""" TweetTopic Dataset """ import json from itertools import chain import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[TweetTopic](https://arxiv.org/abs/2209.09824)""" _VERSION = "1.0.3" _CITATION = """ @inproceedings{dimosthenis-etal-2022-twitter, title = "{T}witter {T}opic {C}lassification", author = "Antypas, Dimosthenis and Ushio, Asahi and Camacho-Collados, Jose and Neves, Leonardo and Silva, Vitor and Barbieri, Francesco", booktitle = "Proceedings of the 29th International Conference on Computational Linguistics", month = oct, year = "2022", address = "Gyeongju, Republic of Korea", publisher = "International Committee on Computational Linguistics" } """ _HOME_PAGE = "https://cardiffnlp.github.io" _LABEL_TYPE = "single" _NAME = f"tweet_topic_{_LABEL_TYPE}" _URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/raw/main/dataset' _URLS = { f"{str(datasets.Split.TEST)}_2020": [f'{_URL}/split_temporal/test_2020.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TEST)}_2021": [f'{_URL}/split_temporal/test_2021.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_2020": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_2021": [f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_all": [f'{_URL}/split_temporal/train_2020.{_LABEL_TYPE}.json', f'{_URL}/split_temporal/train_2021.{_LABEL_TYPE}.json'], f"{str(datasets.Split.VALIDATION)}_2020": [f'{_URL}/split_temporal/validation_2020.{_LABEL_TYPE}.json'], f"{str(datasets.Split.VALIDATION)}_2021": [f'{_URL}/split_temporal/validation_2021.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_random": [f'{_URL}/split_random/train_random.{_LABEL_TYPE}.json'], f"{str(datasets.Split.VALIDATION)}_random": [f'{_URL}/split_random/validation_random.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TEST)}_coling2022_random": [f'{_URL}/split_coling2022_random/test_random.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_coling2022_random": [f'{_URL}/split_coling2022_random/train_random.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TEST)}_coling2022": [f'{_URL}/split_coling2022_temporal/test_2021.{_LABEL_TYPE}.json'], f"{str(datasets.Split.TRAIN)}_coling2022": [f'{_URL}/split_coling2022_temporal/train_2020.{_LABEL_TYPE}.json'], } class TweetTopicSingleConfig(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(TweetTopicSingleConfig, self).__init__(**kwargs) class TweetTopicSingle(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ TweetTopicSingleConfig(name=_NAME, version=datasets.Version(_VERSION), description=_DESCRIPTION), ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URLS) return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[i]}) for i in _URLS.keys()] def _generate_examples(self, filepaths): _key = 0 for filepath in filepaths: logger.info(f"generating examples from = {filepath}") with open(filepath, encoding="utf-8") as f: _list = [i for i in f.read().split('\n') if len(i) > 0] for i in _list: data = json.loads(i) yield _key, data _key += 1 def _info(self): names = ["arts_&_culture", "business_&_entrepreneurs", "pop_culture", "daily_life", "sports_&_gaming", "science_&_technology"] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "text": datasets.Value("string"), "date": datasets.Value("string"), "label": datasets.features.ClassLabel(names=names), "label_name": datasets.Value("string"), "id": datasets.Value("string") } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )