import pytest import torch import torch.nn as nn from timm.layers import create_act_layer, set_layer_config, get_act_layer, get_act_fn, Attention2d, MultiQueryAttentionV2 import importlib import os torch_backend = os.environ.get('TORCH_BACKEND') if torch_backend is not None: importlib.import_module(torch_backend) torch_device = os.environ.get('TORCH_DEVICE', 'cpu') class MLP(nn.Module): def __init__(self, act_layer="relu", inplace=True): super(MLP, self).__init__() self.fc1 = nn.Linear(1000, 100) self.act = create_act_layer(act_layer, inplace=inplace) self.fc2 = nn.Linear(100, 10) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.fc2(x) return x def _run_act_layer_grad(act_type, inplace=True): x = torch.rand(10, 1000) * 10 m = MLP(act_layer=act_type, inplace=inplace) def _run(x, act_layer=''): if act_layer: # replace act layer if set m.act = create_act_layer(act_layer, inplace=inplace) out = m(x) l = (out - 0).pow(2).sum() return l x = x.to(device=torch_device) m.to(device=torch_device) out_me = _run(x) with set_layer_config(scriptable=True): out_jit = _run(x, act_type) assert torch.isclose(out_jit, out_me) with set_layer_config(no_jit=True): out_basic = _run(x, act_type) assert torch.isclose(out_basic, out_jit) def test_swish_grad(): for _ in range(100): _run_act_layer_grad('swish') def test_mish_grad(): for _ in range(100): _run_act_layer_grad('mish') def test_hard_sigmoid_grad(): for _ in range(100): _run_act_layer_grad('hard_sigmoid', inplace=None) def test_hard_swish_grad(): for _ in range(100): _run_act_layer_grad('hard_swish') def test_hard_mish_grad(): for _ in range(100): _run_act_layer_grad('hard_mish') def test_get_act_layer_empty_string(): # Empty string should return None assert get_act_layer('') is None def test_create_act_layer_inplace_error(): class NoInplaceAct(nn.Module): def __init__(self): super().__init__() def forward(self, x): return x # Should recover when inplace arg causes TypeError layer = create_act_layer(NoInplaceAct, inplace=True) assert isinstance(layer, NoInplaceAct) def test_create_act_layer_edge_cases(): # Test None input assert create_act_layer(None) is None # Test TypeError handling for inplace class CustomAct(nn.Module): def __init__(self, **kwargs): super().__init__() def forward(self, x): return x result = create_act_layer(CustomAct, inplace=True) assert isinstance(result, CustomAct) def test_get_act_fn_callable(): def custom_act(x): return x assert get_act_fn(custom_act) is custom_act def test_get_act_fn_none(): assert get_act_fn(None) is None assert get_act_fn('') is None @pytest.mark.parametrize("dim", [128]) @pytest.mark.parametrize("dim_out", [128, 256]) @pytest.mark.parametrize("use_m", [True, False]) def test_mqa_v2(dim, dim_out, use_m): mqa = MultiQueryAttentionV2(dim, dim_out) x = torch.randn(1, dim, 32, 48) if use_m: m = torch.randn(1, dim, 16, 24) else: m = None y = mqa(x, m=m) assert (y.shape) == (1, dim_out, 32, 48) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("expand_first", [True, False]) @pytest.mark.parametrize("head_first", [True, False]) @pytest.mark.parametrize("attn_mask", [True, False]) def test_attn2d(bias, expand_first, head_first, attn_mask): x = torch.randn(1, 128, 32, 48) attn = Attention2d( 128, 128, num_heads=4, bias=bias, expand_first=expand_first, head_first=head_first ) if attn_mask: mask = torch.randint(0, 1, size=(32 * 48, 32 * 48), dtype=torch.float32) else: mask = None o1 = attn(x, mask) attn.fused_attn = False o2 = attn(x, mask) assert torch.allclose(o1, o2, atol=1e-5), f"{torch.abs(o1 - o2).max()}"