""" TweetTopicMultilingual Dataset """ import json import datasets logger = datasets.logging.get_logger(__name__) _DESCRIPTION = """[TweetTopicMultilingual](TBA)""" _VERSION = "0.0.3" _CITATION = """TBA""" _HOME_PAGE = "https://cardiffnlp.github.io" _NAME = "tweet_topic_multilingual" _ROOT_URL = f'https://huggingface.co/datasets/cardiffnlp/{_NAME}/resolve/main/dataset' _LANGUAGES = ["en", "es", "ja", "gr"] _URL = {} # plain split for lan in _LANGUAGES: _URL[lan] = {split: f"{_ROOT_URL}/{lan}/{lan}_{split}.jsonl" for split in ["train", "test", "validation"]} _URL["en_2022"] = {split: f"{_ROOT_URL}/en_2022/{split}.jsonl" for split in ["train", "validation"]} # cross validation for lan in _LANGUAGES: _URL.update({ f"{lan}_cross_validation_{n}": { split: f"{_ROOT_URL}/{lan}/cross_validation/{lan}_{split}_{n}.jsonl" for split in ["train", "test", "validation"] } for n in range(5) }) class Config(datasets.BuilderConfig): """BuilderConfig""" def __init__(self, **kwargs): """BuilderConfig. Args: **kwargs: keyword arguments forwarded to super. """ super(Config, self).__init__(**kwargs) class TweetTopicMultilingual(datasets.GeneratorBasedBuilder): """Dataset.""" BUILDER_CONFIGS = [ Config(name=i, version=datasets.Version(_VERSION), description=_DESCRIPTION) for i in _URL.keys() ] def _split_generators(self, dl_manager): downloaded_file = dl_manager.download_and_extract(_URL[self.config.name]) splits = _URL[self.config.name].keys() return [datasets.SplitGenerator(name=i, gen_kwargs={"filepath": downloaded_file[i]}) for i in splits] def _generate_examples(self, filepath): _key = 0 logger.info("generating examples from = %s", filepath) with open(filepath, encoding="utf-8") as f: _list = [json.loads(i) for i in f.read().split('\n') if len(i) > 0] for i in _list: yield _key, i _key += 1 def _info(self): names = [ "arts_&_culture", "business_&_entrepreneurs", "celebrity_&_pop_culture", "diaries_&_daily_life", "family", "fashion_&_style", "film_tv_&_video", "fitness_&_health", "food_&_dining", "gaming", "learning_&_educational", "music", "news_&_social_concern", "other_hobbies", "relationships", "science_&_technology", "sports", "travel_&_adventure", "youth_&_student_life" ] return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "id": datasets.Value("string"), "text": datasets.Value("string"), "label": datasets.Sequence(datasets.features.ClassLabel(names=names)), "label_name": datasets.Sequence(datasets.Value("string")) } ), supervised_keys=None, homepage=_HOME_PAGE, citation=_CITATION, )