File size: 24,506 Bytes
ce5cd7e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# United States - Crime Rates - 1960 - 2014"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Introduction:\n",
    "\n",
    "This time you will create a data \n",
    "\n",
    "Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.\n",
    "\n",
    "### Step 1. Import the necessary libraries"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {
    "collapsed": false
   },
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/04_Apply/US_Crime_Rates/US_Crime_Rates_1960_2014.csv). "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 3. Assign it to a variable called crime."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 265,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Year</th>\n",
       "      <th>Population</th>\n",
       "      <th>Total</th>\n",
       "      <th>Violent</th>\n",
       "      <th>Property</th>\n",
       "      <th>Murder</th>\n",
       "      <th>Forcible_Rape</th>\n",
       "      <th>Robbery</th>\n",
       "      <th>Aggravated_assault</th>\n",
       "      <th>Burglary</th>\n",
       "      <th>Larceny_Theft</th>\n",
       "      <th>Vehicle_Theft</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1960</td>\n",
       "      <td>179323175</td>\n",
       "      <td>3384200</td>\n",
       "      <td>288460</td>\n",
       "      <td>3095700</td>\n",
       "      <td>9110</td>\n",
       "      <td>17190</td>\n",
       "      <td>107840</td>\n",
       "      <td>154320</td>\n",
       "      <td>912100</td>\n",
       "      <td>1855400</td>\n",
       "      <td>328200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1961</td>\n",
       "      <td>182992000</td>\n",
       "      <td>3488000</td>\n",
       "      <td>289390</td>\n",
       "      <td>3198600</td>\n",
       "      <td>8740</td>\n",
       "      <td>17220</td>\n",
       "      <td>106670</td>\n",
       "      <td>156760</td>\n",
       "      <td>949600</td>\n",
       "      <td>1913000</td>\n",
       "      <td>336000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1962</td>\n",
       "      <td>185771000</td>\n",
       "      <td>3752200</td>\n",
       "      <td>301510</td>\n",
       "      <td>3450700</td>\n",
       "      <td>8530</td>\n",
       "      <td>17550</td>\n",
       "      <td>110860</td>\n",
       "      <td>164570</td>\n",
       "      <td>994300</td>\n",
       "      <td>2089600</td>\n",
       "      <td>366800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1963</td>\n",
       "      <td>188483000</td>\n",
       "      <td>4109500</td>\n",
       "      <td>316970</td>\n",
       "      <td>3792500</td>\n",
       "      <td>8640</td>\n",
       "      <td>17650</td>\n",
       "      <td>116470</td>\n",
       "      <td>174210</td>\n",
       "      <td>1086400</td>\n",
       "      <td>2297800</td>\n",
       "      <td>408300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1964</td>\n",
       "      <td>191141000</td>\n",
       "      <td>4564600</td>\n",
       "      <td>364220</td>\n",
       "      <td>4200400</td>\n",
       "      <td>9360</td>\n",
       "      <td>21420</td>\n",
       "      <td>130390</td>\n",
       "      <td>203050</td>\n",
       "      <td>1213200</td>\n",
       "      <td>2514400</td>\n",
       "      <td>472800</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Year  Population    Total  Violent  Property  Murder  Forcible_Rape  \\\n",
       "0  1960   179323175  3384200   288460   3095700    9110          17190   \n",
       "1  1961   182992000  3488000   289390   3198600    8740          17220   \n",
       "2  1962   185771000  3752200   301510   3450700    8530          17550   \n",
       "3  1963   188483000  4109500   316970   3792500    8640          17650   \n",
       "4  1964   191141000  4564600   364220   4200400    9360          21420   \n",
       "\n",
       "   Robbery  Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  \n",
       "0   107840              154320    912100        1855400         328200  \n",
       "1   106670              156760    949600        1913000         336000  \n",
       "2   110860              164570    994300        2089600         366800  \n",
       "3   116470              174210   1086400        2297800         408300  \n",
       "4   130390              203050   1213200        2514400         472800  "
      ]
     },
     "execution_count": 265,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 4. What is the type of the columns?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 266,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 55 entries, 0 to 54\n",
      "Data columns (total 12 columns):\n",
      "Year                  55 non-null int64\n",
      "Population            55 non-null int64\n",
      "Total                 55 non-null int64\n",
      "Violent               55 non-null int64\n",
      "Property              55 non-null int64\n",
      "Murder                55 non-null int64\n",
      "Forcible_Rape         55 non-null int64\n",
