
Page 1

Using Pipenv

Using Pipenv

Virtual Environments

When you start a new project, you’ll want it to be completely separate from other projects in
terms of the libraries it has installed.

If you start working today on a project using version x of a library, and in two years time
you work on another project using version y of a library, you may not want to update. If
version y includes some breaking changes from version x , your old project would stop
working.

This is why it’s interesting have separate environments for each project, so that the changes
and updates to libraries one depends on does no affect other projects.

Installing new libraries

Python installs new packages using pip . You can install packages in your system Python
installation easily using pip :

The Complete Python Course — Udemy

Page 2

Using Pipenv

pip install requests

This will install the requests library in the Python that is linked to pip . By default on Mac
OS X, this is a Python version that comes installed in the computer, Python 2.7.

If you’ve installed another Python version, it’ll be that version.

If you have multiple Python versions installed, you’ll have to be more specific:

• python will refer to the first Python version you installed.

• python3 will refer to the version of Python 3.x that you have installed, if you have
only one version of Python 3 and one of Python 2.

• python3.7 will refer to Python3.7 if you have two or more versions of Python 3 in-
stalled.

Virtual environments

In order to separate projects into different environments with different libraries, we use an
extremely popular library called virtualenv .

You can create a new virtual environment—which is just a copy of the Python version you
use to create it—using one of the following commands (depending on the Python program as
above):

virtualenv venv
virtualenv venv --python=python3
virtualenv venv --python=python3.7

This creates a new folder called venv inside your current folder, which is a copy of Python
without any libraries installed.

Now we can activate this virtual environment, which then means any libraries we install using
pip will go in the virtual environment; and when we run the python program that’ll be the
version installed in the virtual environment:

source venv/bin/activate

Page 3

https://tecladocode.com/blog

The Complete Python Course — Udemy

Or on Windows:

.\venv\Scripts\activate.bat

Pipenv

Pipenv brings together pip , virtualenv , and a dependency management system.

Instead of creating a virtualenv, activating it, and installing libraries, we can just install a li-
brary using Pipenv. Make sure you don’t have a virtual environment created locally by delet-
ing it if you have created it.

rm -rf venv

Then, let’s install Pipenv. You’ll have to use:

• pip if you only have a single version of Python installed;

• pip3 if you have a version of Python3 and one version of Python2 installed; or

• pip3.7 if you have two or more versions of Python3 (and one of them is Python3.7).

pip install pipenv

Then, we can install the first library using Pipenv:

pipenv install requests

This creates a new virtual environment (in a different folder in your computer) and installs the
library in it.

In addition, it also creates two new files in your project folder:

• Pipfile ; and

• Pipfile.lock .

Page 4

Using Pipenv

The Pipfile file

After installing the requests library as above, the Pipenv file will look like this:

[[source]]

url = “https://pypi.python.org/simple”
verify_ssl = true
name = “pypi”

[packages]

requests = “*”

[dev-packages]

This file is divided into sections: [[source]] , [packages] , and [dev-packages] .

The most interest one here is the [packages] section, which has all the dependencies of our
project—everything our project depends on. These libraries here are installed from the url
defined in the [[source]] section.

Here we specify the requests library, and the version we want is * ; any version is accept-
able. By default, we will always install the latest version of any package.

However, when you share the project with someone else, you’ll share both the Pipfile
(which tells them what to install), and the Pipfile.lock (which tells them which versions of
things to install.

Let’s talk about Pipfile.lock !

The Pipfile.lock file

This file looks more complicated. Something like this:

{
 “_meta”: {
 “hash”: {
 “sha256”:
“a0e63f8a0d1e3df046dc19b3ffbaaedfa151afc12af5a5b960ae7393952f8679”
 },

Page 5

https://tecladocode.com/blog

The Complete Python Course — Udemy

 “host-environment-markers”: {
 “implementation_name”: “cpython”,
 “implementation_version”: “3.7.0b1”,
 “os_name”: “posix”,
 “platform_machine”: “x86_64”,
 “platform_python_implementation”: “CPython”,
 “platform_release”: “17.4.0”,
 “platform_system”: “Darwin”,
 “platform_version”: “Darwin Kernel Version 17.4.0: Sun Dec 17 09:19:54
PST 2017; root:xnu-4570.41.2~1/RELEASE_X86_64”,
 “python_full_version”: “3.7.0b1”,
 “python_version”: “3.7”,
 “sys_platform”: “darwin”
 },
 “pipfile-spec”: 6,
 “requires”: {},
 “sources”: [
 {
 “name”: “pypi”,
 “url”: “https://pypi.python.org/simple”,
 “verify_ssl”: true
 }
]
 },
 “default”: {
 “certifi”: {
 “hashes”: [
“sha256:14131608ad2fd56836d33a71ee60fa1c82bc9d2c8d98b7bdbc631fe1b3cd1296”,
“sha256:edbc3f203427eef571f79a7692bb160a2b0f7ccaa31953e99bd17e307cf63f7d”
],
 “version”: “==2018.1.18”
 },
 “chardet”: {
 “hashes”: [
“sha256:fc323ffcaeaed0e0a02bf4d117757b98aed530d9ed4531e3e15460124c106691”,
“sha256:84ab92ed1c4d4f16916e05906b6b75a6c0fb5db821cc65e70cbd64a3e2a5eaae”
],
 “version”: “==3.0.4”
 },
 “idna”: {
 “hashes”: [
“sha256:8c7309c718f94b3a625cb648ace320157ad16ff131ae0af362c9f21b80ef6ec4”,
“sha256:2c6a5de3089009e3da7c5dde64a141dbc8551d5b7f6cf4ed7c2568d0cc520a8f”
],
 “version”: “==2.6”
 },
 “requests”: {
 “hashes”: [
“sha256:6a1b267aa90cac58ac3a765d067950e7dbbf75b1da07e895d1f594193a40a38b”,
“sha256:9c443e7324ba5b85070c4a818ade28bfabedf16ea10206da1132edaa6dda237e”
],
 “version”: “==2.18.4”
 },
 “urllib3”: {
 “hashes”: [
“sha256:06330f386d6e4b195fbfc736b297f58c5a892e4440e54d294d7004e3a9bbea1b”,

Page 6

Using Pipenv

“sha256:cc44da8e1145637334317feebd728bd869a35285b93cbb4cca2577da7e62db4f”
],
 “version”: “==1.22”
 }
 },
 “develop”: {}
}

This defines a lot more information, and this file is used to “lock” the versions of the libraries
you have installed to a specific point in time.

If you give the Pipfile and the Pipfile.lock to someone else, they’ll end up with exactly
the same versions of libraries as you.

Each library in the Pipfile.lock comes with two things:

• version ; and

• hashes .

The version is the version of the package you want. Normally this is the only thing you
need in order to retrieve the correct package from the source url (defined in the Pipfile).

However, it is possible that someone might swap out a version of a library for something
else—a security issue to say the least!

That is where the hashes come into play. The hashes are numbers generated from the library
itself. If the library changes at all, the numbers generated will change. So if you try to install
the same version as earlier on but the hashes are different, you’ll get an error. Pipenv will
make sure it’s all safe!

Security is a difficult topic, but the entire Python community is agreeing that having these
lock files is a great idea. Other programming communities, like JavaScript, is also using similar
techniques for securing their dependency management. It’s the way to go!

— Jose and the Teclado team.

