulers.scheduling_utils.DDPMSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When |
| returning a tuple, the first element is the sample tensor. |
| """ |
| t = timestep |
|
|
| if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: |
| model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1) |
| else: |
| predicted_variance = None |
|
|
| |
| alpha_prod_t = self.alphas_cumprod[t] |
| alpha_prod_t_prev = self.alphas_cumprod[t - 1] if t > 0 else self.one |
| beta_prod_t = 1 - alpha_prod_t |
| beta_prod_t_prev = 1 - alpha_prod_t_prev |
|
|
| |
| |
| if prediction_type == "epsilon": |
| pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5) |
| elif prediction_type == "sample": |
| pred_original_sample = model_output |
| else: |
| raise ValueError(f"Unsupported prediction_type {prediction_type}.") |
|
|
| |
| scale = self.bit_scale |
| if self.config.clip_sample: |
| pred_original_sample = torch.clamp(pred_original_sample, -scale, scale) |
|
|
| |
| |
| pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * self.betas[t]) / beta_prod_t |
| current_sample_coeff = self.alphas[t] ** (0.5) * beta_prod_t_prev / beta_prod_t |
|
|
| |
| |
| pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample |
|
|
| |
| variance = 0 |
| if t > 0: |
| noise = torch.randn( |
| model_output.size(), dtype=model_output.dtype, layout=model_output.layout, generator=generator |
| ).to(model_output.device) |
| variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * noise |
|
|
| pred_prev_sample = pred_prev_sample + variance |
|
|
| if not return_dict: |
| return (pred_prev_sample,) |
|
|
| return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample) |
|
|
|
|
| class BitDiffusion(DiffusionPipeline): |
| def __init__( |
| self, |
| unet: UNet2DConditionModel, |
| scheduler: Union[DDIMScheduler, DDPMScheduler], |
| bit_scale: Optional[float] = 1.0, |
| ): |
| super().__init__() |
| self.bit_scale = bit_scale |
| self.scheduler.step = ( |
| ddim_bit_scheduler_step if isinstance(scheduler, DDIMScheduler) else ddpm_bit_scheduler_step |
| ) |
|
|
| self.register_modules(unet=unet, scheduler=scheduler) |
|
|
| @torch.no_grad() |
| def __call__( |
| self, |
| height: Optional[int] = 256, |
| width: Optional[int] = 256, |
| num_inference_steps: Optional[int] = 50, |
| generator: Optional[torch.Generator] = None, |
| batch_size: Optional[int] = 1, |
| output_type: Optional[str] = "pil", |
| return_dict: bool = True, |
| **kwargs, |
| ) -> Union[Tuple, ImagePipelineOutput]: |
| latents = torch.randn( |
| (batch_size, self.unet.config.in_channels, height, width), |
| generator=generator, |
| ) |
| latents = decimal_to_bits(latents) * self.bit_scale |
| latents = latents.to(self.device) |
|
|
| self.scheduler.set_timesteps(num_inference_steps) |
|
|
| for t in self.progress_bar(self.scheduler.timesteps): |
| |
| noise_pred = self.unet(latents, t).sample |
|
|
| |
| latents = self.scheduler.step(noise_pred, t, latents).prev_sample |
|
|
| image = bits_to_decimal(latents) |
|
|
| if output_type == "pil": |
| image = self.numpy_to_pil(image) |
|
|
| if not return_dict: |
| return (image,) |
|
|
| return ImagePipelineOutput(images=image) |
|
|