import json import os import pathlib from dataclasses import asdict, dataclass from typing import Any, Dict, List, Optional, Tuple import datasets as ds import pandas as pd from datasets.utils.logging import get_logger from PIL import Image from PIL.Image import Image as PilImage logger = get_logger(__name__) JsonDict = Dict[str, Any] _DESCRIPTION = """\ PosterErase is a new dataset, which contains 60K high-resolution posters with texts and is more challenging for the text erasing task. """ _CITATION = """ @inproceedings{jiang2022self, title={Self-supervised text erasing with controllable image synthesis}, author={Jiang, Gangwei and Wang, Shiyao and Ge, Tiezheng and Jiang, Yuning and Wei, Ying and Lian, Defu}, booktitle={Proceedings of the 30th ACM International Conference on Multimedia}, pages={1973--1983}, year={2022} } """ _HOMEPAGE = "https://github.com/alimama-creative/Self-supervised-Text-Erasing" _LICENSE = """\ The dataset is distributed under the CC BY-SA 4.0 license. """ _URL_BASE = ( "https://huggingface.co/datasets/shunk031/PosterErase-private/resolve/main/{}" ) _ZIP_FILES = [f"erase_{i}.zip" for i in range(1, 7)] _URLS = [_URL_BASE.format(zip_file) for zip_file in _ZIP_FILES] def load_image(file_path: pathlib.Path) -> PilImage: return Image.open(file_path) @dataclass class ColorData(object): c1: Optional[int] c2: Optional[int] c3: Optional[int] @classmethod def from_string(cls, s: str) -> "ColorData": assert isinstance(s, str) cs = s.split(",") if len(cs) == 3: return ColorData(*list(map(lambda s: int(s), cs))) elif len(cs) == 1: return ColorData(*[None] * 3) else: raise ValueError(f"Invalid value: {cs}") @dataclass class TextData(object): x: int y: int cs: List[ColorData] @classmethod def from_text_tuple(cls, text_tuple: Tuple[int, int, List[str]]) -> "TextData": x, y, cs = text_tuple assert isinstance(x, int) and isinstance(y, int) return cls(x=x, y=y, cs=[ColorData.from_string(c) for c in cs]) @dataclass class ObjectData(object): text: Optional[str] size: Optional[int] direction: Optional[int] @classmethod def from_string(cls, s: str) -> "ObjectData": assert isinstance(s, str) ss = s.split(",") if len(ss) == 3: return cls(text=ss[0], size=int(ss[1]), direction=int(ss[2])) elif len(ss) == 1: return cls(*[None] * 3) else: raise ValueError(f"Invalid value: {ss}") @dataclass class PlaceData(object): objs: List[ObjectData] texts: List[List[TextData]] @classmethod def from_dict(cls, json_dict: JsonDict) -> "PlaceData": objs = [ ObjectData.from_string(s) for s in json_dict["obj"].strip(";").split(";") ] texts = [ [TextData.from_text_tuple(tt) for tt in tts] for tts in json_dict["text"] ] return cls(objs=objs, texts=texts) @dataclass class MaskData(object): x1: Optional[int] x2: Optional[int] y1: Optional[int] y2: Optional[int] @classmethod def from_string(cls, s: str) -> "MaskData": assert isinstance(s, str) ss = s.split(",") if len(ss) == 4: return cls(*list(map(lambda s: int(s), ss))) elif len(ss) == 1: return cls(*[None] * 4) else: raise ValueError(f"Invalid value: {ss}") @dataclass class Annotation(object): masks: List[MaskData] place: Optional[PlaceData] @classmethod def from_dict(cls, json_dict: JsonDict) -> "Annotation": masks = [ MaskData.from_string(s) for s in json_dict["mask"].strip(";").split(";") ] place_json = json_dict.get("place") place = ( PlaceData.from_dict(json_dict["place"]) if place_json is not None else None ) return cls(masks=masks, place=place) @dataclass class EraseData(object): number: int path: str annotation: Annotation @classmethod def from_dict(cls, json_dict: JsonDict) -> "EraseData": number = int(json_dict["number"]) path = json_dict["path"] annotation = Annotation.from_dict(json_dict["json"]) return cls(number=number, path=path, annotation=annotation) def _load_annotation(file_path: pathlib.Path, columns: List[str]) -> pd.DataFrame: df = pd.read_csv(file_path, delimiter="\t", names=columns) df["json"] = df["json"].apply(json.loads) return df def _load_tng_annotation(file_path: pathlib.Path) -> pd.DataFrame: return _load_annotation(file_path=file_path, columns=["number", "path", "json"]) def _load_val_annotation(file_path: pathlib.Path) -> pd.DataFrame: return _load_annotation( file_path=file_path, columns=["number", "path", "json", "gt_path"] ) def _load_tst_annotation(file_path: pathlib.Path) -> pd.DataFrame: return _load_val_annotation(file_path=file_path) class PosterEraseDataset(ds.GeneratorBasedBuilder): VERSION = ds.Version("1.0.0") BUILDER_CONFIGS = [ds.BuilderConfig(version=VERSION, description=_DESCRIPTION)] @property def _manual_download_instructions(self) -> str: return ( "To use PosterErase dataset, you need to download the dataset " "via [Alibaba Cloud](https://tianchi.aliyun.com/dataset/134810)." ) def _info(self) -> ds.DatasetInfo: masks = ds.Sequence( { "x1": ds.Value("int32"), "x2": ds.Value("int32"), "y1": ds.Value("int32"), "y2": ds.Value("int32"), } ) objs = ds.Sequence( { "text": ds.Value("string"), "size": ds.Value("int32"), "direction": ds.Value("int8"), } ) color = { "c1": ds.Value("int32"), "c2": ds.Value("int32"), "c3": ds.Value("int32"), } text_feature = { "x": ds.Value("int32"), "y": ds.Value("int32"), "cs": ds.Sequence(color), } texts = ds.Sequence(ds.Sequence(text_feature)) place = {"objs": objs, "texts": texts} annotation = {"masks": masks, "place": place} features = ds.Features( { "number": ds.Value("int32"), "path": ds.Value("string"), "image": ds.Image(), "gt_image": ds.Image(), "annotation": annotation, } ) return ds.DatasetInfo( description=_DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, license=_LICENSE, features=features, ) def _download_from_hf(self, dl_manager: ds.DownloadManager) -> List[str]: return dl_manager.download_and_extract(_URLS) def _download_from_local(self, dl_manager: ds.DownloadManager) -> List[str]: assert dl_manager.manual_dir is not None, dl_manager.manual_dir dir_path = os.path.expanduser(dl_manager.manual_dir) if not os.path.exists(dir_path): raise FileNotFoundError( "Make sure you have downloaded and placed the PosterErase dataset correctly. " 'Furthermore, you shoud check that a manual dir via `datasets.load_dataset("shunk031/PosterErase", data_dir=...)` ' "that include zip files from the downloaded files. " f"Manual downloaded instructions: {self._manual_download_instructions}" ) return dl_manager.extract( path_or_paths=[os.path.join(dir_path, zip_file) for zip_file in _ZIP_FILES] ) def _split_generators( self, dl_manager: ds.DownloadManager ) -> List[ds.SplitGenerator]: base_dir_paths = ( self._download_from_hf(dl_manager) if dl_manager.download_config.token else self._download_from_local(dl_manager) ) dir_paths = [pathlib.Path(dir_path) for dir_path in base_dir_paths] dir_paths = [dir_path / f"erase_{i+1}" for i, dir_path in enumerate(dir_paths)] dir_path, *sub_dir_paths = dir_paths tng_df = _load_tng_annotation(dir_path / "train.txt") val_df = _load_val_annotation(dir_path / "ps_valid.txt") tst_df = _load_tst_annotation(dir_path / "ps_test.txt") tng_image_files = { f"{f.parent.name}/{f.name}": f for f in dir_path.glob("train/*.png") } val_image_files = { f"{f.parent.name}/{f.name}": f for f in dir_path.glob("valid/*.png") } val_gt_image_files = { f"{f.parent.name}/{f.name}": f for f in dir_path.glob("valid/*_gt.png") } tst_image_files = { f"{f.parent.name}/{f.name}": f for f in dir_path.glob("test/*.png") } tst_gt_image_files = { f"{f.parent.name}/{f.name}": f for f in dir_path.glob("test/*_gt.png") } for sub_dir_path in sub_dir_paths: tng_image_files.update( { f"{f.parent.name}/{f.name}": f for f in sub_dir_path.glob("train/*.png") } ) return [ ds.SplitGenerator( name=ds.Split.TRAIN, gen_kwargs={ "annotation_df": tng_df, "image_files": tng_image_files, }, ), ds.SplitGenerator( name=ds.Split.VALIDATION, gen_kwargs={ "annotation_df": val_df, "image_files": val_image_files, "gt_image_files": val_gt_image_files, }, ), ds.SplitGenerator( name=ds.Split.TEST, gen_kwargs={ "annotation_df": tst_df, "image_files": tst_image_files, "gt_image_files": tst_gt_image_files, }, ), ] def _generate_examples( self, annotation_df: pd.DataFrame, image_files: Dict[str, pathlib.Path], gt_image_files: Optional[Dict[str, pathlib.Path]] = None, ): ann_dicts = annotation_df.to_dict(orient="records") for i, ann_dict in enumerate(ann_dicts): image_path = image_files[ann_dict["path"]] image = load_image(image_path) erase_data = EraseData.from_dict(json_dict=ann_dict) example = asdict(erase_data) example["image"] = image if gt_image_files is not None and "gt_path" in ann_dict: gt_image_path = gt_image_files[ann_dict["gt_path"]] gt_image = load_image(gt_image_path) example["gt_image"] = gt_image else: example["gt_image"] = None yield i, example