File size: 7,880 Bytes
b6746bc 063e542 b6746bc 79b17a2 b6746bc 3a6859a b6746bc 3a6859a b6746bc 3a6859a b6746bc 4b8f83a b6746bc 3a6859a b6746bc 4b8f83a 3a6859a 4b8f83a b6746bc 79b17a2 b6746bc 4b8f83a bde62dd b6746bc 4b8f83a bde62dd 4b8f83a bde62dd b6746bc bde62dd b6746bc 4b322ed b6746bc 4b8f83a b6746bc 2479fb3 b6746bc 46ff261 12cdb3a b6746bc 12cdb3a 252e475 12cdb3a b6746bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
# coding=utf-8
"""AudioSet sound event classification dataset."""
import os
import json
import gzip
import joblib
import shutil
import pathlib
import logging
import zipfile
import librosa
import textwrap
import datasets
import requests
import itertools
import torchaudio
import typing as tp
import pandas as pd
from pathlib import Path
from copy import deepcopy
from tqdm.auto import tqdm
from rich.logging import RichHandler
from ._audioset import ID2LABEL
logger = logging.getLogger(__name__)
logger.addHandler(RichHandler())
logger.setLevel(logging.INFO)
DATA_DIR_STRUCTURE = """
audios/
βββ balanced_train_segments [20550 entries]
βββ eval_segments [18887 entries]
βββ unbalanced_train_segments
βββ unbalanced_train_segments_part00 [46940 entries]
...
βββ unbalanced_train_segments_part40 [9844 entries]
"""
LABEL2ID = {v:k for k, v in ID2LABEL.items()}
CLASSES = list(ID2LABEL.values())
class AudioSetConfig(datasets.BuilderConfig):
"""BuilderConfig for AudioSet."""
def __init__(self, features, **kwargs):
super(AudioSetConfig, self).__init__(version=datasets.Version("0.0.1", ""), **kwargs)
self.features = features
class AudioSet(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
AudioSetConfig(
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None),
"sound": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="20k",
description="",
),
AudioSetConfig(
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None),
"sound": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="500k",
description="",
),
AudioSetConfig(
features=datasets.Features(
{
"file": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=None),
"sound": datasets.Sequence(datasets.Value("string")),
"label": datasets.Sequence(datasets.features.ClassLabel(names=CLASSES)),
}
),
name="2m",
description="",
),
]
def _info(self):
return datasets.DatasetInfo(
description="",
features=self.config.features,
supervised_keys=None,
homepage="",
citation="",
task_templates=None,
)
@property
def manual_download_instructions(self):
return (
"To use AudioSet you have to download it manually. "
"Please download the dataset from https://huggingface.co/datasets/confit/audioset-full \n"
"Then extract all files in one folder called `audios` and load the dataset with: "
"`datasets.load_dataset('confit/audioset', '20k', data_dir='path/to/folder/audios')`\n"
"The tree structure of the downloaded data looks like: \n"
f"{DATA_DIR_STRUCTURE}"
)
def _split_generators(self, dl_manager):
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir))
if not os.path.exists(data_dir):
raise FileNotFoundError(
f"{data_dir} does not exist. Make sure you insert a manual dir via "
f"`datasets.load_dataset('confit/audioset', 'balanced', data_dir=...)` that includes files unzipped from all the zip files. "
f"Manual download instructions: {self.manual_download_instructions}"
)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"split": "train", "data_dir": data_dir}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"split": "test", "data_dir": data_dir}),
]
def _generate_examples(self, split, data_dir):
"""Generate examples from AudioSet"""
# Iterating the contents of the data to extract the relevant information
extensions = ['.wav']
if split == 'train':
if self.config.name == '20k':
archive_path = os.path.join(data_dir, 'balanced_train_segments')
metadata_url = 'https://huggingface.co/datasets/confit/audioset/resolve/main/metadata/audioset-20k.jsonl'
elif self.config.name == '500k':
archive_path = os.path.join(data_dir, 'unbalanced_train_segments')
metadata_url = 'https://huggingface.co/datasets/confit/audioset/resolve/main/metadata/audioset-500k.jsonl'
elif self.config.name == '2m':
archive_path = os.path.join(data_dir, 'unbalanced_train_segments')
metadata_url = 'https://huggingface.co/datasets/confit/audioset/resolve/main/metadata/audioset-2m.jsonl'
elif split == 'test':
archive_path = os.path.join(data_dir, 'eval_segments')
metadata_url = 'https://huggingface.co/datasets/confit/audioset/resolve/main/metadata/audioset-eval.jsonl'
response = requests.get(metadata_url)
if response.status_code == 200:
# Split the content by lines and parse each line as JSON
# Each line is like {"filename":"YN6UbMsh-q1c.wav","label":["Vehicle","Car"]}
data_list = [json.loads(line) for line in response.text.splitlines()]
fileid2labels = {item['filename']:item['labels'] for item in data_list}
else:
logger.info(f"Failed to retrieve data: Status code {response.status_code}")
_, wav_paths = fast_scandir(archive_path, extensions, recursive=True)
wav_paths = [wav_path for wav_path in wav_paths if Path(wav_path).name in fileid2labels]
for guid, wav_path in enumerate(wav_paths):
fileid = Path(wav_path).name
sound = fileid2labels.get(fileid)
duration = librosa.get_duration(path=wav_path)
if duration <= 0:
continue
try:
# metadata = torchaudio.info(wav_path)
# duration = math.ceil(metadata.num_frames / metadata.sample_rate) # in seconds
yield guid, {
"id": str(guid),
"file": wav_path,
"audio": wav_path,
"sound": sound,
"label": sound,
"duration": duration
}
except:
continue
def fast_scandir(path: str, extensions: tp.List[str], recursive: bool = False):
# Scan files recursively faster than glob
# From github.com/drscotthawley/aeiou/blob/main/aeiou/core.py
subfolders, files = [], []
try: # hope to avoid 'permission denied' by this try
for f in os.scandir(path):
try: # 'hope to avoid too many levels of symbolic links' error
if f.is_dir():
subfolders.append(f.path)
elif f.is_file():
if os.path.splitext(f.name)[1].lower() in extensions:
files.append(f.path)
except Exception:
pass
except Exception:
pass
if recursive:
for path in list(subfolders):
sf, f = fast_scandir(path, extensions, recursive=recursive)
subfolders.extend(sf)
files.extend(f) # type: ignore
return subfolders, files |