File size: 24,506 Bytes
ce5cd7e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# United States - Crime Rates - 1960 - 2014"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Introduction:\n",
"\n",
"This time you will create a data \n",
"\n",
"Special thanks to: https://github.com/justmarkham for sharing the dataset and materials.\n",
"\n",
"### Step 1. Import the necessary libraries"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 2. Import the dataset from this [address](https://raw.githubusercontent.com/guipsamora/pandas_exercises/master/04_Apply/US_Crime_Rates/US_Crime_Rates_1960_2014.csv). "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 3. Assign it to a variable called crime."
]
},
{
"cell_type": "code",
"execution_count": 265,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Year</th>\n",
" <th>Population</th>\n",
" <th>Total</th>\n",
" <th>Violent</th>\n",
" <th>Property</th>\n",
" <th>Murder</th>\n",
" <th>Forcible_Rape</th>\n",
" <th>Robbery</th>\n",
" <th>Aggravated_assault</th>\n",
" <th>Burglary</th>\n",
" <th>Larceny_Theft</th>\n",
" <th>Vehicle_Theft</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1960</td>\n",
" <td>179323175</td>\n",
" <td>3384200</td>\n",
" <td>288460</td>\n",
" <td>3095700</td>\n",
" <td>9110</td>\n",
" <td>17190</td>\n",
" <td>107840</td>\n",
" <td>154320</td>\n",
" <td>912100</td>\n",
" <td>1855400</td>\n",
" <td>328200</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1961</td>\n",
" <td>182992000</td>\n",
" <td>3488000</td>\n",
" <td>289390</td>\n",
" <td>3198600</td>\n",
" <td>8740</td>\n",
" <td>17220</td>\n",
" <td>106670</td>\n",
" <td>156760</td>\n",
" <td>949600</td>\n",
" <td>1913000</td>\n",
" <td>336000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1962</td>\n",
" <td>185771000</td>\n",
" <td>3752200</td>\n",
" <td>301510</td>\n",
" <td>3450700</td>\n",
" <td>8530</td>\n",
" <td>17550</td>\n",
" <td>110860</td>\n",
" <td>164570</td>\n",
" <td>994300</td>\n",
" <td>2089600</td>\n",
" <td>366800</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1963</td>\n",
" <td>188483000</td>\n",
" <td>4109500</td>\n",
" <td>316970</td>\n",
" <td>3792500</td>\n",
" <td>8640</td>\n",
" <td>17650</td>\n",
" <td>116470</td>\n",
" <td>174210</td>\n",
" <td>1086400</td>\n",
" <td>2297800</td>\n",
" <td>408300</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1964</td>\n",
" <td>191141000</td>\n",
" <td>4564600</td>\n",
" <td>364220</td>\n",
" <td>4200400</td>\n",
" <td>9360</td>\n",
" <td>21420</td>\n",
" <td>130390</td>\n",
" <td>203050</td>\n",
" <td>1213200</td>\n",
" <td>2514400</td>\n",
" <td>472800</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Year Population Total Violent Property Murder Forcible_Rape \\\n",
"0 1960 179323175 3384200 288460 3095700 9110 17190 \n",
"1 1961 182992000 3488000 289390 3198600 8740 17220 \n",
"2 1962 185771000 3752200 301510 3450700 8530 17550 \n",
"3 1963 188483000 4109500 316970 3792500 8640 17650 \n",
"4 1964 191141000 4564600 364220 4200400 9360 21420 \n",
"\n",
" Robbery Aggravated_assault Burglary Larceny_Theft Vehicle_Theft \n",
"0 107840 154320 912100 1855400 328200 \n",
"1 106670 156760 949600 1913000 336000 \n",
"2 110860 164570 994300 2089600 366800 \n",
"3 116470 174210 1086400 2297800 408300 \n",
"4 130390 203050 1213200 2514400 472800 "
]
},
"execution_count": 265,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 4. What is the type of the columns?"
