import os import json from pathlib import Path from typing import Dict, Any, List, Union, Iterator, Tuple import datasets from datasets.download.download_manager import DownloadManager, ArchiveIterable # Typing _TYPING_BOX = Tuple[float, float, float, float] _DESCRIPTION = """\ Training image sets and labels/bounding box coordinates for detecting brain tumors in MR images. - The datasets JPGs exported at their native size and are separated by plan (Axial, Coronal and Sagittal). - Tumors were hand labeled using https://makesense.ai - Bounding box coordinates and MGMT positive labels were marked on ~400 images for each plane in the T1wCE series from the RSNA-MICCAI competition data. """ _URLS = { "train": "https://huggingface.co/datasets/chanelcolgate/tumorsbrain/resolve/main/data/train.zip", "test": "https://huggingface.co/datasets/chanelcolgate/tumorsbrain/resolve/main/data/test.zip", "annotations": "https://huggingface.co/datasets/chanelcolgate/tumorsbrain/resolve/main/data/annotations.zip", } _PATHS = { "annotations": { "train": Path("_annotations.coco.train.json"), "test": Path("_annotations.coco.test.json"), }, "images": {"train": Path("train"), "test": Path("test")}, } _CLASSES = ["negative", "positive"] _SPLITS = ["train", "test"] def round_box_values(box, decimals=2): return [round(val, decimals) for val in box] class COCOHelper: """Helper class to load COCO annotations""" def __init__(self, annotation_path: Path, images_dir: Path) -> None: with open(annotation_path, "r") as file: data = json.load(file) self.data = data dict_id2annot: Dict[int, Any] = {} for annot in self.annotations: dict_id2annot.setdefault(annot["image_id"], []).append(annot) # Sort by id dict_id2annot = { k: list(sorted(v, key=lambda a: a["id"])) for k, v in dict_id2annot.items() } self.dict_path2annot: Dict[str, Any] = {} self.dict_path2id: Dict[str, Any] = {} for img in self.images: path_img = images_dir / str(img["file_name"]) path_img_str = str(path_img) idx = int(img["id"]) annot = dict_id2annot.get(idx, []) self.dict_path2annot[path_img_str] = annot self.dict_path2id[path_img_str] = img["id"] def __len__(self) -> int: return len(self.data["images"]) @property def images(self) -> List[Dict[str, Union[str, int]]]: return self.data["images"] @property def annotations(self) -> List[Any]: return self.data["annotations"] @property def categories(self) -> List[Dict[str, Union[str, int]]]: return self.data["categories"] def get_annotations(self, image_path: str) -> List[Any]: return self.dict_path2annot.get(image_path, []) def get_image_id(self, image_path: str) -> int: return self.dict_path2id.get(image_path, -1) class COCOThienviet(datasets.GeneratorBasedBuilder): """COCO Thienviet dataset.""" VERSION = datasets.Version("1.0.1") def _info(self) -> datasets.DatasetInfo: """ Return the dataset metadata and features. Returns: DatasetInfo: Metadata and features of the dataset. """ return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "image": datasets.Image(), "image_id": datasets.Value("int64"), "objects": datasets.Sequence( { "id": datasets.Value("int64"), "area": datasets.Value("float64"), "bbox": datasets.Sequence( datasets.Value("float32"), length=4 ), "label": datasets.ClassLabel(names=_CLASSES), "iscrowd": datasets.Value("bool"), } ), } ), ) def _split_generators( self, dl_manager: DownloadManager ) -> List[datasets.SplitGenerator]: """ Provides the split information and downloads the data. Args: dl_manager (DownloadManager): The DownloadManager to use for downloading and extracting data. Returns: List[SplitGenerator]: List of SplitGenerator objects representing the data splits. """ archive_annots = dl_manager.download_and_extract(_URLS["annotations"]) splits = [] for split in _SPLITS: archive_split = dl_manager.download(_URLS[split]) annotation_path = ( Path(archive_annots) / _PATHS["annotations"][split] ) images = dl_manager.iter_archive(archive_split) if split == "train": splits.append( datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotation_path": annotation_path, "images_dir": _PATHS["images"][split], "images": images, }, ) ) else: splits.append( datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "annotation_path": annotation_path, "images_dir": _PATHS["images"][split], "images": images, }, ) ) return splits def _generate_examples( self, annotation_path: Path, images_dir: Path, images: ArchiveIterable ) -> Iterator: """ Generates examples for the dataset. Args: annotation_path (Path): The path to the annotation file. images_dir (Path): The path to the directory containing the images. images: (ArchiveIterable): An iterable containing the images. Yields: Dict[str, Union[str, Image]]: A dictionary containing the generated examples. """ coco_annotation = COCOHelper(annotation_path, images_dir) for image_path, f in images: annotations = coco_annotation.get_annotations( os.path.normpath(image_path) ) ret = { "image": {"path": image_path, "bytes": f.read()}, "image_id": coco_annotation.get_image_id( os.path.normpath(image_path) ), "objects": [ { "id": annot["id"], "area": annot["area"], "bbox": round_box_values( annot["bbox"], 2 ), # [x, y, w, h] "label": annot["category_id"], "iscrowd": bool(annot["iscrowd"]), } for annot in annotations ], } yield image_path, ret