      "Robbery               55 non-null int64\n",
      "Aggravated_assault    55 non-null int64\n",
      "Burglary              55 non-null int64\n",
      "Larceny_Theft         55 non-null int64\n",
      "Vehicle_Theft         55 non-null int64\n",
      "dtypes: int64(12)\n",
      "memory usage: 5.2 KB\n"
     ]
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "##### Have you noticed that the type of Year is int64. But pandas has a different type to work with Time Series. Let's see it now.\n",
    "\n",
    "### Step 5. Convert the type of the column Year to datetime64"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 267,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "<class 'pandas.core.frame.DataFrame'>\n",
      "RangeIndex: 55 entries, 0 to 54\n",
      "Data columns (total 12 columns):\n",
      "Year                  55 non-null datetime64[ns]\n",
      "Population            55 non-null int64\n",
      "Total                 55 non-null int64\n",
      "Violent               55 non-null int64\n",
      "Property              55 non-null int64\n",
      "Murder                55 non-null int64\n",
      "Forcible_Rape         55 non-null int64\n",
      "Robbery               55 non-null int64\n",
      "Aggravated_assault    55 non-null int64\n",
      "Burglary              55 non-null int64\n",
      "Larceny_Theft         55 non-null int64\n",
      "Vehicle_Theft         55 non-null int64\n",
      "dtypes: datetime64[ns](1), int64(11)\n",
      "memory usage: 5.2 KB\n"
     ]
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 6. Set the Year column as the index of the dataframe"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 268,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Population</th>\n",
       "      <th>Total</th>\n",
       "      <th>Violent</th>\n",
       "      <th>Property</th>\n",
       "      <th>Murder</th>\n",
       "      <th>Forcible_Rape</th>\n",
       "      <th>Robbery</th>\n",
       "      <th>Aggravated_assault</th>\n",
       "      <th>Burglary</th>\n",
       "      <th>Larceny_Theft</th>\n",
       "      <th>Vehicle_Theft</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Year</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1960-01-01</th>\n",
       "      <td>179323175</td>\n",
       "      <td>3384200</td>\n",
       "      <td>288460</td>\n",
       "      <td>3095700</td>\n",
       "      <td>9110</td>\n",
       "      <td>17190</td>\n",
       "      <td>107840</td>\n",
       "      <td>154320</td>\n",
       "      <td>912100</td>\n",
       "      <td>1855400</td>\n",
       "      <td>328200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1961-01-01</th>\n",
       "      <td>182992000</td>\n",
       "      <td>3488000</td>\n",
       "      <td>289390</td>\n",
       "      <td>3198600</td>\n",
       "      <td>8740</td>\n",
       "      <td>17220</td>\n",
       "      <td>106670</td>\n",
       "      <td>156760</td>\n",
       "      <td>949600</td>\n",
       "      <td>1913000</td>\n",
       "      <td>336000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1962-01-01</th>\n",
       "      <td>185771000</td>\n",
       "      <td>3752200</td>\n",
       "      <td>301510</td>\n",
       "      <td>3450700</td>\n",
       "      <td>8530</td>\n",
       "      <td>17550</td>\n",
       "      <td>110860</td>\n",
       "      <td>164570</td>\n",
       "      <td>994300</td>\n",
       "      <td>2089600</td>\n",
       "      <td>366800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1963-01-01</th>\n",
       "      <td>188483000</td>\n",
       "      <td>4109500</td>\n",
       "      <td>316970</td>\n",
       "      <td>3792500</td>\n",
       "      <td>8640</td>\n",
       "      <td>17650</td>\n",
       "      <td>116470</td>\n",
       "      <td>174210</td>\n",
       "      <td>1086400</td>\n",
       "      <td>2297800</td>\n",
       "      <td>408300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1964-01-01</th>\n",
       "      <td>191141000</td>\n",
       "      <td>4564600</td>\n",
       "      <td>364220</td>\n",
       "      <td>4200400</td>\n",
       "      <td>9360</td>\n",
       "      <td>21420</td>\n",
       "      <td>130390</td>\n",
       "      <td>203050</td>\n",
       "      <td>1213200</td>\n",
       "      <td>2514400</td>\n",
       "      <td>472800</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            Population    Total  Violent  Property  Murder  Forcible_Rape  \\\n",
       "Year                                                                        \n",
       "1960-01-01   179323175  3384200   288460   3095700    9110          17190   \n",
       "1961-01-01   182992000  3488000   289390   3198600    8740          17220   \n",
       "1962-01-01   185771000  3752200   301510   3450700    8530          17550   \n",
       "1963-01-01   188483000  4109500   316970   3792500    8640          17650   \n",
       "1964-01-01   191141000  4564600   364220   4200400    9360          21420   \n",
       "\n",
       "            Robbery  Aggravated_assault  Burglary  Larceny_Theft  \\\n",
       "Year                                                               \n",
       "1960-01-01   107840              154320    912100        1855400   \n",
       "1961-01-01   106670              156760    949600        1913000   \n",
       "1962-01-01   110860              164570    994300        2089600   \n",
       "1963-01-01   116470              174210   1086400        2297800   \n",
       "1964-01-01   130390              203050   1213200        2514400   \n",
       "\n",
       "            Vehicle_Theft  \n",
       "Year                       \n",
       "1960-01-01         328200  \n",
       "1961-01-01         336000  \n",
       "1962-01-01         366800  \n",
       "1963-01-01         408300  \n",
       "1964-01-01         472800  "
      ]
     },
     "execution_count": 268,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 7. Delete the Total column"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 269,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Population</th>\n",
       "      <th>Violent</th>\n",
       "      <th>Property</th>\n",
       "      <th>Murder</th>\n",
       "      <th>Forcible_Rape</th>\n",
       "      <th>Robbery</th>\n",
       "      <th>Aggravated_assault</th>\n",
       "      <th>Burglary</th>\n",
       "      <th>Larceny_Theft</th>\n",
       "      <th>Vehicle_Theft</th>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Year</th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "      <th></th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1960-01-01</th>\n",
       "      <td>179323175</td>\n",
       "      <td>288460</td>\n",
       "      <td>3095700</td>\n",
       "      <td>9110</td>\n",
       "      <td>17190</td>\n",
       "      <td>107840</td>\n",
       "      <td>154320</td>\n",
       "      <td>912100</td>\n",
       "      <td>1855400</td>\n",
       "      <td>328200</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1961-01-01</th>\n",
       "      <td>182992000</td>\n",
       "      <td>289390</td>\n",
       "      <td>3198600</td>\n",
       "      <td>8740</td>\n",
       "      <td>17220</td>\n",
       "      <td>106670</td>\n",
       "      <td>156760</td>\n",
       "      <td>949600</td>\n",
       "      <td>1913000</td>\n",
       "      <td>336000</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1962-01-01</th>\n",
       "      <td>185771000</td>\n",
       "      <td>301510</td>\n",
       "      <td>3450700</td>\n",
       "      <td>8530</td>\n",
       "      <td>17550</td>\n",
       "      <td>110860</td>\n",
       "      <td>164570</td>\n",
       "      <td>994300</td>\n",
       "      <td>2089600</td>\n",
       "      <td>366800</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1963-01-01</th>\n",
       "      <td>188483000</td>\n",
       "      <td>316970</td>\n",
       "      <td>3792500</td>\n",
       "      <td>8640</td>\n",
       "      <td>17650</td>\n",
       "      <td>116470</td>\n",
       "      <td>174210</td>\n",
       "      <td>1086400</td>\n",
       "      <td>2297800</td>\n",
       "      <td>408300</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1964-01-01</th>\n",
       "      <td>191141000</td>\n",
       "      <td>364220</td>\n",
       "      <td>4200400</td>\n",
       "      <td>9360</td>\n",
       "      <td>21420</td>\n",
       "      <td>130390</td>\n",
       "      <td>203050</td>\n",
       "      <td>1213200</td>\n",
       "      <td>2514400</td>\n",
       "      <td>472800</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            Population  Violent  Property  Murder  Forcible_Rape  Robbery  \\\n",
       "Year                                                                        \n",
       "1960-01-01   179323175   288460   3095700    9110          17190   107840   \n",
       "1961-01-01   182992000   289390   3198600    8740          17220   106670   \n",
       "1962-01-01   185771000   301510   3450700    8530          17550   110860   \n",
       "1963-01-01   188483000   316970   3792500    8640          17650   116470   \n",
       "1964-01-01   191141000   364220   4200400    9360          21420   130390   \n",
       "\n",
       "            Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  \n",
       "Year                                                                    \n",
       "1960-01-01              154320    912100        1855400         328200  \n",
       "1961-01-01              156760    949600        1913000         336000  \n",
       "1962-01-01              164570    994300        2089600         366800  \n",
       "1963-01-01              174210   1086400        2297800         408300  \n",
       "1964-01-01              203050   1213200        2514400         472800  "
      ]
     },
     "execution_count": 269,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 8. Group the year by decades and sum the values\n",
    "\n",
    "#### Pay attention to the Population column number, summing this column is a mistake"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 270,
   "metadata": {
    "collapsed": false,
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Population</th>\n",
       "      <th>Violent</th>\n",
       "      <th>Property</th>\n",
       "      <th>Murder</th>\n",
       "      <th>Forcible_Rape</th>\n",
       "      <th>Robbery</th>\n",
       "      <th>Aggravated_assault</th>\n",
       "      <th>Burglary</th>\n",
       "      <th>Larceny_Theft</th>\n",
       "      <th>Vehicle_Theft</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>1960</th>\n",
       "      <td>201385000</td>\n",
       "      <td>4134930</td>\n",
       "      <td>45160900</td>\n",
       "      <td>106180</td>\n",
       "      <td>236720</td>\n",
       "      <td>1633510</td>\n",
       "      <td>2158520</td>\n",
       "      <td>13321100</td>\n",
       "      <td>26547700</td>\n",
       "      <td>5292100</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1970</th>\n",
       "      <td>220099000</td>\n",
       "      <td>9607930</td>\n",
       "      <td>91383800</td>\n",
       "      <td>192230</td>\n",
       "      <td>554570</td>\n",
       "      <td>4159020</td>\n",
       "      <td>4702120</td>\n",
       "      <td>28486000</td>\n",
       "      <td>53157800</td>\n",
       "      <td>9739900</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1980</th>\n",
       "      <td>248239000</td>\n",
       "      <td>14074328</td>\n",
       "      <td>117048900</td>\n",
       "      <td>206439</td>\n",
       "      <td>865639</td>\n",
       "      <td>5383109</td>\n",
       "      <td>7619130</td>\n",
       "      <td>33073494</td>\n",
       "      <td>72040253</td>\n",
       "      <td>11935411</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1990</th>\n",
       "      <td>272690813</td>\n",
       "      <td>17527048</td>\n",
       "      <td>119053499</td>\n",
       "      <td>211664</td>\n",
       "      <td>998827</td>\n",
       "      <td>5748930</td>\n",
       "      <td>10568963</td>\n",
       "      <td>26750015</td>\n",
       "      <td>77679366</td>\n",
       "      <td>14624418</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2000</th>\n",
       "      <td>307006550</td>\n",
       "      <td>13968056</td>\n",
       "      <td>100944369</td>\n",
       "      <td>163068</td>\n",
       "      <td>922499</td>\n",
       "      <td>4230366</td>\n",
       "      <td>8652124</td>\n",
       "      <td>21565176</td>\n",
       "      <td>67970291</td>\n",
       "      <td>11412834</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2010</th>\n",
       "      <td>318857056</td>\n",
       "      <td>6072017</td>\n",
       "      <td>44095950</td>\n",
       "      <td>72867</td>\n",
       "      <td>421059</td>\n",
       "      <td>1749809</td>\n",
       "      <td>3764142</td>\n",
       "      <td>10125170</td>\n",
       "      <td>30401698</td>\n",
       "      <td>3569080</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      Population   Violent   Property  Murder  Forcible_Rape  Robbery  \\\n",
       "1960   201385000   4134930   45160900  106180         236720  1633510   \n",
       "1970   220099000   9607930   91383800  192230         554570  4159020   \n",
       "1980   248239000  14074328  117048900  206439         865639  5383109   \n",
       "1990   272690813  17527048  119053499  211664         998827  5748930   \n",
       "2000   307006550  13968056  100944369  163068         922499  4230366   \n",
       "2010   318857056   6072017   44095950   72867         421059  1749809   \n",
       "\n",
       "      Aggravated_assault  Burglary  Larceny_Theft  Vehicle_Theft  \n",
       "1960             2158520  13321100       26547700        5292100  \n",
       "1970             4702120  28486000       53157800        9739900  \n",
       "1980             7619130  33073494       72040253       11935411  \n",
       "1990            10568963  26750015       77679366       14624418  \n",
       "2000             8652124  21565176       67970291       11412834  \n",
       "2010             3764142  10125170       30401698        3569080  "
      ]
     },
     "execution_count": 270,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Step 9. What is the mos dangerous decade to live in the US?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 276,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Population            2010\n",
       "Violent               1990\n",
       "Property              1990\n",
       "Murder                1990\n",
       "Forcible_Rape         1990\n",
       "Robbery               1990\n",
       "Aggravated_assault    1990\n",
       "Burglary              1980\n",
       "Larceny_Theft         1990\n",
       "Vehicle_Theft         1990\n",
       "dtype: int64"
      ]
     },
     "execution_count": 276,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python [default]",
   "language": "python",
   "name": "python2"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 2
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython2",
   "version": "2.7.12"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}