# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from typing import Generator, Tuple, Dict, List import datasets from datasets import DownloadManager from datasets.info import SupervisedKeysData _CITATION = """@misc{11321/849, title = {{AspectEmo} 1.0: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis}, author = {Koco{\'n}, Jan and Radom, Jarema and Kaczmarz-Wawryk, Ewa and Wabnic, Kamil and Zaj{\c a}czkowska, Ada and Za{\'s}ko-Zieli{\'n}ska, Monika}, url = {http://hdl.handle.net/11321/849}, note = {{CLARIN}-{PL} digital repository}, copyright = {The {MIT} License}, year = {2021} }""" _DESCRIPTION = """AspectEmo dataset: Multi-Domain Corpus of Consumer Reviews for Aspect-Based Sentiment Analysis""" _HOMEPAGE = "https://clarin-pl.eu/dspace/handle/11321/849" _LICENSE = "The MIT License" _URLs = { "1.0": "https://huggingface.co/datasets/clarin-pl/aspectemo/resolve/main/data/aspectemo1.zip", # '2.0': "", } _CLASSES = ["a_plus_s", "a_zero", "a_amb", "a_minus_m", "O", "a_minus_s", "a_plus_m"] class AspectEmo(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="1.0", version=VERSION, description="AspectEmo 1.0 Corpus, used in the original paper.", ), # datasets.BuilderConfig( # name="2.0", # version=VERSION, # description="", # ), ] DEFAULT_CONFIG_NAME = "1.0" def _info(self) -> datasets.DatasetInfo: return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string")), "labels": datasets.Sequence( datasets.features.ClassLabel( names=_CLASSES, num_classes=len(_CLASSES) ) ), } ), supervised_keys=SupervisedKeysData(input="tokens", output="labels"), homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators( self, dl_manager: DownloadManager ) -> List[datasets.SplitGenerator]: my_urls = _URLs[self.config.name] data_dir = dl_manager.download_and_extract(my_urls) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": os.path.join(data_dir, "data.json"), "split": "train", }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, "data.json"), "split": "test", }, ), ] def _generate_examples( self, filepath: str, split: str, ) -> Generator[Tuple[int, Dict[str, str]], None, None]: with open(filepath, encoding="utf-8") as f: data = json.load(f)[split] for id_, row in data.items(): yield id_, { "tokens": row["tokens"], "labels": row["labels"], }