]
},
{
"cell_type": "code",
"execution_count": 266,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 55 entries, 0 to 54\n",
"Data columns (total 12 columns):\n",
"Year 55 non-null int64\n",
"Population 55 non-null int64\n",
"Total 55 non-null int64\n",
"Violent 55 non-null int64\n",
"Property 55 non-null int64\n",
"Murder 55 non-null int64\n",
"Forcible_Rape 55 non-null int64\n",
"Robbery 55 non-null int64\n",
"Aggravated_assault 55 non-null int64\n",
"Burglary 55 non-null int64\n",
"Larceny_Theft 55 non-null int64\n",
"Vehicle_Theft 55 non-null int64\n",
"dtypes: int64(12)\n",
"memory usage: 5.2 KB\n"
]
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Have you noticed that the type of Year is int64. But pandas has a different type to work with Time Series. Let's see it now.\n",
"\n",
"### Step 5. Convert the type of the column Year to datetime64"
]
},
{
"cell_type": "code",
"execution_count": 267,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 55 entries, 0 to 54\n",
"Data columns (total 12 columns):\n",
"Year 55 non-null datetime64[ns]\n",
"Population 55 non-null int64\n",
"Total 55 non-null int64\n",
"Violent 55 non-null int64\n",
"Property 55 non-null int64\n",
"Murder 55 non-null int64\n",
"Forcible_Rape 55 non-null int64\n",
"Robbery 55 non-null int64\n",
"Aggravated_assault 55 non-null int64\n",
"Burglary 55 non-null int64\n",
"Larceny_Theft 55 non-null int64\n",
"Vehicle_Theft 55 non-null int64\n",
"dtypes: datetime64[ns](1), int64(11)\n",
"memory usage: 5.2 KB\n"
]
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 6. Set the Year column as the index of the dataframe"
]
},
{
"cell_type": "code",
"execution_count": 268,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Population</th>\n",
" <th>Total</th>\n",
" <th>Violent</th>\n",
" <th>Property</th>\n",
" <th>Murder</th>\n",
" <th>Forcible_Rape</th>\n",
" <th>Robbery</th>\n",
" <th>Aggravated_assault</th>\n",
" <th>Burglary</th>\n",
" <th>Larceny_Theft</th>\n",
" <th>Vehicle_Theft</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Year</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1960-01-01</th>\n",
" <td>179323175</td>\n",
" <td>3384200</td>\n",
" <td>288460</td>\n",
" <td>3095700</td>\n",
" <td>9110</td>\n",
" <td>17190</td>\n",
" <td>107840</td>\n",
" <td>154320</td>\n",
" <td>912100</td>\n",
" <td>1855400</td>\n",
" <td>328200</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1961-01-01</th>\n",
" <td>182992000</td>\n",
" <td>3488000</td>\n",
" <td>289390</td>\n",
" <td>3198600</td>\n",
" <td>8740</td>\n",
" <td>17220</td>\n",
" <td>106670</td>\n",
" <td>156760</td>\n",
" <td>949600</td>\n",
" <td>1913000</td>\n",
" <td>336000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1962-01-01</th>\n",
" <td>185771000</td>\n",
" <td>3752200</td>\n",
" <td>301510</td>\n",
" <td>3450700</td>\n",
" <td>8530</td>\n",
" <td>17550</td>\n",
" <td>110860</td>\n",
" <td>164570</td>\n",
" <td>994300</td>\n",
" <td>2089600</td>\n",
" <td>366800</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1963-01-01</th>\n",
" <td>188483000</td>\n",
" <td>4109500</td>\n",
" <td>316970</td>\n",
" <td>3792500</td>\n",
" <td>8640</td>\n",
" <td>17650</td>\n",
" <td>116470</td>\n",
" <td>174210</td>\n",
" <td>1086400</td>\n",
" <td>2297800</td>\n",
" <td>408300</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1964-01-01</th>\n",
" <td>191141000</td>\n",
" <td>4564600</td>\n",
" <td>364220</td>\n",
" <td>4200400</td>\n",
" <td>9360</td>\n",
" <td>21420</td>\n",
" <td>130390</td>\n",
" <td>203050</td>\n",
" <td>1213200</td>\n",
" <td>2514400</td>\n",
