""" Fine-tune T5 on topic classification (multi-label multi-class classification) ``` python finetune_t5.py --dataset-name ja --model-alias mt5-small-tweet-topic-ja --model-organization cardiffnlp --low-cpu-mem-usage ``` """ import json import logging import os import argparse import gc from glob import glob from typing import List, Set from shutil import copyfile from statistics import mean from distutils.dir_util import copy_tree import torch import transformers from datasets import load_dataset from transformers import Seq2SeqTrainer, Seq2SeqTrainingArguments, pipeline from huggingface_hub import Repository os.environ['TOKENIZERS_PARALLELISM'] = 'false' # turn-off the warning message os.environ['WANDB_DISABLED'] = 'true' # disable wandb _LR = [1e-6, 1e-5, 1e-4] _BATCH = 32 _EPOCH = 5 def load_model( model_name: str, use_auth_token: bool = False, low_cpu_mem_usage: bool = False) -> transformers.PreTrainedModel: """Load language model from huggingface model hub.""" # config & tokenizer config = transformers.AutoConfig.from_pretrained(model_name, use_auth_token=use_auth_token) if config.model_type == 't5': # T5 model requires T5ForConditionalGeneration class model_class = transformers.T5ForConditionalGeneration.from_pretrained elif config.model_type == 'mt5': model_class = transformers.MT5ForConditionalGeneration.from_pretrained elif config.model_type == 'bart': model_class = transformers.BartForConditionalGeneration.from_pretrained elif config.model_type == 'mbart': model_class = transformers.MBartForConditionalGeneration.from_pretrained else: raise ValueError(f'unsupported model type: {config.model_type}') param = {'config': config, 'use_auth_token': use_auth_token, 'low_cpu_mem_usage': low_cpu_mem_usage} return model_class(model_name, **param) def train( model_name: str, model_low_cpu_mem_usage: bool, dataset: str, dataset_name: str, dataset_column_label: str, dataset_column_text: str, random_seed: int, use_auth_token: bool): """Fine-tune seq2seq model.""" logging.info(f'[TRAIN]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})') output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token) dataset_instance = load_dataset(dataset, dataset_name, split="train", use_auth_token=use_auth_token) tokenized_dataset = [] for d in dataset_instance: model_inputs = tokenizer(d[dataset_column_text], truncation=True) model_inputs['labels'] = tokenizer(text_target=d[dataset_column_label], truncation=True)['input_ids'] tokenized_dataset.append(model_inputs) for n, lr_tmp in enumerate(_LR): logging.info(f"[TRAIN {n}/{len(_LR)}] lr: {lr_tmp}") output_dir_tmp = f"{output_dir}/model_lr_{lr_tmp}" if os.path.exists(f"{output_dir_tmp}/pytorch_model.bin"): continue model = load_model( model_name=model_name, use_auth_token=use_auth_token, low_cpu_mem_usage=model_low_cpu_mem_usage ) trainer = Seq2SeqTrainer( model=model, args=Seq2SeqTrainingArguments( num_train_epochs=_EPOCH, learning_rate=lr_tmp, output_dir=output_dir_tmp, save_strategy="epoch", evaluation_strategy="no", seed=random_seed, per_device_train_batch_size=_BATCH, ), data_collator=transformers.DataCollatorForSeq2Seq(tokenizer, model=model), train_dataset=tokenized_dataset.copy(), ) # train trainer.train() # trainer.log_metrics("train", result.metrics) # trainer.save_metrics("train", result.metrics) # clean up memory # trainer.save_model() # trainer.save_state() del trainer del model gc.collect() torch.cuda.empty_cache() for model_path in glob(f"{output_dir}/*/*"): tokenizer.save_pretrained(model_path) def get_f1_score(references: List[Set[str]], predictions: List[Set[str]]) -> float: scores = [] for g, r in zip(references, predictions): tp = len(set(g).intersection(set(r))) fp = len([_g for _g in g if _g not in r]) fn = len([_r for _r in r if _r not in g]) f1 = 0 if tp == 0 else 2 * tp / (2 * tp + fp + fn) scores.append(f1) return mean(scores) def get_metric( prediction_file: str, metric_file: str, model_path: str, data: List[str], label: List[str]) -> float: if os.path.exists(metric_file): with open(metric_file) as f: eval_metric = json.load(f) return eval_metric['f1'] if not os.path.exists(prediction_file): pipe = pipeline( 'text2text-generation', model=model_path, device='cuda:0' if torch.cuda.is_available() else 'cpu', ) output = pipe(data, batch_size=_BATCH) output = [i['generated_text'] for i in output] with open(prediction_file, 'w') as f: f.write('\n'.join(output)) with open(prediction_file) as f: output = [set(i.split(',')) for i in f.read().split('\n')] label = [set(i.split(',')) for i in label] eval_metric = {'f1': get_f1_score(label, output)} logging.info(json.dumps(eval_metric, indent=4)) with open(metric_file, 'w') as f: json.dump(eval_metric, f) return eval_metric['f1'] def validate( model_name: str, dataset: str, dataset_name: str, dataset_column_text: str, use_auth_token: bool, dataset_column_label: str): logging.info(f'[VALIDATE]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})') output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' dataset_instance = load_dataset(dataset, dataset_name, split='validation', use_auth_token=use_auth_token) label = [i[dataset_column_label] for i in dataset_instance] data = [i[dataset_column_text] for i in dataset_instance] model_score = [] for model_path in glob(f"{output_dir}/*/*/pytorch_model.bin"): model_path = os.path.dirname(model_path) prediction_file = f"{model_path}/prediction.validate.{os.path.basename(dataset)}.{dataset_name}.txt" metric_file = f"{model_path}/metric.validate.