# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import datasets def get_file_list(): file_list = [] with open("./file_list.json") as f: file_list = json.load(f) return file_list # Find for instance the citation on arxiv or on the dataset repo/website _CITATION = """\ @InProceedings{huggingface:dataset, title = {Ember2018}, author={huggingface, Inc. }, year={2023} } """ # TODO: Add description of the dataset here # You can copy an official description _DESCRIPTION = """\ This new dataset is from the EMBER 2018 dataset """ # TODO: Add a link to an official homepage for the dataset here _HOMEPAGE = "https://github.com/elastic/ember" # TODO: Add the licence for the dataset here if you can find it _LICENSE = "" # TODO: Add link to the official dataset URLs here # The HuggingFace Datasets library doesn't host the datasets but only points to the original files. # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) _URLS = { "first_domain": "./data.zip" } # TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case class NewDataset(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("1.1.0") # This is an example of a dataset with multiple configurations. # If you don't want/need to define several sub-sets in your dataset, # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes. # If you need to make complex sub-parts in the datasets with configurable options # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig # BUILDER_CONFIG_CLASS = MyBuilderConfig # You will be able to load one or the other configurations in the following list with # data = datasets.load_dataset('my_dataset', 'first_domain') # data = datasets.load_dataset('my_dataset', 'second_domain') BUILDER_CONFIGS = [ datasets.BuilderConfig(name="first_domain", version=VERSION, description="This part of my dataset covers a first domain"), datasets.BuilderConfig(name="second_domain", version=VERSION, description="This part of my dataset covers a second domain"), ] DEFAULT_CONFIG_NAME = "first_domain" # It's not mandatory to have a default configuration. Just use one if it make sense. def _info(self): # TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset if self.config.name == "first_domain": # This is the name of the configuration selected in BUILDER_CONFIGS above features = datasets.Features( { "x": datasets.features.Sequence( datasets.Value("float32") ), "y": datasets.Value("float32"), "appeared": datasets.Value("string"), "avclass": datasets.Value("string"), "label": datasets.Value("string"), "subset": datasets.Value("string"), "sha256": datasets.Value("string") } ) else: # This is an example to show how to have different features for "first_domain" and "second_domain" features = datasets.Features( { "x": datasets.features.Sequence( datasets.Value("float32") ), "y": datasets.Value("float32"), "appeared": datasets.Value("string"), "avclass": datasets.Value("string"), "label": datasets.Value("string"), "subset": datasets.Value("string"), "sha256": datasets.Value("string") } ) return datasets.DatasetInfo( # This is the description that will appear on the datasets page. description=_DESCRIPTION, # This defines the different columns of the dataset and their types features=features, # Here we define them above because they are different between the two configurations # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and # specify them. They'll be used if as_supervised=True in builder.as_dataset. # supervised_keys=("sentence", "label"), # Homepage of the dataset for documentation homepage=_HOMEPAGE, # License for the dataset if available license=_LICENSE, # Citation for the dataset citation=_CITATION, ) def _split_generators(self, dl_manager): # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files. # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive urls = _URLS[self.config.name] data_dir = dl_manager.download_and_extract(urls) file_list = get_file_list() return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, # These kwargs will be passed to _generate_examples gen_kwargs={ "filepaths": [os.path.join(data_dir, f"data/{file}") for file in file_list["train"]], "split": "train", }, ), # datasets.SplitGenerator( # name=datasets.Split.VALIDATION, # # These kwargs will be passed to _generate_examples # gen_kwargs={ # "filepath": [os.path.join(data_dir, f"data/{file}") for file in file_list["dev"]], # "split": "dev", # }, # ), datasets.SplitGenerator( name=datasets.Split.TEST, # These kwargs will be passed to _generate_examples # [os.path.join(data_dir, file) for file in file_list["test"]], gen_kwargs={ "filepaths": [os.path.join(data_dir, f"data/{file}") for file in file_list["test"]], "split": "test" }, ), ] # method parameters are unpacked from `gen_kwargs` as given in `_split_generators` def _generate_examples(self, filepaths, split): key = 0 for path in filepaths: # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset. # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example. with open(path, encoding="utf-8") as f: data_list = json.load(f) for data in data_list["data"]: key += 1 if self.config.name == "first_domain": # Yields examples as (key, example) tuples yield key, { "x": data["x"], "y": data["y"], "appeared": data["appeared"], "avclass": data["avclass"], "label": data["label"], "subset": data["subset"], "sha256": data["sha256"] } else: yield key, { "x": data["x"], "y": data["y"], "appeared": data["appeared"], "avclass": data["avclass"], "label": data["label"], "subset": data["subset"], "sha256": data["sha256"] }