Carl Qi
commited on
Commit
·
5b490d3
1
Parent(s):
15eb40b
add kitchen related models
Browse files- kitchen/dlp_kitchen_dataset_40kp_64kpp_4zdim.pkl +3 -0
- latent_rep_chkpts/dlp_kitchen/hparams.json +52 -0
- latent_rep_chkpts/dlp_kitchen/saves/dlp_kitchen.pth +3 -0
- latent_rep_chkpts/dlp_kitchen/saves/franka_kitchen_dlp_40kp_64kpp_4zdim.pth +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/completion_idx_800.json +0 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/dataset_config.pkl +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/diff.txt +261 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/diffusion_config.pkl +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/eval_800_0.mp4 +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/model_config.pkl +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/render_config.pkl +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/state_810000.pt +3 -0
- pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/trainer_config.pkl +3 -0
kitchen/dlp_kitchen_dataset_40kp_64kpp_4zdim.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08b9eedcedce0f2f647178d41e61578afc391180d018dbbbfb665344f413351f
|
3 |
+
size 772268935
|
latent_rep_chkpts/dlp_kitchen/hparams.json
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"ds": "franka_kitchen",
|
3 |
+
"batch_size": 64,
|
4 |
+
"lr": 0.0002,
|
5 |
+
"kp_activation": "tanh",
|
6 |
+
"pad_mode": "replicate",
|
7 |
+
"num_epochs": 250,
|
8 |
+
"n_kp": 1,
|
9 |
+
"recon_loss_type": "mse",
|
10 |
+
"sigma": 1.0,
|
11 |
+
"beta_kl": 0.1,
|
12 |
+
"beta_rec": 1.0,
|
13 |
+
"patch_size": 16,
|
14 |
+
"topk": 10,
|
15 |
+
"n_kp_enc": 40,
|
16 |
+
"eval_epoch_freq": 1,
|
17 |
+
"learned_feature_dim": 4,
|
18 |
+
"bg_learned_feature_dim": 1,
|
19 |
+
"n_kp_prior": 64,
|
20 |
+
"weight_decay": 0.0,
|
21 |
+
"kp_range": [
|
22 |
+
-1,
|
23 |
+
1
|
24 |
+
],
|
25 |
+
"run_prefix": "_40kp_64kpp_4zdim",
|
26 |
+
"warmup_epoch": 1,
|
27 |
+
"iou_thresh": 0.15,
|
28 |
+
"anchor_s": 0.25,
|
29 |
+
"kl_balance": 0.001,
|
30 |
+
"milestones": [
|
31 |
+
20,
|
32 |
+
40,
|
33 |
+
80
|
34 |
+
],
|
35 |
+
"image_size": 128,
|
36 |
+
"cdim": 3,
|
37 |
+
"enc_channels": [
|
38 |
+
32,
|
39 |
+
64,
|
40 |
+
128
|
41 |
+
],
|
42 |
+
"prior_channels": [
|
43 |
+
16,
|
44 |
+
32,
|
45 |
+
64
|
46 |
+
],
|
47 |
+
"scale_std": 0.3,
|
48 |
+
"offset_std": 0.2,
|
49 |
+
"obj_on_alpha": 0.1,
|
50 |
+
"obj_on_beta": 0.1,
|
51 |
+
"use_correlation_heatmaps": false
|
52 |
+
}
|
latent_rep_chkpts/dlp_kitchen/saves/dlp_kitchen.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7aa98e16ee9794e948e8a373afad0e738b059e52057472e2bf32c7a31e4b308f
|
3 |
+
size 55887527
|
latent_rep_chkpts/dlp_kitchen/saves/franka_kitchen_dlp_40kp_64kpp_4zdim.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd8dfde0a1a0e8f12f5dc20dd7ef849260543503e2a858a0ee9ed8a297200739
|
3 |
+
size 55886353
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/completion_idx_800.json
ADDED
Binary file (983 Bytes). View file
|
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/dataset_config.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04b75b06377d4239aa177e0f4ab0b906a43f526919bd699f1ea760ff778ac5e8
|
3 |
+
size 498
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/diff.txt
ADDED
@@ -0,0 +1,261 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/analylize_trajectory.ipynb b/analylize_trajectory.ipynb
|
2 |
+
index ee01840..6ac8c75 100644
|
3 |
+
--- a/analylize_trajectory.ipynb
|
4 |
+
+++ b/analylize_trajectory.ipynb
|
5 |
+
@@ -2,7 +2,7 @@
|
6 |
+
"cells": [
|
7 |
+
{
|
8 |
+
"cell_type": "code",
|
9 |
+
- "execution_count": 2,
|
10 |
+
+ "execution_count": 1,
|
11 |
+
"metadata": {},
|
12 |
+
"outputs": [],
|
13 |
+
"source": [
|
14 |
+
@@ -180,19 +180,20 @@
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
- "execution_count": 5,
|
19 |
+
+ "execution_count": 7,
|
20 |
+
"metadata": {},
|
21 |
+
"outputs": [
|
22 |
+
{
|
23 |
+
"name": "stdout",
|
24 |
+
"output_type": "stream",
|
25 |
+
"text": [
|
26 |
+
- "t: 0 target_object: 51 max_obj_idxes: [20, 51, 100, 154, 202]\n",
|
27 |
+
- "t: 5 target_object: 7 max_obj_idxes: [7, 54, 106, 150, 212]\n",
|
28 |
+
- "t: 10 target_object: 1 max_obj_idxes: [1, 63, 111, 157, 215]\n",
|
29 |
+
- "t: 15 target_object: 1 max_obj_idxes: [1, 71, 111, 169, 203]\n",
|
30 |
+
- "t: 20 target_object: 10 max_obj_idxes: [10, 56, 122, 168, 212]\n",
|
31 |
+
- "t: 25 target_object: 4 max_obj_idxes: [4, 71, 115, 170, 220]\n"
|
32 |
+
+ "t: 0 target_object: 51 max_obj_idxes: [20, 13, 16, 10, 11, 51, 62, 70, 63, 57, 100, 109, 112, 119, 117, 154, 171, 161, 149, 151, 202, 212, 201, 200, 207] hit_percentage: 0.32\n",
|
33 |
+
+ "t: 5 target_object: 7 max_obj_idxes: [7, 17, 8, 4, 23, 54, 65, 63, 62, 69, 106, 110, 112, 99, 113, 150, 161, 158, 163, 166, 204, 207, 210, 201, 211] hit_percentage: 0.28\n",
|
34 |
+
+ "t: 10 target_object: 1 max_obj_idxes: [1, 23, 6, 4, 8, 63, 57, 54, 70, 66, 111, 101, 104, 120, 100, 157, 165, 148, 170, 166, 215, 212, 201, 207, 204] hit_percentage: 0.28\n",
|
35 |
+
+ "t: 15 target_object: 1 max_obj_idxes: [1, 8, 21, 3, 16, 71, 54, 51, 65, 69, 111, 107, 103, 106, 100, 169, 163, 151, 159, 162, 203, 218, 205, 215, 207] hit_percentage: 0.6\n",
|
36 |
+
+ "t: 20 target_object: 10 max_obj_idxes: [10, 16, 14, 23, 15, 56, 57, 50, 55, 64, 122, 106, 100, 103, 116, 168, 159, 148, 155, 153, 212, 202, 200, 198, 201] hit_percentage: 0.36\n",
|
37 |
+
+ "t: 25 target_object: 4 max_obj_idxes: [4, 5, 10, 6, 1, 71, 58, 65, 51, 73, 115, 111, 113, 107, 112, 170, 160, 148, 155, 167, 218, 220, 210, 211, 203] hit_percentage: 0.24\n",
|
38 |
+
+ "overall_hit_percentage: 0.3466666666666667\n"
|
39 |
+
]
|
40 |
+
}
|
41 |
+
],
|
42 |
+
@@ -213,21 +214,29 @@
|
43 |
+
" new_idx = i * 24 + j\n",
|
44 |
+
" return new_idx\n",
|
45 |
+
"\n",
|
46 |
+
+ "overall_hit_percentage = []\n",
|
47 |
+
"for t in [0, 5, 10, 15, 20, 25]:\n",
|
48 |
+
" with open(f'logs/panda_push/plans/3C_plan_3C_pintlarge_dlp_analysis_H5_T100/step_latest/particles_{t}.pkl', 'rb') as f:\n",
|
49 |
+
" particles = pickle.load(f)\n",
|
50 |
+
" particles = particles[0, :, :240]\n",
|
51 |
+
" particles = particles.reshape(-1, 10)[:, 2:]\n",