" <td>472800</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Population Total Violent Property Murder Forcible_Rape \\\n",
"Year \n",
"1960-01-01 179323175 3384200 288460 3095700 9110 17190 \n",
"1961-01-01 182992000 3488000 289390 3198600 8740 17220 \n",
"1962-01-01 185771000 3752200 301510 3450700 8530 17550 \n",
"1963-01-01 188483000 4109500 316970 3792500 8640 17650 \n",
"1964-01-01 191141000 4564600 364220 4200400 9360 21420 \n",
"\n",
" Robbery Aggravated_assault Burglary Larceny_Theft \\\n",
"Year \n",
"1960-01-01 107840 154320 912100 1855400 \n",
"1961-01-01 106670 156760 949600 1913000 \n",
"1962-01-01 110860 164570 994300 2089600 \n",
"1963-01-01 116470 174210 1086400 2297800 \n",
"1964-01-01 130390 203050 1213200 2514400 \n",
"\n",
" Vehicle_Theft \n",
"Year \n",
"1960-01-01 328200 \n",
"1961-01-01 336000 \n",
"1962-01-01 366800 \n",
"1963-01-01 408300 \n",
"1964-01-01 472800 "
]
},
"execution_count": 268,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 7. Delete the Total column"
]
},
{
"cell_type": "code",
"execution_count": 269,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Population</th>\n",
" <th>Violent</th>\n",
" <th>Property</th>\n",
" <th>Murder</th>\n",
" <th>Forcible_Rape</th>\n",
" <th>Robbery</th>\n",
" <th>Aggravated_assault</th>\n",
" <th>Burglary</th>\n",
" <th>Larceny_Theft</th>\n",
" <th>Vehicle_Theft</th>\n",
" </tr>\n",
" <tr>\n",
" <th>Year</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1960-01-01</th>\n",
" <td>179323175</td>\n",
" <td>288460</td>\n",
" <td>3095700</td>\n",
" <td>9110</td>\n",
" <td>17190</td>\n",
" <td>107840</td>\n",
" <td>154320</td>\n",
" <td>912100</td>\n",
" <td>1855400</td>\n",
" <td>328200</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1961-01-01</th>\n",
" <td>182992000</td>\n",
" <td>289390</td>\n",
" <td>3198600</td>\n",
" <td>8740</td>\n",
" <td>17220</td>\n",
" <td>106670</td>\n",
" <td>156760</td>\n",
" <td>949600</td>\n",
" <td>1913000</td>\n",
" <td>336000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1962-01-01</th>\n",
" <td>185771000</td>\n",
" <td>301510</td>\n",
" <td>3450700</td>\n",
" <td>8530</td>\n",
" <td>17550</td>\n",
" <td>110860</td>\n",
" <td>164570</td>\n",
" <td>994300</td>\n",
" <td>2089600</td>\n",
" <td>366800</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1963-01-01</th>\n",
" <td>188483000</td>\n",
" <td>316970</td>\n",
" <td>3792500</td>\n",
" <td>8640</td>\n",
" <td>17650</td>\n",
" <td>116470</td>\n",
" <td>174210</td>\n",
" <td>1086400</td>\n",
" <td>2297800</td>\n",
" <td>408300</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1964-01-01</th>\n",
" <td>191141000</td>\n",
" <td>364220</td>\n",
" <td>4200400</td>\n",
" <td>9360</td>\n",
" <td>21420</td>\n",
" <td>130390</td>\n",
" <td>203050</td>\n",
" <td>1213200</td>\n",
" <td>2514400</td>\n",
" <td>472800</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Population Violent Property Murder Forcible_Rape Robbery \\\n",
"Year \n",
"1960-01-01 179323175 288460 3095700 9110 17190 107840 \n",
"1961-01-01 182992000 289390 3198600 8740 17220 106670 \n",
"1962-01-01 185771000 301510 3450700 8530 17550 110860 \n",
"1963-01-01 188483000 316970 3792500 8640 17650 116470 \n",
"1964-01-01 191141000 364220 4200400 9360 21420 130390 \n",
"\n",
" Aggravated_assault Burglary Larceny_Theft Vehicle_Theft \n",
"Year \n",
"1960-01-01 154320 912100 1855400 328200 \n",
"1961-01-01 156760 949600 1913000 336000 \n",
"1962-01-01 164570 994300 2089600 366800 \n",
"1963-01-01 174210 1086400 2297800 408300 \n",
"1964-01-01 203050 1213200 2514400 472800 "
]
},
"execution_count": 269,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 8. Group the year by decades and sum the values\n",
