_id
stringlengths
24
24
id
stringlengths
5
121
author
stringlengths
2
42
cardData
stringlengths
2
1.07M
disabled
bool
2 classes
gated
null
lastModified
timestamp[ns]date
2021-02-05 16:03:35
2025-04-05 23:31:13
likes
int64
0
7.67k
trendingScore
float64
-1
51
private
bool
1 class
sha
stringlengths
40
40
description
stringlengths
0
6.67k
downloads
int64
0
5.17M
downloadsAllTime
int64
0
142M
tags
sequencelengths
1
7.92k
createdAt
timestamp[ns]date
2022-03-02 23:29:22
2025-04-05 23:29:13
paperswithcode_id
stringclasses
653 values
citation
stringlengths
0
10.7k
67d3479522a51de18affff22
nvidia/Llama-Nemotron-Post-Training-Dataset-v1
nvidia
{"license": "cc-by-4.0", "configs": [{"config_name": "SFT", "data_files": [{"split": "code", "path": "SFT/code/*.jsonl"}, {"split": "math", "path": "SFT/math/*.jsonl"}, {"split": "science", "path": "SFT/science/*.jsonl"}, {"split": "chat", "path": "SFT/chat/*.jsonl"}, {"split": "safety", "path": "SFT/safety/*.jsonl"}], "default": true}, {"config_name": "RL", "data_files": [{"split": "instruction_following", "path": "RL/instruction_following/*.jsonl"}]}]}
false
null
2025-03-18T15:56:14
320
51
false
ed905e6239c9d191e4c965a403dde07a5383b5eb
Llama-Nemotron-Post-Training-Dataset-v1 Release Data Overview This dataset is a compilation of SFT and RL data that supports improvements of math, code, general reasoning, and instruction following capabilities of the original Llama instruct model, in support of NVIDIA’s release of Llama-3.3-Nemotron-Super-49B-v1 and Llama-3.1-Nemotron-Nano-8B-v1. Llama-3.3-Nemotron-Super-49B-v1 is a large language model (LLM) which is a derivative of Meta’s Llama-3.3-70B-Instruct (AKA… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/Llama-Nemotron-Post-Training-Dataset-v1.
12,271
12,280
[ "license:cc-by-4.0", "size_categories:10M<n<100M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-13T21:01:09
null
null
67ea45bbcb39affecc10763e
virtuoussy/Multi-subject-RLVR
virtuoussy
{"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en"]}
false
null
2025-04-02T10:29:40
40
40
false
5be8ffa52bf3ccbfe0d4f601ddee1183cb1be0ab
Multi-subject data for paper "Expanding RL with Verifiable Rewards Across Diverse Domains". we use a multi-subject multiple-choice QA dataset ExamQA (Yu et al., 2021). Originally written in Chinese, ExamQA covers at least 48 first-level subjects. We remove the distractors and convert each instance into a free-form QA pair. This dataset consists of 638k college-level instances, with both questions and objective answers written by domain experts for examination purposes. We also use GPT-4o-mini… See the full description on the dataset page: https://huggingface.co/datasets/virtuoussy/Multi-subject-RLVR.
438
438
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.23829", "region:us" ]
2025-03-31T07:35:23
null
null
67c0cda5c0b7a236a5f070e3
glaiveai/reasoning-v1-20m
glaiveai
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "response", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 177249016911, "num_examples": 22199375}], "download_size": 87247205094, "dataset_size": 177249016911}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "size_categories": ["10M<n<100M"]}
false
null
2025-03-19T13:21:37
168
38
false
da6bb3d0ff8fd8ea5abacee8519762ca6aaf367e
We are excited to release a synthetic reasoning dataset containing 22mil+ general reasoning questions and responses generated using deepseek-ai/DeepSeek-R1-Distill-Llama-70B. While there have been multiple efforts to build open reasoning datasets for math and code tasks, we noticed a lack of large datasets containing reasoning traces for diverse non code/math topics like social and natural sciences, education, creative writing and general conversations, which is why we decided to release this… See the full description on the dataset page: https://huggingface.co/datasets/glaiveai/reasoning-v1-20m.
9,690
9,804
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T20:40:05
null
null
676f70846bf205795346d2be
FreedomIntelligence/medical-o1-reasoning-SFT
FreedomIntelligence
{"license": "apache-2.0", "task_categories": ["question-answering", "text-generation"], "language": ["en", "zh"], "tags": ["medical", "biology"], "configs": [{"config_name": "en", "data_files": "medical_o1_sft.json"}, {"config_name": "zh", "data_files": "medical_o1_sft_Chinese.json"}]}
false
null
2025-02-22T05:15:38
610
37
false
61536c1d80b2c799df6800cc583897b77d2c86d2
News [2025/02/22] We released the distilled dataset from Deepseek-R1 based on medical verifiable problems. You can use it to initialize your models with the reasoning chain from Deepseek-R1. [2024/12/25] We open-sourced the medical reasoning dataset for SFT, built on medical verifiable problems and an LLM verifier. Introduction This dataset is used to fine-tune HuatuoGPT-o1, a medical LLM designed for advanced medical reasoning. This dataset is constructed using GPT-4o… See the full description on the dataset page: https://huggingface.co/datasets/FreedomIntelligence/medical-o1-reasoning-SFT.
23,038
51,769
[ "task_categories:question-answering", "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2412.18925", "region:us", "medical", "biology" ]
2024-12-28T03:29:08
null
null
67edf568d1631250f17528af
open-thoughts/OpenThoughts2-1M
open-thoughts
{"dataset_info": {"features": [{"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}, {"name": "question", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "id", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 18986223337, "num_examples": 1143205}], "download_size": 8328411205, "dataset_size": 18986223337}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "tags": ["synthetic", "curator"], "license": "apache-2.0"}
false
null
2025-04-03T20:31:18
35
35
false
6e9f7d7b5e072a76e65bd204fe6c59d32404c69c
OpenThoughts2-1M Open synthetic reasoning dataset with 1M high-quality examples covering math, science, code, and puzzles! OpenThoughts2-1M builds upon our previous OpenThoughts-114k dataset, augmenting it with existing datasets like OpenR1, as well as additional math and code reasoning data. This dataset was used to train OpenThinker2-7B and OpenThinker2-32B. See our blog post for more details. OpenThinker2 Models Our OpenThinker2 models trained on this… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts2-1M.
1,222
1,222
[ "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "synthetic", "curator" ]
2025-04-03T02:41:44
null
null
67cd6c25b770987b3f80af97
a-m-team/AM-DeepSeek-R1-Distilled-1.4M
a-m-team
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["zh", "en"], "tags": ["code", "math", "reasoning", "thinking", "deepseek-r1", "distill"], "size_categories": ["1M<n<10M"], "configs": [{"config_name": "am_0.5M", "data_files": "am_0.5M.jsonl.zst", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}, {"config_name": "am_0.9M", "data_files": "am_0.9M.jsonl.zst", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}, {"config_name": "am_0.9M_sample_1k", "data_files": "am_0.9M_sample_1k.jsonl", "features": [{"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "info", "struct": [{"name": "answer_content", "dtype": "string"}, {"name": "reference_answer", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_case", "struct": [{"name": "test_code", "dtype": "string"}, {"name": "test_entry_point", "dtype": "string"}]}, {"name": "think_content", "dtype": "string"}]}, {"name": "role", "dtype": "string"}]}]}]}
false
null
2025-03-30T01:30:08
105
28
false
53531c06634904118a2dcd83961918c4d69d1cdf
For more open-source datasets, models, and methodologies, please visit our GitHub repository. AM-DeepSeek-R1-Distilled-1.4M is a large-scale general reasoning task dataset composed of high-quality and challenging reasoning problems. These problems are collected from numerous open-source datasets, semantically deduplicated, and cleaned to eliminate test set contamination. All responses in the dataset are distilled from the reasoning model (mostly DeepSeek-R1) and have undergone rigorous… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-DeepSeek-R1-Distilled-1.4M.
9,495
9,495
[ "task_categories:text-generation", "language:zh", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "arxiv:2503.19633", "region:us", "code", "math", "reasoning", "thinking", "deepseek-r1", "distill" ]
2025-03-09T10:23:33
null
null
67e90b135e63bac35a2dbaf0
MohamedRashad/Quran-Recitations
MohamedRashad
{"dataset_info": {"features": [{"name": "source", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "audio", "dtype": "audio"}], "splits": [{"name": "train", "num_bytes": 49579449331.918, "num_examples": 124689}], "download_size": 33136131149, "dataset_size": 49579449331.918}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "task_categories": ["automatic-speech-recognition", "text-to-speech"], "language": ["ar"], "size_categories": ["100K<n<1M"]}
false
null
2025-03-30T11:19:54
25
25
false
65ee6114d526c02f7f96d696bb254a2dd666270c
Quran-Recitations Dataset Overview The Quran-Recitations dataset is a rich and reverent collection of Quranic verses, meticulously paired with their respective recitations by esteemed Qaris. This dataset serves as a valuable resource for researchers, developers, and students interested in Quranic studies, speech recognition, audio analysis, and Islamic applications. Dataset Structure source: The name of the Qari (reciter) who performed… See the full description on the dataset page: https://huggingface.co/datasets/MohamedRashad/Quran-Recitations.
474
474
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "language:ar", "size_categories:100K<n<1M", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-30T09:12:51
null
null
67d9394e2e311ae0f2e8183f
PixelAI-Team/TalkBody4D
PixelAI-Team
{"viewer": false, "license": "cc-by-nc-4.0", "extra_gated_prompt": "The dataset is encrypted to prevent unauthorized access. Please fill out the request form : https://forms.gle/eC2aLRXZ8DAdKcis7. We'll check with your PI.", "extra_gated_fields": {"Name": "text", "E-Mail": "text", "Company/Organization": "text", "PI's Name": "text", "PI's E-Mail": "text", "Specific date": "date_picker", "I want to use this dataset for": {"type": "select", "options": ["Research", "Education", {"label": "Other", "value": "other"}]}, "I have signed the request form": "checkbox"}, "size_categories": ["100B<n<1T"]}
false
null
2025-03-25T12:05:54
69
24
false
e20725b0891c858f73fff56ad1ea34e46bfc54ec
TalkBody4D Dataset This dataset contains four multi-view image sequences used in our paper "TaoAvatar: Real-Time Lifelike Full-Body Talking Avatars for Augmented Reality via 3D Gaussian Splatting". They are captured with 59 well-calibrated RGB cameras in 20 fps, with a resolution of 3000×4000 and lengths ranging from 800 to 1000 frames. We use the data to evaluate our method for building animatable human body avatars. We also provide the SMPL-X fitting in the dataset.… See the full description on the dataset page: https://huggingface.co/datasets/PixelAI-Team/TalkBody4D.
90
90
[ "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:webdataset", "modality:image", "modality:text", "library:datasets", "library:webdataset", "library:mlcroissant", "region:us" ]
2025-03-18T09:13:50
null
null
67a404bc8c6d42c5ec097433
Anthropic/EconomicIndex
Anthropic
{"language": "en", "pretty_name": "EconomicIndex", "tags": ["AI", "LLM", "Economic Impacts", "Anthropic"], "viewer": true, "license": "mit", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "release_2025_03_27/automation_vs_augmentation_by_task.csv"}]}]}
false
null
2025-03-27T22:08:25
250
20
false
2f63ea41bda89c22c00bbd3dd487771087717614
The Anthropic Economic Index Overview The Anthropic Economic Index provides insights into how AI is being incorporated into real-world tasks across the modern economy. Data Releases This repository contains multiple data releases, each with its own documentation: 2025-02-10 Release: Initial release with O*NET task mappings, automation vs. augmentation data, and more 2025-03-27 Release: Updated analysis with Claude 3.7 Sonnet data and cluster-level insights… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/EconomicIndex.
3,677
10,451
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "AI", "LLM", "Economic Impacts", "Anthropic" ]
2025-02-06T00:39:24
null
null
63990f21cc50af73d29ecfa3
fka/awesome-chatgpt-prompts
fka
{"license": "cc0-1.0", "tags": ["ChatGPT"], "task_categories": ["question-answering"], "size_categories": ["100K<n<1M"]}
false
null
2025-01-06T00:02:53
7,666
18
false
68ba7694e23014788dcc8ab5afe613824f45a05c
🧠 Awesome ChatGPT Prompts [CSV dataset] This is a Dataset Repository of Awesome ChatGPT Prompts View All Prompts on GitHub License CC-0
10,945
140,884
[ "task_categories:question-answering", "license:cc0-1.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "ChatGPT" ]
2022-12-13T23:47:45
null
null
679c0b5c32cf4c58bdcba8eb
facebook/natural_reasoning
facebook
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "Natural Reasoning", "size_categories": ["1M<n<10M"]}
false
null
2025-02-21T06:02:40
482
17
false
99eea5dc6bfa45a925eb42600e81dc90377ba237
NaturalReasoning is a large-scale dataset for general reasoning tasks. It consists of high-quality challenging reasoning questions backtranslated from pretraining corpora DCLM and FineMath. The questions have been deduplicated and decontaminated from popular reasoning benchmarks including MATH, GPQA, MMLU-Pro, MMLU-STEM. For each question, we extract the reference final answer from the original document from the pretraining corpora if possible. We also provide a model-generated response from… See the full description on the dataset page: https://huggingface.co/datasets/facebook/natural_reasoning.
10,531
17,689
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2502.13124", "region:us" ]
2025-01-30T23:29:32
null
null
67e9a644ea97f3c65c463bfb
LLM360/MegaMath
LLM360
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math", "code", "pre-training", "synthesis"], "size_categories": ["1B<n<10B"]}
false
null
2025-04-04T14:04:23
17
17
false
b2dbbfdb0bb40f8f5893b4057c6f5f430ae34d35
MegaMath: Pushing the Limits of Open Math Copora Megamath is part of TxT360, curated by LLM360 Team. We introduce MegaMath, an open math pretraining dataset curated from diverse, math-focused sources, with over 300B tokens. MegaMath is curated via the following three efforts: Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the… See the full description on the dataset page: https://huggingface.co/datasets/LLM360/MegaMath.
97
97
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "arxiv:2504.02807", "region:us", "math", "code", "pre-training", "synthesis" ]
2025-03-30T20:15:00
null
null
67e134c540496e1ded36dcc3
Intelligent-Internet/II-Thought-RL-v0
Intelligent-Internet
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "type", "dtype": "string"}, {"name": "verification_info", "dtype": "string"}, {"name": "data_source", "dtype": "string"}, {"name": "domain", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 4819048664, "num_examples": 341795}], "download_size": 2448038647, "dataset_size": 4819048664}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-28T15:26:57
44
15
false
c41b695c60b0af3c3701e41d483031246c378088
II-Thought RL v0: A Large-Scale Curated Dataset for Reinforcement Learning See our blog here for additional details. We introduce II-Thought RL v0, the first large-scale, multi-task dataset designed for Reinforcement Learning. This dataset consists of high-quality question-answer pairs that have undergone a rigorous multi-step filtering process, leveraging Gemini 2.0 Flash and Qwen 32B as quality evaluators. In this initial release, we have curated and refined publicly available… See the full description on the dataset page: https://huggingface.co/datasets/Intelligent-Internet/II-Thought-RL-v0.
3,435
3,458
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2412.08819", "region:us" ]
2025-03-24T10:32:37
null
null
625552d2b339bb03abe3432d
openai/gsm8k
openai
{"annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["1K<n<10K"], "source_datasets": ["original"], "task_categories": ["text2text-generation"], "task_ids": [], "paperswithcode_id": "gsm8k", "pretty_name": "Grade School Math 8K", "tags": ["math-word-problems"], "dataset_info": [{"config_name": "main", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3963202, "num_examples": 7473}, {"name": "test", "num_bytes": 713732, "num_examples": 1319}], "download_size": 2725633, "dataset_size": 4676934}, {"config_name": "socratic", "features": [{"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5198108, "num_examples": 7473}, {"name": "test", "num_bytes": 936859, "num_examples": 1319}], "download_size": 3164254, "dataset_size": 6134967}], "configs": [{"config_name": "main", "data_files": [{"split": "train", "path": "main/train-*"}, {"split": "test", "path": "main/test-*"}]}, {"config_name": "socratic", "data_files": [{"split": "train", "path": "socratic/train-*"}, {"split": "test", "path": "socratic/test-*"}]}]}
false
null
2024-01-04T12:05:15
676
12
false
e53f048856ff4f594e959d75785d2c2d37b678ee
Dataset Card for GSM8K Dataset Summary GSM8K (Grade School Math 8K) is a dataset of 8.5K high quality linguistically diverse grade school math word problems. The dataset was created to support the task of question answering on basic mathematical problems that require multi-step reasoning. These problems take between 2 and 8 steps to solve. Solutions primarily involve performing a sequence of elementary calculations using basic arithmetic operations (+ − ×÷) to reach the… See the full description on the dataset page: https://huggingface.co/datasets/openai/gsm8k.
344,422
4,333,110
[ "task_categories:text2text-generation", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2110.14168", "region:us", "math-word-problems" ]
2022-04-12T10:22:10
gsm8k
null
67e74b725fb029dd96363693
inclusionAI/AReaL-boba-Data
inclusionAI
{"license": "apache-2.0"}
false
null
2025-03-29T01:26:55
12
12
false
1799c00be3f1216ab55a5cae3562d654dbfd7d82
null
274
274
[ "license:apache-2.0", "region:us" ]
2025-03-29T01:22:58
null
null
67e9eb451ba052dc29fd90f8
camel-ai/loong
camel-ai
{"authors": ["camel-ai"], "description": "A comprehensive collection of 3,551 high-quality problems across 8 diverse domains, curated for Project Loong. Each problem includes a detailed executable rationale and solution, designed for training and evaluating reasoning models.", "language": ["en"], "license": "mit", "pretty_name": "camel-ai/loong", "tags": ["reasoning", "problem-solving", "project-loong", "multi-domain", "mathematics", "physics", "finance", "optimization"], "task_categories": ["question-answering"], "configs": [{"config_name": "default", "data_files": [{"split": "advanced_physics", "path": "data/advanced_physics-*"}, {"split": "graph_discrete_math", "path": "data/graph_discrete_math-*"}, {"split": "computational_biology", "path": "data/computational_biology-*"}, {"split": "logic", "path": "data/logic-*"}, {"split": "security_and_safety", "path": "data/security_and_safety-*"}, {"split": "advanced_math", "path": "data/advanced_math-*"}, {"split": "finance", "path": "data/finance-*"}, {"split": "mathematical_programming", "path": "data/mathematical_programming-*"}]}], "dataset_info": {"features": [{"name": "source_type", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "final_answer", "dtype": "string"}, {"name": "meta_data", "dtype": "string"}], "splits": [{"name": "advanced_physics", "num_bytes": 829991.8175161927, "num_examples": 434}, {"name": "graph_discrete_math", "num_bytes": 342323.8141368629, "num_examples": 179}, {"name": "computational_biology", "num_bytes": 581376.7569698676, "num_examples": 304}, {"name": "logic", "num_bytes": 210366.58969304422, "num_examples": 110}, {"name": "security_and_safety", "num_bytes": 996372.6657279639, "num_examples": 521}, {"name": "advanced_math", "num_bytes": 3088564.021402422, "num_examples": 1615}, {"name": "finance", "num_bytes": 611975.5336524922, "num_examples": 320}, {"name": "mathematical_programming", "num_bytes": 130044.80090115461, "num_examples": 68}], "download_size": 2447494, "dataset_size": 6791016.000000001}}
false
null
2025-04-01T22:04:20
12
12
false
74cadda690866a8b60cbc31e801fba5f173cb392
Additional Information Project Loong Seed Dataset This dataset is part of Project Loong, a collaborative effort to explore whether reasoning-capable models can bootstrap themselves from small, high-quality seed datasets by generating synthetic data and verifying LLM agent responses. Dataset Description This comprehensive collection contains 3,551 human-vetted problems across 8 diverse domains: 🧮 Advanced Math: 1,615 questions ⚛️ Advanced Physics: 434… See the full description on the dataset page: https://huggingface.co/datasets/camel-ai/loong.
373
373
[ "task_categories:question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "reasoning", "problem-solving", "project-loong", "multi-domain", "mathematics", "physics", "finance", "optimization" ]
2025-03-31T01:09:25
null
null
65af32411edab235a1f38b0b
omar07ibrahim/Alpaca_Stanford_Azerbaijan
omar07ibrahim
null
false
null
2024-01-23T03:28:27
12
11
false
a088761652ed34235281b46bcdb49d36fd0a3bdb
null
17
150
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-23T03:28:01
null
null
65afa00e637e10fba969eb56
omar07ibrahim/alpaca-cleaned_AZERBAIJANI
omar07ibrahim
null
false
null
2024-01-23T11:18:42
13
11
false
ad9e82bceb5c7a2d438dfcf04132854fc0328781
null
31
250
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-23T11:16:30
null
null
65b4e0dccbea1825a691a012
omar07ibrahim/testlimOcrCA
omar07ibrahim
null
false
null
2024-01-27T10:57:04
11
11
false
b1f404a6dcaff40d4d14320dd44a212c79a13c94
null
25
93
[ "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-27T10:54:20
null
null
65d713022db271ebd4139f5f
omar07ibrahim/azcon
omar07ibrahim
null
false
null
2024-02-22T09:26:09
11
11
false
f13a01b9ff1ac643e343c80c7ef356ab10e42f7a
null
17
98
[ "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-02-22T09:25:22
null
null
67e5170dd9b7021d4a7f48be
Rapidata/OpenAI-4o_t2i_human_preference
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "weighted_results_image1_preference", "dtype": "float32"}, {"name": "weighted_results_image2_preference", "dtype": "float32"}, {"name": "detailed_results_preference", "dtype": "string"}, {"name": "weighted_results_image1_coherence", "dtype": "float32"}, {"name": "weighted_results_image2_coherence", "dtype": "float32"}, {"name": "detailed_results_coherence", "dtype": "string"}, {"name": "weighted_results_image1_alignment", "dtype": "float32"}, {"name": "weighted_results_image2_alignment", "dtype": "float32"}, {"name": "detailed_results_alignment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 10832696953, "num_examples": 13000}], "download_size": 5203247080, "dataset_size": 10832696953}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "image-classification", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2", "ideogram", "frames", "OpenAI 4o", "4o", "OpenAI"], "size_categories": ["10K<n<100K"], "pretty_name": "OpenAI 4o vs. Ideogram V2 / Recraft V2 / Lumina-15-2-25 / Frames-23-1-25 / Aurora / imagen-3 / Flux-1.1-pro / Flux-1-pro / Dalle-3 / Midjourney-5.2 / Stabel-Diffusion-3 - Human Preference Dataset"}
false
null
2025-03-28T20:00:43
29
11
false
9fafb39b4bb3bac6e2fbabd13503fa1199fde400
Rapidata OpenAI 4o Preference This T2I dataset contains over 200'000 human responses from over ~45,000 individual annotators, collected in less than half a day using the Rapidata Python API, accessible to anyone and ideal for large scale evaluation. Evaluating OpenAI 4o (version from 26.3.2025) across three categories: preference, coherence, and alignment. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/OpenAI-4o_t2i_human_preference.