|
52 |
+
- " particle_similarity = cdist(particles, particles, metric='cosine')\n",
|
53 |
+
+ " particle_similarity = cdist(particles, particles, metric='euclidean')\n",
|
54 |
+
" particle_similarity = 1 - particle_similarity\n",
|
55 |
+
"\n",
|
56 |
+
"\n",
|
57 |
+
" target_obj = objects_of_interest_dict[t][0]\n",
|
58 |
+
" target_particle = convert_obj_idx_to_particle_idx(target_obj)\n",
|
59 |
+
- " max_particle_idxes = np.argmax(particle_similarity[target_particle].reshape(5, -1), axis=1)\n",
|
60 |
+
- " max_particle_idxes = [i*24 + j for i, j in enumerate(max_particle_idxes)]\n",
|
61 |
+
+ " # max_particle_idxes = np.argmax(particle_similarity[target_particle].reshape(5, -1), axis=1)\n",
|
62 |
+
+ " top_k_particle_indices = np.argsort(particle_similarity[target_particle].reshape(5, -1), axis=-1)[:, ::-1][:, :5]\n",
|
63 |
+
+ " max_particle_idxes = []\n",
|
64 |
+
+ " for i in range(5):\n",
|
65 |
+
+ " for idx in top_k_particle_indices[i]:\n",
|
66 |
+
+ " max_particle_idxes.append(i*24 + idx)\n",
|
67 |
+
+ " # max_particle_idxes = [i*24 + j for i, j in enumerate(max_particle_idxes)]\n",
|
68 |
+
" max_obj_idxes = [convert_particle_idx_to_obj_idx(idx) for idx in max_particle_idxes]\n",
|
69 |
+
- " print(\"t:\", t, \"target_object:\", target_obj, \"max_obj_idxes:\", max_obj_idxes)\n",
|
70 |
+
+ " hit_percentage = np.mean([1 if obj_idx in objects_of_interest_dict[t] else 0 for obj_idx in max_obj_idxes])\n",
|
71 |
+
+ " print(\"t:\", t, \"target_object:\", target_obj, \"max_obj_idxes:\", max_obj_idxes, \"hit_percentage:\", hit_percentage)\n",
|
72 |
+
+ " overall_hit_percentage.append(hit_percentage)\n",
|
73 |
+
" n_particles = 120\n",
|
74 |
+
"\n",
|
75 |
+
" # fig, ax = plt.subplots()\n",
|
76 |
+
@@ -238,33 +247,16 @@
|
77 |
+
" # ax.imshow(particle_similarity)\n",
|
78 |
+
" # ax.set_title(f\"Particle Similarity\", fontsize=12)\n",
|
79 |
+
" # ax.set_xticks(range(n_particles), [f\"{i}\" for i in range(n_particles)])\n",
|
80 |
+
- " # ax.set_yticks(range(n_particles), [f\"{i}\" for i in range(n_particles)])"
|
81 |
+
+ " # ax.set_yticks(range(n_particles), [f\"{i}\" for i in range(n_particles)])\n",
|
82 |
+
+ "print(\"overall_hit_percentage:\", np.mean(overall_hit_percentage))"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"cell_type": "code",
|
87 |
+
- "execution_count": 38,
|
88 |
+
+ "execution_count": null,
|
89 |
+
"metadata": {},
|
90 |
+
- "outputs": [
|
91 |
+
- {
|
92 |
+
- "data": {
|
93 |
+
- "text/plain": [
|
94 |
+
- "(5, 24)"
|
95 |
+
- ]
|
96 |
+
- },
|
97 |
+
- "execution_count": 38,
|
98 |
+
- "metadata": {},
|
99 |
+
- "output_type": "execute_result"
|
100 |
+
- }
|
101 |
+
- ],
|
102 |
+
- "source": [
|
103 |
+
- "t: 0 target_object: 51 max_obj_idxes: [20, 51, 100, 154, 202]\n",
|
104 |
+
- "t: 5 target_object: 7 max_obj_idxes: [7, 54, 106, 150, 204]\n",
|
105 |
+
- "t: 10 target_object: 1 max_obj_idxes: [1, 63, 111, 157, 215]\n",
|
106 |
+
- "t: 15 target_object: 1 max_obj_idxes: [1, 71, 111, 169, 203]\n",
|
107 |
+
- "t: 20 target_object: 10 max_obj_idxes: [10, 56, 122, 168, 212]\n",
|
108 |
+
- "t: 25 target_object: 4 max_obj_idxes: [4, 71, 115, 170, 218]"
|
109 |
+
- ]
|
110 |
+
+ "outputs": [],
|
111 |
+
+ "source": []
|
112 |
+
},
|
113 |
+
{
|
114 |
+
"cell_type": "code",
|
115 |
+
diff --git a/config/TrainDLPConfig.yaml b/config/TrainDLPConfig.yaml
|
116 |
+
index 6cfcd34..528c308 100644
|
117 |
+
--- a/config/TrainDLPConfig.yaml
|
118 |
+
+++ b/config/TrainDLPConfig.yaml
|
119 |
+
@@ -23,14 +23,14 @@ beta_kl: 0.1 # original
|
120 |
+
beta_rec: 1.0
|
121 |
+
scale_std: 0.3 # default
|
122 |
+
offset_std: 0.2 # default
|
123 |
+
-n_kp_enc: 20 # total kp to output from the encoder / filter from prior
|
124 |
+
-n_kp_prior: 32
|
125 |
+
-patch_size: 16 # prior patch size need to be lower than posterior patch size: posterior is (image size * anchor_s)
|
126 |
+
+n_kp_enc: 50 # total kp to output from the encoder / filter from prior
|
127 |
+
+n_kp_prior: 128
|
128 |
+
+patch_size: 8 # prior patch size need to be lower than posterior patch size: posterior is (image size * anchor_s)
|
129 |
+
learned_feature_dim: 4 # latent visual features for each kp (excluding bg)
|
130 |
+
bg_learned_feature_dim: 1
|
131 |
+
topk: 10 # display top-10 kp with the smallest variance
|
132 |
+
recon_loss_type: "mse"
|
133 |
+
-anchor_s: 0.25 # reduce this to 0.125 for small glimpses
|
134 |
+
+anchor_s: 0.125 # reduce this to 0.125 for small glimpses
|
135 |
+
kl_balance: 0.001
|
136 |
+
|
137 |
+
|
138 |
+
diff --git a/diffuser/config/pandapush_pint.py b/diffuser/config/pandapush_pint.py
|
139 |
+
index e18ff84..e96a7ee 100644
|
140 |
+
--- a/diffuser/config/pandapush_pint.py
|
141 |
+
+++ b/diffuser/config/pandapush_pint.py
|
142 |
+
@@ -32,8 +32,8 @@ mode_to_args = {
|
143 |
+
'device': 'cuda:1',
|
144 |
+
'droupout': 0.0,
|
145 |
+
'renderer': 'utils.ParticleRenderer',
|
146 |
+
- 'eval_freq': 200,
|
147 |
+
- 'n_train_steps': 1e6,
|
148 |
+
+ 'eval_freq': 800,
|
149 |
+
+ 'n_train_steps': 9e5,
|
150 |
+
},
|
151 |
+
'1C_dlp_pusht': {'env_config_dir': 'config/push_t_old',
|
152 |
+
'features_dim': 10,
|
153 |
+
@@ -62,7 +62,7 @@ mode_to_args = {
|
154 |
+
'3C_dlp_pusht': {'env_config_dir': 'config/push_t',
|
155 |
+
'features_dim': 12,
|
156 |
+
'multiview': True,
|
157 |
+
- 'n_diffusion_steps': 5,
|
158 |
+
+ 'n_diffusion_steps': 50,
|
159 |
+
'model': 'models.AdaLNPINTDenoiser',
|
160 |
+
'particle_normalizer': 'ParticleLimitsNormalizer',
|
161 |
+
'horizon': 5,
|
162 |
+
@@ -70,7 +70,12 @@ mode_to_args = {
|
163 |
+
'device': 'cuda:1',
|
164 |
+
'droupout': 0.0,
|
165 |
+
'renderer': 'utils.ParticleRenderer',
|
166 |
+
- 'vis_freq': 999,
|
167 |
+
+ 'vis_freq': 20,
|
168 |
+
+ 'hidden_dim': 512, # 512
|
169 |
+
+ 'projection_dim': 512, # 512
|
170 |
+
+ 'n_heads': 8, # 4, 8
|
171 |
+
+ 'n_layers': 12, # 4, 6, # 12
|
172 |
+
+ 'n_saves': 5,
|
173 |
+
},
|
174 |
+
'1C_state': {'env_config_dir': 'config/n_cubes_state',
|
175 |
+
'features_dim': 4,
|
176 |
+
diff --git a/diffuser/config/plan_config/plan_pandapush_pint.py b/diffuser/config/plan_config/plan_pandapush_pint.py
|
177 |
+
index d742936..937c936 100644
|
178 |
