""" Fine-tune T5 on topic classification (multi-label multi-class classification) ``` python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --low-cpu-mem-usage ``` """ import json import logging import os import argparse import gc from typing import List, Set, Dict from shutil import copyfile from statistics import mean from itertools import product import torch import transformers from datasets import load_dataset from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline from huggingface_hub import Repository os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message os.environ['WANDB_DISABLED'] = 'true' # disable wandb def load_model( model_name: str, use_auth_token: bool = False, low_cpu_mem_usage: bool = False) -> transformers.PreTrainedModel: """Load language model from huggingface model hub.""" # config & tokenizer config = transformers.AutoConfig.from_pretrained(model_name, use_auth_token=use_auth_token) if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class model_class = transformers.T5ForConditionalGeneration.from_pretrained elif config.model_type == 'mt5': model_class = transformers.MT5ForConditionalGeneration.from_pretrained elif config.model_type == 'bart': model_class = transformers.BartForConditionalGeneration.from_pretrained elif config.model_type == 'mbart': model_class = transformers.MBartForConditionalGeneration.from_pretrained else: raise ValueError(f'unsupported model type: {config.model_type}') param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage} model = model_class(model_name, **param) return model def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> Dict[str, float]: scores = [] for g, r in zip(references, predictions): tp = len(set(g).intersection(set(r))) fp = len([_g for _g in g if _g not in r]) fn = len([_r for _r in r if _r not in g]) if tp == 0: f1 = 0 else: f1 = 2 * tp / (2 * tp + fp + fn) scores.append(f1) return {'f1': mean(scores)} def train( model_name: str, model_low_cpu_mem_usage: bool, dataset: str, dataset_name: str, dataset_column_label: str, dataset_column_text: str, dataset_split_train: str, dataset_split_validation: str, dataset_split_test: str, lr: List, epoch: List, batch: List, down_sample_train: int, down_sample_validation: int, random_seed: int, use_auth_token: bool, output_dir: str, model_alias: str, model_organization: str, skip_train: bool = False, skip_test: bool = False, skip_upload: bool = False, eval_steps: float = 0.25, eval_batch_size: int = None): """Fine-tune seq2seq model.""" logging.info(f'[CONFIG]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})') if not output_dir: output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' # dataset process tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token) dataset_split = { 'train': [dataset_split_train, down_sample_train], 'validation': [dataset_split_validation, down_sample_validation] } dataset_instance = load_dataset(dataset, dataset_name, use_auth_token=use_auth_token) tokenized_dataset = {} for s, (s_dataset, down_sample) in dataset_split.items(): tokenized_dataset[s] = [] dataset_tmp = dataset_instance[s_dataset] dataset_tmp.shuffle(random_seed) for i in dataset_tmp: model_inputs = tokenizer(i[dataset_column_text], truncation=True) model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids'] tokenized_dataset[s].append(model_inputs) if down_sample is not None and len(dataset_tmp) > down_sample: tokenized_dataset[f'{s}_ds'] = [] dataset_tmp = dataset_tmp.select(list(range(down_sample))) for i in dataset_tmp: model_inputs = tokenizer(i[dataset_column_text], truncation=True) model_inputs['labels'] = tokenizer(text_target=i[dataset_column_label], truncation=True)['input_ids'] tokenized_dataset[f'{s}_ds'].append(model_inputs) else: tokenized_dataset[f'{s}_ds'] = tokenized_dataset[s] def compute_metric(eval_pred) -> Dict[str, float]: # for parameter search def decode_tokens(token_ids) -> List[Set[str]]: return [ set(tokenizer.decode(list(filter(lambda x: x != -100, r)), skip_special_tokens=True).split(',')) for r in token_ids ] predictions, reference_token_ids = eval_pred # format reference references_decode = decode_tokens(reference_token_ids) # format prediction logit, loss = predictions generation_token_id = logit.argmax(-1) generation_token_id[logit.min(-1) == -100] = -100 generation_decode = decode_tokens(generation_token_id) return get_f1_score(references_decode, generation_decode) if not skip_train: lr = [1e-6, 1e-4] if lr is None else lr batch = [64] if not batch else batch epoch = [1, 3, 5] if not epoch else epoch eval_batch_size = min(batch) if not eval_batch_size else eval_batch_size for n, (lr_tmp, batch_tmp, epoch_tmp) in enumerate(product(lr, batch, epoch)): logging.info(f"[TRAIN {n}/{len(lr) * len(batch) * len(epoch)}] lr: {lr_tmp}, batch: {batch_tmp}") model = load_model( model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage ) trainer = Seq2SeqTrainer( model=model, args=Seq2SeqTrainingArguments( num_train_epochs=epoch_tmp, learning_rate=lr_tmp, output_dir=f"{output_dir}/model_{n}", evaluation_strategy='steps', eval_steps=eval_steps, per_device_eval_batch_size=eval_batch_size, seed=random_seed, per_device_train_batch_size=batch_tmp, ), data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model), train_dataset=tokenized_dataset['train_ds'], eval_dataset=tokenized_dataset['validation_ds'], compute_metrics=compute_metric, ) # train result = trainer.train() trainer.log_metrics("train", result.metrics) trainer.save_metrics("train", result.metrics) # evaluate metrics = trainer.evaluate() trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # clean up memory trainer.save_model() trainer.save_state() del trainer del model gc.collect() torch.cuda.empty_cache() else: logging.info('skip hyperparameter search & model training (already done)') # get metric on the test set if not skip_test: logging.info('run evaluation on test set') if not os.path.exists(f'{output_dir}/model/prediction_test.txt'): pipe = pipeline( 'text2text-generation', model=f'{output_dir}/model', device='cuda:0' if torch.cuda.is_available() else 'cpu', ) input_data = [i[dataset_column_text] for i in dataset_instance[dataset_split_test]] output = pipe(input_data, batch_size=eval_batch_size) output = [i['generated_text'] for i in output] with open(f'{output_dir}/model/prediction_test.txt', 'w') as f: f.write('\n'.join(output)) with open(f'{output_dir}/model/prediction_test.txt') as f: output = [set(i.split(',')) for i in f.read().split('\n')] dataset_tmp = dataset_instance[dataset_split_test] label_list = dataset_tmp[dataset_column_label] _references = [ set([_l for __i, _l in zip(_i[dataset_column_label], label_list) if __i == 1]) for _i in dataset_tmp ] eval_metric = get_f1_score(_references, output) logging.info(json.dumps(eval_metric, indent=4)) with open(f'{output_dir}/model/evaluation_metrics.json', 'w') as f: json.dump(eval_metric, f) if not skip_upload: assert model_alias is not None and model_organization is not None,\ 'model_organization must be specified when model_alias is specified' logging.info('uploading to huggingface') args = {'use_auth_token': use_auth_token, 'organization': model_organization} model = load_model(model_name=f'{output_dir}/model') model.push_to_hub(model_alias, **args) tokenizer.push_to_hub(model_alias, **args) repo = Repository(model_alias, f'{model_organization}/{model_alias}') copyfile(f'{output_dir}/model/hyperparameters.json', f'{model_alias}/hyperparameters.json') if os.path.exists(f'{output_dir}/model/prediction_test.txt'): copyfile(f'{output_dir}/model/prediction_test.txt', f'{model_alias}/prediction_test.txt') if os.path.exists(f'{output_dir}/model/evaluation_metrics.json'): copyfile(f'{output_dir}/model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json') sample = [i[dataset_column_text] for i in dataset_instance[dataset_split_train]] sample = [i for i in sample if ''' not in i and ''' not in i][:3] widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)]) with open(f'{model_alias}/README.md', 'w') as f: f.write(f""" --- widget: {widget} --- # {model_organization}/{model_alias} This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}). ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}') output = pipe('{sample[0]}') ``` """) repo.push_to_hub() if __name__ == '__main__': # arguments logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') parser = argparse.ArgumentParser(description='Seq2Seq LM Fine-tuning on topic classification.') parser.add_argument('-m', '--model-name', default='google/mt5-small', type=str) parser.add_argument('--low-cpu-mem-usage', action='store_true') parser.add_argument('-d', '--dataset', default='cardiffnlp/tweet_topic_multilingual', type=str) parser.add_argument('--dataset-name', default='ja', type=str) parser.add_argument('--dataset-column-label', default='label_name_flatten', type=str) parser.add_argument('--dataset-column-text', default='text', type=str) parser.add_argument('--dataset-split-train', default='train', type=str) parser.add_argument('--dataset-split-validation', default='validation', type=str) parser.add_argument('--dataset-split-test', default='test', type=str) parser.add_argument('--lr', nargs='+', default=None, type=float) parser.add_argument('--epoch', nargs='+', default=None, type=int) parser.add_argument('--batch', nargs='+', default=None, type=int) parser.add_argument('--down-sample-train', default=None, type=int) parser.add_argument('--down-sample-validation', default=2000, type=int) parser.add_argument('--random-seed', default=42, type=int) parser.add_argument('--use-auth-token', action='store_true') parser.add_argument('--eval-steps', default=100, type=int) parser.add_argument('--output-dir', default=None, type=str) parser.add_argument('--model-alias', default=None, type=str) parser.add_argument('--model-organization', default=None, type=str) parser.add_argument('--skip-train', action='store_true') parser.add_argument('--skip-test', action='store_true') parser.add_argument('--skip-upload', action='store_true') opt = parser.parse_args() train( model_name=opt.model_name, model_low_cpu_mem_usage=opt.low_cpu_mem_usage, dataset=opt.dataset, dataset_name=opt.dataset_name, dataset_column_label=opt.dataset_column_label, dataset_column_text=opt.dataset_column_text, dataset_split_train=opt.dataset_split_train, dataset_split_validation=opt.dataset_split_validation, dataset_split_test=opt.dataset_split_test, lr=opt.lr, epoch=opt.epoch, batch=opt.batch, down_sample_train=opt.down_sample_train, down_sample_validation=opt.down_sample_validation, random_seed=opt.random_seed, use_auth_token=opt.use_auth_token, eval_steps=opt.eval_steps, output_dir=opt.output_dir, model_alias=opt.model_alias, model_organization=opt.model_organization, skip_train=opt.skip_train, skip_test=opt.skip_test, skip_upload=opt.skip_upload )