1,178
1,178
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-classification", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2", "ideogram", "frames", "OpenAI 4o", "4o", "OpenAI" ]
2025-03-27T09:14:53
null
null
621ffdd236468d709f181e5e
cais/mmlu
cais
{"annotations_creators": ["no-annotation"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["multiple-choice-qa"], "paperswithcode_id": "mmlu", "pretty_name": "Measuring Massive Multitask Language Understanding", "language_bcp47": ["en-US"], "dataset_info": [{"config_name": "abstract_algebra", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 17143, "dataset_size": 57303.3562203159}, {"config_name": "all", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 6967453, "num_examples": 14042}, {"name": "validation", "num_bytes": 763484, "num_examples": 1531}, {"name": "dev", "num_bytes": 125353, "num_examples": 285}, {"name": "auxiliary_train", "num_bytes": 161000625, "num_examples": 99842}], "download_size": 51503402, "dataset_size": 168856915}, {"config_name": "anatomy", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 66985.19833357072, "num_examples": 135}, {"name": "validation", "num_bytes": 6981.5649902024825, "num_examples": 14}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 28864, "dataset_size": 76165.9387623697}, {"config_name": "astronomy", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 75420.3714570574, "num_examples": 152}, {"name": "validation", "num_bytes": 7978.931417374265, "num_examples": 16}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 39316, "dataset_size": 85598.47831302814}, {"config_name": "auxiliary_train", "features": [{"name": "train", "struct": [{"name": "answer", "dtype": "int64"}, {"name": "choices", "sequence": "string"}, {"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 161000625, "num_examples": 99842}], "download_size": 47518592, "dataset_size": 161000625}, {"config_name": "business_ethics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 31619, "dataset_size": 57303.3562203159}, {"config_name": "clinical_knowledge", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 131489.4633955277, "num_examples": 265}, {"name": "validation", "num_bytes": 14461.813193990856, "num_examples": 29}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 51655, "dataset_size": 148150.45202811505}, {"config_name": "college_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 71450.87822247542, "num_examples": 144}, {"name": "validation", "num_bytes": 7978.931417374265, "num_examples": 16}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 43017, "dataset_size": 81628.98507844617}, {"config_name": "college_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 3989.4657086871325, "num_examples": 8}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 26781, "dataset_size": 55807.30657955822}, {"config_name": "college_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 41132, "dataset_size": 57303.3562203159}, {"config_name": "college_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 26779, "dataset_size": 57303.3562203159}, {"config_name": "college_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 85840.29119783506, "num_examples": 173}, {"name": "validation", "num_bytes": 10971.030698889615, "num_examples": 22}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 56303, "dataset_size": 99010.49733532117}, {"config_name": "college_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 50611.0387409201, "num_examples": 102}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 29539, "dataset_size": 58295.7295289614}, {"config_name": "computer_security", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 30150, "dataset_size": 57303.3562203159}, {"config_name": "conceptual_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 116603.86376584532, "num_examples": 235}, {"name": "validation", "num_bytes": 12965.76355323318, "num_examples": 26}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 34968, "dataset_size": 131768.802757675}, {"config_name": "econometrics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 56565.27859279305, "num_examples": 114}, {"name": "validation", "num_bytes": 5984.198563030699, "num_examples": 12}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 36040, "dataset_size": 64748.652594420244}, {"config_name": "electrical_engineering", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 71947.06487679818, "num_examples": 145}, {"name": "validation", "num_bytes": 7978.931417374265, "num_examples": 16}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 26746, "dataset_size": 82125.17173276893}, {"config_name": "elementary_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 187558.555333998, "num_examples": 378}, {"name": "validation", "num_bytes": 20446.011757021555, "num_examples": 41}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 54987, "dataset_size": 210203.74252961605}, {"config_name": "formal_logic", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 62519.518444666, "num_examples": 126}, {"name": "validation", "num_bytes": 6981.5649902024825, "num_examples": 14}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 32884, "dataset_size": 71700.25887346498}, {"config_name": "global_facts", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 4986.8321358589155, "num_examples": 10}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 19258, "dataset_size": 56804.67300673001}, {"config_name": "high_school_biology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 153817.86284005127, "num_examples": 310}, {"name": "validation", "num_bytes": 15957.86283474853, "num_examples": 32}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 78216, "dataset_size": 171974.90111339628}, {"config_name": "high_school_chemistry", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 100725.89082751745, "num_examples": 203}, {"name": "validation", "num_bytes": 10971.030698889615, "num_examples": 22}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 45799, "dataset_size": 113896.09696500355}, {"config_name": "high_school_computer_science", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 4488.148922273024, "num_examples": 9}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 39072, "dataset_size": 56305.989793144116}, {"config_name": "high_school_european_history", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 81870.79796325309, "num_examples": 165}, {"name": "validation", "num_bytes": 8976.297844546049, "num_examples": 18}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 196270, "dataset_size": 93046.27124639563}, {"config_name": "high_school_geography", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 98244.95755590372, "num_examples": 198}, {"name": "validation", "num_bytes": 10971.030698889615, "num_examples": 22}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 38255, "dataset_size": 111415.16369338983}, {"config_name": "high_school_government_and_politics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 95764.02428428999, "num_examples": 193}, {"name": "validation", "num_bytes": 10472.347485303722, "num_examples": 21}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 52963, "dataset_size": 108435.5472081902}, {"config_name": "high_school_macroeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 193512.79518587096, "num_examples": 390}, {"name": "validation", "num_bytes": 21443.378184193338, "num_examples": 43}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 68758, "dataset_size": 217155.34880866078}, {"config_name": "high_school_mathematics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 133970.39666714144, "num_examples": 270}, {"name": "validation", "num_bytes": 14461.813193990856, "num_examples": 29}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 45210, "dataset_size": 150631.38529972878}, {"config_name": "high_school_microeconomics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 118092.42372881356, "num_examples": 238}, {"name": "validation", "num_bytes": 12965.76355323318, "num_examples": 26}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 49885, "dataset_size": 133257.36272064323}, {"config_name": "high_school_physics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 74924.18480273466, "num_examples": 151}, {"name": "validation", "num_bytes": 8477.614630960157, "num_examples": 17}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 45483, "dataset_size": 85600.9748722913}, {"config_name": "high_school_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 270421.7266058966, "num_examples": 545}, {"name": "validation", "num_bytes": 29920.992815153495, "num_examples": 60}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 113158, "dataset_size": 302541.8948596466}, {"config_name": "high_school_statistics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 107176.31733371314, "num_examples": 216}, {"name": "validation", "num_bytes": 11469.713912475507, "num_examples": 23}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 74924, "dataset_size": 120845.20668478514}, {"config_name": "high_school_us_history", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 101222.0774818402, "num_examples": 204}, {"name": "validation", "num_bytes": 10971.030698889615, "num_examples": 22}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 200043, "dataset_size": 114392.2836193263}, {"config_name": "high_school_world_history", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 117596.23707449081, "num_examples": 237}, {"name": "validation", "num_bytes": 12965.76355323318, "num_examples": 26}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 250302, "dataset_size": 132761.17606632048}, {"config_name": "human_aging", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 110649.62391397236, "num_examples": 223}, {"name": "validation", "num_bytes": 11469.713912475507, "num_examples": 23}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 41196, "dataset_size": 124318.51326504436}, {"config_name": "human_sexuality", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 65000.451716279735, "num_examples": 131}, {"name": "validation", "num_bytes": 5984.198563030699, "num_examples": 12}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 32533, "dataset_size": 73183.82571790692}, {"config_name": "international_law", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 60038.58517305227, "num_examples": 121}, {"name": "validation", "num_bytes": 6482.88177661659, "num_examples": 13}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 41592, "dataset_size": 68720.64238826535}, {"config_name": "jurisprudence", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 53588.15866685657, "num_examples": 108}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 33578, "dataset_size": 61272.84945489787}, {"config_name": "logical_fallacies", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 80878.4246546076, "num_examples": 163}, {"name": "validation", "num_bytes": 8976.297844546049, "num_examples": 18}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 33669, "dataset_size": 92053.89793775014}, {"config_name": "machine_learning", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 55572.90528414756, "num_examples": 112}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 31121, "dataset_size": 63257.596072188855}, {"config_name": "management", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 51107.225395242844, "num_examples": 103}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 22828, "dataset_size": 58791.91618328414}, {"config_name": "marketing", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 116107.67711152257, "num_examples": 234}, {"name": "validation", "num_bytes": 12467.08033964729, "num_examples": 25}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 49747, "dataset_size": 130773.93288976635}, {"config_name": "medical_genetics", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 25775, "dataset_size": 57303.3562203159}, {"config_name": "miscellaneous", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 388514.15033471014, "num_examples": 783}, {"name": "validation", "num_bytes": 42886.756368386676, "num_examples": 86}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 115097, "dataset_size": 433600.08214169333}, {"config_name": "moral_disputes", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 171680.58239567012, "num_examples": 346}, {"name": "validation", "num_bytes": 18949.96211626388, "num_examples": 38}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 76043, "dataset_size": 192829.71995053047}, {"config_name": "moral_scenarios", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 444087.05561885773, "num_examples": 895}, {"name": "validation", "num_bytes": 49868.32135858916, "num_examples": 100}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 109869, "dataset_size": 496154.5524160434}, {"config_name": "nutrition", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 151833.1162227603, "num_examples": 306}, {"name": "validation", "num_bytes": 16456.54604833442, "num_examples": 33}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 69050, "dataset_size": 170488.8377096912}, {"config_name": "philosophy", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 154314.04949437402, "num_examples": 311}, {"name": "validation", "num_bytes": 16955.229261920314, "num_examples": 34}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 61912, "dataset_size": 173468.45419489083}, {"config_name": "prehistory", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 160764.47600056973, "num_examples": 324}, {"name": "validation", "num_bytes": 17453.912475506204, "num_examples": 35}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 68826, "dataset_size": 180417.5639146724}, {"config_name": "professional_accounting", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 139924.6365190144, "num_examples": 282}, {"name": "validation", "num_bytes": 15459.179621162639, "num_examples": 31}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 87297, "dataset_size": 157582.99157877354}, {"config_name": "professional_law", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 761150.3277310925, "num_examples": 1534}, {"name": "validation", "num_bytes": 84776.14630960157, "num_examples": 170}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 1167828, "dataset_size": 848125.6494792906}, {"config_name": "professional_medicine", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 134962.7699757869, "num_examples": 272}, {"name": "validation", "num_bytes": 15459.179621162639, "num_examples": 31}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 153242, "dataset_size": 152621.12503554605}, {"config_name": "professional_psychology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 303666.2324455206, "num_examples": 612}, {"name": "validation", "num_bytes": 34409.14173742652, "num_examples": 69}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 159357, "dataset_size": 340274.5496215436}, {"config_name": "public_relations", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 54580.53197550207, "num_examples": 110}, {"name": "validation", "num_bytes": 5984.198563030699, "num_examples": 12}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 31500, "dataset_size": 62763.90597712925}, {"config_name": "security_studies", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 121565.73030907278, "num_examples": 245}, {"name": "validation", "num_bytes": 13464.446766819072, "num_examples": 27}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 140258, "dataset_size": 137229.35251448833}, {"config_name": "sociology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 99733.51751887196, "num_examples": 201}, {"name": "validation", "num_bytes": 10971.030698889615, "num_examples": 22}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 56480, "dataset_size": 112903.72365635807}, {"config_name": "us_foreign_policy", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 49618.6654322746, "num_examples": 100}, {"name": "validation", "num_bytes": 5485.515349444808, "num_examples": 11}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 29027, "dataset_size": 57303.3562203159}, {"config_name": "virology", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 82366.98461757584, "num_examples": 166}, {"name": "validation", "num_bytes": 8976.297844546049, "num_examples": 18}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 38229, "dataset_size": 93542.45790071838}, {"config_name": "world_religions", "features": [{"name": "question", "dtype": "string"}, {"name": "subject", "dtype": "string"}, {"name": "choices", "sequence": "string"}, {"name": "answer", "dtype": {"class_label": {"names": {"0": "A", "1": "B", "2": "C", "3": "D"}}}}], "splits": [{"name": "test", "num_bytes": 84847.91788918957, "num_examples": 171}, {"name": "validation", "num_bytes": 9474.98105813194, "num_examples": 19}, {"name": "dev", "num_bytes": 2199.1754385964914, "num_examples": 5}], "download_size": 27165, "dataset_size": 96522.07438591801}], "configs": [{"config_name": "abstract_algebra", "data_files": [{"split": "test", "path": "abstract_algebra/test-*"}, {"split": "validation", "path": "abstract_algebra/validation-*"}, {"split": "dev", "path": "abstract_algebra/dev-*"}]}, {"config_name": "all", "data_files": [{"split": "test", "path": "all/test-*"}, {"split": "validation", "path": "all/validation-*"}, {"split": "dev", "path": "all/dev-*"}, {"split": "auxiliary_train", "path": "all/auxiliary_train-*"}]}, {"config_name": "anatomy", "data_files": [{"split": "test", "path": "anatomy/test-*"}, {"split": "validation", "path": "anatomy/validation-*"}, {"split": "dev", "path": "anatomy/dev-*"}]}, {"config_name": "astronomy", "data_files": [{"split": "test", "path": "astronomy/test-*"}, {"split": "validation", "path": "astronomy/validation-*"}, {"split": "dev", "path": "astronomy/dev-*"}]}, {"config_name": "auxiliary_train", "data_files": [{"split": "train", "path": "auxiliary_train/train-*"}]}, {"config_name": "business_ethics", "data_files": [{"split": "test", "path": "business_ethics/test-*"}, {"split": "validation", "path": "business_ethics/validation-*"}, {"split": "dev", "path": "business_ethics/dev-*"}]}, {"config_name": "clinical_knowledge", "data_files": [{"split": "test", "path": "clinical_knowledge/test-*"}, {"split": "validation", "path": "clinical_knowledge/validation-*"}, {"split": "dev", "path": "clinical_knowledge/dev-*"}]}, {"config_name": "college_biology", "data_files": [{"split": "test", "path": "college_biology/test-*"}, {"split": "validation", "path": "college_biology/validation-*"}, {"split": "dev", "path": "college_biology/dev-*"}]}, {"config_name": "college_chemistry", "data_files": [{"split": "test", "path": "college_chemistry/test-*"}, {"split": "validation", "path": "college_chemistry/validation-*"}, {"split": "dev", "path": "college_chemistry/dev-*"}]}, {"config_name": "college_computer_science", "data_files": [{"split": "test", "path": "college_computer_science/test-*"}, {"split": "validation", "path": "college_computer_science/validation-*"}, {"split": "dev", "path": "college_computer_science/dev-*"}]}, {"config_name": "college_mathematics", "data_files": [{"split": "test", "path": "college_mathematics/test-*"}, {"split": "validation", "path": "college_mathematics/validation-*"}, {"split": "dev", "path": "college_mathematics/dev-*"}]}, {"config_name": "college_medicine", "data_files": [{"split": "test", "path": "college_medicine/test-*"}, {"split": "validation", "path": "college_medicine/validation-*"}, {"split": "dev", "path": "college_medicine/dev-*"}]}, {"config_name": "college_physics", "data_files": [{"split": "test", "path": "college_physics/test-*"}, {"split": "validation", "path": "college_physics/validation-*"}, {"split": "dev", "path": "college_physics/dev-*"}]}, {"config_name": "computer_security", "data_files": [{"split": "test", "path": "computer_security/test-*"}, {"split": "validation", "path": "computer_security/validation-*"}, {"split": "dev", "path": "computer_security/dev-*"}]}, {"config_name": "conceptual_physics", "data_files": [{"split": "test", "path": "conceptual_physics/test-*"}, {"split": "validation", "path": "conceptual_physics/validation-*"}, {"split": "dev", "path": "conceptual_physics/dev-*"}]}, {"config_name": "econometrics", "data_files": [{"split": "test", "path": "econometrics/test-*"}, {"split": "validation", "path": "econometrics/validation-*"}, {"split": "dev", "path": "econometrics/dev-*"}]}, {"config_name": "electrical_engineering", "data_files": [{"split": "test", "path": "electrical_engineering/test-*"}, {"split": "validation", "path": "electrical_engineering/validation-*"}, {"split": "dev", "path": "electrical_engineering/dev-*"}]}, {"config_name": "elementary_mathematics", "data_files": [{"split": "test", "path": "elementary_mathematics/test-*"}, {"split": "validation", "path": "elementary_mathematics/validation-*"}, {"split": "dev", "path": "elementary_mathematics/dev-*"}]}, {"config_name": "formal_logic", "data_files": [{"split": "test", "path": "formal_logic/test-*"}, {"split": "validation", "path": "formal_logic/validation-*"}, {"split": "dev", "path": "formal_logic/dev-*"}]}, {"config_name": "global_facts", "data_files": [{"split": "test", "path": "global_facts/test-*"}, {"split": "validation", "path": "global_facts/validation-*"}, {"split": "dev", "path": "global_facts/dev-*"}]}, {"config_name": "high_school_biology", "data_files": [{"split": "test", "path": "high_school_biology/test-*"}, {"split": "validation", "path": "high_school_biology/validation-*"}, {"split": "dev", "path": "high_school_biology/dev-*"}]}, {"config_name": "high_school_chemistry", "data_files": [{"split": "test", "path": "high_school_chemistry/test-*"}, {"split": "validation", "path": "high_school_chemistry/validation-*"}, {"split": "dev", "path": "high_school_chemistry/dev-*"}]}, {"config_name": "high_school_computer_science", "data_files": [{"split": "test", "path": "high_school_computer_science/test-*"}, {"split": "validation", "path": "high_school_computer_science/validation-*"}, {"split": "dev", "path": "high_school_computer_science/dev-*"}]}, {"config_name": "high_school_european_history", "data_files": [{"split": "test", "path": "high_school_european_history/test-*"}, {"split": "validation", "path": "high_school_european_history/validation-*"}, {"split": "dev", "path": "high_school_european_history/dev-*"}]}, {"config_name": "high_school_geography", "data_files": [{"split": "test", "path": "high_school_geography/test-*"}, {"split": "validation", "path": "high_school_geography/validation-*"}, {"split": "dev", "path": "high_school_geography/dev-*"}]}, {"config_name": "high_school_government_and_politics", "data_files": [{"split": "test", "path": "high_school_government_and_politics/test-*"}, {"split": "validation", "path": "high_school_government_and_politics/validation-*"}, {"split": "dev", "path": "high_school_government_and_politics/dev-*"}]}, {"config_name": "high_school_macroeconomics", "data_files": [{"split": "test", "path": "high_school_macroeconomics/test-*"}, {"split": "validation", "path": "high_school_macroeconomics/validation-*"}, {"split": "dev", "path": "high_school_macroeconomics/dev-*"}]}, {"config_name": "high_school_mathematics", "data_files": [{"split": "test", "path": "high_school_mathematics/test-*"}, {"split": "validation", "path": "high_school_mathematics/validation-*"}, {"split": "dev", "path": "high_school_mathematics/dev-*"}]}, {"config_name": "high_school_microeconomics", "data_files": [{"split": "test", "path": "high_school_microeconomics/test-*"}, {"split": "validation", "path": "high_school_microeconomics/validation-*"}, {"split": "dev", "path": "high_school_microeconomics/dev-*"}]}, {"config_name": "high_school_physics", "data_files": [{"split": "test", "path": "high_school_physics/test-*"}, {"split": "validation", "path": "high_school_physics/validation-*"}, {"split": "dev", "path": "high_school_physics/dev-*"}]}, {"config_name": "high_school_psychology", "data_files": [{"split": "test", "path": "high_school_psychology/test-*"}, {"split": "validation", "path": "high_school_psychology/validation-*"}, {"split": "dev", "path": "high_school_psychology/dev-*"}]}, {"config_name": "high_school_statistics", "data_files": [{"split": "test", "path": "high_school_statistics/test-*"}, {"split": "validation", "path": "high_school_statistics/validation-*"}, {"split": "dev", "path": "high_school_statistics/dev-*"}]}, {"config_name": "high_school_us_history", "data_files": [{"split": "test", "path": "high_school_us_history/test-*"}, {"split": "validation", "path": "high_school_us_history/validation-*"}, {"split": "dev", "path": "high_school_us_history/dev-*"}]}, {"config_name": "high_school_world_history", "data_files": [{"split": "test", "path": "high_school_world_history/test-*"}, {"split": "validation", "path": "high_school_world_history/validation-*"}, {"split": "dev", "path": "high_school_world_history/dev-*"}]}, {"config_name": "human_aging", "data_files": [{"split": "test", "path": "human_aging/test-*"}, {"split": "validation", "path": "human_aging/validation-*"}, {"split": "dev", "path": "human_aging/dev-*"}]}, {"config_name": "human_sexuality", "data_files": [{"split": "test", "path": "human_sexuality/test-*"}, {"split": "validation", "path": "human_sexuality/validation-*"}, {"split": "dev", "path": "human_sexuality/dev-*"}]}, {"config_name": "international_law", "data_files": [{"split": "test", "path": "international_law/test-*"}, {"split": "validation", "path": "international_law/validation-*"}, {"split": "dev", "path": "international_law/dev-*"}]}, {"config_name": "jurisprudence", "data_files": [{"split": "test", "path": "jurisprudence/test-*"}, {"split": "validation", "path": "jurisprudence/validation-*"}, {"split": "dev", "path": "jurisprudence/dev-*"}]}, {"config_name": "logical_fallacies", "data_files": [{"split": "test", "path": "logical_fallacies/test-*"}, {"split": "validation", "path": "logical_fallacies/validation-*"}, {"split": "dev", "path": "logical_fallacies/dev-*"}]}, {"config_name": "machine_learning", "data_files": [{"split": "test", "path": "machine_learning/test-*"}, {"split": "validation", "path": "machine_learning/validation-*"}, {"split": "dev", "path": "machine_learning/dev-*"}]}, {"config_name": "management", "data_files": [{"split": "test", "path": "management/test-*"}, {"split": "validation", "path": "management/validation-*"}, {"split": "dev", "path": "management/dev-*"}]}, {"config_name": "marketing", "data_files": [{"split": "test", "path": "marketing/test-*"}, {"split": "validation", "path": "marketing/validation-*"}, {"split": "dev", "path": "marketing/dev-*"}]}, {"config_name": "medical_genetics", "data_files": [{"split": "test", "path": "medical_genetics/test-*"}, {"split": "validation", "path": "medical_genetics/validation-*"}, {"split": "dev", "path": "medical_genetics/dev-*"}]}, {"config_name": "miscellaneous", "data_files": [{"split": "test", "path": "miscellaneous/test-*"}, {"split": "validation", "path": "miscellaneous/validation-*"}, {"split": "dev", "path": "miscellaneous/dev-*"}]}, {"config_name": "moral_disputes", "data_files": [{"split": "test", "path": "moral_disputes/test-*"}, {"split": "validation", "path": "moral_disputes/validation-*"}, {"split": "dev", "path": "moral_disputes/dev-*"}]}, {"config_name": "moral_scenarios", "data_files": [{"split": "test", "path": "moral_scenarios/test-*"}, {"split": "validation", "path": "moral_scenarios/validation-*"}, {"split": "dev", "path": "moral_scenarios/dev-*"}]}, {"config_name": "nutrition", "data_files": [{"split": "test", "path": "nutrition/test-*"}, {"split": "validation", "path": "nutrition/validation-*"}, {"split": "dev", "path": "nutrition/dev-*"}]}, {"config_name": "philosophy", "data_files": [{"split": "test", "path": "philosophy/test-*"}, {"split": "validation", "path": "philosophy/validation-*"}, {"split": "dev", "path": "philosophy/dev-*"}]}, {"config_name": "prehistory", "data_files": [{"split": "test", "path": "prehistory/test-*"}, {"split": "validation", "path": "prehistory/validation-*"}, {"split": "dev", "path": "prehistory/dev-*"}]}, {"config_name": "professional_accounting", "data_files": [{"split": "test", "path": "professional_accounting/test-*"}, {"split": "validation", "path": "professional_accounting/validation-*"}, {"split": "dev", "path": "professional_accounting/dev-*"}]}, {"config_name": "professional_law", "data_files": [{"split": "test", "path": "professional_law/test-*"}, {"split": "validation", "path": "professional_law/validation-*"}, {"split": "dev", "path": "professional_law/dev-*"}]}, {"config_name": "professional_medicine", "data_files": [{"split": "test", "path": "professional_medicine/test-*"}, {"split": "validation", "path": "professional_medicine/validation-*"}, {"split": "dev", "path": "professional_medicine/dev-*"}]}, {"config_name": "professional_psychology", "data_files": [{"split": "test", "path": "professional_psychology/test-*"}, {"split": "validation", "path": "professional_psychology/validation-*"}, {"split": "dev", "path": "professional_psychology/dev-*"}]}, {"config_name": "public_relations", "data_files": [{"split": "test", "path": "public_relations/test-*"}, {"split": "validation", "path": "public_relations/validation-*"}, {"split": "dev", "path": "public_relations/dev-*"}]}, {"config_name": "security_studies", "data_files": [{"split": "test", "path": "security_studies/test-*"}, {"split": "validation", "path": "security_studies/validation-*"}, {"split": "dev", "path": "security_studies/dev-*"}]}, {"config_name": "sociology", "data_files": [{"split": "test", "path": "sociology/test-*"}, {"split": "validation", "path": "sociology/validation-*"}, {"split": "dev", "path": "sociology/dev-*"}]}, {"config_name": "us_foreign_policy", "data_files": [{"split": "test", "path": "us_foreign_policy/test-*"}, {"split": "validation", "path": "us_foreign_policy/validation-*"}, {"split": "dev", "path": "us_foreign_policy/dev-*"}]}, {"config_name": "virology", "data_files": [{"split": "test", "path": "virology/test-*"}, {"split": "validation", "path": "virology/validation-*"}, {"split": "dev", "path": "virology/dev-*"}]}, {"config_name": "world_religions", "data_files": [{"split": "test", "path": "world_religions/test-*"}, {"split": "validation", "path": "world_religions/validation-*"}, {"split": "dev", "path": "world_religions/dev-*"}]}]}
false
null
2024-03-08T20:36:26
445
10
false
c30699e8356da336a370243923dbaf21066bb9fe
Dataset Card for MMLU Dataset Summary Measuring Massive Multitask Language Understanding by Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob Steinhardt (ICLR 2021). This is a massive multitask test consisting of multiple-choice questions from various branches of knowledge. The test spans subjects in the humanities, social sciences, hard sciences, and other areas that are important for some people to learn. This covers 57… See the full description on the dataset page: https://huggingface.co/datasets/cais/mmlu.
134,703
37,218,591
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:no-annotation", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2009.03300", "arxiv:2005.00700", "arxiv:2005.14165", "arxiv:2008.02275", "region:us" ]
2022-03-02T23:29:22
mmlu
null
66212f29fb07c3e05ad0432e
HuggingFaceFW/fineweb
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T14:10:44
2,083
10
false
0f039043b23fe1d4eed300b504aa4b4a68f1c7ba
🍷 FineWeb 15 trillion tokens of the finest data the 🌐 web has to offer What is it? The 🍷 FineWeb dataset consists of more than 15T tokens of cleaned and deduplicated english web data from CommonCrawl. The data processing pipeline is optimized for LLM performance and ran on the 🏭 datatrove library, our large scale data processing library. 🍷 FineWeb was originally meant to be a fully open replication of 🦅 RefinedWeb, with a release of the full dataset under… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb.
189,801
2,359,376
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:10B<n<100B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2306.01116", "arxiv:2109.07445", "arxiv:2406.17557", "doi:10.57967/hf/2493", "region:us" ]
2024-04-18T14:33:13
null
null
665eaefe5baf7febc7207877
OOPPEENN/Galgame_Dataset
OOPPEENN
{"license": "gpl-3.0"}
false
null
2025-04-05T13:55:37
124
10
false
063289e2dc66f39729e575d9a6c35ec959571419
0x0 使用协议: 必须遵守GNU General Public License v3.0内的所有协议!附加:禁止商用,本数据集以及使用本数据集训练出来的任何模型都不得用于任何商业行为,如要用于商业用途,请找数据列表内的所有厂商授权(笑),因违反开源协议而出现的任何问题都与本人无关! 训练出来的模型必须开源,是否在README内引用本数据集由训练者自主决定,不做强制要求。 0x1 数据说明: 解压密码:9ll9Ke4iq0jqyq3gS1Wy。 标注说明:标注,说话人和对应的音频是直接读游戏引擎的脚本生成的,应该是100%准确率,全部存放在index.json里面,如果还有错误可以在开issues反馈(有些遗漏的控制符可能没洗干净)。 务必根据index.json里面的键值对找音频,不在index内的音频请直接丢弃,说话人为???的请直接丢弃。 数据语言:日语(100%) 数据时长:8823h 22m 07s 角色总数:25387人(未合并) 音频格式:ogg(6031257个),opus(172948个),wav(34753个)… See the full description on the dataset page: https://huggingface.co/datasets/OOPPEENN/Galgame_Dataset.