+
--- a/diffuser/config/plan_config/plan_pandapush_pint.py
|
179 |
+
+++ b/diffuser/config/plan_config/plan_pandapush_pint.py
|
180 |
+
@@ -51,7 +51,8 @@ mode_to_args = {
|
181 |
+
'n_diffusion_steps': 5,
|
182 |
+
'horizon': 5,
|
183 |
+
'device': 'cuda:1',
|
184 |
+
- 'diffusion_loadpath': 'diffusion/PushT_3C_dlp_adalnpint_new_H5_T5',
|
185 |
+
+ # 'diffusion_loadpath': 'diffusion/PushT_3C_dlp_adalnpint_new_H5_T5',
|
186 |
+
+ 'diffusion_loadpath': 'diffusion/PushT_3C_dlp_pintlarge_H5_T5',
|
187 |
+
# 'diffusion_loadpath': 'diffusion/PushT_1C_dlp_eit_H1_T5',
|
188 |
+
# 'vis_freq': 999,
|
189 |
+
# 'policy': 'sampling.GoalConditionedBCPolicy',
|
190 |
+
diff --git a/diffuser/scripts/train_kitchen.py b/diffuser/scripts/train_kitchen.py
|
191 |
+
index bb2f5de..3af843c 100644
|
192 |
+
--- a/diffuser/scripts/train_kitchen.py
|
193 |
+
+++ b/diffuser/scripts/train_kitchen.py
|
194 |
+
@@ -250,4 +250,4 @@ for i in range(n_epochs):
|
195 |
+
|
196 |
+
## TODO: add evaluation code here:
|
197 |
+
if i % args.eval_freq == 0:
|
198 |
+
- evaluate_kitchen(policy, env, latent_rep_model, goal_fn, plan_args, video, i, plan_args.savepath, num_evals=40)
|
199 |
+
+ evaluate_kitchen(policy, env, latent_rep_model, goal_fn, plan_args, video, i, plan_args.savepath, num_evals=100)
|
200 |
+
diff --git a/run_batch_plan.sh b/run_batch_plan.sh
|
201 |
+
index 47315f9..ba59d13 100644
|
202 |
+
--- a/run_batch_plan.sh
|
203 |
+
+++ b/run_batch_plan.sh
|
204 |
+
@@ -1,10 +1,13 @@
|
205 |
+
#!/bin/bash
|
206 |
+
|
207 |
+
-seeds=(42 188 288 388 488)
|
208 |
+
-gpu_numbers=(1 2 3 1 2)
|
209 |
+
+# seeds=(42 188 288 388 488)
|
210 |
+
+# gpu_numbers=(3 2 3 1 2)
|
211 |
+
|
212 |
+
-for i in "${!seeds[@]}"; do
|
213 |
+
- seed=${seeds[$i]}
|
214 |
+
- gpu_number=${gpu_numbers[$i]}
|
215 |
+
- CUDA_VISIBLE_DEVICES=0,$gpu_number python diffuser/scripts/plan_gc_pandapush.py --planning_only --config config.plan_config.plan_pandapush_pint --seed $seed --num_entity 1 --push_t --exp_note pint_action &
|
216 |
+
-done
|
217 |
+
|
218 |
+
+# for i in "${!seeds[@]}"; do
|
219 |
+
+# seed=${seeds[$i]}
|
220 |
+
+# gpu_number=${gpu_numbers[$i]}
|
221 |
+
+# CUDA_VISIBLE_DEVICES=0,$gpu_number python diffuser/scripts/plan_gc_pandapush.py --vis_traj_wandb --planning_only --config config.plan_config.plan_pandapush_pint --seed $seed --num_entity 6 --push_t --exp_note adalnpint &
|
222 |
+
+# done
|
223 |
+
+
|
224 |
+
+CUDA_VISIBLE_DEVICES=0,1 python diffuser/scripts/plan_gc_pandapush.py --vis_traj_wandb --planning_only --config config.plan_config.plan_pandapush_pint --seed 188 --num_entity 4 --push_t --exp_note pintlarge_3color &
|
225 |
+
+# CUDA_VISIBLE_DEVICES=0,3 python diffuser/scripts/plan_gc_pandapush.py --vis_traj_wandb --planning_only --config config.plan_config.plan_pandapush_pint --seed 188 --num_entity 4 --push_t --exp_note pintlarge_2color
|
226 |
+
|
227 |
+
diff --git a/run_batch_train.sh b/run_batch_train.sh
|
228 |
+
index 4af8c5a..f51b78b 100644
|
229 |
+
--- a/run_batch_train.sh
|
230 |
+
+++ b/run_batch_train.sh
|
231 |
+
@@ -1,10 +1,10 @@
|
232 |
+
#!/bin/bash
