"""Universal Text Classification Dataset (UTCD)""" import os import json from os.path import join as os_join from typing import List import datasets from stefutil import * _DESCRIPTION = """ UTCD is a compilation of 18 classification datasets spanning 3 categories of Sentiment, Intent/Dialogue and Topic classification. UTCD focuses on the task of zero-shot text classification where the candidate labels are descriptive of the text being classified. UTCD consists of ~ 6M/800K train/test examples. """ # TODO: citation _URL = "https://github.com/ChrisIsKing/zero-shot-text-classification/tree/master" _URL_ZIP = "https://huggingface.co/datasets/claritylab/UTCD/raw/main/datasets.zip" _VERSION = datasets.Version('0.0.1') class UtcdConfig(datasets.BuilderConfig): """BuilderConfig for SuperGLUE.""" def __init__(self, domain: str, normalize_aspect: bool = False, **kwargs): """BuilderConfig for UTCD. Args: domain: `string`, dataset domain, one of [`in`, `out`]. normalize_aspect: `bool`, if True, an aspect-normalized version of the dataset is returned. **kwargs: keyword arguments forwarded to super. """ # Version history: # 0.0.1: Initial version. super(UtcdConfig, self).__init__(version=_VERSION, **kwargs) ca.check_mismatch('Dataset Domain', domain, ['in', 'out']) self.domain = domain self.normalize_aspect = normalize_aspect def to_dir_name(self): """ :return: directory name for the dataset files for this config stored on hub """ domain_str = 'in-domain' if self.domain == 'in' else 'out-of-domain' prefix = 'aspect-normalized-' if self.normalize_aspect else '' return f'{prefix}{domain_str}' config = StefConfig('config.json') # mic(config('go_emotion')) _split2hf_split = dict(train=datasets.Split.TRAIN, eval=datasets.Split.VALIDATION, test=datasets.Split.TEST) class Utcd(datasets.GeneratorBasedBuilder): """UTCD: Universal Text Classification Dataset. Version 0.0.""" # _config = dict( # go_emotion=dict(aspect='sentiment', domain='in', name='GoEmotions'), # sentiment_tweets_2020=dict(aspect='sentiment', domain='in', name='TweetEval'), # emotion=dict(aspect='sentiment', domain='in', name='Emotion'), # sgd=dict(aspect='intent', domain='in', name='Schema-Guided Dialogue'), # clinc_150=dict(aspect='intent', domain='in', name='Clinc-150'), # slurp=dict(aspect='intent', domain='in', name='SLURP'), # ag_news=dict(aspect='topic', domain='in', name='AG News'), # dbpedia=dict(aspect='topic', domain='in', name='DBpedia'), # yahoo=dict(aspect='topic', domain='in', name='Yahoo Answer Topics'), # # amazon_polarity=dict(aspect='sentiment', domain='out', name='Amazon Review Polarity'), # finance_sentiment=dict( aspect='sentiment', domain='out', name='Financial Phrase Bank'), # yelp=dict(aspect='sentiment', domain='out', name='Yelp Review'), # banking77=dict(aspect='intent', domain='out', name='Banking77'), # snips=dict(aspect='intent', domain='out', name='SNIPS'), # nlu_evaluation=dict(aspect='intent', domain='out', name='NLU Evaluation'), # multi_eurlex=dict(aspect='topic', domain='out', name='MultiEURLEX'), # patent=dict(aspect='topic', domain='out', name='Big Patent'), # consumer_finance=dict(aspect='topic', domain='out', name='Consumer Finance Complaints') # ) VERSION = _VERSION BUILDER_CONFIGS = [ UtcdConfig( name='in-domain', description='All in-domain datasets.', domain='in', normalize_aspect=False ), UtcdConfig( name='aspect-normalized-in-domain', description='Aspect-normalized version of all in-domain datasets.', domain='in', normalize_aspect=True ), UtcdConfig( name='out-of-domain', description='All out-of-domain datasets.', domain='out', normalize_aspect=False ), UtcdConfig( name='aspect-normalized-out-of-domain', description='Aspect-normalized version of all out-of-domain datasets.', domain='out', normalize_aspect=True ) ] DEFAULT_CONFIG_NAME = 'in-domain' def _get_dataset_names(self): return [dnm for dnm, d_dset in config().items() if d_dset['domain'] == self.config.domain] def _info(self): dnms = self._get_dataset_names() labels = [config(f'{dnm}.splits.{split}.labels') for dnm in dnms for split in ['train', 'test']] labels = sorted(set().union(*labels)) # drop duplicate labels across datasets return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( text=datasets.Value(dtype='string'), labels=datasets.Sequence(feature=datasets.ClassLabel(names=labels), length=-1), # for multi-label dataset_name=datasets.ClassLabel(names=dnms) ), homepage=_URL # TODO: citation ) def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: # for aspect-normalized versions of the dataset, we include a validation set splits = ['train', 'eval', 'test'] if self.config.normalize_aspect else ['train', 'test'] dnms = self._get_dataset_names() dir_nm = self.config.to_dir_name() # TODO: update root dataset naming version & dataset split naming base_path = dl_manager.download_and_extract('datasets.zip') split2paths = {s: [os_join(base_path, f'{dir_nm}_split', dnm, f'{s}.json') for dnm in dnms] for s in splits} # order of dataset file paths will be deterministic for deterministic dataset name ordering return [ datasets.SplitGenerator(name=_split2hf_split[s], gen_kwargs=dict(filepath=split2paths[s])) for s in splits ] def _generate_examples(self, filepath: List[str]): id_ = 0 for path in filepath: # each file for one split of one dataset dnm = path.split(os.sep)[-2] with open(path, encoding='utf-8') as fl: dset = json.load(fl) for txt, labels in dset.items(): yield id_, dict(text=txt, labels=labels, dataset_name=dnm) id_ += 1