|
import fnmatch |
|
import re |
|
from collections import OrderedDict |
|
from typing import Union, Optional, List |
|
|
|
import torch |
|
|
|
|
|
class AttentionExtract(torch.nn.Module): |
|
|
|
default_node_names = ['*attn.softmax'] |
|
default_module_names = ['*attn_drop'] |
|
|
|
def __init__( |
|
self, |
|
model: Union[torch.nn.Module], |
|
names: Optional[List[str]] = None, |
|
mode: str = 'eval', |
|
method: str = 'fx', |
|
hook_type: str = 'forward', |
|
use_regex: bool = False, |
|
): |
|
""" Extract attention maps (or other activations) from a model by name. |
|
|
|
Args: |
|
model: Instantiated model to extract from. |
|
names: List of concrete or wildcard names to extract. Names are nodes for fx and modules for hooks. |
|
mode: 'train' or 'eval' model mode. |
|
method: 'fx' or 'hook' extraction method. |
|
hook_type: 'forward' or 'forward_pre' hooks used. |
|
use_regex: Use regex instead of fnmatch |
|
""" |
|
super().__init__() |
|
assert mode in ('train', 'eval') |
|
if mode == 'train': |
|
model = model.train() |
|
else: |
|
model = model.eval() |
|
|
|
assert method in ('fx', 'hook') |
|
if method == 'fx': |
|
|
|
from timm.models._features_fx import get_graph_node_names, GraphExtractNet |
|
|
|
node_names = get_graph_node_names(model)[0 if mode == 'train' else 1] |
|
names = names or self.default_node_names |
|
if use_regex: |
|
regexes = [re.compile(r) for r in names] |
|
matched = [g for g in node_names if any([r.match(g) for r in regexes])] |
|
else: |
|
matched = [g for g in node_names if any([fnmatch.fnmatch(g, n) for n in names])] |
|
if not matched: |
|
raise RuntimeError(f'No node names found matching {names}.') |
|
|
|
self.model = GraphExtractNet(model, matched, return_dict=True) |
|
self.hooks = None |
|
else: |
|
|
|
assert hook_type in ('forward', 'forward_pre') |
|
from timm.models._features import FeatureHooks |
|
|
|
module_names = [n for n, m in model.named_modules()] |
|
names = names or self.default_module_names |
|
if use_regex: |
|
regexes = [re.compile(r) for r in names] |
|
matched = [m for m in module_names if any([r.match(m) for r in regexes])] |
|
else: |
|
matched = [m for m in module_names if any([fnmatch.fnmatch(m, n) for n in names])] |
|
if not matched: |
|
raise RuntimeError(f'No module names found matching {names}.') |
|
|
|
self.model = model |
|
self.hooks = FeatureHooks(matched, model.named_modules(), default_hook_type=hook_type) |
|
|
|
self.names = matched |
|
self.mode = mode |
|
self.method = method |
|
|
|
def forward(self, x): |
|
if self.hooks is not None: |
|
self.model(x) |
|
output = self.hooks.get_output(device=x.device) |
|
else: |
|
output = self.model(x) |
|
return output |
|
|