3,691
22,881
[ "license:gpl-3.0", "region:us" ]
2024-06-04T06:06:54
null
null
67c03fd6b9fe27a2ac49784d
open-r1/codeforces-cots
open-r1
{"dataset_info": [{"config_name": "checker_interactor", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 994149425, "num_examples": 35718}], "download_size": 274975300, "dataset_size": 994149425}, {"config_name": "solutions", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4968074271, "num_examples": 47780}], "download_size": 1887049179, "dataset_size": 4968074271}, {"config_name": "solutions_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "problem", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 6719356671, "num_examples": 40665}], "download_size": 2023394671, "dataset_size": 6719356671}, {"config_name": "solutions_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1000253222, "num_examples": 9556}], "download_size": 411697337, "dataset_size": 1000253222}, {"config_name": "solutions_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1349328880, "num_examples": 8133}], "download_size": 500182086, "dataset_size": 1349328880}, {"config_name": "solutions_short_and_long_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2699204607, "num_examples": 16266}], "download_size": 1002365269, "dataset_size": 2699204607}, {"config_name": "solutions_w_editorials", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2649620432, "num_examples": 29180}], "download_size": 972089090, "dataset_size": 2649620432}, {"config_name": "solutions_w_editorials_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "int64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 3738669884, "num_examples": 24490}], "download_size": 1012247387, "dataset_size": 3738669884}, {"config_name": "solutions_w_editorials_py", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1067124847, "num_examples": 11672}], "download_size": 415023817, "dataset_size": 1067124847}, {"config_name": "solutions_w_editorials_py_decontaminated", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "interaction_format", "dtype": "string"}, {"name": "note", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "accepted_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "passed_test_count", "dtype": "null"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "programming_language", "dtype": "string"}, {"name": "submission_id", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "failed_solutions", "list": [{"name": "code", "dtype": "string"}, {"name": "passedTestCount", "dtype": "int64"}, {"name": "programmingLanguage", "dtype": "string"}, {"name": "verdict", "dtype": "string"}]}, {"name": "generated_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "private_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "problem_type", "dtype": "string"}, {"name": "public_tests", "struct": [{"name": "input", "sequence": "string"}, {"name": "output", "sequence": "string"}]}, {"name": "public_tests_ms", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1499075280, "num_examples": 9796}], "download_size": 466078291, "dataset_size": 1499075280}, {"config_name": "test_input_generator", "features": [{"name": "id", "dtype": "string"}, {"name": "aliases", "sequence": "string"}, {"name": "contest_id", "dtype": "string"}, {"name": "contest_name", "dtype": "string"}, {"name": "contest_type", "dtype": "string"}, {"name": "contest_start", "dtype": "int64"}, {"name": "contest_start_year", "dtype": "int64"}, {"name": "index", "dtype": "string"}, {"name": "time_limit", "dtype": "float64"}, {"name": "memory_limit", "dtype": "float64"}, {"name": "title", "dtype": "string"}, {"name": "description", "dtype": "string"}, {"name": "input_format", "dtype": "string"}, {"name": "output_format", "dtype": "string"}, {"name": "examples", "list": [{"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}]}, {"name": "note", "dtype": "string"}, {"name": "editorial", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "generation", "dtype": "string"}, {"name": "finish_reason", "dtype": "string"}, {"name": "api_metadata", "struct": [{"name": "completion_tokens", "dtype": "int64"}, {"name": "completion_tokens_details", "dtype": "null"}, {"name": "prompt_tokens", "dtype": "int64"}, {"name": "prompt_tokens_details", "dtype": "null"}, {"name": "total_tokens", "dtype": "int64"}]}, {"name": "interaction_format", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 1851104290, "num_examples": 20620}], "download_size": 724157877, "dataset_size": 1851104290}], "configs": [{"config_name": "checker_interactor", "data_files": [{"split": "train", "path": "checker_interactor/train-*"}]}, {"config_name": "solutions", "default": true, "data_files": [{"split": "train", "path": "solutions/train-*"}]}, {"config_name": "solutions_decontaminated", "data_files": [{"split": "train", "path": "solutions_decontaminated/train-*"}]}, {"config_name": "solutions_py", "data_files": [{"split": "train", "path": "solutions_py/train-*"}]}, {"config_name": "solutions_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_py_decontaminated/train-*"}]}, {"config_name": "solutions_short_and_long_decontaminated", "data_files": [{"split": "train", "path": "solutions_short_and_long_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials", "data_files": [{"split": "train", "path": "solutions_w_editorials/train-*"}]}, {"config_name": "solutions_w_editorials_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_decontaminated/train-*"}]}, {"config_name": "solutions_w_editorials_py", "data_files": [{"split": "train", "path": "solutions_w_editorials_py/train-*"}]}, {"config_name": "solutions_w_editorials_py_decontaminated", "data_files": [{"split": "train", "path": "solutions_w_editorials_py_decontaminated/train-*"}]}, {"config_name": "test_input_generator", "data_files": [{"split": "train", "path": "test_input_generator/train-*"}]}], "license": "cc-by-4.0"}
false
null
2025-03-28T12:21:06
127
10
false
39ac85c150806230473c70ad72c31f6232fe3f41
Dataset Card for CodeForces-CoTs Dataset description CodeForces-CoTs is a large-scale dataset for training reasoning models on competitive programming tasks. It consists of 10k CodeForces problems with up to five reasoning traces generated by DeepSeek R1. We did not filter the traces for correctness, but found that around 84% of the Python ones pass the public tests. The dataset consists of several subsets: solutions: we prompt R1 to solve the problem and produce code.… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/codeforces-cots.
10,286
10,366
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-27T10:35:02
null
null
67ce7e23fee7f7ce990104eb
X-ART/LeX-10K
X-ART
{"license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["text-to-image"], "tags": ["text-rendering", "art"]}
false
null
2025-03-31T08:19:17
18
10
false
18a5cf77b06608dac50442903bf5b9ad46bd7059
🖼️ LeX-10K: High-Quality Dataset for Text Rendering LeX-10K is a curated dataset of 10,000 high-resolution, visually diverse 1024×1024 images tailored for text-to-image generation with a focus on aesthetics, text fidelity, and stylistic richness. Project Page | Paper 🌟 Why LeX-10K? We compare LeX-10K with two widely used datasets: AnyWord-3M and MARIO-10M.As shown below, LeX-10K significantly outperforms both in terms of aesthetic quality, text readability, and… See the full description on the dataset page: https://huggingface.co/datasets/X-ART/LeX-10K.
1,285
1,285
[ "task_categories:text-to-image", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.21749", "region:us", "text-rendering", "art" ]
2025-03-10T05:52:35
null
null
67e52d5dc04bd73d2f46a929
MrDragonFox/Elise
MrDragonFox
{"license": "mit"}
false
null
2025-03-27T11:22:24
25
10
false
ee867f95526856352ba9c607e6f97e6b9c65b043
this is very much a clone of https://huggingface.co/datasets/Jinsaryko/Elise but with classified emotions like laughs and giggles not ment to be comprehenive - its about 3h in total and will be enough to for a finetuned voice and some basic emotional tags short but sweet - acts as demo test set "giggles - 76", "laughs - 336", "long pause - 2", "chuckles - 20", "whispers - 2", "normal volume - 2", "sighs - 156", "clicks tongue - 2", "gasps - 4", "moans - 8", "sonora - 2", "habla en inglés -… See the full description on the dataset page: https://huggingface.co/datasets/MrDragonFox/Elise.
1,410
1,410
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-27T10:50:05
null
null
639244f571c51c43091df168
Anthropic/hh-rlhf
Anthropic
{"license": "mit", "tags": ["human-feedback"]}
false
null
2023-05-26T18:47:34
1,312
9
false
09be8c5bbc57cb3887f3a9732ad6aa7ec602a1fa
Dataset Card for HH-RLHF Dataset Summary This repository provides access to two different kinds of data: Human preference data about helpfulness and harmlessness from Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback. These data are meant to train preference (or reward) models for subsequent RLHF training. These data are not meant for supervised training of dialogue agents. Training dialogue agents on these data is likely… See the full description on the dataset page: https://huggingface.co/datasets/Anthropic/hh-rlhf.
13,018
1,563,546
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2204.05862", "region:us", "human-feedback" ]
2022-12-08T20:11:33
null
null
67d97c4be2b27852325fd8e2
nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim
nvidia
{"license": "cc-by-4.0"}
false
null
2025-04-02T02:27:47
102
9
false
8fc782b6de78e17914dd52053c9c680e4bde8fb1
PhysicalAI-Robotics-GR00T-X-Embodiment-Sim Github Repo: Isaac GR00T N1 We provide a set of datasets used for post-training of GR00T N1. Each dataset is a collection of trajectories from different robot embodiments and tasks. Cross-embodied bimanual manipulation: 9k trajectories Dataset Name #trajectories bimanual_panda_gripper.Threading 1000 bimanual_panda_hand.LiftTray 1000 bimanual_panda_gripper.ThreePieceAssembly 1000… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/PhysicalAI-Robotics-GR00T-X-Embodiment-Sim.
29,201
29,201
[ "license:cc-by-4.0", "region:us" ]
2025-03-18T13:59:39
null
null
6791fcbb49c4df6d798ca7c9
cais/hle
cais
{"license": "mit", "dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "image", "dtype": "string"}, {"name": "image_preview", "dtype": "image"}, {"name": "answer", "dtype": "string"}, {"name": "answer_type", "dtype": "string"}, {"name": "author_name", "dtype": "string"}, {"name": "rationale", "dtype": "string"}, {"name": "rationale_image", "dtype": "image"}, {"name": "raw_subject", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "canary", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 284635618, "num_examples": 2500}], "download_size": 274582371, "dataset_size": 284635618}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-04-04T04:00:14
292
8
false
1e33bd2d1346480b397ad94845067c4a088a33d3
Humanity's Last Exam 🌐 Website | 📄 Paper | GitHub Center for AI Safety & Scale AI Humanity's Last Exam (HLE) is a multi-modal benchmark at the frontier of human knowledge, designed to be the final closed-ended academic benchmark of its kind with broad subject coverage. Humanity's Last Exam consists of 2,500 questions across dozens of subjects, including mathematics, humanities, and the natural sciences. HLE is developed globally by subject-matter experts and consists of… See the full description on the dataset page: https://huggingface.co/datasets/cais/hle.
7,073
17,174
[ "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-01-23T08:24:27
null
null
67a52826e2c430620fe95ca3
PatronusAI/BLUR
PatronusAI
{"license": "mit", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "blur", "size_categories": ["n<1K"], "configs": [{"config_name": "default", "data_files": [{"split": "validation", "path": "validation.csv"}, {"split": "public_test", "path": "public_test.csv"}]}]}
false
null
2025-03-26T02:43:58
10
8
false
dda66f8e5fd56102644ef313a6532d4e4cfba514
Browsing Lost Unformed Recollections The leaderboard can be found at https://huggingface.co/spaces/PatronusAI/BLUR-leaderboard. If you use or find this dataset helpful in your research, please do cite our paper: Paper Link: arXiv @misc{chwang2025blur, title = {Browsing {Lost} {Unformed} {Recollections}: {A} {Benchmark} for {Tip}-of-the-{Tongue} {Search} and {Reasoning}}, shorttitle = {Browsing {Lost} {Unformed} {Recollections}}, url = {http://arxiv.org/abs/2503.19193}… See the full description on the dataset page: https://huggingface.co/datasets/PatronusAI/BLUR.
137
172
[ "task_categories:text-generation", "language:en", "license:mit", "size_categories:n<1K", "format:csv", "modality:audio", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2503.19193", "region:us" ]
2025-02-06T21:22:46
null
null
67abc2c2d6edf5606aa5c0d7
facebook/collaborative_agent_bench
facebook
{"license": "other", "extra_gated_prompt": "## License", "extra_gated_fields": {"First Name": "text", "Last Name": "text", "Date of birth": "date_picker", "Country": "country", "Affiliation": "text", "I accept the terms and conditions": "checkbox", "geo": "ip_location"}, "extra_gated_description": "SWEET-RL Research License and Acceptable Use Policy", "extra_gated_button_content": "I Accept Self-taught Evaluator Research License and AUP"}
false
null
2025-03-20T04:17:14
57
8
false
cf3526da25989b53f105fe9b74c1174a3e19c548
This dataset is released as part of SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks research project. Please refer to our project materials here for training and evaluation details. Citation If you use data, model, or code from this work, please cite with the following BibTex entry: @misc{zhou2025sweetrltrainingmultiturnllm, title={SWEET-RL: Training Multi-Turn LLM Agents on Collaborative Reasoning Tasks}, author={Yifei Zhou and Song Jiang and… See the full description on the dataset page: https://huggingface.co/datasets/facebook/collaborative_agent_bench.
125
125
[ "license:other", "arxiv:2503.15478", "region:us" ]
2025-02-11T21:36:02
null
null
67b32145bac2756ce9a4a0fe
Congliu/Chinese-DeepSeek-R1-Distill-data-110k
Congliu
{"license": "apache-2.0", "language": ["zh"], "size_categories": ["100K<n<1M"], "task_categories": ["text-generation", "text2text-generation", "question-answering"]}
false
null
2025-02-21T02:18:08
609
8
false
8520b649430617c2be4490f424d251d09d835ed3
中文基于满血DeepSeek-R1蒸馏数据集(Chinese-Data-Distill-From-R1) 🤗 Hugging Face   |   🤖 ModelScope    |   🚀 Github    |   📑 Blog 注意:提供了直接SFT使用的版本,点击下载。将数据中的思考和答案整合成output字段,大部分SFT代码框架均可直接直接加载训练。 本数据集为中文开源蒸馏满血R1的数据集,数据集中不仅包含math数据,还包括大量的通用类型数据,总数量为110K。 为什么开源这个数据? R1的效果十分强大,并且基于R1蒸馏数据SFT的小模型也展现出了强大的效果,但检索发现,大部分开源的R1蒸馏数据集均为英文数据集。 同时,R1的报告中展示,蒸馏模型中同时也使用了部分通用场景数据集。 为了帮助大家更好地复现R1蒸馏模型的效果,特此开源中文数据集。该中文数据集中的数据分布如下: Math:共计36568个样本, Exam:共计2432个样本, STEM:共计12648个样本,… See the full description on the dataset page: https://huggingface.co/datasets/Congliu/Chinese-DeepSeek-R1-Distill-data-110k.
5,081
11,124
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:question-answering", "language:zh", "license:apache-2.0", "size_categories:100K<n<1M", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-17T11:45:09
null
null
67e90aae9f3eff13b7405dfb
KwaiVGI/MultiCamVideo-Dataset
KwaiVGI
{"license": "apache-2.0"}
false
null
2025-04-03T03:23:10
8
8
false
1603dfd560cc227f218c854fbee81e56a82993e0
Github Project Page Paper 📷 MultiCamVideo Dataset 1. Dataset Introduction TL;DR: The MultiCamVideo Dataset, introduced in ReCamMaster, is a multi-camera synchronized video dataset rendered using Unreal Engine 5. It includes synchronized multi-camera videos and its corresponding camera trajectories. The MultiCamVideo Dataset can be valuable in fields such as camera-controlled video generation, synchronized video production, and 3D/4D reconstruction. The… See the full description on the dataset page: https://huggingface.co/datasets/KwaiVGI/MultiCamVideo-Dataset.
278
278
[ "license:apache-2.0", "arxiv:2503.11647", "region:us" ]
2025-03-30T09:11:10
null
null
67ec47948647cfa17739af7a
nvidia/OpenCodeReasoning
nvidia
{"dataset_info": [{"config_name": "split_0", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}], "splits": [{"name": "split_0", "num_bytes": 28108469190, "num_examples": 567850}]}, {"config_name": "split_1", "features": [{"name": "id", "dtype": "string"}, {"name": "input", "dtype": "string"}, {"name": "output", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "license", "dtype": "string"}, {"name": "dataset", "dtype": "string"}, {"name": "split", "dtype": "string"}, {"name": "difficulty", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "index", "dtype": "string"}], "splits": [{"name": "split_1", "num_bytes": 4722811278, "num_examples": 167405}]}], "configs": [{"config_name": "split_0", "data_files": [{"split": "split_0", "path": "split_0/train-*"}]}, {"config_name": "split_1", "data_files": [{"split": "split_1", "path": "split_1/train-*"}]}], "tags": ["synthetic"], "license": "cc-by-4.0", "size_categories": ["100K<n<1M"], "pretty_name": "OpenCodeReasoning"}
false
null
2025-04-05T00:26:16
8
8
false
4c7dd4975d530d9808268f62444dba001cdc5f80
OpenCodeReasoning: Advancing Data Distillation for Competitive Coding Data Overview OpenCodeReasoning is the largest reasoning-based synthetic dataset to date for coding, comprises 735,255 samples in Python across 28,319 unique competitive programming questions. OpenCodeReasoning is designed for supervised fine-tuning (SFT). Technical Report - Discover the methodology and technical details behind OpenCodeReasoning. Github Repo - Access the complete pipeline used to… See the full description on the dataset page: https://huggingface.co/datasets/nvidia/OpenCodeReasoning.
23
23
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.01943", "region:us", "synthetic" ]
2025-04-01T20:07:48
null
null
64035e3d723a03e62696f152
biglam/european_art
biglam
{"dataset_info": [{"config_name": "coco", "features": [{"name": "image", "dtype": "image"}, {"name": "source", "dtype": "string"}, {"name": "width", "dtype": "int16"}, {"name": "height", "dtype": "int16"}, {"name": "dept", "dtype": "int8"}, {"name": "segmented", "dtype": "int8"}, {"name": "objects", "list": [{"name": "category_id", "dtype": {"class_label": {"names": {"0": "zebra", "1": "tree", "2": "nude", "3": "crucifixion", "4": "scroll", "5": "head", "6": "swan", "7": "shield", "8": "lily", "9": "mouse", "10": "knight", "11": "dragon", "12": "horn", "13": "dog", "14": "palm", "15": "tiara", "16": "helmet", "17": "sheep", "18": "deer", "19": "person", "20": "sword", "21": "rooster", "22": "bear", "23": "halo", "24": "lion", "25": "monkey", "26": "prayer", "27": "crown of thorns", "28": "elephant", "29": "zucchetto", "30": "unicorn", "31": "holy shroud", "32": "cat", "33": "apple", "34": "banana", "35": "chalice", "36": "bird", "37": "eagle", "38": "pegasus", "39": "crown", "40": "camauro", "41": "saturno", "42": "arrow", "43": "dove", "44": "centaur", "45": "horse", "46": "hands", "47": "skull", "48": "orange", "49": "monk", "50": "trumpet", "51": "key of heaven", "52": "fish", "53": "cow", "54": "angel", "55": "devil", "56": "book", "57": "stole", "58": "butterfly", "59": "serpent", "60": "judith", "61": "mitre", "62": "banner", "63": "donkey", "64": "shepherd", "65": "boat", "66": "god the father", "67": "crozier", "68": "jug", "69": "lance"}}}}, {"name": "image_id", "dtype": "string"}, {"name": "area", "dtype": "int64"}, {"name": "bbox", "sequence": "float32", "length": 4}, {"name": "segmentation", "list": {"list": "float32"}}, {"name": "iscrowd", "dtype": "bool"}]}, {"name": "image_id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8285204, "num_examples": 15156}], "download_size": 18160510195, "dataset_size": 8285204}, {"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "file_id", "dtype": "string"}, {"name": "annotations", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 18197594657, "num_examples": 15154}], "download_size": 18151946901, "dataset_size": 18197594657}, {"config_name": "raw", "features": [{"name": "image", "dtype": "image"}, {"name": "source", "dtype": "string"}, {"name": "width", "dtype": "int16"}, {"name": "height", "dtype": "int16"}, {"name": "dept", "dtype": "int8"}, {"name": "segmented", "dtype": "int8"}, {"name": "objects", "list": [{"name": "name", "dtype": {"class_label": {"names": {"0": "zebra", "1": "tree", "2": "nude", "3": "crucifixion", "4": "scroll", "5": "head", "6": "swan", "7": "shield", "8": "lily", "9": "mouse", "10": "knight", "11": "dragon", "12": "horn", "13": "dog", "14": "palm", "15": "tiara", "16": "helmet", "17": "sheep", "18": "deer", "19": "person", "20": "sword", "21": "rooster", "22": "bear", "23": "halo", "24": "lion", "25": "monkey", "26": "prayer", "27": "crown of thorns", "28": "elephant", "29": "zucchetto", "30": "unicorn", "31": "holy shroud", "32": "cat", "33": "apple", "34": "banana", "35": "chalice", "36": "bird", "37": "eagle", "38": "pegasus", "39": "crown", "40": "camauro", "41": "saturno", "42": "arrow", "43": "dove", "44": "centaur", "45": "horse", "46": "hands", "47": "skull", "48": "orange", "49": "monk", "50": "trumpet", "51": "key of heaven", "52": "fish", "53": "cow", "54": "angel", "55": "devil", "56": "book", "57": "stole", "58": "butterfly", "59": "serpent", "60": "judith", "61": "mitre", "62": "banner", "63": "donkey", "64": "shepherd", "65": "boat", "66": "god the father", "67": "crozier", "68": "jug", "69": "lance"}}}}, {"name": "pose", "dtype": {"class_label": {"names": {"0": "stand", "1": "sit", "2": "partial", "3": "Unspecified", "4": "squats", "5": "lie", "6": "bend", "7": "fall", "8": "walk", "9": "push", "10": "pray", "11": "undefined", "12": "kneel", "13": "unrecognize", "14": "unknown", "15": "other", "16": "ride"}}}}, {"name": "diffult", "dtype": "int32"}, {"name": "xmin", "dtype": "float64"}, {"name": "ymin", "dtype": "float64"}, {"name": "xmax", "dtype": "float64"}, {"name": "ymax", "dtype": "float64"}]}], "splits": [{"name": "train", "num_bytes": 9046918, "num_examples": 15156}], "download_size": 18160510195, "dataset_size": 9046918}], "license": "cc-by-nc-2.0", "task_categories": ["object-detection", "image-classification"], "tags": ["lam", "art", "historical"], "pretty_name": "DEArt: Dataset of European Art", "size_categories": ["10K<n<100K"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-31T18:04:12
14
7
false
f00afe1c164f7d1d9819e3b55b1fe693e4cfa91c
Dataset Card for DEArt: Dataset of European Art Dataset Summary DEArt is an object detection and pose classification dataset meant to be a reference for paintings between the XIIth and the XVIIIth centuries. It contains more than 15000 images, about 80% non-iconic, aligned with manual annotations for the bounding boxes identifying all instances of 69 classes as well as 12 possible poses for boxes identifying human-like objects. Of these, more than 50 classes are cultural… See the full description on the dataset page: https://huggingface.co/datasets/biglam/european_art.
360
862
[ "task_categories:object-detection", "task_categories:image-classification", "license:cc-by-nc-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2211.01226", "region:us", "lam", "art", "historical" ]
2023-03-04T15:05:33
null
null
641debae1d05404efd046a4f
yahma/alpaca-cleaned
yahma
{"license": "cc-by-4.0", "language": ["en"], "tags": ["instruction-finetuning"], "pretty_name": "Alpaca-Cleaned", "task_categories": ["text-generation"]}
false
null
2023-04-10T20:29:06
675
7
false
12567cabf869d7c92e573c7c783905fc160e9639
Dataset Card for Alpaca-Cleaned Repository: https://github.com/gururise/AlpacaDataCleaned Dataset Description This is a cleaned version of the original Alpaca Dataset released by Stanford. The following issues have been identified in the original release and fixed in this dataset: Hallucinations: Many instructions in the original dataset had instructions referencing data on the internet, which just caused GPT3 to hallucinate an answer. "instruction":"Summarize the… See the full description on the dataset page: https://huggingface.co/datasets/yahma/alpaca-cleaned.
23,360
622,174
[ "task_categories:text-generation", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "instruction-finetuning" ]
2023-03-24T18:27:58
null
null
65abafba043d53781a266118
arbml/CIDAR
arbml
{"configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "output", "dtype": "string"}, {"name": "instruction", "dtype": "string"}, {"name": "index", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 6712623, "num_examples": 10000}], "download_size": 3553672, "dataset_size": 6712623}, "license": "apache-2.0", "task_categories": ["text-generation"], "tags": ["Instruction"], "language": ["ar"], "pretty_name": "CIDAR", "size_categories": ["1K<n<10K"]}
false
null
2025-04-03T08:35:36
49
7
false
a3a9da3ea61ee296476d91132f9d0df95a11622a
Dataset Card for "CIDAR" 🌴CIDAR: Culturally Relevant Instruction Dataset For Arabic [ Paper - GitHub ] CIDAR contains 10,000 instructions and their output. The dataset was created by selecting around 9,109 samples from Alpagasus dataset then translating it to Arabic using ChatGPT. In addition, we append that with around 891 Arabic grammar instructions from the webiste Ask the teacher. All the 10,000 samples were reviewed by around 12 reviewers. 📚… See the full description on the dataset page: https://huggingface.co/datasets/arbml/CIDAR.
