""" TweetTopicMultilingual Dataset """ import json import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[TweetTopicMultilingual](TBA)""" _VERSION = "0.0.3" _CITATION = """TBA""" _HOME_PAGE = "https://cardiffnlp.github.io" _NAME = "tweet_topic_multilingual" _ROOT_URL = f"https://huggingface.co/datasets/cardiffnlp/{_NAME}/resolve/main/dataset" _LANGUAGES = ["en", "es", "ja", "gr"] _CLASS_MAPPING = { "en": [ "Arts & Culture", "Business & Entrepreneurs", "Celebrity & Pop Culture", "Diaries & Daily Life", "Family", "Fashion & Style", "Film, TV & Video", "Fitness & Health", "Food & Dining", "Learning & Educational", "News & Social Concern", "Relationships", "Science & Technology", "Youth & Student Life", "Music", "Gaming", "Sports", "Travel & Adventure", "Other Hobbies" ], "gr": [ "Τέχνες & Πολιτισμός", "Επιχειρήσεις & Επιχειρηματίες", "Διασημότητες & Ποπ κουλτούρα", "Ημερολόγια & Καθημερινή ζωή", "Οικογένεια", "Μόδα & Στυλ", "Ταινίες, τηλεόραση & βίντεο", "Γυμναστική & Υεία", "Φαγητό & Δείπνο", "Μάθηση & Εκπαίδευση", "Ειδήσεις & Κοινωνία", "Σχέσεις", "Επιστήμη & Τεχνολογία", "Νεανική & Φοιτητική ζωή", "Μουσική", "Παιχνίδια", "Αθλητισμός", "Ταξίδια & Περιπέτεια", "Άλλα χόμπι" ], "es": [ "Arte y cultura", "Negocios y emprendedores", "Celebridades y cultura pop", "Diarios y vida diaria", "Familia", "Moda y estilo", "Cine, televisión y video", "Estado físico y salud", "Comida y comedor", "Aprendizaje y educación", "Noticias e interés social", "Relaciones", "Ciencia y Tecnología", "Juventud y Vida Estudiantil", "Música", "Juegos", "Deportes", "Viajes y aventuras", "Otros pasatiempos" ], "ja": [ "アート&カルチャー", "ビジネス", "芸能", "日常", "家族", "ファッション", "映画&ラジオ", "フィットネス&健康", "料理", "教育関連", "社会", "人間関係", "サイエンス", "学校", "音楽", "ゲーム", "スポーツ", "旅行", "その他" ] } _URL = {} # plain split for lan in _LANGUAGES: _URL[lan] = {split: f"{_ROOT_URL}/{lan}/{lan}_{split}.jsonl" for split in ["train", "test", "validation"]} _URL["en_2022"] = {split: f"{_ROOT_URL}/en_2022/{split}.jsonl" for split in ["train", "validation"]} # cross validation for lan in _LANGUAGES: _URL.update({ f"{lan}_cross_validation_{n}": { split: f"{_ROOT_URL}/{lan}/cross_validation/{lan}_{split}_{n}.jsonl" for split in ["train", "test", "validation"] } for n in range(5) }) class Config(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(Config, self).__init__(**kwargs) class TweetTopicMultilingual(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ Config(name=i, version=datasets.Version(_VERSION), description=_DESCRIPTION) for i in _URL.keys() ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URL[self.config.name]) splits = _URL[self.config.name].keys() return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_file[i]}) for i in splits] def _generate_examples(self, filepath): _key = 0 logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: _list = [json.loads(i) for i in f.read().split("\n") if len(i) > 0] for i in _list: yield _key, i _key += 1 def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), "label_name_flatten": datasets.Value("string"), "label": datasets.Sequence(datasets.features.ClassLabel(names=_CLASS_MAPPING["en"])), "label_name": datasets.Sequence(datasets.Value("string")) } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )