File size: 42,831 Bytes
ce5cd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Visualizing Chipotle's Data"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This time we are going to pull data directly from the internet.\n",
"Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.\n",
"\n",
"### Step 1. Import the necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": 132,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import collections\n",
"import matplotlib.pyplot as plt \n",
"\n",
"# set this so the \n",
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3. Assign it to a variable called chipo."
]
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"url = 'https://raw.githubusercontent.com/justmarkham/DAT8/master/data/chipotle.tsv'\n",
" \n",
"chipo = pd.read_csv(url, sep = '\\t')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4. See the first 10 entries"
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {
"collapsed": false,
"scrolled": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>order_id</th>\n",
" <th>quantity</th>\n",
" <th>item_name</th>\n",
" <th>choice_description</th>\n",
" <th>item_price</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Chips and Fresh Tomato Salsa</td>\n",
" <td>NaN</td>\n",
" <td>$2.39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Izze</td>\n",
" <td>[Clementine]</td>\n",
" <td>$3.39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Nantucket Nectar</td>\n",
" <td>[Apple]</td>\n",
" <td>$3.39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1</td>\n",
" <td>1</td>\n",
" <td>Chips and Tomatillo-Green Chili Salsa</td>\n",
" <td>NaN</td>\n",
" <td>$2.39</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>2</td>\n",
" <td>2</td>\n",
" <td>Chicken Bowl</td>\n",
" <td>[Tomatillo-Red Chili Salsa (Hot), [Black Beans...</td>\n",
" <td>$16.98</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>Chicken Bowl</td>\n",
" <td>[Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou...</td>\n",
" <td>$10.98</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>3</td>\n",
" <td>1</td>\n",
" <td>Side of Chips</td>\n",
" <td>NaN</td>\n",
" <td>$1.69</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>Steak Burrito</td>\n",
" <td>[Tomatillo Red Chili Salsa, [Fajita Vegetables...</td>\n",
" <td>$11.75</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>4</td>\n",
" <td>1</td>\n",
" <td>Steak Soft Tacos</td>\n",
" <td>[Tomatillo Green Chili Salsa, [Pinto Beans, Ch...</td>\n",
" <td>$9.25</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>5</td>\n",
" <td>1</td>\n",
" <td>Steak Burrito</td>\n",
" <td>[Fresh Tomato Salsa, [Rice, Black Beans, Pinto...</td>\n",
" <td>$9.25</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" order_id quantity item_name \\\n",
"0 1 1 Chips and Fresh Tomato Salsa \n",
"1 1 1 Izze \n",
"2 1 1 Nantucket Nectar \n",
"3 1 1 Chips and Tomatillo-Green Chili Salsa \n",
"4 2 2 Chicken Bowl \n",
"5 3 1 Chicken Bowl \n",
"6 3 1 Side of Chips \n",
"7 4 1 Steak Burrito \n",
"8 4 1 Steak Soft Tacos \n",
"9 5 1 Steak Burrito \n",
"\n",
" choice_description item_price \n",
"0 NaN $2.39 \n",
"1 [Clementine] $3.39 \n",
"2 [Apple] $3.39 \n",
"3 NaN $2.39 \n",
"4 [Tomatillo-Red Chili Salsa (Hot), [Black Beans... $16.98 \n",
"5 [Fresh Tomato Salsa (Mild), [Rice, Cheese, Sou... $10.98 \n",
"6 NaN $1.69 \n",
"7 [Tomatillo Red Chili Salsa, [Fajita Vegetables... $11.75 \n",
"8 [Tomatillo Green Chili Salsa, [Pinto Beans, Ch... $9.25 \n",
"9 [Fresh Tomato Salsa, [Rice, Black Beans, Pinto... $9.25 "
]
},
"execution_count": 134,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"chipo.head(10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 5. Create a histogram of the top 5 items bought"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAF8CAYAAAAtoNfeAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm8nGV9/vHPFfYtEEQSZAmrLCoKlUWwehQLUm3Aalmq\nFcSl/WGFulQSuxC1tYJ1qxYrajEosikIdIGAcERRQDZBEjAWEmIkQXYEFRKu3x/PfTiTk7PMJJl5\n5py53q/XeWWeZZ75njtz5jvPvco2ERHR2ybVHUBERNQvySAiIpIMIiIiySAiIkgyiIgIkgwiIoIk\ngxinJN0r6bUdeq1TJX1jDZ4/YqySXilp/upHN+rrvlrS4nZcOyaeJIMeJGmhpN9J2nLI/lslPStp\nhzW8/rOSdl6zKLvOiANyJG0m6XOSFkl6XNICSZ8ZWr7DXtT+oe0910aAI5R7UwOJSsL7xzV5zXKN\ns1u9RnSHJIPeZOBe4NiBHZJeDGxEkx8eTVx/rZC0ztq6Vpuutx5wNbAncKjtycArgAeB/dfmazWh\njhGkGbU6QSQZ9K5vAMc1bB8HzGk8QdJkSWdLeqBUdfxdw7FdJPVLerQcP7fs/z4g4PbyLfnPhr6w\nKn9f7lCWSvq6pMnl2PTybfMESYuA75X9f1HO/7WkjwxzvZmSflGOnydpizGud6Ck6yQ9Uu6IXt1w\nvR3L7/aYpCuArUYpx+OA7YAjbd8NYPtB25+wfXnDeftI+ml5vXMlrV9ea6WqnFLOMyXdKekhSV8b\nOLccf3e583hQ0nclTWuh3LeR9O3y//V/kt433C8k6XmSLiuxPlSuPRKV5xwGfAQ4WtITkm4t+ydL\n+qqkX0laLOnjkgaec5ykH0j6lKSHS0yvb4jj+LLv8fLvscMFEGuJ7fz02A/VXcFrgfnA7lRfCu4D\ntgeeBXYo550NXAxsDEwH7gbeUY59C5hVHq8PHNRw/WeBnUZ5/ROAn5drbgx8Bzi7HJtenv91qjuV\nDai+dT8BHAysB3waeBp4bXnOycCPgG3K8S8B3xrlei+g+uZ+WDnnkLL9