576
4,181
[ "task_categories:text-generation", "language:ar", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2402.03177", "region:us", "Instruction" ]
2024-01-20T11:34:18
null
null
6731b4fffb568a134d3f2dd6
TIGER-Lab/OmniEdit-Filtered-1.2M
TIGER-Lab
{"language": ["en"], "license": "mit", "size_categories": ["1M<n<10M"], "pretty_name": "OmniEdit", "dataset_info": {"features": [{"name": "omni_edit_id", "dtype": "string"}, {"name": "task", "dtype": "string"}, {"name": "src_img", "dtype": "image"}, {"name": "edited_img", "dtype": "image"}, {"name": "edited_prompt_list", "sequence": "string"}, {"name": "width", "dtype": "int64"}, {"name": "height", "dtype": "int64"}, {"name": "sc_score_1", "dtype": "int64"}, {"name": "sc_score_2", "dtype": "int64"}, {"name": "sc_reasoning", "dtype": "string"}, {"name": "pq_score", "dtype": "int64"}, {"name": "pq_reasoning", "dtype": "string"}, {"name": "o_score", "dtype": "float64"}], "splits": [{"name": "dev", "num_bytes": 1547839078, "num_examples": 700}, {"name": "train", "num_bytes": 2852916299223.88, "num_examples": 1202797}], "download_size": 2978259415518, "dataset_size": 2854464138301.88}, "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "data/dev-*"}, {"split": "train", "path": "data/train-*"}]}], "tags": ["image"]}
false
null
2024-12-06T02:57:59
84
7
false
82455c6cd66db7f0e5bfce8d7a236441af59d6df
OmniEdit In this paper, we present OMNI-EDIT, which is an omnipotent editor to handle seven different image editing tasks with any aspect ratio seamlessly. Our contribution is in four folds: (1) OMNI-EDIT is trained by utilizing the supervision from seven different specialist models to ensure task coverage. (2) we utilize importance sampling based on the scores provided by large multimodal models (like GPT-4o) instead of CLIP-score to improve the data quality. 📃Paper |… See the full description on the dataset page: https://huggingface.co/datasets/TIGER-Lab/OmniEdit-Filtered-1.2M.
16,374
72,222
[ "language:en", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2411.07199", "region:us", "image" ]
2024-11-11T07:40:47
null
null
6797e648de960c48ff034e54
open-thoughts/OpenThoughts-114k
open-thoughts
{"dataset_info": [{"config_name": "default", "features": [{"name": "system", "dtype": "string"}, {"name": "conversations", "list": [{"name": "from", "dtype": "string"}, {"name": "value", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 2635015668, "num_examples": 113957}], "download_size": 1078777193, "dataset_size": 2635015668}, {"config_name": "metadata", "features": [{"name": "problem", "dtype": "string"}, {"name": "deepseek_reasoning", "dtype": "string"}, {"name": "deepseek_solution", "dtype": "string"}, {"name": "ground_truth_solution", "dtype": "string"}, {"name": "domain", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "test_cases", "dtype": "string"}, {"name": "starter_code", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5525214077.699433, "num_examples": 113957}], "download_size": 2469729724, "dataset_size": 5525214077.699433}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "metadata/train-*"}]}], "tags": ["curator", "synthetic"], "license": "apache-2.0"}
false
null
2025-02-20T07:16:57
680
7
false
56b06e3066a8163577ac93b24613a560e685d029
Open-Thoughts-114k Open synthetic reasoning dataset with 114k high-quality examples covering math, science, code, and puzzles! Inspect the content with rich formatting with Curator Viewer. Available Subsets default subset containing ready-to-train data used to finetune the OpenThinker-7B and OpenThinker-32B models: ds = load_dataset("open-thoughts/OpenThoughts-114k", split="train") metadata subset containing extra columns used in dataset construction:… See the full description on the dataset page: https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k.
25,478
150,091
[ "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "curator", "synthetic" ]
2025-01-27T20:02:16
null
null
67ae5cb70100bb7fb11fdb31
getomni-ai/ocr-benchmark
getomni-ai
{"license": "mit", "size_categories": ["1K<n<10K"]}
false
null
2025-02-21T06:34:31
41
7
false
4ed0d95271ca00107726230f7a0944ed9e90d897
OmniAI OCR Benchmark A comprehensive benchmark that compares OCR and data extraction capabilities of different multimodal LLMs such as gpt-4o and gemini-2.0, evaluating both text and JSON extraction accuracy. Benchmark Results (Feb 2025) | Source Code
1,848
2,924
[ "license:mit", "size_categories:1K<n<10K", "format:imagefolder", "modality:image", "modality:text", "library:datasets", "library:mlcroissant", "region:us" ]
2025-02-13T20:57:27
null
null
67e0ce6de8133567a3f347e8
generalagents/showdown-clicks
generalagents
{"license": "mit", "task_categories": ["image-to-text"], "language": ["en"], "size_categories": ["1K<n<10K"], "configs": [{"config_name": "default", "data_files": [{"split": "dev", "path": "showdown-clicks-dev/data.csv"}]}]}
false
null
2025-03-31T07:10:38
7
7
false
a6dfa6415d7fdd41fb5c0544e1dd9a5da439f1ce
showdown-clicks General Agents 🤗 Dataset | GitHub showdown is a suite of offline and online benchmarks for computer-use agents. showdown-clicks is a collection of 5,679 left clicks of humans performing various tasks in a macOS desktop environment. It is intended to evaluate instruction-following and low-level control capabilities of computer-use agents. As of March 2025, we are releasing a subset of the full set, showdown-clicks-dev, containing 557 clicks. All examples are… See the full description on the dataset page: https://huggingface.co/datasets/generalagents/showdown-clicks.
134
134
[ "task_categories:image-to-text", "language:en", "license:mit", "size_categories:n<1K", "format:csv", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-24T03:15:57
null
null
67e4200962f39381a49cd4d0
Rapidata/Recraft-V2_t2i_human_preference
Rapidata
{"dataset_info": {"features": [{"name": "prompt", "dtype": "string"}, {"name": "image1", "dtype": "image"}, {"name": "image2", "dtype": "image"}, {"name": "model1", "dtype": "string"}, {"name": "model2", "dtype": "string"}, {"name": "weighted_results_image1_preference", "dtype": "float32"}, {"name": "weighted_results_image2_preference", "dtype": "float32"}, {"name": "detailed_results_preference", "dtype": "string"}, {"name": "weighted_results_image1_coherence", "dtype": "float32"}, {"name": "weighted_results_image2_coherence", "dtype": "float32"}, {"name": "detailed_results_coherence", "dtype": "string"}, {"name": "weighted_results_image1_alignment", "dtype": "float32"}, {"name": "weighted_results_image2_alignment", "dtype": "float32"}, {"name": "detailed_results_alignment", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 13265684267, "num_examples": 13000}], "download_size": 5160991901, "dataset_size": 13265684267}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cdla-permissive-2.0", "task_categories": ["text-to-image", "image-to-text", "image-classification", "reinforcement-learning"], "language": ["en"], "tags": ["Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2"], "size_categories": ["100K<n<1M"], "pretty_name": "Recraft V2 vs. Lumina-15-2-25 / Aurora / Frames-23-1-25 / imagen-3 / Flux-1.1-pro / Flux-1-pro / Dalle-3 / Midjourney-5.2 / Stabel-Diffusion-3 - Human Preference Dataset"}
false
null
2025-03-27T14:46:25
7
7
false
eaf11e29c908ce1534dd233390f41c6df2eaff9f
Rapidata Recraft-V2 Preference This T2I dataset contains over 195k human responses from over 47k individual annotators, collected in just ~1 Day using the Rapidata Python API, accessible to anyone and ideal for large scale evaluation. Evaluating Recraft-V2 across three categories: preference, coherence, and alignment. Explore our latest model rankings on our website. If you get value from this dataset and would like to see more in the future, please consider liking it.… See the full description on the dataset page: https://huggingface.co/datasets/Rapidata/Recraft-V2_t2i_human_preference.
528
528
[ "task_categories:text-to-image", "task_categories:image-to-text", "task_categories:image-classification", "task_categories:reinforcement-learning", "language:en", "license:cdla-permissive-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "Human", "Preference", "Coherence", "Alignment", "country", "language", "flux", "midjourney", "dalle3", "stabeldiffusion", "alignment", "flux1.1", "flux1", "imagen3", "aurora", "lumina", "recraft", "recraft v2" ]
2025-03-26T15:40:57
null
null
67e46df98c0347025bba131b
sychonix/emotion
sychonix
{"dataset_info": {"features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "sadness", "1": "joy", "2": "love", "3": "anger", "4": "fear", "5": "surprise"}}}}], "splits": [{"name": "train", "num_bytes": 1741533, "num_examples": 16000}, {"name": "validation", "num_bytes": 214695, "num_examples": 2000}, {"name": "test", "num_bytes": 217173, "num_examples": 2000}], "download_size": 1281072, "dataset_size": 2173401}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}]}
false
null
2025-03-26T21:13:34
29
7
false
5a355b76cee6387d370d99d7ff656e79cc10d2eb
null
874
874
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-26T21:13:29
null
null
67ecdf7e693ef0b1e0d7a06b
a-m-team/AM-Math-Difficulty-RL
a-m-team
{"license": "cc-by-nc-4.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math"], "size_categories": ["100K<n<1M"]}
false
null
2025-04-02T08:39:29
7
7
false
32540e9bce5952736795ac78cf049a0757f601d3
For more open-source datasets, models, and methodologies, please visit our GitHub repository. We believe that the selection of training data for reinforcement learning is crucial. To validate this, we conducted several experiments exploring how data difficulty influences training performance. Our data sources originate from numerous excellent open-source projects, and we sincerely appreciate their contributions, without which our current achievements would not have been possible.… See the full description on the dataset page: https://huggingface.co/datasets/a-m-team/AM-Math-Difficulty-RL.
164
164
[ "task_categories:text-generation", "language:en", "license:cc-by-nc-4.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.00829", "region:us", "math" ]
2025-04-02T06:55:58
null
null
63270b5b0416b7adda873b3e
Gustavosta/Stable-Diffusion-Prompts
Gustavosta
{"license": ["unknown"], "annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "source_datasets": ["original"]}
false
null
2022-09-18T22:38:59
477
6
false
d816d4a05cb89bde39dd99284c459801e1e7e69a
Stable Diffusion Dataset This is a set of about 80,000 prompts filtered and extracted from the image finder for Stable Diffusion: "Lexica.art". It was a little difficult to extract the data, since the search engine still doesn't have a public API without being protected by cloudflare. If you want to test the model with a demo, you can go to: "spaces/Gustavosta/MagicPrompt-Stable-Diffusion". If you want to see the model, go to: "Gustavosta/MagicPrompt-Stable-Diffusion".
8,381
109,643
[ "annotations_creators:no-annotation", "language_creators:found", "source_datasets:original", "language:en", "license:unknown", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2022-09-18T12:13:15
null
null
64382440c212a363c3ac15c8
OpenAssistant/oasst1
OpenAssistant
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int32"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "int32"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "string"}, {"name": "detoxify", "struct": [{"name": "toxicity", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "sequence": [{"name": "name", "dtype": "string"}, {"name": "count", "dtype": "int32"}]}, {"name": "labels", "sequence": [{"name": "name", "dtype": "string"}, {"name": "value", "dtype": "float64"}, {"name": "count", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 100367999, "num_examples": 84437}, {"name": "validation", "num_bytes": 5243405, "num_examples": 4401}], "download_size": 41596430, "dataset_size": 105611404}, "language": ["en", "es", "ru", "de", "pl", "th", "vi", "sv", "bn", "da", "he", "it", "fa", "sk", "id", "nb", "el", "nl", "hu", "eu", "zh", "eo", "ja", "ca", "cs", "bg", "fi", "pt", "tr", "ro", "ar", "uk", "gl", "fr", "ko"], "tags": ["human-feedback"], "size_categories": ["100K<n<1M"], "pretty_name": "OpenAssistant Conversations"}
false
null
2023-05-02T13:21:21
1,373
6
false
fdf72ae0827c1cda404aff25b6603abec9e3399b
OpenAssistant Conversations Dataset (OASST1) Dataset Summary In an effort to democratize research on large-scale alignment, we release OpenAssistant Conversations (OASST1), a human-generated, human-annotated assistant-style conversation corpus consisting of 161,443 messages in 35 different languages, annotated with 461,292 quality ratings, resulting in over 10,000 fully annotated conversation trees. The corpus is a product of a worldwide crowd-sourcing effort… See the full description on the dataset page: https://huggingface.co/datasets/OpenAssistant/oasst1.
8,360
253,091
[ "language:en", "language:es", "language:ru", "language:de", "language:pl", "language:th", "language:vi", "language:sv", "language:bn", "language:da", "language:he", "language:it", "language:fa", "language:sk", "language:id", "language:nb", "language:el", "language:nl", "language:hu", "language:eu", "language:zh", "language:eo", "language:ja", "language:ca", "language:cs", "language:bg", "language:fi", "language:pt", "language:tr", "language:ro", "language:ar", "language:uk", "language:gl", "language:fr", "language:ko", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2304.07327", "region:us", "human-feedback" ]
2023-04-13T15:48:16
null
null
650a9248d26103b6eee3ea7b
lmsys/lmsys-chat-1m
lmsys
{"size_categories": ["1M<n<10M"], "task_categories": ["conversational"], "extra_gated_prompt": "You agree to the [LMSYS-Chat-1M Dataset License Agreement](https://huggingface.co/datasets/lmsys/lmsys-chat-1m#lmsys-chat-1m-dataset-license-agreement).", "extra_gated_fields": {"Name": "text", "Email": "text", "Affiliation": "text", "Country": "text"}, "extra_gated_button_content": "I agree to the terms and conditions of the LMSYS-Chat-1M Dataset License Agreement.", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "dataset_info": {"features": [{"name": "conversation_id", "dtype": "string"}, {"name": "model", "dtype": "string"}, {"name": "conversation", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "turn", "dtype": "int64"}, {"name": "language", "dtype": "string"}, {"name": "openai_moderation", "list": [{"name": "categories", "struct": [{"name": "harassment", "dtype": "bool"}, {"name": "harassment/threatening", "dtype": "bool"}, {"name": "hate", "dtype": "bool"}, {"name": "hate/threatening", "dtype": "bool"}, {"name": "self-harm", "dtype": "bool"}, {"name": "self-harm/instructions", "dtype": "bool"}, {"name": "self-harm/intent", "dtype": "bool"}, {"name": "sexual", "dtype": "bool"}, {"name": "sexual/minors", "dtype": "bool"}, {"name": "violence", "dtype": "bool"}, {"name": "violence/graphic", "dtype": "bool"}]}, {"name": "category_scores", "struct": [{"name": "harassment", "dtype": "float64"}, {"name": "harassment/threatening", "dtype": "float64"}, {"name": "hate", "dtype": "float64"}, {"name": "hate/threatening", "dtype": "float64"}, {"name": "self-harm", "dtype": "float64"}, {"name": "self-harm/instructions", "dtype": "float64"}, {"name": "self-harm/intent", "dtype": "float64"}, {"name": "sexual", "dtype": "float64"}, {"name": "sexual/minors", "dtype": "float64"}, {"name": "violence", "dtype": "float64"}, {"name": "violence/graphic", "dtype": "float64"}]}, {"name": "flagged", "dtype": "bool"}]}, {"name": "redacted", "dtype": "bool"}], "splits": [{"name": "train", "num_bytes": 2626438904, "num_examples": 1000000}], "download_size": 1488850250, "dataset_size": 2626438904}}
false
null
2024-07-27T09:28:42
654
6
false
200748d9d3cddcc9d782887541057aca0b18c5da
LMSYS-Chat-1M: A Large-Scale Real-World LLM Conversation Dataset This dataset contains one million real-world conversations with 25 state-of-the-art LLMs. It is collected from 210K unique IP addresses in the wild on the Vicuna demo and Chatbot Arena website from April to August 2023. Each sample includes a conversation ID, model name, conversation text in OpenAI API JSON format, detected language tag, and OpenAI moderation API tag. User consent is obtained through the "Terms of… See the full description on the dataset page: https://huggingface.co/datasets/lmsys/lmsys-chat-1m.
4,066
222,713
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.11998", "region:us" ]
2023-09-20T06:33:44
null
null
65a67881c26011a4a77e2aca
omar07ibrahim/Alpaca
omar07ibrahim
null
false
null
2024-01-16T12:37:55
6
6
false
0422485a5c4de92acd262d6ca3cf28cf018322c4
null
14
83
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-16T12:37:21
null
null
65afeef01dbd85fd0cdcf7c8
omar07ibrahim/orca
omar07ibrahim
null
false
null
2024-01-23T18:24:06
6
6
false
5859a72678e8b94dd942b0cb28bac7d26070aa31
null
23
93
[ "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-23T16:53:04
null
null
65b0b0ed7ac1fb9fc7f65747
omar07ibrahim/orca_firstpart_AZ
omar07ibrahim
null
false
null
2024-01-24T06:44:45
6
6
false
1e5e9dc9af0abf67bdc423d8aa5fcc5f6af9d6e2
null
12
90
[ "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-24T06:40:45
null
null
65b3fe30ca3eb32979ca1411
omar07ibrahim/test9dpo
omar07ibrahim
null
false
null
2024-01-26T18:47:27
6
6
false
af6b9e605dc6d17e4b776713f15423ba4b07aadd
null
16
99
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-26T18:47:12
null
null
65b55f122d8f64c77adadd66
omar07ibrahim/ultrafeedback_binarized-BIZIM
omar07ibrahim
null
false
null
2024-01-27T19:53:48
6
6
false
b63048787a93c66475978782c277fef4bf69bb7e
null
18
78
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-01-27T19:52:50
null
null
65c666da10735dcd76ea29e1
ibrahimhamamci/CT-RATE
ibrahimhamamci
{"title": "CT-RATE Dataset", "license": "cc-by-nc-sa-4.0", "extra_gated_prompt": "## Terms and Conditions for Using the CT-RATE Dataset\n\n**1. Acceptance of Terms**\nAccessing and using the CT-RATE dataset implies your agreement to these terms and conditions. If you disagree with any part, please refrain from using the dataset.\n\n**2. Permitted Use**\n- The dataset is intended solely for academic, research, and educational purposes.\n- Any commercial exploitation of the dataset without prior permission is strictly forbidden.\n- You must adhere to all relevant laws, regulations, and research ethics, including data privacy and protection standards.\n\n**3. Data Protection and Privacy**\n- Acknowledge the presence of sensitive information within the dataset and commit to maintaining data confidentiality.\n- Direct attempts to re-identify individuals from the dataset are prohibited.\n- Ensure compliance with data protection laws such as GDPR and HIPAA.\n\n**4. Attribution**\n- Cite the dataset and acknowledge the providers in any publications resulting from its use.\n- Claims of ownership or exclusive rights over the dataset or derivatives are not permitted.\n\n**5. Redistribution**\n- Redistribution of the dataset or any portion thereof is not allowed.\n- Sharing derived data must respect the privacy and confidentiality terms set forth.\n\n**6. Disclaimer**\nThe dataset is provided \"as is\" without warranty of any kind, either expressed or implied, including but not limited to the accuracy or completeness of the data.\n\n**7. Limitation of Liability**\nUnder no circumstances will the dataset providers be liable for any claims or damages resulting from your use of the dataset.\n\n**8. Access Revocation**\nViolation of these terms may result in the termination of your access to the dataset.\n\n**9. Amendments**\nThe terms and conditions may be updated at any time; continued use of the dataset signifies acceptance of the new terms.\n\n**10. Governing Law**\nThese terms are governed by the laws of the location of the dataset providers, excluding conflict of law rules.\n\n**Consent:**\nAccessing and using the CT-RATE dataset signifies your acknowledgment and agreement to these terms and conditions.\n", "extra_gated_fields": {"Name": "text", "Institution": "text", "Email": "text", "I have read and agree with Terms and Conditions for using the CT-RATE dataset": "checkbox"}, "configs": [{"config_name": "labels", "data_files": [{"split": "train", "path": "dataset/multi_abnormality_labels/train_predicted_labels.csv"}, {"split": "validation", "path": "dataset/multi_abnormality_labels/valid_predicted_labels.csv"}]}, {"config_name": "reports", "data_files": [{"split": "train", "path": "dataset/radiology_text_reports/train_reports.csv"}, {"split": "validation", "path": "dataset/radiology_text_reports/validation_reports.csv"}]}, {"config_name": "metadata", "data_files": [{"split": "train", "path": "dataset/metadata/train_metadata.csv"}, {"split": "validation", "path": "dataset/metadata/validation_metadata.csv"}]}]}
false
null
2025-04-04T15:00:57
133
6
false
86d4322aa852bed5c1528c6b9787f4c1f731ca85
Developing Generalist Foundation Models from a Multimodal Dataset for 3D Computed Tomography Welcome to the official page for our paper, which introduces CT-RATE—a pioneering dataset in 3D medical imaging that uniquely pairs textual data with image data focused on chest CT volumes. Here, you will find the CT-RATE dataset, comprising chest CT volumes paired with corresponding radiology text reports, multi-abnormality labels, and metadata, all freely accessible to researchers.… See the full description on the dataset page: https://huggingface.co/datasets/ibrahimhamamci/CT-RATE.
36,050
346,479
[ "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2403.17834", "region:us" ]
2024-02-09T17:54:34
null
null
65d61e35d192e46c9367fa6f
omar07ibrahim/datasetaz
omar07ibrahim
null
false
null
2024-02-21T16:02:52
6
6
false
05b76dd2702c9c68003ad6388600b3ce53a02102
null
16
96
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-02-21T16:00:53
null
null
65fc5a783bc54054aa2e6e62
gretelai/synthetic_text_to_sql
gretelai
{"license": "apache-2.0", "task_categories": ["question-answering", "table-question-answering", "text-generation"], "language": ["en"], "tags": ["synthetic", "SQL", "text-to-SQL", "code"], "size_categories": ["100K<n<1M"]}
false
null
2024-05-10T22:30:56
518
6
false
273a86f5f290e8d61b6767a9ff690c82bc990dc4
Image generated by DALL-E. See prompt for more details synthetic_text_to_sql gretelai/synthetic_text_to_sql is a rich dataset of high quality synthetic Text-to-SQL samples, designed and generated using Gretel Navigator, and released under Apache 2.0. Please see our release blogpost for more details. The dataset includes: 105,851 records partitioned into 100,000 train and 5,851 test records ~23M total tokens, including ~12M SQL tokens Coverage across 100 distinct… See the full description on the dataset page: https://huggingface.co/datasets/gretelai/synthetic_text_to_sql.
6,713
44,528
[ "task_categories:question-answering", "task_categories:table-question-answering", "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2306.05685", "region:us", "synthetic", "SQL", "text-to-SQL", "code" ]
2024-03-21T16:04:08
null
null
673463fabe618c1a378d99c6
qgyd2021/chinese_porn_novel
qgyd2021
{"language": ["zh"], "size_categories": ["100M<n<1B"], "task_categories": ["text-generation"], "tags": ["art"], "dataset_info": {"config_name": "xbookcn_short_story", "features": [{"name": "source", "dtype": "string"}, {"name": "category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "content", "dtype": "string"}, {"name": "content_length", "dtype": "uint32"}, {"name": "url", "dtype": "string"}, {"name": "summary1", "dtype": "string"}, {"name": "summary2", "dtype": "string"}, {"name": "summary3", "dtype": "string"}, {"name": "summary4", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1167355353, "num_examples": 627195}], "download_size": 721183317, "dataset_size": 1167355353}, "configs": [{"config_name": "xbookcn_short_story", "data_files": [{"split": "train", "path": "xbookcn_short_story/train-*"}], "default": true}]}
false
null
2024-11-13T11:06:27
66
6
false
170c125e168cf58400ad3b31300c88ed8a1c978a
Chinese Porn Novel https://huggingface.co/docs/hub/en/datasets-adding datasets-cli convert_to_parquet qgyd2021/chinese_porn_novel --trust_remote_code SQ小说, 用于制作特殊的 GPT 语言模型. 将每篇小说切分 chunk, 用 Qwen-instruct 对 chunk 进行4个摘要, 4个摘要的 prompt {content} 对于此文本, 根据文本的长度输出3到7个具有代表性的简短句子来描述其内容。 每个句子控制在10字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来描述其内容。 每个句子控制在15字左右,不要有序号等,每行一句。 {content} 对于此文本, 根据文本的长度输出2到4个具有代表性的简短句子来概括其内容。 每个句子控制在10字左右,不要有序号等,每行一句。… See the full description on the dataset page: https://huggingface.co/datasets/qgyd2021/chinese_porn_novel.
643
2,504
[ "task_categories:text-generation", "language:zh", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "art" ]
2024-11-13T08:31:54
null
null
67d7eeec9830e5c1e2a8f708
BytedTsinghua-SIA/DAPO-Math-17k
BytedTsinghua-SIA
{"license": "apache-2.0", "task_categories": ["text-generation"], "language": ["en"], "tags": ["math"], "pretty_name": "DAPO-Math-17k", "size_categories": ["1M<n<10M"]}
false
null
2025-03-18T07:47:04
53
6
false
9f6440001c15da8e7c7516fdbb3d2ce49de711de
This dataset actually only contains ~17k unique prompts and was duplicated by ~100x by accident.
3,819
3,819
[ "task_categories:text-generation", "language:en", "license:apache-2.0", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "math" ]
2025-03-17T09:44:12
null
null
67d871c14702a4d2c523592a
oumi-ai/oumi-synthetic-claims
oumi-ai
{"dataset_info": {"features": [{"name": "conversation_id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "metadata", "struct": [{"name": "claims", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "text label", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 141743217, "num_examples": 19199}], "download_size": 17800360, "dataset_size": 141743217}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "llama3.1", "language": ["en"], "size_categories": ["10K<n<100K"]}
false
null
2025-04-04T16:39:52
6
6
false
2b024ef5ac94177816e0b1104006efce3bfafda5
oumi-ai/oumi-synthetic-claims oumi-synthetic-claims is a text dataset designed to fine-tune language models for Claim Verification. Prompts and responses were produced synthetically from Llama-3.1-405B-Instruct. oumi-synthetic-claims was used to train HallOumi-8B, which achieves 77.2% Macro F1, outperforming SOTA models such as Claude Sonnet 3.5, OpenAI o1, etc. Curated by: Oumi AI using Oumi inference Language(s) (NLP): English License: Llama 3.1 Community License… See the full description on the dataset page: https://huggingface.co/datasets/oumi-ai/oumi-synthetic-claims.
70
70
[ "language:en", "license:llama3.1", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-17T19:02:25
null
null
67e2d9efa823152c92e695d4
nyuuzyou/archiveofourown
nyuuzyou
{"annotations_creators": ["found"], "language": ["ar", "bg", "ca", "cs", "da", "de", "el", "en", "es", "et", "fa", "fi", "fr", "he", "hi", "hr", "hu", "id", "it", "ja", "ko", "lt", "lv", "ms", "nl", "no", "pl", "pt", "ro", "ru", "sk", "sl", "sr", "sv", "th", "tr", "uk", "vi", "zh"], "language_bcp47": ["pt-BR", "zh-HK", "zh-TW"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "pretty_name": "Archive of Our Own (AO3)", "size_categories": ["10M<n<100M"], "source_datasets": ["original"], "task_categories": ["text-generation", "text-classification"], "task_ids": ["language-modeling", "topic-classification"], "configs": [{"config_name": "train", "data_files": [{"split": "train", "path": "*.jsonl.zst"}], "default": true}]}
false
null
2025-03-25T17:07:57
14
6
false
4f0f0eb835ab627a78d02d2973ca0263400720df
Dataset Card for Archive of Our Own (AO3) Dataset Summary This dataset contains approximately 12.6 million publicly available works from Archive of Our Own (AO3), a fan-created, fan-run, non-profit archive for transformative fanworks. The dataset was created by processing works with IDs from 1 to 63,200,000 that are publicly accessible. Each entry contains the full text of the work along with comprehensive metadata including title, author, fandom, relationships… See the full description on the dataset page: https://huggingface.co/datasets/nyuuzyou/archiveofourown.
756
756
[ "task_categories:text-generation", "task_categories:text-classification", "task_ids:language-modeling", "task_ids:topic-classification", "annotations_creators:found", "multilinguality:multilingual", "source_datasets:original", "language:ar", "language:bg", "language:ca", "language:cs", "language:da", "language:de", "language:el", "language:en", "language:es", "language:et", "language:fa", "language:fi", "language:fr", "language:he", "language:hi", "language:hr", "language:hu", "language:id", "language:it", "language:ja", "language:ko", "language:lt", "language:lv", "language:ms", "language:nl", "language:no", "language:pl", "language:pt", "language:ro", "language:ru", "language:sk", "language:sl", "language:sr", "language:sv", "language:th", "language:tr", "language:uk", "language:vi", "language:zh", "license:cc0-1.0", "size_categories:10M<n<100M", "format:json", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
2025-03-25T16:29:35
null
null
67ebe5090eb9daaf7188c0ca
efficientscaling/Z1-Code-Reasoning-107K
efficientscaling
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "response", "dtype": "string"}, {"name": "token_num_qwen", "dtype": "int64"}], "splits": [{"name": "train", "num_bytes": 494418537, "num_examples": 107173}], "download_size": 238409407, "dataset_size": 494418537}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-04-02T03:42:21
6
6
false
b1094ba6f6087a7d5764a2e42bd01d0dd5ab13f2
Z1: Efficient Test-time Scaling with Code Train Large Language Model to Reason with Shifted Thinking [📜 Paper] • [🤗 HF Models] • [🐱 GitHub] Details Please refer to https://github.com/efficientscaling/Z1. Usage from datasets import load_dataset ds = load_dataset("efficientscaling/Z1-Code-Reasoning-107K")["train"] ds[0] Citation @misc{yu2025efficientscaling, title={Z1: Efficient Test-time Scaling with Code}… See the full description on the dataset page: https://huggingface.co/datasets/efficientscaling/Z1-Code-Reasoning-107K.
80
80
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2504.00810", "region:us" ]
2025-04-01T13:07:21
null
null
621ffdd236468d709f181e16
dair-ai/emotion
dair-ai
{"annotations_creators": ["machine-generated"], "language_creators": ["machine-generated"], "language": ["en"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["multi-class-classification"], "paperswithcode_id": "emotion", "pretty_name": "Emotion", "tags": ["emotion-classification"], "dataset_info": [{"config_name": "split", "features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "sadness", "1": "joy", "2": "love", "3": "anger", "4": "fear", "5": "surprise"}}}}], "splits": [{"name": "train", "num_bytes": 1741533, "num_examples": 16000}, {"name": "validation", "num_bytes": 214695, "num_examples": 2000}, {"name": "test", "num_bytes": 217173, "num_examples": 2000}], "download_size": 1287193, "dataset_size": 2173401}, {"config_name": "unsplit", "features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "sadness", "1": "joy", "2": "love", "3": "anger", "4": "fear", "5": "surprise"}}}}], "splits": [{"name": "train", "num_bytes": 45444017, "num_examples": 416809}], "download_size": 26888538, "dataset_size": 45444017}], "configs": [{"config_name": "split", "data_files": [{"split": "train", "path": "split/train-*"}, {"split": "validation", "path": "split/validation-*"}, {"split": "test", "path": "split/test-*"}], "default": true}, {"config_name": "unsplit", "data_files": [{"split": "train", "path": "unsplit/train-*"}]}], "train-eval-index": [{"config": "default", "task": "text-classification", "task_id": "multi_class_classification", "splits": {"train_split": "train", "eval_split": "test"}, "col_mapping": {"text": "text", "label": "target"}, "metrics": [{"type": "accuracy", "name": "Accuracy"}, {"type": "f1", "name": "F1 macro", "args": {"average": "macro"}}, {"type": "f1", "name": "F1 micro", "args": {"average": "micro"}}, {"type": "f1", "name": "F1 weighted", "args": {"average": "weighted"}}, {"type": "precision", "name": "Precision macro", "args": {"average": "macro"}}, {"type": "precision", "name": "Precision micro", "args": {"average": "micro"}}, {"type": "precision", "name": "Precision weighted", "args": {"average": "weighted"}}, {"type": "recall", "name": "Recall macro", "args": {"average": "macro"}}, {"type": "recall", "name": "Recall micro", "args": {"average": "micro"}}, {"type": "recall", "name": "Recall weighted", "args": {"average": "weighted"}}]}]}
false
null
2024-08-08T06:10:47
350
5
false
cab853a1dbdf4c42c2b3ef2173804746df8825fe
Dataset Card for "emotion" Dataset Summary Emotion is a dataset of English Twitter messages with six basic emotions: anger, fear, joy, love, sadness, and surprise. For more detailed information please refer to the paper. Supported Tasks and Leaderboards More Information Needed Languages More Information Needed Dataset Structure Data Instances An example looks as follows. { "text": "im feeling quite sad… See the full description on the dataset page: https://huggingface.co/datasets/dair-ai/emotion.
17,809
357,207
[ "task_categories:text-classification", "task_ids:multi-class-classification", "annotations_creators:machine-generated", "language_creators:machine-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "emotion-classification" ]
2022-03-02T23:29:22
emotion
null
621ffdd236468d709f181e77
stanfordnlp/imdb
stanfordnlp
{"annotations_creators": ["expert-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["other"], "multilinguality": ["monolingual"], "size_categories": ["10K<n<100K"], "source_datasets": ["original"], "task_categories": ["text-classification"], "task_ids": ["sentiment-classification"], "paperswithcode_id": "imdb-movie-reviews", "pretty_name": "IMDB", "dataset_info": {"config_name": "plain_text", "features": [{"name": "text", "dtype": "string"}, {"name": "label", "dtype": {"class_label": {"names": {"0": "neg", "1": "pos"}}}}], "splits": [{"name": "train", "num_bytes": 33432823, "num_examples": 25000}, {"name": "test", "num_bytes": 32650685, "num_examples": 25000}, {"name": "unsupervised", "num_bytes": 67106794, "num_examples": 50000}], "download_size": 83446840, "dataset_size": 133190302}, "configs": [{"config_name": "plain_text", "data_files": [{"split": "train", "path": "plain_text/train-*"}, {"split": "test", "path": "plain_text/test-*"}, {"split": "unsupervised", "path": "plain_text/unsupervised-*"}], "default": true}], "train-eval-index": [{"config": "plain_text", "task": "text-classification", "task_id": "binary_classification", "splits": {"train_split": "train", "eval_split": "test"}, "col_mapping": {"text": "text", "label": "target"}, "metrics": [{"type": "accuracy"}, {"name": "Accuracy"}, {"type": "f1", "name": "F1 macro", "args": {"average": "macro"}}, {"type": "f1", "name": "F1 micro", "args": {"average": "micro"}}, {"type": "f1", "name": "F1 weighted", "args": {"average": "weighted"}}, {"type": "precision", "name": "Precision macro", "args": {"average": "macro"}}, {"type": "precision", "name": "Precision micro", "args": {"average": "micro"}}, {"type": "precision", "name": "Precision weighted", "args": {"average": "weighted"}}, {"type": "recall", "name": "Recall macro", "args": {"average": "macro"}}, {"type": "recall", "name": "Recall micro", "args": {"average": "micro"}}, {"type": "recall", "name": "Recall weighted", "args": {"average": "weighted"}}]}]}
false
null
2024-01-04T12:09:45
301
5
false
e6281661ce1c48d982bc483cf8a173c1bbeb5d31
Dataset Card for "imdb" Dataset Summary Large Movie Review Dataset. This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well. Supported Tasks and Leaderboards More Information Needed Languages More Information Needed… See the full description on the dataset page: https://huggingface.co/datasets/stanfordnlp/imdb.
115,557
6,880,454
[ "task_categories:text-classification", "task_ids:sentiment-classification", "annotations_creators:expert-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:other", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2022-03-02T23:29:22
imdb-movie-reviews
null
621ffdd236468d709f181f3d
qiaojin/PubMedQA
qiaojin
{"annotations_creators": ["expert-generated", "machine-generated"], "language_creators": ["expert-generated"], "language": ["en"], "license": ["mit"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M", "10K<n<100K", "1K<n<10K"], "source_datasets": ["original"], "task_categories": ["question-answering"], "task_ids": ["multiple-choice-qa"], "paperswithcode_id": "pubmedqa", "pretty_name": "PubMedQA", "config_names": ["pqa_artificial", "pqa_labeled", "pqa_unlabeled"], "dataset_info": [{"config_name": "pqa_artificial", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 443501057, "num_examples": 211269}], "download_size": 233411194, "dataset_size": 443501057}, {"config_name": "pqa_labeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}, {"name": "reasoning_required_pred", "dtype": "string"}, {"name": "reasoning_free_pred", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}, {"name": "final_decision", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 2088898, "num_examples": 1000}], "download_size": 1075513, "dataset_size": 2088898}, {"config_name": "pqa_unlabeled", "features": [{"name": "pubid", "dtype": "int32"}, {"name": "question", "dtype": "string"}, {"name": "context", "sequence": [{"name": "contexts", "dtype": "string"}, {"name": "labels", "dtype": "string"}, {"name": "meshes", "dtype": "string"}]}, {"name": "long_answer", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 125922964, "num_examples": 61249}], "download_size": 66010017, "dataset_size": 125922964}], "configs": [{"config_name": "pqa_artificial", "data_files": [{"split": "train", "path": "pqa_artificial/train-*"}]}, {"config_name": "pqa_labeled", "data_files": [{"split": "train", "path": "pqa_labeled/train-*"}]}, {"config_name": "pqa_unlabeled", "data_files": [{"split": "train", "path": "pqa_unlabeled/train-*"}]}]}
false
null
2024-03-06T01:50:16
199
5
false
9001f2853fb87cab8d220904e0de81ac6973b318
Dataset Card for [Dataset Name] Dataset Summary The task of PubMedQA is to answer research questions with yes/no/maybe (e.g.: Do preoperative statins reduce atrial fibrillation after coronary artery bypass grafting?) using the corresponding abstracts. Supported Tasks and Leaderboards The official leaderboard is available at: https://pubmedqa.github.io/. 500 questions in the pqa_labeled are used as the test set. They can be found at… See the full description on the dataset page: https://huggingface.co/datasets/qiaojin/PubMedQA.
13,408
415,389
[ "task_categories:question-answering", "task_ids:multiple-choice-qa", "annotations_creators:expert-generated", "annotations_creators:machine-generated", "language_creators:expert-generated", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:1909.06146", "region:us" ]
2022-03-02T23:29:22
pubmedqa
null
6564cf8ec9611f7e11423ff4
b3x0m/Chinese-H-Novels
b3x0m
{"language": ["zh"], "size_categories": ["1B<n<10B"], "task_categories": ["text-classification", "summarization", "token-classification", "text2text-generation", "question-answering", "text-generation", "fill-mask", "sentence-similarity"], "pretty_name": "H-novel-corpus", "tags": ["art"], "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 95784400372, "num_examples": 934354429}], "download_size": 60873072258, "dataset_size": 95784400372}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2024-07-12T02:32:57
209
5
false
16258fb735f019d2d0100960ec739b6dabc3db77
Update 12/07/2024: convert to parquet to download easier. Chinese 18+ novels corpus, use at your own risk, you and only you are responsible for every choice you make. (͡ ° ͜ʖ ͡ °) tags: socks, garter belt, foot fetish, ntr, netori..... Thanks Moleys/Numeron for the dataset donation.
1,603
8,880
[ "task_categories:text-classification", "task_categories:summarization", "task_categories:token-classification", "task_categories:text2text-generation", "task_categories:question-answering", "task_categories:text-generation", "task_categories:fill-mask", "task_categories:sentence-similarity", "language:zh", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "art" ]
2023-11-27T17:19:10
null
null
65af4645d0a5cc99d51642da
McAuley-Lab/Amazon-Reviews-2023
McAuley-Lab
{"language": ["en"], "tags": ["recommendation", "reviews"], "size_categories": ["10B<n<100B"], "dataset_info": [{"config_name": "raw_meta_All_Beauty", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 172622243, "num_examples": 112590}], "download_size": 59635138, "dataset_size": 172622243}, {"config_name": "raw_meta_Arts_Crafts_and_Sewing", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 1893257069, "num_examples": 801446}], "download_size": 806711170, "dataset_size": 1893257069}, {"config_name": "raw_meta_Cell_Phones_and_Accessories", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 3497596478, "num_examples": 1288490}], "download_size": 1262072469, "dataset_size": 3497596478}, {"config_name": "raw_meta_Electronics", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 4603602269, "num_examples": 1610012}], "download_size": 1955009715, "dataset_size": 4603602269}, {"config_name": "raw_meta_Gift_Cards", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 1740761, "num_examples": 1137}], "download_size": 401887, "dataset_size": 1740761}, {"config_name": "raw_meta_Handmade_Products", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 340772183, "num_examples": 164817}], "download_size": 132049123, "dataset_size": 340772183}, {"config_name": "raw_meta_Industrial_and_Scientific", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 986632649, "num_examples": 427564}], "download_size": 425007659, "dataset_size": 986632649}, {"config_name": "raw_meta_Musical_Instruments", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 553296301, "num_examples": 213593}], "download_size": 229633633, "dataset_size": 553296301}, {"config_name": "raw_meta_Toys_and_Games", "features": [{"name": "main_category", "dtype": "string"}, {"name": "title", "dtype": "string"}, {"name": "average_rating", "dtype": "float64"}, {"name": "rating_number", "dtype": "int64"}, {"name": "features", "sequence": "string"}, {"name": "description", "sequence": "string"}, {"name": "price", "dtype": "string"}, {"name": "images", "sequence": [{"name": "hi_res", "dtype": "string"}, {"name": "large", "dtype": "string"}, {"name": "thumb", "dtype": "string"}, {"name": "variant", "dtype": "string"}]}, {"name": "videos", "sequence": [{"name": "title", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "user_id", "dtype": "string"}]}, {"name": "store", "dtype": "string"}, {"name": "categories", "sequence": "string"}, {"name": "details", "dtype": "string"}, {"name": "parent_asin", "dtype": "string"}, {"name": "bought_together", "dtype": "string"}, {"name": "subtitle", "dtype": "string"}, {"name": "author", "dtype": "string"}], "splits": [{"name": "full", "num_bytes": 2291736294, "num_examples": 890874}], "download_size": 972667016, "dataset_size": 2291736294}], "configs": [{"config_name": "raw_meta_All_Beauty", "data_files": [{"split": "full", "path": "raw_meta_All_Beauty/full-*"}]}, {"config_name": "raw_meta_Arts_Crafts_and_Sewing", "data_files": [{"split": "full", "path": "raw_meta_Arts_Crafts_and_Sewing/full-*"}]}, {"config_name": "raw_meta_Cell_Phones_and_Accessories", "data_files": [{"split": "full", "path": "raw_meta_Cell_Phones_and_Accessories/full-*"}]}, {"config_name": "raw_meta_Electronics", "data_files": [{"split": "full", "path": "raw_meta_Electronics/full-*"}]}, {"config_name": "raw_meta_Gift_Cards", "data_files": [{"split": "full", "path": "raw_meta_Gift_Cards/full-*"}]}, {"config_name": "raw_meta_Handmade_Products", "data_files": [{"split": "full", "path": "raw_meta_Handmade_Products/full-*"}]}, {"config_name": "raw_meta_Industrial_and_Scientific", "data_files": [{"split": "full", "path": "raw_meta_Industrial_and_Scientific/full-*"}]}, {"config_name": "raw_meta_Musical_Instruments", "data_files": [{"split": "full", "path": "raw_meta_Musical_Instruments/full-*"}]}, {"config_name": "raw_meta_Toys_and_Games", "data_files": [{"split": "full", "path": "raw_meta_Toys_and_Games/full-*"}]}]}
false
null
2024-12-08T22:21:49
135
5
false
2b6d039ed471f2ba5fd2acb718bf33b0a7e5598e
Amazon Review 2023 is an updated version of the Amazon Review 2018 dataset. This dataset mainly includes reviews (ratings, text) and item metadata (desc- riptions, category information, price, brand, and images). Compared to the pre- vious versions, the 2023 version features larger size, newer reviews (up to Sep 2023), richer and cleaner meta data, and finer-grained timestamps (from day to milli-second).
44,961
404,595
[ "language:en", "size_categories:10B<n<100B", "arxiv:2403.03952", "region:us", "recommendation", "reviews" ]
2024-01-23T04:53:25
null
null
660e7b9b4636ce2b0e77b699
mozilla-foundation/common_voice_17_0
mozilla-foundation
{"pretty_name": "Common Voice Corpus 17.0", "annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["ab", "af", "am", "ar", "as", "ast", "az", "ba", "bas", "be", "bg", "bn", "br", "ca", "ckb", "cnh", "cs", "cv", "cy", "da", "de", "dv", "dyu", "el", "en", "eo", "es", "et", "eu", "fa", "fi", "fr", "fy", "ga", "gl", "gn", "ha", "he", "hi", "hsb", "ht", "hu", "hy", "ia", "id", "ig", "is", "it", "ja", "ka", "kab", "kk", "kmr", "ko", "ky", "lg", "lij", "lo", "lt", "ltg", "lv", "mdf", "mhr", "mk", "ml", "mn", "mr", "mrj", "mt", "myv", "nan", "ne", "nhi", "nl", "nn", "nso", "oc", "or", "os", "pa", "pl", "ps", "pt", "quy", "rm", "ro", "ru", "rw", "sah", "sat", "sc", "sk", "skr", "sl", "sq", "sr", "sv", "sw", "ta", "te", "th", "ti", "tig", "tk", "tok", "tr", "tt", "tw", "ug", "uk", "ur", "uz", "vi", "vot", "yi", "yo", "yue", "zgh", "zh", "zu", "zza"], "language_bcp47": ["zh-CN", "zh-HK", "zh-TW", "sv-SE", "rm-sursilv", "rm-vallader", "pa-IN", "nn-NO", "ne-NP", "nan-tw", "hy-AM", "ga-IE", "fy-NL"], "license": ["cc0-1.0"], "multilinguality": ["multilingual"], "source_datasets": ["extended|common_voice"], "paperswithcode_id": "common-voice", "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to not attempt to determine the identity of speakers in the Common Voice dataset."}
false
null
2024-06-16T13:50:23
247
5
false
b10d53980ef166bc24ce3358471c1970d7e6b5ec
Dataset Card for Common Voice Corpus 17.0 Dataset Summary The Common Voice dataset consists of a unique MP3 and corresponding text file. Many of the 31175 recorded hours in the dataset also include demographic metadata like age, sex, and accent that can help improve the accuracy of speech recognition engines. The dataset currently consists of 20408 validated hours in 124 languages, but more voices and languages are always added. Take a look at the Languages page to… See the full description on the dataset page: https://huggingface.co/datasets/mozilla-foundation/common_voice_17_0.
39,017
458,388
[ "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "source_datasets:extended|common_voice", "language:ab", "language:af", "language:am", "language:ar", "language:as", "language:ast", "language:az", "language:ba", "language:bas", "language:be", "language:bg", "language:bn", "language:br", "language:ca", "language:ckb", "language:cnh", "language:cs", "language:cv", "language:cy", "language:da", "language:de", "language:dv", "language:dyu", "language:el", "language:en", "language:eo", "language:es", "language:et", "language:eu", "language:fa", "language:fi", "language:fr", "language:fy", "language:ga", "language:gl", "language:gn", "language:ha", "language:he", "language:hi", "language:hsb", "language:ht", "language:hu", "language:hy", "language:ia", "language:id", "language:ig", "language:is", "language:it", "language:ja", "language:ka", "language:kab", "language:kk", "language:kmr", "language:ko", "language:ky", "language:lg", "language:lij", "language:lo", "language:lt", "language:ltg", "language:lv", "language:mdf", "language:mhr", "language:mk", "language:ml", "language:mn", "language:mr", "language:mrj", "language:mt", "language:myv", "language:nan", "language:ne", "language:nhi", "language:nl", "language:nn", "language:nso", "language:oc", "language:or", "language:os", "language:pa", "language:pl", "language:ps", "language:pt", "language:quy", "language:rm", "language:ro", "language:ru", "language:rw", "language:sah", "language:sat", "language:sc", "language:sk", "language:skr", "language:sl", "language:sq", "language:sr", "language:sv", "language:sw", "language:ta", "language:te", "language:th", "language:ti", "language:tig", "language:tk", "language:tok", "language:tr", "language:tt", "language:tw", "language:ug", "language:uk", "language:ur", "language:uz", "language:vi", "language:vot", "language:yi", "language:yo", "language:yue", "language:zgh", "language:zh", "language:zu", "language:zza", "license:cc0-1.0", "size_categories:10M<n<100M", "modality:audio", "modality:text", "library:datasets", "library:mlcroissant", "arxiv:1912.06670", "region:us" ]
2024-04-04T10:06:19
common-voice
@inproceedings{commonvoice:2020, author = {Ardila, R. and Branson, M. and Davis, K. and Henretty, M. and Kohler, M. and Meyer, J. and Morais, R. and Saunders, L. and Tyers, F. M. and Weber, G.}, title = {Common Voice: A Massively-Multilingual Speech Corpus}, booktitle = {Proceedings of the 12th Conference on Language Resources and Evaluation (LREC 2020)}, pages = {4211--4215}, year = 2020 }
6649d353babc0b33565e1a4a
HumanLLMs/Human-Like-DPO-Dataset
HumanLLMs
{"language": ["en"], "license": "llama3", "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data.json"}]}]}
false
null
2025-01-12T21:01:07
216
5
false
dd82ab6a284a15765964149e6a6603ff8ed7d672
Enhancing Human-Like Responses in Large Language Models 🤗 Models | 📊 Dataset | 📄 Paper Human-Like-DPO-Dataset This dataset was created as part of research aimed at improving conversational fluency and engagement in large language models. It is suitable for formats like Direct Preference Optimization (DPO) to guide models toward generating more human-like responses. The dataset includes 10,884 samples across 256 topics, including: Technology Daily Life Science… See the full description on the dataset page: https://huggingface.co/datasets/HumanLLMs/Human-Like-DPO-Dataset.
