--- language: - en license: - other multilinguality: - monolingual size_categories: - 1k<10K task_categories: - text-classification task_ids: - sentiment-classification pretty_name: TweetTopicSingle --- # Dataset Card for "cardiff_nlp/tweet_topic_multi" ## Dataset Description - **Paper:** [https://arxiv.org/abs/2209.09824](https://arxiv.org/abs/2209.09824) - **Dataset:** Tweet Topic Dataset - **Domain:** Twitter - **Number of Class:** 19 ### Dataset Summary Topic classification dataset on Twitter with multiple labels per tweet. See [cardiffnlp/tweet_topic_single](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single) for single label version of Tweet Topic. ## Dataset Structure ### Data Instances An example of `train` looks as follows. ```python { "date": "2021-03-07", "text": "The latest The Movie theater Daily! {{URL}} Thanks to {{USERNAME}} {{USERNAME}} {{USERNAME}} #lunchtimeread #amc1000", "id": "1368464923370676231", "label": [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], "label_name": ["film_tv_&_video"] } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweet_topic_multi/raw/main/dataset/label.multi.json). ```python { "arts_&_culture": 0, "business_&_entrepreneurs": 1, "celebrity_&_pop_culture": 2, "diaries_&_daily_life": 3, "family": 4, "fashion_&_style": 5, "film_tv_&_video": 6, "fitness_&_health": 7, "food_&_dining": 8, "gaming": 9, "learning_&_educational": 10, "music": 11, "news_&_social_concern": 12, "other_hobbies": 13, "relationships": 14, "science_&_technology": 15, "sports": 16, "travel_&_adventure": 17, "youth_&_student_life": 18 } ``` ### Data Splits | split | number of texts | description | |:----------------------------|-----:|:-----| | `test` | 1679 | alias of `temporal_2021_test` | | `train` | 4585 | alias of `temporal_2020_train` | | `validation` | 573 | alias of `temporal_2020_validation` | | `temporal_2020_test` | 573 | test set in 2020 period of temporal split | | `temporal_2021_test` | 1679 | test set in 2021 period of temporal split | | `temporal_2020_train` | 4585 | training set in 2020 period of temporal split | | `temporal_2021_train` | 1505 | training set in 2021 period of temporal split | | `temporal_2020_validation` | 573 | validation set in 2020 period of temporal split | | `temporal_2021_validation` | 188 | validation set in 2021 period of temporal split | | `random_train` | 4564 | training set of random split (mix of 2020 and 2021) | | `random_validation` | 573 | validation set of random split (mix of 2020 and 2021) | | `coling2022_random_test` | 5536 | test set of random split used in COLING 2022 Tweet Topic paper | | `coling2022_random_train` | 5731 | training set of random split used in COLING 2022 Tweet Topic paper | | `coling2022_temporal_test` | 5536 | test set of temporal split used in COLING 2022 Tweet Topic paper | | `coling2022_temporal_train` | 5731 | training set of temporal split used in COLING 2022 Tweet Topic paper| For the temporal-shift setting, we recommend to train models on `train` (an alias of `temporal_2020_train`) with `validation` (an alias of `temporal_2020_validation`) and evaluate on `test` (an alias of `temporal_2021_test`). For the random split, we recommend to train models on `random_train` with `random_validation` and evaluate on `test` (`temporal_2021_test`). **IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `coling2022_temporal_train` and `coling2022_temporal_test` for temporal-shift, and `coling2022_random_train` and `coling2022_temporal_test` fir random split (the coling2022 split does not have validation set). ### Citation Information ``` TBA ```