vLL9I+BT5Vp/CDw+EN8w\nv8u5wFlNlPf1wFRgC2Ae8J5y7NXAfUPOvb3EuAXwQ+Bj5dhrgV8DLy2x/Rvw/ZHKvfHaVB/aNwF/\nB6wD7Aj8AvijYeL9BHBGeV+sAxw8yu/2LLBzeXzq0HIq758zgA2pkur1wLvLseOA35f3g4C/ApaU\nYxsDjwG7lu2pwJ51/+1M5J/aA8hPDf/pg8ngI+UP/zDgivKH/yywQ/kg+D2we8Pz3gNcXR7PAf4D\n2HaY6z/3ATHC618F/FXD9gupPtwnlQ/vFcD0huP/QPlwL9sbl9gGksE84DUNx7cZ43ofBuYMiely\n4C+oEuLTwEYNx84Z+iHXcGwu8IkmyvvYhu3TgDPK4+GSwbsbtg8HFpTHXwU+2XBskxLrQPJeqdxZ\nORkcACwcEtdM4GvDxPvR8iG+SxPvpRGTAbA18Dtgg4Z9xzS8h44Dft5wbKNyva3L//HDwJuADev+\nm+mFn1QT9bZvAn8OHE91F9BoK2BdqjuGAYuAbcvjD1N92N4o6Q5J72jhdV9QrtV43XWpvv0N+OWQ\n85+rSrH9FPBQw/HpwMWlquFhquTwzCjXmw4cNXC+pEeo7jq2Ka/1iO3fDolvJA+V541lWcPjp4BN\nRzm3MdZFJSYYUm62nyyvvy1j2wHYdsjvPIvqg3eo04H/A+aWqrdTmrj+cKZT3cHc3/Ca/8HK1W5L\nBx40lPmm5f/4aOD/ledfJmn31YwjmpBk0MNs30f1TfRw4KIhhx+k+kCd3rBvOrCkPHeZ7ffY3pbq\n9v4MNd+D6FfDXPcZVv7AbGyYvJ/qGzsAkjYGntdw/D7gcNtblp8ptjexff8I11tM9Q228fzNbJ9e\nXmuKpI0azh+td9VVwGFDzl9T2zc8nk5VXjCk3CRtQlUOjcljJIuBe4b8zpvb/pOhJ9p+0vaHbO8C\nzAA+IOk1TbzG0MbkxVR3Bs9reM0tbO/dxLWwfaXtQ4FpVFWUX2nmebF6kgziBKrqlsZvwth+FrgA\n+GdJm0qaDryfquEZSW+RNPCN9FGq2/tny/ZSYLTEcC7w/tJQuynwz8B55TWhNEo2+DbwRkkHqeq9\n87Eh53wZ+IRKl1hJz5c0o+H40Ot9E/gTSYdKmiRpw9KQ+4KSIG8CPippPUmvBFb5wGzwDaoPve9I\n2r00Zj9P0qzGxtAWvVfStqq6pn4EOK/sPxd4h6S9JW1AVcV3ve2Bu6bRyv1G4AlJHy6/7zqSXiTp\n5UNPlPQGSbuUzSeA5Qz+345mGbDjQAOx7aVU1WifVdX9VpJ2lvSqsS4kaWtJM0rifwb4DVV1X7RJ\nkkFveu4bnO17bd8y3DHgJKoqjXuAa4Fv2j6rHNsPuEHS48B3gZNsLyzHZgNnl6qBtwzz+v9J9SF6\nLVV1xFPltYaLAdvzgPdSfRj+iqpqpPHb8OeBS6iqNR6jagBu7NY59Hq/BI6g+qD9NVXVy4cY/Ht4\nK3BgeZ1/YEgvqyHXehp4HXAXcCVVo+f1VN/Ybxju9ZvwLaoP0V8AC6iSJba/V+K5iOoObSeqOvgB\nsxmh3EuifSPwMqq7wQeovmlPHub1dwOukvQEcB3w77ZH6lHU+LtdSJV4H5J0U9l3HFUHg3lUbQAX\nUn3TH8nA9SYBHyi/54PAq6iqjKJNZLe3m7Ck9wPvpPpmcQfwDqqGr/OpbnkXAkfZfqycP4vq2+py\n4GTbc9saYEQXkXQv8E7bV9cdS/SWtt4ZSHoB8D5g31JPuC7VQKeZwFW2d6casDOrnL8XcBRVV8LD\nqeqhh97iR0TEWtaJaqJ1gE0krUvVdWwJ1S36wK33HODI8ngGVd3x8lLlsIDOj+KMqFNG9EYt2poM\nbP+KaoDQfVRJ4DHbVwFTbS8r5yxlsHvbtjR0ISzPaabbXMSEYHvnVBFFHdZt58VVTQlwBFXbwGPA\nhZLeyqrfflr6NiQp354iIlaD7WGr3ttdTfQ6qr7ND9teQTWq8SBgmaSpAGVulQfK+UtYuY/1dmXf\nKuoerWebU089tfYYuuUnZZGySFl0f1mMpt3J4D7gwNKvWVRzwMwDLqUa9QpV17NLyuNLgWMkrS9p\nJ2BXqv7RERHRRm2tJrJ9o6RvA7dSDRy5FTgT2Ay4QNIJVH28jyrnz5N0AYPTCZzosdJZRESssbYm\nAwDbH6Wa+KrRw1RVSMOd/y/Av7Q7rrWhr6+v7hC6RspiUMpiUMpiULeXRdsHnbWDpNwwRES0SBKu\nqQE5IiLGgSSDiIhIMoiIiCSDiIggySAiIkgyiIgIkgwiIoIkg4iIIMkgIiJIMoiICJIMIiKCJIOI\niCDJICIiSDKIiAiSDCIigiSDiIgxTZu2I5Jq/Zk2bce2/o5Z3CYiYgzVEu51f+ZozEXtx7xCFreJ\niIjRtDUZSHqhpFsl3VL+fUzSSZKmSJor6W5JV0javOE5syQtkDRf0qHtjC8iIiodqyaSNAn4JXAA\n8NfAQ7ZPl3QKMMX2TEl7AecA+wHbAVcBuw2tE0o1UUR0UqqJ1q7XAf9nezFwBDCn7J8DHFkezwDO\ns73c9kJgAbB/B2OMiOhJnUwGRwPfKo+n2l4GYHspsHXZvy2wuOE5S8q+iIhoo3U78SKS1qP61n9K\n2TX0Xqfle5/Zs2c/97ivr4++vr7VjC4iYmLq7++nv7+/qXM70mYgaQZwou3Xl+35QJ/tZZKmAdfY\n3lPSTMC2TyvnXQ6cavuGIddLm0FEdEzaDNaeY4FzG7YvBY4vj48DLmnYf4yk9SXtBOwK3NihGCMi\nelbb7wwkbQwsAna2/UTZtyVwAbB9OXaU7UfLsVnAO4FngJNtzx3mmrkziIiO6YU7g4xAjogYQy8k\ng4xAjoiIJIOIiEgyiIgIkgwiIoIkg4iIIMkgIiJIMoiICJIMIiKCJIOIiCDJICIiSDKIiAiSDCIi\ngiSDiIggySAiIkgyiIgIkgwiIoIkg4iIIMkgIiJIMoiICDqQDCRtLulCSfMl3SnpAElTJM2VdLek\nKyRt3nD+LEkLyvmHtju+iIjozJ3B54H/sb0n8FLgLmAmcJXt3YGrgVkAkvYCjgL2BA4HzlC1EnVE\nRLRRW5OBpMnAH9o+C8D2ctuPAUcAc8ppc4Ajy+MZwHnlvIXAAmD/dsYYERHtvzPYCXhQ0lmSbpF0\npqSNgam2lwHYXgpsXc7fFljc8PwlZV9ERLTRuh24/r7Ae23fJOmzVFVEHnLe0O0xzZ49+7nHfX19\n9PX1rX6UERETUH9/P/39/U2dK7vlz+GmSZoK/Nj2zmX7lVTJYBegz/YySdOAa2zvKWkmYNunlfMv\nB061fcOQ67qdcUdENKqaLuv+zBFr+rknCdvDtsO2tZqoVAUtlvTCsusQ4E7gUuD4su844JLy+FLg\nGEnrS9oJ2BW4sZ0xRkRE+6uJAE4CzpG0HnAP8A5gHeACSScAi6h6EGF7nqQLgHnAM8CJuQWIiGi/\ntlYTtUuqiSKik1JNFBERPSHJICIikgwiIiLJICIiSDKIiAiSDCIigiSDiIggySAiIkgyiIgRTJu2\nI5Jq/Zk2bce6i6FnZARyRAxrooy6XStRTJCyyAjkiIgYVZJBREQkGURERJJBRESQZBARESQZREQE\nSQYREUGSQUREkGQQERF0IBlIWijpp5JulXRj2TdF0lxJd0u6QtLmDefPkrRA0nxJh7Y7voiI6Myd\nwbNAn+19bO9f9s0ErrK9O3A1MAtA0l7AUcCewOHAGarGgUdERBt1IhlomNc5AphTHs8BjiyPZwDn\n2V5ueyGwANifiIhoq04kAwNXSvqJpHeVfVNtLwOwvRTYuuzfFljc8NwlZV9ERLTRuh14jYNt3y/p\n+cBcSXez6vR/LU/FN3v27Oce9/X10dfXtyYxRkRMOP39/fT39zd1bkensJZ0KvAb4F1U7QjLJE0D\nrrG9p6SZgG2fVs6/HDjV9g1DrpMprCPabKJM27xWopggZVHbFNaSNpa0aXm8CXAocAdwKXB8Oe04\n4JLy+FLgGEnrS9oJ2BW4sZ0xRkRE+6uJpgIXS3J5rXNsz5V0E3CBpBOARVQ9iLA9T9IFwDzgGeDE\n3AJERLRfVjqLiGFNlKqRtRLFBCmLrHQWERGjSjKIaJBF4KNXpZooosFEqQ5YK1GkLAajmCBlkWqi\niIgYVZJBREQkGURERJJBRESQZBARESQZREQESQYREUGSQUREkGQQEREkGUREBC0mA0kbtyuQiIio\nT1PJQNJBkuYBd5Xtl0o6o62RRURExzR7Z/BZ4DDgIQDbPwVe1a6gIiKis5quJrK9eMiuFWs5loiI\nqEmzy14ulnQQYEnrAScD89sXVkREdFKzdwZ/BbwX2BZYArysbEdExATQkcVtJE0CbgJ+aXuGpCnA\n+cB0YCFwlO3HyrmzgBOA5cDJtucOc70sbhNtMVEWMVkrUaQsBqOYIGWxxovbSJojaYuG7SmS/rOF\nGE4G5jVszwSusr07cDUwq1x3L+AoYE/gcOAMVf8LERHRRs1WE+1t+9GBDduPAPs080RJ2wF/DHy1\nYfcRwJzyeA5wZHk8AzjP9nLbC4EFwP5NxhgREaup2WQwqVTtACBpS5pvfP4s8LesfI811fYyANtL\nga3L/m2Bxl5LS8q+iIhoo2Y/0D8N/FjShYCAtwD/PNaTJL0BWGb7Nkl9o5zackXY7Nmzn3vc19dH\nX99ol4+I6D39/f309/c3dW7TDcilPv+1ZfNq2/NGO7885xPA26gagzcCNgMuBl4O9NleJmkacI3t\nPSXNBGz7tPL8y4FTbd8w5LppQI62mCgNhWslipTFYBQTpCxGa0AeNRlImmz78VIttArbD7cQxKuB\nD5beRKcDD9k+TdIpwBTbM0vCOQc4gKp66Epgt6Gf/EkG0S4T5Y9+rUSRshiMYoKUxWjJYKxqom8B\nbwRuZuWSGCiZnVczpk8CF0g6AVhE1YMI2/MkXUDV8+gZ4MR86kdEtN+Y1USla+f2tu/rTEhjy51B\ntMtE+Qa4VqJIWQxGMUHKYo3GGZRP3f9eowgiIqKrNdu19BZJ+7U1koiIqE1TvYkk3QXsRjV1xJOU\nNgPbe7c1upHjSTVRtMVEqQ5YK1GkLAajmCBlsSYNyAMOW6MIIiKiq42aDCRtSDVj6a7AHcDXbC/v\nRGDROdOm7ciyZYvqDoOpU6ezdOnCusOI6EljjTM4n6qL5w+oJo5bZPvkDsU2olQTrV3dcQsM3VAl\n0B1lUX85QMpipSgmSFmsSTXRXrZfUi7yNeDGNYokIiK60li9iZ4ZeJDqoYiIiWusaqIVVL2HoOpB\ntBHwFIO9iSa3PcLh40o10VrUHbfA0A1VAt1RFvWXA6QsVopigpTFalcT2V5njV45IiLGhWYHnUVE\nxASWZBAREUkGERGRZBARESQZREQESQYREUGSQUREkGQQEREkGUREBG1OBpI2kHSDpFsl3SHp1LJ/\niqS5ku6WdIWkzRueM0vSAknzJR3azvgiIqLS1Epna/QC0sa2n5K0DnAdcBLwZuAh26dLOgWYYnum\npL2Ac4D9gO2Aq4Ddhk5ElLmJ1q7umHcFumEemu4oi/rLAVIWK0UxQcpitLmJ2l5NZPup8nADqrmQ\nDBwBzCn75wBHlsczgPNsL7e9EFgA7N/uGCMiel3bk4GkSZJuBZYCV9r+CTDV9jIA20uBrcvp2wKL\nG56+pOyLiIg2anYN5NVm+1lgH0mTgYslvYhV77davveZPXv2c4/7+vro6+tr6flZ6jEiJrr+/n76\n+/ubOrftbQYrvZj0D1TrIbwL6LO9TNI04Brbe0qaSbVOwmnl/MuBU23fMOQ6a9xm0B11gNANdaIp\ni4YIuqIs6i8HSFmsFMUEKYva2gwkbTXQU0jSRsAfAfOBS4Hjy2nHAZeUx5cCx0haX9JOwK5kqc2I\niLZrdzXRNsAcSZOoEs/5tv9H0vXABZJOABYBRwHYnifpAmAe1ZKbJ6bbUERE+3W0mmhtSTXRWo4g\nZTEYQVeURf3lACmLlaKYIGVRa9fSiIjofkkGERGRZBAREUkGERFBkkFERJBkEBERJBlERARJBhER\nQZJBRESQZBARESQZREQESQYREUGSQUREkGQQEREkGUREBEkGERFBkkFERJBkEBERJBlERARtTgaS\ntpN0taQ7Jd0h6aSyf4qkuZLulnSFpM0bnjNL0gJJ8yUd2s74IiKionYuNi1pGjDN9m2SNgVuBo4A\n3gE8ZPt0SacAU2zPlLQXcA6wH7AdcBWwm4cEKWnortWJjfoXuIZuWPA7ZdEQQVeURf3lACmLlaKY\nIGUhCdsa7lhb7wxsL7V9W3n8G2A+1Yf8EcCcctoc4MjyeAZwnu3lthcCC4D92xljRER0sM1A0o7A\ny4Drgam2l0GVMICty2nbAosbnrak7IuIiDZatxMvUqqIvg2cbPs3kobe67R87zN79uznHvf19dHX\n17cmIUZETDj9/f309/c3dW5b2wwAJK0L/Bfwv7Y/X/bNB/psLyvtCtfY3lPSTMC2TyvnXQ6cavuG\nIddMm8HajCBlMRhBV5RF/eUAKYuVopggZVFbm0Hxn8C8gURQXAocXx4fB1zSsP8YSetL2gnYFbix\nAzFGRPS0dvcmOhi4FriDKq0a+AjVB/wFwPbAIuAo24+W58wC3gk8Q1WtNHeY6+bOYG1GkLIYjKAr\nyqL+coCUxUpRTJCyGO3OoO3VRO2QZLCWI0hZDEbQFWVRfzlAymKlKCZIWdRdTRQREV0uySAiIpIM\nIiIiySAiIkgyiIgIkgwiIoIkg4iIIMkgIiJIMoiICJIMIiKCJIOIiCDJICIiSDKIiAiSDCIigiSD\niIggySAiIkgyiIgIkgwiIoI2JwNJX5O0TNLtDfumSJor6W5JV0javOHYLEkLJM2XdGg7Y4uIiEHt\nvjM4CzhsyL6ZwFW2dweuBmYBSNoLOArYEzgcOEPVwqMREdFmbU0Gtn8IPDJk9xHAnPJ4DnBkeTwD\nOM/2ctsLgQXA/u2MLyIiKnW0GWxtexmA7aXA1mX/tsDihvOWlH0REdFm3dCA7LoDiIjodevW8JrL\nJE21vUzSNOCBsn8JsH3DeduVfcOaPXv2c4/7+vro6+tb+5FGRIxj/f399Pf3N3Wu7PZ+MZe0I3CZ\n7ZeU7dOAh22fJukUYIrtmaUB+RzgAKrqoSuB3TxMgJKG291qXHTHTYlo9//BmBGkLAYj6IqyqL8c\nIGWxUhQTpCwkYXvYjjltvTOQ9C2gD3iepPuAU4FPAhdKOgFYRNWDCNvzJF0AzAOeAU5c40/8iIho\nStvvDNohdwZrOYKUxWAEXVEW9ZcDpCxWimKClMVodwbd0IAcERE1SzKIiIgkg4iISDKIiAiSDCIi\ngiSDiIggySAiIkgyiIgIkgwiIoIkg4iIIMkgIiJIMoiICJIMIiKCJIOIiCDJICIiSDKIiAiSDCIi\ngiSDiIggySAiIujSZCDp9ZLukvRzSafUHU9ExETXdclA0iTgi8BhwIuAYyXtUW9UI+mvO4Au0l93\nAF2kv+4Aukh/3QF0kf66AxhV1yUDYH9gge1Ftp8BzgOOqDmmEfTXHUAX6a87gC7SX3cAXaS/7gC6\nSH/dAYyqG5PBtsDihu1fln0REdEm3ZgMIiKiw2S77hhWIulAYLbt15ftmYBtn9ZwTncFHRExTtjW\ncPu7MRmsA9wNHALcD9wIHGt7fq2BRURMYOvWHcBQtldI+mtgLlU11teSCCIi2qvr7gwiIqLz0oAc\nERFJBhERkWTQEkkfG7K9jqRz6oqnTpK2k3SxpF9LekDSdyRtV3dcdZC0saR/kPSVsr2bpDfWHVcd\nJK0n6SRJ3y4/75O0Xt1xdZKkJyQ9Xv4deDyw/Xjd8Y0kyaA120uaBSBpA+AiYEG9IdXmLOBSYBvg\nBcBlZV8vOgv4PfCKsr0E+Kf6wqnVl4A/AM4oP/uWfT3D9ma2J5d/Bx4PbE+uO76RpAG5BZIEnAPc\nAbwG+B/bn6s3qnpIus32y8ba1wsk3WT75ZJutb1P2fdT2y+tO7ZOG+737uGy+DjwfeDHtp+sO56x\n5M6gCZL2lbQvsA/weeBoqjuCa8v+XvSQpLeVqrJ1JL0NeKjuoGrytKSNAANI2oXqTqEXrSi/PwCS\ndgZW1BhPne4B/hy4SdKNkj4tqUvnWcudQVMkXTPKYdt+bceC6RKSpgNfoKoaMfAj4H22F4/6xAlI\n0h8Bfw/sRTU+5mDgeNv9dcZVB0mHUFWb3QMImA6cYPvqWgOrkaRpwFHAh4AptjerOaRhJRnEapF0\nsO3rxtrXKyQ9DziQ6gPwetsP1hxSLUpbGsDu5d+7AWz33J2SpK9SfUFYBvwA+CFwi+3ltQY2giSD\nFpQ3+puBHWkYvW37YyM9Z6KSdIvtfcfaN5GNVUVo+5ZOxdIt8r4YJOliqs4V86jaDq61fU+9UY2s\n66aj6HKXAI8BN9OjdcKSXgEcBDxf0gcaDk0G1qknqtp8epRjBnqm+rBUhWwLbCRpH6o7JKjeFxvX\nFliNbL8JQNKeVIt1XSNpHdtd2QU7yaA12w3MptrD1gc2pXrvNNZ9Pg68pZaIamL7NXXH0EUOA44H\ntgM+07D/CeAjdQRUtzLW5A+BVwFbAFdTVRd1pVQTtUDSmcAXbN9Rdyx1kzTd9qK64+gGZVDV/6P6\no4dqSasvl5X6eoqkN9v+Tt1xdANJX6T68P+B7V/VHc9YkgxaIGkesCtwL1U1kah6E+1da2AdJOlz\ntv9G0mWUrpSNbM+oIaxalYbC9YA5ZddfACtsv6u+qDpL0ttsf1PSBxn+ffGZYZ424UmaCuxXNm+0\n/UCd8Ywm1UStObzuALrAN8q//1prFN1lvyGDqq6W9NPaoqnHJuXfTWuNootI+jOqv5N+qi+OX5D0\nt7a/XWtgI0gyaIKkybYfp6r/7Gm2by4LEL3H9lvrjqdLrJC0i+3/g94caGX7y+V98bjtz9YdT5f4\ne6ovCg8ASHo+cBWQZDCOfQt4I1UvIjPYU4KyvXMdQdWlLEA0XdL6tp+uO54u8LdUPUUaB1q9o96Q\nOq+8L44Fkgwqk4ZUCz1EF8/6kDaDJpV5iba3fV/dsXQDSWcDe1JNVvfcvCs9XDe8AQ0DrXpxkBWA\npM9StZ+cz8rvi14cc/EpYG/g3LLraOB226fUF9XIkgxaIOkO2y+pO45uIOnU4fbb/minY6lbqR55\nA6sORuy5xDjC1C09OWULgKQ/BV5ZNn9g++I64xlNqolac4uk/Wz/pO5A6lQ+/Daz/aG6Y+kSlwG/\no5rN9tmaY6mNpEnAl2xfUHcs3cL2RcBFkraiyydyzJ1BCyTdBewGLKS6Be65rqUDJP3Y9ivGPnPi\nk3R7L74HhjMwnXfdcdRJ0oHAJ4GHgY9T9cDbiqq94O22L68xvBElGbSgzNS5il4cfCXpS1TTD1zI\nynXDF9UWVE0knQZ8z/bcumOpm6RPAg+yapvBw7UF1WGSbqIadb05cCZwuO3rJe0BnDuw5kW3STJo\ngaSXAHuUzfm2f1ZnPHWSNNyqZrZ9QseDqZmkNwHfpPrm9wyDd4xdu6pVu0i6d5jdtt0zPe4aF3mS\nNN/2ng3Hbu3WZJA2gyZI2pxqkrrtgdup/thfIuk+4IgyBqGn2O65rpOj+AzVug53uMe/Xdneqe4Y\nukBju9Fvhxzr2vdH7gyaIOnfgKeBD9t+tuybRFUvuJHt99UZXx3KncFw0w704p3BtUDfwHujl0l6\n+3D7bZ/d6VjqImkFg22KGwFPDRwCNrS9Xl2xjSZ3Bs15HbB34x+77WclfYSqB0kv+q+GxxsCbwK6\nfjKuNrkH6Jf0vzRMbd6LXUsZnIcHqvfFIcAtQM8kA9vjcir3JIPmPD3c6kS2l0vqycFFQ2emlHQu\n1UpOveje8rN++elZQ++SJW0BnFdTONGCJIPmbDhkwY4BAjYY5vxetBuwdd1B1KEXB9q14Ekg7Qjj\nQJJBc+5n5QU7Gi3tZCDdQtITrNxmsBToymH27VYmIPsw8CKqqhEAenHU7ZCpzSdRrQGcQWjjQJJB\nE7Ki1apdcv8aAAAPTElEQVRsbzb2WT3jHKp+9W8E/go4Dvh1rRHVp3Fq8+XAItu/rCuYaF56E0XL\nJK1LtXiLJW0PHAD8wvZtNYdWC0k32/6DxpHIkn5ie7+xnjuRDUzB0Kvdbcu8RKdRVZ+KLh9/0rXT\nqUZ3kvRu4AFgUXn8Paq1j8+X1JPVRFQDzQDul/SG0r60ZZ0BdZqkAyX1S7pI0j6Sfgb8DFgmqVfX\nDT8dmGF7c9uTbW/WrYkAcmcQLZJ0J9UsjJsB84Hpth+UtDHwE9svqjXAGpSFz39ANSjxC8Bk4KO2\nL601sA4ar1MwtJOk62wfXHcczUqbQQskfc/2IWPtm+Cetv0I8IikX9h+EMD2U5J6cqEb2wNjLh4D\nerV9ad2BuZkkfcz29QC276qWAulJN0k6H/guK48/6cr5u5IMmiBpQ2BjYCtJUxjsYjqZarK2XrJR\nqQaZBKzf0OVWNPSk6SWS5gAn2360bE8BPt1jo7HH5RQMbTaZavTxoQ37DHRlMkg1URMknQz8DfAC\nYAmDyeBx4Cu2v1hXbJ02wuIlz+nFnlfDTT7WzROStcN4nYIhBuXOoDm/sr2TpJNs/1vdwdSpFz/s\nmzBJ0pRSfYakLemxv63xOgVDO0l6IfAlYKrtF0vam6pB+Z9qDm1Y6U3UnFnl3+PrDCK61qeBH0v6\nuKR/An5E1ZMkettXqD47ngGwfTtwTK0RjaKnvr2sgYckzQV2krRKDxHbM2qIKbqE7bMl3cxg4/Gf\n2p5XZ0zRFTa2feOQBvRV5jjrFkkGzXkDsC/V8nWfrjmW6EK275T0a0ojuqQdbN9Xc1hRrwcl7UJp\nQJf0FqqpbbpSGpBbIOn5tn8taVMA27+pO6a6lO6D/9iwvQ5wtu231hhWLSTNoPqS8AKqAXnTqVbC\n67kxFzFI0s5UYy4OAh6hmtn2bbYX1hnXSNJm0Jqpkm4F7gTmSbpZ0ovrDqom20uaBSBpA6rucgvq\nDak2HwcOBH5eVvo6BLi+3pDqIelPJS2Q9JikxyU9IannVgIslth+HfB8YA/br6TqgdiVkgxacybw\nAdvTbe8AfLDs60UnUC39OQu4DLjG9ux6Q6rNM7YfoupVNMn2NcDL6w6qJuNqCoY2u0jSuraftP2E\npGnAlXUHNZK0GbRmk/KHDoDtfkmb1BlQp0nat2Hz88CXgeuAayXta/uWeiKr1aOl6vBa4BxJD1D1\nue9Fy2zPrzuILvFd4MLSVrA9cCnwoXpDGlnaDFog6WKqJfy+UXa9DfgD22+qL6rOGmPQmXt0Dv9N\ngN9RDbB6K9X8POeUu4WeIunzwDTGyRQM7SbpvcDrgR2Bv7T9o3ojGlmSQQvKNAMfpZqoDarJyWYP\nDDaK6HWSzhpmt3tpag5JH2jcBN4O3A7cCt27NnaSwWoqieHRXp2rHUDSG1h1da+P1RdRPYas+rY+\nsB7wZA/Xlfc0SaeOdrxbl0lNm0ETJP0jcEGZgXED4H+BlwIrJP257avqjbDzJP0H1eR9rwG+SrWm\nwY21BlWTxlXfVI0wOoKqd1HPGW9TMLRDt37YjyW9iZpzNHB3eXwcVbltDbwa+ERdQdXsINtvBx4p\nb/5XAC+sOabaufJd4LC6Y6nJuJqCoZ0kXSlpi4btKZKuqDOm0eTOoDlPN1QHHUa1WMcKYH5ZArIX\nDUxT/JSkFwAPAdvUGE9tyvKGAyZRdSv9XU3h1G1cTcHQZs8fmNYcwPYjkrauM6DR9OoHWat+XwaX\nLaOqFmnsHrZxPSHV7r/Kt55PUfWwMlV1US/6k4bHy4GFVFVFvWhcTcHQZisapyWRNJ0uXtshDchN\nkHQAMIdqJOHnbH+87P9j4C9sH1tnfHUr7Sgb2n6s7liiXuNtCoZ2Kms/nwl8n6pX0R8C77HdlVVF\nSQaxWsqaxx8EdrD9bkm7Abs3LAE54Ul6EbDLwFrHkj5LNcYA4Iu9OABP0ga2f1/GXkwqI2+3tP1w\n3bHVQdJWDHYmuH5gmdhulAbkWF1nUQ0qekXZXgL0TI+R4pNA4x/3YcB/A9cA/zjsMya+cTUFQztI\n2qP8uy+wA/Cr8rPDkBH8XSVtBrG6drF9tKRjAWw/pd5b+XybISNKH7f9HQBJf1lTTHUbV1MwtMkH\ngPcw/HT3BrpylH6SQayupyVtxGBD4S40TD/QIzZr3LDdOLaga3uNtJPtr0hanyop7EiXT8HQDrbf\nU/4dV0vEJhk0YUjXwVX06Lwrs4HLqaayPgc4GHhHrRF13q8kHWD7hsadkg6kqhboGcNMwbADcBtw\noKQDu3UKhnaTdBBVUnzus9b22bUFNIokg+YMdB3cmqqXxNVl+zVU6932XDKwPbcs9Xgg1R//yd3c\nONYmpwDnS/o6VfdagD+gGph4dF1B1WSzIdsXjbC/Z0j6BrALVVJcUXYb6MpkkN5ELSjrIB9n+/6y\nvQ3wdds9N9pU0vdsHzLWvomuDCL6a6o5mqBa+OjfbS+rL6roBpLmA3uNl/nLcmfQmu0HEkGxjOp2\nuGdI2pBqoN1WZbK+gUbjycC2tQVWE9sP0Ls9h1Yh6UrgzwZG3pb3yHm9+IUJ+BnVdN7jYtBdkkFr\nvlfmFjm3bB8N9NokdX8J/A3Ver83M5gMHge+WFdQ0TXG1RQM7SDpMqrqoM2olse9kZXXdphRV2yj\nSTVRiyS9CXhV2bzW9sV1xlMXSe+z/YW644juUtqR3jRkCoaLbXdt//q1TdKrRztu+/udiqUVuTNo\n3S3AE7avkrSxpM1sP1F3UJ0iaT9g8UAikPR24M3AIqqFfnpypGk85++AH0paaQqGekPquCVUU3hf\n17hT0ivp4iqj3Bm0QNK7qd7YW9repUzB8B+91Ggq6RbgdbYflvQq4DzgfcDLgD1tv6XWADuooTpg\nWN1aHdBu42kKhnaQ9F/ALNt3DNn/EuATtv9k+GfWK3cGrXkvsD9wA4DtBb1WHwqs0/Dt/2jgzDLq\n9juSbqsxrjr8a/n3T6kaCr9Zto+l6lzQMyTtURZ/GqgOGhhnsUOZubOX5mmaOjQRANi+Q9KOnQ+n\nOUkGrfm97acHZl0oaxn02q3VOmXumeXAIaxcBdBT76eBul9Jn7b98oZDl0m6qaaw6jIup2Boky1G\nObZRx6JoUU/98a4F35f0EWAjSX8EnAhcVnNMnXYuVTk8SLXAzQ8AJO0K9OoU1ptI2tn2PQCSdgI2\nqTmmjhqvUzC0yU2S3m37K407Jb2LqgdeV0qbQQskTQLeCRxK1Th2BfDV8TKoZG0p0y1sA8y1/WTZ\n90Jg0x6rDgBWmrf+Hqr3xXSqOXm6ct76dhtPUzC0g6SpwMXA0wx++L8cWJ+qp9XSumIbTZJBxFpQ\nFvjZo2zeZbvXJu0DRp6CwfZJ9UVVD0mvAV5cNu+0ffVo59ctyaAFkg6mmqBtOtW3HlG90XeuM66o\nX69/Gx4w3qZgiEFpM2jN14D3U936rRjj3OgR421CsjYbV1MwxKAkg9Y8Zvt/6w4ius7L6fFvw+N1\nCoYYlGTQmmskfYpqet7GN3rPNZrGSvJteHDMRYxTSQatOaD829invNf6UMeqtiLfhsflFAwxKA3I\nEWtopInJunVCsnYYr1MwxKAkgxaU7oNvZtVeIx+rK6aIbiDpJ7b3G+HYHbZf0umYojWT6g5gnLkE\nOAJYDjzZ8BM9TNKBkn4i6TeSnpa0QtLjdcfVYeNyCoYYlDaD1mxn+/V1BxFd54vAMcCFVO1Jbwde\nWGtEnTcup2CIQakmaoGkM4EvDDcjYfQuSTfZfrmk223vXfbdanufumPrlPE6BUMMyp1Ba14JHC/p\nXqpeIwMjkPeuN6yo2VOS1gduk3Q6Ve+ZnqqCtb0MOGjIFAz/3e1TMMSg3Bm0oCzhtwrbizodS3SP\n8r5YRvUt+P3A5sAZtn9Ra2ARLUgyWA1lQZsNB7YH1nuNiBiveupWdk1JmiFpAXAv8H1gIZDpKSJi\n3EsyaM3HqdZ2/bntnahW+rq+3pAiItZckkFrnrH9EDBJ0iTb17Dy1BTR4yRNkjS57jgiWpVk0JpH\nJW0KXAucI+nzZNBZz5P0LUmTJW1CNWndPEl/W3dcEa1IA3ILyh/7b6mS6Fupeo2cU+4WokdJus32\nyyS9FdgXmAncnC7HMZ7kzqAJknaVdLDtJ20/a3u57TnALYw+DD96w3qS1gOOBC61/QzVbLYR40aS\nQXM+Bww318xj5Vj0ti9T9SzbBLi2jDvotbmJYpxLNVETMiNjtErSuraX1x1HRLNyZ9CczMgYI5L0\nPEn/JukWSTeXjgWb1x1XRCuSDJpzk6R3D92ZGRmjOA/4NdVaF28pj8+vNaKIFqWaqAmZkTFGI+ln\ntl88ZF+qD2NcSTJowZAZGe/MjIwBIOkzwI3ABWXXW4D9bX+ovqgiWpNkELGGJD1B1ZNoBdW05pMY\nHIxo2xmRHF0vySAiIrK4TcTqkrSH7bsk7Tvccdu3dDqmiNWVO4OI1STpTNvvkXTNMIdt+7UdDypi\nNSUZREREqoki1gZJBwE70vA3Zfvs2gKKaFGSQcQakvQNYBfgNqoeRVBNVJdkEONGqoki1pCk+cBe\nzh9TjGOZjiJizf0MmFZ3EBFrItVEEatJ0mVU1UGbUa1udiPw+4HjtmfUFVtEq5IMIlbfv9YdQMTa\nkmQQsfqWAFNtX9e4U9IrgfvrCSli9aTNIGL1ZQW8mDCSDCJW31TbdwzdWfbt2PlwIlZfkkHE6ssK\neDFhJBlErL6sgBcTRgadRaymrIAXE0mSQcQaygp4MREkGURERNoMIiIiySAiIkgyiIgIkgwixiTp\nifLvdEnH1h1PRDskGUSMbaCXxU7An9cZSES7JBlENO9fgFdKukXSyZImSTpd0g2SbhsYgCbp1ZKu\nkXShpPllJTTKsU9K+lk5//TafpOIITJraUTzZgIfHFinoHz4P2r7AEnrA9dJmlvOfRmwF7C07D8I\nuAs40vYe5fmTO/4bRIwgdwYRq+9Q4O2SbgVuALYEdivHbrR9f1kK8zaqieseA34r6auS3gT8toaY\nI4aVZBCx+gS8z/Y+5WcX21eVY79vOG8FsK7tFcD+wLeBNwKXdzbciJElGUSMTeXfJ6iWuBxwBXCi\npHUBJO0maeMRL1Id28L25cAHgL3bFG9Ey9JmEDG2gd5EtwPPlmqhr9v+vKQdgVskCXgAOHKU508G\nLpG0Ydl+f/tCjmhN5iaKiIhUE0VERJJBRESQZBARESQZREQESQYREUGSQUREkGQQERHA/wd66/8P\nrDbS1wAAAABJRU5ErkJggg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11b53fe90>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# get the Series of the names\n",
"x = chipo.item_name\n",
"\n",
"# use the Counter class from collections to create a dictionary with keys(text) and frequency\n",
"letter_counts = Counter(x)\n",
"\n",
"# convert the dictionary to a DataFrame\n",
"df = pd.DataFrame.from_dict(letter_counts, orient='index')\n",
"\n",
"# sort the values from the top to the least value and slice the first 5 items\n",
"df = df[0].sort_values(ascending = True)[45:50]\n",
"\n",
"# create the plot\n",
"df.plot(kind='bar')\n",
"\n",
"# Set the title and labels\n",
"plt.xlabel('Items')\n",
"plt.ylabel('Price')\n",
"plt.title('Most ordered Chipotle\\'s Items')\n",
"\n",
"# show the plot\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 6. Create a scatterplot with the number of items orderered per order price\n",
"#### Hint: Price should be in the X-axis and Items ordered in the Y-axis"
]
},
{
"cell_type": "code",
"execution_count": 136,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"(0, 40.0)"
]
},
"execution_count": 136,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAEZCAYAAACTsIJzAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XmcXFWd9/HPr7Onu4GQQAJZyUZQQEDHhyVK44JMQFBk\naEBHVNSZ53EGEEcFnsdXgqLALMxkVGYBZIgLtArIYoCI0khwkGEHQUiAbHQSCMTQ6ZCE0L/nj3Oq\n+1alqru6urau+r5fr3ql6i7nnntTXb97z+/cc83dERERSWmodAVERKS6KDCIiEgaBQYREUmjwCAi\nImkUGEREJI0Cg4iIpFFgqBFmdp2ZfbPC23/dzB7MMu8sM7urEvUqJjNbaGY/LNO2pptZt5kNyb/R\nch6rHNufb2bPVmr7Q92Q/NINBWa2ysw2mtmYxLRzzOzeStarFMxsPvBBYH93PzJzvrv/xN1PSCzf\nbWYzy1nHIirnjT9D/SajitXf3Ze7+0GV2v5Qp8BQOk44vudnmV7VCjhLnQGscvfteS4/FI6BVXN5\nxWJmw4pQRlUdq2LsU71TYCitfwC+YmZ7ZM7I1lRgZvea2efi+7PNbLmZXWlmm81spZkdFaevMbMN\nZvbpjGL3MbNlZvZGLGtaoux5cd5rZvasmf1FYt51ZnaVmf3SzDqBliz13c/Mbo3rP29mn4/TPwdc\nDRwVt7swy7pnm9n98f19gAFPxuX/Ik4/ycwei/u63MwOSaz/kpl9xcyeiPNvMLORcd54M7s9Tn8t\nlp+VmR1tZg/FZX9vZkdlHPtL47a7gAPMbIaZtZvZFjO7G5iQUd6RZvZALO8xMzu2n/L2MLNrzazD\nzNaa2bdSP4Jm1mBm/2hmr5rZSuDEXPuROCYXmtkf4n5fmzomeR7Pr5nZE8DWbCcClT5WA9lfMzs2\nHs+vmdl64AepaYn1p5jZTWb2SjzG/5qY9zkzeyaWe6cl/m7qlrvrVYIX8BLwAeDnwLfitHOA38T3\n04G3gYbEOvcCn4vvzwZ2Ap8m/JB+C1gNfBcYAXwYeAMYG5e/DtgCHBPn/wtwf5w3FliTKOtdwKvA\nvMS6m4Ej4+eRWfbnt4ltvwt4BWhJ1PW3fRyLtPlAN3BA4vPhwEbgPbF+fxmP34jEsXwQmAjsBTwD\nfDHO+w5wFeEkZxhwTI46jANeB86Ky54RP49LHPtVwLw4fzjwO0JwHwG8Lx7vJXH5ycAm4CPx8wfj\n5/F9lHdLrOtowg/ng8AX4vJ/Hfdr/7iPv8n8fmT5fj2ZWH458M0BHM9H47qjqvBYDRvg/h4LvBW/\nCyOAUXHamji/AXgc+Md47EcCR8d5pwDPA3PjchcDD1T696PSr4pXoFZf9AaGdxJ+dMcz8MDwXGLe\nwXH5CYlpm4BD4/vrgJ8k5jXGP5bJwOnAfRn1+3fgG4l1/6uPfZkSyxqbmPYd4AeJug40MMxMfL4K\nuCRjnT8C70scyzMT864ArorvLyH84M7q5//jU8CDGdN+B3w6cewXJeZNJQTmMYlpP6b3x+5rwPUZ\n5d0F/GWO8vYFtpP4ISb84P46vv81MdjFzx/O/H5k+X59IfH5z4EVAzieZ1frsSpgf4+Nx3ZEYn4y\nMBxFCJS7HUtgKfDZxOcGoAuYms/fea2+1JRUYu7+B+AO4KICVt+YeP9mLG9TxrSmxOeeS2d37yIE\npP0JQehIC72GXjezzYSzwYnZ1s1if+B1d9+WmLaaEHSKYTqhyS1ZvylxuynJY7GN3v3+B+AFYJmF\n5rav59jG/rHOSZn7kDwG+wOb3f3NjOWTdT49o87HAJNylDedcDa7PrH8vwP7JLaXXD6zrtmsy1g+\ndbzyOZ7JdTNV+ljlkmt/AV5197dyrDcFWO3u3VnmTQcWp+oGvEbIgRXruz0kDa90BerEIsKl+z8l\npnXFf8cCW+P75B9KIaam3phZE6FJoIPwR9fu7h/pY13vY14HsLeZNcaAAzANeHmQ9U1ZC3zb3S8b\n6IruvhX4O+DvzOwdwL1m9pC735uxaAfwiYxp04A7k8Ul3q8HxpnZmMQP3jTC1U6qzkvc/a/6ql7i\n/VrCWe14j6emGdaT+P8j/GD1J3P5jsS2+jue/f1/V/JY5ZJrf/tbfy0wzcwasgSHNcCl7n5DHtuv\nG7piKAN3fwFoA85NTNtE+GH9VEw8fg6Y1U9R/fXWWBCThiMJOYkH3f1lwhXLXDP7lJkNN7MRZvYe\nMzswz/qvIzQlXGZmo8zsUEKzWKH91DcAye6qVwN/bWbvBTCzRjNbYGaN/RVkZieaWeq4dQK76P1B\nSloKzDGzM8xsmJm1AgcBt2cr193XAA8Dl8TjNR/4aGKRHwEfNbPj4//f6Jjw3D9HeRuAZcA/m1mz\nBTPN7P1xkZ8C55rZZDMbB+S68kn6Ulx+b0Lb+I1xesHHM6rosSpgf/vzECF4XW5mY+N3+Og47z+A\ni+NJBWa2p5mdNsB61RwFhtLJPIP5JuHqIDn9C4T2102EP7wHBlimZ7z/CeHq5DVCAvJT0HNWfTyh\nTbsjvi4nJOnydSaht0gHcBMhP5F5Vp6vRcCSePl+mrs/QjgW34uX888T8hLJfctlDnCPhd5UDwDf\nd/fdeia5++vASYSri03x3xPdfXMf2zgLOJJwPL8BXJ8obx0hcXkxIZG/OpaZ+pvKVt6nCYnPZwjJ\n3J/Re5V4NXA38AThR/amPvY55SeEYLMSWAF8O9ZtMMezWo5VNln3tz/xKuGjhO/KGsIVxOlx3i8I\nfws3mtmfCAnuE3IUVTcs+1VtkTcSusM9DKxz95PjGVEb4XJwFXC6u28peUVEaoSZvQSc4+6/qXRd\nyqHe9rfSynXFcB7hLCnlQuAedz+Q0C2vkMSsiIiUQMkDg5lNARYA1yQmn0Lvpeb1wMdKXQ+RGlP6\nS/3qUm/7W1Hl6JX0z8BXgT0T0ya6+0YISTkz27cM9RCpGe4+VMeaKki97W+llfSKwcxOBDa6++P0\n3aNGZwMiIlWi1FcMxwAnm9kCYAzQbGEo3g1mNtHdN5rZJMLwCrsxMwUMEZECuHvBgxGW9IrB3S92\n92nxMvAMwnAQf0noD/2ZuNjZwK19lKGXOwsXLqx4HarlpWOhY6Fj0fdrsCp1H8PlwIfN7DnCgFqX\nV6geIiKSoWxDYni46ei++P514EPl2raIiORPdz4PES0tLZWuQtXQseilY9FLx6J4ynLnc6HMzKu5\nfiIi1cjM8GpNPouIyNCjwCAiImkUGEREJI0Cg4iIpFFgEBGRNAoMIiKSRoFBRETSKDCIiEgaBQYR\nEUmjwCAiImkUGEREJI0Cg4iIpFFgEBGRNAoMIiKSRoFBRETSKDCIiEgaBQYREUlT0sBgZqPM7Pdm\n9piZPWVmC+P0hWa2zsweja8TSlkPERHJX8kf7WlmY919m5kNAx4AzgX+HOh09yv7WVeP9hQpos7O\nTtra2lixcgVzZs+htbWV5ubmSldLimywj/YcXszKZOPu2+LbUXF7qV/6gistIgO3fPlyFpy8gO6p\n3XRN6KLxzkYu+NoFLL1tKfPnz6909aSKlOOKoQF4BJgFfN/dL4pNSp8BtgAPA19x9y1Z1tUVg0gR\ndHZ2Mnn6ZDpP6gx/iSkvQPMdzXSs6aCpqali9ZPiGuwVQ8mTz+7e7e6HA1OA95rZO4CrgJnufhiw\nAeizSUlEBqetrY3uqd3pQQFgFnRP7aatra0i9ZLqVPKmpBR3f8PM2oETMnILVwO351pv0aJFPe9b\nWlpoaWkpUQ1FateKlSvomtCVdV7X+C5WvrCyzDWSYmpvb6e9vb1o5ZU0MJjZBOAtd99iZmOADwOX\nm9kkd98QFzsVeDpXGcnAICKFmTN7Do13NtLF7sGh8bVGZs+aXYFaSbFknjRfcsklgyqvpDkGMzsE\nuJ7QZNUAtLn7t81sCXAY0A2sAv7K3TdmWV85BpEiUI6hvgw2x1Dy5PNgKDCIFE9ar6TxXTS+1kjD\n2gb1SqpBCgwikretW7fS1tbGyhdWMnvWbFpbW3WlUIMUGEREJE3Vd1cVEZGhRYFBRETSKDCIiEga\nBQYREUmjwCAiImkUGEREJI0Cg4iIpFFgEBGRNAoMIiKSRoFBRETSKDCIiEgaBQYREUmjwCAiImkU\nGEREJI0Cg4iIpFFgEBGRNAoMIiKSpqSBwcxGmdnvzewxM3vKzBbG6ePMbJmZPWdmd5vZnqWsh4iI\n5K/kj/Y0s7Huvs3MhgEPAOcCnwBec/e/N7OvA+Pc/cIs6+rRniIiA1T1j/Z0923x7ShgOODAKcD1\ncfr1wMdKXQ8REclPyQODmTWY2WPABuBX7v4/wER33wjg7huAfUtdDxERyc/wUm/A3buBw81sD+AW\nM3sn4aohbbFc6y9atKjnfUtLCy0tLSWopYjI0NXe3k57e3vRyit5jiFtY2bfALYBnwda3H2jmU0C\n7nX3g7IsrxyDiMgAVXWOwcwmpHocmdkY4MPAs8BtwGfiYmcDt5ayHiIikr+SXjGY2SGE5HJDfLW5\n+7fNbG/gp8BUYDVwurv/Kcv6umIQERmgwV4xlLUpaaAUGEREBq6qm5JERGToUWAQEZE0CgwiIpJG\ngUFERNIoMIiISBoFBhERSaPAICIiaRQYREQkjQKDiIikUWAQEZE0CgwiIpJGgUFERNIoMIiISBoF\nBhERSaPAICIiaRQYREQkjQKDiIikUWAQEZE0CgwiIpKmpIHBzKaY2W/M7A9m9pSZ/W2cvtDM1pnZ\no/F1QinrISIi+TN3zz7DrBPIPhNw9z36LdxsEjDJ3R83sybgEeAUoBXodPcr+1nfc9VPRESyMzPc\n3Qpdf3iuGe7eHDfwLWA98EPAgE8C++VTuLtvADbE91vN7FlgcqruhVZaRERKJ+cVQ88CZk+4+7v6\nm9bvhsxmAO3AwcBXgM8AW4CHga+4+5Ys6+iKQURkgEp2xZDQZWafBG4kNC2dCXQNZCOxGennwHnx\nyuEq4Jvu7mZ2KXAlcE62dRctWtTzvqWlhZaWloFsWkSk5rW3t9Pe3l608vK5YpgBLAaOIQSGB4Dz\n3X1VXhswGw7cAdzp7ouzzJ8O3O7uh2aZpysGEZEBKvkVQwwApxS6AeAHwDPJoGBmk2L+AeBU4OlB\nlC8iIkWUzxXDXODfgInufrCZHQqc7O6X9lu42THAb4GnCFcbDlwMnAUcBnQDq4C/cveNWdbXFYOI\nyAAN9oohn8BwH/BV4D/c/fA47Wl3P7jQjeZdOQUGEZEBG2xgyOcGt7Hu/lDGtF2FblBERKpbPoFh\nk5nNIt7sZmanEe5rEBGRGpRPU9JM4D+Bo4HNwEvAJ919dckrp6YkERmEzs5O2traWLFyBXNmz6G1\ntZXm5uZKV6vkSppjMLMG4DR3/6mZNQIN7t5Z6MYGXDkFBhEp0PLly1lw8gK6p3bTNaGLxk2NNKxt\nYOltS5k/f36lq1dS5Ug+P+zu7yl0A4OhwCAihejs7GTy9Ml0ntQJsxIzXoDmO5rpWNNBU1NTxepX\nauVIPt9jZn9nZlPNbO/Uq9ANioiUWltbG91Tu9ODAsAs6J7aTVtbW0XqNVTkMyRGa/z3S4lpDsws\nfnVERAZvxcoVdE3IPnJP1/guVr6wssw1GlryufP5gHJURESkWObMnkPjnY10ZRnWrfG1RmbPml2B\nWg0d+eQYxgIXANPc/YtmNgc40N3vKHnllGMQkQIox1D60VWvIzxg5+j4+WXgZ4SB8UREqk5zczNL\nb1va2ytpfBeNr/X2SqrloFAMefdKMrPHEkNiDPh5DAVVTlcMIjIIW7dupa2tjZUvrGT2rNm0trbW\nRVAoxxXDTjMbQ++dz7OAHYVuUESkXJqamjjnnKyPepE+5BMYFgJ3AVPN7MeE5zJ8ppSVEhGRyum3\nKQnAzMYDRxKe0/ygu28qdcXidtWUJCIyQCW789nMjuhrRXd/tNCN5kuBQURk4EoZGO6Nb0cD7wGe\nIFwxHAo87O5HFbrRvCunwCAiMmAlGxLD3Y9z9+MIQ2wf4e7vcfd3A4cTuqyKiEgNymespAPd/anU\nB3d/GjiodFUSEZFKyqdX0lNmdg3wo/j5k8CTpauSiIhUUj43uI0G/jfw/jjpt8C/ufv2fgs3mwIs\nASYC3cDV7v6vZjYOaAOmA6uA0919S5b1lWOQkqjXB7hIfSj1g3qGAUvc/ZMFVm4SMMndHzezJsLQ\nGqcAnwVec/e/N7OvA+Pc/cIs6yswSNHV8wNcpD6U40E9y4EPuPvOQjeSKOsXwPfi61h33xiDR7u7\nz8uyvAKDFFW9D64m9aEcD+p5EXjAzL5hZhekXgPdkJnNAA4DHgQmuvtGAHffAOw70PJECqEHuIj0\nL5/k8wvx1QAU1Agbm5F+Dpzn7lvNLPMyIOdlwaJFi3ret7S00NLSUkgVRAA9wEVqU3t7O+3t7UUr\nL68hMaDnxx133zqgDZgNJwzRfae7L47TngVaEk1J97r7bl1g1ZQkxXbNNddw/nfPp+vULA9wubmR\nxecu1qBrMuSVI8dwMPBDIPWc503Ap939D3lWcAmwyd0vSEy7Anjd3a9Q8rl61ENPHeUYpB6UIzD8\nDvi/7n5v/NwCfMfdj+5zxbDsMYTurU8RmoscuBh4CPgpMBVYTeiu+qcs6yswlEk99dRJ29eMB7jU\n2r5KfSpHYNjtoTx6UE9tqcez6Hp9gIvUh3I8qOdFM/sGoTkJ4FOEnkpSI/LpqVNr7e56gItIbvl0\nV/0csA9wM3ATMCFOkxqhnjoiktTvFYO7bwbOLUNdpELmzJ5D452NdJGlp85rjcyeNXtQ5ddDUluk\nluTdXbUSlGMoj1LmGOopqS1SLUqefK4kBYbyKUVPnXpMaotUg3Ikn6UOzJ8/n441HUXtqVOPSW2R\nWtBvYDCzvwcuBd4E7iI82vPL7v6jPleUIafYPXWU1BYZmvLplXS8u78BnER4dsJs4KulrJTUhjmz\n59C4qTHrvGIktUWkNPK5we1pdz84PsXt5+5+l25wk3yUK8egXk8i6cpx5/PlwMcITUnvBfYC7nD3\n/1XoRvOunALDkFfq4SfU60lkd2XplWRmewNb3P1tMxsL7BGfo1BSCgy1oVTDT6jXk0h25eqVNA+Y\nEYfQTllS6EalvpRq+An1ehIpjXx6Jf2Q8Kf3OPB2nOwoMEiFqdeTSGnkc8XwHuAdatORalPqoTxE\n6lU+yeefAee6+/ryVClt24pHQ0i5ewcpxyCSXTl6Jd0LHEZ4uM6O1HR3P7nQjeZLgWHoqFTvID10\nR2R35QgMx2ab7u73FbrRfCkwDA2VPnPXQ3dE0pW8V5K732dm04E57n5P7K46rNANSu2pdO8gPXRH\npLj6HRLDzL4A/Bz4jzhpMvCLUlZKhhb1DhKpLfmMlfQl4BjgDQB3XwHsm0/hZnatmW00sycT0xaa\n2TozezS+Tiik4lI9NCaSSG3JJzDscPedqQ/xJrd8G/6vAz6SZfqV7n5EfN2VZ1lSpVpbW2lY2wAv\nZMx4ARrWNtDa2lqReolIYfK5j+E+M7sYGGNmHwb+D3B7PoW7+/KYn8hUcFJEqk9zczNLb1uas3eQ\nEsEiQ0s+vZIagHOA4wk/6He7+9V5byAEhtvd/dD4eSHwGWAL8DDwFXffkmNd9UoaQtQ7SKQ6lKO7\n6nnuvri/aX2snxkY9gE2ubub2aXAfu6etUuJmfnChQt7Pre0tNDS0pLPZkVE6kZ7ezvt7e09ny+5\n5JKSB4ZH3f2IjGmPufvheW0gIzDkOy/O1xWDiMgAlew+BjM7EzgLOMDMbkvMagZeH8A2jEROwcwm\nJYbsPhV4egBlidQMPWBIqlXOK4Z4Nn8AcBlwYWJWJ/Cku+/qt3CznwAtwHhgI7AQOI4wxEY34VGh\nf+XuG3OsrysGqUl6wJCUUlke1FMpCgxSiyo9hIjUvsEGhpz3MZhZp5m9keXVaWZvFLpBkXqXzxAi\nIpWUM8fg7mrsFCkBDSEi1S6fO59FpIg0hIhUO+UYRMpMOQYptZIPuy0ixaUhRKTa6YpBpEI0hIiU\nirqriohImpJ1VxURkfqkHIPUNA07ITJwakqSmqVhJ6ReKccgkoW6hEo9U45BJAsNOyFSOAUGqUka\ndkKkcEo+S5pqSNYWow5zZs+h8c5Gutg9OOQadqIa9l2kGijHID2qIVlbrDoMNMdQDfsuUixKPktR\nVEOytth1SPuxzxh2IvljXw37LlJMSj5LUVRDsrbYdZg/fz4dazpYfO5iLjzyQhafu5iONR27XQFU\nw76LVBPlGASojmRtKerQ1NTEOeecU/btigxlumIQoDqeEVCpOlTDvotUk5LmGMzsWuAkYKO7Hxqn\njQPagOnAKuB0d9+SY33lGBJK2WumFO3sA63vQOpQzGOhHIPUmsHmGHD3kr2A+cBhwJOJaVcAX4vv\nvw5c3sf6LsH999/vzeOavfHQRucDeOOhjd48rtnvv//+0mzjuMFto9D65lOHUhyLYu67SKXF386C\nf7tL3ivJzKYDt3vvFcMfgWPdfaOZTQLa3X1ejnW91PUbCsp5RluMZwQMtr591aGUx0LPR5BaMRSf\n4Lavu28EcPcNZrZvBeowpOTTa6a/BGu+8knW9mew9e2rDqU8FsXYd5FaUA29kvq8JFi0aFHP+5aW\nFlpaWkpcneoz1HrNlLK+Q+1YiJRDe3s77e3tRSuvEoFho5lNTDQlvdLXwsnAUK8KGd6hkkpZ36F2\nLETKIfOk+ZJLLhlUeeXIMcwg5BgOiZ+vAF539yvM7OvAOHe/MMe6yjFQ3hxDMXr7lLK+6kEk0r9q\n75X0E6AD2AGsAT4LjAPuAZ4DlgF79bF+EfLztaEcvWaK2dunlPVVDyKRvlHtvZIGQ1cM6UrZa6YU\nZ+KlrK96EInkpkH0pCiuueYazv/u+XSdmqXt/uZGFp+7WD12RIYIDaInRaHePiKSUg3dVaveQBKy\nxR62Ilne1ClTAVi7bm3Rh8RI6+2zA3ga2AyMg7GvjO2zt09nZyfXX389d/zyDjA4acFJnH322XrI\njchQNZgERalfVEHyeSAJ2WIP1ZBZHrNwRuIcUfyE6xtvvOHN45qdj+CMxZlH2OZcnBH43XffnbOO\nY5rHhHrNpaeeY/cYq2SwSIWg5HPpDHRQt2Imb/sqj5uA84B1xe2iuWzZMj5y0kfgDPLah87OTvaf\ntj9bd2yF03Zfp+n2JtavXa+ksEiZKcdQQgN5gEuxH/bSV3lMA/5QeNm5rFmzhsaDGvPeh7a2NnY2\n7gzj5GZZ563939JDbkSGIAWGPgwkIVvs5G1f5bEfof2/wLIL2Wa27axYuYKdw3fC/tnL2zFxh5LW\nIkOQAkMfBvIAl2I/7KWv8lhPuE2wwLIL2Wa27cyZPYeRu0aGWxizGLVxlIaoEBmClGPoQ1/t/KNv\nGc2Lz7/IfvvtB0BHRwezDpzF9o9vz9rWftm3LuvpTbRgwQKWLl3a03Mp83NraytA/zmGl6DhpgYO\nPeRQDj34UC677DKam5sL7hU10DyJcgwi1Uk3uJXY8uXLWXDyAt7a/y2277sd1gFrYPSU0Yx4fQRL\nb1sKEJbZ+y22r9secgBTYPQro2lY24C703BAA10Tuhi9ejTb12xn9NzRbJ+4ndEbR7P9+e2Mnjaa\n7dO307ipkYa1DWnldk/tpmt8VxhUZC3wTsLQgxuBGYTtrQFWwaiRoxg+ezhdE7rSypo/f/6A9je1\nzcbX+i5j+fLlHL/geN7c8WbINUwJdRn76lju/uXdeW9XRIpHgaEM1q9fzwGzD2DHzB0wk/DDPIqe\ns2KArR/dGs6YdxASwy/CqBdGMXzkcLpO7uqdtxj4BLmvAmK5qTN0oGfohwnjJ3DxNy5m57SdYZ0z\ns5Tzc+D8WA4U1CtqoMNNbN26leuvv55fLv0lACcuOJGzzz5bVwoiFaLAUAZ9DRcx8uqR2J7GjtN3\n7DZvVNsovNPZ+fmdYcIjwApCd9BMNwJzgSPCx2zDUPTUgy7YBnyq/3JylSUitUvdVcugr946O4fv\nZMek3YMCwI5JO9g5bGfvhM3k7MGT7GkEuXsBdU3oCstNy6+cXGWJiORS10Ni5Bq+IjXEw6233cr6\n9et5e9fbjOweyU7ij/wbhIHDNxPa+g1opGcICQ4GRsGwl4fhf3K6H+iG54GXgRFxnf2ANxPLryec\n6UfDXh7G7bffzuT9J3Pqqady8803c9ttt8FLhP+11Tl2KqMcyN6jqNhDd4hI7ajbpqS0JGsiUXv5\npZfz1Yu+yrZ9toVk6jpgFfA28CFgGOEpEjMIZ+3PEZLAMwmJ1w5CIvh9wG/ixvYAtrBbopiZhGu2\n1UA3cAE9OQZ+CkyN896O251GqFNq/QJzDLn2fSBJahGpXsoxFCBnt8w/En5Yc/3gbif8QKfm95VM\nviEuexJwa44ybyAknF8h5AaOJASZdUArIQjkqtN/A7+Oy0wj9FZaleiVlKNHkZ6AJlL7BhsY6rIp\nKedwE12Es/psw1BMJ5ylT0nMf5rwo5xt+ZmEq4QVfZQ5g9Ak9fFYzqPABwmBJnXGn6tORwEvgW0w\npndP59j3H8vl919OU1NTnz2K8hm6Q0lqkfpWl4EhZzK5v6TuSxnz+0omTyZcUWwG5uRYZiqQyglP\nA3aR1puo3zpNBt/hnHHGGVz2nct6Jvf1w67nLohIfyrWK8nMVpnZE2b2mJk9VM5t5xz6YRyh/T6b\n9YQkc3L+OHIOB8HLhKanvspcC+ydeL89yzL91Gnk2yMHNOxEsYfuEJHaU7Ecg5m9CLzb3Tf3sUzR\ncgypXjgP/v5B7vnVPaxeuzo00bwf+BXQSegxtBn4JKHJ6HFCU9A2YAMhQWzAPGA24Urg34EW4HeE\nXkZjgKNjmQAn03eO4ThgPCGP0A2cHstP6Sfv0TRqYMNOKMcgUvuGbPLZzF4C3uPur/WxTFECQ6oX\nzpsNb7Jry67e3kGr42sicCC9vX3eJjSypXoBrSM0I3UDB9Dbs2htnObs3uNoBOFqYCOwJ729kqbS\nkyhmZlw/9f7tRH3mxvfr4nqpZqxpcdpqGDNqDMuWLhtwT6KBDnshIkPLUA4MLwJ/Ivwc/qe7X51l\nmUEHhp55qgBdAAANR0lEQVQz5Pd1wlKyn3knh6Por2dSsivoo+Qu84Y4/S1Cj6MGegPHDELCuTmx\nfOLhO/yMEIBWAufG5XYA94A9ahx37HGceuqpgxp2YqDDXojI0DGUeyUd4+7rzWwf4Fdm9qy7Ly/2\nRnp64TxC7t5BqQffHEHoBZTjwTNMTywHfZc5A2gDLgaagEnAQcBodh8SI7MO0wjNVE5oyjqCEIxO\nhJFdIznrrLMG3XOoqalJvY9EJKuKBQZ3Xx//fdXMbgHeC+wWGBYtWtTzvqWlhZaWlgFtp6cXzipC\nc1E2yWEkNhMCQH/LQchL5CpzKuFKAHpvTst3SIzJ8X2W4S308BsRydTe3k57e3vRyqtIU5KZjQUa\n3H2rmTUS7iW+xN2XZSw34Kakjo4OzjvvPG66+Sa8O2Pd8YSz9sSwFQD8mHAm30VIMu8CxsbXZMLZ\n/sGEJp6RhMDRSbiPYQLZB7P7ISEwpPILDYQAMQr4Yvz3aXqH0Xg2rndQfP8OwjAaGQPijfrpKL5/\nwfd1ti8iOQ3VpqSJwC1m5rEOP84MCoW46qqr+NK5X+pNHs8kfdiKPQk/7CsIdw23ErqbvgTsS++4\nRwcQeiWtBh4jJJHvIeQLILT3TycEhVWEAJCZY1hN6LmUSnKvAQ4hjLP0r3E7swhXEM/Fct6ZeD89\nrvfx9HJHdIzoeZCPiEgp1MyQGB0dHUyeNrk3KOQzbMWNhF5Bf0HoUgpZn0TGDcApcZnTSO9Omhqa\nYgah+WgN4Qf9g4S7k5PlJBPMqeEwciWgb4h1m4