5,933
12,428
[ "language:en", "license:llama3", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.05032", "region:us" ]
2024-05-19T10:24:19
null
null
6655eb19d17e141dcb546ed5
HuggingFaceFW/fineweb-edu
HuggingFaceFW
{"license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "FineWeb-Edu", "size_categories": ["n>1T"], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/*/*"}], "features": [{"name": "text", "dtype": "string"}, {"name": "id", "dtype": "string"}, {"name": "dump", "dtype": "string"}, {"name": "url", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "file_path", "dtype": "string"}, {"name": "language", "dtype": "string"}, {"name": "language_score", "dtype": "float64"}, {"name": "token_count", "dtype": "int64"}, {"name": "score", "dtype": "float64"}, {"name": "int_score", "dtype": "int64"}]}, {"config_name": "sample-10BT", "data_files": [{"split": "train", "path": "sample/10BT/*"}]}, {"config_name": "sample-100BT", "data_files": [{"split": "train", "path": "sample/100BT/*"}]}, {"config_name": "sample-350BT", "data_files": [{"split": "train", "path": "sample/350BT/*"}]}, {"config_name": "CC-MAIN-2024-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-51/*"}]}, {"config_name": "CC-MAIN-2024-46", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-46/*"}]}, {"config_name": "CC-MAIN-2024-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-42/*"}]}, {"config_name": "CC-MAIN-2024-38", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-38/*"}]}, {"config_name": "CC-MAIN-2024-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-33/*"}]}, {"config_name": "CC-MAIN-2024-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-30/*"}]}, {"config_name": "CC-MAIN-2024-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-26/*"}]}, {"config_name": "CC-MAIN-2024-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-22/*"}]}, {"config_name": "CC-MAIN-2024-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-18/*"}]}, {"config_name": "CC-MAIN-2024-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2024-10/*"}]}, {"config_name": "CC-MAIN-2023-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-50/*"}]}, {"config_name": "CC-MAIN-2023-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-40/*"}]}, {"config_name": "CC-MAIN-2023-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-23/*"}]}, {"config_name": "CC-MAIN-2023-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-14/*"}]}, {"config_name": "CC-MAIN-2023-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2023-06/*"}]}, {"config_name": "CC-MAIN-2022-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-49/*"}]}, {"config_name": "CC-MAIN-2022-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-40/*"}]}, {"config_name": "CC-MAIN-2022-33", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-33/*"}]}, {"config_name": "CC-MAIN-2022-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-27/*"}]}, {"config_name": "CC-MAIN-2022-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-21/*"}]}, {"config_name": "CC-MAIN-2022-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2022-05/*"}]}, {"config_name": "CC-MAIN-2021-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-49/*"}]}, {"config_name": "CC-MAIN-2021-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-43/*"}]}, {"config_name": "CC-MAIN-2021-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-39/*"}]}, {"config_name": "CC-MAIN-2021-31", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-31/*"}]}, {"config_name": "CC-MAIN-2021-25", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-25/*"}]}, {"config_name": "CC-MAIN-2021-21", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-21/*"}]}, {"config_name": "CC-MAIN-2021-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-17/*"}]}, {"config_name": "CC-MAIN-2021-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-10/*"}]}, {"config_name": "CC-MAIN-2021-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2021-04/*"}]}, {"config_name": "CC-MAIN-2020-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-50/*"}]}, {"config_name": "CC-MAIN-2020-45", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-45/*"}]}, {"config_name": "CC-MAIN-2020-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-40/*"}]}, {"config_name": "CC-MAIN-2020-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-34/*"}]}, {"config_name": "CC-MAIN-2020-29", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-29/*"}]}, {"config_name": "CC-MAIN-2020-24", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-24/*"}]}, {"config_name": "CC-MAIN-2020-16", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-16/*"}]}, {"config_name": "CC-MAIN-2020-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-10/*"}]}, {"config_name": "CC-MAIN-2020-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2020-05/*"}]}, {"config_name": "CC-MAIN-2019-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-51/*"}]}, {"config_name": "CC-MAIN-2019-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-47/*"}]}, {"config_name": "CC-MAIN-2019-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-43/*"}]}, {"config_name": "CC-MAIN-2019-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-39/*"}]}, {"config_name": "CC-MAIN-2019-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-35/*"}]}, {"config_name": "CC-MAIN-2019-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-30/*"}]}, {"config_name": "CC-MAIN-2019-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-26/*"}]}, {"config_name": "CC-MAIN-2019-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-22/*"}]}, {"config_name": "CC-MAIN-2019-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-18/*"}]}, {"config_name": "CC-MAIN-2019-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-13/*"}]}, {"config_name": "CC-MAIN-2019-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-09/*"}]}, {"config_name": "CC-MAIN-2019-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2019-04/*"}]}, {"config_name": "CC-MAIN-2018-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-51/*"}]}, {"config_name": "CC-MAIN-2018-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-47/*"}]}, {"config_name": "CC-MAIN-2018-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-43/*"}]}, {"config_name": "CC-MAIN-2018-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-39/*"}]}, {"config_name": "CC-MAIN-2018-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-34/*"}]}, {"config_name": "CC-MAIN-2018-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-30/*"}]}, {"config_name": "CC-MAIN-2018-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-26/*"}]}, {"config_name": "CC-MAIN-2018-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-22/*"}]}, {"config_name": "CC-MAIN-2018-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-17/*"}]}, {"config_name": "CC-MAIN-2018-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-13/*"}]}, {"config_name": "CC-MAIN-2018-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-09/*"}]}, {"config_name": "CC-MAIN-2018-05", "data_files": [{"split": "train", "path": "data/CC-MAIN-2018-05/*"}]}, {"config_name": "CC-MAIN-2017-51", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-51/*"}]}, {"config_name": "CC-MAIN-2017-47", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-47/*"}]}, {"config_name": "CC-MAIN-2017-43", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-43/*"}]}, {"config_name": "CC-MAIN-2017-39", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-39/*"}]}, {"config_name": "CC-MAIN-2017-34", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-34/*"}]}, {"config_name": "CC-MAIN-2017-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-30/*"}]}, {"config_name": "CC-MAIN-2017-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-26/*"}]}, {"config_name": "CC-MAIN-2017-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-22/*"}]}, {"config_name": "CC-MAIN-2017-17", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-17/*"}]}, {"config_name": "CC-MAIN-2017-13", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-13/*"}]}, {"config_name": "CC-MAIN-2017-09", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-09/*"}]}, {"config_name": "CC-MAIN-2017-04", "data_files": [{"split": "train", "path": "data/CC-MAIN-2017-04/*"}]}, {"config_name": "CC-MAIN-2016-50", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-50/*"}]}, {"config_name": "CC-MAIN-2016-44", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-44/*"}]}, {"config_name": "CC-MAIN-2016-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-40/*"}]}, {"config_name": "CC-MAIN-2016-36", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-36/*"}]}, {"config_name": "CC-MAIN-2016-30", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-30/*"}]}, {"config_name": "CC-MAIN-2016-26", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-26/*"}]}, {"config_name": "CC-MAIN-2016-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-22/*"}]}, {"config_name": "CC-MAIN-2016-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-18/*"}]}, {"config_name": "CC-MAIN-2016-07", "data_files": [{"split": "train", "path": "data/CC-MAIN-2016-07/*"}]}, {"config_name": "CC-MAIN-2015-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-48/*"}]}, {"config_name": "CC-MAIN-2015-40", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-40/*"}]}, {"config_name": "CC-MAIN-2015-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-35/*"}]}, {"config_name": "CC-MAIN-2015-32", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-32/*"}]}, {"config_name": "CC-MAIN-2015-27", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-27/*"}]}, {"config_name": "CC-MAIN-2015-22", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-22/*"}]}, {"config_name": "CC-MAIN-2015-18", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-18/*"}]}, {"config_name": "CC-MAIN-2015-14", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-14/*"}]}, {"config_name": "CC-MAIN-2015-11", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-11/*"}]}, {"config_name": "CC-MAIN-2015-06", "data_files": [{"split": "train", "path": "data/CC-MAIN-2015-06/*"}]}, {"config_name": "CC-MAIN-2014-52", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-52/*"}]}, {"config_name": "CC-MAIN-2014-49", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-49/*"}]}, {"config_name": "CC-MAIN-2014-42", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-42/*"}]}, {"config_name": "CC-MAIN-2014-41", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-41/*"}]}, {"config_name": "CC-MAIN-2014-35", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-35/*"}]}, {"config_name": "CC-MAIN-2014-23", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-23/*"}]}, {"config_name": "CC-MAIN-2014-15", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-15/*"}]}, {"config_name": "CC-MAIN-2014-10", "data_files": [{"split": "train", "path": "data/CC-MAIN-2014-10/*"}]}, {"config_name": "CC-MAIN-2013-48", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-48/*"}]}, {"config_name": "CC-MAIN-2013-20", "data_files": [{"split": "train", "path": "data/CC-MAIN-2013-20/*"}]}]}
false
null
2025-01-31T15:56:54
658
5
false
4863ab07d7520451e6f73e2912ad8bfee7d97c11
📚 FineWeb-Edu 1.3 trillion tokens of the finest educational data the 🌐 web has to offer Paper: https://arxiv.org/abs/2406.17557 What is it? 📚 FineWeb-Edu dataset consists of 1.3T tokens and 5.4T tokens (FineWeb-Edu-score-2) of educational web pages filtered from 🍷 FineWeb dataset. This is the 1.3 trillion version. To enhance FineWeb's quality, we developed an educational quality classifier using annotations generated by LLama3-70B-Instruct. We then… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu.
316,529
3,265,548
[ "task_categories:text-generation", "language:en", "license:odc-by", "size_categories:1B<n<10B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2406.17557", "arxiv:2404.14219", "arxiv:2401.10020", "arxiv:2109.07445", "doi:10.57967/hf/2497", "region:us" ]
2024-05-28T14:32:57
null
null
66bc06dc6da7aec8413d35ba
NousResearch/hermes-function-calling-v1
NousResearch
{"license": "apache-2.0", "task_categories": ["text-generation", "question-answering", "feature-extraction"], "language": ["en"], "configs": [{"config_name": "func_calling_singleturn", "data_files": "func-calling-singleturn.json", "default": true}, {"config_name": "func_calling", "data_files": "func-calling.json"}, {"config_name": "glaive_func_calling", "data_files": "glaive-function-calling-5k.json"}, {"config_name": "json_mode_agentic", "data_files": "json-mode-agentic.json"}, {"config_name": "json_mode_singleturn", "data_files": "json-mode-singleturn.json"}]}
false
null
2024-08-30T06:07:08
280
5
false
8f025148382537ba84cd325e1834b706e1461692
Hermes Function-Calling V1 This dataset is the compilation of structured output and function calling data used in the Hermes 2 Pro series of models. This repository contains a structured output dataset with function-calling conversations, json-mode, agentic json-mode and structured extraction samples, designed to train LLM models in performing function calls and returning structured output based on natural language instructions. The dataset features various conversational… See the full description on the dataset page: https://huggingface.co/datasets/NousResearch/hermes-function-calling-v1.
2,115
11,455
[ "task_categories:text-generation", "task_categories:question-answering", "task_categories:feature-extraction", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2024-08-14T01:22:36
null
null
66eb894483591125987548f7
google/frames-benchmark
google
{"license": "apache-2.0", "language": ["en"], "tags": ["rag", "long-context", "llm-search", "reasoning", "factuality", "retrieval", "question-answering", "iterative-search"], "task_categories": ["text-classification", "token-classification", "table-question-answering", "question-answering"], "pretty_name": "Who are I or you", "size_categories": ["n>1T"]}
false
null
2024-10-15T18:18:24
195
5
false
58d9fb6330f3ab1316d1eca12e5e8ef23dcc22ef
FRAMES: Factuality, Retrieval, And reasoning MEasurement Set FRAMES is a comprehensive evaluation dataset designed to test the capabilities of Retrieval-Augmented Generation (RAG) systems across factuality, retrieval accuracy, and reasoning. Our paper with details and experiments is available on arXiv: https://arxiv.org/abs/2409.12941. Dataset Overview 824 challenging multi-hop questions requiring information from 2-15 Wikipedia articles Questions span diverse… See the full description on the dataset page: https://huggingface.co/datasets/google/frames-benchmark.
1,868
10,966
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:table-question-answering", "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2409.12941", "region:us", "rag", "long-context", "llm-search", "reasoning", "factuality", "retrieval", "question-answering", "iterative-search" ]
2024-09-19T02:15:32
null
null
66f65526a395d5e5ede5a36c
weizhiwang/Open-Qwen2VL-Data
weizhiwang
{"task_categories": ["image-text-to-text"]}
false
null
2025-04-03T02:23:45
6
5
false
9fab69b323e5a518b4168fe91876edc493b3e69c
This repository contains the data for Open-Qwen2VL: Compute-Efficient Pre-Training of Fully-Open Multimodal LLMs on Academic Resources. Project page: https://victorwz.github.io/Open-Qwen2VL Code: https://github.com/Victorwz/Open-Qwen2VL
2,423
5,753
[ "task_categories:image-text-to-text", "size_categories:10M<n<100M", "format:parquet", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2504.00595", "region:us" ]
2024-09-27T06:48:06
null
null
678618439d6c198fe89d87c1
simplescaling/s1K
simplescaling
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "solution", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "cot_type", "dtype": "string"}, {"name": "source_type", "dtype": "string"}, {"name": "metadata", "dtype": "string"}, {"name": "cot", "dtype": "null"}, {"name": "thinking_trajectories", "sequence": "string"}, {"name": "attempt", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 14361402.861518776, "num_examples": 1000}], "download_size": 6884025, "dataset_size": 14361402.861518776}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-02-11T01:14:45
204
5
false
278d72baaa2b887a7e76a70a0ae254a5a45536e4
Dataset Card for s1K Dataset Summary s1K is a dataset of 1,000 examples of diverse, high-quality & difficult questions with distilled reasoning traces & solutions from Gemini Thining. Refer to the s1 paper for more details. Usage # pip install -q datasets from datasets import load_dataset ds = load_dataset("simplescaling/s1K")["train"] ds[0] Dataset Structure Data Instances An example looks as follows: { 'solution': '1. **Rewrite… See the full description on the dataset page: https://huggingface.co/datasets/simplescaling/s1K.
2,393
9,071
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2501.19393", "region:us" ]
2025-01-14T07:54:43
null
null
67aa021ced8d8663d42505cc
open-r1/OpenR1-Math-220k
open-r1
{"license": "apache-2.0", "language": ["en"], "configs": [{"config_name": "all", "data_files": [{"split": "train", "path": "all/train-*"}]}, {"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}, {"config_name": "extended", "data_files": [{"split": "train", "path": "extended/train-*"}]}], "dataset_info": [{"config_name": "all", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 9734110026, "num_examples": 225129}], "download_size": 4221672067, "dataset_size": 9734110026}, {"config_name": "default", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4964543659, "num_examples": 93733}], "download_size": 2149897914, "dataset_size": 4964543659}, {"config_name": "extended", "features": [{"name": "problem", "dtype": "string"}, {"name": "solution", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "problem_type", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "source", "dtype": "string"}, {"name": "uuid", "dtype": "string"}, {"name": "is_reasoning_complete", "sequence": "bool"}, {"name": "generations", "sequence": "string"}, {"name": "correctness_math_verify", "sequence": "bool"}, {"name": "correctness_llama", "sequence": "bool"}, {"name": "finish_reasons", "sequence": "string"}, {"name": "correctness_count", "dtype": "int64"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 4769566550, "num_examples": 131396}], "download_size": 2063936457, "dataset_size": 4769566550}]}
false
null
2025-02-18T11:45:27
535
5
false
e4e141ec9dea9f8326f4d347be56105859b2bd68
OpenR1-Math-220k Dataset description OpenR1-Math-220k is a large-scale dataset for mathematical reasoning. It consists of 220k math problems with two to four reasoning traces generated by DeepSeek R1 for problems from NuminaMath 1.5. The traces were verified using Math Verify for most samples and Llama-3.3-70B-Instruct as a judge for 12% of the samples, and each problem contains at least one reasoning trace with a correct answer. The dataset consists of two splits:… See the full description on the dataset page: https://huggingface.co/datasets/open-r1/OpenR1-Math-220k.
45,766
85,738
[ "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T13:41:48
null
null
67aa648e91e6f5eb545e854e
allenai/olmOCR-mix-0225
allenai
{"license": "odc-by", "configs": [{"config_name": "00_documents", "data_files": [{"split": "train_s2pdf", "path": ["train-s2pdf.parquet"]}, {"split": "eval_s2pdf", "path": ["eval-s2pdf.parquet"]}]}, {"config_name": "01_books", "data_files": [{"split": "train_iabooks", "path": ["train-iabooks.parquet"]}, {"split": "eval_iabooks", "path": ["eval-iabooks.parquet"]}]}]}
false
null
2025-02-25T09:36:14
105
5
false
a602926844ed47c43439627fd16d3de45b39e494
olmOCR-mix-0225 olmOCR-mix-0225 is a dataset of ~250,000 PDF pages which have been OCRed into plain-text in a natural reading order using gpt-4o-2024-08-06 and a special prompting strategy that preserves any born-digital content from each page. This dataset can be used to train, fine-tune, or evaluate your own OCR document pipeline. Quick links: 📃 Paper 🤗 Model 🛠️ Code 🎮 Demo Data Mix Table 1: Training set composition by source Source Unique… See the full description on the dataset page: https://huggingface.co/datasets/allenai/olmOCR-mix-0225.
3,821
6,182
[ "license:odc-by", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-10T20:41:50
null
null
67b729ff5e1b74491f839a29
hiyouga/geometry3k
hiyouga
{"dataset_info": {"features": [{"name": "images", "sequence": "image"}, {"name": "problem", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "id", "dtype": "int64"}, {"name": "choices", "sequence": "string"}, {"name": "ground_truth", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 43191899.912, "num_examples": 2101}, {"name": "validation", "num_bytes": 6009916, "num_examples": 300}, {"name": "test", "num_bytes": 12234557, "num_examples": 601}], "download_size": 59201452, "dataset_size": 61436372.912}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}, {"split": "test", "path": "data/test-*"}]}], "license": "mit", "task_categories": ["visual-question-answering"], "language": ["en"], "size_categories": ["1K<n<10K"]}
false
null
2025-02-20T15:56:20
21
5
false
37e4933940dbe0c0a98f990799909ea868cf6d01
This dataset was converted from https://github.com/lupantech/InterGPS using the following script. import os import json from PIL import Image from datasets import Dataset, DatasetDict, Sequence from datasets import Image as ImageData MAPPING = {"A": 0, "B": 1, "C": 2, "D": 3} def generate_data(data_path: str): for folder in os.listdir(data_path): folder_path = os.path.join(data_path, folder) image = Image.open(os.path.join(folder_path, "img_diagram.png"), "r")… See the full description on the dataset page: https://huggingface.co/datasets/hiyouga/geometry3k.
8,005
10,867
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-20T13:11:27
null
null
67be831c86192d5a0295ba8e
Kuugo/chinese_law_ft_dataset
Kuugo
{"license": "mit"}
false
null
2025-02-28T10:22:26
7
5
false
923f896137ceb897700783a386e51d5b4797da25
null
255
283
[ "license:mit", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-02-26T02:57:32
null
null
67caaec42790d92f9fe8ab3c
JingyaoLi/MoT-Code-350K
JingyaoLi
{"license": "mit", "task_categories": ["text2text-generation", "text-generation", "question-answering", "translation"], "multilinguality": ["monolingual"], "language": ["code"], "pretty_name": "MoTCode", "tags": ["python", "code-generation", "large-language-models"], "size_categories": ["10K<n<100K"], "task_ids": ["language-modeling"], "dataset_info": {"features": [{"name": "instruction", "dtype": "string"}, {"name": "output", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 791280919, "num_examples": 312645}], "download_size": 161719737, "dataset_size": 791280919}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2025-03-17T09:52:41
5
5
false
bf92a0c9b4282498a87b858b109aaa0dedc4790c
🏠 MoTCode-Data • 🤗 Data • 🤗 Model • 🐱 Code • 📃 Paper Dataset Structure from datasets import load_dataset load_dataset("JingyaoLi/MoT-Code-350K") DatasetDict({ train: Dataset({ features: ['instruction', 'output'], num_rows: 312645 }) }) Modular-of-thought Data Creation We provide an example python file to evolution a MoT dataset. Run the following command: python src/generate_MoT_dataset.py \ --data_path $data_path \… See the full description on the dataset page: https://huggingface.co/datasets/JingyaoLi/MoT-Code-350K.
50
50
[ "task_categories:text2text-generation", "task_categories:text-generation", "task_categories:question-answering", "task_categories:translation", "task_ids:language-modeling", "multilinguality:monolingual", "language:code", "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2312.15960", "region:us", "python", "code-generation", "large-language-models" ]
2025-03-07T08:31:00
null
null
67cc3ec9dbeab2e209a1c77f
inclusionAI/Ling-Coder-SyntheticQA
inclusionAI
{"language": ["en", "zh"], "license": "apache-2.0", "size_categories": ["10M<n<100M"], "task_categories": ["text-generation"], "tags": ["code", "synthetic"]}
false
null
2025-03-27T12:39:52
9
5
false
c10e53a2e4042685b9c1071da2503783d172624d
🤗 Hugging Face 🤖 ModelScope 🖥️ GitHub Ling-Coder Dataset The Ling-Coder Dataset comprises the following components: Ling-Coder-SFT: A subset of SFT data used for training Ling-Coder Lite, containing more than 5 million samples. Ling-Coder-DPO: A subset of DPO data used for training Ling-Coder Lite, containing 250k samples. Ling-Coder-SyntheticQA: A subset of synthetic data used for annealing training of Ling-Coder Lite, containing more… See the full description on the dataset page: https://huggingface.co/datasets/inclusionAI/Ling-Coder-SyntheticQA.
1,069
1,069
[ "task_categories:text-generation", "language:en", "language:zh", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.17793", "region:us", "code", "synthetic" ]
2025-03-08T12:57:45
null
null
67d2910dcd8b9b08780b66ed
chanhee-luke/RoboSpatial-Home
chanhee-luke
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "category", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "img", "dtype": "image"}, {"name": "depth_image", "dtype": "image"}, {"name": "mask", "dtype": "image"}], "splits": [{"name": "context", "num_bytes": 38727218, "num_examples": 122}, {"name": "compatibility", "num_bytes": 32578958, "num_examples": 105}, {"name": "configuration", "num_bytes": 37179863, "num_examples": 123}], "download_size": 34740820, "dataset_size": 108486039}, "configs": [{"config_name": "default", "data_files": [{"split": "context", "path": "data/context-*"}, {"split": "compatibility", "path": "data/compatibility-*"}, {"split": "configuration", "path": "data/configuration-*"}]}], "task_categories": ["question-answering", "visual-question-answering"], "language": ["en"], "pretty_name": "robospatial-home", "size_categories": ["n<1K"]}
false
null
2025-03-26T07:09:42
5
5
false
fbcdbc270e94d2b8c8b22fd58d29e82c0978fbfa
RoboSpatial: Teaching Spatial Understanding to 2D and 3D Vision-Language Models for Robotics 🌐 Homepage | 📖 arXiv | 🛠️ Data Gen (TBA) | 🧪 Eval Code 🔔News 🧪[2025-03-26]: Released the official evaluation script for RoboSpatial-Home! Paper updated with new benchmark results. 🛠️[2025-03-13]: RoboSpatial-Home has been released. Note that this is an extended version of what was reported on arXiv. The paper will be updated to reflect this version of the dataset.… See the full description on the dataset page: https://huggingface.co/datasets/chanhee-luke/RoboSpatial-Home.
324
324
[ "task_categories:question-answering", "task_categories:visual-question-answering", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2411.16537", "region:us" ]
2025-03-13T08:02:21
null
null
67d871b3e6d0edd52065eb83
oumi-ai/oumi-anli-subset
oumi-ai
{"dataset_info": {"features": [{"name": "conversation_id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "metadata", "struct": [{"name": "claims", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "text label", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 34992991, "num_examples": 21076}], "download_size": 15175681, "dataset_size": 34992991}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}], "license": "cc-by-nc-4.0", "language": ["en"], "size_categories": ["10K<n<100K"]}
false
null
2025-04-04T16:41:29
5
5
false
b8589b4beec90bc11a020751ede3c72f62b0a223
oumi-ai/oumi-anli-subset oumi-anli-subset is a text dataset designed to fine-tune language models for Claim Verification. Prompts were pulled from ANLI training sets with responses created from Llama-3.1-405B-Instruct. oumi-anli-subset was used to train HallOumi-8B, which achieves 77.2% Macro F1, outperforming SOTA models such as Claude Sonnet 3.5, OpenAI o1, etc. Curated by: Oumi AI using Oumi inference Language(s) (NLP): English License: CC-BY-NC-4.0, Llama 3.1 Community… See the full description on the dataset page: https://huggingface.co/datasets/oumi-ai/oumi-anli-subset.
38
38
[ "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-17T19:02:11
null
null
67d871c78f62a95751613b97
oumi-ai/oumi-synthetic-document-claims
oumi-ai
{"dataset_info": {"features": [{"name": "conversation_id", "dtype": "string"}, {"name": "messages", "list": [{"name": "content", "dtype": "string"}, {"name": "role", "dtype": "string"}]}, {"name": "metadata", "struct": [{"name": "claims", "dtype": "string"}, {"name": "context", "dtype": "string"}, {"name": "label", "dtype": "int64"}, {"name": "source", "dtype": "string"}, {"name": "text label", "dtype": "string"}]}], "splits": [{"name": "train", "num_bytes": 89833579, "num_examples": 7363}, {"name": "validation", "num_bytes": 12590277, "num_examples": 1039}], "download_size": 41507741, "dataset_size": 102423856}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}, {"split": "validation", "path": "data/validation-*"}]}], "license": "llama3.1", "language": ["en"], "size_categories": ["1K<n<10K"]}
false
null
2025-04-04T16:41:04
5
5
false
381afcd43e15a789e5824fd4089be0d9237df2ab
oumi-ai/oumi-synthetic-document-claims oumi-synthetic-document-claims is a text dataset designed to fine-tune language models for Claim Verification. Prompts and responses were produced synthetically from Llama-3.1-405B-Instruct. oumi-synthetic-document-claims was used to train HallOumi-8B, which achieves 77.2% Macro F1, outperforming SOTA models such as Claude Sonnet 3.5, OpenAI o1, etc. Curated by: Oumi AI using Oumi inference Language(s) (NLP): English License: Llama 3.1… See the full description on the dataset page: https://huggingface.co/datasets/oumi-ai/oumi-synthetic-document-claims.
45
45
[ "language:en", "license:llama3.1", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-17T19:02:31
null
null
67e156bc3aa73bdc22f5b858
benjaminogbonna/nigerian_common_voice_dataset
benjaminogbonna
{"license": "apache-2.0", "task_categories": ["automatic-speech-recognition", "text-to-speech"], "pretty_name": "Nigerian Common Voice Dataset", "annotations_creators": ["crowdsourced"], "language_creators": ["crowdsourced"], "language": ["en", "ha", "ig", "yo"], "multilinguality": ["multilingual"], "extra_gated_prompt": "By clicking on \u201cAccess repository\u201d below, you also agree to not attempt to determine the identity of speakers in the Common Voice dataset.", "size_categories": ["10K<n<100K"], "dataset_info": [{"config_name": "default", "features": [{"name": "audio", "dtype": "audio"}, {"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}], "splits": [{"name": "english_train", "num_bytes": 76891, "num_examples": 3}, {"name": "english_validation", "num_bytes": 76388, "num_examples": 3}, {"name": "english_test", "num_bytes": 44707, "num_examples": 3}, {"name": "hausa_train", "num_bytes": 87721, "num_examples": 3}, {"name": "hausa_validation", "num_bytes": 81663, "num_examples": 3}, {"name": "hausa_test", "num_bytes": 86685, "num_examples": 3}, {"name": "igbo_train", "num_bytes": 77798, "num_examples": 3}, {"name": "igbo_validation", "num_bytes": 109802, "num_examples": 3}, {"name": "igbo_test", "num_bytes": 103504, "num_examples": 3}, {"name": "yoruba_train", "num_bytes": 111252, "num_examples": 3}, {"name": "yoruba_validation", "num_bytes": 125347, "num_examples": 3}, {"name": "yoruba_test", "num_bytes": 116250, "num_examples": 3}], "download_size": 1127146, "dataset_size": 1098008}, {"config_name": "english", "features": [{"name": "audio", "dtype": "audio"}, {"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 102291684.678, "num_examples": 2721}, {"name": "validation", "num_bytes": 12091603, "num_examples": 340}, {"name": "test", "num_bytes": 11585499, "num_examples": 341}], "download_size": 121504884, "dataset_size": 125968786.678}, {"config_name": "hausa", "features": [{"name": "audio", "dtype": "audio"}, {"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 189263575.55, "num_examples": 7206}, {"name": "validation", "num_bytes": 23256496, "num_examples": 901}, {"name": "test", "num_bytes": 24050751, "num_examples": 901}], "download_size": 234586970, "dataset_size": 236570822.55}, {"config_name": "igbo", "features": [{"name": "audio", "dtype": "audio"}, {"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 147708753.853, "num_examples": 4571}, {"name": "validation", "num_bytes": 19026693, "num_examples": 571}, {"name": "test", "num_bytes": 19092378, "num_examples": 572}], "download_size": 185986664, "dataset_size": 185827824.853}, {"config_name": "yoruba", "features": [{"name": "audio", "dtype": "audio"}, {"name": "client_id", "dtype": "string"}, {"name": "path", "dtype": "string"}, {"name": "sentence", "dtype": "string"}, {"name": "accent", "dtype": "string"}, {"name": "locale", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 124429039.456, "num_examples": 3336}, {"name": "validation", "num_bytes": 15302013, "num_examples": 417}, {"name": "test", "num_bytes": 15182108, "num_examples": 418}], "download_size": 147489914, "dataset_size": 154913160.456}], "configs": [{"config_name": "english", "data_files": [{"split": "train", "path": "english/train-*"}, {"split": "validation", "path": "english/validation-*"}, {"split": "test", "path": "english/test-*"}]}, {"config_name": "hausa", "data_files": [{"split": "train", "path": "hausa/train-*"}, {"split": "validation", "path": "hausa/validation-*"}, {"split": "test", "path": "hausa/test-*"}]}, {"config_name": "igbo", "data_files": [{"split": "train", "path": "igbo/train-*"}, {"split": "validation", "path": "igbo/validation-*"}, {"split": "test", "path": "igbo/test-*"}]}, {"config_name": "yoruba", "data_files": [{"split": "train", "path": "yoruba/train-*"}, {"split": "validation", "path": "yoruba/validation-*"}, {"split": "test", "path": "yoruba/test-*"}]}]}
false
null
2025-03-30T16:49:15
9
5
false
97c7f160c0d563339d2f32d55945abc406696cf2
Dataset Card for Nigerian Common Voice Dataset Dataset Summary The Nigerian Common Voice Dataset is a comprehensive dataset consisting of 158 hours of audio recordings and corresponding transcription (sentence). This dataset includes metadata like accent, locale that can help improve the accuracy of speech recognition engines. This dataset is specifically curated to address the gap in speech and language datasets for African accents, making it a valuable resource for… See the full description on the dataset page: https://huggingface.co/datasets/benjaminogbonna/nigerian_common_voice_dataset.
154
154
[ "task_categories:automatic-speech-recognition", "task_categories:text-to-speech", "annotations_creators:crowdsourced", "language_creators:crowdsourced", "multilinguality:multilingual", "language:en", "language:ha", "language:ig", "language:yo", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-24T12:57:32
null
null
67e5d34aae018bfa4a529862
oumi-ai/oumi-groundedness-benchmark
oumi-ai
{"dataset_info": {"features": [{"name": "id", "dtype": "string"}, {"name": "sonnet prompt", "dtype": "string"}, {"name": "sonnet response", "dtype": "string"}, {"name": "label", "dtype": "string"}, {"name": "gemini_pro prompt", "dtype": "string"}, {"name": "gemini_pro response", "dtype": "string"}, {"name": "gpt_4o prompt", "dtype": "string"}, {"name": "gpt_4o response", "dtype": "string"}, {"name": "o1_preview prompt", "dtype": "string"}, {"name": "o1_preview response", "dtype": "string"}, {"name": "llama_405b prompt", "dtype": "string"}, {"name": "llama_405b response", "dtype": "string"}, {"name": "deepseek R1 prompt", "dtype": "string"}, {"name": "deepseek R1 response", "dtype": "string"}, {"name": "halloumi 8b prompt", "dtype": "string"}, {"name": "halloumi 8b response", "dtype": "string"}], "splits": [{"name": "test", "num_bytes": 89544117, "num_examples": 2089}], "download_size": 37056280, "dataset_size": 89544117}, "configs": [{"config_name": "default", "data_files": [{"split": "test", "path": "data/test-*"}]}]}
false
null
2025-04-04T16:44:29
5
5
false
78ef26d1e6d5bd705633301e700b971e452585f6
oumi-ai/oumi-groundedness-benchmark oumi-groundedness-benchmark is a text dataset designed to evaluate language models for Claim Verification / Hallucination Detection. Prompts and responses were produced synthetically from Llama-3.1-405B-Instruct. oumi-groundedness-benchmark was used to properly evaluate HallOumi-8B, which achieves 77.2% Macro F1, outperforming SOTA models such as Claude Sonnet 3.5, OpenAI o1, etc. Curated by: Oumi AI using Oumi inference Language(s) (NLP):… See the full description on the dataset page: https://huggingface.co/datasets/oumi-ai/oumi-groundedness-benchmark.
46
49
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2025-03-27T22:38:02
null
null
67ea3f4ae9411fb8f29c6aaa
virtuoussy/Math-RLVR
virtuoussy
{"license": "apache-2.0", "task_categories": ["question-answering"], "language": ["en"]}
false
null
2025-04-02T10:31:47
5
5
false
2d2cada17d5fc0e2593181861e09f8ba4f7941bd
Math data for paper "Expanding RL with Verifiable Rewards Across Diverse Domains". we use a large-scale dataset of 773k Chinese Question Answering (QA) pairs, collected under authorized licenses from educational websites. This dataset covers three educational levels: elementary, middle, and high school. Unlike well-structured yet small-scale benchmarks such as MATH (Hendrycks et al., 2021b) and GSM8K (Cobbe et al., 2021b), our reference answers are inherently free-form, often interwoven with… See the full description on the dataset page: https://huggingface.co/datasets/virtuoussy/Math-RLVR.
107
107
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2503.23829", "region:us" ]
2025-03-31T07:07:54
null
null
621ffdd236468d709f181dba
abisee/cnn_dailymail
abisee
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["apache-2.0"], "multilinguality": ["monolingual"], "size_categories": ["100K<n<1M"], "source_datasets": ["original"], "task_categories": ["summarization"], "task_ids": ["news-articles-summarization"], "paperswithcode_id": "cnn-daily-mail-1", "pretty_name": "CNN / Daily Mail", "dataset_info": [{"config_name": "1.0.0", "features": [{"name": "article", "dtype": "string"}, {"name": "highlights", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1261703785, "num_examples": 287113}, {"name": "validation", "num_bytes": 57732412, "num_examples": 13368}, {"name": "test", "num_bytes": 49925732, "num_examples": 11490}], "download_size": 836927248, "dataset_size": 1369361929}, {"config_name": "2.0.0", "features": [{"name": "article", "dtype": "string"}, {"name": "highlights", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1261703785, "num_examples": 287113}, {"name": "validation", "num_bytes": 57732412, "num_examples": 13368}, {"name": "test", "num_bytes": 49925732, "num_examples": 11490}], "download_size": 837094602, "dataset_size": 1369361929}, {"config_name": "3.0.0", "features": [{"name": "article", "dtype": "string"}, {"name": "highlights", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1261703785, "num_examples": 287113}, {"name": "validation", "num_bytes": 57732412, "num_examples": 13368}, {"name": "test", "num_bytes": 49925732, "num_examples": 11490}], "download_size": 837094602, "dataset_size": 1369361929}], "configs": [{"config_name": "1.0.0", "data_files": [{"split": "train", "path": "1.0.0/train-*"}, {"split": "validation", "path": "1.0.0/validation-*"}, {"split": "test", "path": "1.0.0/test-*"}]}, {"config_name": "2.0.0", "data_files": [{"split": "train", "path": "2.0.0/train-*"}, {"split": "validation", "path": "2.0.0/validation-*"}, {"split": "test", "path": "2.0.0/test-*"}]}, {"config_name": "3.0.0", "data_files": [{"split": "train", "path": "3.0.0/train-*"}, {"split": "validation", "path": "3.0.0/validation-*"}, {"split": "test", "path": "3.0.0/test-*"}]}], "train-eval-index": [{"config": "3.0.0", "task": "summarization", "task_id": "summarization", "splits": {"eval_split": "test"}, "col_mapping": {"article": "text", "highlights": "target"}}]}
false
null
2024-01-18T15:31:34
257
4
false
96df5e686bee6baa90b8bee7c28b81fa3fa6223d
Dataset Card for CNN Dailymail Dataset Dataset Summary The CNN / DailyMail Dataset is an English-language dataset containing just over 300k unique news articles as written by journalists at CNN and the Daily Mail. The current version supports both extractive and abstractive summarization, though the original version was created for machine reading and comprehension and abstractive question answering. Supported Tasks and Leaderboards 'summarization': Versions… See the full description on the dataset page: https://huggingface.co/datasets/abisee/cnn_dailymail.
95,005
2,895,820
[ "task_categories:summarization", "task_ids:news-articles-summarization", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2022-03-02T23:29:22
cnn-daily-mail-1
null
621ffdd236468d709f181f09
Skylion007/openwebtext
Skylion007
{"annotations_creators": ["no-annotation"], "language_creators": ["found"], "language": ["en"], "license": ["cc0-1.0"], "multilinguality": ["monolingual"], "pretty_name": "OpenWebText", "size_categories": ["1M<n<10M"], "source_datasets": ["original"], "task_categories": ["text-generation", "fill-mask"], "task_ids": ["language-modeling", "masked-language-modeling"], "paperswithcode_id": "openwebtext", "dataset_info": {"features": [{"name": "text", "dtype": "string"}], "config_name": "plain_text", "splits": [{"name": "train", "num_bytes": 39769491688, "num_examples": 8013769}], "download_size": 12880189440, "dataset_size": 39769491688}}
false
null
2024-05-17T17:56:27
414
4
false
f3808c30e817981b845ec549c43e82bb467d8144
An open-source replication of the WebText dataset from OpenAI.
94,181
4,543,038
[ "task_categories:text-generation", "task_categories:fill-mask", "task_ids:language-modeling", "task_ids:masked-language-modeling", "annotations_creators:no-annotation", "language_creators:found", "multilinguality:monolingual", "source_datasets:original", "language:en", "license:cc0-1.0", "size_categories:1M<n<10M", "region:us" ]
2022-03-02T23:29:22
openwebtext
@misc{Gokaslan2019OpenWeb, title={OpenWebText Corpus}, author={Aaron Gokaslan*, Vanya Cohen*, Ellie Pavlick, Stefanie Tellex}, howpublished{\\url{http://Skylion007.github.io/OpenWebTextCorpus}}, year={2019} }
633a585e593f7e38374056ec
bigcode/the-stack
bigcode
{"annotations_creators": [], "language_creators": ["crowdsourced", "expert-generated"], "language": ["code"], "license": ["other"], "multilinguality": ["multilingual"], "pretty_name": "The-Stack", "size_categories": ["unknown"], "source_datasets": [], "task_categories": ["text-generation"], "task_ids": [], "extra_gated_prompt": "## Terms of Use for The Stack\n\nThe Stack dataset is a collection of source code in over 300 programming languages. We ask that you read and acknowledge the following points before using the dataset:\n1. The Stack is a collection of source code from repositories with various licenses. Any use of all or part of the code gathered in The Stack must abide by the terms of the original licenses, including attribution clauses when relevant. We facilitate this by providing provenance information for each data point.\n2. The Stack is regularly updated to enact validated data removal requests. By clicking on \"Access repository\", you agree to update your own version of The Stack to the most recent usable version specified by the maintainers in [the following thread](https://huggingface.co/datasets/bigcode/the-stack/discussions/7). If you have questions about dataset versions and allowed uses, please also ask them in the dataset\u2019s [community discussions](https://huggingface.co/datasets/bigcode/the-stack/discussions/new). We will also notify users via email when the latest usable version changes.\n3. To host, share, or otherwise provide access to The Stack dataset, you must include [these Terms of Use](https://huggingface.co/datasets/bigcode/the-stack#terms-of-use-for-the-stack) and require users to agree to it.\n\nBy clicking on \"Access repository\" below, you accept that your contact information (email address and username) can be shared with the dataset maintainers as well.\n ", "extra_gated_fields": {"Email": "text", "I have read the License and agree with its terms": "checkbox"}}
false
null
2023-04-13T12:15:50
790
4
false
349a71353fd5868fb90b593ef09e311379da498a
Dataset Card for The Stack Changelog Release Description v1.0 Initial release of the Stack. Included 30 programming languages and 18 permissive licenses. Note: Three included licenses (MPL/EPL/LGPL) are considered weak copyleft licenses. The resulting near-deduplicated dataset is 3TB in size. v1.1 The three copyleft licenses ((MPL/EPL/LGPL) were excluded and the list of permissive licenses extended to 193 licenses in total. The list of programming languages… See the full description on the dataset page: https://huggingface.co/datasets/bigcode/the-stack.
10,894
161,177
[ "task_categories:text-generation", "language_creators:crowdsourced", "language_creators:expert-generated", "multilinguality:multilingual", "language:code", "license:other", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2211.15533", "arxiv:2107.03374", "arxiv:2207.14157", "region:us" ]
2022-10-03T03:34:54
null
null
649444227853dd12c3bbadd8
Amod/mental_health_counseling_conversations
Amod
{"license": "openrail", "task_categories": ["text-generation", "question-answering"], "language": ["en"], "tags": ["medical"], "size_categories": ["1K<n<10K"]}
false
null
2024-04-05T08:30:03
344
4
false
4672e03c7f1a7b2215eb4302b83ca50449ce2553
Amod/mental_health_counseling_conversations Dataset Summary This dataset is a collection of questions and answers sourced from two online counseling and therapy platforms. The questions cover a wide range of mental health topics, and the answers are provided by qualified psychologists. The dataset is intended to be used for fine-tuning language models to improve their ability to provide mental health advice. Supported Tasks and Leaderboards The… See the full description on the dataset page: https://huggingface.co/datasets/Amod/mental_health_counseling_conversations.
4,669
64,729
[ "task_categories:text-generation", "task_categories:question-answering", "language:en", "license:openrail", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1581", "region:us", "medical" ]
2023-06-22T12:52:50
null
null
64e6f816edb36433c0ecd84d
corbt/all-recipes
corbt
{"dataset_info": {"features": [{"name": "input", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 1569011376, "num_examples": 2147248}], "download_size": 807147913, "dataset_size": 1569011376}, "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "data/train-*"}]}]}
false
null
2023-08-24T06:27:02
52
4
false
57e900079f461c85794b8b1e957cc3fd5e179b44
Dataset Card for "all-recipes" More Information needed
586
7,067
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
2023-08-24T06:26:30
null
null
64f7c6e8baa3b4ec4e37b1d8
open-web-math/open-web-math
open-web-math
{"dataset_info": {"features": [{"name": "url", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "date", "dtype": "string"}, {"name": "metadata", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 56651995057, "num_examples": 6315233}], "download_size": 16370689925, "dataset_size": 56651995057, "license": "odc-by", "task_categories": ["text-generation"], "language": ["en"], "pretty_name": "OpenWebMath", "size_categories": ["10B<n<100B"]}}
false
null
2023-10-17T20:14:00
310
4
false
fde8ef8de2300f5e778f56261843dab89f230815
Keiran Paster*, Marco Dos Santos*, Zhangir Azerbayev, Jimmy Ba GitHub | ArXiv | PDF OpenWebMath is a dataset containing the majority of the high-quality, mathematical text from the internet. It is filtered and extracted from over 200B HTML files on Common Crawl down to a set of 6.3 million documents containing a total of 14.7B tokens. OpenWebMath is intended for use in pretraining and finetuning large language models. You can download the dataset using Hugging Face: from datasets import… See the full description on the dataset page: https://huggingface.co/datasets/open-web-math/open-web-math.
17,448
84,845
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2310.06786", "region:us" ]
2023-09-06T00:25:12
null
null
6564d741cfdc8b6433bfba49
MMMU/MMMU
MMMU
{"language": ["en"], "license": "apache-2.0", "size_categories": ["10K<n<100K"], "task_categories": ["question-answering", "visual-question-answering", "multiple-choice"], "pretty_name": "mmmu", "dataset_info": [{"config_name": "Accounting", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 262599, "num_examples": 5}, {"name": "validation", "num_bytes": 1598285, "num_examples": 30}, {"name": "test", "num_bytes": 22135625, "num_examples": 380}], "download_size": 37363379, "dataset_size": 23996509}, {"config_name": "Agriculture", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 22082656, "num_examples": 5}, {"name": "validation", "num_bytes": 119217558, "num_examples": 30}, {"name": "test", "num_bytes": 993664077, "num_examples": 287}], "download_size": 1158036990, "dataset_size": 1134964291}, {"config_name": "Architecture_and_Engineering", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 137750, "num_examples": 5}, {"name": "validation", "num_bytes": 721378, "num_examples": 30}, {"name": "test", "num_bytes": 16054607, "num_examples": 551}], "download_size": 48763955, "dataset_size": 16913735}, {"config_name": "Art", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 6241184, "num_examples": 5}, {"name": "validation", "num_bytes": 29934534, "num_examples": 30}, {"name": "test", "num_bytes": 237801390, "num_examples": 231}], "download_size": 585798641, "dataset_size": 273977108}, {"config_name": "Art_Theory", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 7435106, "num_examples": 5}, {"name": "validation", "num_bytes": 33481558, "num_examples": 30}, {"name": "test", "num_bytes": 553174647, "num_examples": 429}], "download_size": 930525695, "dataset_size": 594091311}, {"config_name": "Basic_Medical_Science", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 814310, "num_examples": 5}, {"name": "validation", "num_bytes": 4125930, "num_examples": 30}, {"name": "test", "num_bytes": 48125891, "num_examples": 326}], "download_size": 84666454, "dataset_size": 53066131}, {"config_name": "Biology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 574342, "num_examples": 5}, {"name": "validation", "num_bytes": 8491863, "num_examples": 30}, {"name": "test", "num_bytes": 132966151, "num_examples": 345}], "download_size": 410242502, "dataset_size": 142032356}, {"config_name": "Chemistry", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 262397, "num_examples": 5}, {"name": "validation", "num_bytes": 1518573, "num_examples": 30}, {"name": "test", "num_bytes": 37219529, "num_examples": 603}], "download_size": 108345562, "dataset_size": 39000499}, {"config_name": "Clinical_Medicine", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1467945, "num_examples": 5}, {"name": "validation", "num_bytes": 10882484, "num_examples": 30}, {"name": "test", "num_bytes": 98201863, "num_examples": 325}], "download_size": 160611488, "dataset_size": 110552292}, {"config_name": "Computer_Science", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 440523, "num_examples": 5}, {"name": "validation", "num_bytes": 2072018, "num_examples": 30}, {"name": "test", "num_bytes": 32047381, "num_examples": 371}], "download_size": 55640991, "dataset_size": 34559922}, {"config_name": "Design", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2259873, "num_examples": 5}, {"name": "validation", "num_bytes": 17923120, "num_examples": 30}, {"name": "test", "num_bytes": 77676331, "num_examples": 169}], "download_size": 142866617, "dataset_size": 97859324}, {"config_name": "Diagnostics_and_Laboratory_Medicine", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2056117, "num_examples": 5}, {"name": "validation", "num_bytes": 37106233, "num_examples": 30}, {"name": "test", "num_bytes": 157003069, "num_examples": 162}], "download_size": 603957093, "dataset_size": 196165419}, {"config_name": "Economics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 171434, "num_examples": 5}, {"name": "validation", "num_bytes": 1487048, "num_examples": 30}, {"name": "test", "num_bytes": 11852300, "num_examples": 267}], "download_size": 20777635, "dataset_size": 13510782}, {"config_name": "Electronics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 123632, "num_examples": 5}, {"name": "validation", "num_bytes": 641377, "num_examples": 30}, {"name": "test", "num_bytes": 5717686, "num_examples": 256}], "download_size": 11602832, "dataset_size": 6482695}, {"config_name": "Energy_and_Power", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 105006, "num_examples": 5}, {"name": "validation", "num_bytes": 1641935, "num_examples": 30}, {"name": "test", "num_bytes": 14748428, "num_examples": 432}], "download_size": 35246567, "dataset_size": 16495369}, {"config_name": "Finance", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 296124, "num_examples": 5}, {"name": "validation", "num_bytes": 1071060, "num_examples": 30}, {"name": "test", "num_bytes": 12065803, "num_examples": 355}], "download_size": 29551521, "dataset_size": 13432987}, {"config_name": "Geography", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1494060, "num_examples": 5}, {"name": "validation", "num_bytes": 6671316, "num_examples": 30}, {"name": "test", "num_bytes": 137218400, "num_examples": 565}], "download_size": 374766631, "dataset_size": 145383776}, {"config_name": "History", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1444231, "num_examples": 5}, {"name": "validation", "num_bytes": 8819857, "num_examples": 30}, {"name": "test", "num_bytes": 115228815, "num_examples": 278}], "download_size": 232549641, "dataset_size": 125492903}, {"config_name": "Literature", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 2451201, "num_examples": 5}, {"name": "validation", "num_bytes": 14241046, "num_examples": 30}, {"name": "test", "num_bytes": 50301541, "num_examples": 112}], "download_size": 132145895, "dataset_size": 66993788}, {"config_name": "Manage", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 449514, "num_examples": 5}, {"name": "validation", "num_bytes": 3277436, "num_examples": 30}, {"name": "test", "num_bytes": 29963963, "num_examples": 245}], "download_size": 51186888, "dataset_size": 33690913}, {"config_name": "Marketing", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 116960, "num_examples": 5}, {"name": "validation", "num_bytes": 1472981, "num_examples": 30}, {"name": "test", "num_bytes": 7732976, "num_examples": 181}], "download_size": 13146078, "dataset_size": 9322917}, {"config_name": "Materials", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 239632, "num_examples": 5}, {"name": "validation", "num_bytes": 2305223, "num_examples": 30}, {"name": "test", "num_bytes": 25256854, "num_examples": 458}], "download_size": 105773156, "dataset_size": 27801709}, {"config_name": "Math", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 175839, "num_examples": 5}, {"name": "validation", "num_bytes": 1444496, "num_examples": 30}, {"name": "test", "num_bytes": 27701845, "num_examples": 505}], "download_size": 174098418, "dataset_size": 29322180}, {"config_name": "Mechanical_Engineering", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 152542, "num_examples": 5}, {"name": "validation", "num_bytes": 874988, "num_examples": 30}, {"name": "test", "num_bytes": 15093746, "num_examples": 429}], "download_size": 30450114, "dataset_size": 16121276}, {"config_name": "Music", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 1417615, "num_examples": 