""" A simple CLI to updates descriptive statistics on all datasets. Example use: python update_descriptive_statistics.py --dataset wikisource """ import argparse import json import logging import multiprocessing from dataclasses import dataclass from pathlib import Path from textwrap import dedent from typing import Self, cast import pandas as pd import plotnine as pn from datasets import Dataset, load_dataset from transformers import AutoTokenizer from git_utilities import check_is_ancestor, get_current_revision, get_latest_revision from tests.readme_parsing import get_tag_content, read_frontmatter_and_body, replace_tag logger = logging.getLogger(__name__) repo_path = Path(__file__).parent.parent tokenizer_name = "AI-Sweden-Models/Llama-3-8B-instruct" tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_fast=True) def human_readable_large_int(value: int) -> str: thresholds = [ (1_000_000_000, "B"), (1_000_000, "M"), (1_000, "K"), ] for threshold, label in thresholds: if value > threshold: return f"{value/threshold:.2f}{label}" return str(value) def calculate_average_document_length( dataset: Dataset, text_column: str = "text" ) -> float: texts = sum(len(t) for t in dataset[text_column]) return texts / len(dataset) def _count_tokens(batch): return { "token_count": [ len(tokens) for tokens in tokenizer(batch["text"], padding=False)["input_ids"] # type: ignore ] } def calculate_number_of_tokens( dataset: Dataset, text_column: str = "text", ) -> int: token_counts = dataset.map( _count_tokens, batched=True, batch_size=1000, num_proc=multiprocessing.cpu_count(), ) return sum(token_counts["token_count"]) @dataclass() class DescriptiveStatsOverview: number_of_samples: int average_document_length: float number_of_tokens: int language: str = "dan, dansk, Danish" @classmethod def from_dataset(cls, dataset: Dataset) -> Self: return cls( number_of_samples=len(dataset), average_document_length=calculate_average_document_length(dataset), number_of_tokens=calculate_number_of_tokens(dataset), ) def to_markdown(self) -> str: format = dedent(f""" - **Language**: {self.language} - **Number of samples**: {human_readable_large_int(self.number_of_samples)} - **Number of tokens (Llama 3)**: {human_readable_large_int(self.number_of_tokens)} - **Average document length (characters)**: {self.average_document_length:.2f} """) return format def add_to_markdown(self, markdown: str | Path) -> str: return replace_tag( markdown=markdown, package=self.to_markdown(), tag="DESC-STATS" ) def to_disk( self, path: Path ): # TODO: instead write this to the yaml header (and revision should not be added here) data = self.__dict__ data["revision"] = get_current_revision() with path.with_suffix(".json").open("w") as f: json.dump(self.__dict__, f) @classmethod def from_disk(cls, path: Path): with path.open("r") as f: data = json.load(f) if "revision" in data: data.pop("revision") obj = cls(**data) return obj sample_template = """ ```py {sample} ``` ### Data Fields An entry in the dataset consists of the following fields: - `text`(`str`): The content of the document. - `source` (`str`): The source of the document (see [Source Data](#source-data)). - `id` (`str`): An unique identifier for each document. - `added` (`str`): An date for when the document was added to this collection. - `created` (`str`): An date range for when the document was originally created. - `license` (`str`): The license of the document. The licenses vary according to the source. - `domain` (`str`): The domain of the source - `metadata/source-pretty` (`str`): The long form version of the short-form source name - `metadata/*`: Potentially additional metadata """ def add_sample(markdown_path: Path, dataset: Dataset, max_str_len: int = 100): logger.info("Adding dataset sample to readme") sample = dataset[0] for k in sample: if isinstance(k, str) and len(sample[k]) > max_str_len: sample[k] = sample[k][:max_str_len] + "[...]" json_sample = json.dumps(sample, indent=2, ensure_ascii=False) sample_str = sample_template.format(sample=json_sample) replace_tag(markdown=markdown_path, package=sample_str, tag="SAMPLE") DATASET_PLOTS_template = """ """ def add_descriptive_statistics_plots( markdown_path: Path, dataset: Dataset, ): logger.info("Adding descriptive statistics plot to readme.") lengths = [len(s) for s in dataset["text"]] df = pd.DataFrame({"lengths": lengths, "Source": dataset["source"]}) plot = ( pn.ggplot(df, pn.aes(x="lengths", y=pn.after_stat("count"))) + pn.geom_histogram(bins=100) + pn.labs( x="Document Length (Characters)", y="Count", title="Distribution of Document Lengths", ) + pn.theme_minimal() + pn.facet_wrap("Source", scales="free", ncol=3) ) img_path = markdown_path.parent / "images" img_path.mkdir(parents=False, exist_ok=True) pn.ggsave( plot, img_path / "dist_document_length.png", dpi=500, width=10, height=10, units="in", verbose=False, ) replace_tag( markdown=markdown_path, package=DATASET_PLOTS_template, tag="DATASET PLOTS" ) def add_desc_statitics( markdown_path: Path, dataset: Dataset, desc_stats_path: Path, ) -> None: logger.info("Adding descriptive statistics to readme.") desc_stats = DescriptiveStatsOverview.from_dataset(dataset) desc_stats.to_disk(desc_stats_path) desc_stats.add_to_markdown(markdown_path) def update_dataset( dataset_path: Path, name: str, readme_name: None | str = None, force: bool = False, ) -> None: rev = get_latest_revision(dataset_path) desc_stats_path = dataset_path / "descriptive_stats.json" if desc_stats_path.exists() and force is False: with desc_stats_path.open("r") as f: last_update = json.load(f).get("revision", None) if last_update is None: logger.warning(f"revision is not defined in {desc_stats_path}.") elif check_is_ancestor(ancestor_rev=last_update, rev=rev): logger.info( f"descriptive statistics for '{name}' is already up to date, skipping." ) return readme_name = f"{name}.md" if readme_name is None else readme_name markdown_path = dataset_path / readme_name logger.info(f"Updating dataset: {name}") ds = load_dataset(str(repo_path), name, split="train") ds = cast(Dataset, ds) add_desc_statitics(markdown_path, ds, desc_stats_path) add_sample(markdown_path, ds) add_descriptive_statistics_plots(markdown_path, ds) def create_parser(): parser = argparse.ArgumentParser( description="Calculated descriptive statistics of the datasets in tha data folder" ) parser.add_argument( "--dataset", default=None, type=str, help="Use to specify if you only want to compute the statistics from a singular dataset.", ) parser.add_argument( "--logging_level", default=20, type=int, help="Sets the logging level. Default to 20 (INFO), other reasonable levels are 10 (DEBUG) and 30 (WARNING).", ) parser.add_argument( "--force", type=bool, default=False, action=argparse.BooleanOptionalAction, help="Should the statistics be forcefully recomputed. By default it checks the difference in commit ids.", ) parser.add_argument( "--repo_path", default=str(repo_path), type=str, help="The repository where to calculate the descriptive statistics from", ) return parser def create_main_table(repo_path: Path = repo_path) -> tuple[pd.DataFrame, str, str]: frontmatter, _ = read_frontmatter_and_body(repo_path / "README.md") datasets = [ cfg["config_name"] for cfg in frontmatter["configs"] if cfg["config_name"] != "default" ] table = { "Source": [], "Description": [], # "Domain": [], # TODO Add domain "N. Tokens": [], "License": [], } readme_references = "" license_references = ( "[CC-0]: https://creativecommons.org/publicdomain/zero/1.0/legalcode.en\n" + "[CC-BY-SA 4.0]: https://creativecommons.org/licenses/by-sa/4.0/deed.en\n" ) for dataset in datasets: dataset_path = repo_path / "data" / dataset readme_path = dataset_path / f"{dataset_path.name}.md" frontmatter, body = read_frontmatter_and_body(readme_path) desc_stats = DescriptiveStatsOverview.from_disk( dataset_path / "descriptive_stats.json" ) short_description = get_tag_content(body, tag="SHORT DESCRIPTION").strip()[ :-1 ] # to exclude "." license, license_name = frontmatter["license"], frontmatter["license_name"] table["Source"] += [f"[{dataset_path.name}]"] readme_references += ( f"[{dataset_path.name}]: data/{dataset_path.name}/{dataset_path.name}.md\n" ) table["License"] += [f"[{license_name}]"] if license == "other": license_references += f"[{license_name}]: ./data/{dataset_path.name}/{dataset_path.name}.md#license-information\n" table["Description"] += [short_description] table["N. Tokens"] += [desc_stats.number_of_tokens] # total table["Source"] += ["**Total**"] # table["Domain"] += [""] table["License"] += [""] table["Description"] += [""] table["N. Tokens"] += [sum(table["N. Tokens"])] df = pd.DataFrame.from_dict(table) df["N. Tokens"] = df["N. Tokens"].apply(human_readable_large_int) return df, readme_references, license_references def update_main_table(repo_path: Path = repo_path) -> None: logger.info("Updating MAIN TABLE") main_table, readme_references, license_references = create_main_table(repo_path) readme_path = repo_path / "README.md" with readme_path.open("r") as f: markdown = f.read() package = f"{main_table.to_markdown(index=False)}\n\n{readme_references}\n\n{license_references}\n\n" markdown = replace_tag(markdown, package=package, tag="MAIN TABLE") with readme_path.open("w") as f: f.write(markdown) def main( dataset: str | None = None, logging_level: int = 20, force: bool = False, repo_path: Path = repo_path, ) -> None: logging.basicConfig(level=logging_level) if dataset and dataset != "default": dataset_path = repo_path / "data" / dataset update_dataset(dataset_path, dataset_path.name, force=force) return if dataset is None: datasets = (repo_path / "data").glob("*") for dataset_path in datasets: update_dataset(dataset_path, dataset_path.name, force=force) if dataset is None or dataset == "default": update_dataset(repo_path, "default", "README.md", force=force) update_main_table(repo_path) if __name__ == "__main__": parser = create_parser() args = parser.parse_args() main( args.dataset, logging_level=args.logging_level, force=args.force, repo_path=Path(args.repo_path), )