import os import datasets import pandas as pd from datasets.tasks import AudioClassification _NAMES = { "songs": [f"song{i}" for i in range(1, 7)], "singers": [f"singer{i}" for i in range(1, 23)], } _HOMEPAGE = f"https://www.modelscope.cn/datasets/ccmusic-database/{os.path.basename(__file__)[:-3]}" _DOMAIN = f"{_HOMEPAGE}/resolve/master/data" _URLS = { "audio": f"{_DOMAIN}/audio.zip", "mel": f"{_DOMAIN}/mel.zip", } class acapella(datasets.GeneratorBasedBuilder): def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "audio": datasets.Audio(sampling_rate=48000), "mel": datasets.Image(), "singer_id": datasets.features.ClassLabel(names=_NAMES["singers"]), "pitch": datasets.Value("float32"), "rhythm": datasets.Value("float32"), "vocal_range": datasets.Value("float32"), "timbre": datasets.Value("float32"), "pronunciation": datasets.Value("float32"), "vibrato": datasets.Value("float32"), "dynamic": datasets.Value("float32"), "breath_control": datasets.Value("float32"), "overall_performance": datasets.Value("float32"), } ), supervised_keys=("audio", "singer_id"), homepage=_HOMEPAGE, license="CC-BY-NC-ND", version="1.2.0", task_templates=[ AudioClassification( task="audio-classification", audio_column="audio", label_column="singer_id", ) ], ) def _split_generators(self, dl_manager): songs = {} for index in _NAMES["songs"]: csv_files = dl_manager.download(f"{_DOMAIN}/{index}.csv") song_eval = pd.read_csv(csv_files, index_col="singer_id") scores = [] for i in range(len(_NAMES["singers"])): scores.append( { "pitch": song_eval.iloc[i]["pitch"], "rhythm": song_eval.iloc[i]["rhythm"], "vocal_range": song_eval.iloc[i]["vocal_range"], "timbre": song_eval.iloc[i]["timbre"], "pronunciation": song_eval.iloc[i]["pronunciation"], "vibrato": song_eval.iloc[i]["vibrato"], "dynamic": song_eval.iloc[i]["dynamic"], "breath_control": song_eval.iloc[i]["breath_control"], "overall_performance": song_eval.iloc[i]["overall_performance"], } ) songs[index] = scores audio_files = dl_manager.download_and_extract(_URLS["audio"]) for fpath in dl_manager.iter_files([audio_files]): fname: str = os.path.basename(fpath) if fname.endswith(".wav"): song_id = os.path.basename(os.path.dirname(fpath)) singer_id = int(fname.split("(")[1].split(")")[0]) - 1 songs[song_id][singer_id]["audio"] = fpath mel_files = dl_manager.download_and_extract(_URLS["mel"]) for fpath in dl_manager.iter_files([mel_files]): fname = os.path.basename(fpath) if fname.endswith(".jpg"): song_id = os.path.basename(os.path.dirname(fpath)) singer_id = int(fname.split("(")[1].split(")")[0]) - 1 songs[song_id][singer_id]["mel"] = fpath split_generator = [] for key in songs.keys(): split_generator.append( datasets.SplitGenerator( name=key, gen_kwargs={"files": songs[key]}, ) ) return split_generator def _generate_examples(self, files): for i, item in enumerate(files): yield i, { "audio": item["audio"], "mel": item["mel"], "singer_id": i, "pitch": item["pitch"], "rhythm": item["rhythm"], "vocal_range": item["vocal_range"], "timbre": item["timbre"], "pronunciation": item["pronunciation"], "vibrato": item["vibrato"], "dynamic": item["dynamic"], "breath_control": item["breath_control"], "overall_performance": item["overall_performance"], }