5}, {"name": "validation", "num_bytes": 9359372, "num_examples": 30}, {"name": "test", "num_bytes": 134096770, "num_examples": 334}], "download_size": 174725052, "dataset_size": 144873757}, {"config_name": "Pharmacy", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 207924, "num_examples": 5}, {"name": "validation", "num_bytes": 1656342, "num_examples": 30}, {"name": "test", "num_bytes": 31866248, "num_examples": 430}], "download_size": 62721263, "dataset_size": 33730514}, {"config_name": "Physics", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 233734, "num_examples": 5}, {"name": "validation", "num_bytes": 1114130, "num_examples": 30}, {"name": "test", "num_bytes": 15905705, "num_examples": 408}], "download_size": 35238571, "dataset_size": 17253569}, {"config_name": "Psychology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 600864, "num_examples": 5}, {"name": "validation", "num_bytes": 4403886, "num_examples": 30}, {"name": "test", "num_bytes": 53813915, "num_examples": 305}], "download_size": 102466671, "dataset_size": 58818665}, {"config_name": "Public_Health", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 234781, "num_examples": 5}, {"name": "validation", "num_bytes": 1508761, "num_examples": 30}, {"name": "test", "num_bytes": 32150088, "num_examples": 509}], "download_size": 48231609, "dataset_size": 33893630}, {"config_name": "Sociology", "features": [{"name": "id", "dtype": "string"}, {"name": "question", "dtype": "string"}, {"name": "options", "dtype": "string"}, {"name": "explanation", "dtype": "string"}, {"name": "image_1", "dtype": "image"}, {"name": "image_2", "dtype": "image"}, {"name": "image_3", "dtype": "image"}, {"name": "image_4", "dtype": "image"}, {"name": "image_5", "dtype": "image"}, {"name": "image_6", "dtype": "image"}, {"name": "image_7", "dtype": "image"}, {"name": "img_type", "dtype": "string"}, {"name": "answer", "dtype": "string"}, {"name": "topic_difficulty", "dtype": "string"}, {"name": "question_type", "dtype": "string"}, {"name": "subfield", "dtype": "string"}], "splits": [{"name": "dev", "num_bytes": 3769220, "num_examples": 5}, {"name": "validation", "num_bytes": 18455336, "num_examples": 30}, {"name": "test", "num_bytes": 144301123, "num_examples": 252}], "download_size": 310313826, "dataset_size": 166525679}], "configs": [{"config_name": "Accounting", "data_files": [{"split": "dev", "path": "Accounting/dev-*"}, {"split": "validation", "path": "Accounting/validation-*"}, {"split": "test", "path": "Accounting/test-*"}]}, {"config_name": "Agriculture", "data_files": [{"split": "dev", "path": "Agriculture/dev-*"}, {"split": "validation", "path": "Agriculture/validation-*"}, {"split": "test", "path": "Agriculture/test-*"}]}, {"config_name": "Architecture_and_Engineering", "data_files": [{"split": "dev", "path": "Architecture_and_Engineering/dev-*"}, {"split": "validation", "path": "Architecture_and_Engineering/validation-*"}, {"split": "test", "path": "Architecture_and_Engineering/test-*"}]}, {"config_name": "Art", "data_files": [{"split": "dev", "path": "Art/dev-*"}, {"split": "validation", "path": "Art/validation-*"}, {"split": "test", "path": "Art/test-*"}]}, {"config_name": "Art_Theory", "data_files": [{"split": "dev", "path": "Art_Theory/dev-*"}, {"split": "validation", "path": "Art_Theory/validation-*"}, {"split": "test", "path": "Art_Theory/test-*"}]}, {"config_name": "Basic_Medical_Science", "data_files": [{"split": "dev", "path": "Basic_Medical_Science/dev-*"}, {"split": "validation", "path": "Basic_Medical_Science/validation-*"}, {"split": "test", "path": "Basic_Medical_Science/test-*"}]}, {"config_name": "Biology", "data_files": [{"split": "dev", "path": "Biology/dev-*"}, {"split": "validation", "path": "Biology/validation-*"}, {"split": "test", "path": "Biology/test-*"}]}, {"config_name": "Chemistry", "data_files": [{"split": "dev", "path": "Chemistry/dev-*"}, {"split": "validation", "path": "Chemistry/validation-*"}, {"split": "test", "path": "Chemistry/test-*"}]}, {"config_name": "Clinical_Medicine", "data_files": [{"split": "dev", "path": "Clinical_Medicine/dev-*"}, {"split": "validation", "path": "Clinical_Medicine/validation-*"}, {"split": "test", "path": "Clinical_Medicine/test-*"}]}, {"config_name": "Computer_Science", "data_files": [{"split": "dev", "path": "Computer_Science/dev-*"}, {"split": "validation", "path": "Computer_Science/validation-*"}, {"split": "test", "path": "Computer_Science/test-*"}]}, {"config_name": "Design", "data_files": [{"split": "dev", "path": "Design/dev-*"}, {"split": "validation", "path": "Design/validation-*"}, {"split": "test", "path": "Design/test-*"}]}, {"config_name": "Diagnostics_and_Laboratory_Medicine", "data_files": [{"split": "dev", "path": "Diagnostics_and_Laboratory_Medicine/dev-*"}, {"split": "validation", "path": "Diagnostics_and_Laboratory_Medicine/validation-*"}, {"split": "test", "path": "Diagnostics_and_Laboratory_Medicine/test-*"}]}, {"config_name": "Economics", "data_files": [{"split": "dev", "path": "Economics/dev-*"}, {"split": "validation", "path": "Economics/validation-*"}, {"split": "test", "path": "Economics/test-*"}]}, {"config_name": "Electronics", "data_files": [{"split": "dev", "path": "Electronics/dev-*"}, {"split": "validation", "path": "Electronics/validation-*"}, {"split": "test", "path": "Electronics/test-*"}]}, {"config_name": "Energy_and_Power", "data_files": [{"split": "dev", "path": "Energy_and_Power/dev-*"}, {"split": "validation", "path": "Energy_and_Power/validation-*"}, {"split": "test", "path": "Energy_and_Power/test-*"}]}, {"config_name": "Finance", "data_files": [{"split": "dev", "path": "Finance/dev-*"}, {"split": "validation", "path": "Finance/validation-*"}, {"split": "test", "path": "Finance/test-*"}]}, {"config_name": "Geography", "data_files": [{"split": "dev", "path": "Geography/dev-*"}, {"split": "validation", "path": "Geography/validation-*"}, {"split": "test", "path": "Geography/test-*"}]}, {"config_name": "History", "data_files": [{"split": "dev", "path": "History/dev-*"}, {"split": "validation", "path": "History/validation-*"}, {"split": "test", "path": "History/test-*"}]}, {"config_name": "Literature", "data_files": [{"split": "dev", "path": "Literature/dev-*"}, {"split": "validation", "path": "Literature/validation-*"}, {"split": "test", "path": "Literature/test-*"}]}, {"config_name": "Manage", "data_files": [{"split": "dev", "path": "Manage/dev-*"}, {"split": "validation", "path": "Manage/validation-*"}, {"split": "test", "path": "Manage/test-*"}]}, {"config_name": "Marketing", "data_files": [{"split": "dev", "path": "Marketing/dev-*"}, {"split": "validation", "path": "Marketing/validation-*"}, {"split": "test", "path": "Marketing/test-*"}]}, {"config_name": "Materials", "data_files": [{"split": "dev", "path": "Materials/dev-*"}, {"split": "validation", "path": "Materials/validation-*"}, {"split": "test", "path": "Materials/test-*"}]}, {"config_name": "Math", "data_files": [{"split": "dev", "path": "Math/dev-*"}, {"split": "validation", "path": "Math/validation-*"}, {"split": "test", "path": "Math/test-*"}]}, {"config_name": "Mechanical_Engineering", "data_files": [{"split": "dev", "path": "Mechanical_Engineering/dev-*"}, {"split": "validation", "path": "Mechanical_Engineering/validation-*"}, {"split": "test", "path": "Mechanical_Engineering/test-*"}]}, {"config_name": "Music", "data_files": [{"split": "dev", "path": "Music/dev-*"}, {"split": "validation", "path": "Music/validation-*"}, {"split": "test", "path": "Music/test-*"}]}, {"config_name": "Pharmacy", "data_files": [{"split": "dev", "path": "Pharmacy/dev-*"}, {"split": "validation", "path": "Pharmacy/validation-*"}, {"split": "test", "path": "Pharmacy/test-*"}]}, {"config_name": "Physics", "data_files": [{"split": "dev", "path": "Physics/dev-*"}, {"split": "validation", "path": "Physics/validation-*"}, {"split": "test", "path": "Physics/test-*"}]}, {"config_name": "Psychology", "data_files": [{"split": "dev", "path": "Psychology/dev-*"}, {"split": "validation", "path": "Psychology/validation-*"}, {"split": "test", "path": "Psychology/test-*"}]}, {"config_name": "Public_Health", "data_files": [{"split": "dev", "path": "Public_Health/dev-*"}, {"split": "validation", "path": "Public_Health/validation-*"}, {"split": "test", "path": "Public_Health/test-*"}]}, {"config_name": "Sociology", "data_files": [{"split": "dev", "path": "Sociology/dev-*"}, {"split": "validation", "path": "Sociology/validation-*"}, {"split": "test", "path": "Sociology/test-*"}]}], "tags": ["biology", "medical", "finance", "chemistry", "music", "art", "art_theory", "design", "music", "business", "accounting", "economics", "finance", "manage", "marketing", "health", "medicine", "basic_medical_science", "clinical", "pharmacy", "public_health", "humanities", "social_science", "history", "literature", "sociology", "psychology", "science", "biology", "chemistry", "geography", "math", "physics", "engineering", "agriculture", "architecture", "computer_science", "electronics", "energy_and_power", "materials", "mechanical_engineering"]}
false
null
2024-09-19T17:11:03
241
4
false
171b0ef74cd1704464e6940860968009d8cdd59a
MMMU (A Massive Multi-discipline Multimodal Understanding and Reasoning Benchmark for Expert AGI) 🌐 Homepage | 🏆 Leaderboard | 🤗 Dataset | 🤗 Paper | 📖 arXiv | GitHub 🔔News 🛠️[2024-05-30]: Fixed duplicate option issues in Materials dataset items (validation_Materials_25; test_Materials_17, 242) and content error in validation_Materials_25. 🛠️[2024-04-30]: Fixed missing "-" or "^" signs in Math dataset items (dev_Math_2, validation_Math_11, 12, 16;… See the full description on the dataset page: https://huggingface.co/datasets/MMMU/MMMU.
22,453
1,473,117
[ "task_categories:question-answering", "task_categories:visual-question-answering", "task_categories:multiple-choice", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2311.16502", "region:us", "biology", "medical", "finance", "chemistry", "music", "art", "art_theory", "design", "business", "accounting", "economics", "manage", "marketing", "health", "medicine", "basic_medical_science", "clinical", "pharmacy", "public_health", "humanities", "social_science", "history", "literature", "sociology", "psychology", "science", "geography", "math", "physics", "engineering", "agriculture", "architecture", "computer_science", "electronics", "energy_and_power", "materials", "mechanical_engineering" ]
2023-11-27T17:52:01
null
null
6587ff94509bcae23f71024d
OpenAssistant/oasst2
OpenAssistant
{"license": "apache-2.0", "dataset_info": {"features": [{"name": "message_id", "dtype": "string"}, {"name": "parent_id", "dtype": "string"}, {"name": "user_id", "dtype": "string"}, {"name": "created_date", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "role", "dtype": "string"}, {"name": "lang", "dtype": "string"}, {"name": "review_count", "dtype": "int32"}, {"name": "review_result", "dtype": "bool"}, {"name": "deleted", "dtype": "bool"}, {"name": "rank", "dtype": "int32"}, {"name": "synthetic", "dtype": "bool"}, {"name": "model_name", "dtype": "string"}, {"name": "detoxify", "struct": [{"name": "toxicity", "dtype": "float64"}, {"name": "severe_toxicity", "dtype": "float64"}, {"name": "obscene", "dtype": "float64"}, {"name": "identity_attack", "dtype": "float64"}, {"name": "insult", "dtype": "float64"}, {"name": "threat", "dtype": "float64"}, {"name": "sexual_explicit", "dtype": "float64"}]}, {"name": "message_tree_id", "dtype": "string"}, {"name": "tree_state", "dtype": "string"}, {"name": "emojis", "sequence": [{"name": "name", "dtype": "string"}, {"name": "count", "dtype": "int32"}]}, {"name": "labels", "sequence": [{"name": "name", "dtype": "string"}, {"name": "value", "dtype": "float64"}, {"name": "count", "dtype": "int32"}]}], "splits": [{"name": "train", "num_bytes": 158850455, "num_examples": 128575}, {"name": "validation", "num_bytes": 7963122, "num_examples": 6599}], "download_size": 66674129, "dataset_size": 166813577}, "language": ["en", "es", "ru", "de", "pl", "th", "vi", "sv", "bn", "da", "he", "it", "fa", "sk", "id", "nb", "el", "nl", "hu", "eu", "zh", "eo", "ja", "ca", "cs", "bg", "fi", "pt", "tr", "ro", "ar", "uk", "gl", "fr", "ko"], "tags": ["human-feedback"], "size_categories": ["100K<n<1M"], "pretty_name": "OpenAssistant Conversations Release 2"}
false
null
2024-01-11T06:09:29
254
4
false
179dd21fc55192153d94adb0e0ce8f69e222bf75
Open Assistant Conversations Dataset Release 2 (OASST2) Dataset Structure This dataset contains message trees. Each message tree has an initial prompt message as the root node, which can have multiple child messages as replies, and these child messages can have multiple replies. All messages have a role property: this can either be "assistant" or "prompter". The roles in conversation threads from prompt to leaf node strictly alternate between "prompter" and… See the full description on the dataset page: https://huggingface.co/datasets/OpenAssistant/oasst2.
1,941
42,678
[ "language:en", "language:es", "language:ru", "language:de", "language:pl", "language:th", "language:vi", "language:sv", "language:bn", "language:da", "language:he", "language:it", "language:fa", "language:sk", "language:id", "language:nb", "language:el", "language:nl", "language:hu", "language:eu", "language:zh", "language:eo", "language:ja", "language:ca", "language:cs", "language:bg", "language:fi", "language:pt", "language:tr", "language:ro", "language:ar", "language:uk", "language:gl", "language:fr", "language:ko", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2304.07327", "region:us", "human-feedback" ]
2023-12-24T09:53:24
null
null
65919009a78a277803ef68df
omar07ibrahim/AZERBAIJAN-ENGLISH-DATASET
omar07ibrahim
{"license": "cc-by-4.0"}
false
null
2023-12-31T16:01:12
4
4
false
6985dd6cfc70886134f72eac4d0a6f1fc1b09af6
null
30
325
[ "license:cc-by-4.0", "size_categories:100K<n<1M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
2023-12-31T16:00:09
null
null
65d2675495e8d86e2fe4124d
HuggingFaceTB/cosmopedia
HuggingFaceTB
{"dataset_info": [{"config_name": "auto_math_text", "features": [{"name": "prompt", "dtype": "string"}, {"name": "text_token_length", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 8777587297.907892, "num_examples": 1949895}], "download_size": 4461401898, "dataset_size": 8777587297.907892}, {"config_name": "khanacademy", "features": [{"name": "prompt", "dtype": "string"}, {"name": "text_token_length", "dtype": "int64"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 108591354.09210858, "num_examples": 24123}], "download_size": 49139761, "dataset_size": 108591354.09210858}, {"config_name": "openstax", "features": [{"name": "text_token_length", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 667837450, "num_examples": 126332}], "download_size": 346992522, "dataset_size": 667837450}, {"config_name": "stanford", "features": [{"name": "text_token_length", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 6341291506, "num_examples": 1020024}], "download_size": 3302284560, "dataset_size": 6341291506}, {"config_name": "stories", "features": [{"name": "text", "dtype": "string"}, {"name": "prompt", "dtype": "string"}, {"name": "text_token_length", "dtype": "int64"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 21314739648, "num_examples": 4992964}], "download_size": 11902294709, "dataset_size": 21314739648}, {"config_name": "web_samples_v1", "features": [{"name": "text_token_length", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 69075726295, "num_examples": 12426348}], "download_size": 38978124936, "dataset_size": 69075726295}, {"config_name": "web_samples_v2", "features": [{"name": "text_token_length", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 58711802939, "num_examples": 10345867}], "download_size": 32658254617, "dataset_size": 58711802939}, {"config_name": "wikihow", "features": [{"name": "text_token_length", "dtype": "int64"}, {"name": "prompt", "dtype": "string"}, {"name": "text", "dtype": "string"}, {"name": "seed_data", "dtype": "string"}, {"name": "format", "dtype": "string"}, {"name": "audience", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 892720528, "num_examples": 179191}], "download_size": 502284600, "dataset_size": 892720528}], "configs": [{"config_name": "auto_math_text", "data_files": [{"split": "train", "path": "data/auto_math_text/train-*"}]}, {"config_name": "khanacademy", "data_files": [{"split": "train", "path": "data/khanacademy/train-*"}]}, {"config_name": "openstax", "data_files": [{"split": "train", "path": "data/openstax/train-*"}]}, {"config_name": "stanford", "data_files": [{"split": "train", "path": "data/stanford/train-*"}]}, {"config_name": "stories", "data_files": [{"split": "train", "path": "data/stories/train-*"}]}, {"config_name": "web_samples_v1", "data_files": [{"split": "train", "path": "data/web_samples_v1/train-*"}]}, {"config_name": "web_samples_v2", "data_files": [{"split": "train", "path": "data/web_samples_v2/train-*"}]}, {"config_name": "wikihow", "data_files": [{"split": "train", "path": "data/wikihow/train-*"}]}], "license": "apache-2.0", "language": ["en"], "tags": ["synthetic"]}
false
null
2024-08-12T22:05:49
602
4
false
0ae6ec63f91742bd2d1eaef4f02232c55d719385
Cosmopedia v0.1 Image generated by DALL-E, the prompt was generated by Mixtral-8x7B-Instruct-v0.1 Note: Cosmopedia v0.2 is available at smollm-corpus User: What do you think "Cosmopedia" could mean? Hint: in our case it's not related to cosmology. Mixtral-8x7B-Instruct-v0.1: A possible meaning for "Cosmopedia" could be an encyclopedia or collection of information about different cultures, societies, and topics from around the world, emphasizing diversity and global… See the full description on the dataset page: https://huggingface.co/datasets/HuggingFaceTB/cosmopedia.
40,073
179,614
[ "language:en", "license:apache-2.0", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2309.05463", "arxiv:2306.11644", "region:us", "synthetic" ]
2024-02-18T20:23:48
null
null
663117fec57e46020df7e9c8
ylacombe/expresso
ylacombe
{"dataset_info": {"config_name": "read", "features": [{"name": "audio", "dtype": "audio"}, {"name": "text", "dtype": "string"}, {"name": "speaker_id", "dtype": "string"}, {"name": "style", "dtype": "string"}, {"name": "id", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 5702432944.34, "num_examples": 11615}], "download_size": 5761373569, "dataset_size": 5702432944.34}, "configs": [{"config_name": "read", "data_files": [{"split": "train", "path": "read/train-*"}]}], "license": "cc-by-nc-4.0", "language": ["en"], "pretty_name": "The Expresso Dataset"}
false
null
2024-04-30T16:49:14
49
4
false
9fb79a189698de3255eff48edd2bc0d9e487adc0
The Expresso Dataset [paper] [demo samples] [Original repository] Introduction The Expresso dataset is a high-quality (48kHz) expressive speech dataset that includes both expressively rendered read speech (8 styles, in mono wav format) and improvised dialogues (26 styles, in stereo wav format). The dataset includes 4 speakers (2 males, 2 females), and totals 40 hours (11h read, 30h improvised). The transcriptions of the read speech are also provided. You can… See the full description on the dataset page: https://huggingface.co/datasets/ylacombe/expresso.
544
4,018
[ "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "arxiv:2308.05725", "region:us" ]
2024-04-30T16:10:38
null
null
66670ea06e382e809d2bca3b
linxy/LaTeX_OCR
linxy
{"license": "apache-2.0", "size_categories": ["100K<n<1M"], "task_categories": ["image-to-text"], "dataset_info": [{"config_name": "default", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 392473380.05, "num_examples": 76318}], "download_size": 383401054, "dataset_size": 392473380.05}, {"config_name": "full", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 385291867, "num_examples": 76318}, {"name": "validation", "num_bytes": 43364061.55, "num_examples": 8475}, {"name": "test", "num_bytes": 47643036.303, "num_examples": 9443}], "download_size": 473618552, "dataset_size": 483485587.878}, {"config_name": "human_handwrite", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 16181778, "num_examples": 1200}, {"name": "validation", "num_bytes": 962283, "num_examples": 68}, {"name": "test", "num_bytes": 906906, "num_examples": 70}], "download_size": 18056029, "dataset_size": 18050967}, {"config_name": "human_handwrite_print", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 3152122.8, "num_examples": 1200}, {"name": "validation", "num_bytes": 182615, "num_examples": 68}, {"name": "test", "num_bytes": 181698, "num_examples": 70}], "download_size": 1336052, "dataset_size": 3516435.8}, {"config_name": "small", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 261296, "num_examples": 50}, {"name": "validation", "num_bytes": 156489, "num_examples": 30}, {"name": "test", "num_bytes": 156489, "num_examples": 30}], "download_size": 588907, "dataset_size": 574274}, {"config_name": "synthetic_handwrite", "features": [{"name": "image", "dtype": "image"}, {"name": "text", "dtype": "string"}], "splits": [{"name": "train", "num_bytes": 496610333.066, "num_examples": 76266}, {"name": "validation", "num_bytes": 63147351.515, "num_examples": 9565}, {"name": "test", "num_bytes": 62893132.805, "num_examples": 9593}], "download_size": 616418996, "dataset_size": 622650817.3859999}], "configs": [{"config_name": "default", "data_files": [{"split": "train", "path": "full/train-*"}]}, {"config_name": "full", "data_files": [{"split": "train", "path": "full/train-*"}, {"split": "validation", "path": "full/validation-*"}, {"split": "test", "path": "full/test-*"}]}, {"config_name": "human_handwrite", "data_files": [{"split": "train", "path": "human_handwrite/train-*"}, {"split": "validation", "path": "human_handwrite/validation-*"}, {"split": "test", "path": "human_handwrite/test-*"}]}, {"config_name": "human_handwrite_print", "data_files": [{"split": "train", "path": "human_handwrite_print/train-*"}, {"split": "validation", "path": "human_handwrite_print/validation-*"}, {"split": "test", "path": "human_handwrite_print/test-*"}]}, {"config_name": "small", "data_files": [{"split": "train", "path": "small/train-*"}, {"split": "validation", "path": "small/validation-*"}, {"split": "test", "path": "small/test-*"}]}, {"config_name": "synthetic_handwrite", "data_files": [{"split": "train", "path": "synthetic_handwrite/train-*"}, {"split": "validation", "path": "synthetic_handwrite/validation-*"}, {"split": "test", "path": "synthetic_handwrite/test-*"}]}], "tags": ["code"]}
false
null
2024-12-29T15:49:06
64
4
false
e4167ee052306f9fa006ea6703161956f8af9f6e
LaTeX OCR 的数据仓库 本数据仓库是专为 LaTeX_OCR 及 LaTeX_OCR_PRO 制作的数据,来源于 https://zenodo.org/record/56198#.V2p0KTXT6eA 以及 https://www.isical.ac.in/~crohme/ 以及我们自己构建。 如果这个数据仓库有帮助到你的话,请点亮 ❤️like ++ 后续追加新的数据也会放在这个仓库 ~~ 原始数据仓库在github LinXueyuanStdio/Data-for-LaTeX_OCR. 数据集 本仓库有 5 个数据集 small 是小数据集,样本数 110 条,用于测试 full 是印刷体约 100k 的完整数据集。实际上样本数略小于 100k,因为用 LaTeX 的抽象语法树剔除了很多不能渲染的 LaTeX。 synthetic_handwrite 是手写体 100k 的完整数据集,基于 full 的公式,使用手写字体合成而来,可以视为人类在纸上的手写体。样本数实际上略小于 100k,理由同上。… See the full description on the dataset page: https://huggingface.co/datasets/linxy/LaTeX_OCR.
935
4,502
[ "task_categories:image-to-text", "license:apache-2.0", "size_categories:100K<n<1M", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
2024-06-10T14:33:04
null
null
668d2093d141a8c8555293c9
CohereForAI/lbpp
CohereForAI
{"license": "apache-2.0"}
false
null
2025-04-04T17:16:57
18
4
false
a4753d1cf9b1e2a6261cf4dacaa7f197ef5cf3d2
*Less Basic Python Programming* is a collection of 161 programming problems with accompanying unit tests. They were created with the aim of being fresh (not leaked at the time of creation) and more difficult than similar datasets (e.g., HumanEval and MBPP). It can serve as a drop-in replacement or enrichment of those datasets as they are structured in an equivalent way.
189
1,832
[ "license:apache-2.0", "arxiv:2504.00698", "region:us" ]
2024-07-09T11:35:47
null
@inproceedings{matton-etal-2024-leakage, title = "On Leakage of Code Generation Evaluation Datasets", author = "Matton, Alexandre and Sherborne, Tom and Aumiller, Dennis and Tommasone, Elena and Alizadeh, Milad and He, Jingyi and Ma, Raymond and Voisin, Maxime and Gilsenan-McMahon, Ellen and Gall{\'e}, Matthias", editor = "Al-Onaizan, Yaser and Bansal, Mohit and Chen, Yun-Nung", booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2024", month = nov, year = "2024", address = "Miami, Florida, USA", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2024.findings-emnlp.772/", doi = "10.18653/v1/2024.findings-emnlp.772", pages = "13215--13223", }
67024c2defe7611a8b7f7016
NeuroDonu/PortableVersions
NeuroDonu
{"license": "apache-2.0"}
false
null
2025-04-05T14:18:07
7
4
false
014a4fc7b9099d4269738307fe9bc7169ed18b0f
null
1,058
3,449
[ "license:apache-2.0", "region:us" ]
2024-10-06T08:37:01
null
null
67268d67c784f47ded4f1cb5
udell-lab/NLP4LP
udell-lab
{"license": "cc-by-nc-sa-4.0", "task_categories": ["text-classification"], "language": ["en"], "tags": ["optimization", "optimization modeling", "LP", "MILP"], "size_categories": ["1K<n<10K"]}
false
null
2024-11-20T01:27:50
10
4
false
ed8a080c5885b9ba930ebbaad5246cc2ded7b796
NLP4LP NLP4LP is intended and licensed for research use only. The dataset is CC BY NC 4.0 (allowing only non-commercial use) and models trained using the dataset should not be used outside of research purposes (The updated version will be added soon). Contributions: We appreciate contributions! To add new instances to the dataset, please create a pull request on this repository with your problem instances with the following structure: data/ │ SUBDATASET/ │ │… See the full description on the dataset page: https://huggingface.co/datasets/udell-lab/NLP4LP.
281
891
[ "task_categories:text-classification", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "optimization", "optimization modeling", "LP", "MILP" ]
2024-11-02T20:36:55
null
null