UefiMiAzJUrxiK7qKLLgpn9q+SnhDua9iKaYQm\noS7CQHfjciw3g9BDaAbhnoakowhXIKmAMIZwpXJUxnKpH/hUgnkGvcNhJOsT54+cM5KPHfIxOrd2\nAnDil/XwGxEpj5oJDH98/o8hJ2DkP2zFNODFuMzoPpZLDV0xm92SwUBo9tlECCwQAkA2qaRyssyk\nRLJ556SdzJw1M22oCxGRcqiZB/XMmzsvnM07+Q9bsYbeZyJs72O51NAVa+n98c+cvweh2WpHH+W8\nnFg/ORxGyvre+RqeQkQqpbZyDFMnh3b5YYTmms2EnMMaQu+e2fT2RkrlDnYRrpuckJg+jXDGn+ox\ntAt4CDiMkIjeixBELC43BniS8KCebYRQO4LsuYoB5Bg0PIWIFGrI3vmcj4EEhrlz57Ji5YrwAz+M\n8AM9g96E8FpCL6JNhG6rr9AbRA4g3IT2RCxsGKF5aCqhh9AaQo+mrXFa6vkHqYfojCcEnNVx+tuJ\n7cfEMWviMp2xzMxhNNYC74SR20cyasMoDU8hIgVTYABuueUWTv3Eqb1BIXXmn+2M/WTC0BaeZbk3\ngO8RurEO5AE+OwlDZTQntjOPMAjfvoR7IwBrMPbacy8OnHcgW7ZsYddbu9jatZURI0aw36T9+LP3\n/hmHveswDU8hIoOiXknAmWeeGX7kdxLa7ceTuxfSNsKZ+ip2H/piBaFH0UAf4PM6vT2MUr2PpsRt\nzQWegaP3PZoHHnigwD0UESmfmkg+73hrR2jzh9Azqb9hJ6YSrhgyl8vVg6m/B/iMIQSHlMwhLabC\nqjWr+t4JEZEqUROBYdSIUeGHHsJZeq5eQaleP2sJgSRzuVw9mPp7gM+bpPcwSvU+SmxvxrQZfe+E\niEiVqInAcMMNN4Ruok44c19NaOvfQRgB9R7grjh9LKEZaRdhLKJ/I4yBdFec9iKwBLgWuJmQd2ik\nd+iLpNTQF68BH0pMWxe3s6Z3e0uWLCnmLouIlExNJJ/NLIQ4pzcBDem9i1LjFXXHealcQGo6hDzF\nDnZ/6E434YqgM5Y1lZ6H5fB2nHcwvb2L9iH0fpoAbIQv/+2XufLKKwd+AEREClD3vZJmzJgRHtMJ\nvT/6RggKuR6gcyJweMb0trh+rnV25VVfmvdoZviw4QwfOZzZM2ezZMkSZs3KzFqLiJRO3fdKWr16\ndbgHAUJ+oZvQ9DOJ3OMePUJ6YJhFuOltYh/rrISjj1bPIhGpfUM/x5C6OhiW8TlXL6KphLxBptSj\nN3Otg3oWiUh9GPJXDDihnT/zc65eRKlxjTJ197MO6lkkIvVhyF8xTJ8+PTQhpZqRiO9Xkb0X0Srg\n3Vmm7+hnHdSzSETqw5BPPsflekNcKjg0kD5e0lp6u6mmHs+ZHMcI0nslZazz5S+rZ5GIDA113ysJ\n4JprruELX/hCuGegmzD6aRGtXLlSPYtEZMio+15JQBhV1YAjgfdnWeA+4F6o5iAoIlItKpZjMLMT\nzOyPZva8mX19MGXNmT1n9wf0JK0dTOkiIvWlIoHBzBoIA1x/BHgncKaZzSu0vNbW1vBmFTmTx2PG\njCm0+KrQ3t5e6SpUDR2LXjoWvXQsiqdSVwzvBVa4+2p3fwu4ETil0MKam5u5//77Q2L5BuBHhOaj\nH9Fz1/K2bduKUO3K0Ze+l45FLx2LXjoWxVOpwDCZ9AaedXFawebPn09nZ2cIDiuBe8O/Y0aMUW5B\nRGQAaiL5nNLU1KQgICIySBXprmpmRwKL3P2E+PlCwN39iozl9CsvIlKAIXcfg5kNA54DPkh4nM1D\nwJnu/mzZKyMiImkq0pTk7m+b2d8Aywh5jmsVFEREqkNV3/ksIiLlV5WD6BXz5rehyMxWmdkTZvaY\nmT0Up40zs2Vm9pyZ3W1me1a6nqVgZtea2UYzezIxLee+m9lFZrbCzJ41s+MrU+vSyHEsFprZOjN7\nNL5OSMyr5WMxxcx+Y2Z/MLOnzOzcOL3uvhtZjsXfxunF+264e1W9CMFqJWGYuxHA48C8SterzMfg\nRWBcxrQrgK/F918HLq90PUu07/OBw4An+9t34B3AY4Qm0Rnxe2OV3ocSH4uFwAVZlj2oxo/FJOCw\n+L6JkKOcV4/fjT6ORdG+G9V4xVDUm9+GKGP3q7lTgOvj++uBj5W1RmXi7suBzRmTc+37ycCN7r7L\n3VcBKwjfn5qQ41hA+H5kOoXaPhYb3P3x+H4r8CxhfOS6+27kOBap+8CK8t2oxsBQ9JvfhiAHfmVm\n/2Nmn4/TJrr7RghfDGDfitWu/PbNse+Z35WXqY/vyt+Y2eNmdk2i6aRujoWZzSBcST1I7r+Lujge\niWPx+zipKN+NagwMAse4+xHAAuBLZvY+QrBIqudeA/W871cBM939MGAD8E8Vrk9ZmVkT8HPgvHi2\nXLd/F1mORdG+G9UYGF4m/enLU+K0uuHu6+O/rwK/IFz2bTSziQBmNgl4pXI1LLtc+/4yPU/kBurg\nu+Lur3psOAauprdJoOaPhZkNJ/wQ/tDdb42T6/K7ke1YFPO7UY2B4X+A2WY23cxGAmcAt1W4TmVj\nZmPjmQBm1ggcDzxFOAafiYudDdyatYDaYKS3leba99uAM8xspJkdAMwm3CxZS9KORfzxSzkVeDq+\nr4dj8QPgGXdfnJhWr9+N3Y5FUb8blc6w58i6n0DItK8ALqx0fcq87wcQemI9RggIF8bpewP3xOOy\nDNir0nUt0f7/BOggPGR1DfBZYFyufQcuIvSyeBY4vtL1L8OxWAI8Gb8jvyC0sdfDsTgGeDvxt/Fo\n/J3I+XdRq8ejj2NRtO+GbnATEZE01diUJCIiFaTAICIiaRQYREQkjQKDiIikUWAQEZE0CgwiIpJG\ngUFqhplNNrNfxOHaV5jZP8c7RPNZ9zozO3UQ2z7bzF6Jwx0/nRjjKnO5d5vZvxS6HZFyUGCQWnIz\ncLO7zwXmAs3AdzIXio+WHZQcZdzoYYyr44DvmNk+meu4+yPufv5gty9SSgoMUhPM7APAm+6+BMDD\nnZtfBj5nZqPjGf2tZvZrwp2ymNn34oNLlpEYrdbMjjCz9ji67Z2JsXjujVchDwHn5qqLhzGuXgCm\nx4enLDGz5cASMzvWzG6P5TWa2Q/M7Mk4IubH4/QPm9nvzOxhM2szs7ElOGQiOVXkmc8iJfBO4JHk\nBHfvNLPVhLFhAA4HDnH3LfFHeI67H2Rm+wHPANfGpqfvAie7+2tmdjrhquOcWMYId+9zLHszm0kY\n2mRlnHQQYcTcnWZ2LL0jgH4D+JO7HxrX29PMxgP/D/igu79pZl8DvgJ8q6CjIlIABQapdcnB+H7l\n7lvi+/cDN0AYzdbMfhOnHwgcTHgeRuqBSR2JMtr62NYZZjafMLbRF939T6EIbnP3nVmW/xDQmvoQ\nA9aJhKePPRC3PwL47/x2VaQ4FBikVjwDnJacYGZ7EIYbXgm8G+jKoxwDnnb3Y3LM76uMG909WxNT\nPttNbn+Zu39yAOuIFJVyDFIT3P3XwBgz+xT0JIf/EbjO3bdnWeW3QKuZNcSmpOPi9OeAfczsyFjO\ncDN7R4mq/SvgS6kPZrYX4alkx5jZrDhtrJnNKdH2RbJSYJBa8nHgdDN7Hvgj8Cbwf7Mt6O63EK4k\n/gD8F/C7OP0twpXHFWaWGtb4qNRqRa7vpcDeZvaUmT0GtLj7JsLzBW4wsydivQ4s8nZF+qRht0VE\nJI2uGEREJI0Cg4iIpFFgEBGRNAoMIiKSRoFBRETSKDCIiEgaBQYREUmjwCAiImn+P/gxERWo43ir\nAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x11b80acd0>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# create a list of prices\n",
"chipo.item_price = [float(value[1:-1]) for value in chipo.item_price] # strip the dollar sign and trailing space\n",
"\n",
"# then groupby the orders and sum\n",
"orders = chipo.groupby('order_id').sum()\n",
"\n",
"# creates the scatterplot\n",
"# plt.scatter(orders.quantity, orders.item_price, s = 50, c = 'green')\n",
"plt.scatter(x = orders.item_price, y = orders.quantity, s = 50, c = 'green')\n",
"\n",
"# Set the title and labels\n",
"plt.xlabel('Order Price')\n",
"plt.ylabel('Items ordered')\n",
"plt.title('Number of items ordered per order price')\n",
"plt.ylim(0)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### BONUS: Create a question and a graph to answer your own question."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.11"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|