"\n",
"#### Pay attention to the Population column number, summing this column is a mistake"
]
},
{
"cell_type": "code",
"execution_count": 270,
"metadata": {
"collapsed": false,
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Population</th>\n",
" <th>Violent</th>\n",
" <th>Property</th>\n",
" <th>Murder</th>\n",
" <th>Forcible_Rape</th>\n",
" <th>Robbery</th>\n",
" <th>Aggravated_assault</th>\n",
" <th>Burglary</th>\n",
" <th>Larceny_Theft</th>\n",
" <th>Vehicle_Theft</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>1960</th>\n",
" <td>201385000</td>\n",
" <td>4134930</td>\n",
" <td>45160900</td>\n",
" <td>106180</td>\n",
" <td>236720</td>\n",
" <td>1633510</td>\n",
" <td>2158520</td>\n",
" <td>13321100</td>\n",
" <td>26547700</td>\n",
" <td>5292100</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1970</th>\n",
" <td>220099000</td>\n",
" <td>9607930</td>\n",
" <td>91383800</td>\n",
" <td>192230</td>\n",
" <td>554570</td>\n",
" <td>4159020</td>\n",
" <td>4702120</td>\n",
" <td>28486000</td>\n",
" <td>53157800</td>\n",
" <td>9739900</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1980</th>\n",
" <td>248239000</td>\n",
" <td>14074328</td>\n",
" <td>117048900</td>\n",
" <td>206439</td>\n",
" <td>865639</td>\n",
" <td>5383109</td>\n",
" <td>7619130</td>\n",
" <td>33073494</td>\n",
" <td>72040253</td>\n",
" <td>11935411</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1990</th>\n",
" <td>272690813</td>\n",
" <td>17527048</td>\n",
" <td>119053499</td>\n",
" <td>211664</td>\n",
" <td>998827</td>\n",
" <td>5748930</td>\n",
" <td>10568963</td>\n",
" <td>26750015</td>\n",
" <td>77679366</td>\n",
" <td>14624418</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2000</th>\n",
" <td>307006550</td>\n",
" <td>13968056</td>\n",
" <td>100944369</td>\n",
" <td>163068</td>\n",
" <td>922499</td>\n",
" <td>4230366</td>\n",
" <td>8652124</td>\n",
" <td>21565176</td>\n",
" <td>67970291</td>\n",
" <td>11412834</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2010</th>\n",
" <td>318857056</td>\n",
" <td>6072017</td>\n",
" <td>44095950</td>\n",
" <td>72867</td>\n",
" <td>421059</td>\n",
" <td>1749809</td>\n",
" <td>3764142</td>\n",
" <td>10125170</td>\n",
" <td>30401698</td>\n",
" <td>3569080</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Population Violent Property Murder Forcible_Rape Robbery \\\n",
"1960 201385000 4134930 45160900 106180 236720 1633510 \n",
"1970 220099000 9607930 91383800 192230 554570 4159020 \n",
"1980 248239000 14074328 117048900 206439 865639 5383109 \n",
"1990 272690813 17527048 119053499 211664 998827 5748930 \n",
"2000 307006550 13968056 100944369 163068 922499 4230366 \n",
"2010 318857056 6072017 44095950 72867 421059 1749809 \n",
"\n",
" Aggravated_assault Burglary Larceny_Theft Vehicle_Theft \n",
"1960 2158520 13321100 26547700 5292100 \n",
"1970 4702120 28486000 53157800 9739900 \n",
"1980 7619130 33073494 72040253 11935411 \n",
"1990 10568963 26750015 77679366 14624418 \n",
"2000 8652124 21565176 67970291 11412834 \n",
"2010 3764142 10125170 30401698 3569080 "
]
},
"execution_count": 270,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Step 9. What is the mos dangerous decade to live in the US?"
]
},
{
"cell_type": "code",
"execution_count": 276,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"Population 2010\n",
"Violent 1990\n",
"Property 1990\n",
"Murder 1990\n",
"Forcible_Rape 1990\n",
"Robbery 1990\n",
"Aggravated_assault 1990\n",
"Burglary 1980\n",
"Larceny_Theft 1990\n",
"Vehicle_Theft 1990\n",
"dtype: int64"
]
},
"execution_count": 276,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
|