|
233 |
+
|
234 |
+
-seeds=(42 188 288 388 488)
|
235 |
+
-gpu_numbers=(1 2 3 1 2)
|
236 |
+
+seeds=(188 288 388 488)
|
237 |
+
+gpu_numbers=(1 2 3 3)
|
238 |
+
|
239 |
+
for i in "${!seeds[@]}"; do
|
240 |
+
seed=${seeds[$i]}
|
241 |
+
gpu_number=${gpu_numbers[$i]}
|
242 |
+
- CUDA_VISIBLE_DEVICES=0,$gpu_number python diffuser/scripts/train.py --seed $seed --num_entity 3 --input_type vqvae --exp_note adalnpint &
|
243 |
+
+ CUDA_VISIBLE_DEVICES=0,$gpu_number python diffuser/scripts/train_kitchen.py --seed $seed --num_entity 1 --kitchen --exp_note 40kp_0.25anchor_s &
|
244 |
+
done
|
245 |
+
|
246 |
+
diff --git a/vq_bet_official/examples/configs/train_pandapush.yaml b/vq_bet_official/examples/configs/train_pandapush.yaml
|
247 |
+
index 45b6976..ac8559a 100644
|
248 |
+
--- a/vq_bet_official/examples/configs/train_pandapush.yaml
|
249 |
+
+++ b/vq_bet_official/examples/configs/train_pandapush.yaml
|
250 |
+
@@ -16,8 +16,9 @@ sequentially_select: false
|
251 |
+
# vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-25/21-18-19/silvery-wind-20/trained_vqvae.pt" # 2C
|
252 |
+
# vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-25/21-35-15/apricot-haze-25/trained_vqvae.pt" # 3C
|
253 |
+
# vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-26/00-37-23/floral-frost-33/trained_vqvae.pt" # 1T
|
254 |
+
-vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-26/15-23-53/classic-capybara-39/trained_vqvae.pt"
|
255 |
+
-num_entity: 2
|
256 |
+
+# vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-26/15-23-53/classic-capybara-39/trained_vqvae.pt"
|
257 |
+
+vqvae_load_dir: "vq_bet_official/checkpoints/pandapush/2024-09-26/22-36-48/woven-music-45/trained_vqvae.pt"
|
258 |
+
+num_entity: 3
|
259 |
+
env_config_dir: config/vqvae_push_t
|
260 |
+
# env_config_dir: config/n_cubes_raw
|
261 |
+
push_t: true
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/diffusion_config.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5a093c84c6e03ffb58464bffdaf3c2a41da282703b7c8fd20bb16d36599decbf
|
3 |
+
size 341
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/eval_800_0.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:30a460bc9515a5911ab5b577ae473e6343843af02757e9ab638207c3643b6fda
|
3 |
+
size 2938530
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/model_config.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1485a1fc1ce71da742f9629ae7e82142e1eeac50568d7787622b31ca7c3a7f2f
|
3 |
+
size 329
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/render_config.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:534ea1b7376c27b5bc94d8185cafddfb86361d6151d6a266ae9aaac98a5ab7f3
|
3 |
+
size 157
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/state_810000.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1989c9f09d77db7583ad8dc61dc1ed45388fb99a5153ce52a30ee7aa344d19c0
|
3 |
+
size 64892725
|
pretrained_models/kitchen/diffusion/kitchen_1C_dlp_40kp_0.25anchor_s_H5_T5/trainer_config.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2497149f77e0498c9f1b096ddc5ceebb4b0cf7619a05e89358d0d21463767aba
|
3 |
+
size 401
|