{os.path.basename(dataset)}.{dataset_name}.json" metric = get_metric( prediction_file=prediction_file, metric_file=metric_file, model_path=model_path, label=label, data=data ) model_score.append([model_path, metric]) model_score = sorted(model_score, key=lambda x: x[1]) logging.info('Validation Result') for k, v in model_score: logging.info(f'{k}: {v}') best_model = model_score[-1][0] best_model_path = f'{output_dir}/best_model' copy_tree(best_model, best_model_path) def test( model_name: str, dataset: str, dataset_name: str, dataset_column_text: str, use_auth_token: bool, dataset_column_label: str): logging.info(f'[TEST]\n\t *LM: {model_name}, \n\t *Data: {dataset} ({dataset_name})') output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' dataset_instance = load_dataset(dataset, dataset_name, split='test', use_auth_token=use_auth_token) label = [i[dataset_column_label] for i in dataset_instance] data = [i[dataset_column_text] for i in dataset_instance] model_path = f'{output_dir}/best_model' prediction_file = f"{model_path}/prediction.{os.path.basename(dataset)}.{dataset_name}.txt" metric_file = f"{model_path}/metric.{os.path.basename(dataset)}.{dataset_name}.json" metric = get_metric( prediction_file=prediction_file, metric_file=metric_file, model_path=model_path, label=label, data=data ) logging.info(f'Test Result: {metric}') def upload( model_name: str, dataset: str, dataset_name: str, dataset_column_text: str, use_auth_token: bool, model_alias: str, model_organization: str): assert model_alias is not None and model_organization is not None,\ 'model_organization must be specified when model_alias is specified' logging.info('uploading to huggingface') output_dir = f'ckpt/{os.path.basename(model_name)}.{os.path.basename(dataset)}.{dataset_name}' args = {'use_auth_token': use_auth_token, 'organization': model_organization} model = load_model(model_name=f'{output_dir}/best_model') tokenizer = transformers.AutoTokenizer.from_pretrained(model_name, use_auth_token=use_auth_token) model.push_to_hub(model_alias, **args) tokenizer.push_to_hub(model_alias, **args) repo = Repository(model_alias, f'{model_organization}/{model_alias}') if os.path.exists(f'{output_dir}/best_model/prediction_test.txt'): copyfile(f'{output_dir}/best_model/prediction_test.txt', f'{model_alias}/prediction_test.txt') if os.path.exists(f'{output_dir}/best_model/evaluation_metrics.json'): copyfile(f'{output_dir}/best_model/evaluation_metrics.json', f'{model_alias}/evaluation_metrics.json') dataset_instance = load_dataset(dataset, dataset_name, split='test', use_auth_token=use_auth_token) sample = [i[dataset_column_text] for i in dataset_instance] sample = [i for i in sample if ''' not in i and ''' not in i][:3] widget = '\n'.join([f"- text: '{t}'\n example_title: example {_n + 1}" for _n, t in enumerate(sample)]) with open(f'{model_alias}/README.md', 'w') as f: f.write(f""" --- widget: {widget} --- # {model_organization}/{model_alias} This is [{model_name}](https://huggingface.co/{model_name}) fine-tuned on [{dataset} ({dataset_name})](https://huggingface.co/datasets/{dataset}). ### Usage ```python from transformers import pipeline pipe = pipeline('text2text-generation', model='{model_organization}/{model_alias}') output = pipe('{sample[0]}') ``` """) repo.push_to_hub() if __name__ == '__main__': # arguments logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S') parser = argparse.ArgumentParser(description='Seq2Seq LM Fine-tuning on topic classification.') parser.add_argument('-m', '--model-name', default='google/mt5-small', type=str) parser.add_argument('--low-cpu-mem-usage', action='store_true') parser.add_argument('-d', '--dataset', default='cardiffnlp/tweet_topic_multilingual', type=str) parser.add_argument('--dataset-name', default='ja', type=str) parser.add_argument('--dataset-column-label', default='label_name_flatten', type=str) parser.add_argument('--dataset-column-text', default='text', type=str) parser.add_argument('--random-seed', default=42, type=int) parser.add_argument('--use-auth-token', action='store_true') parser.add_argument('--model-alias', default=None, type=str) parser.add_argument('--model-organization', default=None, type=str) parser.add_argument('--skip-train', action='store_true') parser.add_argument('--skip-validate', action='store_true') parser.add_argument('--skip-test', action='store_true') parser.add_argument('--skip-upload', action='store_true') opt = parser.parse_args() if not opt.skip_train: train( model_name=opt.model_name, model_low_cpu_mem_usage=opt.low_cpu_mem_usage, dataset=opt.dataset, dataset_name=opt.dataset_name, dataset_column_label=opt.dataset_column_label, dataset_column_text=opt.dataset_column_text, random_seed=opt.random_seed, use_auth_token=opt.use_auth_token, ) if not opt.skip_validate: validate( model_name=opt.model_name, dataset=opt.dataset, dataset_name=opt.dataset_name, dataset_column_label=opt.dataset_column_label, dataset_column_text=opt.dataset_column_text, use_auth_token=opt.use_auth_token ) if not opt.skip_test: test( model_name=opt.model_name, dataset=opt.dataset, dataset_name=opt.dataset_name, dataset_column_label=opt.dataset_column_label, dataset_column_text=opt.dataset_column_text, use_auth_token=opt.use_auth_token ) if not opt.skip_upload: upload( model_name=opt.model_name, dataset=opt.dataset, dataset_name=opt.dataset_name, dataset_column_text=opt.dataset_column_text, use_auth_token=opt.use_auth_token, model_alias=opt.model_alias, model_organization=opt.model_organization )